WorldWideScience

Sample records for global dirac optical

  1. Global Dirac bispinor entanglement under Lorentz boosts

    Science.gov (United States)

    Bittencourt, Victor A. S. V.; Bernardini, Alex E.; Blasone, Massimo

    2018-03-01

    The effects of Lorentz boosts on the quantum entanglement encoded by a pair of massive spin-1/2 particles are described according to the Lorentz covariant structure described by Dirac bispinors. The quantum system considered incorporates four degrees of freedom: two of them related to the bispinor intrinsic parity and the other two related to the bispinor spin projection, i.e., the Dirac particle helicity. Because of the natural multipartite structure involved, the Meyer-Wallach global measure of entanglement is preliminarily used for computing global quantum correlations, while the entanglement separately encoded by spin degrees of freedom is measured through the negativity of the reduced two-particle spin-spin state. A general framework to compute the changes on quantum entanglement induced by a boost is developed and then specialized to describe three particular antisymmetric two-particle states. According to the results obtained, two-particle spin-spin entanglement cannot be created by the action of a Lorentz boost in a spin-spin separable antisymmetric state. On the other hand, the maximal spin-spin entanglement encoded by antisymmetric superpositions is degraded by Lorentz boosts driven by high-speed frame transformations. Finally, the effects of boosts on chiral states are shown to exhibit interesting invariance properties, which can only be obtained through such a Lorentz covariant formulation of the problem.

  2. Optical analogue of relativistic Dirac solitons in binary waveguide arrays

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Truong X., E-mail: truong.tran@mpl.mpg.de [Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet str., 10000 Hanoi (Viet Nam); Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); Longhi, Stefano [Department of Physics, Politecnico di Milano and Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, I-20133 Milano (Italy); Biancalana, Fabio [Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)

    2014-01-15

    We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.

  3. Optical conductivity of disordered graphene beyond the Dirac cone approximation

    NARCIS (Netherlands)

    Yuan, Shengjun; Roldan, Rafael; De Raedt, Hans; Katsnelson, Mikhail I.

    2011-01-01

    In this paper we systemically study the optical conductivity and density of states of disordered graphene beyond the Dirac cone approximation. The optical conductivity of graphene is computed by using the Kubo formula, within the framework of a full p-band tight-binding model. Different types of

  4. Quasiparticle Spectrum of 2-d Dirac Vortices in Optical Lattices

    Science.gov (United States)

    Haddad, Laith

    2009-10-01

    Bose-Einstein condensates in a honeycomb optical lattice are described by a nonlinear Dirac equaton (NLDE) in the long wavelength, mean field limit [1]. The upper and lower two-spinor equations decouple and superficially resemble the equations of previously studied NLDE's such as the Soler model for extended fermions. Although much work has been done on NLDE's, the bulk of the literature deals with models with Poincare invariant nonlinearites. In contrast our equations break Poincare symmetry providing an opportunity to study phenomenological models in cosmology and particle physics where this symmetry is not manifest. We obtain and classify localized solutions to our equations for both repulsive and attractive contact interactions. We also derive analogs of the Bogoliubov-de Gennes equations for the lattice and use these to study the stability and low energy spectrum of our solutions showing the existence of stable exotic structures such as vortices with fractional statistics.[4pt] [1] L. H. Haddad and L. D. Carr, ``The Nonlinear Dirac Equation in Bose-Einstein Condensates: Foundation and Symmetries,'' Physica D: Nonlinear Phenomena, v. 238, p. 1413 (2009). http://arxiv.org/pdf/0803.3039v1

  5. The reactive content of the proton-nucleus impulse - approximation Dirac optical potential

    International Nuclear Information System (INIS)

    Carlson, B.V.; Isidro Filho, M.P.; Hussein, M.S.

    1984-01-01

    The total reaction cross sections for intermediate energy proton scattering on 40 Ca and 208 Pb are calculated within the Dirac-Eikonal formalism. Comparison with data indicate that the recently proposed impulse-approximation Dirac optical potential for nucleon-nucleus scattering, is not absorptive enough. (Author) [pt

  6. Operator ordering in quantum optics theory and the development of Dirac's symbolic method

    International Nuclear Information System (INIS)

    Fan Hongyi

    2003-01-01

    We present a general unified approach for arranging quantum operators of optical fields into ordered products (normal ordering, antinormal ordering, Weyl ordering (or symmetric ordering)) by fashioning Dirac's symbolic method and representation theory. We propose the technique of integration within an ordered product (IWOP) of operators to realize our goal. The IWOP makes Dirac's representation theory and the symbolic method more transparent and consequently more easily understood. The beauty of Dirac's symbolic method is further revealed. Various applications of the IWOP technique, such as in developing the entangled state representation theory, nonlinear coherent state theory, Wigner function theory, etc, are presented. (review article)

  7. Dirac electronics states in graphene systems: optical spectroscopy studies

    Czech Academy of Sciences Publication Activity Database

    Orlita, Milan; Potemski, M.

    2010-01-01

    Roč. 25, č. 6 (2010), 063001/1-063001/22 ISSN 0268-1242 R&D Projects: GA AV ČR KAN400100652 Institutional research plan: CEZ:AV0Z10100521 Keywords : graphene * Dirac fermions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.323, year: 2010

  8. Microscopic optical model potential based on a Dirac Brueckner Hartree Fock approach and the relevant uncertainty analysis

    Science.gov (United States)

    Xu, Ruirui; Ma, Zhongyu; Muether, Herbert; van Dalen, E. N. E.; Liu, Tinjin; Zhang, Yue; Zhang, Zhi; Tian, Yuan

    2017-09-01

    A relativistic microscopic optical model potential, named CTOM, for nucleon-nucleus scattering is investigated in the framework of Dirac-Brueckner-Hartree-Fock approach. The microscopic feature of CTOM is guaranteed through rigorously adopting the isospin dependent DBHF calculation within the subtracted T matrix scheme. In order to verify its prediction power, a global study n, p+ A scattering are carried out. The predicted scattering observables coincide with experimental data within a good accuracy over a broad range of targets and a large region of energies only with two free items, namely the free-range factor t in the applied improved local density approximation and minor adjustments of the scalar and vector potentials in the low-density region. In addition, to estimate the uncertainty of the theoretical results, the deterministic simple least square approach is preliminarily employed to derive the covariance of predicted angular distributions, which is also briefly contained in this paper.

  9. Dirac delta-plus (or minus) function in optics and mesooptics

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1987-01-01

    The topic of this article is Dirac delta-plus function and its application in Hilbert optics and mesooptics. The article begins with the introduction of the backgrounds and of the underlying relations. Then the properties of the coherent imaging system containing various spatial frequency filters are treated. The analysis of mesooptical imaging system used for observation of the straight line particle tracks in the nuclear emulsion is presented. It is shown that in a general case the convolution kernel of mesooptical system is a superposition of the form a 1 δ + (x)+a 2 x (d/dx)δ + (x)

  10. Correspondence between quantum-optical transform and classical-optical transform explored by developing Dirac's symbolic method

    Science.gov (United States)

    Fan, Hong-yi; Hu, Li-yun

    2012-06-01

    By virtue of the new technique of performing integration over Dirac's ket-bra operators, we explore quantum optical version of classical optical transformations such as optical Fresnel transform, Hankel transform, fractional Fourier transform, Wigner transform, wavelet transform and Fresnel-Hadmard combinatorial transform etc. In this way one may gain benefit for developing classical optics theory from the research in quantum optics, or vice-versa. We cannot only find some new quantum mechanical unitary operators which correspond to the known optical transformations, deriving a new theorem for calculating quantum tomogram of density operators, but also can reveal some new classical optical transformations. For examples, we find the generalized Fresnel operator (GFO) to correspond to the generalized Fresnel transform (GFT) in classical optics. We derive GFO's normal product form and its canonical coherent state representation and find that GFO is the loyal representation of symplectic group multiplication rule. We show that GFT is just the transformation matrix element of GFO in the coordinate representation such that two successive GFTs is still a GFT. The ABCD rule of the Gaussian beam propagation is directly demonstrated in the context of quantum optics. Especially, the introduction of quantum mechanical entangled state representations opens up a new area in finding new classical optical transformations. The complex wavelet transform and the condition of mother wavelet are studied in the context of quantum optics too. Throughout our discussions, the coherent state, the entangled state representation of the two-mode squeezing operators and the technique of integration within an ordered product (IWOP) of operators are fully used. All these have confirmed Dirac's assertion: "...for a quantum dynamic system that has a classical analogue, unitary transformation in the quantum theory is the analogue of contact transformation in the classical theory".

  11. Use of real Dirac matrices in two-dimensional coupled linear optics

    Directory of Open Access Journals (Sweden)

    C. Baumgarten

    2011-11-01

    Full Text Available The Courant-Snyder theory for two-dimensional coupled linear optics is presented, based on the systematic use of the real representation of the Dirac matrices. Since any real 4×4 matrix can be expressed as a linear combination of these matrices, the presented ansatz allows for a comprehensive and complete treatment of two-dimensional linear coupling. A survey of symplectic transformations in two dimensions is presented. A subset of these transformations is shown to be identical to rotations and Lorentz boosts in Minkowski space-time. The transformation properties of the classical state vector are formulated and found to be analog to those of a Dirac spinor. The equations of motion for a relativistic charged particle—the Lorentz force equations—are shown to be isomorph to envelope equations of two-dimensional linear coupled optics. A universal and straightforward method to decouple two-dimensional harmonic oscillators with constant coefficients by symplectic transformations is presented, which is based on this isomorphism. The method yields the eigenvalues (i.e., tunes and eigenvectors and can be applied to a one-turn transfer matrix or directly to the coefficient matrix of the linear differential equation.

  12. Classical Optical Transforms Studied in the Context of Quantum Optics via the Route of Developing Dirac's Symbolic Method

    Science.gov (United States)

    Fan, Hong-Yi; Lu, Hai-Liang

    Via the route of developing Dirac's symbolic method and following Dirac's assertion: "⋯ for a quantum dynamic system that has a classical analogue, unitary transformation in the quantum theory is the analogue of contact transformation in the classical theory", we find the generalized Fresnel operator (GFO) corresponding to the generalized Fresnel transform (GFT) in classical optics. We derive GFO's normal product form and its canonical coherent state representation and find that GFO is the loyal representation of symplectic group multiplication rule. We show that GFT is just the transformation matrix element of GFO in the coordinate representation such that two successive GFTs is still a GFT. The ABCD rule of the Gaussian beam propagation is directly demonstrated in quantum optics. With the aid of entangled state representation the entangled Fresnel transform is proposed; new eigenfunctions of the complex fractional Fourier transform and fractional Hankel transform are obtained; the two-variable Hermite eigenmodes of light propagation are used in studying the Talbot effect in quadratic-index media; the complex wavelet transform and the condition of mother wavelet are studied in the context of quantum optics too. Moreover, quantum optical version of classical z-transforms is obtained on the basis of the eigenvector of creation operator. Throughout our discussions, the coherent state, squeezing operators and the technique of integration within an ordered product (IWOP) of operators are fully used.

  13. Squeezed Dirac and topological magnons in a bosonic honeycomb optical lattice

    Science.gov (United States)

    Owerre, S. A.; Nsofini, J.

    2017-11-01

    Quantum information storage using charge-neutral quasiparticles is expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-1/2 XYZ Heisenberg model on the honeycomb lattice with discrete Z2 symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z2 anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators.

  14. Paul Dirac

    Science.gov (United States)

    Pais, Abraham; Jacob, Maurice; Olive, David I.; Atiyah, Michael F.

    2005-09-01

    Preface Peter Goddard; Dirac memorial address Stephen Hawking; 1. Paul Dirac: aspects of his life and work Abraham Pais; 2. Antimatter Maurice Jacob; 3. The monopole David Olive; 4. The Dirac equation and geometry Michael F. Atiyah.

  15. Nonlinear optical observation of coherent acoustic Dirac plasmons in thin-film topological insulators

    Science.gov (United States)

    Glinka, Yuri D.; Babakiray, Sercan; Johnson, Trent A.; Holcomb, Mikel B.; Lederman, David

    2016-09-01

    Low-energy collective electronic excitations exhibiting sound-like linear dispersion have been intensively studied both experimentally and theoretically for a long time. However, coherent acoustic plasmon modes appearing in time-domain measurements are rarely observed due to Landau damping by the single-particle continua. Here we report on the observation of coherent acoustic Dirac plasmon (CADP) modes excited in indirectly (electrostatically) opposite-surface coupled films of the topological insulator Bi2Se3. Using transient second-harmonic generation, a technique capable of independently monitoring the in-plane and out-of-plane electron dynamics in the films, the GHz-range oscillations were observed without corresponding oscillations in the transient reflectivity. These oscillations were assigned to the transverse magnetic and transverse electric guided CADP modes induced by the evanescent guided Lamb acoustic waves and remained Landau undamped due to fermion tunnelling between the opposite-surface Dirac states.

  16. Strain effects on the optical conductivity of gapped graphene in the presence of Holstein phonons beyond the Dirac cone approximation

    Energy Technology Data Exchange (ETDEWEB)

    Yarmohammadi, Mohsen, E-mail: m.yarmohammadi69@gmail.com [Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of)

    2016-08-15

    In this paper we study the optical conductivity and density of states (DOS) of doped gapped graphene beyond the Dirac cone approximation in the presence of electron-phonon (e-ph) interaction under strain, i.e., within the framework of a full π-band Holstein model, by using the Kubo linear response formalism that is established upon the retarded self-energy. A new peak in the optical conductivity for a large enough e-ph interaction strength is found which is associated to transitions between the midgap states and the Van Hove singularities of the main π-band. Optical conductivity decreases with strain and at large strains, the system has a zero optical conductivity at low energies due to optically inter-band excitations through the limit of zero doping. As a result, the Drude weight changes with e-ph interaction, temperature and strain. Consequently, DOS and optical conductivity remains stable with temperature at low e-ph coupling strengths.

  17. Progress in the development of global medium-energy nucleon-nucleus optical model potentials

    International Nuclear Information System (INIS)

    Madland, D.G.

    1997-01-01

    Two existing global medium-energy nucleon-nucleus phenomenological optical model potentials are described and compared with experiment and with each other. The first of these employs a Dirac approach (second-order reduction) that is global in projectile energy and projectile isospin and applies to the target nucleus 208 Pb. The second of these employs a relativistic equivalent to the Schroedinger equation (including relativistic kinematics) that is global in projectile energy, projectile isospin, and target (Z,A). Finally, current work is described and the influence of the nuclear bound state problem (treated in relativistic mean field theory) on the Dirac scattering problem is mentioned. Spherical target nuclei are treated in the present work and strongly-collective target nuclei (rotational and vibrational) requiring coupled-channels approaches will be treated in a future paper. (author)

  18. Optical Conductivity in a Two-Dimensional Extended Hubbard Model for an Organic Dirac Electron System α-(BEDT-TTF2I3

    Directory of Open Access Journals (Sweden)

    Daigo Ohki

    2018-03-01

    Full Text Available The optical conductivity in the charge order phase is calculated in the two-dimensional extended Hubbard model describing an organic Dirac electron system α -(BEDT-TTF 2 I 3 using the mean field theory and the Nakano-Kubo formula. Because the interband excitation is characteristic in a two-dimensional Dirac electron system, a peak structure is found above the charge order gap. It is shown that the peak structure originates from the Van Hove singularities of the conduction and valence bands, where those singularities are located at a saddle point between two Dirac cones in momentum space. The frequency of the peak structure exhibits drastic change in the vicinity of the charge order transition.

  19. Dirac matter

    CERN Document Server

    Rivasseau, Vincent; Fuchs, Jean-Nöel

    2017-01-01

    This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux, who consider many other mater...

  20. Dirac experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, F.; Adeva, B.; Afanasev, L.; Benayoun, M.; Brekhovskikh, V.; Caragheorgheopol, G.; Cechak, T.; Chiba, M.; Constantinescu, S.; Doudarev, A.; Dreossi, D.; Drijard, D.; Ferro-Luzzi, M.; Gallas, M.V.; Gerndt, J.; Giacomich, R.; Gianotti, P.; Goldin, D.; Gorin, A.; Gortchakov, O.; Guaraldo, C.; Hansroul, M.; Hosek, R.; Iliescu, M.; Jabitski, M.; Kalinina, N.; Karpoukhine, V.; Kluson, J.; Kobayashi, M.; Kokkas, P.; Komarov, V.; Koulikov, A.; Kouptsov, A.; Krouglov, V.; Krouglova, L.; Kuroda, K.-I.; Lanaro, A.; Lapshine, V.; Lednicky, R.; Leruste, P.; Levisandri, P.; Lopez Aguera, A.; Lucherini, V.; Maki, T.; Manuilov, I.; Montanet, L.; Narjoux, J.-L.; Nemenov, L.; Nikitin, M.; Nunez Pardo, T.; Okada, K.; Olchevskii, V.; Pazos, A.; Pentia, M.; Penzo, A.; Perreau, J.-M.; Petrascu, C.; Plo, M.; Ponta, T.; Pop, D.; Riazantsev, A.; Rodriguez, J.M.; Rodriguez Fernandez, A.; Rykaline, V.; Santamarina, C.; Saborido, J.; Schacher, J.; Sidorov, A.; Smolik, J.; Takeutchi, F.; Tarasov, A.; Tauscher, L.; Tobar, M.J.; Trusov, S.; Vazquez, P.; Vlachos, S.; Yazkov, V.; Yoshimura, Y.; Zrelov, P

    2001-04-01

    The main objective of DIRAC experiment is the measurement of the lifetime {tau} of the exotic hadronic atom consisting of {pi}{sup +} and {pi}{sup -} mesons. The lifetime of this atom is determined by the decay mode {pi}{sup +} {pi}{sup -} {yields} {pi}{sup 0} {pi}{sup 0} due to the strong interaction. Through the precise relationship between the lifetime and the S-wave pion-pion scattering length difference |a{sub 0} - a{sub 2}| for isospin 0 and 2 (respectively), a measurement of {tau} with an accuracy of 10% will allow a determination of |a{sub 0} - a{sub 2}| at a 5% precision level. Pion-pion scattering lengths have been calculated in the framework of chiral perturbation theory with an accuracy below 5%. In this way DIRAC experiment will provide a crucial test of the chiral symmetry breaking scheme in QCD effective theories at low energies.

  1. Dirac experiment

    CERN Document Server

    Gómez, F; Afanasev, L; Benayoun, M; Brekhovskikh, V; Caragheorgheopol, G; Cechák, T; Chiba, M; Constantinescu, S; Doudarev, A; Dreossi, D; Drijard, Daniel; Ferro-Luzzi, M; Gallas, M V; Gerndt, J; Giacomich, R; Gianotti, P; Goldin, D; Gorin, A; Gortchakov, O; Guaraldo, C; Hansroul, M; Hosek, R; Iliescu, M; Jabitski, M; Kalinina, N; Karpoukhine, V; Kluson, J; Kobayshi, M; Kokkas, P; Komarov, V; Koulikov, A; Kouptsov, A; Krouglov, V; Krouglova, L; Kuroda, K I; Lanaro, A; Lapshine, B; Lednicky, R; Leruste, P; Levisandri, P; López-Aguera, A; Lucherini, V; Mäki, T; Manuilov, I; Montanet, L; Narjoux, J L; Nemenov, L; Nikitin, M; Nunez Pardo, T; Okada, K; Olchevskii, V; Pazos, A; Pentia, M; Penzo, Aldo L; Perreau, J M; Petrascu, C; Pló, M; Ponta, T; Pop, D; Riazantsev, A; Rodríguez, J M; Rodriguez Fernandez, A; Rykaline, V; Santamarina, C; Saborido, J; Schacher, J; Sidorov, A; Smolik, J; Takeutchi, F; Tarasov, A; Tauscher, L; Tobar, M J; Trusov, S; Vasquez, P; Vlachos, S; Yazkov, V; Yoshimura, Y; Zrelov, P

    2001-01-01

    The main objective of DIRAC experiment is the measurement of the lifetime tau of the exotic hadronic atom consisting of pi /sup +/ and pi /sup -/ mesons. The lifetime of this atom is determined by the decay mode pi /sup +/ pi /sup -/ to pi /sup 0/ pi /sup 0/ due to the strong interaction. Through the precise relationship between the lifetime and the S-wave pion-pion scattering length difference a/sub 0/-a/sub 2/ for isospin 0 and 2 (respectively), a measurement of tau with an accuracy of 10% will allow a determination of a/sub 0/-a/sub 2/at a 5% precision level. Pion-pion scattering lengths have been calculated in the framework of chiral perturbation theory with an accuracy below 5%. In this way DIRAC experiment will provide a crucial test of the chiral symmetry breaking scheme in QCD effective theories at low energies. (19 refs).

  2. Time-dependent constrained Hamiltonian systems and Dirac brackets

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Manuel de [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Madrid (Spain); Marrero, Juan C. [Departamento de Matematica Fundamental, Facultad de Matematicas, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands (Spain); Martin de Diego, David [Departamento de Economia Aplicada Cuantitativa, Facultad de Ciencias Economicas y Empresariales, UNED, Madrid (Spain)

    1996-11-07

    In this paper the canonical Dirac formalism for time-dependent constrained Hamiltonian systems is globalized. A time-dependent Dirac bracket which reduces to the usual one for time-independent systems is introduced. (author)

  3. High-energy limit of massless Dirac fermions in multilayer graphene using magneto-optical transmission spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Plochocka, P.; Faugeras, C.; Orlita, Milan; Sadowski, M.L.; Martinez, G.; Potemski, M.; Goerbig, M.O.; Fuchs, J.-N.; Berger, C.; de Heer, W.A.

    2008-01-01

    Roč. 100, č. 8 (2008), 087401/1-087401/4 ISSN 0031-9007 Grant - others:ANR(FR) ANR-06-NANO-019 Institutional research plan: CEZ:AV0Z10100521 Keywords : multilayer graphene * Dirac fermions * absorption spectrum * Landau level spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.180, year: 2008

  4. Local smoothness for global optical flow

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau

    2012-01-01

    We consider the problem of estimating the “smoothness parameter” that controls the tradeoff between data fidelity and regularity in optical flow estimation. We start by reviewing the problem of global estimation using the Optimal Prediction Principle (OPP) by Zimmer et al. Inspired...... by this technique and work on local-global optical flow we propose a simple method for fusing optical flow estimates of different smoothness by evaluating interpolation quality locally by means of L1 block match on the corresponding set of gradient images. We illustrate the method in a setting where optical flows...... are estimated by a TV-L1 energy. On average this procedure reduces the average endpoint error by 15% over flows estimated using the OPP, and gives flow fields that are consistently better than the single best flows with a fixed smoothness parameter....

  5. DIRAC distributed secure framework

    International Nuclear Information System (INIS)

    Casajus, A; Graciani, R

    2010-01-01

    DIRAC, the LHCb community Grid solution, provides access to a vast amount of computing and storage resources to a large number of users. In DIRAC users are organized in groups with different needs and permissions. In order to ensure that only allowed users can access the resources and to enforce that there are no abuses, security is mandatory. All DIRAC services and clients use secure connections that are authenticated using certificates and grid proxies. Once a client has been authenticated, authorization rules are applied to the requested action based on the presented credentials. These authorization rules and the list of users and groups are centrally managed in the DIRAC Configuration Service. Users submit jobs to DIRAC using their local credentials. From then on, DIRAC has to interact with different Grid services on behalf of this user. DIRAC has a proxy management service where users upload short-lived proxies to be used when DIRAC needs to act on behalf of them. Long duration proxies are uploaded by users to a MyProxy service, and DIRAC retrieves new short delegated proxies when necessary. This contribution discusses the details of the implementation of this security infrastructure in DIRAC.

  6. DIRAC RESTful API

    International Nuclear Information System (INIS)

    Casajus Ramo, A; Graciani Diaz, R; Tsaregorodtsev, A

    2012-01-01

    The DIRAC framework for distributed computing has been designed as a flexible and modular solution that can be adapted to the requirements of any community. Users interact with DIRAC via command line, using the web portal or accessing resources via the DIRAC python API. The current DIRAC API requires users to use a python version valid for DIRAC. Some communities have developed their own software solutions for handling their specific workload, and would like to use DIRAC as their back-end to access distributed computing resources easily. Many of these solutions are not coded in python or depend on a specific python version. To solve this gap DIRAC provides a new language agnostic API that any software solution can use. This new API has been designed following the RESTful principles. Any language with libraries to issue standard HTTP queries may use it. GSI proxies can still be used to authenticate against the API services. However GSI proxies are not a widely adopted standard. The new DIRAC API also allows clients to use OAuth for delegating the user credentials to a third party solution. These delegated credentials allow the third party software to query to DIRAC on behalf of the users. This new API will further expand the possibilities communities have to integrate DIRAC into their distributed computing models.

  7. Dirac quantization in superspace

    Energy Technology Data Exchange (ETDEWEB)

    Barcelos-Neto, J.; Das, A.

    1986-05-15

    We extend the method of Dirac quantization to superspace. We study simple models like the supersymmetric quantum mechanics as well as the supersymmetric nonlinear sigma model in 1+1 dimensions. Although in both these cases the matrix representing the Poisson brackets between the constraints is singular, we show, following the spirit of Dirac, that one can still define Dirac brackets and that the resulting quantization is consistent with those of the component fields.

  8. Methods for globally treating silica optics to reduce optical damage

    Science.gov (United States)

    Miller, Philip Edward; Suratwala, Tayyab Ishaq; Bude, Jeffrey Devin; Shen, Nan; Steele, William Augustus; Laurence, Ted Alfred; Feit, Michael Dennis; Wong, Lana Louie

    2012-11-20

    A method for preventing damage caused by high intensity light sources to optical components includes annealing the optical component for a predetermined period. Another method includes etching the optical component in an etchant including fluoride and bi-fluoride ions. The method also includes ultrasonically agitating the etching solution during the process followed by rinsing of the optical component in a rinse bath.

  9. On the Dirac oscillator

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima

    2007-01-01

    In the present work we obtain a new representation for the Dirac oscillator based on the Clifford algebra C 7. The symmetry breaking and the energy eigenvalues for our model of the Dirac oscillator are studied in the non-relativistic limit. (author)

  10. P A M Dirac

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. P A M Dirac. Articles written in Resonance – Journal of Science Education. Volume 8 Issue 8 August 2003 pp 102-110 Classics. XI. The Relation between Mathematics and Physics · P A M Dirac · More Details Fulltext PDF ...

  11. Bohr and Dirac*

    Indian Academy of Sciences (India)

    IAS Admin

    We present an account of the work of Niels Bohr and Paul Dirac, their interactions and personal- ities. 1. Introduction. In this essay I would like to convey to my readers some- thing about the personalities and work of Niels Bohr and Paul Dirac, juxtaposed against one another. Let me hope that the portraits I will paint of these ...

  12. Fermi–Dirac Statistics

    Indian Academy of Sciences (India)

    IAS Admin

    Dirac statistics, identical and in- distinguishable particles, Fermi gas. ... They obey. Fermi–Dirac statistics. In contrast, those with integer spin such as photons, mesons, 7Li atoms are called bosons and they obey. Bose–Einstein statistics. .... hypothesis (which later was extended as the third law of thermody- namics) was ...

  13. Interlayer magnetoresistance in multilayer Dirac electron systems: motion and merging of Dirac cones.

    Science.gov (United States)

    Assili, M; Haddad, S

    2013-09-11

    We theoretically study the effect of the motion and the merging of Dirac cones on the interlayer magnetoresistance in multilayer graphene-like systems. This merging, which can be induced by a uniaxial strain, gives rise in a monolayer Dirac electron system to a topological transition from a semi-metallic phase to an insulating phase whereby Dirac points disappear. Based on a universal Hamiltonian, proposed to describe the motion and the merging of Dirac points in two-dimensional Dirac electron crystals, we calculate the interlayer conductivity of a stack of deformed graphene-like layers using the Kubo formula in the quantum limit where only the contribution of the n = 0 Landau level is relevant. A crossover from a negative to a positive interlayer magnetoresistance is found to take place as the merging is approached. This sign change of the magnetoresistance can also result from a coupling between the Dirac valleys, which is enhanced as the magnetic field amplitude increases. Our results describe the behavior of the magnetotransport in the organic conductor α-(BEDT)2I3 and in a stack of deformed graphene-like systems. The latter can be simulated by optical lattices or microwave experiments in which the merging of Dirac cones can be observed.

  14. Interlayer magnetoresistance in multilayer Dirac electron systems: motion and merging of Dirac cones

    International Nuclear Information System (INIS)

    Assili, M; Haddad, S

    2013-01-01

    We theoretically study the effect of the motion and the merging of Dirac cones on the interlayer magnetoresistance in multilayer graphene-like systems. This merging, which can be induced by a uniaxial strain, gives rise in a monolayer Dirac electron system to a topological transition from a semi-metallic phase to an insulating phase whereby Dirac points disappear. Based on a universal Hamiltonian, proposed to describe the motion and the merging of Dirac points in two-dimensional Dirac electron crystals, we calculate the interlayer conductivity of a stack of deformed graphene-like layers using the Kubo formula in the quantum limit where only the contribution of the n = 0 Landau level is relevant. A crossover from a negative to a positive interlayer magnetoresistance is found to take place as the merging is approached. This sign change of the magnetoresistance can also result from a coupling between the Dirac valleys, which is enhanced as the magnetic field amplitude increases. Our results describe the behavior of the magnetotransport in the organic conductor α-(BEDT) 2 I 3 and in a stack of deformed graphene-like systems. The latter can be simulated by optical lattices or microwave experiments in which the merging of Dirac cones can be observed. (paper)

  15. In the Dirac tradition

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    It was Paul Dirac who cast quantum mechanics into the form we now use, and many generations of theoreticians openly acknowledge his influence on their thinking. When Dirac died in 1984, St. John's College, Cambridge, his base for most of his lifetime, instituted an annual lecture in his memory at Cambridge. The first lecture, in 1986, attracted two heavyweights - Richard Feynman and Steven Weinberg. Far from using the lectures as a platform for their own work, in the Dirac tradition they presented stimulating material on deep underlying questions

  16. DIRAC distributed computing services

    International Nuclear Information System (INIS)

    Tsaregorodtsev, A

    2014-01-01

    DIRAC Project provides a general-purpose framework for building distributed computing systems. It is used now in several HEP and astrophysics experiments as well as for user communities in other scientific domains. There is a large interest from smaller user communities to have a simple tool like DIRAC for accessing grid and other types of distributed computing resources. However, small experiments cannot afford to install and maintain dedicated services. Therefore, several grid infrastructure projects are providing DIRAC services for their respective user communities. These services are used for user tutorials as well as to help porting the applications to the grid for a practical day-to-day work. The services are giving access typically to several grid infrastructures as well as to standalone computing clusters accessible by the target user communities. In the paper we will present the experience of running DIRAC services provided by the France-Grilles NGI and other national grid infrastructure projects.

  17. Kapitza–Dirac effect with traveling waves

    International Nuclear Information System (INIS)

    Hayrapetyan, Armen G; Götte, Jörg B; Grigoryan, Karen K; Petrosyan, Rubik G

    2015-01-01

    We report on the possibility of diffracting electrons from light waves traveling inside a dielectric medium. We show that, in the frame of reference which moves with the group velocity of light, the traveling wave acts as a stationary diffraction grating from which electrons can diffract, similar to the conventional Kapitza–Dirac effect. To characterize the Kapitza–Dirac effect with traveling light waves, we make use of the Hamiltonian Analogy between electron optics and quantum mechanics and apply the Helmholtz–Kirchhoff theory of diffraction. (fast track communication)

  18. DIRAC Workload Management System

    CERN Document Server

    Paterson, S

    2007-01-01

    DIRAC (Distributed Infrastructure with Remote Agent Control) is the Workload and Data Management system (WMS) for the LHCb experiment. The DIRAC WMS offers a transparent way for LHCb users to submit jobs to the EGEE Grid as well as local clusters and individual PCs. This paper will describe workload management optimizations, which ensure high job efficiency and minimized job start times. The computing requirements of the LHCb experiment can only be fulfilled through the use of many distributed compute resources. DIRAC provides a robust platform to run data productions on all the resources available to LHCb including the EGEE Grid. More recently, user support was added to DIRAC that greatly simplifies the procedure of submitting, monitoring and retrieving output of Grid jobs for the LHCb user community. DIRAC submits Pilot Agents to the EGEE Grid via the gLite WMS as normal jobs. Pilot Agents then request jobs from the DIRAC Workload Management System after the local environment has been checked. Therefore DIR...

  19. Global phenomenological and microscopic optical model potentials for alpha

    Science.gov (United States)

    Guo, Hairui; Su, Xinwu; Liang, Haiying; Xu, Yongli; Han, Yinlu; Shen, Qingbiao

    2017-09-01

    The global phenomenological and microscopic optical model potentials for alpha with the incident energy up to 400 MeV are obtained. The global phenomenological optical model potential is extracted by simultaneously fitting the experimental data of total reaction cross sections and elastic scattering angular distributions in the mass range of target nuclei 20 ≤ A ≤ 209. The microscopic optical model potential is obtained by the Green function method through nuclear matter approximation and local density approximation based on the effective Skyrme nucleon-nucleon interaction. Both optical model potentials are used to calculate the reaction cross sections and elastic scattering angular distributions for the target nuclei in the mass range 12 ≤ A ≤ 209 at incident alpha energies up to 400 MeV. The calculated results are compared with the experimental data, and the calculated results by phenomenological and microscopic optical model potentials are also compared with each other.

  20. Global phenomenological and microscopic optical model potentials for alpha

    Directory of Open Access Journals (Sweden)

    Guo Hairui

    2017-01-01

    Full Text Available The global phenomenological and microscopic optical model potentials for alpha with the incident energy up to 400 MeV are obtained. The global phenomenological optical model potential is extracted by simultaneously fitting the experimental data of total reaction cross sections and elastic scattering angular distributions in the mass range of target nuclei 20 ≤ A ≤ 209. The microscopic optical model potential is obtained by the Green function method through nuclear matter approximation and local density approximation based on the effective Skyrme nucleon-nucleon interaction. Both optical model potentials are used to calculate the reaction cross sections and elastic scattering angular distributions for the target nuclei in the mass range 12 ≤ A ≤ 209 at incident alpha energies up to 400 MeV. The calculated results are compared with the experimental data, and the calculated results by phenomenological and microscopic optical model potentials are also compared with each other.

  1. easyDiracGauginos

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Steven [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; CERN, Geneva (Switzerland); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-02-15

    A simple and natural model is presented that gives Dirac gauginos. The configuration is related to ''deconstructed gaugino mediation''. A high energy completion is provided based on existing ISS-like models of deconstructed gaugino mediation. This provides a complete picture of Dirac gauginos that includes the necessary extra adjoint fermions (generated as magnetic quarks of the ISS theory) and supersymmetry breaking (via the ISS mechanism). Moreover the screening of the scalar masses means that they can similar to or less than the gaugino masses, even though the supersymmetry breaking is driven by F-terms. (orig.)

  2. Bohr and Dirac*

    Indian Academy of Sciences (India)

    IAS Admin

    of Bohr's birth, while Dirac passed away in October of the previous year. There was a gap of almost a gener- ation between them. ... the one hand, in order to produce in this model a length scale of the order of the atomic size, and also to en- sure stability of the electron orbits, it was essential to bring in Planck's constant.

  3. Fermi–Dirac Statistics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 1. Fermi–Dirac Statistics. Subhash Chaturvedi Shyamal Biswas. General ... School of Physics University of Hyderabad C R Rao Road, Gachibowli Hyderabad 500 046, India. University of Hyderabad C R Rao Road, Gachibowli Hyderabad 500 ...

  4. Conformal Dirac structures

    International Nuclear Information System (INIS)

    Wade, A.

    2000-07-01

    The Courant bracket defined originally on the sections of a vector bundle TM +T*M → M is extended to the direct sum of the 1-jet vector bundle and its dual. The extended bracket allows one to interpret many structures encountered in differential geometry, in terms of Dirac structures. We give a new approach to conformal Jacobi structures. (author)

  5. Dirac structures on Hilbert spaces

    Directory of Open Access Journals (Sweden)

    A. Parsian

    1999-01-01

    shown that Dirac structures on H are in one-to-one correspondence with isometries on H, and, any two Dirac structures are isometric. It is, also, proved that any Dirac structure on a smooth manifold in the sense of [1] yields a Dirac structure on some Hilbert space. The graph of any densely defined skew symmetric linear operator on a Hilbert space is, also, shown to be a Dirac structure. For a Dirac structure L on H, every z∈H is uniquely decomposed as z=p1(l+p2(l for some l∈L, where p1 and p2 are projections. When p1(L is closed, for any Hilbert subspace W⊂H, an induced Dirac structure on W is introduced. The latter concept has also been generalized.

  6. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  7. DIRAC Workload Management System

    CERN Document Server

    Garonne, V; Stokes-Rees, I

    2005-01-01

    The Workload Management System is the core component of the DIRAC distributed MC production and analysis grid environment of the CERN LHCb experiment. This paper discusses the architecture, implementation and performance of this system. The WMS is a community scheduler, realizing a pull paradigm, particulary for the high troughput computing context. It has recently been used for an intensive physics simulation production involving more than 60 sites, 65 TB of data, and over 1000-GHz processor-years.

  8. DIRAC experiment at CERN

    CERN Document Server

    Benelli, Angela

    2012-01-01

    The precise measurements of $\\pi^+\\pi^-$ and $\\pi K$ atom lifetime allow to check the predictions of Chiral Perturbation Theory for the pion-pion s-wave scattering lengths with isospin 0 and 2 and for the pion-kaon scattering lengths with isospin 1/2 and 3/2. The DIRAC experiment with the latest results is presented together with the proposal for future investigations.

  9. Potential scattering of Dirac particles

    International Nuclear Information System (INIS)

    Thaller, B.

    1981-01-01

    A quantum mechanical interpretation of the Dirac equation for particles in external electromagnetic potentials is discussed. It is shown that a consequent development of the Stueckelberg-Feynman theory into a probabilistic interpretation of the Dirac equation corrects some prejudices concerning negative energy states, Zitterbewegung and bound states in repulsive potentials and yields the connection between propagator theory and scattering theory. Limits of the Dirac equation, considered as a wave mechanical equation, are considered. (U.K.)

  10. Polarons as stable solitary wave solutions to the Dirac-Coulomb system

    Science.gov (United States)

    Comech, Andrew; Zubkov, Mikhail

    2013-11-01

    We consider solitary wave solutions to the Dirac-Coulomb system both from physical and mathematical points of view. Fermions interacting with gravity in the Newtonian limit are described by the model of Dirac fermions with the Coulomb attraction. This model also appears in certain condensed matter systems with emergent Dirac fermions interacting via optical phonons. In this model, the classical soliton solutions of equations of motion describe the physical objects that may be called polarons, in analogy to the solutions of the Choquard equation. We develop analytical methods for the Dirac-Coulomb system, showing that the no-node gap solitons for sufficiently small values of charge are linearly (spectrally) stable.

  11. LHCb: DIRAC Secure Distributed Platform

    CERN Multimedia

    Casajus, A

    2009-01-01

    DIRAC, the LHCb community grid solution, provides access to a vast amount of computing and storage resources to a large number of users. In DIRAC users are organized in groups with different needs and permissions. In order to ensure that only allowed users can access the resources and to enforce that there are no abuses, security is mandatory. All DIRAC services and clients use secure connections that are authenticated using certificates and grid proxies. Once a client has been authenticated, authorization rules are applied to the requested action based on the presented credentials. These authorization rules and the list of users and groups are centrally managed in the DIRAC Configuration Service. Users submit jobs to DIRAC using their local credentials. From then on, DIRAC has to interact with different Grid services on behalf of this user. DIRAC has a proxy management service where users upload short-lived proxies to be used when DIRAC needs to act on behalf of them. Long duration proxies are uploaded by us...

  12. about the Dirac Delta Function(?)

    Indian Academy of Sciences (India)

    we enter "delta function" in quotes. This produces a less stupendous 58,600 references. As even this is too much, we try Dirac delta function, to get ... this down to 872, while "the delta function of Dirac" yields a comfortable (but not uniformly helpful) 19 ref- erences. Motivated by a desire to include some interesting histor-.

  13. Status of the DIRAC Project

    International Nuclear Information System (INIS)

    Casajus, A; Ciba, K; Fernandez, V; Graciani, R; Hamar, V; Mendez, V; Poss, S; Sapunov, M; Stagni, F; Tsaregorodtsev, A; Ubeda, M

    2012-01-01

    The DIRAC Project was initiated to provide a data processing system for the LHCb Experiment at CERN. It provides all the necessary functionality and performance to satisfy the current and projected future requirements of the LHCb Computing Model. A considerable restructuring of the DIRAC software was undertaken in order to turn it into a general purpose framework for building distributed computing systems that can be used by various user communities in High Energy Physics and other scientific application domains. The CLIC and ILC-SID detector projects started to use DIRAC for their data production system. The Belle Collaboration at KEK, Japan, has adopted the Computing Model based on the DIRAC system for its second phase starting in 2015. The CTA Collaboration uses DIRAC for the data analysis tasks. A large number of other experiments are starting to use DIRAC or are evaluating this solution for their data processing tasks. DIRAC services are included as part of the production infrastructure of the GISELA Latin America grid. Similar services are provided for the users of the France-Grilles and IBERGrid National Grid Initiatives in France and Spain respectively. The new communities using DIRAC started to provide important contributions to its functionality. Among recent additions can be mentioned the support of the Amazon EC2 computing resources as well as other Cloud management systems; a versatile File Replica Catalog with File Metadata capabilities; support for running MPI jobs in the pilot based Workload Management System. Integration with existing application Web Portals, like WS-PGRADE, is demonstrated. In this paper we will describe the current status of the DIRAC Project, recent developments of its framework and functionality as well as the status of the rapidly evolving community of the DIRAC users.

  14. Optical Alignment of the Global Precipitation Measurement (GPM) Star Trackers

    Science.gov (United States)

    Hetherington, Samuel; Osgood, Dean; McMann, Joe; Roberts, Viki; Gill, James; Mclean, Kyle

    2013-01-01

    The optical alignment of the star trackers on the Global Precipitation Measurement (GPM) core spacecraft at NASA Goddard Space Flight Center (GSFC) was challenging due to the layout and structural design of the GPM Lower Bus Structure (LBS) in which the star trackers are mounted as well as the presence of the star tracker shades that blocked line-of-sight to the primary star tracker optical references. The initial solution was to negotiate minor changes in the original LBS design to allow for the installation of a removable item of ground support equipment (GSE) that could be installed whenever measurements of the star tracker optical references were needed. However, this GSE could only be used to measure secondary optical reference cube faces not used by the star tracker vendor to obtain the relationship information and matrix transformations necessary to determine star tracker alignment. Unfortunately, due to unexpectedly large orthogonality errors between the measured secondary adjacent cube faces and the lack of cube calibration data, we required a method that could be used to measure the same reference cube faces as originally measured by the vendor. We describe an alternative technique to theodolite auto-collimation for measurement of an optical reference mirror pointing direction when normal incidence measurements are not possible. This technique was used to successfully align the GPM star trackers and has been used on a number of other NASA flight projects. We also discuss alignment theory as well as a GSFC-developed theodolite data analysis package used to analyze angular metrology data.

  15. DIRAC Data Management System

    CERN Document Server

    Smith, A C

    2007-01-01

    The LHCb experiment being built to utilize CERN’s flagship Large Hadron Collider will generate data to be analysed by a community of over 600 physicists worldwide. DIRAC, LHCb’s Workload and Data Management System, facilitates the use of underlying EGEE Grid resources to generate, process and analyse this data in the distributed environment. The Data Management System, presented here, provides real-time, data-driven distribution in accordance with LHCb’s Computing Model. The data volumes produced by the LHC experiments are unprecedented, rendering individual institutes and even countries, unable to provide the computing and storage resources required to make full use of the produced data. EGEE Grid resources allow the processing of LHCb data possible in a distributed fashion and LHCb’s Computing Model is based on this approach. Data Management in this environment requires reliable and high-throughput transfer of data, homogeneous access to storage resources and the cataloguing of data replicas, all of...

  16. DIRAC data production management

    CERN Document Server

    Smith, A C

    2008-01-01

    The LHCb Computing Model describes the dataflow for all stages in the processing of real and simulated events, and defines the role of LHCb associated Tier-1 and Tier-2 computing centers. The WLCG 'Dress Rehearsal' exercise aims to allow LHC experiments to deploy the full chain of their Computing Models, making use of all underlying WLCG services and resources, in preparation for real data taking. During this exercise simulated RAW physics data, matching the properties of eventual real data, will be uploaded from the LHCb Online storage system to Grid enabled storage. This data will then be replicated to LHCb Tier-1 centers and subsequently processed (reconstructed and stripped). The product of this processing is user analysis data that are distributed to all LHCb Tier-1 centers. DIRAC, LHCbs Workload and Data Management System, supports the implementation of the Computing Model in a data driven, real time and coordinated fashion.

  17. DIRAC universal pilots

    Science.gov (United States)

    Stagni, F.; McNab, A.; Luzzi, C.; Krzemien, W.; Consortium, DIRAC

    2017-10-01

    In the last few years, new types of computing models, such as IAAS (Infrastructure as a Service) and IAAC (Infrastructure as a Client), gained popularity. New resources may come as part of pledged resources, while others are in the form of opportunistic ones. Most but not all of these new infrastructures are based on virtualization techniques. In addition, some of them, present opportunities for multi-processor computing slots to the users. Virtual Organizations are therefore facing heterogeneity of the available resources and the use of an Interware software like DIRAC to provide the transparent, uniform interface has become essential. The transparent access to the underlying resources is realized by implementing the pilot model. DIRAC’s newest generation of generic pilots (the so-called Pilots 2.0) are the “pilots for all the skies”, and have been successfully released in production more than a year ago. They use a plugin mechanism that makes them easily adaptable. Pilots 2.0 have been used for fetching and running jobs on every type of resource, being it a Worker Node (WN) behind a CREAM/ARC/HTCondor/DIRAC Computing element, a Virtual Machine running on IaaC infrastructures like Vac or BOINC, on IaaS cloud resources managed by Vcycle, the LHCb High Level Trigger farm nodes, and any type of opportunistic computing resource. Make a machine a “Pilot Machine”, and all diversities between them will disappear. This contribution describes how pilots are made suitable for different resources, and the recent steps taken towards a fully unified framework, including monitoring. Also, the cases of multi-processor computing slots either on real or virtual machines, with the whole node or a partition of it, is discussed.

  18. Global Measurements of Optically Thin Ice Clouds Using CALIOP

    Science.gov (United States)

    Ryan, R.; Avery, M.; Tackett, J.

    2017-01-01

    Optically thin ice clouds have been shown to have a net warming effect on the globe but, because passive instruments are not sensitive to optically thin clouds, the occurrence frequency of this class of clouds is greatly underestimated in historical passive sensor cloud climatology. One major strength of CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization), onboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) spacecraft, is its ability to detect these thin clouds, thus filling an important missing piece in the historical data record. This poster examines the full mission of CALIPSO Level 2 data, focusing on those CALIOP retrievals identified as thin ice clouds according to the definition shown to the right. Using this definition, thin ice clouds are identified and counted globally and vertically for each season. By examining the spatial and seasonal distributions of these thin clouds we hope to gain a better understanding these thin ice clouds and how their global distribution has changed over the mission. This poster showcases when and where CALIOP detects thin ice clouds and examines a case study of the eastern pacific and the effects seen from the El Nino-Southern Oscillation (ENSO).

  19. Kinks and the Dirac equation

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    In a model quantum theory of interacting mesons, the motion of certain conserved particle-like structures is discussed. It is shown how collective coordinates may be introduced to describe them, leading, in lowest approximation, to a Dirac equation. (author)

  20. Neutron scattering by Dirac multipoles

    OpenAIRE

    Lovesey, S. W.; Khalyavin, D. D.

    2016-01-01

    Ordered magnetic charge created by Dirac multipoles that are magnetic and polar is examined. It has previously been revealed in the pseudo-gap phase of high-Tc materials by use of the Kerr effect and magnetic neutron Bragg diffraction. There are several forms of the polar operator for magnetic neutron scattering built from spin and electric dipole operators of unpaired electrons. Construction of Dirac quadrupoles that emerge from centrosymmetric sites used by Cu ions in the ceramic supercondu...

  1. Paul Dirac lectures at CERN

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    When a group of physicists entered the Main Auditorium, during the evening of 29 June, they felt they had opened a time portal.   Paul Dirac in front of a blackboard showing his formula. ©Sandra Hoogeboom An attentive audience, dressed in early 1900 costumes, were watching a lecture by the elusive Paul Dirac, presenting for the first time his famous formula on the blackboard. Paul Adrien Maurice Dirac (1902-1984) was a British mathematical physicist at Cambridge, and one of the "fathers" of quantum mechanics. When he first wrote it, in 1928, Dirac was not sure what his formula really meant. As demonstrated by Andersson four year later, what Dirac had written on the blackboard was the first definition of a positron, hence he is credited with having anticipated the existence of antimatter. The actor John Kohl performs as Paul Dirac. ©Sandra Hoogeboom What the group of puzzled physicists were really observing when they entered the CERN Auditorium was the shoo...

  2. An Implementation of Combined Local-Global Optical Flow

    Directory of Open Access Journals (Sweden)

    Jorge Jara-Wilde

    2015-06-01

    Full Text Available Optical Flow (OF approaches for motion estimation calculate vector fields for the apparent velocities of objects in image sequences. In 1981 Horn and Schunck (HS introduced two basic assumptions: 'brightness value constancy' and 'smooth variation' to estimate a smooth OF field over the entire image -global approach-. In parallel, Lucas and Kanade (LK assumed constant motion patterns for image patches, estimating piecewise-homogeneous OF fields -local approach-. Several variations of these approaches exist today. Here we present the combined local-global (CLG approach by Bruhn et al. which encompasses properties of HS-OF and LK-OF, aiming to improve the OF accuracy for small-scale variations, while delivering the HS-OF dense and smooth fields. A multiscale implementation is provided for 2D images, together with two numerical solvers: Successive Over-Relaxation and the faster Pointwise-Coupled Gauss-Seidel by Bruhn et al.. The algorithm works on gray-scale (single channel images, with color images being converted prior to the OF computation.

  3. LHCb: LHCbDirac is a DIRAC extension to support LHCb specific workflows

    CERN Multimedia

    Stagni, Federico

    2012-01-01

    We present LHCbDIRAC, an extension of the DIRAC community Grid solution to handle the LHCb specificities. The DIRAC software has been developed for many years within LHCb only. Nowadays it is a generic software, used by many scientific communities worldwide. Each community wanting to take advantage of DIRAC has to develop an extension, containing all the necessary code for handling their specific cases. LHCbDIRAC is an actively developed extension, implementing the LHCb computing model and workflows. LHCbDIRAC extends DIRAC to handle all the distributed computing activities of LHCb. Such activities include real data processing (reconstruction, stripping and streaming), Monte-Carlo simulation and data replication. Other activities are groups and user analysis, data management, resources management and monitoring, data provenance, accounting for user and production jobs. LHCbDIRAC also provides extensions of the DIRAC interfaces, including a secure web client, python APIs and CLIs. While DIRAC and LHCbDIRAC f...

  4. A semi-Dirac point and an electromagnetic topological transition in a dielectric photonic crystal

    KAUST Repository

    Wu, Ying

    2014-01-01

    Accidental degeneracy in a photonic crystal consisting of a square array of elliptical dielectric cylinders leads to both a semi-Dirac point at the center of the Brillouin zone and an electromagnetic topological transition (ETT). A perturbation method is deduced to affirm the peculiar linear-parabolic dispersion near the semi-Dirac point. An effective medium theory is developed to explain the simultaneous semi-Dirac point and ETT and to show that the photonic crystal is either a zero-refractive-index material or an epsilon-near-zero material at the semi-Dirac point. Drastic changes in the wave manipulation properties at the semi-Dirac point, resulting from ETT, are described.©2014 Optical Society of America.

  5. Dirac fermions in nontrivial topology black hole backgrounds

    International Nuclear Information System (INIS)

    Gozdz, Marek; Nakonieczny, Lukasz; Rogatko, Marek

    2010-01-01

    We discuss the behavior of the Dirac fermions in a general spherically symmetric black hole background with a nontrivial topology of the event horizon. Both massive and massless cases are taken into account. We will conduct an analytical study of intermediate and late-time behavior of massive Dirac hair in the background of a black hole with a global monopole and dilaton black hole pierced by a cosmic string. In the case of a global monopole swallowed by a static black hole, the intermediate late-time behavior depends on the mass of the Dirac field, the multiple number of the wave mode, and the global monopole parameter. The late-time behavior is quite independent of these factors and has a decay rate proportional to t -5/6 . As far as the black hole pierced by a cosmic string is concerned, the intermediate late-time behavior depends only on the hair mass and the multipole number of the wave mode, while the late-time behavior dependence is the same as in the previous case. The main modification stems from the topology of the S 2 sphere pierced by a cosmic string. This factor modifies the eigenvalues of the Dirac operator acting on the transverse manifold.

  6. Similar ultrafast dynamics of several dissimilar Dirac and Weyl semimetals

    Science.gov (United States)

    Weber, Chris P.; Berggren, Bryan S.; Masten, Madison G.; Ogloza, Thomas C.; Deckoff-Jones, Skylar; Madéo, Julien; Man, Michael K. L.; Dani, Keshav M.; Zhao, Lingxiao; Chen, Genfu; Liu, Jinyu; Mao, Zhiqiang; Schoop, Leslie M.; Lotsch, Bettina V.; Parkin, Stuart S. P.; Ali, Mazhar

    2017-12-01

    Recent years have seen the rapid discovery of solids whose low-energy electrons have a massless, linear dispersion, such as Weyl, line-node, and Dirac semimetals. The remarkable optical properties predicted in these materials show their versatile potential for optoelectronic uses. However, little is known of their response in the picoseconds after absorbing a photon. Here, we measure the ultrafast dynamics of four materials that share non-trivial band structure topology but that differ chemically, structurally, and in their low-energy band structures: ZrSiS, which hosts a Dirac line node and Dirac points; TaAs and NbP, which are Weyl semimetals; and Sr1-yMn1-zSb2, in which Dirac fermions coexist with broken time-reversal symmetry. After photoexcitation by a short pulse, all four relax in two stages, first sub-picosecond and then few-picosecond. Their rapid relaxation suggests that these and related materials may be suited for optical switches and fast infrared detectors. The complex change of refractive index shows that photoexcited carrier populations persist for a few picoseconds.

  7. Neutron scattering by Dirac multipoles

    Science.gov (United States)

    Lovesey, S. W.; Khalyavin, D. D.

    2017-06-01

    Scattering by magnetic charge formed by Dirac multipoles that are magnetic and polar is examined in the context of materials with properties that challenge conventional concepts. An order parameter composed of Dirac quadrupoles has been revealed in the pseudo-gap phase of ceramic, high-T c superconductors on the basis of Kerr effect and magnetic neutron Bragg diffraction measurements. Construction of Dirac quadrupoles that emerge from centrosymmetric sites used by Cu ions in the ceramic superconductor Hg1201 is illustrated, together with selection rules for excitations that will feature in neutron inelastic scattering, and RIXS experiments. We report magnetic scattering amplitudes for diffraction by polar multipoles that have universal value, because they are not specific to ceramic superconductors. To illustrate this attribute, we consider neutron Bragg diffraction from a magnetically ordered iridate (Sr2IrO4) and discuss shortcomings in published interpretations of diffraction data.

  8. Neutron scattering by Dirac multipoles

    International Nuclear Information System (INIS)

    Lovesey, S W; Khalyavin, D D

    2017-01-01

    Scattering by magnetic charge formed by Dirac multipoles that are magnetic and polar is examined in the context of materials with properties that challenge conventional concepts. An order parameter composed of Dirac quadrupoles has been revealed in the pseudo-gap phase of ceramic, high- T c superconductors on the basis of Kerr effect and magnetic neutron Bragg diffraction measurements. Construction of Dirac quadrupoles that emerge from centrosymmetric sites used by Cu ions in the ceramic superconductor Hg1201 is illustrated, together with selection rules for excitations that will feature in neutron inelastic scattering, and RIXS experiments. We report magnetic scattering amplitudes for diffraction by polar multipoles that have universal value, because they are not specific to ceramic superconductors. To illustrate this attribute, we consider neutron Bragg diffraction from a magnetically ordered iridate (Sr 2 IrO 4 ) and discuss shortcomings in published interpretations of diffraction data. (paper)

  9. Monitoring the DIRAC distributed system

    CERN Document Server

    Santinelli, R; Nandakumar, R

    2010-01-01

    DIRAC, the LHCb community Grid solution, is intended to reliably run large data mining activities. The DIRAC system consists of various services (which wait to be contacted to perform actions) and agents (which carry out periodic activities) to direct jobs as required. An important part of ensuring the reliability of the infrastructure is the monitoring and logging of these DIRAC distributed systems. The monitoring is done collecting information from two sources – one is from pinging the services or by keeping track of the regular heartbeats of the agents, and the other from the analysis of the error messages generated both by agents and services and collected by a logging system. This allows us to ensure that the components are running properly and to collect useful information regarding their operations. The process status monitoring is displayed using the SLS sensor mechanism that also automatically allows to plot various quantities and keep a history of the system. A dedicated GridMap interface (Service...

  10. Selection rule for Dirac-like points in two-dimensional dielectric photonic crystals

    KAUST Repository

    Li, Yan

    2013-01-01

    We developed a selection rule for Dirac-like points in two-dimensional dielectric photonic crystals. The rule is derived from a perturbation theory and states that a non-zero, mode-coupling integral between the degenerate Bloch states guarantees a Dirac-like point, regardless of the type of the degeneracy. In fact, the selection rule can also be determined from the symmetry of the Bloch states even without computing the integral. Thus, the existence of Dirac-like points can be quickly and conclusively predicted for various photonic crystals independent of wave polarization, lattice structure, and composition. © 2013 Optical Society of America.

  11. DIRAC: A new version of computer algebra tools for studying the properties and behavior of hydrogen-like ions

    Science.gov (United States)

    McConnell, Sean; Fritzsche, Stephan; Surzhykov, Andrey

    2010-03-01

    "hydrogen atom" has served as one of the key models for studying the structure and dynamics of various quantum systems. Its analytic solutions are frequently used in case studies in atomic and molecular physics, quantum optics, plasma physics, or even in the field of quantum information and computation. Fast and reliable access to functions and properties of the hydrogenic systems are frequently required, in both the non-relativistic and relativistic frameworks. Despite all the knowledge about one-electron ions, providing such an access is not a simple task, owing to the rather complicated mathematical structure of the Schrödinger and especially Dirac equations. Moreover, for analyzing experimental results as well as for performing advanced theoretical studies one often needs (apart from the detailed information on atomic wave- and Green's functions) to be able to calculate a number of integrals involving these functions. Although for many types of transition operators these integrals can be evaluated analytically in terms of special mathematical functions, such an evaluation is usually rather involved and prone to mistakes. Solution method: A set of Mathematica procedures is developed which provides both the non-relativistic and relativistic solutions of the "Hydrogen atom model". It facilitates, moreover, the symbolic evaluation of integrals involved in the calculations of cross sections and transition amplitudes. These procedures are based on a large number of relations among special mathematical functions, information about their integral representations, recurrence formulae and series expansions. Based on this knowledge, the DIRAC tools provide a fast and reliable algebraic (and if necessary, numeric) manipulation of functions and properties of one-electron systems, thus helping to obtain further insight into the behavior of quantum physical systems. Reasons for new version: The original version of the DIRAC program was developed as a toolbox of Maple procedures and

  12. Expérience DIRAC

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    Photo 01: The DIRAC upstream vacuum channel placed between the target and the upstream detector region. Both the non-intracting primary proton beam and the seconday particle channel travel inside the shown vacuum channel. Photo 02: The DIRAC upstream detector region consisting of 4 planes of GEM/MSGC; 3 planes of Scintillating Fibres; 4 planes of Ionisation hodospope. The photo shows the cabling of GEM/MSGC (right end) and Scintillating Fibres (left end) detectors. Photo 03: Detailed view of the 4 GEM/MSGC planes. The secondary particle channel and the detectors are tilted by 5.7 degrees with respect to the primary proton beam channel visible on the bottom. Photo 04: View of the downstream part of the double arm DIRAC spectrometer, facing the direction of incoming particles. The Drift Chamber system, the scintillation hodoscopes and the threshold Cherenkov counters are shown in the picture. Photo 05: The DIRAC vacuum region between upstream detectors and the dipole magnet. The shielding around the primary pro...

  13. about the Dirac Delta Function(?)

    Indian Academy of Sciences (India)

    Mouse Games. As any child of ten will tell you, to write an article on the Dirac delta function (or on anything else, for that matter), one must first log into 'Google' or 'Yahoo' or a similar search engine. A judicious combination of click- ing, cutting and pasting - and voila, an article of any desired length is ready in an ...

  14. Dirac, Prof. Paul Adrien Maurice

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 1935 Honorary. Dirac, Prof. Paul Adrien Maurice Nobel Laureate (Physics) - 1933. Date of birth: 8 August 1902. Date of death: 20 October 1984. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. 29th Mid-year meeting. Posted on 19 January 2018. The 29th Mid-year ...

  15. Dirac, Jordan and quantum fields

    International Nuclear Information System (INIS)

    Darrigol, O.

    1985-01-01

    The case of two principal physicists of quantum mechanics is specially chose: Paul Dirac and Pascual Jordan. They gave a signification and an importance very different to the notion of quantum field, and in particular to the quantized matter wave one. Through their formation and motivation differences, such as they are expressed in their writings, this deep difference is tentatively understood [fr

  16. Dirac Magnons in Honeycomb Ferromagnets

    Science.gov (United States)

    Pershoguba, Sergey S.; Banerjee, Saikat; Lashley, J. C.; Park, Jihwey; Ågren, Hans; Aeppli, Gabriel; Balatsky, Alexander V.

    2018-01-01

    The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009), 10.1103/RevModPhys.81.109] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014), 10.1080/00018732.2014.927109], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX3 (X =F , Cl, Br and I), that display two spin wave modes with energy dispersion similar to that for the electrons in graphene. At the single-particle level, these materials resemble their fermionic counterparts. However, how different particle statistics and interactions affect the stability of Dirac cones has yet to be determined. To address the role of interacting Dirac magnons, we expand the theory of ferromagnets beyond the standard Dyson theory [F. J. Dyson, General Theory of Spin-Wave Interactions, Phys. Rev. 102, 1217 (1956), 10.1103/PhysRev.102.1217, F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230 (1956), 10.1103/PhysRev.102.1230] to the case of non-Bravais honeycomb layers. We demonstrate that magnon-magnon interactions lead to a significant momentum-dependent renormalization of the bare band structure in addition to strongly momentum-dependent magnon lifetimes. We show that our theory qualitatively accounts for hitherto unexplained anomalies in nearly half-century-old magnetic neutron-scattering data for CrBr3 [W. B. Yelon and R. Silberglitt, Renormalization of Large-Wave-Vector Magnons in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering: Spin-Wave Correlation

  17. Dirac Magnons in Honeycomb Ferromagnets

    Directory of Open Access Journals (Sweden)

    Sergey S. Pershoguba

    2018-01-01

    Full Text Available The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009RMPHAT0034-686110.1103/RevModPhys.81.109] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014ADPHAH0001-873210.1080/00018732.2014.927109], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX_{3} (X=F, Cl, Br and I, that display two spin wave modes with energy dispersion similar to that for the electrons in graphene. At the single-particle level, these materials resemble their fermionic counterparts. However, how different particle statistics and interactions affect the stability of Dirac cones has yet to be determined. To address the role of interacting Dirac magnons, we expand the theory of ferromagnets beyond the standard Dyson theory [F. J. Dyson, General Theory of Spin-Wave Interactions, Phys. Rev. 102, 1217 (1956PHRVAO0031-899X10.1103/PhysRev.102.1217, F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230 (1956PHRVAO0031-899X10.1103/PhysRev.102.1230] to the case of non-Bravais honeycomb layers. We demonstrate that magnon-magnon interactions lead to a significant momentum-dependent renormalization of the bare band structure in addition to strongly momentum-dependent magnon lifetimes. We show that our theory qualitatively accounts for hitherto unexplained anomalies in nearly half-century-old magnetic neutron-scattering data for CrBr_{3} [W. B. Yelon and R. Silberglitt, Renormalization of Large-Wave-Vector Magnons in

  18. Transport experiments with Dirac electrons

    Science.gov (United States)

    Checkelsky, Joseph George

    This thesis presents transport experiments performed on solid state systems in which the behavior of the charge carriers can be described by the Dirac equation. Unlike the massive carriers in a typical material, in these systems the carriers behave like massless fermions with a photon-like dispersion predicted to greatly modify their spin and charge transport properties. The first system studied is graphene, a crystalline monolayer of carbon arranged in a hexagonal lattice. The band structure calculated from the hexagonal lattice has the form of the massless Dirac Hamiltonian. At the charge neutral Dirac point, we find that application of a magnetic field drives a transition to an insulating state. We also study the thermoelectric properties of graphene and find that the states near the Dirac point have a unique response compared to those at higher charge density. The second system is the 3D topological insulator Bi2Se3, where a Dirac-like dispersion for states on the 2D surface of the insulating 3D crystal arises as a result of the topology of the 3D bands and time reversal symmetry. To access the transport properties of the 2D states, we suppress the remnant bulk conduction channel by chemical doping and electrostatic gating. In bulk crystals we find strong quantum corrections to transport at low temperature when the bulk conduction channel is maximally suppressed. In microscopic crystals we are able better to isolate the surface conduction channel properties. We identify in-gap conducting states that have relatively high mobility compared to the bulk and exhibit weak anti-localization, consistent with predictions for protected 2D surface states with strong spin-orbit coupling.

  19. On the κ-Dirac oscillator revisited

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, F.M., E-mail: fmandrade@uepg.br [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa, PR (Brazil); Silva, E.O., E-mail: edilbertoos@pq.cnpq.br [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís, MA (Brazil); Ferreira, M.M., E-mail: manojr.ufma@gmail.com [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís, MA (Brazil); Rodrigues, E.C., E-mail: ednilson.fisica@gmail.com [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís, MA (Brazil)

    2014-04-04

    This Letter is based on the κ-Dirac equation, derived from the κ-Poincaré–Hopf algebra. It is shown that the κ-Dirac equation preserves parity while breaks charge conjugation and time reversal symmetries. Introducing the Dirac oscillator prescription, p→p−imωβr, in the κ-Dirac equation, one obtains the κ-Dirac oscillator. Using a decomposition in terms of spin angular functions, one achieves the deformed radial equations, with the associated deformed energy eigenvalues and eigenfunctions. The deformation parameter breaks the infinite degeneracy of the Dirac oscillator. In the case where ε=0, one recovers the energy eigenvalues and eigenfunctions of the Dirac oscillator.

  20. DIRAC pilot framework and the DIRAC Workload Management System

    International Nuclear Information System (INIS)

    Casajus, Adrian; Graciani, Ricardo; Paterson, Stuart; Tsaregorodtsev, Andrei

    2010-01-01

    DIRAC, the LHCb community Grid solution, has pioneered the use of pilot jobs in the Grid. Pilot Jobs provide a homogeneous interface to an heterogeneous set of computing resources. At the same time, Pilot Jobs allow to delay the scheduling decision to the last moment, thus taking into account the precise running conditions at the resource and last moment requests to the system. The DIRAC Workload Management System provides one single scheduling mechanism for jobs with very different profiles. To achieve an overall optimisation, it organizes pending jobs in task queues, both for individual users and production activities. Task queues are created with jobs having similar requirements. Following the VO policy a priority is assigned to each task queue. Pilot submission and subsequent job matching are based on these priorities following a statistical approach.

  1. Global Annual Average PM2.5 Grids from MODIS and MISR Aerosol Optical Depth (AOD)

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Annual PM2.5 Grids from MODIS and MISR Aerosol Optical Depth (AOD) data set represents a series of annual average grids (2001-2010) of fine particulate matter...

  2. Global Annual Average PM2.5 Grids from MODIS and MISR Aerosol Optical Depth (AOD)

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Annual PM2.5 Grids from MODIS and MISR Aerosol Optical Depth (AOD) data sets represent a series of annual average grids (2001-2010) of fine particulate matter...

  3. DIRAC in Large Particle Physics Experiments

    Science.gov (United States)

    Stagni, F.; Tsaregorodtsev, A.; Arrabito, L.; Sailer, A.; Hara, T.; Zhang, X.; Consortium, DIRAC

    2017-10-01

    The DIRAC project is developing interware to build and operate distributed computing systems. It provides a development framework and a rich set of services for both Workload and Data Management tasks of large scientific communities. A number of High Energy Physics and Astrophysics collaborations have adopted DIRAC as the base for their computing models. DIRAC was initially developed for the LHCb experiment at LHC, CERN. Later, the Belle II, BES III and CTA experiments as well as the linear collider detector collaborations started using DIRAC for their computing systems. Some of the experiments built their DIRAC-based systems from scratch, others migrated from previous solutions, ad-hoc or based on different middlewares. Adaptation of DIRAC for a particular experiment was enabled through the creation of extensions to meet their specific requirements. Each experiment has a heterogeneous set of computing and storage resources at their disposal that were aggregated through DIRAC into a coherent pool. Users from different experiments can interact with the system in different ways depending on their specific tasks, expertise level and previous experience using command line tools, python APIs or Web Portals. In this contribution we will summarize the experience of using DIRAC in particle physics collaborations. The problems of migration to DIRAC from previous systems and their solutions will be presented. An overview of specific DIRAC extensions will be given. We hope that this review will be useful for experiments considering an update, or for those designing their computing models.

  4. Dimensional reduction of Dirac operator

    Science.gov (United States)

    Nikolov, Petko A.; Ruseva, Gergana R.

    2006-07-01

    We construct an explicit example of dimensional reduction of the free massless Dirac operator with an internal SU(3) symmetry, defined on a 12-dimensional manifold that is the total space of a principal SU(3)-bundle over a four-dimensional (nonflat) pseudo-Riemannian manifold. Upon dimensional reduction the free 12-dimensional Dirac equation is transformed into a rather nontrivial four-dimensional one: a pair of massive Lorentz spinor SU(3)-octets interacting with an SU(3)-gauge field with a source term depending on the curvature tensor of the gauge field. The SU(3) group is complicated enough to illustrate features of the general case. It should not be confused with the color SU(3) of quantum chromodynamics where the fundamental spinors, the quark fields, are SU(3) triplets rather than octets.

  5. Euclidean Majorana and Dirac fields

    International Nuclear Information System (INIS)

    Kupsch, Joachim

    1996-01-01

    Euclidean Majorana fields are constructed within the Berezin calculus and as random fields on the measure space of fermionic white noise. These fields are covariant under Euclidean transformations, and their expectation values reproduce the Schwinger functions of Majorana fermions in d = 2,3,4 mod 8 dimensions. Euclidean Dirac fields and their conjugate fields can be obtained as linear functions of two independent Majorana fields by equations known from classical spinor fields on the Minkowski space. (author). 15 refs

  6. DIRAC: Secure web user interface

    International Nuclear Information System (INIS)

    Casajus Ramo, A; Sapunov, M

    2010-01-01

    Traditionally the interaction between users and the Grid is done with command line tools. However, these tools are difficult to use by non-expert users providing minimal help and generating outputs not always easy to understand especially in case of errors. Graphical User Interfaces are typically limited to providing access to the monitoring or accounting information and concentrate on some particular aspects failing to cover the full spectrum of grid control tasks. To make the Grid more user friendly more complete graphical interfaces are needed. Within the DIRAC project we have attempted to construct a Web based User Interface that provides means not only for monitoring the system behavior but also allows to steer the main user activities on the grid. Using DIRAC's web interface a user can easily track jobs and data. It provides access to job information and allows performing actions on jobs such as killing or deleting. Data managers can define and monitor file transfer activity as well as check requests set by jobs. Production managers can define and follow large data productions and react if necessary by stopping or starting them. The Web Portal is build following all the grid security standards and using modern Web 2.0 technologies which allow to achieve the user experience similar to the desktop applications. Details of the DIRAC Web Portal architecture and User Interface will be presented and discussed.

  7. Flavour-symmetric type-II Dirac neutrino seesaw mechanism

    Science.gov (United States)

    Bonilla, Cesar; Lamprea, J. M.; Peinado, Eduardo; Valle, Jose W. F.

    2018-04-01

    We propose a Standard Model extension with underlying A4 flavour symmetry where small Dirac neutrino masses arise from a Type-II seesaw mechanism. The model predicts the "golden" flavour-dependent bottom-tau mass relation, requires an inverted neutrino mass ordering and non-maximal atmospheric mixing angle. Using the latest neutrino oscillation global fit [1] we derive restrictions on the oscillation parameters, such as a correlation between δCP and mνlightest.

  8. Creating stable Floquet-Weyl semimetals by laser-driving of 3D Dirac materials.

    Science.gov (United States)

    Hübener, Hannes; Sentef, Michael A; De Giovannini, Umberto; Kemper, Alexander F; Rubio, Angel

    2017-01-17

    Tuning and stabilizing topological states, such as Weyl semimetals, Dirac semimetals or topological insulators, is emerging as one of the major topics in materials science. Periodic driving of many-body systems offers a platform to design Floquet states of matter with tunable electronic properties on ultrafast timescales. Here we show by first principles calculations how femtosecond laser pulses with circularly polarized light can be used to switch between Weyl semimetal, Dirac semimetal and topological insulator states in a prototypical three-dimensional (3D) Dirac material, Na 3 Bi. Our findings are general and apply to any 3D Dirac semimetal. We discuss the concept of time-dependent bands and steering of Floquet-Weyl points and demonstrate how light can enhance topological protection against lattice perturbations. This work has potential practical implications for the ultrafast switching of materials properties, such as optical band gaps or anomalous magnetoresistance.

  9. The DIRAC Data Management System (poster)

    CERN Document Server

    Haen, Christophe

    2015-01-01

    The DIRAC Interware provides a development framework and a complete set of components for building distributed computing systems. The DIRAC Data Management System (DMS) offers all the necessary tools to ensure data handling operations for small and large user communities. It supports transparent access to storage resources based on multiple technologies, and is easily expandable. The information on data files and replicas is kept in a File Catalog of which DIRAC offers a powerful and versatile implementation (DFC). Data movement can be performed using third party services including FTS3. Bulk data operations are resilient with respect to failures due to the use of the Request Management System (RMS) that keeps track of ongoing tasks. In this contribution we will present an overview of the DIRAC DMS capabilities and its connection with other DIRAC subsystems such as the Transformation System. The DIRAC DMS is in use by several user communities now. The contribution will present the experience of the LHCb exper...

  10. Double Dirac cones in phononic crystals

    KAUST Repository

    Li, Yan

    2014-07-07

    A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.

  11. Data Management System of the DIRAC Project

    CERN Multimedia

    Haen, Christophe; Tsaregorodtsev, Andrei

    2015-01-01

    The DIRAC Interware provides a development framework and a complete set of components for building distributed computing systems. The DIRAC Data Management System (DMS) offers all the necessary tools to ensure data handling operations for small and large user communities. It supports transparent access to storage resources based on multiple technologies, and is easily expandable. The information on data files and replicas is kept in a File Catalog of which DIRAC offers a powerful and versatile implementation (DFC). Data movement can be performed using third party services including FTS3. Bulk data operations are resilient with respect to failures due to the use of the Request Management System (RMS) that keeps track of ongoing tasks. In this contribution we will present an overview of the DIRAC DMS capabilities and its connection with other DIRAC subsystems such as the Transformation System. The DIRAC DMS is in use by several user communities now. The contribution will present the experience of the LHCb exper...

  12. Structure of fundamental solution of Dirac equation

    International Nuclear Information System (INIS)

    Bejlinson, A.A.

    2005-01-01

    One investigates into the structure of the fundamental solution o the Dirac equation D t m (x) being a finite functional and representing a matrix-significant generalized function of x space variables at Z space of ψ(x) entire analytic fundamental functions. One analyzes the Dirac equation solutions for neutrino and electron. The Euclidean Dirac measures of neutron D -it 0 (x) and of electron D -it m (x) are denumerable additive ones and are absolutely continuous to one another [ru

  13. The Dirac medals of the ICTP. 1993

    International Nuclear Information System (INIS)

    1995-01-01

    The Dirac Medals of the International Centre for Theoretical Physics (ICTP) were instituted in 1985. These are awarded yearly to outstanding physicists, on Dirac's birthday - 8th August- for contributions to theoretical physics. The document includes the lectures of the three Dirac Medalists for 1993: Professor Sergio Ferrara, Professor Daniel Z. Freedman, and Professor Peter van Nieuwenhuizen. A separate abstract was prepared for each lecture

  14. LHCbDIRAC as Apache Mesos microservices

    Science.gov (United States)

    Haen, Christophe; Couturier, Benjamin

    2017-10-01

    The LHCb experiment relies on LHCbDIRAC, an extension of DIRAC, to drive its offline computing. This middleware provides a development framework and a complete set of components for building distributed computing systems. These components are currently installed and run on virtual machines (VM) or bare metal hardware. Due to the increased workload, high availability is becoming more and more important for the LHCbDIRAC services, and the current installation model is showing its limitations. Apache Mesos is a cluster manager which aims at abstracting heterogeneous physical resources on which various tasks can be distributed thanks to so called “frameworks” The Marathon framework is suitable for long running tasks such as the DIRAC services, while the Chronos framework meets the needs of cron-like tasks like the DIRAC agents. A combination of the service discovery tool Consul together with HAProxy allows to expose the running containers to the outside world while hiding their dynamic placements. Such an architecture brings a greater flexibility in the deployment of LHCbDirac services, allowing for easier deployment maintenance and scaling of services on demand (e..g LHCbDirac relies on 138 services and 116 agents). Higher reliability is also easier, as clustering is part of the toolset, which allows constraints on the location of the services. This paper describes the investigations carried out to package the LHCbDIRAC and DIRAC components into Docker containers and orchestrate them using the previously described set of tools.

  15. A Short Biography of Paul A. M. Dirac and Historical Development of Dirac Delta Function

    Science.gov (United States)

    Debnath, Lokenath

    2013-01-01

    This paper deals with a short biography of Paul Dirac, his first celebrated work on quantum mechanics, his first formal systematic use of the Dirac delta function and his famous work on quantum electrodynamics and quantum statistics. Included are his first discovery of the Dirac relativistic wave equation, existence of positron and the intrinsic…

  16. Dynamic conductivity modified by impurity resonant states in doping three-dimensional Dirac semimetals

    Science.gov (United States)

    Li, Shuai; Wang, Chen; Zheng, Shi-Han; Wang, Rui-Qiang; Li, Jun; Yang, Mou

    2018-04-01

    The impurity effect is studied in three-dimensional Dirac semimetals in the framework of a T-matrix method to consider the multiple scattering events of Dirac electrons off impurities. It has been found that a strong impurity potential can significantly restructure the energy dispersion and the density of states of Dirac electrons. An impurity-induced resonant state emerges and significantly modifies the pristine optical response. It is shown that the impurity state disturbs the common longitudinal optical conductivity by creating either an optical conductivity peak or double absorption jumps, depending on the relative position of the impurity band and the Fermi level. More importantly, these conductivity features appear in the forbidden region between the Drude and interband transition, completely or partially filling the Pauli block region of optical response. The underlying physics is that the appearance of resonance states as well as the broadening of the bands leads to a more complicated selection rule for the optical transitions, making it possible to excite new electron-hole pairs in the forbidden region. These features in optical conductivity provide valuable information to understand the impurity behaviors in 3D Dirac materials.

  17. Dark energy from pNGB mediated Dirac neutrino condensate

    Directory of Open Access Journals (Sweden)

    Ujjal Kumar Dey

    2018-03-01

    Full Text Available We consider an extension of the Standard Model that provide an unified description of eV scale neutrino mass and dark energy. An explicit model is presented by augmenting the Standard Model with an SU(2L doublet scalar, a singlet scalar and right handed neutrinos where all of them are assumed to be charged under a global U(1X symmetry. A light pseudo-Nambu–Goldstone Boson, associated with the spontaneously broken U(1X symmetry, acts as a mediator of an attractive force leading to a Dirac neutrino condensate, with large correlation length, and a non-zero gap in the right range providing a cosmologically feasible dark energy scenario. The neutrino mass is generated through the usual Dirac seesaw mechanism. Parameter space, reproducing viable dark energy scenario while having neutrino mass in the right ballpark, is presented.

  18. Dark energy from pNGB mediated Dirac neutrino condensate

    Science.gov (United States)

    Dey, Ujjal Kumar; Ray, Tirtha Sankar; Sarkar, Utpal

    2018-03-01

    We consider an extension of the Standard Model that provide an unified description of eV scale neutrino mass and dark energy. An explicit model is presented by augmenting the Standard Model with an SU(2)L doublet scalar, a singlet scalar and right handed neutrinos where all of them are assumed to be charged under a global U(1)X symmetry. A light pseudo-Nambu-Goldstone Boson, associated with the spontaneously broken U(1)X symmetry, acts as a mediator of an attractive force leading to a Dirac neutrino condensate, with large correlation length, and a non-zero gap in the right range providing a cosmologically feasible dark energy scenario. The neutrino mass is generated through the usual Dirac seesaw mechanism. Parameter space, reproducing viable dark energy scenario while having neutrino mass in the right ballpark, is presented.

  19. Dirac quantization of the chiral superfield

    Energy Technology Data Exchange (ETDEWEB)

    Barcelos-Neto, J.; Das, A.; Scherer, W.

    1986-08-15

    We extend the method of Dirac quantization in superspace to the case of chiral superfields. We obtain quantization conditions in superspace which are consistent with the conditions for the component fields. Furthermore, we show that with these modified Dirac brackets and the modified Hamiltonian the correct Heisenberg equations of motion are obtained.

  20. The 2D κ-Dirac oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Fabiano M., E-mail: fmandrade@uepg.br [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa-PR (Brazil); Silva, Edilberto O., E-mail: edilbertoo@gmail.com [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís-MA (Brazil)

    2014-11-10

    In this Letter, 2D Dirac oscillator in the quantum deformed framework generated by the κ-Poincaré–Hopf algebra is considered. The problem is formulated using the κ-deformed Dirac equation. The resulting theory reveals that the energies and wave functions of the oscillator are modified by the deformation parameter.

  1. New solitons connected to the Dirac equation

    International Nuclear Information System (INIS)

    Grosse, H.

    1984-01-01

    Imposing isospectral invariance for the one dimensional Dirac operator leads to systems of nonlinear partial differential equations. By constructing reflectionless potentials of the Dirac equation we obtain a new type of solitons for a system of modified Korteweg-de Vries equations. (Author)

  2. The Dirac equation in classical statistical mechanics

    International Nuclear Information System (INIS)

    Ord, G.N.

    2002-01-01

    The Dirac equation, usually obtained by 'quantizing' a classical stochastic model is here obtained directly within classical statistical mechanics. The special underlying space-time geometry of the random walk replaces the missing analytic continuation, making the model 'self-quantizing'. This provides a new context for the Dirac equation, distinct from its usual context in relativistic quantum mechanics

  3. Higher dimensional supersymmetric quantum mechanics and Dirac ...

    Indian Academy of Sciences (India)

    Dirac equation and consider 'mass' to be coordinate-dependent. Additionally, we present the physical interpretation of the similar helicity solutions of the Dirac equation as super- partner states which enhances the understanding of SUSY quantum mechanics available through earlier works. We start with mass m =0 case.

  4. LHCbDIRAC as Apache Mesos microservices

    CERN Multimedia

    Couturier, Ben

    2016-01-01

    The LHCb experiment relies on LHCbDIRAC, an extension of DIRAC, to drive its offline computing. This middleware provides a development framework and a complete set of components for building distributed computing systems. These components are currently installed and ran on virtual machines (VM) or bare metal hardware. Due to the increased load of work, high availability is becoming more and more important for the LHCbDIRAC services, and the current installation model is showing its limitations. Apache Mesos is a cluster manager which aims at abstracting heterogeneous physical resources on which various tasks can be distributed thanks to so called "framework". The Marathon framework is suitable for long running tasks such as the DIRAC services, while the Chronos framework meets the needs of cron-like tasks like the DIRAC agents. A combination of the service discovery tool Consul together with HAProxy allows to expose the running containers to the outside world while hiding their dynamic placements. Such an arc...

  5. Global phenomenological optical model potential for the 7Li projectile nucleus

    Science.gov (United States)

    Xu, Yongli; Han, Yinlu; Hu, Jiaqi; Liang, Haiying; Wu, Zhendong; Guo, Hairui; Cai, Chonghai

    2018-01-01

    A new global phenomenological optical model potential for the 7Li projectile is derived from the available experimental data of elastic-scattering angular distributions and reaction cross sections from 27Al to 208Pb with incident energies below 200 MeV. It is based on a smooth, unique functional form for the energy dependence of the potential depths, and physically constrained geometry parameters. The elastic-scattering angular distributions and reaction cross sections for other targets are also predicted by the obtained 7Li global phenomenological optical model potential at different incident energies. These results are further compared with the corresponding experimental data. The performance shows that the 7Li global phenomenological optical model potential can give a satisfactory description for 7Li elastic scattering.

  6. Observation of Dirac plasmons in a topological insulator.

    Science.gov (United States)

    Di Pietro, P; Ortolani, M; Limaj, O; Di Gaspare, A; Giliberti, V; Giorgianni, F; Brahlek, M; Bansal, N; Koirala, N; Oh, S; Calvani, P; Lupi, S

    2013-08-01

    Plasmons are quantized collective oscillations of electrons and have been observed in metals and doped semiconductors. The plasmons of ordinary, massive electrons have been the basic ingredients of research in plasmonics and in optical metamaterials for a long time. However, plasmons of massless Dirac electrons have only recently been observed in graphene, a purely two-dimensional electron system. Their properties are promising for novel tunable plasmonic metamaterials in the terahertz and mid-infrared frequency range. Dirac fermions also occur in the two-dimensional electron gas that forms at the surface of topological insulators as a result of the strong spin-orbit interaction existing in the insulating bulk phase. One may therefore look for their collective excitations using infrared spectroscopy. Here we report the first experimental evidence of plasmonic excitations in a topological insulator (Bi2Se3). The material was prepared in thin micro-ribbon arrays of different widths W and periods 2W to select suitable values of the plasmon wavevector k. The linewidth of the plasmon was found to remain nearly constant at temperatures between 6 K and 300 K, as expected when exciting topological carriers. Moreover, by changing W and measuring the plasmon frequency in the terahertz range versus k we show, without using any fitting parameter, that the dispersion curve agrees quantitatively with that predicted for Dirac plasmons.

  7. Integrating out the Dirac sea

    Energy Technology Data Exchange (ETDEWEB)

    Karbstein, Felix

    2009-07-08

    We introduce a new method for dealing with fermionic quantum field theories amenable to a mean-field-type approximation. In this work we focus on the relativistic Hartree approximation. Our aim is to integrate out the Dirac sea and derive a no-sea effective theory'' with positive energy single particle states only. As the derivation of the no-sea effective theory involves only standard Feynman diagrams, our approach is quite general and not restricted to particular space-time dimensions. We develop and illustrate the approach in the ''large N'' limit of the Gross-Neveu model family in 1+1 dimensions. As the Gross-Neveu model has been intensely studied and several analytical solutions are known for this model, it is an ideal testing ground for our no-sea effective theory approach. The chiral Gross-Neveu model, also referred to as 1+1 dimensional Nambu-Jona-Lasinio model, turns out to be of particular interest. In this case, we explicitly derive a consistent effective theory featuring both elementary ''{pi} meson'' fields and (positive energy) ''quark'' fields, starting from a purely fermionic quantum field theory. In the second part of this work, we apply our approach to the Walecka model in 1+1 and 3+1 dimensions. As the Dirac sea caused considerable difficulties in attempts to base nuclear physics on field theoretic models like the Walecka model, mean-field calculations were typically done without the sea. We confront several of these mean-field theory results with our no-sea effective theory approach. The potential of our approach is twofold. While the no-sea effective theory can be utilized to provide new analytical insights in particular parameter regimes, it also sheds new light on more fundamental issues as the explicit emergence of effective, Dirac-sea induced multi-fermion interactions in an effective theory with positive energy states only. (orig.)

  8. LHCbDirac: distributed computing in LHCb

    Science.gov (United States)

    Stagni, F.; Charpentier, P.; Graciani, R.; Tsaregorodtsev, A.; Closier, J.; Mathe, Z.; Ubeda, M.; Zhelezov, A.; Lanciotti, E.; Romanovskiy, V.; Ciba, K. D.; Casajus, A.; Roiser, S.; Sapunov, M.; Remenska, D.; Bernardoff, V.; Santana, R.; Nandakumar, R.

    2012-12-01

    We present LHCbDirac, an extension of the DIRAC community Grid solution that handles LHCb specificities. The DIRAC software has been developed for many years within LHCb only. Nowadays it is a generic software, used by many scientific communities worldwide. Each community wanting to take advantage of DIRAC has to develop an extension, containing all the necessary code for handling their specific cases. LHCbDirac is an actively developed extension, implementing the LHCb computing model and workflows handling all the distributed computing activities of LHCb. Such activities include real data processing (reconstruction, stripping and streaming), Monte-Carlo simulation and data replication. Other activities are groups and user analysis, data management, resources management and monitoring, data provenance, accounting for user and production jobs. LHCbDirac also provides extensions of the DIRAC interfaces, including a secure web client, python APIs and CLIs. Before putting in production a new release, a number of certification tests are run in a dedicated setup. This contribution highlights the versatility of the system, also presenting the experience with real data processing, data and resources management, monitoring for activities and resources.

  9. Dirac cones in isogonal hexagonal metallic structures

    Science.gov (United States)

    Wang, Kang

    2018-03-01

    A honeycomb hexagonal metallic lattice is equivalent to a triangular atomic one and cannot create Dirac cones in its electromagnetic wave spectrum. We study in this work the low-frequency electromagnetic band structures in isogonal hexagonal metallic lattices that are directly related to the honeycomb one and show that such structures can create Dirac cones. The band formation can be described by a tight-binding model that allows investigating, in terms of correlations between local resonance modes, the condition for the Dirac cones and the consequence of the third structure tile sustaining an extra resonance mode in the unit cell that induces band shifts and thus nonlinear deformation of the Dirac cones following the wave vectors departing from the Dirac points. We show further that, under structure deformation, the deformations of the Dirac cones result from two different correlation mechanisms, both reinforced by the lattice's metallic nature, which directly affects the resonance mode correlations. The isogonal structures provide new degrees of freedom for tuning the Dirac cones, allowing adjustment of the cone shape by modulating the structure tiles at the local scale without modifying the lattice periodicity and symmetry.

  10. Scalar potentials and the Dirac equation

    International Nuclear Information System (INIS)

    Bergerhoff, B.; Soff, G.

    1994-01-01

    The Dirac equation is solved for various types of scalar potentials. Energy eigenvalues and normalized bound-state wave functions are calculated analytically for a scalar 1/r-potential as well as for a mixed scalar and Coulomb 1/r-potential. Also continuum wave functions for positive and negative energies are derived. Similarly, we investigate the solutions of the Dirac equation for a scalar square-well potential. Relativistic wave functions for scalar Yukawa and exponential potentials are determined numerically. Finally, we also discuss solutions of the Dirac equation for scalar linear and quadratic potentials which are frequently used to simulate quark confinement. (orig.)

  11. Conformable fractional Dirac system on time scales

    Directory of Open Access Journals (Sweden)

    Tuba Gulsen

    2017-07-01

    Full Text Available Abstract We study the conformable fractional (CF Dirac system with separated boundary conditions on an arbitrary time scale T $\\mathbb{T}$ . Then we extend some basic spectral properties of the classical Dirac system to the CF case. Eventually, some asymptotic estimates for the eigenfunction of the CF Dirac eigenvalue problem are obtained on  T $\\mathbb{T} $ . So, we provide a constructive procedure for the solution of this problem. These results are important steps to consolidate the link between fractional calculus and time scale calculus in spectral theory.

  12. Wigner function for the Dirac oscillator in spinor space

    International Nuclear Information System (INIS)

    Ma Kai; Wang Jianhua; Yuan Yi

    2011-01-01

    The Wigner function for the Dirac oscillator in spinor space is studied in this paper. Firstly, since the Dirac equation is described as a matrix equation in phase space, it is necessary to define the Wigner function as a matrix function in spinor space. Secondly, the matrix form of the Wigner function is proven to support the Dirac equation. Thirdly, by solving the Dirac equation, energy levels and the Wigner function for the Dirac oscillator in spinor space are obtained. (authors)

  13. SU(4) proprerties of the Dirac equation

    International Nuclear Information System (INIS)

    Linhares, C.A.; Mignaco, J.A.

    1985-09-01

    The Dirac equation in four dimensions has an intimate connection with the representations of the group SU(4). This connection is shown in detail and subsequent properties are displayed in the continuum as well as in the lattice description [pt

  14. A prototype threshold Cherenkov counter for DIRAC

    CERN Document Server

    Bragadireanu, M; Cima, E; Dulach, B; Gianotti, P; Guaraldo, C; Iliescu, M A; Lanaro, A; Levi-Sandri, P; Petrascu, C; Girolami, B; Groza, L; Kulikov, A; Kuptsov, A; Topilin, N; Trusov, S

    1999-01-01

    We have designed, built and tested a gas threshold Cherenkov counter as prototype for a larger counter foreseen for use in the DIRAC experiment, at CERN. We describe the performances of the counter on a test beam.

  15. Existence of Majorana fermion mode and Dirac equation in cavity quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Sujit, E-mail: sujit.tifr@gmail.com

    2015-10-15

    We present the results of low lying collective mode of coupled optical cavity arrays. We derive the Dirac equation for this system and explain the existence of Majorana fermion mode in the system. We present quite a few analytical relations between the Rabi frequency oscillation and the atom–photon coupling strength to explain the different physical situation of our study and also the condition for massless collective mode in the system. We present several analytical relations between the Dirac spinor field, order and disorder operators for our systems. We also show that the Luttinger liquid physics is one of the intrinsic concepts in our system.

  16. Deuteron stripping reactions using dirac phenomenology

    Science.gov (United States)

    Hawk, E. A.; McNeil, J. A.

    2001-04-01

    In this work deuteron stripping reactions are studied using the distorted wave born approximation employing dirac phenomenological potentials. In 1982 Shepard and Rost performed zero-range dirac phenomenological stripping calculations and found a dramatic reduction in the predicted cross sections when compared with similar nonrelativistic calculations. We extend the earlier work by including full finite range effects as well as the deuteron's internal D-state. Results will be compared with traditional nonrelativistic approaches and experimental data at low energy.

  17. Data acquisition software for DIRAC experiment

    International Nuclear Information System (INIS)

    Ol'shevskij, V.G.; Trusov, S.V.

    2000-01-01

    The structure and basic processes of data acquisition software of DIRAC experiment for the measurement of π + π - atom life-time are described. The experiment is running on PS accelerator of CERN. The developed software allows one to accept, record and distribute to consumers up to 3 Mbytes of data in one accelerator supercycle of 14.4 s duration. The described system is used successfully in the DIRAC experiment starting from 1998 year

  18. The DIRAC Web Portal 2.0

    Science.gov (United States)

    Mathe, Z.; Casajus Ramo, A.; Lazovsky, N.; Stagni, F.

    2015-12-01

    For many years the DIRAC interware (Distributed Infrastructure with Remote Agent Control) has had a web interface, allowing the users to monitor DIRAC activities and also interact with the system. Since then many new web technologies have emerged, therefore a redesign and a new implementation of the DIRAC Web portal were necessary, taking into account the lessons learnt using the old portal. These new technologies allowed to build a more compact, robust and responsive web interface that enables users to have better control over the whole system while keeping a simple interface. The web framework provides a large set of “applications”, each of which can be used for interacting with various parts of the system. Communities can also create their own set of personalised web applications, and can easily extend already existing ones with a minimal effort. Each user can configure and personalise the view for each application and save it using the DIRAC User Profile service as RESTful state provider, instead of using cookies. The owner of a view can share it with other users or within a user community. Compatibility between different browsers is assured, as well as with mobile versions. In this paper, we present the new DIRAC Web framework as well as the LHCb extension of the DIRAC Web portal.

  19. Phenomenology of Dirac Neutralino Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Matthew R.; Hooper, Dan; Kumar, Jason

    2013-09-01

    In supersymmetric models with an unbroken R-symmetry (rather than only R-parity), the neutralinos are Dirac fermions rather than Majorana. In this article, we discuss the phenomenology of neutralino dark matter in such models, including the calculation of the thermal relic abundance, and constraints and prospects for direct and indirect searches. Due to the large elastic scattering cross sections with nuclei predicted in R-symmetric models, we are forced to consider a neutralino that is predominantly bino, with very little higgsino mixing. We find a large region of parameter space in which bino-like Dirac neutralinos with masses between 10 and 380 GeV can annihilate through slepton exchange to provide a thermal relic abundance in agreement with the observed cosmological density, without relying on coannihilations or resonant annihilations. The signatures for the indirect detection of Dirac neutralinos are very different than predicted in the Majorana case, with annihilations proceeding dominately to $\\tau^+ \\tau^-$, $\\mu^+ \\mu^-$ and $e^+ e^-$ final states, without the standard chirality suppression. And unlike Majorana dark matter candidates, Dirac neutralinos experience spin-independent scattering with nuclei through vector couplings (via $Z$ and squark exchange), leading to potentially large rates at direct detection experiments. These and other characteristics make Dirac neutralinos potentially interesting within the context of recent direct and indirect detection anomalies. We also discuss the case in which the introduction of a small Majorana mass term breaks the $R$-symmetry, splitting the Dirac neutralino into a pair of nearly degenerate Majorana states.

  20. Photon-Electron Interactions in Dirac Quantum Materials

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaodong [Univ. of Washington, Seattle, WA (United States). Dept. of Material Science and Engineering

    2017-11-10

    The objective of this proposal was to explore the fundamental light-matter interactions in a new class of Dirac quantum materials, atomically thin transition metal dichalcogenides (TMDs). Monolayer TMDs are newly discovered two-dimensional semiconductors with direct bandgap. Due to their hexagonal lattice structure, the band edge localizes at corner of Brillouin zone, i.e. “Dirac valleys”. This gives the corresponding electron states a “valley index” (or pseudospin) in addition to the real spin. Remarkably, the valley pseudospins have circularly polarized optical selection rules, providing the first solid state system for dynamic control of the valley degree of freedom. During this award, we have developed a suite of advanced nano-optical spectroscopy tools in the investigation and manipulation of charge, spin, and valley degrees of freedom in monolayer semiconductors. Emerging physical phenomena, such as quantum coherence between valley pseudospins, have been demonstrated for the first time in solids. In addition to monolayers, we have developed a framework in engineering, formulating, and understanding valley pseudospin physics in 2D heterostructures formed by different monolayer semiconductors. We demonstrated long-lived valley-polarized interlayer excitons with valley-dependent many-body interaction effects. These works push the research frontier in understanding the light-matter interactions in atomically-thin quantum materials for protentional transformative energy technologies.

  1. Viability of Dirac phase leptogenesis

    International Nuclear Information System (INIS)

    Anisimov, Alexey; Blanchet, Steve; Di Bari, Pasquale

    2008-01-01

    We discuss the conditions for a non-vanishing Dirac phase δ and mixing angle θ 13 , sources of CP violation in neutrino oscillations, to be uniquely responsible for the observed matter–antimatter asymmetry of the Universe through leptogenesis. We show that this scenario, that we call δ-leptogenesis, is viable when the degenerate limit for the heavy right-handed (RH) neutrino spectrum is considered. We derive an interesting joint condition on sinθ 13 and the absolute neutrino mass scale that can be tested in future neutrino oscillation experiments. In the limit of the hierarchical heavy RH neutrino spectrum, we strengthen the previous result that δ-leptogenesis is only very marginally allowed, even when the production from the two heavier RH neutrinos is taken into account. An improved experimental upper bound on sinθ 13 and/or an account of quantum kinetic effects could completely rule out this option in the future. Therefore, δ-leptogenesis can be also regarded as motivation for models with degenerate heavy neutrino spectrum

  2. First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals

    KAUST Repository

    Mei, Jun

    2012-07-24

    By using the k•p method, we propose a first-principles theory to study the linear dispersions in phononic and photonic crystals. The theory reveals that only those linear dispersions created by doubly degenerate states can be described by a reduced Hamiltonian that can be mapped into the Dirac Hamiltonian and possess a Berry phase of -π. Linear dispersions created by triply degenerate states cannot be mapped into the Dirac Hamiltonian and carry no Berry phase, and, therefore should be called Dirac-like cones. Our theory is capable of predicting accurately the linear slopes of Dirac and Dirac-like cones at various symmetry points in a Brillouin zone, independent of frequency and lattice structure. © 2012 American Physical Society.

  3. Dirac Sea and its Evolution

    Science.gov (United States)

    Volfson, Boris

    2013-09-01

    The hypothesis of transition from a chaotic Dirac Sea, via highly unstable positronium, into a Simhony Model of stable face-centered cubic lattice structure of electrons and positrons securely bound in vacuum space, is considered. 13.75 Billion years ago, the new lattice, which, unlike a Dirac Sea, is permeable by photons and phonons, made the Universe detectable. Many electrons and positrons ended up annihilating each other producing energy quanta and neutrino-antineutrino pairs. The weak force of the electron-positron crystal lattice, bombarded by the chirality-changing neutrinos, may have started capturing these neutrinos thus transforming from cubic crystals into a quasicrystal lattice. Unlike cubic crystal lattice, clusters of quasicrystals are "slippery" allowing the formation of centers of local torsion, where gravity condenses matter into galaxies, stars and planets. In the presence of quanta, in a quasicrystal lattice, the Majorana neutrinos' rotation flips to the opposite direction causing natural transformations in a category comprised of three components; two others being positron and electron. In other words, each particle-antiparticle pair "e-" and "e+", in an individual crystal unit, could become either a quasi- component "e- ve e+", or a quasi- component "e+ - ve e-". Five-to-six six billion years ago, a continuous stimulation of the quasicrystal aetherial lattice by the same, similar, or different, astronomical events, could have triggered Hebbian and anti-Hebbian learning processes. The Universe may have started writing script into its own aether in a code most appropriate for the quasicrystal aether "hardware": Eight three-dimensional "alphabet" characters, each corresponding to the individual quasi-crystal unit shape. They could be expressed as quantum Turing machine qubits, or, alternatively, in a binary code. The code numerals could contain terminal and nonterminal symbols of the Chomsky's hierarchy, wherein, the showers of quanta, forming the

  4. Semi-Dirac points in phononic crystals

    KAUST Repository

    Zhang, Xiujuan

    2014-01-01

    A semi-Dirac cone refers to a peculiar type of dispersion relation that is linear along the symmetry line but quadratic in the perpendicular direction. It was originally discovered in electron systems, in which the associated quasi-particles are massless along one direction, like those in graphene, but effective-mass-like along the other. It was reported that a semi-Dirac point is associated with the topological phase transition between a semi-metallic phase and a band insulator. Very recently, the classical analogy of a semi-Dirac cone has been reported in an electromagnetic system. Here, we demonstrate that, by accidental degeneracy, two-dimensional phononic crystals consisting of square arrays of elliptical cylinders embedded in water are also able to produce the particular dispersion relation of a semi-Dirac cone in the center of the Brillouin zone. A perturbation method is used to evaluate the linear slope and to affirm that the dispersion relation is a semi-Dirac type. If the scatterers are made of rubber, in which the acoustic wave velocity is lower than that in water, the semi-Dirac dispersion can be characterized by an effective medium theory. The effective medium parameters link the semi-Dirac point to a topological transition in the iso-frequency surface of the phononic crystal, in which an open hyperbola is changed into a closed ellipse. This topological transition results in drastic change in wave manipulation. On the other hand, the theory also reveals that the phononic crystal is a double-zero-index material along the x-direction and photonic-band-edge material along the perpendicular direction (y-direction). If the scatterers are made of steel, in which the acoustic wave velocity is higher than that in water, the effective medium description fails, even though the semi-Dirac dispersion relation looks similar to that in the previous case. Therefore different wave transport behavior is expected. The semi-Dirac points in phononic crystals described in

  5. LHCb: Monitoring the DIRAC Distribution System

    CERN Multimedia

    Nandakumar, R; Santinelli, R

    2009-01-01

    DIRAC is the LHCb gateway to any computing grid infrastructure (currently supporting WLCG) and is intended to reliably run large data mining activities. The DIRAC system consists of various services (which wait to be contacted to perform actions) and agents (which carry out periodic activities) to direct jobs as required. An important part of ensuring the reliability of the infrastructure is the monitoring and logging of these DIRAC distributed systems. The monitoring is done collecting information from two sources - one is from pinging the services or by keeping track of the regular heartbeats of the agents, and the other from the analysis of the error messages generated by both agents and services and collected by the logging system. This allows us to ensure that he components are running properly and to collect useful information regarding their operations. The process status monitoring is displayed using the SLS sensor mechanism which also automatically allows one to plot various quantities and also keep ...

  6. DIRAC - The Distributed MC Production and Analysis for LHCb

    CERN Document Server

    Tsaregorodtsev, A

    2004-01-01

    DIRAC is the LHCb distributed computing grid infrastructure for MC production and analysis. Its architecture is based on a set of distributed collaborating services. The service decomposition broadly follows the ARDA project proposal, allowing for the possibility of interchanging the EGEE/ARDA and DIRAC components in the future. Some components developed outside the DIRAC project are already in use as services, for example the File Catalog developed by the AliEn project. An overview of the DIRAC architecture will be given, in particular the recent developments to support user analysis. The main design choices will be presented. One of the main design goals of DIRAC is the simplicity of installation, configuring and operation of various services. This allows all the DIRAC resources to be easily managed by a single Production Manager. The modular design of the DIRAC components allows its functionality to be easily extended to include new computing and storage elements or to handle new tasks. The DIRAC system al...

  7. Global Electric Circuit Diurnal Variation Derived from Storm Overflight and Satellite Optical Lightning Datasets

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, R. J.; Bateman, M. J.; Bailey, J. C.

    2011-01-01

    We have combined analyses of over 1000 high altitude aircraft observations of electrified clouds with diurnal lightning statistics from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to produce an estimate of the diurnal variation in the global electric circuit. Using basic assumptions about the mean storm currents as a function of flash rate and location, and the global electric circuit, our estimate of the current in the global electric circuit matches the Carnegie curve diurnal variation to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Mean contributions to the global electric circuit from land and ocean thunderstorms are 1.1 kA (land) and 0.7 kA (ocean). Contributions to the global electric circuit from ESCs are 0.22 kA for ocean storms and 0.04 kA for land storms. Using our analysis, the mean total conduction current for the global electric circuit is 2.0 kA.

  8. An auto-adapting global-to-local color balancing method for optical imagery mosaic

    Science.gov (United States)

    Yu, Lei; Zhang, Yongjun; Sun, Mingwei; Zhou, Xiuguang; Liu, Chi

    2017-10-01

    This paper presents a novel auto-adapting global-to-local color balancing method which aims to eliminate the effects of color differences between adjacent optical images to achieve seamless image mosaicking. The proposed method combines global and local optimization strategies to eliminate color differences between different target images adaptively without assigning the reference image. The global optimization strategy takes the constraint that the color information of the image before and after the color balancing process should be minimal, by which the assigning of reference images can be avoided. The strategy takes all target images as a whole and solves the normalization regression models simultaneously, which transfers the color difference elimination problem into the least square optimization one and eliminates the total color differences effectively. The local optimization strategy is a supplement for the global one, which focuses on the local information to eliminate the color differences in the overlap areas of the target images with the Gamma transform algorithm. It is worth noting that the proposed method can select a suitable processing flow from both the global and local optimization aspects based on the characteristics of the target images. When the total overlap rate of the target images is small, both the global and local strategies are employed; and when the total overlap rate of the target images is large, only the local optimization strategy is employed, by which a seamless color balancing result can be generated. The experimental results in this paper demonstrate that the proposed method performs well in color balancing for multi-type optical datasets.

  9. Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations

    International Nuclear Information System (INIS)

    Esteban, M.J.; Georgiev, V.; Sere, E.

    1995-01-01

    The Maxwell-Dirac system describes the interaction of an electron with its own electromagnetic field. We prove the existence of soliton-like solutions of Maxwell-Dirac in (3+1)-Minkowski space-time. The solutions obtained are regular, stationary in time, and localized in space. They are found by a variational method, as critical points of an energy functional. This functional is strongly indefinite and presents a lack of compactness. We also find soliton-like solutions for the Klein-Gordon-Dirac system, arising in the Yukawa model. (author). 32 refs

  10. On Huygens' principle for Dirac operators associated to electromagnetic fields

    Directory of Open Access Journals (Sweden)

    CHALUB FABIO A.C.C.

    2001-01-01

    Full Text Available We study the behavior of massless Dirac particles, i.e., solutions of the Dirac equation with m = 0 in the presence of an electromagnetic field. Our main result (Theorem 1 is that for purely real or imaginary fields any Huygens type (in Hadamard's sense Dirac operators is equivalent to the free Dirac operator, equivalence given by changes of variables and multiplication (right and left by nonzero functions.

  11. Cloud flexibility using DIRAC interware

    Science.gov (United States)

    Fernandez Albor, Víctor; Seco Miguelez, Marcos; Fernandez Pena, Tomas; Mendez Muñoz, Victor; Saborido Silva, Juan Jose; Graciani Diaz, Ricardo

    2014-06-01

    Communities of different locations are running their computing jobs on dedicated infrastructures without the need to worry about software, hardware or even the site where their programs are going to be executed. Nevertheless, this usually implies that they are restricted to use certain types or versions of an Operating System because either their software needs an definite version of a system library or a specific platform is required by the collaboration to which they belong. On this scenario, if a data center wants to service software to incompatible communities, it has to split its physical resources among those communities. This splitting will inevitably lead to an underuse of resources because the data centers are bound to have periods where one or more of its subclusters are idle. It is, in this situation, where Cloud Computing provides the flexibility and reduction in computational cost that data centers are searching for. This paper describes a set of realistic tests that we ran on one of such implementations. The test comprise software from three different HEP communities (Auger, LHCb and QCD phenomelogists) and the Parsec Benchmark Suite running on one or more of three Linux flavors (SL5, Ubuntu 10.04 and Fedora 13). The implemented infrastructure has, at the cloud level, CloudStack that manages the virtual machines (VM) and the hosts on which they run, and, at the user level, the DIRAC framework along with a VM extension that will submit, monitorize and keep track of the user jobs and also requests CloudStack to start or stop the necessary VM's. In this infrastructure, the community software is distributed via the CernVM-FS, which has been proven to be a reliable and scalable software distribution system. With the resulting infrastructure, users are allowed to send their jobs transparently to the Data Center. The main purpose of this system is the creation of flexible cluster, multiplatform with an scalable method for software distribution for several

  12. New explicit expressions for Dirac bilinears

    Science.gov (United States)

    Lorcé, Cédric

    2018-01-01

    We derive new explicit expressions for the Dirac bilinears based on a generic representation of the massive Dirac spinors with canonical polarization. These bilinears depend on a direction n in Minkowski space which specifies the form of dynamics. We argue that such a dependence is unavoidable in a relativistic theory with spin, since it originates from Wigner rotation effects. Contrary to most of the expressions found in the literature, ours are valid for all momenta and canonical polarizations of the spinors. As a byproduct, we also obtain a generic explicit expression for the covariant spin vector.

  13. A framework for unified Dirac gauginos

    Directory of Open Access Journals (Sweden)

    Benakli Karim

    2017-01-01

    Full Text Available We identify the Minimal Dirac Gaugino Supersymmetric Standard Model (MDGSSM as the minimal field content with Dirac gauginos allowing unification of gauge coupling. We stress that its parameter space describes also other most popular models as the MSSM, NMSSM and MRSSM. We discuss the generation of trilinear couplings in models of gauge mediation that has been overlooked in the past. We study the different source of Higgs mixings and constraints from the ƿ parameter. Finally, we provide new experimental limits on the masses of the scalar octets.

  14. MODIS/Aqua Near Real Time (NRT) Aerosol Optical Thickness Daily L3 Global 0.05-Deg CMA

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS Aerosol Optical Thickness (MYD09CMA) is a daily level 3 global product. It is in linear latitude and longitude (Plate Carre) projection with a 0.05??...

  15. Kondo effect in three-dimensional Dirac and Weyl systems

    NARCIS (Netherlands)

    Mitchell, Andrew K.; Fritz, Lars

    2015-01-01

    Magnetic impurities in three-dimensional Dirac and Weyl systems are shown to exhibit a fascinatingly diverse range of Kondo physics, with distinctive experimental spectroscopic signatures. When the Fermi level is precisely at the Dirac point, Dirac semimetals are in fact unlikely candidates for a

  16. Dirac cones beyond the honeycomb lattice : a symmetry based approach

    NARCIS (Netherlands)

    Miert, G. van; de Morais Smith, Cristiane

    2016-01-01

    Recently, several new materials exhibiting massless Dirac fermions have been proposed. However, many of these do not have the typical graphene honeycomb lattice, which is often associated with Dirac cones. Here, we present a classification of these different two-dimensional Dirac systems based on

  17. Evidence for pi K- atoms with DIRAC

    Czech Academy of Sciences Publication Activity Database

    Lednický, Richard; Smolík, Jan

    2009-01-01

    Roč. 674, č. 1 (2009), s. 11-16 ISSN 0370-2693 Institutional research plan: CEZ:AV0Z10100502 Keywords : DIRAC experiment * exotic atoms * scattering length * pi K-scattering * chiral perturbation Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.083, year: 2009

  18. Radiative left-right Dirac neutrino mass

    Science.gov (United States)

    Ma, Ernest; Sarkar, Utpal

    2018-01-01

    We consider the conventional left-right gauge extension of the standard model of quarks and leptons without a scalar bidoublet. We study systematically how one-loop radiative Dirac neutrino masses may be obtained. In addition to two well-known cases from almost 30 years ago, we find two new scenarios with verifiable predictions.

  19. Dynamical Localization for Discrete Anderson Dirac Operators

    Science.gov (United States)

    Prado, Roberto A.; de Oliveira, César R.; Carvalho, Silas L.

    2017-04-01

    We establish dynamical localization for random Dirac operators on the d-dimensional lattice, with d\\in { 1, 2, 3} , in the three usual regimes: large disorder, band edge and 1D. These operators are discrete versions of the continuous Dirac operators and consist in the sum of a discrete free Dirac operator with a random potential. The potential is a diagonal matrix formed by different scalar potentials, which are sequences of independent and identically distributed random variables according to an absolutely continuous probability measure with bounded density and of compact support. We prove the exponential decay of fractional moments of the Green function for such models in each of the above regimes, i.e., (j) throughout the spectrum at larger disorder, (jj) for energies near the band edges at arbitrary disorder and (jjj) in dimension one, for all energies in the spectrum and arbitrary disorder. Dynamical localization in theses regimes follows from the fractional moments method. The result in the one-dimensional regime contrast with one that was previously obtained for 1D Dirac model with Bernoulli potential.

  20. Mass and oscillations of Dirac neutrinos

    International Nuclear Information System (INIS)

    Collot, J.

    1989-01-01

    In the most economical extension of the standard model, we have presented the theory of massive Dirac neutrinos. We have particularly emphasized that, in this model, a complete analogy between quarks and leptons can be erected and predicts neutrino flavor oscillations. We have reviewed the last experimental results concerning kinetic neutrino mass experiments and neutrino oscillation investigations

  1. Higher dimensional supersymmetric quantum mechanics and Dirac ...

    Indian Academy of Sciences (India)

    We exhibit the supersymmetric quantum mechanical structure of the full 3+1 dimensional Dirac equation considering `mass' as a function of coordinates. Its usefulness in solving potential problems is discussed with specific examples. We also discuss the `physical' significance of the supersymmetric states in this formalism.

  2. Scalar symmetry of the massless Dirac equation

    International Nuclear Information System (INIS)

    Clerk, G.J.; McKellar, B.H.J.

    1992-01-01

    The existence of a symmetry of the Dirac equation for a massless particle in a scalar field is demonstrated, and its effect on the band structure of certain arrays of scalar δ-function potentials is investigated. The implications of the symmetry for more general scalar potentials are also discussed. 10 refs

  3. Evolution kernel for the Dirac field

    International Nuclear Information System (INIS)

    Baaquie, B.E.

    1982-06-01

    The evolution kernel for the free Dirac field is calculated using the Wilson lattice fermions. We discuss the difficulties due to which this calculation has not been previously performed in the continuum theory. The continuum limit is taken, and the complete energy eigenfunctions as well as the propagator are then evaluated in a new manner using the kernel. (author)

  4. SU(4) properties of the Dirac equation

    International Nuclear Information System (INIS)

    Linhares, C.A.; Mignaco, J.A.

    1988-01-01

    The Dirac equation in four dimensions has an intimate connection with the representations of the group SU(4). This connection is shown in detail and subsequente properties are displayed in the continuum as well as in the lattice description. (author) [pt

  5. The Dirac operator on the Fuzzy sphere

    International Nuclear Information System (INIS)

    Grosse, H.

    1994-01-01

    We introduce the Fuzzy analog of spinor bundles over the sphere on which the non-commutative analog of the Dirac operator acts. We construct the complete set of eigenstates including zero modes. In the commutative limit we recover known results. (authors)

  6. The GridPP DIRAC project - DIRAC for non-LHC communities

    CERN Document Server

    Bauer, D; Currie, R; Fayer, S; Huffman, A; Martyniak, J; Rand, D; Richards, A

    2015-01-01

    The GridPP consortium in the UK is currently testing a multi-VO DIRAC service aimed at non-LHC VOs. These VOs (Virtual Organisations) are typically small and generally do not have a dedicated computing support post. The majority of these represent particle physics experiments (e.g. NA62 and COMET), although the scope of the DIRAC service is not limited to this field. A few VOs have designed bespoke tools around the EMI-WMS & LFC, while others have so far eschewed distributed resources as they perceive the overhead for accessing them to be too high. The aim of the GridPP DIRAC project is to provide an easily adaptable toolkit for such VOs in order to lower the threshold for access to distributed resources such as Grid and cloud computing. As well as hosting a centrally run DIRAC service, we will also publish our changes and additions to the upstream DIRAC codebase under an open-source license. We report on the current status of this project and show increasing adoption of DIRAC within the non-LHC communiti...

  7. The GridPP DIRAC project - DIRAC for non-LHC communities

    Science.gov (United States)

    Bauer, D.; Colling, D.; Currie, R.; Fayer, S.; Huffman, A.; Martyniak, J.; Rand, D.; Richards, A.

    2015-12-01

    The GridPP consortium in the UK is currently testing a multi-VO DIRAC service aimed at non-LHC VOs. These VOs (Virtual Organisations) are typically small and generally do not have a dedicated computing support post. The majority of these represent particle physics experiments (e.g. NA62 and COMET), although the scope of the DIRAC service is not limited to this field. A few VOs have designed bespoke tools around the EMI-WMS & LFC, while others have so far eschewed distributed resources as they perceive the overhead for accessing them to be too high. The aim of the GridPP DIRAC project is to provide an easily adaptable toolkit for such VOs in order to lower the threshold for access to distributed resources such as Grid and cloud computing. As well as hosting a centrally run DIRAC service, we will also publish our changes and additions to the upstream DIRAC codebase under an open-source license. We report on the current status of this project and show increasing adoption of DIRAC within the non-LHC communities.

  8. Graph-state preparation and quantum computation with global addressing of optical lattices

    International Nuclear Information System (INIS)

    Kay, Alastair; Pachos, Jiannis K.; Adams, Charles S.

    2006-01-01

    We present a way to manipulate ultracold atoms where four atomic levels are trapped by appropriately tuned optical lattices. When employed to perform quantum computation via global control, this unique structure dramatically reduces the number of steps involved in the control procedures, either for the standard, network, model, or for one-way quantum computation. The use of a far-blue-detuned lattice and a magnetically insensitive computational basis makes the scheme robust against decoherence. The present scheme is a promising candidate for experimental implementation of quantum computation and for graph-state preparation in one, two, or three spatial dimensions

  9. Chirality Quantum Phase Transition in Noncommutative Dirac Oscillator

    International Nuclear Information System (INIS)

    Wang Shao-Hua; Hou Yu-Long; Jing Jian; Wang Qing; Long Zheng-Wen

    2014-01-01

    The charged Dirac oscillator on a noncommutative plane coupling to a uniform perpendicular magnetic held is studied in this paper. We map the noncommutative plane to a commutative one by means of Bopp shift and study this problem on the commutative plane. We find that this model can be mapped onto a quantum optics model which contains Anti—Jaynes—Cummings (AJC) or Jaynes—Cummings (JC) interactions when a dimensionless parameter ζ (which is the function of the intensity of the magnetic held) takes values in different regimes. Furthermore, this model behaves as experiencing a chirality quantum phase transition when the dimensionless parameter ζ approaches the critical point. Several evidences of the chirality quantum phase transition are presented. We also study the non-relativistic limit of this model and find that a similar chirality quantum phase transition takes place in its non-relativistic limit. (physics of elementary particles and fields)

  10. Annual global tree cover estimated by fusing optical and SAR satellite observations

    Science.gov (United States)

    Feng, M.; Sexton, J. O.; Channan, S.; Townshend, J. R.

    2017-12-01

    Tree cover defined structurally as the proportional, vertically projected area of vegetation (including leaves, stems, branches, etc.) of woody plants above a given height affects terrestrial energy and water exchanges, photosynthesis and transpiration, net primary production, and carbon and nutrient fluxes. Tree cover provides a measurable attribute upon which forest cover may be defined. Changes in tree cover over time can be used to monitor and retrieve site-specific histories of forest disturbance, succession, and degradation. Measurements of Earth's tree cover have been produced at regional, national, and global extents. However, most representations are static, and those for which multiple time periods have been produced are neither intended nor adequate for consistent, long-term monitoring. Moreover, although a substantial proportion of change has been shown to occur at resolutions below 250 m, existing long-term, Landsat-resolution datasets are either produced as static layers or with annual, five- or ten-year temporal resolution. We have developed an algorithms to retrieve seamless and consistent, sub-hectare resolution estimates of tree-canopy from optical and radar satellite data sources (e.g., Landsat, Sentinel-2, and ALOS-PALSAR). Our approach to estimation enables assimilation of multiple data sources and produces estimates of both cover and its uncertainty at the scale of pixels. It has generated the world's first Landsat-based percent tree cover dataset in 2013. Our previous algorithms are being adapted to produce prototype percent-tree and water-cover layers globally in 2000, 2005, and 2010—as well as annually over North and South America from 2010 to 2015—from passive-optical (Landsat and Sentinel-2) and SAR measurements. Generating a global, annual dataset is beyond the scope of this support; however, North and South America represent all of the world's major biomes and so offer the complete global range of environmental sources of error and

  11. Relativistic time delays in the Dirac approach to nucleon-nucleus scattering

    International Nuclear Information System (INIS)

    Suzuki, T.

    1993-01-01

    In connection with a characteristic feature of the effective optical potential in the Dirac approach two types of time delays are considered in the relativistic eikonal approximation. One is obtained from the scattering amplitude and the other given by the wave packet motion in the interaction region. These time delays turn out to differ in sign at intermediate energies, in contrast to the agreement between corresponding nonrelativistic time delays. (orig.)

  12. Traffic disruption in PAM DIRAC road (Prévessin Site)

    CERN Document Server

    2003-01-01

    From 8th September to 19th September, ST Division will be doing some road works to install HDPE ducts for optical fibre cables under the PAM DIRAC road. For this reason, the road will be closed during 2 days and alternative arrangements will be put in place to reroute the traffic. We kindly ask all users to respect these temporary arrangements. Thank you for your understanding in this matter. ST-EL Group Tel. 77779 - 160484 / 75498 - 163198

  13. Quantum optics for engineers

    CERN Document Server

    Duarte, FJ

    2013-01-01

    Quantum Optics for Engineers provides a transparent and methodical introduction to quantum optics via the Dirac's bra-ket notation with an emphasis on practical applications and basic aspects of quantum mechanics such as Heisenberg's uncertainty principle and Schrodinger's equation. Self-contained and using mainly first-year calculus and algebra tools, the book:Illustrates the interferometric quantum origin of fundamental optical principles such as diffraction, refraction, and reflectionProvides a transparent introduction, via Dirac's notation, to the probability amplitude of quantum entanglem

  14. Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data

    Directory of Open Access Journals (Sweden)

    Tianyu Hu

    2016-07-01

    Full Text Available As a large carbon pool, global forest ecosystems are a critical component of the global carbon cycle. Accurate estimations of global forest aboveground biomass (AGB can improve the understanding of global carbon dynamics and help to quantify anthropogenic carbon emissions. Light detection and ranging (LiDAR techniques have been proven that can accurately capture both horizontal and vertical forest structures and increase the accuracy of forest AGB estimation. In this study, we mapped the global forest AGB density at a 1-km resolution through the integration of ground inventory data, optical imagery, Geoscience Laser Altimeter System/Ice, Cloud, and Land Elevation Satellite data, climate surfaces, and topographic data. Over 4000 ground inventory records were collected from published literatures to train the forest AGB estimation model and validate the resulting global forest AGB product. Our wall-to-wall global forest AGB map showed that the global forest AGB density was 210.09 Mg/ha on average, with a standard deviation of 109.31 Mg/ha. At the continental level, Africa (333.34 ± 63.80 Mg/ha and South America (301.68 ± 67.43 Mg/ha had higher AGB density. The AGB density in Asia, North America and Europe were 172.28 ± 94.75, 166.48 ± 84.97, and 132.97 ± 50.70 Mg/ha, respectively. The wall-to-wall forest AGB map was evaluated at plot level using independent plot measurements. The adjusted coefficient of determination (R2 and root-mean-square error (RMSE between our predicted results and the validation plots were 0.56 and 87.53 Mg/ha, respectively. At the ecological zone level, the R2 and RMSE between our map and Intergovernmental Panel on Climate Change suggested values were 0.56 and 101.21 Mg/ha, respectively. Moreover, a comprehensive comparison was also conducted between our forest AGB map and other published regional AGB products. Overall, our forest AGB map showed good agreements with these regional AGB products, but some of the regional

  15. Extension of the DIRAC workload management system to allow use of distributed windows resources

    International Nuclear Information System (INIS)

    Li, Y Y; Harrison, K; Parker, M A; Lyutsarev, V; Tsaregorodtsev, A

    2008-01-01

    The DIRAC Workload Management System of the LHCb experiment allows coordinated use of globally distributed computing power and data storage. The system was initially deployed on the Linux platforms, where it has been used very successfully both for collaboration-wide production activities and for single-user physics studies. To increase the resources available to LHCb, DIRAC has been extended so that it also allows use of Microsoft Windows machines. As DIRAC is mostly written in Python, a large part of the code base was already platform independent, but Windows-specific solutions have had to be found in areas such as certificate-based authentication and secure file transfers, where .NetGridFTP has been used. In addition, new code has been written to deal with the way that jobs are run and monitored under Windows, enabling interaction with Microsoft Windows Compute Cluster Server 2003 on sets of machines were this is available. The result is a system that allows users transparent access to Linux and Windows distributed resources. This paper gives details of the Windows-specific developments for DIRAC; outlines the experience gained in deploying the system at a number of sites, and reports on the performance achieved running the LHCb data-processing applications

  16. Total Volcanic Stratospheric Aerosol Optical Depths and Implications for Global Climate Change

    Science.gov (United States)

    Ridley, D. A.; Solomon, S.; Barnes, J. E.; Burlakov, V. D.; Deshler, T.; Dolgii, S. I.; Herber, A. B.; Nagai, T.; Neely, R. R., III; Nevzorov, A. V.; hide

    2014-01-01

    Understanding the cooling effect of recent volcanoes is of particular interest in the context of the post-2000 slowing of the rate of global warming. Satellite observations of aerosol optical depth above 15 km have demonstrated that small-magnitude volcanic eruptions substantially perturb incoming solar radiation. Here we use lidar, Aerosol Robotic Network, and balloon-borne observations to provide evidence that currently available satellite databases neglect substantial amounts of volcanic aerosol between the tropopause and 15 km at middle to high latitudes and therefore underestimate total radiative forcing resulting from the recent eruptions. Incorporating these estimates into a simple climate model, we determine the global volcanic aerosol forcing since 2000 to be 0.19 +/- 0.09W/sq m. This translates into an estimated global cooling of 0.05 to 0.12 C. We conclude that recent volcanic events are responsible for more post-2000 cooling than is implied by satellite databases that neglect volcanic aerosol effects below 15 km.

  17. A global analysis of the elastic 3He scattering in the framework of the optical model

    International Nuclear Information System (INIS)

    Trost, H.J.

    1981-01-01

    The elastic scattering of 3 He at projetile energies from 10 MeV to 220 MeV on target nuclei in the mass range 10 to 208 is coherently studied in the framework of the simple optical model. It succeeds to obtain in the whole range a reasonable description by means of the usual Woods-Saxon potentials. This is illustrated by the presentation of a global mass and energy dependent potential. The light target nuclei are included in these systematics without the introduction of any special procedures. The omission of the antisymmetrization by the use of a purely local potential and the spin-orbit interaction have no important influence in the determination of the central potential. The cancelling of the discerte ambiguity is globally guaranted by the presented parametrization. The tradional sum rule 'number of projectile nucleons multiplied by nucleon-nucleus potential is equal to nucleus-nuclear potential' is not fulfilled. Starting from existing theoretical papers the properties of the global 3 He potential can be quantitatively explained. On the base of the 3 He potentials determined here and existing nucleon and deuteron potentials finally an approach to a projectile systematic is indicated. (orig.) [de

  18. Dirac gauginos in low scale supersymmetry breaking

    International Nuclear Information System (INIS)

    Goodsell, Mark D.; Tziveloglou, Pantelis

    2014-01-01

    It has been claimed that Dirac gaugino masses are necessary for realistic models of low-scale supersymmetry breaking, and yet very little attention has been paid to the phenomenology of a light gravitino when gauginos have Dirac masses. We begin to address this deficit by investigating the couplings and phenomenology of the gravitino in the effective Lagrangian approach. We pay particular attention to the phenomenology of the scalar octets, where new decay channels open up. This leads us to propose a new simplified effective scenario including only light gluinos, sgluons and gravitinos, allowing the squarks to be heavy – with the possible exception of the third generation. Finally, we comment on the application of our results to Fake Split Supersymmetry

  19. LHCb: Pilot Framework and the DIRAC WMS

    CERN Multimedia

    Graciani, R; Casajus, A

    2009-01-01

    DIRAC, the LHCb community Grid solution, has pioneered the use of pilot jobs in the Grid. Pilot jobs provide a homogeneous interface to an heterogeneous set of computing resources. At the same time, pilot jobs allow to delay the scheduling decision to the last moment, thus taking into account the precise running conditions at the resource and last moment requests to the system. The DIRAC Workload Management System provides one single scheduling mechanism for jobs with very different profiles. To achieve an overall optimisation, it organizes pending jobs in task queues, both for individual users and production activities. Task queues are created with jobs having similar requirements. Following the VO policy a priority is assigned to each task queue. Pilot submission and subsequent job matching are based on these priorities following a statistical approach. Details of the implementation and the security aspects of this framework will be discussed.

  20. Classical electromagnetic radiation of the Dirac electron

    Science.gov (United States)

    Lanyi, G.

    1973-01-01

    A wave-function-dependent four-vector potential is added to the Dirac equation in order to achieve conservation of energy and momentum for a Dirac electron and its emitted electromagnetic field. The resultant equation contains solutions which describe transitions between different energy states of the electron. As a consequence it is possible to follow the space-time evolution of such a process. This evolution is shown in the case of the spontaneous emission of an electromagnetic field by an electron bound in a hydrogen-like atom. The intensity of the radiation and the spectral distribution are calculated for transitions between two eigenstates. The theory gives a self-consistent deterministic description of some simple radiation processes without using quantum electrodynamics or the correspondence principle.

  1. Transversal Dirac families in Riemannian foliations

    International Nuclear Information System (INIS)

    Glazebrook, J.F.; Kamber, F.W.

    1991-01-01

    We describe a family of differential operators parametrized by the transversal vector potentials of a Riemannian foliation relative to the Clifford algebra of the foliation. This family is non-elliptic but in certain ways behaves like a standard Dirac family in the absolute case as a result of its elliptic-like regularity properties. The analytic and topological indices of this family are defined as elements of K-theory in the parameter space. We indicate how the cohomology of the parameter space is described via suitable maps to Fredholm operators. We outline the proof of a theorem of Vafa-Witten type on uniform bounds for the eigenvalues of this family using a spectral flow argument. A determinant operator is also defined with the appropriate zeta function regularization dependent on the codimension of the foliation. With respect to a generalized coupled Dirac-Yang-Mills system, we indicate how chiral anomalies are located relative to the foliation. (orig.)

  2. Dirac operators and Killing spinors with torsion

    International Nuclear Information System (INIS)

    Becker-Bender, Julia

    2012-01-01

    On a Riemannian spin manifold with parallel skew torsion, we use the twistor operator to obtain an eigenvalue estimate for the Dirac operator with torsion. We consider the equality case in dimensions four and six. In odd dimensions we describe Sasaki manifolds on which equality in the estimate is realized by Killing spinors with torsion. In dimension five we characterize all Killing spinors with torsion and obtain certain naturally reductive spaces as exceptional cases.

  3. Dynamical seesaw mechanism for Dirac neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Valle, José W.F., E-mail: valle@ific.uv.es; Vaquera-Araujo, C.A., E-mail: vaquera@ific.uv.es

    2016-04-10

    So far we have not been able to establish that, as theoretically expected, neutrinos are their own anti-particles. Here we propose a dynamical way to account for the Dirac nature of neutrinos and the smallness of their mass in terms of a new variant of the seesaw paradigm in which the energy scale of neutrino mass generation could be accessible to the current LHC experiments.

  4. Dynamical seesaw mechanism for Dirac neutrinos

    Directory of Open Access Journals (Sweden)

    José W.F. Valle

    2016-04-01

    Full Text Available So far we have not been able to establish that, as theoretically expected, neutrinos are their own anti-particles. Here we propose a dynamical way to account for the Dirac nature of neutrinos and the smallness of their mass in terms of a new variant of the seesaw paradigm in which the energy scale of neutrino mass generation could be accessible to the current LHC experiments.

  5. Dispersionless wave packets in Dirac materials

    Energy Technology Data Exchange (ETDEWEB)

    Jakubský, Vít, E-mail: jakub@ujf.cas.cz [Department of Theoretical Physics, Nuclear Physics Institute, 25068 Řež (Czech Republic); Tušek, Matěj, E-mail: tusekmat@fjfi.cvut.cz [Department of Mathematics, Czech Technical University in Prague, Trojanova 13, 120 00 Prague (Czech Republic)

    2017-03-15

    We show that a wide class of quantum systems with translational invariance can host dispersionless, soliton-like, wave packets. We focus on the setting where the effective, two-dimensional Hamiltonian acquires the form of the Dirac operator. The proposed framework for construction of the dispersionless wave packets is illustrated on silicene-like systems with topologically nontrivial effective mass. Our analytical predictions are accompanied by a numerical analysis and possible experimental realizations are discussed.

  6. Dirac particle in a pseudoscalar potential

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, M. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Ap. Postal 20-364, 01000 (Mexico), D.F.; Zentella-Dehesa, A. [Departamento de Fisicoquimica, Intituto de Quimica, UNAM Ap. Postal 70-213, 04510 (Mexico), D.F.

    1996-02-01

    We study the problem of a Dirac particle with a pseudoscalar interaction in the potential approximation. It is shown how nonperturbative relativistic solutions arise. The case of the central pseudoscalar potential is explicitly worked out also in a closed form. The angular functions are worked out in general for this central case. Finally for the special case of the spherical well the radial solutions are shown to behave like Bessel-type functions. {copyright} {ital 1996 American Institute of Physics.}

  7. Data acquisition software for DIRAC experiment

    CERN Document Server

    Olshevsky, V G

    2001-01-01

    The structure and basic processes of data acquisition software of the DIRAC experiment for the measurement of pi /sup +/ pi /sup -/ atom lifetime are described. The experiment is running on the PS accelerator of CERN. The developed software allows one to accept, record and distribute up to 3 Mbytes of data to consumers in one accelerator supercycle of 14.4 s duration. The described system is successfully in use in the experiment since its startup in 1998. (13 refs).

  8. Constraints on a massive Dirac neutrino model

    International Nuclear Information System (INIS)

    Wynter, T.; Randall, L.

    1994-01-01

    We examine constraints on a simple neutrino model in which there are three massless and three massive Dirac neutrinos and in which the left-handed neutrinos are linear combinations of doublet and singlet neutrinos. We examine constraints from direct decays into heavy neutrinos, indirect effects on electroweak parameters, and flavor-changing processes. We combine these constraints to examine the allowed mass range for the heavy neutrinos of each of the three generations

  9. On equivariant Dirac operators for SUq(2)

    Indian Academy of Sciences (India)

    (co-)action of the group itself. This family has quite a few remarkable features. They are: 1. Any element of the K-homology group can be realized by a member from this family, which means that all elements of the K-homology group are realizable through some. Dirac operator acting on the single Hilbert space L2(h) in a ...

  10. The Global Influence of Cloud Optical Thickness on Terrestrial Carbon Uptake

    Science.gov (United States)

    Zhu, P.; Cheng, S. J.; Keppel-Aleks, G.; Butterfield, Z.; Steiner, A. L.

    2016-12-01

    Clouds play a critical role in regulating Earth's climate. One important way is by changing the type and intensity of solar radiation reaching the Earth's surface, which impacts plant photosynthesis. Specifically, the presence of clouds modifies photosynthesis rates by influencing the amount of diffuse radiation as well as the spectral distribution of solar radiation. Satellite-derived cloud optical thickness (COT) may provide the observational constraint necessary to assess the role of clouds on ecosystems and terrestrial carbon uptake across the globe. Previous studies using ground-based observations at individual sites suggest that below a COT of 7, there is a greater increase in light use efficiency than at higher COT values, providing evidence for higher carbon uptake rates than expected given the reduction in radiation by clouds. However, the strength of the COT-terrestrial carbon uptake correlation across the globe remains unknown. In this study, we investigate the influence of COT on terrestrial carbon uptake on a global scale, which may provide insights into cloud conditions favorable for plant photosynthesis and improve our estimates of the land carbon sink. Global satellite-derived MODIS data show that tropical and subtropical regions tend to have COT values around or below the threshold during growing seasons. We find weak correlations between COT and GPP with Fluxnet MTE global GPP data, which may be due to the uncertainty of upscaling GPP from individual site measurements. Analysis with solar-induced fluorescence (SIF) as a proxy for GPP is also evaluated. Overall, this work constructs a global picture of the role of COT on terrestrial carbon uptake, including its temporal and spatial variations.

  11. Spectrum of the Wilson Dirac operator at finite lattice spacings

    DEFF Research Database (Denmark)

    Akemann, G.; Damgaard, Poul Henrik; Splittorff, Kim

    2011-01-01

    We consider the effect of discretization errors on the microscopic spectrum of the Wilson Dirac operator using both chiral Perturbation Theory and chiral Random Matrix Theory. A graded chiral Lagrangian is used to evaluate the microscopic spectral density of the Hermitian Wilson Dirac operator...... as well as the distribution of the chirality over the real eigenvalues of the Wilson Dirac operator. It is shown that a chiral Random Matrix Theory for the Wilson Dirac operator reproduces the leading zero-momentum terms of Wilson chiral Perturbation Theory. All results are obtained for fixed index...... of the Wilson Dirac operator. The low-energy constants of Wilson chiral Perturbation theory are shown to be constrained by the Hermiticity properties of the Wilson Dirac operator....

  12. Type-II Symmetry-Protected Topological Dirac Semimetals

    Science.gov (United States)

    Chang, Tay-Rong; Xu, Su-Yang; Sanchez, Daniel S.; Tsai, Wei-Feng; Huang, Shin-Ming; Chang, Guoqing; Hsu, Chuang-Han; Bian, Guang; Belopolski, Ilya; Yu, Zhi-Ming; Yang, Shengyuan A.; Neupert, Titus; Jeng, Horng-Tay; Lin, Hsin; Hasan, M. Zahid

    2017-07-01

    The recent proposal of the type-II Weyl semimetal state has attracted significant interest. In this Letter, we propose the concept of the three-dimensional type-II Dirac fermion and theoretically identify this new symmetry-protected topological state in the large family of transition-metal icosagenides, M A3 (M =V , Nb, Ta; A =Al , Ga, In). We show that the VAl3 family features a pair of strongly Lorentz-violating type-II Dirac nodes and that each Dirac node can be split into four type-II Weyl nodes with chiral charge ±1 via symmetry breaking. Furthermore, we predict that the Landau level spectrum arising from the type-II Dirac fermions in VAl3 is distinct from that of known Dirac or Weyl semimetals. We also demonstrate a topological phase transition from a type-II Dirac semimetal to a quadratic Weyl semimetal or a topological crystalline insulator via crystalline distortions.

  13. Dirac neutrinos and dark matter stability from lepton quarticity

    Directory of Open Access Journals (Sweden)

    Salvador Centelles Chuliá

    2017-04-01

    Full Text Available We propose to relate dark matter stability to the possible Dirac nature of neutrinos. The idea is illustrated in a simple scheme where small Dirac neutrino masses arise from a type-I seesaw mechanism as a result of a Z4 discrete lepton number symmetry. The latter implies the existence of a viable WIMP dark matter candidate, whose stability arises from the same symmetry which ensures the Diracness of neutrinos.

  14. Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones.

    Science.gov (United States)

    Nguyen, H S; Dubois, F; Deschamps, T; Cueff, S; Pardon, A; Leclercq, J-L; Seassal, C; Letartre, X; Viktorovitch, P

    2018-02-09

    We demonstrate that symmetry breaking opens a new degree of freedom to tailor energy-momentum dispersion in photonic crystals. Using a general theoretical framework in two illustrative practical structures, we show that breaking symmetry enables an on-demand tuning of the local density of states of the same photonic band from zero (Dirac cone dispersion) to infinity (flatband dispersion), as well as any constant density over an adjustable spectral range. As a proof of concept, we demonstrate experimentally the transformation of the very same photonic band from a conventional quadratic shape to a Dirac dispersion, a flatband dispersion, and a multivalley one. This transition is achieved by finely tuning the vertical symmetry breaking of the photonic structures. Our results provide an unprecedented degree of freedom for optical dispersion engineering in planar integrated photonic devices.

  15. Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones

    Science.gov (United States)

    Nguyen, H. S.; Dubois, F.; Deschamps, T.; Cueff, S.; Pardon, A.; Leclercq, J.-L.; Seassal, C.; Letartre, X.; Viktorovitch, P.

    2018-02-01

    We demonstrate that symmetry breaking opens a new degree of freedom to tailor energy-momentum dispersion in photonic crystals. Using a general theoretical framework in two illustrative practical structures, we show that breaking symmetry enables an on-demand tuning of the local density of states of the same photonic band from zero (Dirac cone dispersion) to infinity (flatband dispersion), as well as any constant density over an adjustable spectral range. As a proof of concept, we demonstrate experimentally the transformation of the very same photonic band from a conventional quadratic shape to a Dirac dispersion, a flatband dispersion, and a multivalley one. This transition is achieved by finely tuning the vertical symmetry breaking of the photonic structures. Our results provide an unprecedented degree of freedom for optical dispersion engineering in planar integrated photonic devices.

  16. Spinor-electron wave guided modes in coupled quantum wells structures by solving the Dirac equation

    Energy Technology Data Exchange (ETDEWEB)

    Linares, Jesus [Area de Optica, Departamento de Fisica Aplicada, Facultade de Fisica, Escola Universitaria de Optica e Optometria, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Galicia (Spain)], E-mail: suso.linares.beiras@usc.es; Nistal, Maria C. [Area de Optica, Departamento de Fisica Aplicada, Facultade de Fisica, Escola Universitaria de Optica e Optometria, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Galicia (Spain)

    2009-05-04

    A quantum analysis based on the Dirac equation of the propagation of spinor-electron waves in coupled quantum wells, or equivalently coupled electron waveguides, is presented. The complete optical wave equations for Spin-Up (SU) and Spin-Down (SD) spinor-electron waves in these electron guides couplers are derived from the Dirac equation. The relativistic amplitudes and dispersion equations of the spinor-electron wave-guided modes in a planar quantum coupler formed by two coupled quantum wells, or equivalently by two coupled slab electron waveguides, are exactly derived. The main outcomes related to the spinor modal structure, such as the breaking of the non-relativistic degenerate spin states, the appearance of phase shifts associated with the spin polarization and so on, are shown.

  17. Chain of Dirac spectrum loops of nodes in crossed magnetic and electric fields

    Science.gov (United States)

    Gavrilenko, V. I.; Perov, A. A.; Protogenov, A. P.; Turkevich, R. V.; Chulkov, E. V.

    2018-03-01

    New semimetal systems along with Dirac and Weyl semimetals contain compounds, in which the energy of electron excitations vanishes not at nodes but on lines. A higher dimension of the degeneracy space changes many physical properties. We consider a chain of loops consisting of Dirac spectrum nodes in nonsymmorphic crystalline compounds placed in external mutually perpendicular magnetic and electric fields. An exact solution for the spectrum is obtained under the assumption of particle-hole symmetry. An analysis of this spectrum shows the existence of a line of critical values of the magnetic and electric fields, at which a quantum phase transition to a gapless state occurs. The use of the obtained spectrum allows also predicting a number of new oscillation and resonance effects in the field of magneto-optical phenomena.

  18. Dynamical correlation functions and the related physical effects in three-dimensional Weyl/Dirac semimetals

    Science.gov (United States)

    Zhou, Jianhui; Chang, Hao-Ran

    2018-02-01

    We present a unified derivation of the dynamical correlation functions including density-density, density-current and current-current, of three-dimensional Weyl/Dirac semimetals by use of the Passarino-Veltman reduction scheme at zero temperature. The generalized Kramers-Kronig relations with arbitrary order of subtraction are established to verify these correlation functions. Our results lead to the exact chiral magnetic conductivity and directly recover the previous ones in several limits. We also investigate the magnetic susceptibilities, the orbital magnetization, and briefly discuss the impact of electron interactions on these physical quantities within the random phase approximation. Our work could provide a starting point for the investigation of the nonlocal transport and optical properties due to the higher-order spatial dispersion in three-dimensional Weyl/Dirac semimetals.

  19. Analyses of relativistic optical potential for medium energy proton

    International Nuclear Information System (INIS)

    Feng Dachun; Liu Wenqin; Ma Zhongyu

    1993-01-01

    The influence of the parameters of the relativistic optical potential on the nucleon scattering properties, such as cross sections, angular distributions and spin observables etc., is studied based on a set of global Dirac phenomenological optical potentials. It is show that, in contrast with the case at low energies, the total scattering cross sections vary slowly as the energy and weakly depend on the potentials at E p <200 MeV. The differential cross sections and spin observables depend not only on the volume integrals of the optical potentials, but also on their strengths and shapes. The applicability of the relativistic microscopic optical potential based on Walecka model in the medium energy region is also discussed

  20. Dirac gauginos, gauge mediation and unification

    Energy Technology Data Exchange (ETDEWEB)

    Benakli, K. [UPMC Univ. Paris 06 (France). Laboratoire de Physique Theorique et Hautes Energies, CNRS; Goodsell, M.D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-03-15

    We investigate the building of models with Dirac gauginos and perturbative gauge coupling unification. Here, in contrast to the MSSM, additional fields are required for unification, and these can naturally play the role of the messengers of supersymmetry breaking. We present a framework within which such models can be constructed, including the constraints that the messenger sector must satisfy; and the renormalisation group equations for the soft parameters, which differ from those of the MSSM. For illustration, we provide the spectrum at the electroweak scale for explicit models whose gauge couplings unify at the scale predicted by heterotic strings. (orig.)

  1. The Dirac distorted wave Born approximation

    International Nuclear Information System (INIS)

    Cooper, T.; Sherif, H.S.; Johansson, J.; Sawafta, R.I.

    1985-02-01

    The purpose of this investigation is to illuminate the assumptions which are made when one writes down a Dirac DWBA matrix element. Due to the strong nature of the nucleon-nucleon potentials it is difficult to justify some of the steps involved in the general case; however by limiting ourselves to situations where only one (interacting) nucleon is present we can side-step this difficulty. We conclude the excellent agreement with the experiment justifies, a posteriori, the procedure, however we would like to remind the reader that, at least for proton inelastic scattering to collective states, the same quality of agreement can be obtained purely within a Schrodinger formalism

  2. Dirac gauginos, gauge mediation and unification

    International Nuclear Information System (INIS)

    Benakli, K.

    2010-03-01

    We investigate the building of models with Dirac gauginos and perturbative gauge coupling unification. Here, in contrast to the MSSM, additional fields are required for unification, and these can naturally play the role of the messengers of supersymmetry breaking. We present a framework within which such models can be constructed, including the constraints that the messenger sector must satisfy; and the renormalisation group equations for the soft parameters, which differ from those of the MSSM. For illustration, we provide the spectrum at the electroweak scale for explicit models whose gauge couplings unify at the scale predicted by heterotic strings. (orig.)

  3. Cosmical coincidences and the Dirac-cosmos

    Energy Technology Data Exchange (ETDEWEB)

    Treder, H.J.

    1984-09-01

    The cosmical coincidences given by the relations between macro- and microphysical quantities suggest a manifold of small bangs and not universal big bang in the evolution of the meta-galaxy. An approximative model of such universe may be the Dirac-cosmos. The hypothesis is discussed that the small bangs are the relations of the super-galaxies. In this cases there are to be found two different values of the Hubble-parameter according to the differently evolutionary scenaries for the meta-galaxis and for super-galaxies.

  4. Dispersionless wave packets in Dirac materials

    Czech Academy of Sciences Publication Activity Database

    Jakubský, Vít; Tušek, M.

    2017-01-01

    Roč. 378, MAR (2017), s. 171-182 ISSN 0003-4916 R&D Projects: GA ČR(CZ) GJ15-07674Y; GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : quantum systems * wave packets * dispersion * dirac materials Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.465, year: 2016

  5. Relativistic Spinning Particle without Grassmann Variables and the Dirac Equation

    Directory of Open Access Journals (Sweden)

    A. A. Deriglazov

    2011-01-01

    Full Text Available We present the relativistic particle model without Grassmann variables which, being canonically quantized, leads to the Dirac equation. Classical dynamics of the model is in correspondence with the dynamics of mean values of the corresponding operators in the Dirac theory. Classical equations for the spin tensor are the same as those of the Barut-Zanghi model of spinning particle.

  6. Special function solutions of the free particle Dirac equation

    International Nuclear Information System (INIS)

    Strange, P

    2012-01-01

    The Dirac equation is one of the fundamental equations in physics. Here we present and discuss two novel solutions of the free particle Dirac equation. These solutions have an exact analytical form in terms of Airy or Mathieu functions and exhibit unexpected properties including an enhanced Doppler effect, accelerating wavefronts and solutions with a degree of localization. (paper)

  7. Tools for analysis of Dirac structures on banach spaces

    NARCIS (Netherlands)

    Iftime, Orest V.; Sandovici, Adrian; Golo, Goran

    2005-01-01

    Power-conserving and Dirac structures are known as an approach to mathematical modeling of physical engineering systems. In this paper connections between Dirac structures and well known tools from standard functional analysis are presented. The analysis can be seen as a possible starting framework

  8. Light scattering by photonic crystals with a dirac spectrum

    NARCIS (Netherlands)

    Sepkhanov, Ruslan

    2009-01-01

    In this thesis we consider several effects of a Dirac spectrum in photonic crystals on the scattering and propagation of light. We calculate the effect of a Dirac point (a conical singularity in the band structure) on the transmission of radiation through a photonic crystal. We find that the

  9. The algebraic manipulation program DIRAC on IBM personal computers

    International Nuclear Information System (INIS)

    Grozin, A.G.; Perlt, H.

    1989-01-01

    The version DIRAC (2.2) for IBM compatible personal computers is described. It is designed to manipulate algebraically with polynomials and tensors. After a short introduction concerning implementation and usage on personal computers an example program is given. It contains a detailed user's guide to DIRAC (2.2) and, additionally some useful applications. 4 refs

  10. Using OSG Computing Resources with (iLC)Dirac

    Science.gov (United States)

    Sailer, A.; Petric, M.; CLICdp collaboration

    2017-10-01

    CPU cycles for small experiments and projects can be scarce, thus making use of all available resources, whether dedicated or opportunistic, is mandatory. While enabling uniform access to the LCG computing elements (ARC, CREAM), the DIRAC grid interware was not able to use OSG computing elements (GlobusCE, HTCondor-CE) without dedicated support at the grid site through so called ‘SiteDirectors’, which directly submit to the local batch system. This in turn requires additional dedicated effort for small experiments on the grid site. Adding interfaces to the OSG CEs through the respective grid middleware is therefore allowing accessing them within the DIRAC software without additional site-specific infrastructure. This enables greater use of opportunistic resources for experiments and projects without dedicated clusters or an established computing infrastructure with the DIRAC software. To allow sending jobs to HTCondor-CE and legacy Globus computing elements inside DIRAC the required wrapper classes were developed. Not only is the usage of these types of computing elements now completely transparent for all DIRAC instances, which makes DIRAC a flexible solution for OSG based virtual organisations, but it also allows LCG Grid Sites to move to the HTCondor-CE software, without shutting DIRAC based VOs out of their site. In these proceedings we detail how we interfaced the DIRAC system to the HTCondor-CE and Globus computing elements and explain the encountered obstacles and solutions developed, and how the linear collider community uses resources in the OSG.

  11. A 10-year global gridded Aerosol Optical Thickness Reanalysis for climate and applied applications

    Science.gov (United States)

    Lynch, P.; Reid, J. S.; Zhang, J.; Westphal, D. L.; Campbell, J. R.; Curtis, C. A.; Hegg, D.; Hyer, E. J.; Sessions, W.; Shi, Y.; Turk, J.

    2013-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need of a best-available fused product on a regular grid for numerous climate and applied applications. Remote sensing and modeling technologies have now advanced to a point where aerosol data assimilation is an operational reality at numerous centers. It is inevitable that, like meteorological reanalyses, aerosol reanalyses will see heavy use in the near future. A first long term, 2003-2012 global 1x1 degree and 6-hourly aerosol optical thickness (AOT) reanalysis product has been generated. The goal of this effort is not only for climate applications, but to generate a dataset that can be used by the US Navy to understand operationally hindering aerosol events, aerosol impacts on numerical weather prediction, and application of electro-optical technologies. The reanalysis utilizes Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled collection 5 Moderate Resolution Imaging Spectroradiometer (MODIS) AOD with minor corrections from Multi-angle Imaging SpectroRaditometer (MISR). A subset of this product includes Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar assimilation since its launch in mid-2006. Surface aerosol sources, including dust and smoke, in the aerosol model have been regionally tuned so that fine and coarse mode AOTs best match those resolve by ground-based Aerosol Robotic Network (AERONET). The AOT difference between the model and satellite AOT is then used to adjust other aerosol processes, eg., sources, dry deposition, etc. Aerosol wet deposition is constrained with satellite-retrieved precipitation. The final AOT reanalysis is shown to exhibit good agreement with AERONET. Here we review the development of the reanalysis and consider issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses. Considerations are also made for extending such work

  12. Global Frequency and Distribution of Lightning as Observed from Space by the Optical Transient Detector

    Science.gov (United States)

    Christian, Hugh J.; Blakeslee, Richard J.; Boccippio, Dennis J.; Boeck, William L.; Bucchler, Dennis E.; Driscoll, Kevin T.; Goodman, Steven J.; Hall, John M.; Koshak, William J.; Mach, Douglas M.; hide

    2002-01-01

    The Optical Transient Detector (OTD) is a space-based instrument specifically designed to detect and locate lightning discharges as it orbits the Earth. This instrument is a scientific payload on the MicroLab-1 satellite that was launched into a low-earth, 70 deg. inclination orbit in April 1995. Given the orbital trajectory of the satellite, most regions of the earth are observed by the OTD instrument more than 400 times during a one year period, and the average duration of each observation is 2 minutes. The OTD instrument optically detects lightning flashes that occur within its 1300x1300 sq km field-of-view during both day and night conditions. A statistical examination of OTD lightning data reveals that nearly 1.4 billion flashes occur annually over the entire earth. This annual flash count translates to an average of 44 +/- 5 lightning flashes (intracloud and cloud-to-ground combined) occurring around the globe every second, which is well below the traditional estimate of 100 flashes per second that was derived in 1925 from world thunder-day records. The range of uncertainty for the OTD global totals represents primarily the uncertainty (and variability) in the flash detection efficiency of the instrument. The OTD measurements have been used to construct lightning climatology maps that demonstrate the geographical and seasonal distribution of lightning activity for the globe. An analysis of this annual lightning distribution confirms that lightning occurs mainly over land areas, with an average land:ocean ratio of 10:1. A dominant Northern Hemisphere summer peak occurs in the annual cycle, and evidence is found for a tropically-driven semiannual cycle.

  13. Graphene Dirac point tuned by ferroelectric polarization field.

    Science.gov (United States)

    Wang, Xudong; Chen, Yan; Wu, Guangjian; Wang, Jianlu; Tian, Bobo; Sun, Shuo; Shen, Hong; Lin, Tie; Hu, Weida; Kang, Tingting; Tang, Minghua; Xiao, Yongguang; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao

    2018-04-03

    Graphene has received numerous attention for future nanoelectronics and optoelectronics. The Dirac point is a key parameter of graphene that provides information about its carrier properties. There are lots of methods to tune the Dirac point of graphene, such as chemical doping, impurities, defects, and disorder. In this study, we report a different approach to tune the Dirac point of graphene using a ferroelectric polarization field. The Dirac point can be adjusted to near the ferroelectric coercive voltage regardless its original position. We have ensured this phenomenon by temperature-dependent experiments, and analyzed its mechanism with the theory of impurity correlation in graphene. Additionally, with the modulation of ferroelectric polymer, the current on/off ratio and mobility of graphene transistor both have been improved. This work provides an effective method to tune the Dirac point of graphene, which can be readily used to configure functional devices such as p-n junctions and inverters.

  14. Graphene Dirac point tuned by ferroelectric polarization field

    Science.gov (United States)

    Wang, Xudong; Chen, Yan; Wu, Guangjian; Wang, Jianlu; Tian, Bobo; Sun, Shuo; Shen, Hong; Lin, Tie; Hu, Weida; Kang, Tingting; Tang, Minghua; Xiao, Yongguang; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao

    2018-04-01

    Graphene has received numerous attention for future nanoelectronics and optoelectronics. The Dirac point is a key parameter of graphene that provides information about its carrier properties. There are lots of methods to tune the Dirac point of graphene, such as chemical doping, impurities, defects, and disorder. In this study, we report a different approach to tune the Dirac point of graphene using a ferroelectric polarization field. The Dirac point can be adjusted to near the ferroelectric coercive voltage regardless its original position. We have ensured this phenomenon by temperature-dependent experiments, and analyzed its mechanism with the theory of impurity correlation in graphene. Additionally, with the modulation of ferroelectric polymer, the current on/off ratio and mobility of graphene transistor both have been improved. This work provides an effective method to tune the Dirac point of graphene, which can be readily used to configure functional devices such as p-n junctions and inverters.

  15. Bosonic Analogue of Dirac Composite Fermi Liquid

    Science.gov (United States)

    Mross, David; Alicea, Jason; Motrunich, Olexei

    The status of particle-hole symmetry has long posed a challenge to the theory of the quantum Hall effect. It is expected to be present in the half-filled Landau level, but is absent in the conventional field theory, i.e., the composite Fermi liquid. Recently, Son proposed an alternative, explicitly particle-hole symmetric theory which features composite fermions that exhibit a Dirac dispersion. In my talk, I will introduce an analogous particle-hole-symmetric metallic state of bosons at odd-integer filling. This state hosts composite fermions whose energy dispersion features a quadratic band touching and corresponding 2 Ï Berry flux, protected by particle-hole and discrete rotation symmetries. As in the Dirac composite Fermi liquid introduced by Son, breaking particle-hole symmetry recovers the familiar Chern-Simons theory. I will discuss realizations of this phase both in 2D and on bosonic topological insulator surfaces, as well as its signatures in experiments and simulations.

  16. White dwarfs, the galaxy and Dirac's cosmology

    International Nuclear Information System (INIS)

    Stothers, R.

    1976-01-01

    Reference is made to the apparent absence, or deficiency, of white dwarfs fainter than about 10 -4 L solar mass. An explanation is here proposed on the basis of Dirac's cosmological hypothesis that the gravitational constant, G, has varied with the time elapsed since the beginning of the expansion of the Universe as t -1 and the number of particles in the Universe has increases as t 2 , if the measurements are made in atomic units. For a white dwarf the Chandrasekhar mass limit is a collection of fundamental constants proportional to Gsup(-3/2) and therefore increases with time as tsup(3/2). In the 'additive' version of Dirac's theory the actual mass, M, of a relatively small object like a star remains essentially unchanged by the creation of new matter in the Universe and hence a white dwarf will become more stable with the course of time; but in the 'multiplicative' version of the theory, M increases as t 2 and may eventually exceed the Chandrasekhar limit, and if this happens, gravitational collapse of the white dwarf into an invisible black hole or neutron star will quickly occur. It is considered interesting to find whether the 'multiplicative' theory may have a bearing on the apparent deficiency of faint white dwarfs, and to consider whether there are any possible consequences for galactic evolution. This is here discussed. (U.K.)

  17. Maximal symmetry and mass generation of Dirac fermions and gravitational gauge field theory in six-dimensional spacetime

    Science.gov (United States)

    Wu, Yue-Liang

    2017-10-01

    The relativistic Dirac equation in four-dimensional spacetime reveals a coherent relation between the dimensions of spacetime and the degrees of freedom of fermionic spinors. A massless Dirac fermion generates new symmetries corresponding to chirality spin and charge spin as well as conformal scaling transformations. With the introduction of intrinsic W-parity, a massless Dirac fermion can be treated as a Majorana-type or Weyl-type spinor in a six-dimensional spacetime that reflects the intrinsic quantum numbers of chirality spin. A generalized Dirac equation is obtained in the six-dimensional spacetime with a maximal symmetry. Based on the framework of gravitational quantum field theory proposed in Ref. [1] with the postulate of gauge invariance and coordinate independence, we arrive at a maximally symmetric gravitational gauge field theory for the massless Dirac fermion in six-dimensional spacetime. Such a theory is governed by the local spin gauge symmetry SP(1,5) and the global Poincaré symmetry P(1,5)=SO(1,5)⋉P 1,5 as well as the charge spin gauge symmetry SU(2). The theory leads to the prediction of doubly electrically charged bosons. A scalar field and conformal scaling gauge field are introduced to maintain both global and local conformal scaling symmetries. A generalized gravitational Dirac equation for the massless Dirac fermion is derived in the six-dimensional spacetime. The equations of motion for gauge fields are obtained with conserved currents in the presence of gravitational effects. The dynamics of the gauge-type gravifield as a Goldstone-like boson is shown to be governed by a conserved energy-momentum tensor, and its symmetric part provides a generalized Einstein equation of gravity. An alternative geometrical symmetry breaking mechanism for the mass generation of Dirac fermions is demonstrated. Supported by National Science Foundation of China (NSFC) (11690022, 11475237, 11121064) and Strategic Priority Research Program of the Chinese

  18. The Chandra Deep Field South as a test case for Global Multi Conjugate Adaptive Optics

    Science.gov (United States)

    Portaluri, E.; Viotto, V.; Ragazzoni, R.; Gullieuszik, M.; Bergomi, M.; Greggio, D.; Biondi, F.; Dima, M.; Magrin, D.; Farinato, J.

    2017-04-01

    The era of the next generation of giant telescopes requires not only the advent of new technologies but also the development of novel methods, in order to exploit fully the extraordinary potential they are built for. Global Multi Conjugate Adaptive Optics (GMCAO) pursues this approach, with the goal of achieving good performance over a field of view of a few arcmin and an increase in sky coverage. In this article, we show the gain offered by this technique to an astrophysical application, such as the photometric survey strategy applied to the Chandra Deep Field South as a case study. We simulated a close-to-real observation of a 500 × 500 arcsec2 extragalactic deep field with a 40-m class telescope that implements GMCAO. We analysed mock K-band images of 6000 high-redshift (up to z = 2.75) galaxies therein as if they were real to recover the initial input parameters. We attained 94.5 per cent completeness for source detection with SEXTRACTOR. We also measured the morphological parameters of all the sources with the two-dimensional fitting tools GALFIT. The agreement we found between recovered and intrinsic parameters demonstrates GMCAO as a reliable approach to assist extremely large telescope (ELT) observations of extragalactic interest.

  19. Dirac operators and Killing spinors with torsion; Dirac-Operatoren und Killing-Spinoren mit Torsion

    Energy Technology Data Exchange (ETDEWEB)

    Becker-Bender, Julia

    2012-12-17

    On a Riemannian spin manifold with parallel skew torsion, we use the twistor operator to obtain an eigenvalue estimate for the Dirac operator with torsion. We consider the equality case in dimensions four and six. In odd dimensions we describe Sasaki manifolds on which equality in the estimate is realized by Killing spinors with torsion. In dimension five we characterize all Killing spinors with torsion and obtain certain naturally reductive spaces as exceptional cases.

  20. Axial anomaly and index theorem for Dirac-Kaehler fermions

    International Nuclear Information System (INIS)

    Fonseca Junior, C.A.L. da.

    1985-02-01

    Some aspects of topological influence on gauge field theory are analysed, considering the geometry and differential topology methods. A review of concepts of differential forms, fibered spaces, connection and curvature, showing an interpretation of gauge theory in this context, is presented. The question of fermions, analysing in details the Dirac-Kaehler which fermionic particle is considered a general differential form, is studied. It is shown how the explicit expressions in function of the Dirac spinor components vary with the Dirac matrix representation. The Dirac-Kahler equation contains 4 times (in 4 dimensions) the Dirac equation, each particle being associated an ideal at left of the algebra of general differential forms. These ideals and the SU(4) symmetry among them are also studied on the point of view of spinors and, the group of reduction to one of the ideals is identified as the Cartan subalgebra of this SU(4). Finally, the axial anomaly is calculated through the functional determinant given by the Dirac-Kaehler operator. The regularization method is the Seeley's coefficients. From that results a comparison of the index theorems for the twisted complexes of signature and spin, which proportionality is given by the number of the algebra ideals contained in the Dirac-Kaehler equation and which also manifests in the respective axial anomaly equations. (L.C.) [pt

  1. Particles and Dirac-type operators on curved spaces

    International Nuclear Information System (INIS)

    Visinescu, Mihai

    2003-01-01

    We review the geodesic motion of pseudo-classical particles in curved spaces. Investigating the generalized Killing equations for spinning spaces, we express the constants of motion in terms of Killing-Yano tensors. Passing from the spinning spaces to the Dirac equation in curved backgrounds we point out the role of the Killing-Yano tensors in the construction of the Dirac-type operators. The general results are applied to the case of the four-dimensional Euclidean Taub-Newman-Unti-Tamburino space. From the covariantly constant Killing-Yano tensors of this space we construct three new Dirac-type operators which are equivalent with the standard Dirac operator. Finally the Runge-Lenz operator for the Dirac equation in this background is expressed in terms of the fourth Killing-Yano tensor which is not covariantly constant. As a rule the covariantly constant Killing-Yano tensors realize certain square roots of the metric tensor. Such a Killing-Yano tensor produces simultaneously a Dirac-type operator and the generator of a one-parameter Lie group connecting this operator with the standard Dirac one. On the other hand, the not covariantly constant Killing-Yano tensors are important in generating hidden symmetries. The presence of not covariantly constant Killing-Yano tensors implies the existence of non-standard supersymmetries in point particle theories on curved background. (author)

  2. Globalization

    Directory of Open Access Journals (Sweden)

    Tulio Rosembuj

    2006-12-01

    Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  3. Globalization

    OpenAIRE

    Tulio Rosembuj

    2006-01-01

    There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  4. Global dependence of optical potential parameters for alpha particles with energies up to 80 MeV

    International Nuclear Information System (INIS)

    Kuterbekov, K.A.; Zholdybaev, T.K.; Sadykov, B.M.; Mukhambetzhan, A.; Kukhtina, I.N.; Penionzhkevich, Yu.Eh.

    2002-01-01

    Global (energy and mass) dependences of optical potential for α-particles with energies up to 80 MeV have been received. A Woods-Saxon form factor for macroscopic potential has been used. Energy and mass dependences of the semi-microscopic α-particle potential parameters have been investigated for the first time. In general, a good description of elastic and inelastic differential and total reactions cross sections for different nuclei using the revealed global parameters has been received within the framework of macroscopic and semi-microscopic approaches

  5. Dirac Triplet Extension of the MSSM

    CERN Document Server

    Alvarado, C.; Martin, A.; Ostdiek, B.

    2015-08-13

    In this paper we explore extensions of the Minimal Supersymmetric Standard Model involving two $SU(2)_L$ triplet chiral superfields that share a superpotential Dirac mass yet only one of which couples to the Higgs fields. This choice is motivated by recent work using two singlet superfields with the same superpotential requirements. We find that, as in the singlet case, the Higgs mass in the triplet extension can easily be raised to $125\\,\\text{GeV}$ without introducing large fine-tuning. For triplets that carry hypercharge, the regions of least fine tuning are characterized by small contributions to the $\\mathcal T$ parameter, and light stop squarks, $m_{\\tilde t_1} \\sim 300-450\\,\\text{GeV}$; the latter is a result of the $\\tan\\beta$ dependence of the triplet contribution to the Higgs mass. Despite such light stop masses, these models are viable provided the stop-electroweakino spectrum is sufficiently compressed.

  6. DIRAC reliable data management for LHCb

    CERN Document Server

    Smith, A C

    2008-01-01

    DIRAC, LHCb's Grid Workload and Data Management System, utilizes WLCG resources and middleware components to perform distributed computing tasks satisfying LHCb's Computing Model. The Data Management System (DMS) handles data transfer and data access within LHCb. Its scope ranges from the output of the LHCb Online system to Grid-enabled storage for all data types. It supports metadata for these files in replica and bookkeeping catalogues, allowing dataset selection and localization. The DMS controls the movement of files in a redundant fashion whilst providing utilities for accessing all metadata. To do these tasks effectively the DMS requires complete self integrity between its components and external physical storage. The DMS provides highly redundant management of all LHCb data to leverage available storage resources and to manage transient errors in underlying services. It provides data driven and reliable distribution of files as well as reliable job output upload, utilizing VO Boxes at LHCb Tier1 sites ...

  7. Dirac cones in two-dimensional borane

    Science.gov (United States)

    Martinez-Canales, Miguel; Galeev, Timur R.; Boldyrev, Alexander I.; Pickard, Chris J.

    2017-11-01

    We introduce two-dimensional borane, a single-layered material of BH stoichiometry, with promising electronic properties. We show that, according to density functional theory calculations, two-dimensional borane is semimetallic, with two symmetry-related Dirac cones meeting right at the Fermi energy Ef. The curvature of the cones is lower than in graphene, thus closer to the ideal linear dispersion. Its structure, formed by a puckered trigonal boron network with hydrogen atoms connected to each boron atom, can be understood as distorted, hydrogenated borophene [Mannix et al., Science 350, 1513 (2015), 10.1126/science.aad1080]. Chemical bonding analysis reveals the boron layer in the network being bound by delocalized four-center two-electron σ bonds. Finally, we suggest high pressure could be a feasible route to synthesize two-dimensional borane.

  8. Topological insulators Dirac equation in condensed matter

    CERN Document Server

    Shen, Shun-Qing

    2017-01-01

    This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field. To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic that has attracted considerable attention and has already b...

  9. Dynamic current-current susceptibility in three-dimensional Dirac and Weyl semimetals

    Science.gov (United States)

    Thakur, Anmol; Sadhukhan, Krishanu; Agarwal, Amit

    2018-01-01

    We study the linear response of doped three-dimensional Dirac and Weyl semimetals to vector potentials, by calculating the wave-vector- and frequency-dependent current-current response function analytically. The longitudinal part of the dynamic current-current response function is then used to study the plasmon dispersion and the optical conductivity. The transverse response in the static limit yields the orbital magnetic susceptibility. In a Weyl semimetal, along with the current-current response function, all these quantities are significantly impacted by the presence of parallel electric and magnetic fields (a finite E .B term) and can be used to experimentally explore the chiral anomaly.

  10. Fractional Lorentz-Dirac Model and Its Dynamical Behaviors

    Science.gov (United States)

    Luo, Shao-Kai; Xu, Yan-Li

    2015-02-01

    In the paper, we construct a new kind of fractional dynamical model, i.e. the fractional Lorentz-Dirac model, and explore dynamical behaviors of the model. We find that the fractional Lorentz-Dirac model possesses Lie algebraic structure and satisfies generalized Poisson conservation law, and then a series of Poisson conserved quantities of the model are given. Further, the relation between conserved quantity and integral invariant of the model is studied, and it is proved that, using the Poisson conserved quantities, we can construct a series of integral invariants of the model. Finally, the stability for the manifolds of equilibrium state of the fractional Lorentz-Dirac model is studied.

  11. Optics

    CERN Document Server

    Mathieu, Jean Paul

    1975-01-01

    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  12. A Compilation of Global Bio-Optical in Situ Data for Ocean-Colour Satellite Applications

    Science.gov (United States)

    Valente, Andre; Sathyendranath, Shubha; Brotus, Vanda; Groom, Steve; Grant, Michael; Taberner, Malcolm; Antoine, David; Arnone, Robert; Balch, William M.; Barker, Kathryn; hide

    2016-01-01

    A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GePCO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately. The compiled data are available at doi:10.1594PANGAEA.854832 (Valente et al., 2015).

  13. Optical Remote Sensing Algorithm Validation using High-Frequency Underway Biogeochemical Measurements in Three Large Global River Systems

    Science.gov (United States)

    Kuhn, C.; Richey, J. E.; Striegl, R. G.; Ward, N.; Sawakuchi, H. O.; Crawford, J.; Loken, L. C.; Stadler, P.; Dornblaser, M.; Butman, D. E.

    2017-12-01

    More than 93% of the world's river-water volume occurs in basins impacted by large dams and about 43% of river water discharge is impacted by flow regulation. Human land use also alters nutrient and carbon cycling and the emission of carbon dioxide from inland reservoirs. Increased water residence times and warmer temperatures in reservoirs fundamentally alter the physical settings for biogeochemical processing in large rivers, yet river biogeochemistry for many large systems remains undersampled. Satellite remote sensing holds promise as a methodology for responsive regional and global water resources management. Decades of ocean optics research has laid the foundation for the use of remote sensing reflectance in optical wavelengths (400 - 700 nm) to produce satellite-derived, near-surface estimates of phytoplankton chlorophyll concentration. Significant improvements between successive generations of ocean color sensors have enabled the scientific community to document changes in global ocean productivity (NPP) and estimate ocean biomass with increasing accuracy. Despite large advances in ocean optics, application of optical methods to inland waters has been limited to date due to their optical complexity and small spatial scale. To test this frontier, we present a study evaluating the accuracy and suitability of empirical inversion approaches for estimating chlorophyll-a, turbidity and temperature for the Amazon, Columbia and Mississippi rivers using satellite remote sensing. We demonstrate how riverine biogeochemical measurements collected at high frequencies from underway vessels can be used as in situ matchups to evaluate remotely-sensed, near-surface temperature, turbidity, chlorophyll-a derived from the Landsat 8 (NASA) and Sentinel 2 (ESA) satellites. We investigate the use of remote sensing water reflectance to infer trophic status as well as tributary influences on the optical characteristics of the Amazon, Mississippi and Columbia rivers.

  14. Globalization

    OpenAIRE

    Andru?cã Maria Carmen

    2013-01-01

    The field of globalization has highlighted an interdependence implied by a more harmonious understanding determined by the daily interaction between nations through the inducement of peace and the management of streamlining and the effectiveness of the global economy. For the functioning of the globalization, the developing countries that can be helped by the developed ones must be involved. The international community can contribute to the institution of the development environment of the gl...

  15. Theory of Green functions of free Dirac fermions in graphene

    International Nuclear Information System (INIS)

    Nguyen, Van Hieu; Nguyen, Bich Ha; Dinh, Ngoc Dung

    2016-01-01

    This work is the beginning of our research on graphene quantum electrodynamics (GQED), based on the application of the methods of traditional quantum field theory to the study of the interacting system of quantized electromagnetic field and Dirac fermions in single-layer graphene. After a brief review of the known results concerning the lattice and electronic structures of single-layer graphene we perform the construction of the quantum fields of free Dirac fermions and the establishment of the corresponding Heisenberg quantum equations of these fields. We then elaborate the theory of Green functions of Dirac fermions in a free Dirac fermion gas at vanishing absolute temperature T = 0, the theory of Matsubara temperature Green functions and the Keldysh theory of non-equilibrium Green functions. (paper)

  16. Dirac Mass Dynamics in Multidimensional Nonlocal Parabolic Equations

    KAUST Repository

    Lorz, Alexander

    2011-01-17

    Nonlocal Lotka-Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Is it possible to describe the dynamics of the limiting concentration points and of the weights of the Dirac masses? What is the long time asymptotics of these Dirac masses? Can several Dirac masses coexist? We will explain how these questions relate to the so-called "constrained Hamilton-Jacobi equation" and how a form of canonical equation can be established. This equation has been established assuming smoothness. Here we build a framework where smooth solutions exist and thus the full theory can be developed rigorously. We also show that our form of canonical equation comes with a kind of Lyapunov functional. Numerical simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation. Our motivation comes from population adaptive evolution a branch of mathematical ecology which models Darwinian evolution. © Taylor & Francis Group, LLC.

  17. Dirac directional emission in anisotropic zero refractive index photonic crystals.

    Science.gov (United States)

    He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen

    2015-08-14

    A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal.

  18. Science in culture the life of Paul Dirac

    CERN Multimedia

    Abbott, A

    2000-01-01

    The life of Paul Dirac has been used as the theme of a show held underground at the Delphi experiment at CERN. The 'Oracle of Delphi' was created as an outreach project and has been extremely successful (1 p).

  19. Magnetotransport in Layered Dirac Fermion System Coupled with Magnetic Moments

    Science.gov (United States)

    Iwasaki, Yoshiki; Morinari, Takao

    2018-03-01

    We theoretically investigate the magnetotransport of Dirac fermions coupled with localized moments to understand the physical properties of the Dirac material EuMnBi2. Using an interlayer hopping form, which simplifies the complicated interaction between the layers of Dirac fermions and the layers of magnetic moments in EuMnBi2, the theory reproduces most of the features observed in this system. The hysteresis observed in EuMnBi2 can be caused by the valley splitting that is induced by the spin-orbit coupling and the external magnetic field with the molecular field created by localized moments. Our theory suggests that the magnetotransport in EuMnBi2 is due to the interplay among Dirac fermions, localized moments, and spin-orbit coupling.

  20. Invariance properties of the Dirac equation with external electro ...

    Indian Academy of Sciences (India)

    . Introduction. The objective of this short paper is to investigate the invariance properties of the Dirac equation with external electro-magnetic field. There exists a large number of literatures on the problem beginning almost from the formulation ...

  1. Using OSG Computing Resources with (iLC)Dirac

    CERN Document Server

    AUTHOR|(SzGeCERN)683529; Petric, Marko

    2017-01-01

    CPU cycles for small experiments and projects can be scarce, thus making use of all available resources, whether dedicated or opportunistic, is mandatory. While enabling uniform access to the LCG computing elements (ARC, CREAM), the DIRAC grid interware was not able to use OSG computing elements (GlobusCE, HTCondor-CE) without dedicated support at the grid site through so called 'SiteDirectors', which directly submit to the local batch system. This in turn requires additional dedicated effort for small experiments on the grid site. Adding interfaces to the OSG CEs through the respective grid middleware is therefore allowing accessing them within the DIRAC software without additional sitespecific infrastructure. This enables greater use of opportunistic resources for experiments and projects without dedicated clusters or an established computing infrastructure with the DIRAC software. To allow sending jobs to HTCondor-CE and legacy Globus computing elements inside DIRAC the required wrapper classes were develo...

  2. Approximate eigensolutions of Dirac equation for the superposition ...

    Indian Academy of Sciences (India)

    2014-07-02

    Uvarov (NU) method is used to examine the approximate analytical energy eigenvalues and two-component wave function of the Dirac equation with the Hellmann potential for arbitrary spin-orbit quantum number κ in the ...

  3. Quantum-classical correspondence of the Dirac equation with a ...

    Indian Academy of Sciences (India)

    classical correspondence; scalar-like potential; Dirac equation; Klein–Gordon equation. ... Quantum matrix elements of the coordinate, momentum and the velocity operator for a spin-1/2 particle moving in a scalar-like potential are calculated.

  4. LHCb: Analysing DIRAC's Behavior using Model Checking with Process Algebra

    CERN Multimedia

    Remenska, Daniela

    2012-01-01

    DIRAC is the Grid solution designed to support LHCb production activities as well as user data analysis. Based on a service-oriented architecture, DIRAC consists of many cooperating distributed services and agents delivering the workload to the Grid resources. Services accept requests from agents and running jobs, while agents run as light-weight components, fulfilling specific goals. Services maintain database back-ends to store dynamic state information of entities such as jobs, queues, staging requests, etc. Agents use polling to check for changes in the service states, and react to these accordingly. A characteristic of DIRAC's architecture is the relatively low complexity in the logic of each agent; the main source of complexity lies in their cooperation. These agents run concurrently, and communicate using the services' databases as a shared memory for synchronizing the state transitions. Although much effort is invested in making DIRAC reliable, entities occasionally get into inconsistent states, leadi...

  5. Variational Integrators for Interconnected Lagrange-Dirac Systems

    Science.gov (United States)

    Parks, Helen; Leok, Melvin

    2017-10-01

    Interconnected systems are an important class of mathematical models, as they allow for the construction of complex, hierarchical, multiphysics, and multiscale models by the interconnection of simpler subsystems. Lagrange-Dirac mechanical systems provide a broad category of mathematical models that are closed under interconnection, and in this paper, we develop a framework for the interconnection of discrete Lagrange-Dirac mechanical systems, with a view toward constructing geometric structure-preserving discretizations of interconnected systems. This work builds on previous work on the interconnection of continuous Lagrange-Dirac systems (Jacobs and Yoshimura in J Geom Mech 6(1):67-98, 2014) and discrete Dirac variational integrators (Leok and Ohsawa in Found Comput Math 11(5), 529-562, 2011). We test our results by simulating some of the continuous examples given in Jacobs and Yoshimura (2014).

  6. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  7. Simulation of Zitterbewegung by modelling the Dirac equation in Metamaterials

    OpenAIRE

    Ahrens, Sven; Jiang, Jun; Sun, Yong; Zhu, Shi-Yao

    2015-01-01

    We develop a dynamic description of an effective Dirac theory in metamaterials, in which the wavefunction is modeled by the corresponding electric and magnetic field in the metamaterial. This electro-magnetic field can be probed in the experimental setup, which means that the wavefunction of the effective theory is directly accessible by measurement. Our model is based on a plane wave expansion, which ravels the identification of Dirac spinors with single-frequency excitations of the electro-...

  8. Neural network real time event selection for the DIRAC experiment

    CERN Document Server

    Kokkas, P; Tauscher, Ludwig; Vlachos, S

    2001-01-01

    The neural network first level trigger for the DIRAC experiment at CERN is presented. Both the neural network algorithm used and its actual hardware implementation are described. The system uses the fast plastic scintillator information of the DIRAC spectrometer. In 210 ns it selects events with two particles having low relative momentum. Such events are selected with an efficiency of more than 0.94. The corresponding rate reduction for background events is a factor of 2.5. (10 refs).

  9. The confluent supersymmetry algorithm for Dirac equations with pseudoscalar potentials

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Astorga, Alonso, E-mail: aloncont@iun.edu; Schulze-Halberg, Axel, E-mail: axgeschu@iun.edu, E-mail: xbataxel@gmail.com [Department of Mathematics and Actuarial Science and Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States)

    2014-10-15

    We introduce the confluent version of the quantum-mechanical supersymmetry formalism for the Dirac equation with a pseudoscalar potential. Application of the formalism to spectral problems is discussed, regularity conditions for the transformed potentials are derived, and normalizability of the transformed solutions is established. Our findings extend and complement former results [L. M. Nieto, A. A. Pecheritsin, and B. F. Samsonov, “Intertwining technique for the one-dimensional stationary Dirac equation,” Ann. Phys. 305, 151–189 (2003)].

  10. The confluent supersymmetry algorithm for Dirac equations with pseudoscalar potentials

    International Nuclear Information System (INIS)

    Contreras-Astorga, Alonso; Schulze-Halberg, Axel

    2014-01-01

    We introduce the confluent version of the quantum-mechanical supersymmetry formalism for the Dirac equation with a pseudoscalar potential. Application of the formalism to spectral problems is discussed, regularity conditions for the transformed potentials are derived, and normalizability of the transformed solutions is established. Our findings extend and complement former results [L. M. Nieto, A. A. Pecheritsin, and B. F. Samsonov, “Intertwining technique for the one-dimensional stationary Dirac equation,” Ann. Phys. 305, 151–189 (2003)

  11. [P.A.M. Dirac and antimatter applied to medicine].

    Science.gov (United States)

    Kulenović, Fahrudin; Vobornik, Slavenka; Dalagija, Faruk

    2003-01-01

    Regarding to the hundredth anniversary of P. Dirac birth, it was made review on life and work of this genius in the history of physics and science generally. His ingenious scientific work, that significantly marked contemporary time, was presented in the simplest way with aim to approach more number of readers. Special accent was put on application of Dirac's ideas about antiparticles in medical practice.

  12. Analysis of zero modes for Dirac operators with magnetic links

    DEFF Research Database (Denmark)

    Portmann, Fabian Daniel; Sok, Jérémy Vithya; Solovej, Jan Philip

    2017-01-01

    In this paper we provide a means to approximate Dirac operators with magnetic fields supported on links in S3 (and R3) by Dirac operators with smooth magnetic fields. We then proceed to prove that under certain assumptions, the spectral flow of paths along these operators is the same in both the ...... obtain criteria on the magnetic link for the non-existence of zero modes....

  13. Transport properties of Dirac fermions in two dimensions

    Science.gov (United States)

    DaSilva, Ashley M.

    The Dirac equation in particle physics is used to describe spin 1/2 fermions (such as electrons) moving at relativistic speeds. In condensed matter physics, this is usually not relevant, since particles in matter move slowly compared to the speed of light. However, recent progress has revealed two-dimensional realizations of Dirac fermions in condensed matter systems with zero mass and a redefined "speed of light." One of these systems, graphene, has been studied theoretically for decades as a building block of graphite. The other, the topological insulator, is quite new; this state of matter was predicted less than 10 years ago. Graphene was first isolated in 2004, and since then there has been an explosion of graphene research in the physics community. Much of the recent excitement has to do with the potential applications of graphene in devices. In this dissertation, I will discuss two problems related to graphene devices, and in particular how to use the strong interaction of graphene with its surroundings as an asset. I will show that a Boltzmann transport theory with all scattering mechanisms describes the current vs voltage of a graphene sheet extremely well using no adjustable parameters. One crucial element of this model is the transfer of energy from electrons directly to the substrate via scattering with optical phonons at the interface. The interaction is due to an electric field that is set up by these optical phonons, which is so strongly interacting in part due to the two dimensionality of the graphene. I will also discuss the adsorption of He atoms on a graphene sheet. This causes a change in the graphene conductivity which is large enough to be measurable. Work in this direction could provide a route to graphene sensors. The topological insulator is a recently predicted state of matter which is nominally an insulator but has metallic surface states which are topologically protected. This topological protection arises from the symmetry of the system

  14. Split Dirac Supersymmetry: An Ultraviolet Completion of Higgsino Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Patrick J. [Fermilab; Kribs, Graham D. [Oregon U.; Martin, Adam [Notre Dame U.

    2014-10-07

    Motivated by the observation that the Higgs quartic coupling runs to zero at an intermediate scale, we propose a new framework for models of split supersymmetry, in which gauginos acquire intermediate scale Dirac masses of $\\sim 10^{8-11}$ GeV. Scalar masses arise from one-loop finite contributions as well as direct gravity-mediated contributions. Like split supersymmetry, one Higgs doublet is fine-tuned to be light. The scale at which the Dirac gauginos are introduced to make the Higgs quartic zero is the same as is necessary for gauge coupling unification. Thus, gauge coupling unification persists (nontrivially, due to adjoint multiplets), though with a somewhat higher unification scale $\\gtrsim 10^{17}$ GeV. The $\\mu$-term is naturally at the weak scale, and provides an opportunity for experimental verification. We present two manifestations of Split Dirac Supersymmetry. In the "Pure Dirac" model, the lightest Higgsino must decay through R-parity violating couplings, leading to an array of interesting signals in colliders. In the "Hypercharge Impure" model, the bino acquires a Majorana mass that is one-loop suppressed compared with the Dirac gluino and wino. This leads to weak scale Higgsino dark matter whose overall mass scale, as well as the mass splitting between the neutral components, is naturally generated from the same UV dynamics. We outline the challenges to discovering pseudo-Dirac Higgsino dark matter in collider and dark matter detection experiments.

  15. The Lorentz-Dirac equation in light of quantum theory

    International Nuclear Information System (INIS)

    Nikishov, A.I.

    1996-01-01

    To high accuracy, an electron in ultrarelativistic motion 'sees' an external field in its rest frame as a crossed field (E=H, E·H=0). In this case, quantum expressions allow the introduction of a local intensity of the radiation, which determines the radiative term of the force of radiative reaction. For γ=(1-v2)-1/2>> 1 this term is much larger than the mass term, i.e., the term with xd3do. Under these conditions, the reduced Lorentz-Dirac equation, which is obtained from the full Lorentz-Dirac equation by eliminating the terms xd3do and xe on the right side using the equation of motion without taking into account the force of radiative reaction, is equivalent to good accuracy to the original Lorentz-Dirac equation. Exact solutions to the reduced Lorentz-Dirac equation are obtained for a constant field and the field of a plane wave. For γ∼1 a local expression for the radiative term cannot be obtained quantitatively from the quantum expressions. In this case the mass (Lorentz-Dirac) terms in the original and reduced Lorentz-Dirac equations are not small compared to the radiative term. The predictions of these equations, which depend appreciably on the mass terms, are therefore less reliable

  16. The DIRAC Data Management System and the Gaudi dataset federation

    CERN Document Server

    Haen, Christophe; Frank, Markus; Tsaregorodtsev, Andrei

    2015-01-01

    The DIRAC Interware provides a development framework and a complete set of components for building distributed computing systems. The DIRAC Data Management System (DMS) offers all the necessary tools to ensure data handling operations for small and large user communities. It supports transparent access to storage resources based on multiple technologies, and is easily expandable. The information on data files and replicas is kept in a File Catalog of which DIRAC offers a powerful and versatile implementation (DFC). Data movement can be performed using third party services including FTS3. Bulk data operations are resilient with respect to failures due to the use of the Request Management System (RMS) that keeps track of ongoing tasks.In this contribution we will present an overview of the DIRAC DMS capabilities and its connection with other DIRAC subsystems such as the Transformation System. This paper also focuses on the DIRAC File Catalog, for which a lot of new developments have been carried out, so that LH...

  17. Data Mining for 3D Organic Dirac Materials

    Science.gov (United States)

    Geilhufe, R. Matthias; Borysov, Stanislav S.; Bouhon, Adrien; Balatsky, Alexander V.

    The study of Dirac materials, i.e. materials where the low-energy fermionic excitations behave as massless Dirac particles has been of ongoing interest for more than two decades. Such massless Dirac fermions are characterized by a linear dispersion relation with respect to the particle momentum. A combined study using group theory and data mining within the Organic Materials Database leads to the discovery of stable Dirac-point nodes and Dirac line-nodes within the electronic band structure in the class of 3-dimensional organic crystals. The nodes are protected by crystalline symmetry. As a result of this study, we present band structure calculations and symmetry analysis for previously synthesized organic materials. In all these materials, the Dirac nodes are well separated within the energy and located near the Fermi surface, which opens up a possibility for their direct experimental observation. The authors acknowledge support by the US Department of Energy, BES E3B7, the swedish Research Council Grant No. 638-2013-9243, the Knut and Alice Wallenberg Foundation, and the European Research Council (FP/2207-2013)/ERC Grant Agreement No. DM-321031.

  18. P A M Dirac meets M G Krein: matrix orthogonal polynomials and Dirac's equation

    International Nuclear Information System (INIS)

    Duran, Antonio J; Gruenbaum, F Alberto

    2006-01-01

    The solution of several instances of the Schroedinger equation (1926) is made possible by using the well-known orthogonal polynomials associated with the names of Hermite, Legendre and Laguerre. A relativistic alternative to this equation was proposed by Dirac (1928) involving differential operators with matrix coefficients. In 1949 Krein developed a theory of matrix-valued orthogonal polynomials without any reference to differential equations. In Duran A J (1997 Matrix inner product having a matrix symmetric second order differential operator Rocky Mt. J. Math. 27 585-600), one of us raised the question of determining instances of these matrix-valued polynomials going along with second order differential operators with matrix coefficients. In Duran A J and Gruenbaum F A (2004 Orthogonal matrix polynomials satisfying second order differential equations Int. Math. Res. Not. 10 461-84), we developed a method to produce such examples and observed that in certain cases there is a connection with the instance of Dirac's equation with a central potential. We observe that the case of the central Coulomb potential discussed in the physics literature in Darwin C G (1928 Proc. R. Soc. A 118 654), Nikiforov A F and Uvarov V B (1988 Special Functions of Mathematical Physics (Basle: Birkhauser) and Rose M E 1961 Relativistic Electron Theory (New York: Wiley)), and its solution, gives rise to a matrix weight function whose orthogonal polynomials solve a second order differential equation. To the best of our knowledge this is the first instance of a connection between the solution of the first order matrix equation of Dirac and the theory of matrix-valued orthogonal polynomials initiated by M G Krein

  19. The extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensor

    International Nuclear Information System (INIS)

    Dappiagi, Claudio; Hack, Thomas-Paul; Pinamonti, Nicola

    2009-03-01

    We discuss from scratch the classical structure of Dirac spinors on an arbitrary globally hyperbolic, Lorentzian spacetime, their formulation as a locally covariant quantum field theory, and the associated notion of a Hadamard state. Eventually, we develop the notion of Wick polynomials for spinor fields, and we employ the latter to construct a covariantly conserved stress-energy tensor suited for back-reaction computations. We explicitly calculate its trace anomaly in particular. (orig.)

  20. Recent results in the development of a global medium-energy nucleon-nucleus optical-model potential

    International Nuclear Information System (INIS)

    Madland, D.G.

    1988-02-01

    Initial results are presented for the determination of a global medium-energy nucleon-nucleus phenomenological optical-model potential using a relativistic Schroedinger representation. The starting point for this work is the global phenomenological optical-model potential of Schwandt /ital et al./, which is based on measured elastic scattering cross sections and analyzing power for polarized protons ranging from 80 to 180 MeV. This potential is optimally modified to reproduce experimental proton reaction cross sections as a function of energy, while allowing only minimal deterioration in the fits to the elastic cross sections and analyzing powers. Further modifications in the absorptive potential were found necessary to extrapolate the modified potential to higher energies. The final potential is converted to a neutron-nucleus potential by use of standard Lane model assumptions and by accounting approximately for the Coulomb correction. Comparisons of measured and calculated proton reaction and neutron total cross sections are presented for 27 Al, 56 Fe, and 208 Pb. Medium-energy optical-model potentials for complex projectiles are briefly discussed in an appendix. 7 refs., 20 figs

  1. Understanding quaternions and the Dirac belt trick

    Energy Technology Data Exchange (ETDEWEB)

    Staley, Mark [University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)], E-mail: staleymd@gmail.com

    2010-05-15

    The Dirac belt trick is often employed in physics classrooms to show that a 2{pi} rotation is not topologically equivalent to the absence of rotation whereas a 4{pi} rotation is, mirroring a key property of quaternions and their isomorphic cousins, spinors. The belt trick can leave the student wondering if a real understanding of quaternions and spinors has been achieved, or if the trick is just an amusing analogy. The goal of this paper is to demystify the belt trick and to show that it suggests an underlying four-dimensional parameter space for rotations that is simply connected. An investigation into the geometry of this four-dimensional space leads directly to the system of quaternions, and to an interpretation of three-dimensional vectors as the generators of rotations in this larger four-dimensional world. The paper also shows why quaternions are the natural extension of complex numbers to four dimensions. The level of the paper is suitable for undergraduate students of physics.

  2. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  3. GLAS/ICESat L2 Global Thin Cloud/Aerosol Optical Depths Data V033

    Data.gov (United States)

    National Aeronautics and Space Administration — The level 2 thin cloud/aerosol data contains optical depths for clouds for up to 10 layers, the planetary boundary layer, and aerosols for up to 8 layers. Data...

  4. Electronic structure engineering in silicene via atom substitution and a new two-dimensional Dirac structure Si3C

    Science.gov (United States)

    Yin, Na; Dai, Ying; Wei, Wei; Huang, Baibiao

    2018-04-01

    A lot of efforts have been made towards the band gap opening in two-dimensional silicene, the silicon version of graphene. In the present work, the electronic structures of single atom doped (B, N, Al and P) and codoped (B/N and Al/P) silicene monolayers are systematically examined on the base of density functional electronic calculations. Our results demonstrate that single atom doping can realize electron or hole doping in the silicene; while codoping, due to the syergistic effects, results in finite band gap in silicene at the Dirac point without significantly degrading the electronic properties. In addition, the characteristic of band gap shows dependence on the doping concentration. Importantly, we predict a new two-dimensional Dirac structure, the graphene-like Si3C, which also shows linear band dispersion relation around the Fermi level. Our results demonstrates an important perspective to engineer the electronic and optical properties of silicene.

  5. Global Lightning Climatology from the Tropical Rainfall Measuring Mission (TRMM), Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD)

    Science.gov (United States)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2015-01-01

    The Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) has been collecting observations of total lightning in the global tropics and subtropics (roughly 38 deg S - 38 deg N) since December 1997. A similar instrument, the Optical Transient Detector, operated from 1995-2000 on another low earth orbit satellite that also saw high latitudes. Lightning data from these instruments have been used to create gridded climatologies and time series of lightning flash rate. These include a 0.5 deg resolution global annual climatology, and lower resolution products describing the annual cycle and the diurnal cycle. These products are updated annually. Results from the update through 2013 will be shown at the conference. The gridded products are publicly available for download. Descriptions of how each product can be used will be discussed, including strengths, weaknesses, and caveats about the smoothing and sampling used in various products.

  6. Globalization

    DEFF Research Database (Denmark)

    Plum, Maja

    Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA...

  7. Globalization

    OpenAIRE

    F. Gerard Adams

    2008-01-01

    The rapid globalization of the world economy is causing fundamental changes in patterns of trade and finance. Some economists have argued that globalization has arrived and that the world is “flat†. While the geographic scope of markets has increased, the author argues that new patterns of trade and finance are a result of the discrepancies between “old†countries and “new†. As the differences are gradually wiped out, particularly if knowledge and technology spread worldwide, the t...

  8. Adjunctation and Scalar Product in the Dirac Equation - II

    Science.gov (United States)

    Dima, M.

    2017-02-01

    Part-I Dima (Int. J. Theor. Phys. 55, 949, 2016) of this paper showed in a representation independent way that γ 0 is the Bergmann-Pauli adjunctator of the Dirac { γ μ } set. The distiction was made between similarity (MATH) transformations and PHYS transformations - related to the (covariant) transformations of physical quantities. Covariance is due solely to the gauging of scalar products between systems of reference and not to the particular action of γ 0 on Lorentz boosts - a matter that in the past led inadvertently to the definition of a second scalar product (the Dirac-bar product). Part-II shows how two scalar products lead to contradictions and eliminates this un-natural duality in favour of the canonical scalar product and its gauge between systems of reference. What constitutes a proper observable is analysed and for instance spin is revealed not to embody one (except as projection on the boost direction - helicity). A thorough investigation into finding a proper-observable current for the theory shows that the Dirac equation does not possess one in operator form. A number of problems with the Dirac current operator are revealed - its Klein-Gordon counterpart being significantly more physical. The alternative suggested is finding a current for the Dirac theory in scalar form j^{μ } = < ρ rangle _{_{ψ }}v^{μ }_{ψ }.

  9. PRECISE MEASUREMENT OF THE REIONIZATION OPTICAL DEPTH FROM THE GLOBAL 21 cm SIGNAL ACCOUNTING FOR COSMIC HEATING

    International Nuclear Information System (INIS)

    Fialkov, Anastasia; Loeb, Abraham

    2016-01-01

    As a result of our limited data on reionization, the total optical depth for electron scattering, τ, limits precision measurements of cosmological parameters from the Cosmic Microwave Background (CMB). It was recently shown that the predicted 21 cm signal of neutral hydrogen contains enough information to reconstruct τ with sub-percent accuracy, assuming that the neutral gas was much hotter than the CMB throughout the entire epoch of reionization (EoR). Here we relax this assumption and use the global 21 cm signal alone to extract τ for realistic X-ray heating scenarios. We test our model-independent approach using mock data for a wide range of ionization and heating histories and show that an accurate measurement of the reionization optical depth at a sub-percent level is possible in most of the considered scenarios even when heating is not saturated during the EoR, assuming that the foregrounds are mitigated. However, we find that in cases where heating sources had hard X-ray spectra and their luminosity was close to or lower than what is predicted based on low-redshift observations, the global 21 cm signal alone is not a good tracer of the reionization history

  10. Globalization

    DEFF Research Database (Denmark)

    Plum, Maja

    Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA....... It thus explores the systems of reason that educational comparative practices carry through time; focusing on the way configurations are reproduced and transformed, forming the pre-school child as a central curricular variable....

  11. DIRAC: A Scalable Lightweight Architecture for High Throughput Computing

    CERN Document Server

    Garonne, V; Stokes-Rees, I

    2004-01-01

    DIRAC (Distributed Infrastructure with Remote Agent Control) has been developed by the CERN LHCb physics experiment to facilitate large scale simulation and user analysis tasks spread across both grid and non-grid computing resources. It consists of a small set of distributed stateless Core Services, which are centrally managed, and Agents which are managed by each computing site. DIRAC utilizes concepts from existing distributed computing models to provide a lightweight, robust, and flexible system. This paper will discuss the architecture, performance, and implementation of the DIRAC system which has recently been used for an intensive physics simulation involving more than forty sites, 90 TB of data, and in excess of one thousand 1 GHz processor-years.

  12. Shot noise in systems with semi-Dirac points

    International Nuclear Information System (INIS)

    Zhai, Feng; Wang, Juan

    2014-01-01

    We calculate the ballistic conductance and shot noise of electrons through a two-dimensional stripe system (width W ≫ length L) with semi-Dirac band-touching points. We find that the ratio between zero-temperature noise power and mean current (the Fano factor) is highly anisotropic. When the transport is along the linear-dispersion direction and the Fermi energy is fixed at the semi-Dirac point, the Fano factor has a universal value F = 0.179 while a minimum conductivity exists and scales with L 1∕2 . Along the parabolic dispersion direction, the Fano factor at the semi-Dirac point has a contact-independent limit exceeding 0.9, which varies weakly with L due to the common-path interference of evanescent waves. Our findings suggest a way to discern the type of band-touching points

  13. Accidental degeneracy of double Dirac cones in a phononic crystal

    KAUST Repository

    Chen, Ze-Guo

    2014-04-09

    Artificial honeycomb lattices with Dirac cone dispersion provide a macroscopic platform to study the massless Dirac quasiparticles and their novel geometric phases. In this paper, a quadruple-degenerate state is achieved at the center of the Brillouin zone in a two-dimensional honeycomb lattice phononic crystal, which is a result of accidental degeneracy of two double-degenerate states. In the vicinity of the quadruple-degenerate state, the dispersion relation is linear. Such quadruple degeneracy is analyzed by rigorous representation theory of groups. Using method, a reduced Hamiltonian is obtained to describe the linear Dirac dispersion relations of this quadruple-degenerate state, which is well consistent with the simulation results. Near such accidental degeneracy, we observe some unique properties in wave propagating, such as defect-insensitive propagating character and the Talbot effect.

  14. Scattering processes could distinguish Majorana from Dirac neutrinos

    Directory of Open Access Journals (Sweden)

    J. Barranco

    2014-12-01

    Full Text Available It is well known that Majorana neutrinos have a pure axial neutral current interaction while Dirac neutrinos have the standard vector-axial interaction. In spite of this crucial difference, usually Dirac neutrino processes differ from Majorana processes by a term proportional to the neutrino mass, resulting in almost unmeasurable observations of this difference. In the present work we show that once the neutrino polarization evolution is considered, there are clear differences between Dirac and Majorana scattering on electrons. The change of polarization can be achieved in astrophysical environments with strong magnetic fields. Furthermore, we show that in the case of unpolarized neutrino scattering onto polarized electrons, this difference can be relevant even for large values of the neutrino energy.

  15. Inverse scattering scheme for the Dirac equation at fixed energy

    International Nuclear Information System (INIS)

    Leeb, H.; Lehninger, H.; Schilder, C.

    2001-01-01

    Full text: Based on the concept of generalized transformation operators a new hierarchy of Dirac equations with spherical symmetric scalar and fourth component vector potentials is presented. Within this hierarchy closed form expressions for the solutions, the potentials and the S-matrix can be given in terms of solutions of the original Dirac equation. Using these transformations an inverse scattering scheme has been constructed for the Dirac equation which is the analog to the rational scheme in the non-relativistic case. The given method provides for the first time an inversion scheme with closed form expressions for the S-matrix for non-relativistic scattering problems with central and spin-orbit potentials. (author)

  16. Nonlinear modes of the tensor Dirac equation and CPT violation

    Science.gov (United States)

    Reifler, Frank J.; Morris, Randall D.

    1993-01-01

    Recently, it has been shown that Dirac's bispinor equation can be expressed, in an equivalent tensor form, as a constrained Yang-Mills equation in the limit of an infinitely large coupling constant. It was also shown that the free tensor Dirac equation is a completely integrable Hamiltonian system with Lie algebra type Poisson brackets, from which Fermi quantization can be derived directly without using bispinors. The Yang-Mills equation for a finite coupling constant is investigated. It is shown that the nonlinear Yang-Mills equation has exact plane wave solutions in one-to-one correspondence with the plane wave solutions of Dirac's bispinor equation. The theory of nonlinear dispersive waves is applied to establish the existence of wave packets. The CPT violation of these nonlinear wave packets, which could lead to new observable effects consistent with current experimental bounds, is investigated.

  17. Luciano Maiani and Jean Iliopoulos awarded the Dirac Medal

    CERN Multimedia

    2007-01-01

    Luciano Maiani, when he was Director-General of CERN. Jean Iliopoulos in 1999. (©CNRS Photothèque - Julien Quideau)On 8 August, the 2007 Dirac Medal, one of the most prestigious prizes in the fields of theoretical physics and mathematics, was awarded to Luciano Maiani, professor at Rome’s La Sapienza University and former Director-General of CERN, and to Jean Iliopoulos, emeritus Director of Research at the CNRS Laboratory of Theoretical Physics. The medal was awarded to both physicists for their joint "work on the physics of the charm quark, a major contribution to the birth of the Standard Model, the modern theory of Elementary Particles." Founded by the Abdus Salam International Centre for Theoretical Physics (ICTP) in 1985, the Dirac Medal is awarded annually on 8 August, the birthday of the famous physicist Paul Dirac, winner of the 1933 Nobel Prize for Physics. It is awarded to ...

  18. Maxwell-Like Equations for Free Dirac Electrons

    Science.gov (United States)

    Bruce, S. A.

    2018-03-01

    In this article, we show that the wave equation for a free Dirac electron can be represented in a form that is analogous to Maxwell's electrodynamics. The electron bispinor wavefunction is explicitly expressed in terms of its real and imaginary components. This leads us to incorporate into it appropriate scalar and pseudo-scalar fields in advance, so that a full symmetry may be accomplished. The Dirac equation then takes on a form similar to that of a set of inhomogeneous Maxwell's equations involving a particular self-source. We relate plane wave solutions of these equations to waves corresponding to free Dirac electrons, identifying the longitudinal component of the electron motion, together with the corresponding Zitterbewegung ("trembling motion").

  19. PREFACE: International Workshop on Dirac Electrons in Solids 2015

    Science.gov (United States)

    Ogata, M.; Suzumura, Y.; Fuseya, Y.; Matsuura, H.

    2015-04-01

    It is our pleasure to publish the Proceedings of the International Workshop on Dirac Electrons in Solids held in University of Tokyo, Japan, for January 14-15, 2015. The workshop was organized by the entitled project which lasted from April 2012 to March 2015 with 10 theorists. It has been supported by a Grand-in-Aid for Scientific Research (A) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. The subjects discussed in the workshop include bismuth, organic conductors, graphene, topological insulators, new materials including Ca3PbO, and new directions in theory (superconductivity, orbital susceptibility, etc). The number of participants was about 70 and the papers presented in the workshop include four invited talks, 16 oral presentations, and 23 poster presentations. Dirac electron systems appear in various systems, such as graphene, quasi-two-dimensional organic conductors, bismuth, surface states in topological insulators, new materials like Ca3PbO. In these systems, characteristic transport properties caused by the linear dispersion of Dirac electrons and topological properties, have been extensively discussed. In addition to these, there are many interesting research fields such as Spin-Hall effect, orbital diamagnetism due to interband effects, Landau levels characteristic to Dirac dispersion, anomalous interlayer transport phenomena and magnetoresistance, the effects of spin-orbit interaction, and electron correlation. The workshop focused on recent developments of theory and experiment of Dirac electron systems in the above materials. We note that all papers published in this volume of Journal of Physics: Conference Series were peer reviewed. Reviews were performed by expert referees with professional knowledge and high scientific standards in this field. Editors made efforts so that the papers may satisfy the criterion of a proceedings journal published by IOP Publishing. We hope that all the participants of the workshop

  20. Chemistry at the dirac point of graphene

    Science.gov (United States)

    Sarkar, Santanu

    device mobility. To this end, we find that the organometallic hexahapto metal complexation chemistry of graphene, in which the graphene pi-band constructively hybridizes with the vacant d-orbitals of transition metals, allows the fabrication of field effect devices which retain a high degree of the mobility with enhanced on-off ratio. In summary, we find that the singular electronic structure of graphene at the Dirac point governs the chemical reactivity of graphene and this chemistry will play a vital role in propelling graphene to assume its role as the next generation electronic material beyond silicon.

  1. Adaptive Multigrid Algorithm for the Lattice Wilson-Dirac Operator

    International Nuclear Information System (INIS)

    Babich, R.; Brower, R. C.; Rebbi, C.; Brannick, J.; Clark, M. A.; Manteuffel, T. A.; McCormick, S. F.; Osborn, J. C.

    2010-01-01

    We present an adaptive multigrid solver for application to the non-Hermitian Wilson-Dirac system of QCD. The key components leading to the success of our proposed algorithm are the use of an adaptive projection onto coarse grids that preserves the near null space of the system matrix together with a simplified form of the correction based on the so-called γ 5 -Hermitian symmetry of the Dirac operator. We demonstrate that the algorithm nearly eliminates critical slowing down in the chiral limit and that it has weak dependence on the lattice volume.

  2. Job monitoring on DIRAC for Belle II distributed computing

    Science.gov (United States)

    Kato, Yuji; Hayasaka, Kiyoshi; Hara, Takanori; Miyake, Hideki; Ueda, Ikuo

    2015-12-01

    We developed a monitoring system for Belle II distributed computing, which consists of active and passive methods. In this paper we describe the passive monitoring system, where information stored in the DIRAC database is processed and visualized. We divide the DIRAC workload management flow into steps and store characteristic variables which indicate issues. These variables are chosen carefully based on our experiences, then visualized. As a result, we are able to effectively detect issues. Finally, we discuss the future development for automating log analysis, notification of issues, and disabling problematic sites.

  3. Hole doped Dirac states in silicene by biaxial tensile strain

    KAUST Repository

    Kaloni, Thaneshwor P.

    2013-03-11

    The effects of biaxial tensile strain on the structure, electronic states, and mechanical properties of silicene are studied by ab-initio calculations. Our results show that up to 5% strain the Dirac cone remains essentially at the Fermi level, while higher strain induces hole doped Dirac states because of weakened Si–Si bonds. We demonstrate that the silicene lattice is stable up to 17% strain. It is noted that the buckling first decreases with the strain (up to 10%) and then increases again, which is accompanied by a band gap variation. We also calculate the Grüneisen parameter and demonstrate a strain dependence similar to that of graphene.

  4. Spiking Excitable Semiconductor Laser as Optical Neurons: Dynamics, Clustering and Global Emerging Behaviors

    Science.gov (United States)

    2014-06-28

    N. Rubido, J. Tiana-Alsina, M. C. Torrent , and C. Masoller, Distinguishing signatures of deter- minism and stochasticity in spiking complex systems...Cohen, A. Aragoneses, D. Rontani, M. C. Torrent , C. Masoller and D. J. Gauthier, Multidimensional subwavelength position sensing using a...semiconductor laser with optical feedback, Opt. Lett. 38, 4331 (2013). Download 10. A. Aragoneses, T. Sorrentino, S. Perrone, D. J. Gauthier, M. C. Torrent and C

  5. Giant Dirac point shift of graphene phototransistors by doped silicon substrate current

    Directory of Open Access Journals (Sweden)

    Masaaki Shimatani

    2016-03-01

    Full Text Available Graphene is a promising new material for photodetectors due to its excellent optical properties and high-speed response. However, graphene-based phototransistors have low responsivity due to the weak light absorption of graphene. We have observed a giant Dirac point shift upon white light illumination in graphene-based phototransistors with n-doped Si substrates, but not those with p-doped substrates. The source-drain current and substrate current were investigated with and without illumination for both p-type and n-type Si substrates. The decay time of the drain-source current indicates that the Si substrate, SiO2 layer, and metal electrode comprise a metal-oxide-semiconductor (MOS capacitor due to the presence of defects at the interface between the Si substrate and SiO2 layer. The difference in the diffusion time of the intrinsic major carriers (electrons and the photogenerated electron-hole pairs to the depletion layer delays the application of the gate voltage to the graphene channel. Therefore, the giant Dirac point shift is attributed to the n-type Si substrate current. This phenomenon can be exploited to realize high-performance graphene-based phototransistors.

  6. Global validation of two-channel AVHRR aerosol optical thickness retrievals over the oceans

    International Nuclear Information System (INIS)

    Liu Li; Mishchenko, Michael I.; Geogdzhayev, Igor; Smirnov, Alexander; Sakerin, Sergey M.; Kabanov, Dmitry M.; Ershov, Oleg A.

    2004-01-01

    The paper presents validation results for the aerosol optical thickness derived by applying a two-channel retrieval algorithm to Advanced Very High Resolution Radiometer (AVHRR) radiance data. The satellite retrievals are compared with ship-borne sun-photometer results. The comparison of spatial and temporal statistics of the AVHRR results and the ship measurements shows a strong correlation. The satellite retrieval results obtained with the original algorithm for a wavelength of 0.55μm are systematically higher than the sun-photometer measurements in the cases of low aerosol loads. The ensemble averaged satellite-retrieved optical thickness overestimates the ensemble averaged sun-photometer data by about 11% with a random error of about 0.04. Increasing the diffuse component of the ocean surface reflectance from 0.002 to 0.004 in the AVHRR algorithm produces a better match, with the ensemble-averaged AVHRR-retrieved optical thickness differing by only about 3.6% from the sun-photometer truth and having a small offset of 0.03

  7. A Kernel Representation of Dirac Structures for Infinite-dimensional Systems

    NARCIS (Netherlands)

    Iftime, Orest; Roman, M.; Sandovici, A.

    2014-01-01

    Dirac structures are used as the underlying structure to mathematically formalize port-Hamiltonian systems. This note approaches the Dirac structures for infinite-dimensional systems using the theory of linear relations on Hilbert spaces. First, a kernel representation for a Dirac structure is

  8. Complete real Dirac theory and its discrete P, C, T-symmetries

    International Nuclear Information System (INIS)

    Collier, R.

    1987-01-01

    It is shown that a full real Dirac theory can operate only with at least 8-dimensional real-valued matrices. The most general form of these Dirac theory consists of three independent Dirac equations for three lepton fields Ψ (α) connected only by the algebra of their discrete PCT-symmetries. (author)

  9. Tilted Dirac Cone Effect on Interlayer Magnetoresistance in α-(BEDT-TTF)2I3

    Science.gov (United States)

    Tajima, Naoya; Morinari, Takao

    2018-04-01

    We report the effect of Dirac cone tilting on interlayer magnetoresistance in α-(BEDT-TTF)2I3, which is a Dirac semimetal under pressure. Fitting of the experimental data by the theoretical formula suggests that the system is close to a type-II Dirac semimetal.

  10. Global Crossing optical infrastructure is critical part of next-generation Internet

    CERN Multimedia

    2002-01-01

    "Global Crossing announced today that it has signed a contract with the Netherlands National Research Network, SURFnet, to provide multi-Gigabit wavelength connectivity between Amsterdam's NetherLight and Switzerland's CERN in Geneva for use in tests that optimise how research networks are used" (1 page).

  11. The nonlinear dirac equation in Bose-Einstein condensates: vortex solutions and spectra in a weak harmonic trap

    Science.gov (United States)

    Haddad, L. H.; Carr, Lincoln D.

    2015-11-01

    We analyze the vortex solution space of the (2+1)-dimensional nonlinear Dirac equation for bosons in a honeycomb optical lattice at length scales much larger than the lattice spacing. Dirac point relativistic covariance combined with s-wave scattering for bosons leads to a large number of vortex solutions characterized by different functional forms for the internal spin and overall phase of the order parameter. We present a detailed derivation of these solutions which include skyrmions, half-quantum vortices, Mermin-Ho and Anderson-Toulouse vortices for vortex winding {\\ell }=1. For {\\ell }≥slant 2 we obtain topological as well as non-topological solutions defined by the asymptotic radial dependence. For arbitrary values of ℓ the non-topological solutions include bright ring-vortices which explicitly demonstrate the confining effects of the Dirac operator. We arrive at solutions through an asymptotic Bessel series, algebraic closed-forms, and using standard numerical shooting methods. By including a harmonic potential to simulate a finite trap we compute the discrete spectra associated with radially quantized modes. We demonstrate the continuous spectral mapping between the vortex and free particle limits for all of our solutions.

  12. Lifshitz Transitions, Type-II Dirac and Weyl Fermions, Event Horizon and All That

    Science.gov (United States)

    Volovik, G. E.; Zhang, K.

    2017-12-01

    The type-II Weyl and type-II Dirac points emerge in semimetals and also in relativistic systems. In particular, the type-II Weyl fermions may emerge behind the event horizon of black holes. In this case the horizon with Painlevé-Gullstrand metric serves as the surface of the Lifshitz transition. This relativistic analogy allows us to simulate the black hole horizon and Hawking radiation using the fermionic superfluid with supercritical velocity, and the Dirac and Weyl semimetals with the interface separating the type-I and type-II states. The difference between such type of the artificial event horizon and that which arises in acoustic metric is discussed. At the Lifshitz transition between type-I and type-II fermions the Dirac lines may also emerge, which are supported by the combined action of topology and symmetry. The type-II Weyl and Dirac points also emerge as the intermediate states of the topological Lifshitz transitions. Different configurations of the Fermi surfaces, involved in such Lifshitz transition, are discussed. In one case the type-II Weyl point connects the Fermi pockets and the Lifshitz transition corresponds to the transfer of the Berry flux between the Fermi pockets. In the other case the type-II Weyl point connects the outer and inner Fermi surfaces. At the Lifshitz transition the Weyl point is released from both Fermi surfaces. They loose their Berry flux, which guarantees the global stability, and without the topological support the inner surface disappears after shrinking to a point at the second Lifshitz transition. These examples reveal the complexity and universality of topological Lifshitz transitions, which originate from the ubiquitous interplay of a variety of topological characters of the momentum-space manifolds. For the interacting electrons, the Lifshitz transitions may lead to the formation of the dispersionless (flat) band with zero energy and singular density of states, which opens the route to room

  13. Validation of high-resolution aerosol optical thickness simulated by a global non-hydrostatic model against remote sensing measurements

    Science.gov (United States)

    Goto, Daisuke; Sato, Yousuke; Yashiro, Hisashi; Suzuki, Kentaroh; Nakajima, Teruyuki

    2017-02-01

    A high-performance computing resource allows us to conduct numerical simulations with a horizontal grid spacing that is sufficiently high to resolve cloud systems. The cutting-edge computational capability, which was provided by the K computer at RIKEN in Japan, enabled the authors to perform long-term, global simulations of air pollutions and clouds with unprecedentedly high horizontal resolutions. In this study, a next generation model capable of simulating global air pollutions with O(10 km) grid spacing by coupling an atmospheric chemistry model to the Non-hydrostatic Icosahedral Atmospheric Model (NICAM) was performed. Using the newly developed model, month-long simulations for July were conducted with 14 km grid spacing on the K computer. Regarding the global distributions of aerosol optical thickness (AOT), it was found that the correlation coefficient (CC) between the simulation and AERONET measurements was approximately 0.7, and the normalized mean bias was -10%. The simulated AOT was also compared with satellite-retrieved values; the CC was approximately 0.6. The radiative effects due to each chemical species (dust, sea salt, organics, and sulfate) were also calculated and compared with multiple measurements. As a result, the simulated fluxes of upward shortwave radiation at the top of atmosphere and the surface compared well with the observed values, whereas those of downward shortwave radiation at the surface were underestimated, even if all aerosol components were considered. However, the aerosol radiative effects on the downward shortwave flux at the surface were found to be as high as 10 W/m2 in a global scale; thus, simulated aerosol distributions can strongly affect the simulated air temperature and dynamic circulation.

  14. Dynamic zero modes of Dirac fermions and competing singlet phases of antiferromagnetic order

    Science.gov (United States)

    Goswami, Pallab; Si, Qimiao

    2017-06-01

    In quantum spin systems, singlet phases often develop in the vicinity of an antiferromagnetic order. Typical settings for such problems arise when itinerant fermions are also present. In this paper, we develop a theoretical framework for addressing such competing orders in an itinerant system, described by Dirac fermions strongly coupled to an O(3) nonlinear sigma model. We focus on two spatial dimensions, where upon disordering the antiferromagnetic order by quantum fluctuations the singular tunneling events also known as (anti)hedgehogs can nucleate competing singlet orders in the paramagnetic phase. In the presence of an isolated hedgehog configuration of the nonlinear sigma model field, we show that the fermion determinant vanishes as the dynamic Euclidean Dirac operator supports fermion zero modes of definite chirality. This provides a topological mechanism for suppressing the tunneling events. Using the methodology of quantum chromodynamics, we evaluate the fermion determinant in the close proximity of magnetic quantum phase transition, when the antiferromagnetic order-parameter field can be described by a dilute gas of hedgehogs and antihedgehogs. We show how the precise nature of emergent singlet order is determined by the overlap between dynamic fermion zero modes of opposite chirality, localized on the hedgehogs and antihedgehogs. For a Kondo-Heisenberg model on the honeycomb lattice, we demonstrate the competition between spin Peierls order and Kondo singlet formation, thereby elucidating its global phase diagram. We also discuss other physical problems that can be addressed within this general framework.

  15. Scanning Tunnelling Spectroscopic Studies of Dirac Fermions in Graphene and Topological Insulators

    Directory of Open Access Journals (Sweden)

    wang K.-L.

    2012-03-01

    Full Text Available We report novel properties derived from scanning tunnelling spectroscopic (STS studies of Dirac fermions in graphene and the surface state (SS of a strong topological insulator (STI, Bi2Se3. For mono-layer graphene grown on Cu by chemical vapour deposition (CVD, strain-induced scalar and gauge potentials are manifested by the charging effects and the tunnelling conductance peaks at quantized energies, respectively. Additionally, spontaneous time-reversal symmetry breaking is evidenced by the alternating anti-localization and localization spectra associated with the zero-mode of two sublattices while global time-reversal symmetry is preserved under the presence of pseudo-magnetic fields. For Bi2Se3 epitaxial films grown on Si(111 by molecular beam epitaxy (MBE, spatially localized unitary impurity resonances with sensitive dependence on the energy difference between the Fermi level and the Dirac point are observed for samples thicker than 6 quintuple layers (QL. These findings are characteristic of the SS of a STI and are direct manifestation of strong topological protection against impurities. For samples thinner than 6-QL, STS studies reveal the openup of an energy gap in the SS due to overlaps of wave functions between the surface and interface layers. Additionally, spin-preserving quasiparticle interference wave-vectors are observed, which are consistent with the Rashba-like spin-orbit splitting.

  16. New chiral fermions, a new gauge interaction, Dirac neutrinos, and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Gouvêa, André de; Hernández, Daniel [Northwestern University, Department of Physics & Astronomy,2145 Sheridan Road, Evanston, IL 60208 (United States)

    2015-10-07

    We propose that all light fermionic degrees of freedom, including the Standard Model (SM) fermions and all possible light beyond-the-standard-model fields, are chiral with respect to some spontaneously broken abelian gauge symmetry. Hypercharge, for example, plays this role for the SM fermions. We introduce a new symmetry, U(1){sub ν}, for all new light fermionic states. Anomaly cancellations mandate the existence of several new fermion fields with nontrivial U(1){sub ν} charges. We develop a concrete model of this type, for which we show that (i) some fermions remain massless after U(1){sub ν} breaking — similar to SM neutrinos — and (ii) accidental global symmetries translate into stable massive particles — similar to SM protons. These ingredients provide a solution to the dark matter and neutrino mass puzzles assuming one also postulates the existence of heavy degrees of freedom that act as “mediators' between the two sectors. The neutrino mass mechanism described here leads to parametrically small Dirac neutrino masses, and the model also requires the existence of at least four Dirac sterile neutrinos. Finally, we describe a general technique to write down chiral-fermions-only models that are at least anomaly-free under a U(1) gauge symmetry.

  17. Dirac's Conception of the Magnetic Monopole, and its Modern Avatars

    Indian Academy of Sciences (India)

    Dirac's Conception of the Magnetic Monopole, and its Modern Avatars. Sunil Mukhi is a Professor at Tata Institute of. Fundamental Research,. Mumbai. His research interests are string theory, quantum field theory, quantum gravity and supersymmetry. Keywords. Magnetic monopoles. charge quantization, magnetic strings,.

  18. Distinguishing between Dirac and Majorana neutrinos withtwo-particle interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Thomas D.

    2006-03-02

    Two-particle interferometry, a second-order interferenceeffect, is explored as another possible tool to distinguish betweenmassive Dirac and Majorana neutrinos. A simple theoretical framework isdiscussed in the context of several gedanken experiments. The method canin principle provide both the mass scale and the quantum nature of theneutrino for a certain class of incoherent left-handed sourcecurrents.

  19. Radiationless Zitterbewegung of Dirac particles and mass formula

    International Nuclear Information System (INIS)

    Noboru Hokkyo.

    1987-06-01

    The Zitterbewegung of the Dirac particle is given a visual representation by solving the two-component difference form of the Dirac equation. It is seen that the space-time trajectory of a Dirac particle can be pictured as a correlated whole of a network of zigzags of left- and right-handed chiral neutrino-like line elements. These zigzags can feel the curl of the external electromagnetic vector potential and give rise to the spin magnetic interaction, confirming Schroedinger's earlier intuitive picture of the spin as the orbital angular momentum of the Zitterbewegung. The network of zigzags associated with an electron splits and reunites in passing through the slits in the electron beam interference experiment. It is proposed to interpret Nambu's empirical mass formula m n =(n/2)137m e =(n/2)((h/2π)/cL), n=integer, as a radiationless condition for the Zitterbewegung of the hadronic Dirac particle of the linear spatial extension of the order of the classical electron radius L=e 2 /m e c 2 . (author). 20 refs, 4 figs

  20. Probing pseudo-Dirac neutrino through detection of neutrino ...

    Indian Academy of Sciences (India)

    The expected secondary muons from such neutrinos that can be detected by a kilometer scale detector such as ICECUBE is calculated and compared with the same in the case of mass-flavour oscillations and for no oscillation cases. The calculated muon yields indicate that to probe such small pseudo-Dirac splittings one ...

  1. Meson Spectra: Power Law Potential Model in the Dirac Equation ...

    African Journals Online (AJOL)

    A single mass-spectra potential model has been used to predict the spectra of both light and heavy mesons (including leptonic decay-widths) in the Dirac equation. In fact a power law potential has been proposed with effective power where is the mass of the constituent quarks (in GeV) of the mesons considered.

  2. Moving potential for Dirac and Klein–Gordon equations

    Indian Academy of Sciences (India)

    com. MS received 17 December 2014; revised 11 February 2015; accepted 23 February 2015. DOI: 10.1007/s12043-015-1082-9; ePublication: 13 October 2015. Abstract. Using the Lorentz transformation, the Klein–Gordon and Dirac equations ...

  3. Moving potential for Dirac and Klein–Gordon equations

    Indian Academy of Sciences (India)

    The problem of massless (2+1) Dirac particle is also considerered. Author Affiliations. Hamil B1 Chetouani L1. Département de Physique, Faculté des Sciences Exactes, Université des Frères Mentouri, Constantine, Algeria. Dates. Manuscript received: 17 December 2014; Manuscript revised: 11 February 2015; Accepted ...

  4. Dirac's Conception of the Magnetic Monopole, and its Modern Avatars

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 12. Dirac's Conception of the Magnetic Monopole, and its Modern Avatars. Sunil Mukhi. Volume 10 Issue 12 December ... Author Affiliations. Sunil Mukhi1. Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.

  5. A Bosonic Analogue of a Topological Dirac Semi-Metal

    Science.gov (United States)

    Lapa, Matthew; Cho, Gil Young; Hughes, Taylor

    We construct a bosonic analogue of a two-dimensional topological Dirac Semi-Metal (DSM). The low-energy description of the most basic 2D DSM model consists of two Dirac cones at positions +/-k0 in momentum space. The local stability of the Dirac cones is guaranteed by a composite symmetry Z2, where  is time-reversal and  is inversion. This model also exhibits interesting time-reversal and inversion symmetry breaking electromagnetic responses. In this work we construct a bosonic analogue of a DSM by replacing each Dirac cone with a copy of the O (4) Nonlinear Sigma Model (NLSM) with topological theta term and theta angle θ = +/- π . One copy of this NLSM also describes the gapless surface termination of the 3D Bosonic Topological Insulator (BTI). We compute the time-reversal and inversion symmetry breaking electromagnetic responses for our model and show that they are twice the value one gets in the DSM case. We also investigate the local stability of the individual O (4) NLSM's in the BSM model. Along the way we clarify many aspects of the surface theory of the BTI including the electromagnetic response, the charges of vortex excitations, and the stability to symmetry-allowed perturbations. Nsf CAREER DMR-1351895.

  6. Spinors, tensors and the covariant form of Dirac's equation

    International Nuclear Information System (INIS)

    Chen, W.Q.; Cook, A.H.

    1986-01-01

    The relations between tensors and spinors are used to establish the form of the covariant derivative of a spinor, making use of the fact that certain bilinear combinations of spinors are vectors. The covariant forms of Dirac's equation are thus obtained and examples in specific coordinate systems are displayed. (author)

  7. Approximate eigensolutions of Dirac equation for the superposition ...

    Indian Academy of Sciences (India)

    2014-07-02

    Jul 2, 2014 ... method is used to examine the approximate analytical energy eigenvalues and two-component wave function of the Dirac equation with the Hellmann potential for arbitrary spin-orbit quantum number κ in the presence of exact spin and pseudospin (p-spin) symmetries. As a particular case, we obtain.

  8. Survey on Dirac equation in general relativity theory

    International Nuclear Information System (INIS)

    Paillere, P.

    1984-10-01

    Starting from an infinitesimal transformation expressed with a Killing vector and using systematically the formalism of the local tetrades, we show that, in the area of the general relativity, the Dirac equation may be formulated only versus the four local vectors which determine the gravitational potentials, their gradients and the 4-vector potential of the electromagnetic field [fr

  9. Restrictions on potentials in the quaternionic Dirac equation

    International Nuclear Information System (INIS)

    Davis, A.J.

    1989-01-01

    It is demonstrated that potentials with quaternionic parts are not allowed in the Dirac equation for quaternionic fields in the case of unitary source-free scattering. When recent non-relativistic results are considered, this result casts doubt on the existence of simple experimental tests of Quaternionic Quantum Mechanics. 9 refs

  10. Approximate eigensolutions of Dirac equation for the superposition ...

    Indian Academy of Sciences (India)

    The Hellmann potential is simply a superposition of an attractive Coulomb potential − a / r plus a Yukawa potential e − δ r / r . The generalized parametric Nikiforov–Uvarov (NU) method is used to examine the approximate analytical energy eigenvalues and two-component wave function of the Dirac equation with the ...

  11. Evidence for pi K-atoms with DIRAC

    Czech Academy of Sciences Publication Activity Database

    Adeva, B.; Afanasyev, L.; Allkofer, Y.; Amsler, C.; Anania, A.; Benelli, A.; Brekhovskikh, V.; Caragheorgheopol, G.; Čechák, T.; Chiba, M.; Chliapnikov, P.; Ciocarlan, C.; Constantinescu, S.; Curceanu, C.; Detraz, C.; Dreossi, D.; Drijard, D.; Dudarev, A.; Duma, M.; Dumitriu, D.; Fungueirino, J.L.; Gerndt, J.; Gorin, A.; Gorchakov, O.; Gritsay, K.; Guaraldo, C.; Gugiu, M.; Hansroul, M.; Hons, Zdeněk; Horikawa, S.; Iliescu, M.; Karpukhin, V.; Klusoň, J.; Kobayashi, M.; Komarov, V.; Kruglov, V.; Kruglova, L.; Kulikov, A.; Kuptsov, A.; Kurochkin, I.; Lamberto, A.; Lanaro, A.; Lapshin, V.; Lednicky, R.; Sandri, P.L.; Aguera, A.L.; Lucherini, V.; Manuilov, I.; Marinas, C.; Nemenov, L.; Nikitin, M.; Okada, K.; Olchevskii, V.; Pentia, M.; Penzo, A.; Plo, M.; Rappazzo, G.F.; Regenfus, C.; Rochet, J.; Romero, A.; Ronjin, V.; Ryazantsev, A.; Rykalin, V.; Saborido, J.; Schacher, J.; Sidorov, A.; Smolík, J.; Sugimoto, S.; Takeutchi, F.; Tarasov, A.; Tauscher, L.; Trojek, T.; Trusov, S.; Utkin, V.; Vazguez Doce, O.; Vrba, T.; Yazkov, V.; Yoshimura, Y.; Zhabitsky, M.; Zrelov, P.

    2009-01-01

    Roč. 674, č. 1 (2009), s. 11-16 ISSN 0370-2693 Institutional research plan: CEZ:AV0Z10480505 Keywords : DIRAC experiment * Exotic atoms * Scattering length Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 5.083, year: 2009

  12. LHCb : The DIRAC Web Portal 2.0

    CERN Multimedia

    Mathe, Zoltan; Lazovsky, N; Stagni, Federico

    2015-01-01

    For many years the DIRAC interware (Distributed Infrastructure with Remote Agent Control) has had a web interface, allowing the users to monitor DIRAC activities and also interact with the system. Since then many new web technologies have emerged, therefore a redesign and a new implementation of the DIRAC Web portal were necessary, taking into account the lessons learnt using the old portal. These new technologies allowed to build a more compact and more responsive web interface that is robust and that enables users to have more control over the whole system while keeping a simple interface. The framework provides a large set of "applications", each of which can be used for interacting with various parts of the system. Communities can also create their own set of personalised web applications, and can easily extend already existing web applications with a minimal effort. Each user can configure and personalise the view for each application and save it using the DIRAC User Profile service as RESTful state prov...

  13. Qualitative analysis of trapped Dirac fermions in graphene

    Czech Academy of Sciences Publication Activity Database

    Jakubský, Vít; Krejčiřík, David

    2014-01-01

    Roč. 349, OCT (2014), s. 268-287 ISSN 0003-4916 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : graphene * Dirac fermion * confinement * Varitional principle Subject RIV: BE - Theoretical Physics Impact factor: 2.103, year: 2014

  14. Probing pseudo-Dirac neutrino through detection of neutrino ...

    Indian Academy of Sciences (India)

    Also calculated are the muon-to-shower ratios. Keywords. Ultra-high energy neutrinos; pseudo-Dirac neutrinos; neutrino oscillation. PACS Nos 98.70.Rz; 95.85.Ry; 14.60.Pq. 1. Introduction. Evidence has been obtained from the satellite-borne observations, the existence of the gamma ray bursts (GRB) from extra galactic (or ...

  15. Hawking radiation of Dirac particles in the hot NUT-Kerr-Newman spacetime

    International Nuclear Information System (INIS)

    Ahmed, M.

    1991-01-01

    The Hawking radiation of charged Dirac particles on the horizons of the hot NUT-Kerr-Newman spacetime is studied in this paper. To this end, we obtain the radial decoupled Dirac equation for the electron in the hot NUT-Kerr-Newman spacetime. Next we solve the Dirac equation near the horizons. Finally, by analytic continuation, the Hawking thermal spectrum formula of Dirac particles is obtained. The problem of the Hawking evaporation of Dirac particles in the hot NUT-Kerr-Newman background is thus solved. (orig.)

  16. Approximate path integral solution for a Dirac particle in a deformed Hulthen potential

    International Nuclear Information System (INIS)

    Kadja, A.; Benamira, F.; Guechi, L.

    2017-01-01

    The problem of a Dirac particle moving in a deformed Hulthen potential is solved in the framework of the path integral formalism. With the help of the Biedenharn transformation, the construction of a closed form for the Green function of the second-order Dirac equation is done by using a proper approximation to the centrifugal term and the Green function of the linear Dirac equation is calculated. The energy spectrum for the bound states is obtained from the poles of the Green function. A Dirac particle in the standard Hulthen potential (q = 1) and a Dirac hydrogen-like ion (q = 1 and a → ∞) are considered as particular cases.

  17. Analysis of DIRAC's behavior using model checking with process algebra

    Science.gov (United States)

    Remenska, Daniela; Templon, Jeff; Willemse, Tim; Bal, Henri; Verstoep, Kees; Fokkink, Wan; Charpentier, Philippe; Graciani Diaz, Ricardo; Lanciotti, Elisa; Roiser, Stefan; Ciba, Krzysztof

    2012-12-01

    DIRAC is the grid solution developed to support LHCb production activities as well as user data analysis. It consists of distributed services and agents delivering the workload to the grid resources. Services maintain database back-ends to store dynamic state information of entities such as jobs, queues, staging requests, etc. Agents use polling to check and possibly react to changes in the system state. Each agent's logic is relatively simple; the main complexity lies in their cooperation. Agents run concurrently, and collaborate using the databases as shared memory. The databases can be accessed directly by the agents if running locally or through a DIRAC service interface if necessary. This shared-memory model causes entities to occasionally get into inconsistent states. Tracing and fixing such problems becomes formidable due to the inherent parallelism present. We propose more rigorous methods to cope with this. Model checking is one such technique for analysis of an abstract model of a system. Unlike conventional testing, it allows full control over the parallel processes execution, and supports exhaustive state-space exploration. We used the mCRL2 language and toolset to model the behavior of two related DIRAC subsystems: the workload and storage management system. Based on process algebra, mCRL2 allows defining custom data types as well as functions over these. This makes it suitable for modeling the data manipulations made by DIRAC's agents. By visualizing the state space and replaying scenarios with the toolkit's simulator, we have detected race-conditions and deadlocks in these systems, which, in several cases, were confirmed to occur in the reality. Several properties of interest were formulated and verified with the tool. Our future direction is automating the translation from DIRAC to a formal model.

  18. Analysis of DIRAC's behavior using model checking with process algebra

    International Nuclear Information System (INIS)

    Remenska, Daniela; Templon, Jeff; Willemse, Tim; Bal, Henri; Verstoep, Kees; Fokkink, Wan; Charpentier, Philippe; Lanciotti, Elisa; Roiser, Stefan; Ciba, Krzysztof; Diaz, Ricardo Graciani

    2012-01-01

    DIRAC is the grid solution developed to support LHCb production activities as well as user data analysis. It consists of distributed services and agents delivering the workload to the grid resources. Services maintain database back-ends to store dynamic state information of entities such as jobs, queues, staging requests, etc. Agents use polling to check and possibly react to changes in the system state. Each agent's logic is relatively simple; the main complexity lies in their cooperation. Agents run concurrently, and collaborate using the databases as shared memory. The databases can be accessed directly by the agents if running locally or through a DIRAC service interface if necessary. This shared-memory model causes entities to occasionally get into inconsistent states. Tracing and fixing such problems becomes formidable due to the inherent parallelism present. We propose more rigorous methods to cope with this. Model checking is one such technique for analysis of an abstract model of a system. Unlike conventional testing, it allows full control over the parallel processes execution, and supports exhaustive state-space exploration. We used the mCRL2 language and toolset to model the behavior of two related DIRAC subsystems: the workload and storage management system. Based on process algebra, mCRL2 allows defining custom data types as well as functions over these. This makes it suitable for modeling the data manipulations made by DIRAC's agents. By visualizing the state space and replaying scenarios with the toolkit's simulator, we have detected race-conditions and deadlocks in these systems, which, in several cases, were confirmed to occur in the reality. Several properties of interest were formulated and verified with the tool. Our future direction is automating the translation from DIRAC to a formal model.

  19. Relativistic effects on linear and nonlinear polarizabilities studied by effective-core potential, Douglas-Kroll, and Dirac-Hartree-Fock response theory

    DEFF Research Database (Denmark)

    Norman, Patrick; Schimmelpfennig, Bernd; Ruud, Kenneth

    2002-01-01

    A systematic investigation of a hierarchy of methods for including relativistic effects in the calculation of linear and nonlinear optical properties was carried out. The simple ECP method and the more involved spin-averaged Douglas-Kroll approximation were compared to benchmark results obtained ...... with the time-dependent Dirac-Hartree-Fock method. It was found that in many cases, the performance of the ECP method exceeds its rank....

  20. Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD), 1998-2012

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) data sets represent a series of three-year running mean grids (1998-2012) of...

  1. Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD), 1998-2012

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) data set represents a series of three-year running mean grids (1998-2012) of...

  2. Correction for non-rigid movement artefacts in calcium imaging using local-global optical flow and PCA-based templates

    DEFF Research Database (Denmark)

    Brazhe, A.; Fordsmann, J.; Lauritzen, M.

    2017-01-01

    and can be non-uniform across image; (2) due to fluorescence intensity changes single template image may not be optimal for a subset of the movie frames. Methods: We address the first problem by using either a combined local/global algorithm of optical flow estimation or an original algorithm based...... a set of template images, obtained from clusters of image frames in low-dimensional PCA-based space. To allow for efficient storage of the estimated image warps, they can be represented as low-pass DCT coefficients or by other dictionary-based methods. Conclusions: The proposed pipeline for motion...... on calculation of optical flow in image patches with global regularization. Both algorithms estimate smooth optical flow fields between a current image and a template image and allow for correction of large-scale displacements by employing a multiscale pyramidal approach. The second problem is solved by using...

  3. Topological charges of three-dimensional Dirac semimetals with rotation symmetry

    Science.gov (United States)

    Yang, Bohm-Jung; Morimoto, Takahiro; Furusaki, Akira

    2015-10-01

    In general, the stability of a band crossing point indicates the presence of a quantized topological number associated with it. In particular, the recent discovery of three-dimensional Dirac semimetals in Na3Bi and Cd3As2 demonstrates that a Dirac point with fourfold degeneracy can be stable as long as certain crystalline symmetries are supplemented in addition to the time-reversal and inversion symmetries. However, the topological charges associated with Na3Bi and Cd3As2 are not clarified yet. In this work, we identify the topological charge of three-dimensional Dirac points. It is found that although the simultaneous presence of the time-reversal and inversion symmetries forces the net chiral charge to vanish, a Dirac point can carry another quantized topological charge when an additional rotation symmetry is considered. Two different classes of Dirac semimetals are identified depending on the nature of the rotation symmetries. First, the conventional symmorphic rotational symmetry which commutes with the inversion gives rise to the class I Dirac semimetals having a pair of Dirac points on the rotation axes. Since the topological charges of each pair of Dirac points have the opposite sign, a pair creation or a pair annihilation is required to change the number of Dirac points in the momentum space. On the other hand, the class II Dirac semimetals possess a single isolated Dirac point at a time-reversal invariant momentum, which is protected by a screw rotation. The nonsymmorphic nature of screw rotations allows the anticommutation relation between the rotation and inversion symmetries, which enables to circumvent the doubling of the number of Dirac points and create a single Dirac point at the Brillouin zone boundary.

  4. Phase diagram of the Dirac spectrum at nonzero chemical potential

    International Nuclear Information System (INIS)

    Osborn, J. C.; Splittorff, K.; Verbaarschot, J. J. M.

    2008-01-01

    The Dirac spectrum of QCD with dynamical fermions at nonzero chemical potential is characterized by three regions: a region with a constant eigenvalue density, a region where the eigenvalue density shows oscillations that grow exponentially with the volume and the remainder of the complex plane where the eigenvalue density is zero. In this paper we derive the phase diagram of the Dirac spectrum from a chiral Lagrangian. We show that the constant eigenvalue density corresponds to a pion condensed phase while the strongly oscillating region is given by a kaon condensed phase. The normal phase with nonzero chiral condensate but vanishing Bose condensates coincides with the region of the complex plane where there are no eigenvalues.

  5. Performance of combined production and analysis WMS in DIRAC

    CERN Document Server

    Paterson, S

    2010-01-01

    DIRAC, the LHCb community Grid solution, uses generic pilot jobs to obtain a virtual pool of resources for the VO community. In this way agents can request the highest priority user or production jobs from a central task queue and VO policies can be applied with full knowledge of current and previous activities. In this paper the performance of the DIRAC WMS will be presented with emphasis on how the system copes with many varied job requirements. In order to ensure traceability of jobs as well as security, the actual users identity has to be established before running the actual payload workflow. Generic pilot jobs take advantage of the deployment of the gLExec utility in order to achieve this. Experience with gLExec will be described.

  6. The strangest man. The hidden life of Paul Dirac

    International Nuclear Information System (INIS)

    Farmelo, Graham

    2016-01-01

    The Strangest Man is the Costa Biography Award-winning account of Paul Dirac, the famous physicist sometimes called the British Einstein. He was one of the leading pioneers of the greatest revolution in twentieth-century science: quantum mechanics. The youngest theoretician ever to win the Nobel Prize for Physics, he was also pathologically reticent, strangely literal-minded and legendarily unable to communicate or empathize. Through his greatest period of productivity, his postcards home contained only remarks about the weather. Based on a previously undiscovered archive of family papers, Graham Farmelo celebrates Dirac's massive scientific achievement while drawing a compassionate portrait of his life and work. Farmelo shows a man who, while hopelessly socially inept, could manage to love and sustain close friendship. The Strangest Man is an extraordinary and moving human story, as well as a study of one of the most exciting times in scientific history.

  7. Three-dimensional periodic dielectric structures having photonic Dirac points

    Science.gov (United States)

    Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin

    2015-06-02

    The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.

  8. Surface regulated arsenenes as Dirac materials: From density functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Junhui; Xie, Qingxing; Yu, Niannian, E-mail: niannianyu@whut.edu.cn; Wang, Jiafu, E-mail: jasper@whut.edu.cn

    2017-02-01

    Highlights: • The presence of Dirac cones in chemically decorated buckled arsenene AsX (X = CN, NC, NCO, NCS, and NCSe) has been revealed. • First-principles calculations show that all these chemically decorated arsenenes are kinetically stable in defending thermal fluctuations in room temperature. - Abstract: Using first principle calculations based on density functional theory (DFT), we have systematically investigated the structure stability and electronic properties of chemically decorated arsenenes, AsX (X = CN, NC, NCO, NCS and NCSe). Phonon dispersion and formation energy analysis reveal that all the five chemically decorated buckled arsenenes are energetically favorable and could be synthesized. Our study shows that wide-bandgap arsenene would turn into Dirac materials when functionalized by -X (X = CN, NC, NCO, NCS and NCSe) groups, rendering new promises in next generation high-performance electronic devices.

  9. How (not) to teach Lorentz covariance of the Dirac equation

    Science.gov (United States)

    Nikolić, Hrvoje

    2014-04-01

    In the textbook proofs of the Lorentz covariance of the Dirac equation, one treats the wave function as a spinor and gamma matrices as scalars, leading to a quite complicated formalism with several pedagogic drawbacks. As an alternative, I propose to teach the Dirac equation and its Lorentz covariance by using a much simpler, but physically equivalent formalism, in which these drawbacks do not appear. In this alternative formalism, the wave function transforms as a scalar and gamma matrices as components of a vector, such that the standard physically relevant bilinear combinations do not change their transformation properties. The alternative formalism allows also a natural construction of some additional non-standard bilinear combinations with well-defined transformation properties.

  10. Gate-tunable graphene quantum dot and Dirac oscillator

    Science.gov (United States)

    Belouad, Abdelhadi; Jellal, Ahmed; Zahidi, Youness

    2016-02-01

    We obtain the solution of the Dirac equation in (2 + 1) dimensions in the presence of a constant magnetic field normal to the plane together with a two-dimensional Dirac-oscillator potential coupling. We study the energy spectrum of graphene quantum dot (QD) defined by electrostatic gates. We give discussions of our results based on different physical settings, whether the cyclotron frequency is similar or larger/smaller compared to the oscillator frequency. This defines an effective magnetic field that produces the effective quantized Landau levels. We study analytically such field in gate-tunable graphene QD and show that our structure allows us to control the valley degeneracy. Finally, we compare our results with already published work and also discuss the possible applications of such QD.

  11. Peccei-Quinn symmetry for Dirac seesaw and leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Pei-Hong [Department of Physics and Astronomy, Shanghai Jiao Tong University,800 Dongchuan Road, Shanghai 200240 (China)

    2016-07-04

    We extend the DFSZ invisible axion model to simultaneously explain small Dirac neutrino masses and cosmic matter-antimatter asymmetry. After the Peccei-Quinn and electroweak symmetry breaking, the effective Yukawa couplings of the Dirac neutrinos to the standard model Higgs scalar can be highly suppressed by the ratio of the vacuum expectation value of an iso-triplet Higgs scalar over the masses of some heavy gauge-singlet fermions, iso-doublet Higgs scalars or iso-triplet fermions. The iso-triplet fields can carry a zero or nonzero hypercharge. Through the decays of the heavy gauge-singlet fermions, iso-doublet scalars or iso-triplet fermions, we can obtain a lepton asymmetry in the left-handed leptons and an opposite lepton asymmetry in the right-handed neutrinos. Since the right-handed neutrinos do not participate in the sphaleron processes, the left-handed lepton asymmetry can be partially converted to a baryon asymmetry.

  12. Dirac bound states of anharmonic oscillator in external fields

    Energy Technology Data Exchange (ETDEWEB)

    Hamzavi, Majid, E-mail: majid.hamzavi@gmail.com [Department of Physics, University of Zanjan, Zanjan (Iran, Islamic Republic of); Ikhdair, Sameer M., E-mail: sikhdair@gmail.com [Department of Physics, Faculty of Science, an-Najah National University, Nablus, West Bank, Palestine (Country Unknown); Department of Electrical and Electronic Engineering, Near East University, 922022 Nicosia, Northern Cyprus, Mersin 10 (Turkey); Falaye, Babatunde J., E-mail: fbjames11@physicist.net [Theoretical Physics Section, Department of Physics, University of Ilorin, P. M. B. 1515, Ilorin (Nigeria)

    2014-02-15

    We explore the effect of the external magnetic and Aharonov–Bohm (AB) flux fields on the energy levels of Dirac particle subjects to mixed scalar and vector anharmonic oscillator field in the two-dimensional (2D) space. We calculate the exact energy eigenvalues and the corresponding un-normalized two-spinor-components wave functions in terms of the chemical potential parameter, magnetic field strength, AB flux field and magnetic quantum number by using the Nikiforov–Uvarov (NU) method. -- Highlights: • Effect of the external fields on the energy levels of Dirac particle with the anharmonic oscillator is investigated. • The solutions are discussed in view of spin and pseudospin symmetries limits. • The energy levels and wave function are presented by the Nikiforov–Uvarov method.

  13. Analysis of DIRAC's behavior using model checking with process algebra

    CERN Document Server

    Remenska, Daniela; Willemse, Tim; Bal, Henri; Verstoep, Kees; Fokkink, Wan; Charpentier, Philippe; Diaz, Ricardo Graciani; Lanciotti, Elisa; Roiser, Stefan; Ciba, Krzysztof

    2012-01-01

    DIRAC is the grid solution developed to support LHCb production activities as well as user data analysis. It consists of distributed services and agents delivering the workload to the grid resources. Services maintain database back-ends to store dynamic state information of entities such as jobs, queues, staging requests, etc. Agents use polling to check and possibly react to changes in the system state. Each agent's logic is relatively simple, the main complexity lies in their cooperation. Agents run concurrently, and collaborate using the databases as shared memory. The databases can be accessed directly by the agents if running locally or through a DIRAC service interface if necessary. This shared-memory model causes entities to occasionally get into inconsistent states. Tracing and fixing such problems becomes formidable due to the inherent parallelism present. We propose more rigorous methods to cope with this. Model checking is one such technique for analysis of an abstract model of a system. Unlike con...

  14. Dirac bound states of anharmonic oscillator in external fields

    International Nuclear Information System (INIS)

    Hamzavi, Majid; Ikhdair, Sameer M.; Falaye, Babatunde J.

    2014-01-01

    We explore the effect of the external magnetic and Aharonov–Bohm (AB) flux fields on the energy levels of Dirac particle subjects to mixed scalar and vector anharmonic oscillator field in the two-dimensional (2D) space. We calculate the exact energy eigenvalues and the corresponding un-normalized two-spinor-components wave functions in terms of the chemical potential parameter, magnetic field strength, AB flux field and magnetic quantum number by using the Nikiforov–Uvarov (NU) method. -- Highlights: • Effect of the external fields on the energy levels of Dirac particle with the anharmonic oscillator is investigated. • The solutions are discussed in view of spin and pseudospin symmetries limits. • The energy levels and wave function are presented by the Nikiforov–Uvarov method

  15. Development studies towards an 11-year global gridded aerosol optical thickness reanalysis for climate and applied applications

    Science.gov (United States)

    Lynch, P.; Reid, J. S.; Westphal, D. L.; Zhang, J.; Hogan, T. F.; Hyer, E. J.; Curtis, C. A.; Hegg, D. A.; Shi, Y.; Campbell, J. R.; Rubin, J. I.; Sessions, W. R.; Turk, F. J.; Walker, A. L.

    2015-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need in numerous climate and applied applications for a fused product on a regular grid. Aerosol data assimilation is an operational reality at numerous centers, and like meteorological reanalyses, aerosol reanalyses will see significant use in the near future. Here we present a standardized 2003-2013 global 1° × 1° and 6 hourly modal aerosol optical thickness (AOT) reanalysis product. This dataset can be applied to basic and applied earth system science studies of significant aerosol events, aerosol impacts on numerical weather prediction, and electro-optical propagation and sensor performance, among other uses. This paper describes the science of how to develop and score an aerosol reanalysis product. This reanalysis utilizes a modified Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled retrievals of AOT from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. The aerosol source functions, including dust and smoke, were regionally tuned to obtain the best match between the model fine and coarse mode AOTs and the Aerosol Robotic Network (AERONET) AOTs. Other model processes, including deposition, were tuned to minimize the AOT difference between the model and satellite AOT. Aerosol wet deposition in the tropics is driven with satellite retrieved precipitation, rather than the model field. The final reanalyzed fine and coarse mode AOT at 550 nm is shown to have good agreement with AERONET observations, with global mean root mean square error around 0.1 for both fine and coarse mode AOTs. This paper includes a discussion of issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses, considerations for extending such a reanalysis outside of the NASA A-Train era, and examples of how the

  16. The complex Dirac Delta, Plemelj formula, and integral representations

    OpenAIRE

    Julve, J.; Cepedello, R.; de Urries, F. J.

    2016-01-01

    The extension of the Dirac Delta distribution (DD) to the complex field is needed for dealing with the complex-energy solutions of the Schr\\"odinger equation, typically when calculating their inner products. In quantum scattering theory the DD usually arises as an integral representation involving plane waves of real momenta. We deal with the complex extension of these representations by using a Gaussian regularization. Their interpretation as distributions requires prescribing the integratio...

  17. The time-of-flight detector of the DIRAC experiment

    International Nuclear Information System (INIS)

    Adeva, B.; Gallas, M.V.; Gomez, F.; Lopez-Agueera, A.; Nunez-Pardo, T.; Plo, M.; Rodriguez, A.M.; Rodriguez, X.M.; Saborido, J.J.; Santamarina, C.; Tobar, M.J.; Vazquez, P.

    2002-01-01

    The construction and performance of a large area time-of-flight detector for the DIRAC experiment at CERN is reported. With an average time resolution of 123 ps per counter at rates up to 1 MHz, it allows excellent separation of pπ - from π + π - pairs up to 4.6 GeV/c momentum, as well as of Coulomb-correlated pion pairs from accidentals. The optimization of scintillator material, photomultiplier performance and readout electronics is described

  18. The Dirac-Kaehler equation and fermions on the lattice

    International Nuclear Information System (INIS)

    Becher, P.

    1982-05-01

    The geometrical description of spinor fields by E. Kaehler is used to formulate a consistent lattice approximation of fermions. The relation to free simple Dirac fields as well as to Susskind's description of lattice fermions is clarified. The first steps towards a quantized interacting theory are given. The correspondence between the calculus of differential forms and concepts of algebraic topology is shown to be a useful method for a completely analogous treatment of the problems in the continuum and on the lattice. (orig.)

  19. Geometrization of the Dirac theory of the electron

    International Nuclear Information System (INIS)

    Fock, V.

    By use of the concept of parallel displacement of a half vector, the Dirac equations are generally written in invariant form. The energy tensor is formed, and both the macroscopic and quantum mechanical equations of motion are set up. The former have the usual form--divergence of the energy tensor equals the Lorentz force--and the latter are essentially identical with those of the geodesic line

  20. Noncommutativity into Dirac Equation with mass dependent on the position

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, Samuel Batista; Almeida, Carlos Alberto Santos [Universidade Federal do Ceara - UFC, Fortaleza, CE (Brazil); Nunes, Luciana Angelica da Silva [Universidade Federal Rural do Semi-arido - UFERSA, Mossoro, RN (Brazil)

    2013-07-01

    Full text: In recent years, there is growing interest in the study of theories in non-commutative spaces. Non-commutative fields theories are related with compactifications of M theory, string theory and the quantum Hall effect. Moreover, the role of the non-commutativity of theories of a particle finds large applications when analyzed in scenarios of quantum mechanics and relativistic quantum mechanics. In these contexts investigations on the Schrodinger and Dirac equations with mass depending on the position (MDP) has attracted much attention in the literature. Systems endowed with MDP models are useful for the study of many physical problems. In particular, they are used to study the energy density in problems of many bodies, determining the electronic properties of semiconductor heterostructures and also to describe the properties of heterojunctions and quantum dots. In particular, the investigation of relativistic effects it is important for systems containing heavy atoms or doping by heavy ions. For these types of materials, the study of the properties of the Dirac equation, in the case where the mass becomes variable is of great interest. In this paper, we seek for the non-relativistic limit of the Dirac Hamiltonian in the context of a theory of effective mass, through a Foldy-Wouthuysen transformation. We analyse the Dirac equation with mass dependent on the position, in a smooth step shape mass distribution, in non-commutative space (NC). This potential type kink was recently discussed by several authors in the commutative context and now we present our results in the non-commutative context. (author)

  1. General method for reducing the two-body Dirac equation

    International Nuclear Information System (INIS)

    Galeao, A.P.; Ferreira, P.L.

    1992-01-01

    A semi relativistic two-body Dirac equation with an enlarged set of phenomenological potentials, including Breit-type terms, is investigated for the general case of unequal masses. Solutions corresponding to definite total angular momentum and parity are shown to fall into two classes, each one being obtained by solving a system of four coupled first-order radial differential equations. The reduction of each of these systems to a pair of coupled Schroedinger-type equations is also discussed. (author)

  2. Algebraic and Dirac-Hestenes spinors and spinor fields

    International Nuclear Information System (INIS)

    Rodrigues, Waldyr A. Jr.

    2004-01-01

    Almost all presentations of Dirac theory in first or second quantization in physics (and mathematics) textbooks make use of covariant Dirac spinor fields. An exception is the presentation of that theory (first quantization) offered originally by Hestenes and now used by many authors. There, a new concept of spinor field (as a sum of nonhomogeneous even multivectors fields) is used. However, a careful analysis (detailed below) shows that the original Hestenes definition cannot be correct since it conflicts with the meaning of the Fierz identities. In this paper we start a program dedicated to the examination of the mathematical and physical basis for a comprehensive definition of the objects used by Hestenes. In order to do that we give a preliminary definition of algebraic spinor fields (ASF) and Dirac-Hestenes spinor fields (DHSF) on Minkowski space-time as some equivalence classes of pairs (Ξ u ,ψ Ξ u ), where Ξ u is a spinorial frame field and ψ Ξ u is an appropriate sum of multivectors fields (to be specified below). The necessity of our definitions are shown by a careful analysis of possible formulations of Dirac theory and the meaning of the set of Fierz identities associated with the bilinear covariants (on Minkowski space-time) made with ASF or DHSF. We believe that the present paper clarifies some misunderstandings (past and recent) appearing on the literature of the subject. It will be followed by a sequel paper where definitive definitions of ASF and DHSF are given as appropriate sections of a vector bundle called the left spin-Clifford bundle. The bundle formulation is essential in order to be possible to produce a coherent theory for the covariant derivatives of these fields on arbitrary Riemann-Cartan space-times. The present paper contains also Appendixes A-E which exhibits a truly useful collection of results concerning the theory of Clifford algebras (including many tricks of the trade) necessary for the intelligibility of the text

  3. Pilots 2.0: DIRAC pilots for all the skies

    CERN Document Server

    Stagni, F; McNab, A; Luzzi, C

    2015-01-01

    In the last few years, new types of computing infrastructures, such as IAAS (Infrastructure as a Service) and IAAC (Infrastructure as a Client), gained popularity. New resources may come as part of pledged resources, while others are opportunistic. Most of these new infrastructures are based on virtualization techniques. Meanwhile, some concepts, such as distributed queues, lost appeal, while still supporting a vast amount of resources. Virtual Organizations are therefore facing heterogeneity of the available resources and the use of an Interware software like DIRAC to hide the diversity of underlying resources has become essential. The DIRAC WMS is based on the concept of pilot jobs that was introduced back in 2004. A pilot is what creates the possibility to run jobs on a worker node. Within DIRAC, we developed a new generation of pilot jobs, that we dubbed Pilots 2.0. Pilots 2.0 are not tied to a specific infrastructure; rather they are generic, fully configurable and extendible pilots. A Pilot 2.0 can be s...

  4. Non-Grassmann mechanical model of the Dirac equation

    Energy Technology Data Exchange (ETDEWEB)

    Deriglazov, A. A.; Zamudio, G. P.; Castro, P. S. [Department de Matematica, ICE, Universidade Federal de Juiz de Fora, MG (Brazil); Rizzuti, B. F. [ISB, Universidade Federal do Amazonas, Coari-AM (Brazil)

    2012-12-15

    We construct a new example of the spinning-particle model without Grassmann variables. The spin degrees of freedom are described on the base of an inner anti-de Sitter space. This produces both {Gamma}{sup {mu}} and {Gamma}{sup {mu}{nu}}-matrices in the course of quantization. Canonical quantization of the model implies the Dirac equation. We present the detailed analysis of both the Lagrangian and the Hamiltonian formulations of the model and obtain the general solution to the classical equations of motion. Comparing Zitterbewegung of the spatial coordinate with the evolution of spin, we ask on the possibility of space-time interpretation for the inner space of spin. We enumerate similarities between our analogous model of the Dirac equation and the two-body system subject to confining potential which admits only the elliptic orbits of the order of de Broglie wavelength. The Dirac equation dictates the perpendicularity of the elliptic orbits to the direction of center-of-mass motion.

  5. Dirac Fermions without bulk backscattering in rhombohedral topological insulators

    Science.gov (United States)

    Mera Acosta, Carlos; Lima, Matheus; Seixas, Leandro; da Silva, Antônio; Fazzio, Adalberto

    2015-03-01

    The realization of a spintronic device using topological insulators is not trivial, because there are inherent difficulties in achieving the surface transport regime. The majority of 3D topological insulators materials (3DTI) despite of support helical metallic surface states on an insulating bulk, forming topological Dirac fermions protected by the time-reversal symmetry, exhibit electronic scattering channels due to the presence of residual continuous bulk states near the Dirac-point. From ab initio calculations, we studied the microscopic origin of the continuous bulk states in rhombohedral topological insulators materials with the space group D3d 5 (R 3 m) , showing that it is possible to understand the emergence of residual continuous bulk states near the Dirac-point into a six bands effective model, where the breaking of the R3 symmetry beyond the Γ point has an important role in the hybridization of the px, py and pz atomic orbitals. Within these model, the mechanisms known to eliminate the bulk scattering, for instance: the stacking faults (SF), electric field and alloy, generated the similar effect in the effective states of the 3DTI. Finally, we show how the surface electronic transport is modified by perturbations of bulk with SF. We would like to thank the financial support by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

  6. Upper-division student difficulties with the Dirac delta function

    Directory of Open Access Journals (Sweden)

    Bethany R. Wilcox

    2015-03-01

    Full Text Available The Dirac delta function is a standard mathematical tool that appears repeatedly in the undergraduate physics curriculum in multiple topical areas including electrostatics, and quantum mechanics. While Dirac delta functions are often introduced in order to simplify a problem mathematically, students still struggle to manipulate and interpret them. To characterize student difficulties with the delta function at the upper-division level, we examined students’ responses to traditional exam questions and a standardized conceptual assessment, and conducted think-aloud interviews. Our analysis was guided by an analytical framework that focuses on how students activate, construct, execute, and reflect on the Dirac delta function in the context of problem solving in physics. Here, we focus on student difficulties using the delta function to express charge distributions in the context of junior-level electrostatics. Common challenges included invoking the delta function spontaneously, translating a description of a charge distribution into a mathematical expression using delta functions, integrating 3D or non-Cartesian delta function expressions, and recognizing that the delta function can have units. We also briefly discuss implications of these difficulties for instruction.

  7. Evidence for $\\pi K$ -atoms with DIRAC-II

    CERN Document Server

    Allkofer, Yves

    2008-01-01

    DIRAC-II is a fixed-target experiment at the CERN Proton Synchroton (PS) which has been designed to search for piK atoms, a bound state of a pi±K± pair, and measure their lifetime. These atoms are observed through an excess of low energetic piK pairs over the background, detected in the two spectrometer arms. This excess comes from the ionization of piK atoms in the target and can be related to their mean life. The piK S-wave scattering length combination |a1/2 - a3/2| (for isospin 1/2 and 3/2) can be related to the latter. The aim of the upgraded DIRAC-II experiment is a measurement of the scattering length combination |a1/2 - a3/2| with a precision of 5%. piK atoms have not been observed so far. The original DIRAC experiment was designed to measure the scattering lengths of pipi atoms. So far, close to 15 000 atoms have been detected, leading to a precision on |a0 - a2| which is better than 10%. In chiral perturbation theories (ChPT) the pipi scattering lengths have been calculated with 2% precision a...

  8. Imaging electrostatically confined Dirac fermions in graphene quantum dots

    Science.gov (United States)

    Lee, Juwon; Wong, Dillon; Velasco, Jairo, Jr.; Rodriguez-Nieva, Joaquin F.; Kahn, Salman; Tsai, Hsin-Zon; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Levitov, Leonid S.; Crommie, Michael F.

    2016-11-01

    Electrostatic confinement of charge carriers in graphene is governed by Klein tunnelling, a relativistic quantum process in which particle-hole transmutation leads to unusual anisotropic transmission at p-n junction boundaries. Reflection and transmission at these boundaries affect the quantum interference of electronic waves, enabling the formation of novel quasi-bound states. Here we report the use of scanning tunnelling microscopy to map the electronic structure of Dirac fermions confined in quantum dots defined by circular graphene p-n junctions. The quantum dots were fabricated using a technique involving local manipulation of defect charge within the insulating substrate beneath a graphene monolayer. Inside such graphene quantum dots we observe resonances due to quasi-bound states and directly visualize the quantum interference patterns arising from these states. Outside the quantum dots Dirac fermions exhibit Friedel oscillation-like behaviour. Bolstered by a theoretical model describing relativistic particles in a harmonic oscillator potential, our findings yield insights into the spatial behaviour of electrostatically confined Dirac fermions.

  9. The strangest man. The hidden life of Paul Dirac; Der seltsamste Mensch. Das verborgene Leben des Quantengenies Paul Dirac

    Energy Technology Data Exchange (ETDEWEB)

    Farmelo, Graham

    2016-07-01

    The Strangest Man is the Costa Biography Award-winning account of Paul Dirac, the famous physicist sometimes called the British Einstein. He was one of the leading pioneers of the greatest revolution in twentieth-century science: quantum mechanics. The youngest theoretician ever to win the Nobel Prize for Physics, he was also pathologically reticent, strangely literal-minded and legendarily unable to communicate or empathize. Through his greatest period of productivity, his postcards home contained only remarks about the weather. Based on a previously undiscovered archive of family papers, Graham Farmelo celebrates Dirac's massive scientific achievement while drawing a compassionate portrait of his life and work. Farmelo shows a man who, while hopelessly socially inept, could manage to love and sustain close friendship. The Strangest Man is an extraordinary and moving human story, as well as a study of one of the most exciting times in scientific history.

  10. Multiangle Imaging Spectroradiometer (MISR) Global Aerosol Optical Depth Validation Based on 2 Years of Coincident Aerosol Robotic Network (AERONET) Observations

    Science.gov (United States)

    Kahn, Ralph A.; Gaitley, Barbara J.; Martonchik, John V.; Diner, David J.; Crean, Kathleen A.; Holben, Brent

    2005-01-01

    Performance of the Multiangle Imaging Spectroradiometer (MISR) early postlaunch aerosol optical thickness (AOT) retrieval algorithm is assessed quantitatively over land and ocean by comparison with a 2-year measurement record of globally distributed AERONET Sun photometers. There are sufficient coincident observations to stratify the data set by season and expected aerosol type. In addition to reporting uncertainty envelopes, we identify trends and outliers, and investigate their likely causes, with the aim of refining algorithm performance. Overall, about 2/3 of the MISR-retrieved AOT values fall within [0.05 or 20% x AOT] of Aerosol Robotic Network (AERONET). More than a third are within [0.03 or 10% x AOT]. Correlation coefficients are highest for maritime stations (approx.0.9), and lowest for dusty sites (more than approx.0.7). Retrieved spectral slopes closely match Sun photometer values for Biomass burning and continental aerosol types. Detailed comparisons suggest that adding to the algorithm climatology more absorbing spherical particles, more realistic dust analogs, and a richer selection of multimodal aerosol mixtures would reduce the remaining discrepancies for MISR retrievals over land; in addition, refining instrument low-light-level calibration could reduce or eliminate a small but systematic offset in maritime AOT values. On the basis of cases for which current particle models are representative, a second-generation MISR aerosol retrieval algorithm incorporating these improvements could provide AOT accuracy unprecedented for a spaceborne technique.

  11. Double Dirac point semimetal in 2D material: Ta2Se3

    Science.gov (United States)

    Ma, Yandong; Jing, Yu; Heine, Thomas

    2017-06-01

    Here, we report by first-principles calculations one new stable 2D Dirac material, Ta2Se3 monolayer. For this system, stable layered bulk phase exists, and exfoliation should be possible. Ta2Se3 monolayer is demonstrated to support two Dirac points close to the Fermi level, achieving the exotic 2D double Dirac semimetal. And like 2D single Dirac and 2D node-line semimetals, spin-orbit coupling could introduce an insulating state in this new class of 2D Dirac semimetals. Moreover, the Dirac feature in this system is layer-dependent and a metal-to-insulator transition is identified in Ta2Se3 when reducing the layer-thickness from bilayer to monolayer. These findings are of fundamental interests and of great importance for nanoscale device applications.

  12. Avoid the tsunami of the Dirac sea in the imaginary time step method

    International Nuclear Information System (INIS)

    Zhang, Ying; Liang, Haozhao; Meng, Jie

    2010-01-01

    The discrete single-particle spectra in both the Fermi and Dirac sea have been calculated by the imaginary time step (ITS) method for the Schroedinger-like equation after avoiding the "tsunami" of the Dirac sea, i.e. the diving behavior of the single-particle level into the Dirac sea in the direct application of the ITS method for the Dirac equation. It is found that by the transform from the Dirac equation to the Schroedinger-like equation, the single-particle spectra, which extend from the positive to the negative infinity, can be separately obtained by the ITS evolution in either the Fermi sea or the Dirac sea. Identical results with those in the conventional shooting method have been obtained via the ITS evolution for the equivalent Schroedinger-like equation, which demonstrates the feasibility, practicality and reliability of the present algorithm and dispels the doubts on the ITS method in the relativistic system. (author)

  13. Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.L.; Chu, J.-H.; Analytis, J.G.; Liu, Z.K.; Igarashi, K.; Kuo, H.-H.; Qi, X.L.; Mo, S.K.; Moore, R.G.; Lu, D.H.; Hashimoto, M.; Sasagawa, T.; Zhang, S.C.; Fisher, I.R.; Hussain, Z.; Shen, Z.-X.; /SLAC

    2011-05-20

    Topological insulators are characterized by a massless Dirac surface state and a bulk energy gap. An insulating massive Dirac fermion state is predicted to occur if the breaking of the time reversal symmetry opens an energy gap at the Dirac point, provided that the Fermi-energy resides inside both the surface and bulk gaps. By introducing magnetic dopants into the three dimensional topological insulator Bi{sub 2}Se{sub 3} to break the time reversal symmetry, we observed the formation of a massive Dirac fermion on the surface; simultaneous magnetic and charge doping furthermore positioned the Fermi-energy inside the Dirac gap. The insulating massive Dirac Fermion state thus obtained may provide a tool for studying a range of topological phenomena relevant to both condensed matter and particle physics.

  14. Pilots 2.0: DIRAC pilots for all the skies

    Science.gov (United States)

    Stagni, F.; Tsaregorodtsev, A.; McNab, A.; Luzzi, C.

    2015-12-01

    In the last few years, new types of computing infrastructures, such as IAAS (Infrastructure as a Service) and IAAC (Infrastructure as a Client), gained popularity. New resources may come as part of pledged resources, while others are opportunistic. Most of these new infrastructures are based on virtualization techniques. Meanwhile, some concepts, such as distributed queues, lost appeal, while still supporting a vast amount of resources. Virtual Organizations are therefore facing heterogeneity of the available resources and the use of an Interware software like DIRAC to hide the diversity of underlying resources has become essential. The DIRAC WMS is based on the concept of pilot jobs that was introduced back in 2004. A pilot is what creates the possibility to run jobs on a worker node. Within DIRAC, we developed a new generation of pilot jobs, that we dubbed Pilots 2.0. Pilots 2.0 are not tied to a specific infrastructure; rather they are generic, fully configurable and extendible pilots. A Pilot 2.0 can be sent, as a script to be run, or it can be fetched from a remote location. A pilot 2.0 can run on every computing resource, e.g.: on CREAM Computing elements, on DIRAC Computing elements, on Virtual Machines as part of the contextualization script, or IAAC resources, provided that these machines are properly configured, hiding all the details of the Worker Nodes (WNs) infrastructure. Pilots 2.0 can be generated server and client side. Pilots 2.0 are the “pilots to fly in all the skies”, aiming at easy use of computing power, in whatever form it is presented. Another aim is the unification and simplification of the monitoring infrastructure for all kinds of computing resources, by using pilots as a network of distributed sensors coordinated by a central resource monitoring system. Pilots 2.0 have been developed using the command pattern. VOs using DIRAC can tune pilots 2.0 as they need, and extend or replace each and every pilot command in an easy way. In this

  15. Providing output of DIRAC-SAM jobs to the IT-based SAM-Nagios framework

    CERN Document Server

    Volkl, Valentin

    2013-01-01

    Information available on LHCb grid sites in the SAM-Nagios monitor- ing framework - gathered mainly through functional tests - has been sup- plemented with results from LHCbDIRAC SAMJobs published by means of message client newly integrated in LHCbDIRAC. These are displayed as a new metric org.lhcb.DiracTest-lhcb giving additional debug in- formation to system administrators and influencing reports on grid site performances in the future

  16. Analytical solutions for Dirac and Klein-Gordon equations using Backlund transformations

    Energy Technology Data Exchange (ETDEWEB)

    Zabadal, Jorge R.; Borges, Volnei, E-mail: jorge.zabadal@ufrgs.br, E-mail: borges@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Engenharia Mecanica; Ribeiro, Vinicius G., E-mail: vinicius_ribeiro@uniritter.edu.br [Centro Universitario Ritter dos Reis (UNIRITTER), Porto Alegre, RS (Brazil); Santos, Marcio, E-mail: marciophd@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Centro de Estudos Interdisciplinares

    2015-07-01

    This work presents a new analytical method for solving Klein-Gordon type equations via Backlund transformations. The method consists in mapping the Klein-Gordon model into a first order system of partial differential equations, which contains a generalized velocity field instead of the Dirac matrices. This system is a tensor model for quantum field theory whose space solution is wider than the Dirac model in the original form. Thus, after finding analytical expressions for the wave functions, the Maxwell field can be readily obtained from the Dirac equations, furnishing a self-consistent field solution for the Maxwell-Dirac system. Analytical and numerical results are reported. (author)

  17. Transport Phenomena in Multilayered Massless Dirac Fermion System α-(BEDT-TTF2I3

    Directory of Open Access Journals (Sweden)

    Naoya Tajima

    2012-06-01

    Full Text Available A zero-gap state with a Dirac cone type energy dispersion was discovered in an organic conductor α-(BEDT-TTF2I3 under high hydrostatic pressures. This is the first two-dimensional (2D zero-gap state discovered in bulk crystals with a layered structure. In contrast to the case of graphene, the Dirac cone in this system is highly anisotropic. The present system, therefore, provides a new type of massless Dirac fermion system with anisotropic Fermi velocity. This system exhibits remarkable transport phenomena characteristic to electrons on the Dirac cone type energy structure.

  18. Vacuum state of the Dirac field in de Sitter space and entanglement entropy

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Sugumi [Department of Theoretical Physics and History of Science,University of the Basque Country,48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science,Maria Diaz de Haro 3, 48013, Bilbao (Spain); Sasaki, Misao [Center for Gravitational Physics,Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan); Tanaka, Takahiro [Department of Physics, Kyoto University,Kyoto 606-8502 (Japan); Center for Gravitational Physics,Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan)

    2017-03-13

    We compute the entanglement entropy of a free massive Dirac field between two causally disconnected open charts in de Sitter space. We first derive the Bunch-Davies vacuum mode functions of the Dirac field. We find there exists no supercurvature mode for the Dirac field. We then give the Bogoliubov transformation between the Bunch-Davies vacuum and the open chart vacua that makes the reduced density matrix diagonal. We find that the Dirac field becomes more entangled than a scalar field as m{sup 2}/H{sup 2} becomes small, and the difference is maximal in the massless limit.

  19. Band warping, band non-parabolicity, and Dirac points in electronic and lattice structures

    Science.gov (United States)

    Resca, Lorenzo; Mecholsky, Nicholas A.; Pegg, Ian L.

    2017-10-01

    We illustrate at a fundamental level the physical and mathematical origins of band warping and band non-parabolicity in electronic and vibrational structures. We point out a robust presence of pairs of topologically induced Dirac points in a primitive-rectangular lattice using a p-type tight-binding approximation. We analyze two-dimensional primitive-rectangular and square Bravais lattices with implications that are expected to generalize to more complex structures. Band warping is shown to arise at the onset of a singular transition to a crystal lattice with a larger symmetry group, which allows the possibility of irreducible representations of higher dimensions, hence band degeneracy, at special symmetry points in reciprocal space. Band warping is incompatible with a multi-dimensional Taylor series expansion, whereas band non-parabolicities are associated with multi-dimensional Taylor series expansions to all orders. Still band non-parabolicities may merge into band warping at the onset of a larger symmetry group. Remarkably, while still maintaining a clear connection with that merging, band non-parabolicities may produce pairs of conical intersections at relatively low-symmetry points. Apparently, such conical intersections are robustly maintained by global topology requirements, rather than any local symmetry protection. For two p-type tight-binding bands, we find such pairs of conical intersections drifting along the edges of restricted Brillouin zones of primitive-rectangular Bravais lattices as lattice constants vary relatively to each other, until these conical intersections merge into degenerate warped bands at high-symmetry points at the onset of a square lattice. The conical intersections that we found appear to have similar topological characteristics as Dirac points extensively studied in graphene and other topological insulators, even though our conical intersections have none of the symmetry complexity and protection afforded by the latter more

  20. Effect of aerosol subgrid variability on aerosol optical depth and cloud condensation nuclei: implications for global aerosol modelling

    Directory of Open Access Journals (Sweden)

    N. Weigum

    2016-11-01

    Full Text Available A fundamental limitation of grid-based models is their inability to resolve variability on scales smaller than a grid box. Past research has shown that significant aerosol variability exists on scales smaller than these grid boxes, which can lead to discrepancies in simulated aerosol climate effects between high- and low-resolution models. This study investigates the impact of neglecting subgrid variability in present-day global microphysical aerosol models on aerosol optical depth (AOD and cloud condensation nuclei (CCN. We introduce a novel technique to isolate the effect of aerosol variability from other sources of model variability by varying the resolution of aerosol and trace gas fields while maintaining a constant resolution in the rest of the model. We compare WRF-Chem (Weather and Research Forecast model runs in which aerosol and gases are simulated at 80 km and again at 10 km resolutions; in both simulations the other model components, such as meteorology and dynamics, are kept at the 10 km baseline resolution. We find that AOD is underestimated by 13 % and CCN is overestimated by 27 % when aerosol and gases are simulated at 80 km resolution compared to 10 km. The processes most affected by neglecting aerosol subgrid variability are gas-phase chemistry and aerosol uptake of water through aerosol–gas equilibrium reactions. The inherent non-linearities in these processes result in large changes in aerosol properties when aerosol and gaseous species are artificially mixed over large spatial scales. These changes in aerosol and gas concentrations are exaggerated by convective transport, which transports these altered concentrations to altitudes where their effect is more pronounced. These results demonstrate that aerosol variability can have a large impact on simulating aerosol climate effects, even when meteorology and dynamics are held constant. Future aerosol model development should focus on accounting for the effect of

  1. New Statistical Model for Variability of Aerosol Optical Thickness and its Application to Analysis of Global Satellite Datasets

    Science.gov (United States)

    Alexandrov, M. D.; Geogdzhayev, I. V.; Cairns, B.; Mishchenko, M. I.

    2013-05-01

    We present a novel statistical model AOTVM for variability of aerosol optical thickness (AOT). Mathematically this model is based on summation of multiple realizations of certain binary Markov process. It allows for construction of realistic examples of AOT time series, which have 1-point (lognormal PDF) and 2-point (structure function) statistics consistent with each other. Unlike commonly used scale-invariant (fractal) variability models having power-law structure functions, AOTVM's second order structure function converges to a constant (double of AOT's variance) at large lags (where the AOT values at different points become essentially independent from each other). This structure function has simple analytical form convenient for use in remote sensing data analysis. Aerosol variability in AOTVM is characterized by 3 parameters independent from the mean AOT. The first parameter is the ratio between AOT's standard deviation and its mean representing the relative magnitude of AOT variability. The second parameter is the characteristic size of inhomogeneity in AOT field. It quantifies the loss of dependence between AOT values at two points in space with the increase of distance between them. The third parameter is the Hurst exponent characterizing AOT's turbulent behavior at small scales. The proposed variability model was evaluated using MODIS Terra satellite AOT product (collection 5 level 2). We took one-year-long (2006) global AOT dataset (at 550 nm wavelength) and computed means, variances, and structure functions for the data from overlapping 10 by 10 degree cells (with ocean and land treated separately). This provided a set of AOT statistics on a grid with 5-degree resolution. We demonstrated that the structure functions derived from the satellite data can be closely fitted by AOTVM's analytical expressions. These fits provide global long-term datasets of the 3 model parameters described above, thus, adding to the information content of the satellite

  2. Tunable omnidirectional photonic band gap of one-dimensional photonic crystals containing Dirac semimetals

    Science.gov (United States)

    Zhao, Yunkun; Zhang, Yuping; Guo, Xiaohan; Liu, Maodong; Chen, Huan; Liu, Shande; Zhang, Huiyun

    2017-12-01

    We have theoretically investigated the tunability of the omnidirectional bandgap (OBG) of a one-dimensional photonic crystal consisting of alternating Dirac semimetals (DSs) and SiO2 dielectrics by adjusting the structural Fermi level. This photonic bandgap (PBG) is strongly dependent on the Fermi level and thickness ratio of the DSs and SiO2 layers. The effects of different parameters such as Fermi level, incident angle, and lattice constant on PBG are analyzed in detail. It is found that the first gap does not change with the change in lattice constant, but it is sensitive to the Fermi level; the width of the omnidirectional PBG increases with the structural Fermi level. The second gap is also sensitive to the Fermi level, the upper and lower frequency limits of this PBG shift to higher frequency, and the width becomes narrower as the Fermi level is increasing, where only one OBG exists in the range of 3.6-4.3 THz for transverse electric polarization. However, as the angle of incidence increases, the photonic bandgap can close for transverse magnetic polarization. All these properties can be applied to tunable optical filters or optical switches.

  3. Spectral invariants of operators of Dirac type on partitioned manifolds

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm; Bleecker, D.

    2004-01-01

    We review the concepts of the index of a Fredholm operator, the spectral flow of a curve of self-adjoint Fredholm operators, the Maslov index of a curve of Lagrangian subspaces in symplectic Hilbert space, and the eta invariant of operators of Dirac type on closed manifolds and manifolds...... with boundary. We emphasize various (occasionally overlooked) aspects of rigorous definitions and explain the quite different stability properties. Moreover, we utilize the heat equation approach in various settings and show how these topological and spectral invariants are mutually related in the study...

  4. Spin-orbit band gaps and destruction of Dirac cones

    Science.gov (United States)

    Yakovkin, I. N.

    2017-08-01

    The relativistic band structures of the IV group honeycomb monolayers, from graphene to plumbene (C-Si-Ge-Sn-Pb), have been calculated within DFT in Local Density Approximation (LDA). Basing on the obtained results, we suggest that the spin-orbit coupling leads to opening of the band gaps and therefore will unavoidably cause the destruction of the perfect shape of Dirac cones which is responsible for the existence of the massless Fermions. The applicability of ordinary non-relativistic DFT calculations of bands for graphene-like layered structures is discussed in this regard.

  5. Dirac cosmology and the onset of galactic nucleosynthesis

    International Nuclear Information System (INIS)

    Adams, P.J.; Canuto, V.

    1976-01-01

    Recently Browne and Berman determined the onset of nucleosynthesis of heavy elements in the galaxy to be about 18 billion years ago based on the weak decay of rhenium 187 to osmium 187. This age is appreciably larger than the 13 billion years determined from the uranium decay chains. It is also larger than the 16 billion year age of the Universe determined from the standard model by the latest values of the Hubble constant and deceleration parameter. This letter points out that this discrepancy is predicted by Dirac's cosmology and derives from a time-varying weak coupling constant. (Auth.)

  6. Spin effects on the cyclotron frequency for a Dirac electron

    OpenAIRE

    Salesi, Giovanni; Recami, Erasmo

    1998-01-01

    The Barut--Zanghi (BZ) theory can be regarded as the most satisfactory picture of a classical spinning electron and constitutes a natural "classical limit" of the Dirac equation. The BZ model has been analytically studied in some previous papers of ours in the case of free particles. By contrast, in this letter we consider the case of external fields, and a previously found equation of the motion is generalized for a non-free spin-1/2 particle. In the important case of a spinning charge in a ...

  7. Drift chamber readout system of the DIRAC experiment

    CERN Document Server

    Afanasiev, L G

    2002-01-01

    A drift chamber readout system of the DIRAC experiment at CERN is presented. The system is intended to read out the signals from planar chambers operating in a high current mode. The sense wire signals are digitized in the 16-channel time-to-digital converter boards which are plugged in the signal plane connectors. This design results in a reduced number of modules, a small number of cables and high noise immunity. The system has been successfully operating in the experiment since 1999.

  8. Lattice approximation of gauge theories with Dirac Kaehler fermions

    International Nuclear Information System (INIS)

    Joos, H.

    1988-01-01

    A program which tries to overcome the systematic difficulties caused by the lattice fermion problem by the consideration of models which describe Dirac fields by differential forms is reported. In the first lecture the formalism is developped and applied to the formulation of geometric QCD and of a Geometric Standard Model. The second lecture treats the characteristic symmetry problems which appear in the lattice approximation of geometric field theories. In the last lecture strong coupling dynamics of geometric QCD are considered with the final aim of a derivation of the quark model for the hadron spectrum. (author) [pt

  9. From LHC physics to Dirac-Weyl materials

    International Nuclear Information System (INIS)

    Raya, Alfredo

    2016-01-01

    The quantum field theoretical description of particle physics under extreme conditions, namely, at finite temperature, density and in the presence of external magnetic fields, can naturally be extended to describe phenomenology in other branches of physics. In this contribution, I review some aspects of particle physics in the realm of condensed matter physics, particularly graphene and other Dirac-Weyl materials carried out in Mexico. I explore several features of the dynamics of fermions in (2+1)-dimensions which are relevant to heavy ion experiments, but that can be tested in table top experiments. (paper)

  10. Systematic solutions to solve the Dirac bracket commutators

    International Nuclear Information System (INIS)

    Ananias Neto, Jorge

    2009-01-01

    Full text. The quantization of a dynamical system with second class constraints is usually performed by using the method proposed by Dirac, Bergman and coworkers. The constraints are classified as primary and secondary ones. Secondary constraints are obtained from the condition that primary constraints are conserved in time. We must repeat the condition requiring time derivative of secondary constraints vanish until all independent constraints are obtained. If the whole second class constraints are established, the so called Dirac bracket can be defined. In the case of the total second class constraints are two, the Dirac Bracket for the canonical variables A and B is given by {A,B} DB = {A,B} + 1/{T 1 , T 2 } {A, T 1 { {T 2 , B} - {A, T 2 } {T 1 , B } where T1 and T2 are the second class constraints. The quantum mechanics commutators are given by the replacement { } DB → i h/2π. From the particular expressions of the Dirac bracket (DB) commutators, we can derive the physical operators of a specific theory. These operators together with the physical states dictate the rules that govern the quantum system with constraints. However, due to the fact that the commutators are coordinates dependent and there are ordering problems, the obtainment of the physical operators is a difficult task. In this work we develop a systematic procedure that derives physical operators in coordinates space that satisfy the DB commutators. For this purpose, we use the Gauge Unfixing formalism (GU), a method that converts second class systems into first class ones without to extend the original phase space variables. We will see that, after converting the second class variables into first class ones and substituting these gauge invariant variables by operators, we obtain solutions of the DB commutators. Thus, we can employ the idea of the GU formalism in order to establish a systematic procedure that solves the DB commutators. We apply our formalism in the free particle constrained to

  11. The Travelling Wave Group - 5 Departures from Dirac's Principles

    Science.gov (United States)

    Bourdillon, Antony J.

    2014-03-01

    The Traveling Wave Group (TWG) for a free particle is written, ψ = A(X2 / 2σ2 + X) . Here, X = i(kx - ωt) , σ is an experimental initial value, with Aa normalizing constant dependent on it, while ω is the mean angular frequency, and k the mean wave vector. Unlike Dirac's unstable wave packet; the TWG is stable. From it, the following are derived: the Uncertainty Principle; Planck's law; the de Broglie hypothesis; phase velocity; pseudo mass M'; conservation of M'PT; 5-dimensional space; mass as a local excess of energy over momentum; an explanation for entanglement at a distance, etc.

  12. Weyl and Dirac semimetals in three-dimensional solids

    Science.gov (United States)

    Armitage, N. P.; Mele, E. J.; Vishwanath, Ashvin

    2018-01-01

    Weyl and Dirac semimetals are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry. As three-dimensional analogs of graphene, they have generated much recent interest. Deep connections exist with particle physics models of relativistic chiral fermions, and, despite their gaplessness, to solid-state topological and Chern insulators. Their characteristic electronic properties lead to protected surface states and novel responses to applied electric and magnetic fields. The theoretical foundations of these phases, their proposed realizations in solid-state systems, and recent experiments on candidate materials as well as their relation to other states of matter are reviewed.

  13. The supersymmetric Dirac equation the application to hydrogenic atoms

    CERN Document Server

    Hirshfeld, Allen

    2012-01-01

    The solution of the Dirac equation for an electron in a Coulomb field is systematically treated here by utilizing new insights provided by supersymmetry. It is shown that each of the concepts has its analogue in the non-relativistic case. Indeed, the non-relativistic case is developed first, in order to introduce the new concepts in a familiar context. The symmetry of the non-relativistic model is already present in the classical limit, so the classical Kepler problem is first discussed in order to bring out the role played by the Laplace vector, one of the central concepts of the whole book.

  14. 2D Hybrid Nanostructured Dirac Materials for Broadband Transparent Electrodes.

    Science.gov (United States)

    Guo, Yunfan; Lin, Li; Zhao, Shuli; Deng, Bing; Chen, Hongliang; Ma, Bangjun; Wu, Jinxiong; Yin, Jianbo; Liu, Zhongfan; Peng, Hailin

    2015-08-05

    Broadband transparent electrodes based on 2D hybrid nanostructured Dirac materials between Bi2 Se3 and graphene are synthesized using a chemical vapor deposition (CVD) method. Bi2 Se3 nanoplates are preferentially grown along graphene grain boundaries as "smart" conductive patches to bridge the graphene boundary. These hybrid films increase by one- to threefold in conductivity while remaining highly transparent over broadband wavelength. They also display outstanding chemical stability and mechanical flexibility. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. DIRAC: A high resolution spectrometer for pionium detection

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B. E-mail: adevab@usc.es; Afanasyev, L.; Benayoun, M.; Benelli, A.; Berka, Z.; Brekhovskikh, V.; Caragheorgheopol, G.; Cechak, T.; Chiba, M.; Cima, E.; Constantinescu, S.; Detraz, C.; Dreossi, D.; Drijard, D.; Dudarev, A.; Evangelou, I.; Ferro-Luzzi, M.; Gallas, M.V.; Gerndt, J.; Giacomich, R.; Gianotti, P.; Giardoni, M.; Goldin, D.; Gomez, F.; Gorin, A.; Gortchakov, O.; Guaraldo, C.; Hansroul, M.; Iliescu, M.; Zhabitsky, M.; Karpukhin, V.; Kluson, J.; Kobayashi, M.; Kokkas, P.; Komarov, V.; Kruglov, V.; Kruglova, L.; Kulikov, A.; Kuptsov, A.; Kurochkin, V.; Kuroda, K.-I.; Lamberto, A.; Lanaro, A.; Lapshin, V.; Lednicky, R.; Leruste, P.; Levisandri, P.; Lopez Aguera, A.; Lucherini, V.; Maki, T.; Manthos, N.; Manuilov, I.; Montanet, L.; Narjoux, J.-L.; Nemenov, L.; Nikitin, M.; Nunez Pardo, T.; Okada, K.; Olchevskii, V.; Orecchini, D.; Pazos, A.; Pentia, M.; Penzo, A.; Perreau, J.-M.; Petrascu, C.; Plo, M.; Ponta, T.; Pop, D.; Rappazzo, G.F.; Riazantsev, A.; Rodriguez, J.M.; Rodriguez Fernandez, A.; Romero, A.; Rykalin, V.; Santamarina, C.; Saborido, J.; Schacher, J.; Schuetz, Ch.P.; Sidorov, A.; Smolik, J.; Steinacher, M.; Takeutchi, F.; Tarasov, A.; Tauscher, L.; Tobar, M.J.; Triantis, F.; Trusov, S.; Utkin, V.; Vazquez Doce, O.; Vazquez, P.; Vlachos, S.; Yazkov, V.; Yoshimura, Y.; Zrelov, P

    2003-12-11

    The DIRAC spectrometer has been commissioned at CERN with the aim of detecting {pi}{sup +}{pi}{sup -} atoms produced by a 24 GeV/c high intensity proton beam in thin foil targets. A challenging apparatus is required to cope with the high interaction rates involved, the triggering of pion pairs with very detector efficiency.ation of the imaging sof the latter with resolution around 0.6 MeV/c. The general characteristics of the apparatus are explained and each part is described in some detail. The main features of the trigger system, data-acquisition, monitoring and set-up performances are also given.

  16. Chiral condensate from the twisted mass Dirac operator spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Collaboration: European Twisted Mass Collaboration

    2013-03-15

    We present the results of our computation of the chiral condensate with N{sub f}=2 and N{sub f}=2+1+1 flavours of maximally twisted mass fermions. The condensate is determined from the Dirac operator spectrum, applying the spectral projector method proposed by Giusti and Luescher. We use 3 lattice spacings and several quark masses at each lattice spacing to reliably perform the chiral and continuum extrapolations. We study the effect of the dynamical strange and charm quarks by comparing our results for N{sub f}=2 and N{sub f}=2+1+1 dynamical flavours.

  17. DIRAC A High Resolution Spectrometer for Pionium Detection

    CERN Document Server

    Adeva, B; Benayoun, M; Benelli, A; Berka, Z; Brekhovskikh, V; Caragheorgheopol, G; Cechák, T; Chiba, M; Cima, E; Constantinescu, S; Dreossi, D; Drijard, Daniel; Dudarev, A; Détraz, C; Evangelou, I; Ferro-Luzzi, M; Gallas, M V; Gerndt, J; Giacomich, R; Gianotti, P; Giardoni, M; Goldin, D; Gorin, A; Gortchakov, O E; Guaraldo, C; Gómez, F; Hansroul, M; Iliescu, M A; Karpukhin, V V; Kluson, J; Kobayashi, M; Kokkas, P; Komarov, V; Kruglov, V V; Kruglova, L; Kulikov, A; Kuptsov, A; Kurochkin, V; Kuroda, K I; Lamberto, A; Lanaro, A; Lapshin, V G; Lednicky, R; Leruste, P; Levisandri, P; Lucherini, V; López-Aguera, A; Mäki, T; Manthos, N; Manuilov, I V; Montanet, Lucien; Narjoux, J L; Nemenov, L L; Nikitin, M; Núñez-Pardo de Vera, M T; Okada, K; Olchevskii, V; Orecchini, D; Pazos, A; Pentia, M; Penzo, Aldo L; Perreau, J M; Petrascu, C; Pló, M; Ponta, T; Pop, D; Rappazzo, G F; Riazantsev, A; Rodríguez, J M; Rodríguez-Fernández, A M; Romero, A; Rykalin, V I; Saborido, J; Santamarina-Rios, C; Schacher, J; Schütz, C P; Sidorov, A; Smolik, J; Steinacher, M; Takeutchi, F; Tarasov, A; Tauscher, Ludwig; Tobar, M J; Triantis, F A; Trusov, S V; Utkin, V; Vlachos, S; Vázquez, P; Vázquez-Doce, 0; Yazkov, V; Yoshimura, Y; Zhabitsky, V M; Zrelov, V P

    2003-01-01

    The DIRAC spectrometer has been commissioned at CERN with the aim of detecting $\\pi^+ \\pi^-$ atoms produced by a 24~GeV/$c$ high intensity proton beam in thin foil targets. A challenging apparatus is required to cope with the high interaction rates involved, the triggering of pion pairs with very low relative momentum, and the measurement of the latter with resolution around 0.6~MeV/$c$. The general characteristics of the apparatus are explained and each part is described in some detail. The main features of the trigger system, data-acquisition, monitoring and setup performances are also given.

  18. DIRAC: A High Resolution Spectrometer for Pionium Detection

    CERN Document Server

    Afanasiev, L G; Benelli, A; Berka, Z; Brekhovskikh, V; Caragheorgheopol, G; Cechák, T; Chiba, M; Cima, E; Constantinescu, S; Détraz, C; Dreossi, D; Drijard, Daniel; Dudarev, A; Evangelou, I; Ferro-Luzzi, M; Gallas, M V; Gerndt, J; Giacomich, R; Gianotti, P; Giardoni, M; Goldin, D; Gómez, F; Gorin, A; Gortchakov, O E; Guaraldo, C; Hansroul, M; Iliescu, M A; Zhabitsky, V M; Karpukhin, V V; Kluson, J; Kobayashi, M; Kokkas, P; Komarov, V; Kruglov, V; Kruglova, L; Kulikov, A; Kuptsov, A; Kurochkin, V; Kuroda, K I; Lamberto, A; Lanaro, A; Lapshin, V G; Lednicky, R; Leruste, P; Levisandri, P; López-Aguera, A; Lucherini, V; Mäki, T; Manthos, N; Manuilov, I V; Montanet, Lucien; Narjoux, J L; Nemenov, Leonid L; Nikitin, M; Núñez-Pardo de Vera, M T; Okada, K; Olchevskii, V; Orecchini, D; Pazos, A; Pentia, M; Penzo, Aldo L; Perreau, J M; Petrascu, C; Pló, M; Ponta, T; Pop, D; Rappazzo, G F; Riazantsev, A; Rodríguez, J M; Rodríguez-Fernández, A M; Romero, A; Rykalin, V I; Santamarina-Rios, C; Saborido, J; Schacher, J; Schütz, C P; Sidorov, A; Smolik, J; Steinacher, M; Takeutchi, F; Tarasov, A; Tauscher, Ludwig; Tobar, M J; Triantis, F A; Trusov, S V; Utkin, V; Vázquez-Doce, O; Vázquez, P; Vlachos, S; Yazkov, V; Yoshimura, Y; Zrelov, V P

    2003-01-01

    The DIRAC spectrometer has been commissioned at CERN with the aim of detecting $\\pi^+ \\pi^-$ atoms produced by a 24 GeV/$c$ high intensity proton beam in thin foil targets. A challenging apparatus is required to cope with the high interaction rates involved, the triggering of pion pairs with very low relative momentum, and the measurement of the latter with resolution around 0.6 MeV/$c$. The general characteristics of the apparatus are explained and each part is described in some detail. The main features of the trigger system, data-acquisition, monitoring and setup performances are also given.

  19. On integrable rational potentials of the Dirac equation

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, Tomasz, E-mail: stachowiak@cft.edu.pl [Center for Theoretical Physics PAS, Al. Lotnikow 32/46, 02-668 Warszawa (Poland); Przybylska, Maria, E-mail: M.Przybylska@proton.if.uz.zgora.pl [Institute of Physics, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra (Poland)

    2013-05-03

    The one-dimensional Dirac equation with a rational potential is reducible to an ordinary differential equation with a Riccati-like coefficient. Its integrability can be studied with the help of differential Galois theory, although the results have to be stated with recursive relations, because in general the equation is of Heun type. The inverse problem of finding integrable rational potentials based on the properties of the singular points is also presented; in particular, a general class of integrable potentials leading to the Whittaker equation is found.

  20. Anomalous magnetism for Dirac electrons in two dimensional Rashba systems

    Science.gov (United States)

    Vivas C., H.

    2018-03-01

    Spin-spin correlation function response in the low electronic density regime and externally applied electric field is evaluated for 2D metallic crystals under Rashba-type coupling, fixed number of particles and twofold energy band structure. Intrinsic Zeeman-like effect on electron spin polarization, density of states, Fermi surface topology and transverse magnetic susceptibility are analyzed in the zero temperature limit. A possible magnetic state for Dirac electrons depending on the zero field band gap magnitude under this conditions is found.

  1. Surface states of a system of Dirac fermions: A minimal model

    International Nuclear Information System (INIS)

    Volkov, V. A.; Enaldiev, V. V.

    2016-01-01

    A brief survey is given of theoretical works on surface states (SSs) in Dirac materials. Within the formalism of envelope wave functions and boundary conditions for these functions, a minimal model is formulated that analytically describes surface and edge states of various (topological and nontopological) types in several systems with Dirac fermions (DFs). The applicability conditions of this model are discussed.

  2. Covariant differential calculus on quantum Minkowski space and the q-analogue of Dirac equation

    International Nuclear Information System (INIS)

    Song Xingchang; Academia Sinica, Beijing

    1992-01-01

    The covariant differential calculus on the quantum Minkowski space is presented with the help of the generalized Wess-Zumino method and the quantum Pauli matrices and quantum Dirac matrices are constructed parallel to those in the classical case. Combining these two aspects a q-analogue of Dirac equation follows directly. (orig.)

  3. Dynamic polarizability of Rydberg atoms: Applicability of the near-free-electron approximation, gauge invariance, and the Dirac sea

    Science.gov (United States)

    Topcu, Turker; Derevianko, Andrei

    2013-10-01

    Ponderomotive energy shifts experienced by Rydberg atoms in optical fields are known to be well approximated by the classical quiver energy of a free electron. We examine such energy shifts quantum mechanically and elucidate how they relate to the ponderomotive shift of a free electron in off-resonant fields. We derive and evaluate corrections to the ponderomotive free-electron polarizability in the length and velocity (transverse or Coulomb) gauges, which agree exactly as mandated by the gauge invariance. We also show how the free electron value emerges from the Dirac equation through summation over the Dirac sea states. We find that the free-electron ac Stark shift comes as an expectation value of a term proportional to the square of the vector potential in the velocity gauge. On the other hand, the same dominant contribution can be obtained to first order via a series expansion of the exact energy shift from the second-order perturbation theory in the length gauge. Finally, we numerically examine the validity of the free-electron approximation. The correction to the free-electron value becomes smaller with increasing principal quantum number, and it is well below a percent for 60s states of Rb and Sr away from the resonances.

  4. Phase diagram and Chiral Magnetic Effect in Dirac Semimetals from Lattice Simulation

    Directory of Open Access Journals (Sweden)

    Boyda D.L.

    2018-01-01

    Full Text Available Dirac Semimetals Na3Bi and Cd3As2 are recently discovered materials, which low energy electronic spectrum is described by two flavours of massless 3+1D fermions. In order to study electronic properties of these materials we formulated lattice field theory with rooted staggered fermions on anisotropic lattice. It is shown that in the limit of zero temporal lattice spacing this theory reproduces effective theory of Dirac semimetals. Using the lattice field theory we study the phase diagram of Dirac semimetals in the plane effective coupling constant - Fermi velocity anisotropy. We also measure conductivity of Dirac Semimetals within lattice field theory in external magnetic field. Our results confirm the existence of Chiral Magnetic Effect in Dirac Semimetals.

  5. Light trapping and circularly polarization at a Dirac point in 2D plasma photonic crystals

    Science.gov (United States)

    Li, Qian; Hu, Lei; Mao, Qiuping; Jiang, Haiming; Hu, Zhijia; Xie, Kang; Wei, Zhang

    2018-03-01

    Light trapping at the Dirac point in 2D plasma photonic crystal has been obtained. The new localized mode, Dirac mode, is attributable to neither photonic bandgap nor total internal reflection. It exhibits a unique algebraic profile and possesses a high-Q factor resonator of about 105. The Dirac point could be modulated by tuning the filling factor, plasma frequency and plasma cyclotron frequency, respectively. When a magnetic field parallel to the wave vector is applied, Dirac modes for right circularly polarized and left circularly polarized waves could be obtained at different frequencies, and the Q factor could be tuned. This property will add more controllability and flexibility to the design and modulation of novel photonic devices. It is also valuable for the possibilities of Dirac modes in photonic crystal containing other kinds of metamaterials.

  6. Distinguishing Dirac/Majorana sterile neutrinos at the LHC

    Science.gov (United States)

    Dib, Claudio O.; Kim, C. S.; Wang, Kechen; Zhang, Jue

    2016-07-01

    We study the purely leptonic decays of W±→e±e±μ∓ν and μ±μ±e∓ν produced at the LHC, induced by sterile neutrinos with mass mN below MW in the intermediate state. Since the final state neutrino escapes detection, one cannot tell whether this process violates lepton number, which would indicate a Majorana character for the intermediate sterile neutrino. Our study shows that when the sterile neutrino mixings with electrons and muons are different enough, one can still discriminate between the Dirac and Majorana character of this intermediate neutrino by simply counting and comparing the above decay rates. After performing collider simulations and statistical analysis, we find that at the 14 TeV LHC with an integrated luminosity of 3000 fb-1, for two benchmark scenarios mN=20 and 50 GeV, at least a 3 σ level of exclusion on the Dirac case can be achieved for disparities as mild as, e.g., |UN e|2UN μ|2 or |UN μ|2UN e|2 , provided that |UN e|2 and |UN μ|2 are both above ˜2 ×10-6.

  7. Dirac Matrices and Feynman’s Rest of the Universe

    Directory of Open Access Journals (Sweden)

    Young S. Kim

    2012-10-01

    Full Text Available There are two sets of four-by-four matrices introduced by Dirac. The first set consists of fifteen Majorana matrices derivable from his four γ matrices. These fifteen matrices can also serve as the generators of the group SL(4, r. The second set consists of ten generators of the Sp(4 group which Dirac derived from two coupled harmonic oscillators. It is shown possible to extend the symmetry of Sp(4 to that of SL(4, r if the area of the phase space of one of the oscillators is allowed to become smaller without a lower limit. While there are no restrictions on the size of phase space in classical mechanics, Feynman’s rest of the universe makes this Sp(4-to-SL(4, r transition possible. The ten generators are for the world where quantum mechanics is valid. The remaining five generators belong to the rest of the universe. It is noted that the groups SL(4, r and Sp(4 are locally isomorphic to the Lorentz groups O(3, 3 and O(3, 2 respectively. This allows us to interpret Feynman’s rest of the universe in terms of space-time symmetry.

  8. SARAH 3.2: Dirac gauginos, UFO output, and more

    Science.gov (United States)

    Staub, Florian

    2013-07-01

    SARAH is a Mathematica package optimized for the fast, efficient and precise study of supersymmetric models beyond the MSSM: a new model can be defined in a short form and all vertices are derived. This allows SARAH to create model files for FeynArts/FormCalc, CalcHep/CompHep and WHIZARD/O'Mega. The newest version of SARAH now provides the possibility to create model files in the UFO format which is supported by MadGraph 5, MadAnalysis 5, GoSam, and soon by Herwig++. Furthermore, SARAH also calculates the mass matrices, RGEs and 1-loop corrections to the mass spectrum. This information is used to write source code for SPheno in order to create a precision spectrum generator for the given model. This spectrum-generator-generator functionality as well as the output of WHIZARD and CalcHep model files has seen further improvement in this version. Also models including Dirac gauginos are supported with the new version of SARAH, and additional checks for the consistency of the implementation of new models have been created. Program summaryProgram title:SARAH Catalogue identifier: AEIB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIB_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3 22 411 No. of bytes in distributed program, including test data, etc.: 3 629 206 Distribution format: tar.gz Programming language: Mathematica. Computer: All for which Mathematica is available. Operating system: All for which Mathematica is available. Classification: 11.1, 11.6. Catalogue identifier of previous version: AEIB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182 (2011) 808 Does the new version supersede the previous version?: Yes, the new version includes all known features of the previous version but also provides the new features mentioned below

  9. New formulation of the Dirac equation on a Minkowski lattice

    International Nuclear Information System (INIS)

    Hayashi, A.; Hashimoto, T.; Yamamoto, H.; Horibe, M.

    1997-01-01

    The Dirac equation is formulated on (1+D)-dimensional discrete Minkowski space-time. We find that the minimum number of components of the fermion field is 2 D-1 in the massless case, which is smaller than 2 D+1 of the Kogut-Susskind fermion. There exist no extra poles in the fermion propagator. The action is not Hermitian but the quantization can be performed consistently. In the (1+3)-dimensional massless case the equation describes a single species of Dirac particle in the continuous space-time limit. In the (1+1)-dimensional massless case the equation is the same as the automaton equation by close-quote t Hooft and describes a chiral fermion. The time evolution operator is unitary and the norm is conserved. For interacting fermions with gauge fields the evolution operator is not unitary. But in the continuum limit the unitarity will be recovered. The consequences of loosening the unitarity condition on the time evolution operator are discussed. copyright 1997 The American Physical Society

  10. Transport coefficients of Dirac ferromagnet: Effects of vertex corrections

    Science.gov (United States)

    Fujimoto, Junji

    2018-03-01

    As a strongly spin-orbit-coupled metallic model with ferromagnetism, we have considered an extended Stoner model to the relativistic regime, named Dirac ferromagnet in three dimensions. In a previous paper [J. Fujimoto and H. Kohno, Phys. Rev. B 90, 214418 (2014), 10.1103/PhysRevB.90.214418], we studied the transport properties giving rise to the anisotropic magnetoresistance (AMR) and the anomalous Hall effect (AHE) with the impurity potential being taken into account only as the self-energy. The effects of the vertex corrections (VCs) to AMR and AHE are reported in this paper. AMR is found not to change quantitatively when the VCs are considered, although the transport lifetime is different from the one-electron lifetime and the charge current includes additional contributions from the correlation with spin currents. The side-jump and the skew-scattering contributions to AHE are also calculated. The skew-scattering contribution is dominant in the clean case as can be seen in the spin Hall effect in the nonmagnetic Dirac electron system.

  11. Nonequilibrium transport in the pseudospin-1 Dirac-Weyl system

    Science.gov (United States)

    Wang, Cheng-Zhen; Xu, Hong-Ya; Huang, Liang; Lai, Ying-Cheng

    2017-09-01

    Recently, solid state materials hosting pseudospin-1 quasiparticles have attracted a great deal of attention. In these materials, the energy band contains a pair of Dirac cones and a flatband through the connecting point of the cones. As the "caging" of carriers with a zero group velocity, the flatband itself has zero conductivity. However, in a nonequilibrium situation where a constant electric field is suddenly switched on, the flatband can enhance the resulting current in both the linear and nonlinear response regimes through distinct physical mechanisms. Using the (2 +1 )-dimensional pseudospin-1 Dirac-Weyl system as a concrete setting, we demonstrate that, in the weak field regime, the interband current is about twice larger than that for pseudospin-1/2 system due to the interplay between the flatband and the negative band, with the scaling behavior determined by the Kubo formula. In the strong field regime, the intraband current is √{2 } times larger than that in the pseudospin-1/2 system, due to the additional contribution from particles residing in the flatband. In this case, the current and field follow the scaling law associated with Landau-Zener tunneling. These results provide a better understanding of the role of the flatband in nonequilibrium transport and are experimentally testable using electronic or photonic systems.

  12. Distinguishing Dirac/Majorana sterile neutrinos at the LHC

    International Nuclear Information System (INIS)

    Dib, Claudio O.; Zhang, Jue

    2016-06-01

    We study the purely leptonic decays of W ± → e ± e ± μ -+ ν and μ ± μ ± e -+ ν produced at the LHC, induced by sterile neutrinos with mass m N below M W in the intermediate state. Since the final state neutrino escapes detection, one cannot tell whether this process violates lepton number, what would indicate a Majorana character for the intermediate sterile neutrino. Our study shows that when the sterile neutrino mixings with electrons and muons are different enough, one can still discriminate between the Dirac and Majorana character of this intermediate neutrino by simply counting and comparing the above decay rates. After performing collider simulations and statistical analysis, we find that at the 14 TeV LHC with an integrated luminosity of 3000 fb -1 , for two benchmark scenarios m N =20 GeV and 50 GeV, at least a 3σ level of exclusion on the Dirac case can be achieved for disparities as mild as e.g. vertical stroke U Ne vertical stroke 2 <0.7 vertical stroke U Nμ vertical stroke 2 or vertical stroke U Nμ vertical stroke 2 <0.7 vertical stroke U Ne vertical stroke 2 , provided that vertical stroke U Ne vertical stroke 2 , vertical stroke U Nμ vertical stroke 2 are both above ∝2 x 10 -6 .

  13. Asymmetric capture of Dirac dark matter by the Sun

    International Nuclear Information System (INIS)

    Blennow, Mattias; Clementz, Stefan

    2015-01-01

    Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles and anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models

  14. Approximate Treatment of the Dirac Equation with Hyperbolic Potential Function

    Science.gov (United States)

    Durmus, Aysen

    2018-03-01

    The time independent Dirac equation is solved analytically for equal scalar and vector hyperbolic potential function in the presence of Greene and Aldrich approximation scheme. The bound state energy equation and spinor wave functions expressed by the hypergeometric function have been obtained in detail with asymptotic iteration approach. In order to indicate the accuracy of this different approach proposed to solve second order linear differential equations, we present that in the non-relativistic limit, analytical solutions of the Dirac equation converge to those of the Schrödinger one. We introduce numerical results of the theoretical analysis for hyperbolic potential function. Bound states corresponding to arbitrary values of n and l are reported for potential parameters covering a wide range of interaction. Also, we investigate relativistic vibrational energy spectra of alkali metal diatomic molecules in the different electronic states. It is observed that theoretical vibrational energy values are consistent with experimental Rydberg-Klein-Rees (RKR) results and vibrational energies of NaK, K_2 and KRb diatomic molecules interacting with hyperbolic potential smoothly converge to the experimental dissociation limit D_e=2508cm^{-1}, 254cm^{-1} and 4221cm^{-1}, respectively.

  15. Micromagnetic sensors and Dirac fermions in HgTe heterostructures

    International Nuclear Information System (INIS)

    Buettner, Bastian

    2012-01-01

    Within the scope of this thesis two main topics have been investigated: the examination of micromagnetic sensors and transport of massive and massless Dirac fermions in HgTe quantum wells. For the investigation of localized, inhomogeneous magnetic fields, the fabrication and characterization of two different non-invasive and ultra sensitive sensors has been established at the chair ''Experimentelle Physik'' of the University of Wuerzburg. The first sensor is based on the young technique named micro-Hall magnetometry. The necessary semiconductor devices (Hall cross structures) were fabricated by high-resolution electron beam lithography based on two different two dimensional electron gases (2DEGs), namely InAs/(Al,Ga)Sb- and HgTe/(Hg,Cd)Te-heterostructures. The characteristics have been examined in two different ways. Measurements in homogeneous magnetic fields served for characterization of the sensors, whereas the investigation of artificially produced sub-μm magnets substantiates the suitability of the devices for the study of novel nanoscale magnetic materials (e.g. nanowires). Systematic experiments with various magnets are in accordance with the theory of single-domain particles and anisotropic behavior due to shapes with high aspect ratio. The highest sensitivity for strongly localized fields was obtained at T=4.2 K for a (200.200) nm 2 Hall cross - made from shallow, high mobility HgTe 2DEG. Although the field resolution was merely δB∼100 μT, the nanoscale sensor size yields an outstanding flux resolution of δΦ=2.10 -3 Φ 0 , where Φ 0 =h/2e is the flux quantum. Translating this result in terms of magnetic moment, the sensitivity allows for the detection of magnetization changes of a particle centered on top of the sensor as low as δM∼10 2 μ B , with the magnetic moment of a single electron μ B , the Bohr magneton. The further examination of a permalloy nanomagnet with a cross-section of (100.20) nm 2 confirms the expected resolution ability

  16. Micromagnetic sensors and Dirac fermions in HgTe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Bastian

    2012-08-06

    Within the scope of this thesis two main topics have been investigated: the examination of micromagnetic sensors and transport of massive and massless Dirac fermions in HgTe quantum wells. For the investigation of localized, inhomogeneous magnetic fields, the fabrication and characterization of two different non-invasive and ultra sensitive sensors has been established at the chair ''Experimentelle Physik'' of the University of Wuerzburg. The first sensor is based on the young technique named micro-Hall magnetometry. The necessary semiconductor devices (Hall cross structures) were fabricated by high-resolution electron beam lithography based on two different two dimensional electron gases (2DEGs), namely InAs/(Al,Ga)Sb- and HgTe/(Hg,Cd)Te-heterostructures. The characteristics have been examined in two different ways. Measurements in homogeneous magnetic fields served for characterization of the sensors, whereas the investigation of artificially produced sub-{mu}m magnets substantiates the suitability of the devices for the study of novel nanoscale magnetic materials (e.g. nanowires). Systematic experiments with various magnets are in accordance with the theory of single-domain particles and anisotropic behavior due to shapes with high aspect ratio. The highest sensitivity for strongly localized fields was obtained at T=4.2 K for a (200.200) nm{sup 2} Hall cross - made from shallow, high mobility HgTe 2DEG. Although the field resolution was merely {delta}B{approx}100 {mu}T, the nanoscale sensor size yields an outstanding flux resolution of {delta}{Phi}=2.10{sup -3} {Phi}{sub 0}, where {Phi}{sub 0}=h/2e is the flux quantum. Translating this result in terms of magnetic moment, the sensitivity allows for the detection of magnetization changes of a particle centered on top of the sensor as low as {delta}M{approx}10{sup 2} {mu}{sub B}, with the magnetic moment of a single electron {mu}{sub B}, the Bohr magneton. The further examination of a permalloy

  17. Federating LHCb datasets using the DIRAC File catalog

    CERN Document Server

    Haen, Christophe; Frank, Markus; Tsaregorodtsev, Andrei

    2015-01-01

    In the distributed computing model of LHCb the File Catalog (FC) is a central component that keeps track of each file and replica stored on the Grid. It is federating the LHCb data files in a logical namespace used by all LHCb applications. As a replica catalog, it is used for brokering jobs to sites where their input data is meant to be present, but also by jobs for finding alternative replicas if necessary. The LCG File Catalog (LFC) used originally by LHCb and other experiments is now being retired and needs to be replaced. The DIRAC File Catalog (DFC) was developed within the framework of the DIRAC Project and presented during CHEP 2012. From the technical point of view, the code powering the DFC follows an Aspect oriented programming (AOP): each type of entity that is manipulated by the DFC (Users, Files, Replicas, etc) is treated as a separate 'concern' in the AOP terminology. Hence, the database schema can also be adapted to the needs of a Virtual Organization. LHCb opted for a highly tuned MySQL datab...

  18. GLAS/ICESat L2 Global Thin Cloud/Aerosol Optical Depths Data (HDF5) V033

    Data.gov (United States)

    National Aeronautics and Space Administration — The level 2 thin cloud/aerosol data contains optical depths for clouds for up to 10 layers, the planetary boundary layer, and aerosols for up to 8 layers. Data...

  19. Fractional Dirac bracket on Riemman-Liouville context

    Energy Technology Data Exchange (ETDEWEB)

    Godinho, Cresus F.L.; Abreu, Everton M.C. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2011-07-01

    Full text: So far, it is not well known how to deal with dissipative systems. There are many ways explored in the literature and none of them present a systematic and general procedure to tackle the problem. On the other hand, it is well known that the fractional formalism is a powerful alternative when treating dissipative problems. In this paper we propose a detailed way of attacking the issue using the fractional calculus to construct an extension for the Dirac brackets in order to furnish the quantization of nonconservative theories through the standard canonical way. We believe that it can be the first step to construct gauge theories from second-class systems using these extended Dirac brackets. Very popular in the nineties, where an industrial production of papers concerning methods treating constrained systems, the Dirac brackets (DB) were an unmodified common point between all papers in the subject. The main objective of many works were to convert second-class systems in a first-class one, which is considered a gauge theory, i. e., the holy grail for the Standard Model. Although not so popular as before, the analysis of constrained systems deserves some recent attentions in the literature. On the other hand, there are various problems when considering classical systems besides the ones involving the quantization of second-class systems as we saw just above. These problems constitutes the so-called nonconservative systems. The curiosity about them is that the great majority of classical systems is nonconservative and nevertheless, the most advanced formalisms of classical mechanics deals only with conservative systems. One way to attack nonconservative systems is through the Fractional Calculus (FC) since it can be shown that, for example, a friction force has its form resulting from a Lagrangian containing a term proportional to the fractional derivative which is a derivative of any non-integer order. Fractional calculus is one of the generalizations of

  20. Simulation of aerosol optical properties over a tropical urban site in India using a global model and its comparison with ground measurements

    Directory of Open Access Journals (Sweden)

    D. Goto

    2011-05-01

    Full Text Available Aerosols have great impacts on atmospheric environment, human health, and earth's climate. Therefore, information on their spatial and temporal distribution is of paramount importance. Despite numerous studies have examined the variation and trends of BC and AOD over India, only very few have focused on their spatial distribution or even correlating the observations with model simulations. In the present study, a three-dimensional aerosol transport-radiation model coupled with a general circulation model. SPRINTARS, simulated atmospheric aerosol distributions including BC and aerosol optical properties, i.e., aerosol optical thickness (AOT, Ångström Exponent (AE, and single scattering albedo (SSA. The simulated results are compared with both BC measurements by aethalometer and aerosol optical properties measured by ground-based skyradiometer and by satellite sensor, MODIS/Terra over Hyderabad, which is a tropical urban area of India, for the year 2008. The simulated AOT and AE in Hyderabad are found to be comparable to ground-based measured ones. The simulated SSA tends to be higher than the ground-based measurements. Both these comparisons of aerosol optical properties between the simulations with different emission inventories and the measurements indicate that, firstly the model uncertainties derived from aerosol emission inventory cannot explain the gaps between the simulations and the measurements and secondly the vertical transport of BC and the treatment of BC-containing particles can be the main issue in the global model to solve the gap.

  1. Two-dimensional spin-orbit Dirac point in monolayer HfGeTe

    Science.gov (United States)

    Guan, Shan; Liu, Ying; Yu, Zhi-Ming; Wang, Shan-Shan; Yao, Yugui; Yang, Shengyuan A.

    2017-10-01

    Dirac points in two-dimensional (2D) materials have been a fascinating subject of research, with graphene as the most prominent example. However, the Dirac points in existing 2D materials, including graphene, are vulnerable against spin-orbit coupling (SOC). Here, based on first-principles calculations and theoretical analysis, we propose a new family of stable 2D materials, the HfGeTe-family monolayers, which host so-called spin-orbit Dirac points (SDPs) close to the Fermi level. These Dirac points are special in that they are formed only under significant SOC, hence they are intrinsically robust against SOC. We show that the existence of a pair of SDPs are dictated by the nonsymmorphic space group symmetry of the system, which are very robust under various types of lattice strains. The energy, the dispersion, and the valley occupation around the Dirac points can be effectively tuned by strain. We construct a low-energy effective model to characterize the Dirac fermions around the SDPs. Furthermore, we find that the material is simultaneously a 2D Z2 topological metal, which possesses nontrivial Z2 invariant in the bulk and spin-helical edge states on the boundary. From the calculated exfoliation energies and mechanical properties, we show that these materials can be readily obtained in experiment from the existing bulk materials. Our result reveals HfGeTe-family monolayers as a promising platform for exploring spin-orbit Dirac fermions and topological phases in two-dimensions.

  2. Basic quantum mechanics for three Dirac equations in a curved spacetime

    International Nuclear Information System (INIS)

    Arminjon, Mayeul

    2010-01-01

    We study the basic quantum mechanics for a fully general set of Dirac matrices in a curved spacetime by extending Pauli's method. We further extend this study to three versions of the Dirac equation: the standard (Dirac-Fock-Weyl or DFW) equation, and two alternative versions, both of which are based on the recently proposed linear tensor representations of the Dirac field (TRD). We begin with the current conservation: we show that the latter applies to any solution of the Dirac equation, if the field of Dirac matrices γμ satisfies a specific PDE. This equation is always satisfied for DFW with its restricted choice for the γμ matrices. It similarly restricts the choice of the γμ matrices for TRD. However, this restriction can be achieved. The frame dependence of a general Hamiltonian operator is studied. We show that in any given reference frame with minor restrictions on the spacetime metric, the axioms of quantum mechanics impose a unique form for the Hilbert space scalar product. Finally, the condition for the general Dirac Hamiltonian operator to be Hermitian is derived in a general curved spacetime. For DFW, the validity of this hermeticity condition depends on the choice of the γμ matrices. (author)

  3. A beautiful sea: P. A. M. Dirac's epistemology and ontology of the vacuum.

    Science.gov (United States)

    Wright, Aaron Sidney

    2016-07-01

    This paper charts P.A.M. Dirac's development of his theory of the electron, and its radical picture of empty space as an almost-full plenum. Dirac's Quantum Electrodynamics famously accomplished more than the unification of special relativity and quantum mechanics. It also accounted for the 'duplexity phenomena' of spectral line splitting that we now attribute to electron spin. But the extra mathematical terms that allowed for spin were not alone, and this paper charts Dirac's struggle to ignore or account for them as a sea of strange, negative-energy, particles with positive 'holes'. This work was not done in solitude, but rather in exchanges with Dirac's correspondence network. This social context for Dirac's work contests his image as a lone genius, and documents a community wrestling with the ontological consequences of their work. Unification, consistency, causality, and community are common factors in explanations in the history of physics. This paper argues on the basis of materials in Dirac's archive that --- in addition --- mathematical beauty was an epistemological factor in the development of the electron and hole theory. In fact, if we believe that Dirac's beautiful mathematics captures something of the world, then there is both an epistemology and an ontology of mathematical beauty.

  4. Renormalization of Coulomb interactions in a system of two-dimensional tilted Dirac fermions

    Science.gov (United States)

    Lee, Yu-Wen; Lee, Yu-Li

    2018-01-01

    We investigate the effects of long-ranged Coulomb interactions in a tilted Dirac semimetal in two dimensions by using the perturbative renormalization-group (RG) method. Depending on the magnitude of the tilting parameter, the undoped system can have either Fermi points (type I) or Fermi lines (type II). Previous studies usually performed the renormalization-group transformations by integrating out the modes with large momenta. This is problematic when the Fermi surface is open, like type-II Dirac fermions. In this work we study the effects of Coulomb interactions, following the spirit of Shankar [Rev. Mod. Phys. 66, 129 (1994), 10.1103/RevModPhys.66.129], by introducing a cutoff in the energy scale around the Fermi surface and integrating out the high-energy modes. For type-I Dirac fermions, our result is consistent with that of the previous work. On the other hand, we find that for type-II Dirac fermions, the magnitude of the tilting parameter increases monotonically with lowering energies. This implies the stability of type-II Dirac fermions in the presence of Coulomb interactions, in contrast with previous results. Furthermore, for type-II Dirac fermions, the velocities in different directions acquire different renormalization even if they have the same bare values. By taking into account the renormalization of the tilting parameter and the velocities due to the Coulomb interactions, we show that while the presence of a charged impurity leads only to charge redistribution around the impurity for type-I Dirac fermions, for type-II Dirac fermions, the impurity charge is completely screened, albeit with a very long screening length. The latter indicates that the temperature dependence of physical observables are essentially determined by the RG equations we derived. We illustrate this by calculating the temperature dependence of the compressibility and specific heat of the interacting tilted Dirac fermions.

  5. Dirac operator zero-modes on a torus

    International Nuclear Information System (INIS)

    Tenjinbayashi, Yasushi; Igarashi, Hiroshi; Fujiwara, Takanori

    2007-01-01

    We study Dirac operator zero-modes on a torus for gauge background with uniform field strengths. Under the basic translations of the torus coordinates the wave functions are subject to twisted periodic conditions. In suitable torus coordinates the zero-mode wave functions can be related to holomorphic functions of the complex torus coordinates. Half of the twisted boundary conditions for the holomorphic part of the zero-mode wave function can be made periodic or anti-periodic. The remaining half is until coordinate dependent but diagonal. We completely solve the twisted boundary conditions and construct the zero-mode wave functions. The chirality and the degeneracy of the zero-modes are uniquely determined by the gauge background and are consistent with the index theorem

  6. Algebric generalization of symmetry Dirac bracket. Application to field theory

    International Nuclear Information System (INIS)

    Rocha Filho, T.M. da.

    1987-01-01

    The A set of observable of a physical system with finite e infinite number of degrees of freedom and submitted to certain constraint conditions, is considered. Using jordan algebra structure on A in relation to bymmetric Poisson bracket obtained by Droz-Vincent, a jordan product is obtained on the A/I quocient set with regard to I ideal generated by constraints of second class. It is shown that this product on A/I corresponds to symmetric Dirac bracket. The developed formulation is applied to a system corresponding to harmonic oscillators, non relativistic field, Rarita-Schwinger field and the possibility of its utilization in fermionic string theories is discussed. (M.C.K.)

  7. Particle-hole symmetry and the Dirac composite fermion

    Science.gov (United States)

    Son, Dam

    Composite fermion is a central notion in quantum Hall physics. For a long time, field theories of the composite fermion suffers from the lack of particle-hole symmetry, an exact symmetry of the lowest Landau level. I will describe how recent theoretical ideas have lead to a new understanding of the physics of the half-filled Landau level. According to the new picture, the composite fermion at half filling is a Dirac particle with a nontrivial pi Berry phase around the Fermi surface. Consequences of the new proposal are outlined. Supported by Simons Investigator Grant from the Simons Foundation, NSF Grant No. DMR-1420709, and ARO MURI Grant No. 63834-PH-MUR.

  8. Quantum mechanics of Yano tensors: Dirac equation in curved spacetime

    International Nuclear Information System (INIS)

    Cariglia, Marco

    2004-01-01

    In spacetimes admitting Yano tensors, the classical theory of the spinning particle possesses enhanced worldline supersymmetry. Quantum mechanically generators of extra supersymmetries correspond to operators that in the classical limit commute with the Dirac operator and generate conserved quantities. We show that the result is preserved in the full quantum theory, that is, Yano symmetries are not anomalous. This was known for Yano tensors of rank 2, but our main result is to show that it extends to Yano tensors of arbitrary rank. We also describe the conformal Yano equation and show that is invariant under Hodge duality. There is a natural relationship between Yano tensors and supergravity theories. As the simplest possible example, we show that when the spacetime admits a Killing spinor then this generates Yano and conformal Yano tensors. As an application, we construct Yano tensors on maximally symmetric spaces: they are spanned by tensor products of Killing vectors

  9. Dirac equation in very special relativity for hydrogen atom

    Energy Technology Data Exchange (ETDEWEB)

    Maluf, R.V., E-mail: r.v.maluf@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceará (Brazil); Silva, J.E.G., E-mail: euclides@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceará (Brazil); Cruz, W.T., E-mail: wilamicruz@gmail.com [Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Campus Juazeiro do Norte, 63040-000 Juazeiro do Norte, Ceará (Brazil); Almeida, C.A.S., E-mail: carlos@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceará (Brazil)

    2014-11-10

    In this work, we study the modified Dirac equation in the framework of very special relativity (VSR). The low-energy regime is accessed and the nonrelativistic Hamiltonian is obtained. It turns out that this Hamiltonian is similar to that achieved from the Standard Model Extension (SME) via coupling of the spinor field to a Lorentz-violating term, but new features arise inherited from the non-local character of the VSR. In addition, the implications of the VSR-modified Lorentz symmetry on the spectrum of a hydrogen atom are determined by calculating the first-order energy corrections in the context of standard quantum mechanics. Among the results, we highlight that the modified Hamiltonian provides non-vanishing corrections which lift the degeneracy of the energy levels and allow us to find an upper bound upon the VSR-parameter.

  10. Dirac equation in very special relativity for hydrogen atom

    Directory of Open Access Journals (Sweden)

    R.V. Maluf

    2014-11-01

    Full Text Available In this work, we study the modified Dirac equation in the framework of very special relativity (VSR. The low-energy regime is accessed and the nonrelativistic Hamiltonian is obtained. It turns out that this Hamiltonian is similar to that achieved from the Standard Model Extension (SME via coupling of the spinor field to a Lorentz-violating term, but new features arise inherited from the non-local character of the VSR. In addition, the implications of the VSR-modified Lorentz symmetry on the spectrum of a hydrogen atom are determined by calculating the first-order energy corrections in the context of standard quantum mechanics. Among the results, we highlight that the modified Hamiltonian provides non-vanishing corrections which lift the degeneracy of the energy levels and allow us to find an upper bound upon the VSR-parameter.

  11. Dirac Particles Emission from An Elliptical Black Hole

    Directory of Open Access Journals (Sweden)

    Yuant Tiandho

    2017-03-01

    Full Text Available According to the general theory of relativiy, a black hole is defined as a region of spacetime with super-strong gravitational effects and there is nothing can escape from it. So in the classical theory of relativity, it is safe to say that black hole is a "dead" thermodynamical object. However, by using quantum mechanics theory, Hawking has shown that a black hole may emit particles. In this paper, calculation of temperature of an elliptical black hole when emitting the Dirac particles was presented. By using the complexpath method, radiation can be described as emission process in the tunneling pictures. According to relationship between probability of outgoing particle with the spectrum of black body radiation for fermion particles, temperature of the elliptical black hole can be obtained and it depend on the azimuthal angle. This result also showed that condition on the surface of elliptical black hole is not in thermal equilibrium.

  12. Propagation of Dirac electrons in Cantor graphene multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-González, R.; Martínez-Orozco, J. C.; Madrigal-Melchor, J.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, Zac. (Mexico)

    2014-05-15

    In this work we use the standard T-matrix method to study the tunneling of Dirac electrons through graphene multilayers. A graphene sheet is deposited on top of slabs of Silicon-Oxide (SiO{sub 2}) and Silicon-Carbide (SiC) substrates, in which we applied the Cantor’s series. We calculate the transmittance as a function of energy for different incident angles and different generations of the Cantor’s series. Comparing the transmittance, we found three types of self-similarity: (a) local - into generations, (b) between incident angles and (c) between generations. We also compute the angular distribution of the transmittance for fixed energies finding a self-similar pattern between generations. To our knowledge is the first time that four different self-similar patterns are presented in Cantor-based multilayers.

  13. Dirac fields in loop quantum gravity and big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Bojowald, Martin; Das, Rupam; Scherrer, Robert J.

    2008-01-01

    Big bang nucleosynthesis requires a fine balance between equations of state for photons and relativistic fermions. Several corrections to equation of state parameters arise from classical and quantum physics, which are derived here from a canonical perspective. In particular, loop quantum gravity allows one to compute quantum gravity corrections for Maxwell and Dirac fields. Although the classical actions are very different, quantum corrections to the equation of state are remarkably similar. To lowest order, these corrections take the form of an overall expansion-dependent multiplicative factor in the total density. We use these results, along with the predictions of big bang nucleosynthesis, to place bounds on these corrections and especially the patch size of discrete quantum gravity states.

  14. Dirac's Dream - the Search for the Magnetic Monopole

    International Nuclear Information System (INIS)

    Pinfold, James L.

    2010-01-01

    I first quickly summarize the history of the Magnetic Monopole leading to the quantum theory of magnetic charge that started with a 1931 paper by Paul Dirac who showed that the existence of magnetic monopoles was consistent with Maxwell's equations only if electric charges are quantized. Next I will briefly review the status of monopole searches. Last, but not least I discuss in more detail the MoEDAL experiment--the latest accelerator experiment designed to search for direct production of magnetic monopoles or dyons (particles with electric and magnetic charge) and other highly ionizing particles - such as heavy (pseudo-) stable particles with conventional electric charge - at the LHC. The MoEDAL experiment employs nuclear track-etch detectors deployed in the VELO vertex region of the LHCb experiment.

  15. The first principle calculation of two-dimensional Dirac materials

    Science.gov (United States)

    Lu, Jin

    2017-12-01

    As the size of integrated device becoming increasingly small, from the last century, semiconductor industry is facing the enormous challenge to break the Moore’s law. The development of calculation, communication and automatic control have emergent expectation of new materials at the aspect of semiconductor industrial technology and science. In spite of silicon device, searching the alternative material with outstanding electronic properties has always been a research point. As the discovery of graphene, the research of two-dimensional Dirac material starts to express new vitality. This essay studied the development calculation of 2D material’s mobility and introduce some detailed information of some approximation method of the first principle calculation.

  16. The B - L scotogenic models for Dirac neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weijian [North China Electric Power University, Department of Physics, Baoding (China); Wang, Ruihong [Hebei Agricultural University, College of Information Science and Technology, Baoding (China); Han, Zhi-Long [University of Jinan, School of Physics and Technology, Jinan, Shandong (China); Han, Jin-Zhong [Zhoukou Normal University, School of Physics and Telecommunications Engineering, Zhoukou, Henan (China)

    2017-12-15

    We construct the one-loop and two-loop scotogenic models for Dirac neutrino mass generation in the context of U(1){sub B-L} extensions of standard model. It is indicated that the total number of intermediate fermion singlets is uniquely fixed by the anomaly free condition and the new particles may have exotic B - L charges so that the direct SM Yukawa mass term anti ν{sub L}ν{sub R}φ{sup 0} and the Majorana mass term (m{sub N}/2)ν{sub R}{sup C}ν{sub R} are naturally forbidden. After the spontaneous breaking of the U(1){sub B-L} symmetry, the discrete Z{sub 2} or Z{sub 3} symmetry appears as the residual symmetry and gives rise to the stability of intermediate fields as DM candidates. Phenomenological aspects of lepton flavor violation, DM, leptogenesis and LHC signatures are discussed. (orig.)

  17. Numerical implementation of the Dirac equation on hypercube multicomputers

    International Nuclear Information System (INIS)

    Wells, J.C.

    1991-01-01

    Motivated by an interest in nonperturbative electromagnetic lepton-pair production in relativistic heavy-ion collisions, we discuss the numerical methods used in implementing a lattice solution of the time-dependent Dirac equation in three-dimensional Cartesian coordinates. Discretization is obtained using the lattice basis-spline collocation method, in which quantum-state vectors and coordinate-space operators are expressed in terms of basis-spline functions, and represented on a spatial lattice. All numerical procedures reduce to a series of matrix-vector operations which we perform on the Intel iPSC/860 hypercube multicomputer. We discuss solutions to the problems of limited node memory and node-to-node communication overhead inherent in using distributed-memory, multiple-instruction, multiple-data parallel computers

  18. Einstein-Dirac theory in spin maximum I

    International Nuclear Information System (INIS)

    Crumeyrolle, A.

    1975-01-01

    An unitary Einstein-Dirac theory, first in spin maximum 1, is constructed. An original feature of this article is that it is written without any tetrapod technics; basic notions and existence conditions for spinor structures on pseudo-Riemannian fibre bundles are only used. A coupling gravitation-electromagnetic field is pointed out, in the geometric setting of the tangent bundle over space-time. Generalized Maxwell equations for inductive media in presence of gravitational field are obtained. Enlarged Einstein-Schroedinger theory, gives a particular case of this E.D. theory. E. S. theory is a truncated E.D. theory in spin maximum 1. A close relation between torsion-vector and Schroedinger's potential exists and nullity of torsion-vector has a spinor meaning. Finally the Petiau-Duffin-Kemmer theory is incorporated in this geometric setting [fr

  19. The B-L scotogenic models for Dirac neutrino masses

    Science.gov (United States)

    Wang, Weijian; Wang, Ruihong; Han, Zhi-Long; Han, Jin-Zhong

    2017-12-01

    We construct the one-loop and two-loop scotogenic models for Dirac neutrino mass generation in the context of U(1)_{B-L} extensions of standard model. It is indicated that the total number of intermediate fermion singlets is uniquely fixed by the anomaly free condition and the new particles may have exotic B-L charges so that the direct SM Yukawa mass term \\bar{ν }_Lν _R\\overline{φ ^0} and the Majorana mass term (m_N/2)\\overline{ν _R^C}ν _R are naturally forbidden. After the spontaneous breaking of the U(1)_{B-L} symmetry, the discrete Z2 or Z3 symmetry appears as the residual symmetry and gives rise to the stability of intermediate fields as DM candidates. Phenomenological aspects of lepton flavor violation, DM, leptogenesis and LHC signatures are discussed.

  20. The singular seesaw mechanism with hierarchical Dirac neutrino mass

    International Nuclear Information System (INIS)

    Chikira, Y.; Mimura, Y.

    2000-01-01

    The singular seesaw mechanism can naturally explain the atmospheric neutrino deficit by maximal oscillations between ν μ L and ν μ R . This mechanism can also induce three different scales of the neutrino mass squared differences, which can explain the neutrino deficits of three independent experiments (solar, atmospheric, and LSND) by neutrino oscillations. In this paper we show that realistic mixing angles among the neutrinos can be obtained by introducing a hierarchy in the Dirac neutrino mass. In the case where the Majorana neutrino mass matrix has rank 2, the solar neutrino deficit is explained by vacuum oscillations between ν e and ν τ . We also consider the case where the Majorana neutrino mass matrix has rank 1. In this case, the matter enhanced Mikheyev-Smirnov-Wolfenstein solar neutrino solution is preferred as the solution of the solar neutrino deficit. (orig.)

  1. Supersymmetric Dirac particles in Riemann-Cartan space-time

    International Nuclear Information System (INIS)

    Rumpf, H.

    1981-01-01

    A natural extension of the supersymmetric model of Di Vecchia and Ravndal yields a nontrivial coupling of classical spinning particles to torsion in a Riemann-Cartan geometry. The equations of motion implied by this model coincide with a consistent classical limit of the Heisenberg equations derived from the minimally coupled Dirac equation. Conversely, the latter equation is shown to arise from canonical quantization of the classical system. The Heisenberg equations are obtained exact in all powers of h/2π and thus complete the partial results of previous WKB calculations. The author also considers such matters of principle as the mathematical realization of anticommuting variables, the physical interpretation of supersymmetry transformations, and the effective variability of rest mass. (Auth.)

  2. ILCDIRAC, a DIRAC extension for the Linear Collider community

    CERN Document Server

    Grefe, C; Sailer, A; Tsaregorodtsev, A

    2014-01-01

    ILCDIRAC is a complete distributed computing solution for the Linear Collider community. It's an extension of the Dirac system and now used by all detector concepts of the LC community. ILCDIRAC provides a unified interface to the distributed resources for the ILC Virtual Organization and provides common interfaces to all ILC applications via a simplified API. It supports the overlay of beam-induced backgrounds with minimal impact on the Storage Elements by properly scheduling the jobs attempting to access the files. ILCDIRAC has been successfully used for the CLIC Conceptual Design Report and the ILC SiD Detailed Baseline Design, and is now adopted by the LC community as the official grid production tool. Members of the CALICE collaboration also use ILCDIRAC within their own Virtual Organization.

  3. Lattice Dirac fermions on a simplicial Riemannian manifold

    Science.gov (United States)

    Brower, Richard C.; Weinberg, Evan S.; Fleming, George T.; Gasbarro, Andrew D.; Raben, Timothy G.; Tan, Chung-I.

    2017-06-01

    The lattice Dirac equation is formulated on a simplicial complex which approximates a smooth Riemann manifold by introducing a lattice vierbein on each site and a lattice spin connection on each link. Care is taken so the construction applies to any smooth D-dimensional Riemannian manifold that permits a spin connection. It is tested numerically in 2D for the projective sphere S2 in the limit of an increasingly refined sequence of triangles. The eigenspectrum and eigenvectors are shown to converge rapidly to the exact result in the continuum limit. In addition comparison is made with the continuum Ising conformal field theory on S2. Convergence is tested for the two point, ⟨ɛ (x1)ɛ (x2)⟩, and the four point, ⟨σ (x1)ɛ (x2)ɛ (x3)σ (x4)⟩, correlators for the energy, ɛ (x )=i ψ ¯(x )ψ (x ), and twist operators, σ (x ), respectively.

  4. Distinguishing Dirac/Majorana sterile neutrinos at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Dib, Claudio O. [Univ. Tecnica Federico Santa Maria, Valparaiso (Chile). CCTVal y Dept. of Physics; Kim, C.S. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Physics and IPAP; Wang, Kechen [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zhang, Jue [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics

    2016-06-15

    We study the purely leptonic decays of W{sup ±} → e{sup ±}e{sup ±}μ{sup -+}ν and μ{sup ±}μ{sup ±}e{sup -+}ν produced at the LHC, induced by sterile neutrinos with mass m{sub N} below M{sub W} in the intermediate state. Since the final state neutrino escapes detection, one cannot tell whether this process violates lepton number, what would indicate a Majorana character for the intermediate sterile neutrino. Our study shows that when the sterile neutrino mixings with electrons and muons are different enough, one can still discriminate between the Dirac and Majorana character of this intermediate neutrino by simply counting and comparing the above decay rates. After performing collider simulations and statistical analysis, we find that at the 14 TeV LHC with an integrated luminosity of 3000 fb{sup -1}, for two benchmark scenarios m{sub N}=20 GeV and 50 GeV, at least a 3σ level of exclusion on the Dirac case can be achieved for disparities as mild as e.g. vertical stroke U{sub Ne} vertical stroke {sup 2}<0.7 vertical stroke U{sub Nμ} vertical stroke {sup 2} or vertical stroke U{sub Nμ} vertical stroke {sup 2}<0.7 vertical stroke U{sub Ne} vertical stroke {sup 2}, provided that vertical stroke U{sub Ne} vertical stroke {sup 2}, vertical stroke U{sub Nμ} vertical stroke {sup 2} are both above ∝2 x 10{sup -6}.

  5. A novel quantum-mechanical interpretation of the Dirac equation

    Science.gov (United States)

    K-H Kiessling, M.; Tahvildar-Zadeh, A. S.

    2016-04-01

    A novel interpretation is given of Dirac’s ‘wave equation for the relativistic electron’ as a quantum-mechanical one-particle equation. In this interpretation the electron and the positron are merely the two different ‘topological spin’ states of a single more fundamental particle, not distinct particles in their own right. The new interpretation is backed up by the existence of such ‘bi-particle’ structures in general relativity, in particular the ring singularity present in any spacelike section of the spacetime singularity of the maximal-analytically extended, topologically non-trivial, electromagnetic Kerr-Newman (KN)spacetime in the zero-gravity limit (here, ‘zero-gravity’ means the limit G\\to 0, where G is Newton’s constant of universal gravitation). This novel interpretation resolves the dilemma that Dirac’s wave equation seems to be capable of describing both the electron and the positron in ‘external’ fields in many relevant situations, while the bi-spinorial wave function has only a single position variable in its argument, not two—as it should if it were a quantum-mechanical two-particle wave equation. A Dirac equation is formulated for such a ring-like bi-particle which interacts with a static point charge located elsewhere in the topologically non-trivial physical space associated with the moving ring particle, the motion being governed by a de Broglie-Bohm type law extracted from the Dirac equation. As an application, the pertinent general-relativistic zero-gravity hydrogen problem is studied in the usual Born-Oppenheimer approximation. Its spectral results suggest that the zero-G KN magnetic moment be identified with the so-called ‘anomalous magnetic moment of the physical electron,’ not with the Bohr magneton, so that the ring radius is only a tiny fraction of the electron’s reduced Compton wavelength.

  6. Experimental Realization of a Dirac Monopole through the Decay of an Isolated Monopole

    Directory of Open Access Journals (Sweden)

    T. Ollikainen

    2017-05-01

    Full Text Available We experimentally observe the decay dynamics of deterministically created isolated monopoles in spin-1 Bose-Einstein condensates. As the condensate undergoes a change between magnetic phases, the isolated monopole gradually evolves into a spin configuration hosting a Dirac monopole in its synthetic magnetic field. We characterize in detail the Dirac monopole by measuring the particle densities of the spin states projected along different quantization axes. Importantly, we observe the spontaneous emergence of nodal lines in the condensate density that accompany the Dirac monopole. We also demonstrate that the monopole decay accelerates in weaker magnetic field gradients.

  7. Quasi-normal modes for Dirac fields in Kerr-Newman-de Sitter black holes

    OpenAIRE

    Iantchenko, Alexei

    2015-01-01

    We provide the full asymptotic description of the quasi-normal modes (resonances) in any strip of fixed width for Dirac fields in slowly rotating Kerr-Newman-de Sitter black holes. The resonances split in a way similar to the Zeeman effect. The method is based on the extension to Dirac operators of techniques applied by Dyatlov 2011, 2012 to the (uncharged) Kerr-de Sitter black holes. We show that the mass of the Dirac field does not have effect on the two leading terms in the expansions of r...

  8. Imaginary Time Step Method to Solve the Dirac Equation with Nonlocal Potential

    International Nuclear Information System (INIS)

    Zhang Ying; Liang Haozhao; Meng Jie

    2009-01-01

    The imaginary time step (ITS) method is applied to solve the Dirac equation with nonlocal potentials in coordinate space. Taking the nucleus 12 C as an example, even with nonlocal potentials, the direct ITS evolution for the Dirac equation still meets the disaster of the Dirac sea. However, following the recipe in our former investigation, the disaster can be avoided by the ITS evolution for the corresponding Schroedinger-like equation without localization, which gives the convergent results exactly the same with those obtained iteratively by the shooting method with localized effective potentials.

  9. Dirac operators on the Taub-NUT space, monopoles and SU(2) representations

    Energy Technology Data Exchange (ETDEWEB)

    Jante, Rogelio; Schroers, Bernd J. [Maxwell Institute for Mathematical Sciences and Department of Mathematics,Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2014-01-22

    We analyse the normalisable zero-modes of the Dirac operator on the Taub-NUT manifold coupled to an abelian gauge field with self-dual curvature, and interpret them in terms of the zero modes of the Dirac operator on the 2-sphere coupled to a Dirac monopole. We show that the space of zero modes decomposes into a direct sum of irreducible SU(2) representations of all dimensions up to a bound determined by the spinor charge with respect to the abelian gauge group. Our decomposition provides an interpretation of an index formula due to Pope and provides a possible model for spin in recently proposed geometric models of matter.

  10. A sequence of Clifford algebras and three replicas of Dirac particle

    International Nuclear Information System (INIS)

    Krolikowski, W.; Warsaw Univ.

    1990-01-01

    The embedding of Dirac algebra into a sequence N=1, 2, 3,... of Clifford algebras is discussed, leading to Dirac equations with N=1 additional, electromagnetically ''hidden'' spins 1/2. It is shown that there are three and only three replicas N=1, 3, 5 of Dirac particle if the theory of relativity together with the probability interpretation of wave function is applied both to the ''visible'' spin and ''hidden'' spins, and a new ''hidden exclusion principle''is imposed on the wave function (then ''hidden'' spins add up to zero). It is appealing to explore this idea in order to explain the puzzle of three generations of lepton and quarks. (author)

  11. Local energy decay of massive Dirac fields in the 5D Myers-Perry metric

    International Nuclear Information System (INIS)

    Daudé, Thierry; Kamran, Niky

    2012-01-01

    We consider massive Dirac fields evolving in the exterior region of a five-dimensional Myers-Perry black hole and study their propagation properties. Our main result states that the local energy of such fields decays in a weak sense at late times. We obtain this result in two steps: first, using the separability of the Dirac equation, we prove the absence of a pure point spectrum for the corresponding Dirac operator; second, using a new form of the equation adapted to the local rotations of the black hole, we show by a Mourre theory argument that the spectrum is absolutely continuous. This leads directly to our main result. (paper)

  12. Full Parallel Implementation of an All-Electron Four-Component Dirac-Kohn-Sham Program.

    Science.gov (United States)

    Rampino, Sergio; Belpassi, Leonardo; Tarantelli, Francesco; Storchi, Loriano

    2014-09-09

    A full distributed-memory implementation of the Dirac-Kohn-Sham (DKS) module of the program BERTHA (Belpassi et al., Phys. Chem. Chem. Phys. 2011, 13, 12368-12394) is presented, where the self-consistent field (SCF) procedure is replicated on all the parallel processes, each process working on subsets of the global matrices. The key feature of the implementation is an efficient procedure for switching between two matrix distribution schemes, one (integral-driven) optimal for the parallel computation of the matrix elements and another (block-cyclic) optimal for the parallel linear algebra operations. This approach, making both CPU-time and memory scalable with the number of processors used, virtually overcomes at once both time and memory barriers associated with DKS calculations. Performance, portability, and numerical stability of the code are illustrated on the basis of test calculations on three gold clusters of increasing size, an organometallic compound, and a perovskite model. The calculations are performed on a Beowulf and a BlueGene/Q system.

  13. The design of d-character Dirac cones based on graphene

    International Nuclear Information System (INIS)

    Li, Yuanchang; Fang, Ying

    2014-01-01

    We introduce a new framework for designing a transition metal (TM) d-electrons dominant Dirac cone spectrum based on the hybridization between graphene and a modulated TM d impurity band. The obtained Dirac cone behaves like a ‘copy’ from graphene, insensitive to the TM coverage and order. First-principles calculations reveal such a system of Mn intercalated epitaxial graphene on SiC(0 0 0 1), dubbed manganosine. The robustness of the Dirac cone is discussed in terms of the possible imperfection of Mn atoms. The mechanism at work is expected to be rather general and may open the door to designing new d- or f-character Dirac systems. (paper)

  14. Two-Dimensional Dirac Fermions Protected by Space-Time Inversion Symmetry in Black Phosphorus

    Science.gov (United States)

    Kim, Jimin; Baik, Seung Su; Jung, Sung Won; Sohn, Yeongsup; Ryu, Sae Hee; Choi, Hyoung Joon; Yang, Bohm-Jung; Kim, Keun Su

    2017-12-01

    We report the realization of novel symmetry-protected Dirac fermions in a surface-doped two-dimensional (2D) semiconductor, black phosphorus. The widely tunable band gap of black phosphorus by the surface Stark effect is employed to achieve a surprisingly large band inversion up to ˜0.6 eV . High-resolution angle-resolved photoemission spectra directly reveal the pair creation of Dirac points and their movement along the axis of the glide-mirror symmetry. Unlike graphene, the Dirac point of black phosphorus is stable, as protected by space-time inversion symmetry, even in the presence of spin-orbit coupling. Our results establish black phosphorus in the inverted regime as a simple model system of 2D symmetry-protected (topological) Dirac semimetals, offering an unprecedented opportunity for the discovery of 2D Weyl semimetals.

  15. The Emergence of Dirac points in Photonic Crystals with Mirror Symmetry

    Science.gov (United States)

    He, Wen-Yu; Chan, C. T.

    2015-01-01

    We show that Dirac points can emerge in photonic crystals possessing mirror symmetry when band gap closes. The mechanism of generating Dirac points is discussed in a two-dimensional photonic square lattice, in which four Dirac points split out naturally after the touching of two bands with different parity. The emergence of such nodal points, characterized by vortex structure in momentum space, is attributed to the unavoidable band crossing protected by mirror symmetry. The Dirac nodes can be unbuckled through breaking the mirror symmetry and a photonic analog of Chern insulator can be achieved through time reversal symmetry breaking. Breaking time reversal symmetry can lead to unidirectional helical edge states and breaking mirror symmetry can reduce the band gap to amplify the finite size effect, providing ways to engineer helical edge states. PMID:25640993

  16. A model for pseudo-Dirac neutrinos: leptogenesis and ultra-high energy neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.H. [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon, 34051 (Korea, Republic of); Kang, Sin Kyu [Insitute for Convergence Fundamental Study, School of Liberal Arts, Seoul-Tech.,Seoul, 01811 (Korea, Republic of); Kim, C.S. [Dept. of Physics and IPAP, Yonsei University,Seoul, 120-749 (Korea, Republic of)

    2016-10-18

    We propose a model where sterile neutrinos are introduced to make light neutrinos to be pseudo-Dirac particles. It is shown how tiny mass splitting necessary for realizing pseudo-Dirac neutrinos can be achieved. Within the model, we show how leptogenesis can be successfully generated. Motivated by the recent observation of very high energy neutrino events at IceCube, we study a possibility to observe the effects of the pseudo-Dirac property of neutrinos by performing astronomical-scale baseline experiments to uncover the oscillation effects of very tiny mass splitting. We also discuss future prospect to observe the effects of the pseudo-Dirac property of neutrinos at high energy neutrino experiments.

  17. Generalized ladder operators for the Dirac-Coulomb problem via SUSY QM

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima; Universidade Federal de Campina Grande, PB

    2003-12-01

    The supersymmetry in quantum mechanics and shape invariance condition are applied as an algebraic method to solving the Dirac-Coulomb problem. The ground state and the excited states are investigated via new generalized ladder operators. (author)

  18. Dirac quasinormal modes of two-dimensional charged dilatonic black holes

    Energy Technology Data Exchange (ETDEWEB)

    Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2014-06-15

    We study charged fermionic perturbations in the background of two-dimensional charged dilatonic black holes, and we present the exact Dirac quasinormal modes. Also, we study the stability of these black holes under charged fermionic perturbations. (orig.)

  19. Dynamical polarizability, screening and plasmons in one, two and three dimensional massive Dirac systems

    International Nuclear Information System (INIS)

    Thakur, Anmol; Agarwal, Amit; Sachdeva, Rashi

    2017-01-01

    We study the density–density response function of a collection of charged massive Dirac particles and present analytical expressions for the dynamical polarization function in one, two and three dimensions. The polarization function is then used to find the dispersion of the plasmon modes, and electrostatic screening of Coulomb interactions within the random phase approximation. We find that for massive Dirac systems, the oscillating screened potential (or density) decays as r −2 and r −3 in two and three dimensions respectively, and as r −1 for one dimensional non-interacting systems. However for massless Dirac systems there is no electrostatic screening or Friedel oscillation in one dimension, and the oscillating screened potential decays as r −3 and r −4 , in two and three dimensions respectively. Our analytical results for the polarization function will be useful for exploring the physics of massive and massless Dirac electrons in different experimental systems with varying dimensionality. (paper)

  20. Giant Planar Hall Effect in the Dirac Semimetal ZrTe5

    KAUST Repository

    Li, Peng

    2018-03-03

    Exploration and understanding of exotic topics in quantum physics such as Dirac and Weyl semimetals have become highly popular in the area of condensed matter. It has recently been predicted that a theoretical giant planar Hall effect can be induced by a chiral anomaly in Dirac and Weyl semimetals. ZrTe5 is considered an intriguing Dirac semimetal at the boundary of weak and strong topological insulators, though this claim is still controversial. In this study, we report the observation in ZrTe5 of giant planar Hall resistivity. We have also noted three different dependences of this resistivity on the magnetic field, as predicted by theory, maximum planar Hall resistivity occurs at the Lifshitz transition temperature. In addition, we have discovered a nontrivial Berry phase, as well as a chiral-anomaly-induced negative longitudinal and a giant in-plane anisotropic magnetoresistance. All these experimental observations coherently demonstrate that ZrTe5 is a Dirac semimetal.

  1. Exact symplectic structures and a classical model for the Dirac electron

    International Nuclear Information System (INIS)

    Rawnsley, J.

    1992-01-01

    We show how the classical model for the Dirac electron of Barut and coworkers can be obtained as a Hamiltonian theory by constructing an exact symplectic form on the total space of the spin bundle over spacetime. (orig.)

  2. Fermi field and Dirac oscillator in a Som-Raychaudhuri space-time

    Science.gov (United States)

    de Montigny, Marc; Zare, Soroush; Hassanabadi, Hassan

    2018-05-01

    We investigate the relativistic dynamics of a Dirac field in the Som-Raychaudhuri space-time, which is described by a Gödel-type metric and a stationary cylindrical symmetric solution of Einstein field equations for a charged dust distribution in rigid rotation. In order to analyze the effect of various physical parameters of this space-time, we solve the Dirac equation in the Som-Raychaudhuri space-time and obtain the energy levels and eigenfunctions of the Dirac operator by using the Nikiforov-Uvarov method. We also examine the behaviour of the Dirac oscillator in the Som-Raychaudhuri space-time, in particular, the effect of its frequency and the vorticity parameter.

  3. The variability of the gravitational constant and the mass-energy conservation in the Dirac cosmology

    International Nuclear Information System (INIS)

    Rybak, M.; Krygier, B.; Krempec-Krygier, J.

    1985-01-01

    The Hubble-Sandage diagrams for the Dirac cosmology have been discussed in the case of the modified dependence of luminosity upon the gravitational parameter G and mass. It is shown that the observational data for galaxies and the brightest quasars can be explained by the Dirac cosmology with the reasonably chosen changes of the gravitational parameter and of mass with the time. 41 refs., 2 figs. (author)

  4. Darboux partners of pseudoscalar Dirac potentials associated with exceptional orthogonal polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Halberg, Axel, E-mail: xbataxel@gmail.com [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary, IN 46408 (United States); Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, IN 46408 (United States); Roy, Barnana, E-mail: barnana@isical.ac.in [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India)

    2014-10-15

    We introduce a method for constructing Darboux (or supersymmetric) pairs of pseudoscalar and scalar Dirac potentials that are associated with exceptional orthogonal polynomials. Properties of the transformed potentials and regularity conditions are discussed. As an application, we consider a pseudoscalar Dirac potential related to the Schrödinger model for the rationally extended radial oscillator. The pseudoscalar partner potentials are constructed under the first- and second-order Darboux transformations.

  5. Darboux partners of pseudoscalar Dirac potentials associated with exceptional orthogonal polynomials

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel; Roy, Barnana

    2014-01-01

    We introduce a method for constructing Darboux (or supersymmetric) pairs of pseudoscalar and scalar Dirac potentials that are associated with exceptional orthogonal polynomials. Properties of the transformed potentials and regularity conditions are discussed. As an application, we consider a pseudoscalar Dirac potential related to the Schrödinger model for the rationally extended radial oscillator. The pseudoscalar partner potentials are constructed under the first- and second-order Darboux transformations

  6. Spectral correlations of the massive QCD Dirac operator at finite temperature

    International Nuclear Information System (INIS)

    Seif, Burkhard; Wettig, Tilo; Guhr, Thomas

    1999-01-01

    We use the graded eigenvalue method, a variant of the supersymmetry technique, to compute the universal spectral correlations of the QCD Dirac operator in the presence of massive dynamical quarks. The calculation is done for the chiral Gaussian unitary ensemble of random matrix theory with an arbitrary Hermitian matrix added to the Dirac matrix. This case is of interest for schematic models of OCD at finite temperature

  7. Quantum tunneling effect of Dirac particles in a Schwarzschild-Godel space-time

    Energy Technology Data Exchange (ETDEWEB)

    Qi, D.-J.; Li, S.-M., E-mail: qidejiang0504@126.com [Shenyang Inst. of Engineering, Shenyang (China); Ru, H.-Q. [Northeastern Univ., Shenyang (China)

    2010-11-15

    In this paper, motivated by the Kerner and Man fermion tunneling method of 4-dimensional black holes, we further improve the analysis to investigate the quantum tunneling effect of Dirac particles from the five-dimensional Schwarzschild-Godel black hole. We successfully construct a set of appropriate matrices γ{sup μ} for the general covariant Dirac equation and derive the tunneling probability and Hawking temperature, which is exactly the same as that obtained by other methods. (author)

  8. The spectral density of the QCD Dirac operator and patterns of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Toublan, D.; Verbaarschot, J.J.M.

    1999-01-01

    We study the spectrum of the QCD Dirac operator for two colors with fermions in the fundamental representation and for two or more colors with adjoint fermions. For N f flavors, the chiral flavor symmetry of these theories is spontaneously broken according to SU (2N f → Sp (2N f ) and SU (N f → O (N f ), respectively, rather than the symmetry breaking pattern SU (N f ) x SU (N f ) → SU (N f ) for QCD with three or more colors and fundamental fermions. In this paper we study the Dirac spectrum for the first two symmetry breaking patterns. Following previous work for the third case we find the Dirac spectrum in the domain λ QCD by means of partially quenched chiral perturbation theory. In particular, this result allows us to calculate the slope of the Dirac spectrum at λ = 0. We also show that for λ 2 Λ QCD (wing L the linear size of the system) the Dirac spectrum is given by a chiral Random Matrix Theory with the symmetries of the Dirac operator

  9. Investigating and improving student understanding of quantum mechanical observables and their corresponding operators in Dirac notation

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2018-01-01

    In quantum mechanics, for every physical observable, there is a corresponding Hermitian operator. According to the most common interpretation of quantum mechanics, measurement of an observable collapses the quantum state into one of the possible eigenstates of the operator and the corresponding eigenvalue is measured. Since Dirac notation is an elegant notation that is commonly used in upper-level quantum mechanics, it is important that students learn to express quantum operators corresponding to observables in Dirac notation in order to apply the quantum formalism effectively in diverse situations. Here we focus on an investigation that suggests that, even though Dirac notation is used extensively, many advanced undergraduate and PhD students in physics have difficulty expressing the identity operator and other Hermitian operators corresponding to physical observables in Dirac notation. We first describe the difficulties students have with expressing the identity operator and a generic Hermitian operator corresponding to an observable in Dirac notation. We then discuss how the difficulties found via written surveys and individual interviews were used as a guide in the development of a quantum interactive learning tutorial (QuILT) to help students develop a good grasp of these concepts. The QuILT strives to help students become proficient in expressing the identity operator and a generic Hermitian operator corresponding to an observable in Dirac notation. We also discuss the effectiveness of the QuILT based on in-class evaluations.

  10. Tensile strained gray tin: Dirac semimetal for observing negative magnetoresistance with Shubnikov-de Haas oscillations

    Science.gov (United States)

    Huang, Huaqing; Liu, Feng

    2017-05-01

    The extremely stringent requirement on material quality has hindered the investigation and potential applications of exotic chiral magnetic effect in Dirac semimetals. Here, we propose that gray tin is a perfect candidate for observing the chiral anomaly effect and Shubnikov-de-Haas (SdH) oscillation at relatively low magnetic field. Based on effective k .p analysis and first-principles calculations, we discover that gray tin becomes a Dirac semimetal under tensile uniaxial strain, in contrast to a topological insulator under compressive uniaxial strain as known before. In this newly found Dirac semimetal state, two Dirac points which are tunable by tensile [001] strains lie in the kz axis and Fermi arcs appear in the (010) surface. Due to the low carrier concentration and high mobility of gray tin, a large chiral anomaly induced negative magnetoresistance and a strong SdH oscillation are anticipated in this half of the strain spectrum. Comparing to other Dirac semimetals, the proposed Dirac semimetal state in the nontoxic elemental gray tin can be more easily manipulated and accurately controlled. We envision that gray tin provides a perfect platform for strain engineering of chiral magnetic effects by sweeping through the strain spectrum from positive to negative and vice versa.

  11. Transmission properties of Dirac electrons through Cantor monolayer graphene superlattices

    Directory of Open Access Journals (Sweden)

    R. Rodríguez-González

    2014-01-01

    Full Text Available En este trabajo usamos el método de la matriz de transferencia para estudiar el tunelamiento de los electrones de Dirac a través de superredes aperiodicas en grafeno. Consideramos una hoja de grafeno depositada encima de bloques de sustratos de Óxido de Silicio (SiO2 y Carburo de Silicio (SiC, en los cuales aplicamos la serie de Cantor. Calculamos la transmitancia para diferentes parámetros fundamentales tales como: ancho de partida, energía de incidencia, ángulo de incidencia y número de generación de la serie de Cantor. En este caso, la transmitancia como función de la energía presenta rasgos autosimilares al variar el número de generación. También computamos la distribución angular de la transmitancia para energías fijas econtrando un patrón autosimilar entre generaciones. Por último, calculamos los factores de escala para algunos espectros de la transmitancia, los cuales efectivamente muestran escalabilidad.

  12. Enhanced inflation in the Dirac-Born-Infeld framework

    International Nuclear Information System (INIS)

    Chimento, Luis P.; Richarte, Martin G.; Lazkoz, Ruth

    2011-01-01

    We consider the Einstein equations within the Dirac-Born-Infield (DBI) scenario for a spatially flat Friedmann-Robertson-Walker (FRW) spacetime without a cosmological constant. We derive the inflationary scenario by applying the symmetry transformations which preserve the form of the Friedmann and conservation equations. These form invariance transformations generate a symmetry group parametrized by the Lorentz factor γ. We explicitly obtain an inflationary scenario by the cooperative effect of adding energy density into the Friedmann equation. For the case of a constant Lorentz factor, and under the slow roll assumption, we find the transformation rules for the scalar and tensor power spectra of perturbations as well as their ratio under the action of the form invariance symmetry group. Within this case and due to its relevance for the inflationary paradigm, we find the general solution of the dynamical equations for a DBI field driven by an exponential potential and show a broad set of inflationary solutions. The general solution can be split into three subsets and all these behave asymptotically as a power-law solution at early and at late times.

  13. DIRAC data management: consistency, integrity and coherence of data

    Science.gov (United States)

    Bargiotti, M.; Smith, A. C.

    2008-07-01

    The DIRAC Data Management System (DMS) relies on both WLCG (Worldwide LHC Computing Grid Project) Data Management services (LCG File Catalogues, Storage Resource Managers and File Transfer System (FTS)) and LHCb specific components (Bookkeeping database). The complexity of both the DMS and its interactions with numerous WLCG components as well as the instability of facilities concerned, has frequently turned into unexpected problems in data moving and/or data registration, preventing a coherent picture of datasets. Several developments in LHCb have been made in order to avoid data corruptions, missing data incoherence and inconsistences among Catalogues and physical storage both through safety measures at data management level (failover mechanism, check sums, roll back mechanism) and extensive background checks. In this paper all the tools developed for checking data integrity and consistency will be presented as well as a Storage Usage agent, whose aim is to produce an up-to-date accounting of all LHCb storage usage using the LFC mirror database. The goal of this activity is the development of a generic tool suite able to categorize, analyze and systematically cure the disparate problems affecting the DMS in order to maintain a consistent picture of the main catalogues (Bookkeeping and LFC) and the Storage Elements.

  14. Negative magnetoresistance in Dirac semimetal Cd3As2.

    Science.gov (United States)

    Li, Hui; He, Hongtao; Lu, Hai-Zhou; Zhang, Huachen; Liu, Hongchao; Ma, Rong; Fan, Zhiyong; Shen, Shun-Qing; Wang, Jiannong

    2016-01-08

    A large negative magnetoresistance (NMR) is anticipated in topological semimetals in parallel magnetic fields, demonstrating the chiral anomaly, a long-sought high-energy-physics effect, in solid-state systems. Recent experiments reveal that the Dirac semimetal Cd3As2 has the record-high mobility and positive linear magnetoresistance in perpendicular magnetic fields. However, the NMR has not yet been unveiled. Here we report the observation of NMR in Cd3As2 microribbons in parallel magnetic fields up to 66% at 50 K and visible at room temperatures. The NMR is sensitive to the angle between magnetic and electrical fields, robust against temperature and dependent on the carrier density. The large NMR results from low carrier densities in our Cd3As2 samples, ranging from 3.0 × 10(17) cm(-3) at 300 K to 2.2 × 10(16) cm(-3) below 50 K. We therefore attribute the observed NMR to the chiral anomaly. In perpendicular magnetic fields, a positive linear magnetoresistance up to 1,670% at 14 T and 2 K is also observed.

  15. Integration of cloud, grid and local cluster resources with DIRAC

    International Nuclear Information System (INIS)

    Fifield, Tom; Sevior, Martin; Carmona, Ana; Casajús, Adrián; Graciani, Ricardo

    2011-01-01

    Grid computing was developed to provide users with uniform access to large-scale distributed resources. This has worked well, however there are significant resources available to the scientific community that do not follow this paradigm - those on cloud infrastructure providers, HPC supercomputers or local clusters. DIRAC (Distributed Infrastructure with Remote Agent Control) was originally designed to support direct submission to the Local Resource Management Systems (LRMS) of such clusters for LHCb, matured to support grid workflows and has recently been updated to support Amazon's Elastic Compute Cloud. This raises a number of new possibilities - by opening avenues to new resources, virtual organisations can change their resources with usage patterns and use these dedicated facilities for a given time. For example, user communities such as High Energy Physics experiments, have computing tasks with a wide variety of requirements in terms of CPU, data access or memory consumption, and their usage profile is never constant throughout the year. Having the possibility to transparently absorb peaks on the demand for these kinds of tasks using Cloud resources could allow a reduction in the overall cost of the system. This paper investigates interoperability by following a recent large-scale production exercise utilising resources from these three different paradigms, during the 2010 Belle Monte Carlo run. Through this, it discusses the challenges and opportunities of such a model.

  16. Meeting Earth Observation Requirements for Global Agricultural Monitoring: An Evaluation of the Revisit Capabilities of Current and Planned Moderate Resolution Optical Earth Observing Missions

    Directory of Open Access Journals (Sweden)

    Alyssa K. Whitcraft

    2015-01-01

    Full Text Available Agriculture is a highly dynamic process in space and time, with many applications requiring data with both a relatively high temporal resolution (at least every 8 days and fine-to-moderate (FTM < 100 m spatial resolution. The relatively infrequent revisit of FTM optical satellite observatories coupled with the impacts of cloud occultation have translated into a barrier for the derivation of agricultural information at the regional-to-global scale. Drawing upon the Group on Earth Observations Global Agricultural Monitoring (GEOGLAM Initiative’s general satellite Earth observation (EO requirements for monitoring of major production areas, Whitcraft et al. (this issue have described where, when, and how frequently satellite data acquisitions are required throughout the agricultural growing season at 0.05°, globally. The majority of areas and times of year require multiple revisits to probabilistically yield a view at least 70%, 80%, 90%, or 95% clear within eight days, something that no present single FTM optical observatory is capable of delivering. As such, there is a great potential to meet these moderate spatial resolution optical data requirements through a multi-space agency/multi-mission constellation approach. This research models the combined revisit capabilities of seven hypothetical constellations made from five satellite sensors—Landsat 7 Enhanced Thematic Mapper (Landsat 7 ETM+, Landsat 8 Operational Land Imager and Thermal Infrared Sensor (Landsat 8 OLI/TIRS, Resourcesat-2 Advanced Wide Field Sensor (Resourcesat-2 AWiFS, Sentinel-2A Multi-Spectral Instrument (MSI, and Sentinel-2B MSI—and compares these capabilities with the revisit frequency requirements for a reasonably cloud-free clear view within eight days throughout the agricultural growing season. Supplementing Landsat 7 and 8 with missions from different space agencies leads to an improved capacity to meet requirements, with Resourcesat-2 providing the largest

  17. A Theory of Evolving Natural Constants Based on the Unification of General Theory of Relativity and Dirac's Large Number Hypothesis

    International Nuclear Information System (INIS)

    Peng Huanwu

    2005-01-01

    Taking Dirac's large number hypothesis as true, we have shown [Commun. Theor. Phys. (Beijing, China) 42 (2004) 703] the inconsistency of applying Einstein's theory of general relativity with fixed gravitation constant G to cosmology, and a modified theory for varying G is found, which reduces to Einstein's theory outside the gravitating body for phenomena of short duration in small distances, thereby agrees with all the crucial tests formerly supporting Einstein's theory. The modified theory, when applied to the usual homogeneous cosmological model, gives rise to a variable cosmological tensor term determined by the derivatives of G, in place of the cosmological constant term usually introduced ad hoc. Without any free parameter the theoretical Hubble's relation obtained from the modified theory seems not in contradiction to observations, as Dr. Wang's preliminary analysis of the recent data indicates [Commun. Theor. Phys. (Beijing, China) 42 (2004) 703]. As a complement to Commun. Theor. Phys. (Beijing, China) 42 (2004) 703 we shall study in this paper the modification of electromagnetism due to Dirac's large number hypothesis in more detail to show that the approximation of geometric optics still leads to null geodesics for the path of light, and that the general relation between the luminosity distance and the proper geometric distance is still valid in our theory as in Einstein's theory, and give the equations for homogeneous cosmological model involving matter plus electromagnetic radiation. Finally we consider the impact of the modification to quantum mechanics and statistical mechanics, and arrive at a systematic theory of evolving natural constants including Planck's h-bar as well as Boltzmann's k B by finding out their cosmologically combined counterparts with factors of appropriate powers of G that may remain truly constant to cosmologically long time.

  18. Constructing a large variety of Dirac-cone materials in the Bi(1-x)Sb(x) thin film system.

    Science.gov (United States)

    Tang, Shuang; Dresselhaus, Mildred S

    2012-12-21

    We theoretically predict that a large variety of Dirac-cone materials can be constructed in Bi(1-x)Sb(x) thin films and we here show how to construct single-, bi- and tri-Dirac-cone materials with various amounts of wave vector anisotropy. These different types of Dirac cones can be of special interest to electronic device design, quantum electrodynamics and other fields.

  19. A global simulation approach to optics, lighting, rendering, and human perception for the improvement of safety in automobiles

    Science.gov (United States)

    Delacour, Jacques; Fournier, Laurent; Menu, Jean-Pierre

    2005-02-01

    In order to provide optimum comfort and safety conditions, information must be seen as clearly as possible by the driver and in all lighting conditions, by day and by night. Therefore, it is becoming fundamental to anticipate in order to predict what the driver will see in a vehicle, in various configurations of scene and observation conditions, so as to optimize the lighting, the ergonomics of the interfaces and the choice of surrounding materials which can be a source of reflection. This information and choices which will depend on it, make it necessary to call upon simulation techniques capable of modeling, globally and simultaneously, the entire light phenomena: surrounding lighting, display technologies, the inside lighting, taking into consideration the multiple reflections caused by the reflection of this light inside the vehicle. This has been the object of an important development, which results in the solution SPEOS Visual Ergonomics, led by company OPTIS. A unique human vision model was developed in collaboration with worldwide specialists in visual perception to transform spectral luminance information into perceived visual information. This model, based on physiological aspects, takes into account the response of the eye to light levels, to color, to contrast, and to ambient lighting, as well as to rapid changes in surrounding luminosity, in accordance with the response of the retina. This unique tool, and information now accessible, enable ergonomists and designers of on board systems to improve the conditions of global visibility, and in so doing the global perception of the environment that the driver will have.

  20. Profiling, analisi delle prestazioni e proposte per l'ottimizzazione del RDBMS MySQL utilizzato dal progetto DIRAC/LHCbDIRAC

    CERN Document Server

    Mesin, Alberto

    Il lavoro presentato in questa tesi riguarda lo studio, l'analisi e la formula- zione di proposte per il miglioramento del database di back-end del progetto DIRAC/LHCbDIRAC. LHCbDIRAC, basato su DIRAC, e il sistema di sot- tomissione per l'accesso all'infrastruttura distribuita Grid per l'esperimento LHCb del CERN. Ad esso e adata la gestione dei job di Produzione, Mer- ge, Ricostruzione degli Eventi e Analisi per i dati sperimentali e simulati. Il sistema utilizza un RDBMS MySQL per la gestione di numerosi databa- se. La volonta di passare ad un motore relazionale e transazionale per la denizione schemi e la possibilita che, in un recente futuro, il DBMS possa rappresentare un serio limite alle prestazioni del sistema stesso hanno reso necessario questo studio. Il lavoro svolto si e concentrato sul proling di un singolo schema relazionale per il quale sono stati utilizzati metodi di analisi e fornite soluzioni ai problemi riscontrati il quanto piu possibile generali e per tanto validi per l'intero sistema. L...

  1. An Initial Analysis of the Pixel-Level Uncertainties in Global MODIS Cloud Optical Thickness and Effective Particle Size Retrievals

    Science.gov (United States)

    Platnick, S.; King, Michael D.; Wind, B.; Gray, M. A.; Hubanks, P. A.

    2004-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of cloud optical thickness and effective particle radius employ well-known solar reflectance techniques using pre-calculated reflectance look-up tables. We evaluate the quantitative uncertainty in simultaneous retrievals of cloud optical thickness and particle size for this type of algorithm. The technique uses sensitivity calculations derived from the reflectance look-up tables, coupled with estimates for the effect of various error terms on the uncertainty in inferring the actual cloud-top reflectance. The error terms include the effects of instrument calibration, surface spectral albedo, and atmospheric corrections on both water and ice cloud retrievals. Because particle shapes in ice clouds are highly variable, the effect of particle shape is analyzed separately with a more approximate method. Results will deal exclusively with pixel-level uncertainties associated with plane-parallel clouds; real-world radiative departures from a plane-parallel model are an additional consideration. While we demonstrate the uncertainty technique with operational 1 km MODIS retrievals from the Terra and Aqua satellite platforms, the technique is applicable to any reflectance-based satellite- or air-borne sensor retrieval using similar spectral channels.

  2. Symmetry energy, its density slope, and neutron-proton effective mass splitting at normal density extracted from global nucleon optical potentials

    International Nuclear Information System (INIS)

    Xu Chang; Li Baoan; Chen Liewen

    2010-01-01

    Based on the Hugenholtz-Van Hove theorem, it is shown that both the symmetry energy E sym (ρ) and its density slope L(ρ) at normal density ρ 0 are completely determined by the nucleon global optical potentials. The latter can be extracted directly from nucleon-nucleus scatterings, (p,n) charge-exchange reactions, and single-particle energy levels of bound states. Averaging all phenomenological isovector nucleon potentials constrained by world data available in the literature since 1969, the best estimates of E sym (ρ 0 )=31.3 MeV and L(ρ 0 )=52.7 MeV are simultaneously obtained. Moreover, the corresponding neutron-proton effective mass splitting in neutron-rich matter of isospin asymmetry δ is estimated to be (m n * -m p * )/m=0.32δ.

  3. Pythagoras's theorem on a two-dimensional lattice from a `natural' Dirac operator and Connes's distance formula

    Science.gov (United States)

    Dai, Jian; Song, Xing-Chang

    2001-07-01

    One of the key ingredients of Connes's noncommutative geometry is a generalized Dirac operator which induces a metric (Connes's distance) on the pure state space. We generalize such a Dirac operator devised by Dimakis et al, whose Connes distance recovers the linear distance on an one-dimensional lattice, to the two-dimensional case. This Dirac operator has the local eigenvalue property and induces a Euclidean distance on this two-dimensional lattice, which is referred to as `natural'. This kind of Dirac operator can be easily generalized into any higher-dimensional lattices.

  4. A convergent 2D finite-difference scheme for the Dirac-Poisson system and the simulation of graphene

    KAUST Repository

    Brinkman, Daniel

    2014-01-01

    We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac-Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac-Poisson system where potentials act as beam splitters or Veselago lenses. © 2013 Elsevier Inc.

  5. Correlated Dirac semimetallic state with unusual positive magnetoresistance in strain-free perovskite SrIrO3

    Science.gov (United States)

    Fujioka, J.; Okawa, T.; Yamamoto, A.; Tokura, Y.

    2017-03-01

    We investigated magnetotransport properties and charge dynamics of strain-free perovskite SrIrO3. Both the longitudinal and transverse magnetoresistivity (MR) are significantly enhanced with decreasing temperature, in accord with the evolution of the Dirac semimetallic state. The electron correlation effect in the Dirac state shows up as a dramatic change in charge dynamics with temperature and as an enhanced paramagnetic susceptibility. We propose that the field-induced topological transition of the Dirac node coupled to the enhanced paramagnetism causes the unique MR of correlated Dirac electrons.

  6. Leptonic Dirac CP violation predictions from residual discrete symmetries

    Directory of Open Access Journals (Sweden)

    I. Girardi

    2016-01-01

    Full Text Available Assuming that the observed pattern of 3-neutrino mixing is related to the existence of a (lepton flavour symmetry, corresponding to a non-Abelian discrete symmetry group Gf, and that Gf is broken to specific residual symmetries Ge and Gν of the charged lepton and neutrino mass terms, we derive sum rules for the cosine of the Dirac phase δ of the neutrino mixing matrix U. The residual symmetries considered are: i Ge=Z2 and Gν=Zn, n>2 or Zn×Zm, n,m≥2; ii Ge=Zn, n>2 or Zn×Zm, n,m≥2 and Gν=Z2; iii Ge=Z2 and Gν=Z2; iv Ge is fully broken and Gν=Zn, n>2 or Zn×Zm, n,m≥2; and v Ge=Zn, n>2 or Zn×Zm, n,m≥2 and Gν is fully broken. For given Ge and Gν, the sum rules for cos⁡δ thus derived are exact, within the approach employed, and are valid, in particular, for any Gf containing Ge and Gν as subgroups. We identify the cases when the value of cos⁡δ cannot be determined, or cannot be uniquely determined, without making additional assumptions on unconstrained parameters. In a large class of cases considered the value of cos⁡δ can be unambiguously predicted once the flavour symmetry Gf is fixed. We present predictions for cos⁡δ in these cases for the flavour symmetry groups Gf=S4, A4, T′ and A5, requiring that the measured values of the 3-neutrino mixing parameters sin2⁡θ12, sin2⁡θ13 and sin2⁡θ23, taking into account their respective 3σ uncertainties, are successfully reproduced.

  7. Dirac quantization of the Pais-Uhlenbeck fourth order oscillator

    International Nuclear Information System (INIS)

    Mannheim, Philip D.; Davidson, Aharon

    2005-01-01

    As a model, the Pais-Uhlenbeck fourth order oscillator with equation of motion: (d 4 q/dt 4 )+(ω 1 2 +ω 2 2 )(d 2 q/dt 2 )+ω 1 2 ω 2 2 q=0 is a quantum-mechanical prototype of a field theory containing both second and fourth order derivative terms. With its dynamical degrees of freedom obeying constraints due to the presence of higher order time derivatives, the model cannot be quantized canonically. We thus quantize it using the method of Dirac constraints to construct the correct quantum-mechanical Hamiltonian for the system, and find that the Hamiltonian diagonalizes in the positive and negative norm states that are characteristic of higher derivative field theories. However, we also find that the oscillator commutation relations become singular in the ω 1 →ω 2 limit, a limit which corresponds to a prototype of a pure fourth order theory. Thus the particle content of the ω 1 =ω 2 theory cannot be inferred from that of the ω 1 ≠ω 2 theory; and in fact in the ω 1 →ω 2 limit we find that all of the ω 1 ≠ω 2 negative norm states move off shell, with the spectrum of asymptotic in and out states of the equal frequency theory being found to be completely devoid of states with either negative energy or negative norm. As a byproduct of our work we find a Pais-Uhlenbeck analog of the zero energy theorem of Boulware, Horowitz, and Strominger, and show how in the equal frequency Pais-Uhlenbeck theory the theorem can be transformed into a positive energy theorem instead

  8. Temperature equilibration rate with Fermi-Dirac statistics

    International Nuclear Information System (INIS)

    Brown, Lowell S.; Singleton, Robert L. Jr.

    2007-01-01

    We calculate analytically the electron-ion temperature equilibration rate in a fully ionized, weakly to moderately coupled plasma, using an exact treatment of the Fermi-Dirac electrons. The temperature is sufficiently high so that the quantum-mechanical Born approximation to the scattering is valid. It should be emphasized that we do not build a model of the energy exchange mechanism, but rather, we perform a systematic first principles calculation of the energy exchange. At the heart of this calculation lies the method of dimensional continuation, a technique that we borrow from quantum field theory and use in a different fashion to regulate the kinetic equations in a consistent manner. We can then perform a systematic perturbation expansion and thereby obtain a finite first-principles result to leading and next-to-leading order. Unlike model building, this systematic calculation yields an estimate of its own error and thus prescribes its domain of applicability. The calculational error is small for a weakly to moderately coupled plasma, for which our result is nearly exact. It should also be emphasized that our calculation becomes unreliable for a strongly coupled plasma, where the perturbative expansion that we employ breaks down, and one must then utilize model building and computer simulations. Besides providing different and potentially useful results, we use this calculation as an opportunity to explain the method of dimensional continuation in a pedagogical fashion. Interestingly, in the regime of relevance for many inertial confinement fusion experiments, the degeneracy corrections are comparable in size to the subleading quantum correction below the Born approximation. For consistency, we therefore present this subleading quantum-to-classical transition correction in addition to the degeneracy correction

  9. Expressing Solutions of the Dirac Equation in Terms of Feynman Path Integral

    CERN Document Server

    Hose, R D

    2006-01-01

    Using the separation of the variables technique, the free particle solutions of the Dirac equation in the momentum space are shown to be actually providing the definition of Delta function for the Schr dinger picture. Further, the said solution is shown to be derivable on the sole strength of geometrical argument that the Dirac equation for free particle is an equation of a plane in momentum space. During the evolution of time in the Schr dinger picture, the normal to the said Dirac equation plane is shown to be constantly changing in direction due to the uncertainty principle and thereby, leading to a zigzag path for the Dirac particle in the momentum space. Further, the time evolution of the said Delta function solutions of the Dirac equation is shown to provide Feynman integral of all such zigzag paths in the momentum space. Towards the end of the paper, Feynman path integral between two fixed spatial points in the co-ordinate space during a certain time interv! al is shown to be composed, in time sequence...

  10. Double Dirac cone in two-dimensional phononic crystals beyond circular cells

    Science.gov (United States)

    Dai, Hongqing; Liu, Tingting; Jiao, Junrui; Xia, Baizhan; Yu, Dejie

    2017-04-01

    A double Dirac cone plays a significant role in the design of zero-refractive-index metamaterials without phase variation and topological insulators with pseudospin states. We present a study on the formation of a double Dirac cone in two-dimensional phononic crystals consisting of either hexagonal or triangular columns in air. We arranged hexagonal and triangular columns separately in a honeycomb lattice to explore the influence of phononic crystal symmetry on the formation of the double Dirac cone. The results show that phononic crystals forming a honeycomb lattice with C6v or C6 symmetry induce an accidental degeneracy, but C3v and C3 cannot. We also demonstrate that by varying the filling ratio of the hexagonal columns, a topological phase transformation induced by energy band inversion with dipolar and quadrupolar states occurs near the double Dirac cone. Transmission properties for acoustic tunneling and waveform shaping are confirmed in two numerical simulation examples. A discussion is given on the formation of the double Dirac cone in different phononic crystal symmetries in a honeycomb lattice. The conclusions suggest a new route for designing topological and zero-refractive-index acoustic devices.

  11. The Dirac equation in external fields: Variable separation in Cartesian coordinates

    International Nuclear Information System (INIS)

    Shishkin, G.V.; Cabos, W.D.

    1991-01-01

    The method of separation of variables in the Dirac equation proposed in an earlier work by one of the present authors [J. Math. Phys. 30, 2132 (1989)] is developed for the complete set of interactions of the Dirac particle. The essence of the method consists of the separation of the first-order matrix differential operators that define the dependence of the Dirac bispinor on the related variables, but commutation of such operators with or between the operator of the equation is not assumed. This approach, which is perfectly justified in the presence of gravitational [Theor. Math. Phys. 70, 204 (1987)] or vector fields [J. Math. Phys. 30, 2132 (1989)], permits one to find all the possibilities of separation of variables in the Dirac equation in the case of the most general set of external fields. The complete set of interactions of the Dirac particle is determined by the symmetry group of equations, namely, viz. the SU(4) group. The interactions are scalar, vector, tensor, pseudovector and pseudoscalar. The analysis in this article is limited to Cartesian coordinates. The corresponding results for the general curvilinear coordinates will be presented in a future paper

  12. The total angular momentum algebra related to the S3 Dunkl Dirac equation

    Science.gov (United States)

    De Bie, Hendrik; Oste, Roy; Van der Jeugt, Joris

    2018-02-01

    We consider the symmetry algebra generated by the total angular momentum operators, appearing as constants of motion of the S3 Dunkl Dirac equation. The latter is a deformation of the Dirac equation by means of Dunkl operators, in our case associated to the root system A2, with corresponding Weyl group S3, the symmetric group on three elements. The explicit form of the symmetry algebra in this case is a one-parameter deformation of the classical total angular momentum algebra so(3) , incorporating elements of S3. This was obtained using recent results on the symmetry algebra for a class of Dirac operators, containing in particular the Dirac-Dunkl operator for arbitrary root system. For this symmetry algebra, we classify all finite-dimensional, irreducible representations and determine the conditions for the representations to be unitarizable. The class of unitary irreducible representations admits a natural realization acting on a representation space of eigenfunctions of the Dirac Hamiltonian. Using a Cauchy-Kowalevski extension theorem we obtain explicit expressions for these eigenfunctions in terms of Jacobi polynomials.

  13. Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS.

    Science.gov (United States)

    Singha, Ratnadwip; Pariari, Arnab Kumar; Satpati, Biswarup; Mandal, Prabhat

    2017-03-07

    Whereas the discovery of Dirac- and Weyl-type excitations in electronic systems is a major breakthrough in recent condensed matter physics, finding appropriate materials for fundamental physics and technological applications is an experimental challenge. In all of the reported materials, linear dispersion survives only up to a few hundred millielectronvolts from the Dirac or Weyl nodes. On the other hand, real materials are subject to uncontrolled doping during preparation and thermal effect near room temperature can hinder the rich physics. In ZrSiS, angle-resolved photoemission spectroscopy measurements have shown an unusually robust linear dispersion (up to [Formula: see text]2 eV) with multiple nondegenerate Dirac nodes. In this context, we present the magnetotransport study on ZrSiS crystal, which represents a large family of materials ( WHM with W = Zr, Hf; H = Si, Ge, Sn; M = O, S, Se, Te) with identical band topology. Along with extremely large and nonsaturating magnetoresistance (MR), [Formula: see text]1.4 [Formula: see text] 10 5 % at 2 K and 9 T, it shows strong anisotropy, depending on the direction of the magnetic field. Quantum oscillation and Hall effect measurements have revealed large hole and small electron Fermi pockets. A nontrivial [Formula: see text] Berry phase confirms the Dirac fermionic nature for both types of charge carriers. The long-sought relativistic phenomenon of massless Dirac fermions, known as the Adler-Bell-Jackiw chiral anomaly, has also been observed.

  14. Dirac spinors for doubly special relativity and κ-Minkowski noncommutative spacetime

    International Nuclear Information System (INIS)

    Agostini, Alessandra; Amelino-Camelia, Giovanni; Arzano, Michele

    2004-01-01

    We construct a Dirac equation that is consistent with one of the recently-proposed schemes for a 'doubly special relativity', a relativity with both an observer-independent velocity scale (still naturally identified with the speed-of-light constant) and an observer-independent length/momentum scale (possibly given by the Planck length/momentum). We find that the introduction of the second observer-independent scale only induces a mild deformation of the structure of Dirac spinors. We also show that our modified Dirac equation naturally arises in constructing a Dirac equation in the κ-Minkowski noncommutative spacetime. Previous, more heuristic studies had already argued for a possible role of doubly special relativity in κ-Minkowski, but remained vague on the nature of the consistency requirements that should be implemented in order to assure the observer-independence of the two scales. We find that a key role is played by the choice of a differential calculus in κ-Minkowski. A much-studied choice of the differential calculus does lead to our doubly special relativity Dirac equation, but a different scenario is encountered for another popular choice of differential calculus

  15. Generalized delta functions and their use in quantum optics

    Science.gov (United States)

    Brewster, R. A.; Franson, J. D.

    2018-01-01

    The Dirac delta function δ(x) is widely used in many areas of physics and mathematics. Here we consider the generalization of a Dirac delta function to allow the use of complex arguments. We show that the properties of a generalized delta function are very different from those of a Dirac delta function and that they behave more like a pole in the complex plane. We use the generalized delta function to derive the Glauber-Sudarshan P-function, P(α), for a Schrödinger cat state in a surprisingly simple form. Aside from their potential applications in classical electromagnetism and quantum optics, these results provide insight into the ability of the diagonal P-function to describe density operators with off-diagonal elements.

  16. A symmetry reduction scheme of the Dirac algebra without dimensional defects

    Science.gov (United States)

    Dahm, R.

    2010-02-01

    In relating the Dirac algebra to homogeneous coordinates of a projective geometry, we present a simple geometric scheme which allows to identify various Lie algebras and Lie groups well-known from classical physics as well as from quantum field theory. We introduce a 1 -point-compactification and quaternionic Möbius transformations, and we use SU* (4) and a symmetry reduction scheme without dimensional defects to identify transformations and particle representations thoroughly. As such, two subsequent nonlinear σ models SU*(4)/U Sp(4) and U Sp(4)/SU(2) × U(1) emerge as well as a possible double coset decomposition of SU*(4) with respect to SU(2) × U(1). Whereas the first model leads to equivalence classes of hyperbolic manifolds and naturally introduces coordinates and velocities, the second coset model leads to a Hermitian symmetric (vector) space (Kählerian space) of real dimension 6, i.e., to a 3-dimensional complex space with a global symplectic and a local SU(2) × U(1) symmetry which allows to identify the (local) gauge group of electroweak interactions as well as under certain assumptions it admits compact SU(3) transformations as automorphisms of this 3-dimensional (hyper)complex vector space. In the limit of low energies, this geometric SU*(4) scheme naturally yields the (compact) group SU(4) to describe “chiral symmetry” and conserved isospin of hadrons as well as the low-dimensional hadron representations. Last not least, with respect to some of the SU*(4) generators we find a multiplication table which (up to signs) is identical with the octonions represented in the Fano plane.

  17. Development of a Global Validation Package for Satellite Oceanic Aerosol Optical Thickness Retrieval Based on AERONET Observations and Its Application to NOAA/NESDIS Operational Aerosol Retrievals.

    Science.gov (United States)

    Zhao, Tom X.-P.; Stowe, Larry L.; Smirnov, Alexander; Crosby, David; Sapper, John; McClain, Charles R.

    2002-02-01

    In this paper, a global validation package for satellite aerosol optical thickness retrieval using the Aerosol Robotic Network (AERONET) observations as ground truth is described. To standardize the validation procedure, the optimum time-space match-up window, the ensemble statistical analysis method, the best selection of AERONET channels, and the numerical scheme used to interpolate/extrapolate these observations to satellite channels have been identified through sensitivity studies. The package is shown to be a unique tool for more objective validation and intercomparison of satellite aerosol retrievals, helping to satisfy an increasingly important requirement of the satellite aerosol remote sensing community. Results of applying the package to the second-generation operational aerosol observational data (AEROBS) from the NOAA-14 Advanced Very High Resolution Radiometer (AVHRR) in 1998 and to the same year aerosol observation data [Clouds and the Earth's Radiant Energy System-Single Scanner Foodprint version 4 (CERES-SSF4)] from the Tropical Rainfall Measuring Mission (TRMM) Visible Infrared Scanner (VIRS) are presented as examples of global validation. The usefulness of the package for identifying improvements to the aerosol optical thickness retrieval algorithm is also demonstrated.The principal causes of systematic errors in the current National Oceanic and Atmospheric Administration (NOAA)/National Environmental Satellite, Data, and Information Service (NESDIS) operational aerosol optical thickness retrieval algorithm have been identified and can be reduced significantly, if the correction and adjustment suggested from the global validation are adopted. Random error in the retrieval is identified to be a major source of error on deriving the effective Ångström wavelength exponent and may be associated with regional differences in aerosol particles, which are not accounted for in the current second-generation operational algorithm. Adjustments to the

  18. Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations

    Science.gov (United States)

    Yoon, J.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Vountas, M.; Burrows, J. P.

    2012-06-01

    Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. aerosol optical thickness (AOT) and Ångström exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440-870 nm) using AErosol RObotic NETwork (AERONET) level 2.0 spectral observations. Additionally, temporal trends of coarse- and fine-mode dominant AOTs (CdAOT and FdAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström exponent difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation (σt) and (2) number of observations per month (nt). Temporal increase of FdAOTs (440 nm) prevails over newly industrializing countries in East Asia (weighted trends; +6.23% yr-1 at Beijing) and active agricultural burning regions in South Africa (+1.89% yr-1 at Mongu). On the other hand, insignificant or negative trends for FdAOTs are detected over Western Europe (+0.25% yr-1 at Avignon and -2.29% yr-1 at Ispra) and North America (-0.52% yr-1 for GSFC and -0.01% yr-1 at MD_Science_Center). Over desert regions, both increase and decrease of CdAOTs (+3.37% yr-1 at Solar_Village and -1.18% yr-1 at Ouagadougou) are observed depending on meteorological conditions.

  19. Modified Dirac Hamiltonian for efficient quantum mechanical simulations of micron sized devices

    International Nuclear Information System (INIS)

    Habib, K. M. Masum; Ghosh, Avik W.; Sajjad, Redwan N.

    2016-01-01

    Representing massless Dirac fermions on a spatial lattice poses a potential challenge known as the Fermion Doubling problem. Addition of a quadratic term to the Dirac Hamiltonian provides a possible way to circumvent this problem. We show that the modified Hamiltonian with the additional term results in a very small Hamiltonian matrix when discretized on a real space square lattice. The resulting Hamiltonian matrix is considerably more efficient for numerical simulations without sacrificing on accuracy and is several orders of magnitude faster than the atomistic tight binding model. Using this Hamiltonian and the non-equilibrium Green's function formalism, we show several transport phenomena in graphene, such as magnetic focusing, chiral tunneling in the ballistic limit, and conductivity in the diffusive limit in micron sized graphene devices. The modified Hamiltonian can be used for any system with massless Dirac fermions such as Topological Insulators, opening up a simulation domain that is not readily accessible otherwise.

  20. Modified Dirac Hamiltonian for efficient quantum mechanical simulations of micron sized devices

    Energy Technology Data Exchange (ETDEWEB)

    Habib, K. M. Masum, E-mail: masum.habib@virginia.edu; Ghosh, Avik W. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Sajjad, Redwan N. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-03-14

    Representing massless Dirac fermions on a spatial lattice poses a potential challenge known as the Fermion Doubling problem. Addition of a quadratic term to the Dirac Hamiltonian provides a possible way to circumvent this problem. We show that the modified Hamiltonian with the additional term results in a very small Hamiltonian matrix when discretized on a real space square lattice. The resulting Hamiltonian matrix is considerably more efficient for numerical simulations without sacrificing on accuracy and is several orders of magnitude faster than the atomistic tight binding model. Using this Hamiltonian and the non-equilibrium Green's function formalism, we show several transport phenomena in graphene, such as magnetic focusing, chiral tunneling in the ballistic limit, and conductivity in the diffusive limit in micron sized graphene devices. The modified Hamiltonian can be used for any system with massless Dirac fermions such as Topological Insulators, opening up a simulation domain that is not readily accessible otherwise.

  1. Relativistic two-body equation for one Dirac and one Duffin-Kemmer particle

    International Nuclear Information System (INIS)

    Krolikowski, W.

    1983-01-01

    A new relativistic two-body wave equation is proposed for one spin-1/2 and one spin-0 or spin-1 particle which, if isolated from each other, are described by the Dirac and the Duffin-Kemmer equation, respectively. For a static mutual interaction this equation splits into two equations: a two-body wave equation for one Dirac and one Klein-Gordon particle (which was introduced by the author previously) and a new two-body wave equation for one Dirac and one Proca particle. The proposed equation may be applied in particular to the quark-diquark system. In Appendix, however, an alternative approach is sketched, where the diquark is described as the point limit of a very close Breit system rather than a Duffin-Kemmer particle. (Author)

  2. Signatures of Dirac Cones in a DMRG Study of the Kagome Heisenberg Model

    Directory of Open Access Journals (Sweden)

    Yin-Chen He

    2017-07-01

    Full Text Available The antiferromagnetic spin-1/2 Heisenberg model on a kagome lattice is one of the most paradigmatic models in the context of spin liquids, yet the precise nature of its ground state is not understood. We use large-scale density matrix renormalization group simulations (DMRG on infinitely long cylinders and find indications for the formation of a gapless Dirac spin liquid. First, we use adiabatic flux insertion to demonstrate that the spin gap is much smaller than estimated from previous DMRG simulation. Second, we find that the momentum-dependent excitation spectrum, as extracted from the DMRG transfer matrix, exhibits Dirac cones that match those of a π-flux free-fermion model [the parton mean-field ansatz of a U(1 Dirac spin liquid].

  3. Single-cone finite difference scheme for the (2+1)D Dirac von Neumann equation

    Science.gov (United States)

    Pötz, Walter; Schreilechner, Magdalena

    2017-11-01

    An explicit finite difference scheme is presented for the von Neumann equation for (2+1)D Dirac fermions. It is founded upon a staggered space-time grid which ensures a single-cone energy dispersion and performs the time-derivative in one sweep using a three-step leap-frog procedure. It enables a space-time-resolved numerical treatment of the mixed-state dynamics of Dirac fermions within the effective single-particle density matrix formalism. Energy-momentum dispersion, stability and convergence properties are derived. Elementary numerical tests to demonstrate stability properties use parameters which pertain to topological insulator surface states. A method for the simulation of charge injection from an electric contact is presented and tested numerically. Potential extensions of the scheme to a Dirac-Lindblad equation, real-space-time Green's function formulations, and higher-order finite-difference schemes are discussed.

  4. Interplay of Dirac surface states and magnetic fluctuations in topological insulator heterostructures

    Science.gov (United States)

    Hurst, Hilary M.; Efimkin, Dmitry K.; Galitski, Victor

    We consider the proximity effect between Dirac states at the surface of a topological insulator and a ferromagnet with easy plane anisotropy, which is described by the XY-model and undergoes a Berezinskii-Kosterlitz-Thouless (BKT) phase transition. Classical magnetic fluctuations interacting with the surface states of a topological insulator can be described by an effective gauge field. This model can be mapped onto the problem of Dirac fermions in a random magnetic field, however this analogy is only partial in the presence of electron-hole asymmetry or warping of the Dirac dispersion which results in screening of magnetic fluctuations. We show that this proximity coupling leads to anomalous transport behavior of the surface states near the BKT transition temperature.

  5. Observable lepton number violation with predominantly Dirac nature of active neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Borah, Debasish [Department of Physics, Indian Institute of Technology Guwahati,Assam-781039 (India); Dasgupta, Arnab [Institute of Physics, HBNI,Sachivalaya Marg, Bhubaneshwar-751005 (India)

    2017-01-17

    We study a specific version of SU(2){sub R}×SU(2){sub L}×U(1){sub B−L} models extended by discrete symmetries where the new physics sector responsible for tiny neutrino masses at leading order remains decoupled from the new physics sector that can give rise to observable signatures of lepton number violation such as neutrinoless double beta decay. More specifically, the dominant contribution to light neutrino masses comes from a one-loop Dirac mass. At higher loop level, a tiny Majorana mass also appears which remains suppressed by many order of magnitudes in comparison to the Dirac mass. Such a model where the active neutrinos are predominantly of Dirac type, also predicts observable charged lepton flavour violation like μ→3e,μ→eγ and multi-component dark matter.

  6. Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations

    International Nuclear Information System (INIS)

    Hong Jialin; Li Chun

    2006-01-01

    In this paper, we consider the multi-symplectic Runge-Kutta (MSRK) methods applied to the nonlinear Dirac equation in relativistic quantum physics, based on a discovery of the multi-symplecticity of the equation. In particular, the conservation of energy, momentum and charge under MSRK discretizations is investigated by means of numerical experiments and numerical comparisons with non-MSRK methods. Numerical experiments presented reveal that MSRK methods applied to the nonlinear Dirac equation preserve exactly conservation laws of charge and momentum, and conserve the energy conservation in the corresponding numerical accuracy to the method utilized. It is verified numerically that MSRK methods are stable and convergent with respect to the conservation laws of energy, momentum and charge, and MSRK methods preserve not only the inner geometric structure of the equation, but also some crucial conservative properties in quantum physics. A remarkable advantage of MSRK methods applied to the nonlinear Dirac equation is the precise preservation of charge conservation law

  7. Introduction of a testing phase for MCSimulation productions within LHCbDirac

    CERN Document Server

    Bidwell, Simon

    2014-01-01

    The Large Hadron Collider (LHC) is the world's largest particle accelerator. Experiments at the LHC need to store and process an unprecedented amount of data. The only way to achieve such goal is using state of the art distributed computing technologies, like Grids and Clouds. LHCb, the LHC "beauty" experiment, is one of those experiments. The physics data are processed and distributed using software solutions developed mostly by members of the LHCb collaboration. The LHCbDirac interware is one of them. LHCbDirac is a complex, very actively developed software, whose roles range from the submission of jobs, the management of the data produced, to the orchestration of the LHCb distributed resources, while providing active monitoring and key information for the whole LHCb collaboration. A successful candidate will participate in the development of LHCbDirac. An important part of LHCb distributed computing activities is simulation. Simulations are done using Monte Carlo methods. Monte Carlo computations can take ...

  8. Spin eigen-states of Dirac equation for quasi-two-dimensional electrons

    Energy Technology Data Exchange (ETDEWEB)

    Eremko, Alexander, E-mail: eremko@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); National Technical University of Ukraine “KPI”, Peremohy av., 37, Kyiv, 03056 (Ukraine)

    2015-10-15

    Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shown that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.

  9. Dirac gap-induced graphene quantum dot in an electrostatic potential

    Science.gov (United States)

    Giavaras, G.; Nori, Franco

    2011-04-01

    A spatially modulated Dirac gap in a graphene sheet leads to charge confinement, thus enabling a graphene quantum dot to be formed without the application of external electric and magnetic fields [G. Giavaras and F. Nori, Appl. Phys. Lett. 97, 243106 (2010)]. This can be achieved provided the Dirac gap has a local minimum in which the states become localized. In this work, the physics of such a gap-induced dot is investigated in the continuum limit by solving the Dirac equation. It is shown that gap-induced confined states couple to the states introduced by an electrostatic quantum well potential. Hence the region in which the resulting hybridized states are localized can be tuned with the potential strength, an effect which involves Klein tunneling. The proposed quantum dot may be used to probe quasirelativistic effects in graphene, while the induced confined states may be useful for graphene-based nanostructures.

  10. Three-dimensional organic Dirac-line materials due to nonsymmorphic symmetry: A data mining approach

    Science.gov (United States)

    Geilhufe, R. Matthias; Bouhon, Adrien; Borysov, Stanislav S.; Balatsky, Alexander V.

    2017-01-01

    A data mining study of electronic Kohn-Sham band structures was performed to identify Dirac materials within the Organic Materials Database. Out of that, the three-dimensional organic crystal 5,6-bis(trifluoromethyl)-2-methoxy-1 H -1,3-diazepine was found to host different Dirac-line nodes within the band structure. From a group theoretical analysis, it is possible to distinguish between Dirac-line nodes occurring due to twofold degenerate energy levels protected by the monoclinic crystalline symmetry and twofold degenerate accidental crossings protected by the topology of the electronic band structure. The obtained results can be generalized to all materials having the space group P 21/c (No. 14, C2h 5) by introducing three distinct topological classes.

  11. Regularization of a massless dirac model to describe anomalous electromagnetic response of Weyl semimetals

    International Nuclear Information System (INIS)

    Takane, Yoshitake

    2016-01-01

    An unbounded massless Dirac model with two nondegenerate Dirac cones is the simplest model for Weyl semimetals, which show the anomalous electromagnetic response of chiral magnetic effect (CME) and anomalous Hall effect (AHE). However, if this model is naively used to analyze the electromagnetic response within a linear response theory, it gives the result apparently inconsistent with the persuasive prediction based on a lattice model. We show that this serious difficulty is related to the breaking of current conservation in the Dirac model due to quantum anomaly and can be removed if current and charge operators are redefined to include the contribution from the anomaly. We demonstrate that the CME as well as the AHE can be properly described using newly defined operators, and clarify that the CME is determined by the competition between the contribution from the anomaly and that from low-energy electrons. (author)

  12. Dirac oscillator in a Galilean covariant non-commutative space

    Energy Technology Data Exchange (ETDEWEB)

    Melo, G.R. de [Universidade Federal do Reconcavo da Bahia, BA (Brazil); Montigny, M. [University of Alberta (Canada); Pompeia, P.J. [Instituto de Fomento e Coordecacao Industrial, Sao Jose dos Campos, SP (Brazil); Santos, Esdras S. [Universidade Federal da Bahia, Salvador (Brazil)

    2013-07-01

    Full text: Even though Galilean kinematics is only an approximation of the relativistic kinematics, the structure of Galilean kinematics is more intricate than relativistic kinematics. For instance, the Galilean algebra admits a nontrivial central extension and projective representations, whereas the Poincare algebra does not. It is possible to construct representations of the Galilei algebra with three possible methods: (1) directly from the Galilei algebra, (2) from contractions of the Poincare algebra with the same space-time dimension, or (3) from the Poincare algebra in a space-time with one additional dimension. In this paper, we follow the third approach, which we refer to as 'Galilean covariance' because the equations are Lorentz covariant in the extended manifold. These equations become Galilean invariant after projection to the lower dimension. Our motivation is that this covariant approach provides one more unifying feature of field theory models. Indeed, particle physics (with Poincare kinematics) and condensed matter physics (with Galilean kinematics) share many tools of quantum field theory (e.g. gauge invariance, spontaneous symmetry breaking, Goldstone bosons), but the Galilean kinematics does not admit a metric structure. However, since the Galilean Lie algebra is a subalgebra of the Poincare Lie algebra if one more space-like dimension is added, we can achieve 'Galilean covariance' with a metric in an extended manifold; that makes non-relativistic models look similar to Lorentz-covariant relativistic models. In this context we study the Galilei covariant five-dimensional formulation applied to Galilean Dirac oscillator in a non-commutative situation, with space-space and momentum-momentum non-commutativity. The wave equation is obtained via a 'Galilean covariant' approach, which consists in projecting the covariant motion equations from a (4, l)-dimensional manifold with light-cone coordinates, to a (3, l

  13. Electronic and optical properties of topological semimetal Cd3As2

    Science.gov (United States)

    Mosca Conte, Adriano; Pulci, Olivia; Bechstedt, Friedhelm

    2017-04-01

    Using ab initio density functional theory the band structure and the dielectric function of a bct Cd3As2 crystal are calculated. We find a Dirac semimetal with two Dirac nodes k± near the Γ point on the tetragonal axis. The bands near the Fermi level exhibit a linear behavior. The resulting Dirac cones are anisotropic and the electron-hole symmetry is destroyed along the tetragonal axis. Along this axis the symmetry-protected band linearity only exists in a small energy interval. The Dirac cones seemingly found by ARPES in a wider energy range are interpreted in terms of pseudo-linear bands. The behavior as 3D graphene-like material is traced back to As p orbital pointing to Cd vacancies, in directions which vary throughout the unit cell. Because of the Dirac nodes the dielectric functions (imaginary part) show a plateau for vanishing frequencies whose finite value is proportional to the Sommerfeld fine structure constant but varies with the light polarization. The consequences of the anisotropy of the Dirac cones are highlighted for the polarization dependence of the infrared optical conductivity.

  14. Topological lumps and Dirac zero modes in SU(3) lattice gauge theory on the torus

    International Nuclear Information System (INIS)

    Gattringer, Christof; Pullirsch, Rainer

    2004-01-01

    We compute eigenmodes of the lattice Dirac operator for quenched SU(3) gauge configurations on the 4-torus with topological charge ±1. We find a strong dependence of the zero modes on the boundary conditions which we impose for the Dirac operator. The lumps seen by the eigenmodes often change their position when changing the boundary conditions, while the local chirality of the lumps remains the same. Our results show that the zero mode of a charge ±1 configuration can couple to more than one object. We address the question whether these objects could be fractionally charged lumps

  15. Solving the dirac equation with nonlocal potential by imaginary time step method

    International Nuclear Information System (INIS)

    Zhang Ying; Liang Haozhao; Meng Jie

    2009-01-01

    The imaginary time step (ITS) method is applied to solve the Dirac equation with the nonlocal potential in coordinate space by the ITS evolution for the corresponding Schroedinger-like equation for the upper component. It is demonstrated that the ITS evolution can be equivalently performed for the Schroedinger-like equation with or without localization. The latter algorithm is recommended in the application for the reason of simplicity and efficiency. The feasibility and reliability of this algorithm are also illustrated by taking the nucleus 16 O as an example, where the same results as the shooting method for the Dirac equation with localized effective potentials are obtained. (authors)

  16. Synthetic-gauge-field-induced Dirac semimetal state in an acoustic resonator system

    Science.gov (United States)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Zhang, Baile

    2016-12-01

    Recently, a proposal of synthetic gauge field in reduced two-dimensional (2D) system from three-dimensional (3D) acoustic structure shows an analogue of the gapped Haldane model with fixed k z , and achieves the gapless Weyl semimetal phase in 3D momentum space. Here, extending this approach of synthetic gauge flux, we propose a reduced square lattice of acoustic resonators, which exhibits Dirac nodes with broken effective time-reversal symmetry. Protected by an additional hidden symmetry, these Dirac nodes with quantized values of topological charge are characterized by nonzero winding number and the finite structure exhibits flat edge modes that cannot be destroyed by perturbations.

  17. Momentum and spin dynamics of Dirac particles at effective dimensional reduction

    Science.gov (United States)

    Silenko, Alexander J.; Teryaev, Oleg V.

    2012-11-01

    We consider the dynamics of Dirac particles moving in the curved spaces of variable dimension interpolating smoothly between 3- and 2-dimensional spaces and considered as a toy model for 2-dimensional structures in solid state physics. Performing the Foldy-Wouthuysen (FW) transformation of Dirac equation and passing to the classical limit, we derive the equations of motion of momentum and spin. The spin precesses with the variable angular velocity and may "flick" appearing in the remnant 2-dimensional space twice during the period.

  18. A precision study of the fine tuning in the DiracNMSSM

    International Nuclear Information System (INIS)

    Kaminska, Anna; Ross, Graham G.; Staub, Florian; Bonn Univ.

    2014-01-01

    Recently the DiracNMSSM has been proposed as a possible solution to reduce the fine tuning in supersymmetry. We determine the degree of fine tuning needed in the DiracNMSSM with and without non-universal gaugino masses and compare it with the fine tuning in the GNMSSM. To apply reasonable cuts on the allowed parameter regions we perform a precise calculation of the Higgs mass. In addition, we include the limits from direct SUSY searches and dark matter abundance. We find that both models are comparable in terms of fine tuning, with the minimal fine tuning in the GNMSSM slightly smaller.

  19. Thermodynamic signature of Dirac electrons across a possible topological transition in ZrTe5

    Science.gov (United States)

    Nair, Nityan L.; Dumitrescu, Philipp T.; Channa, Sanyum; Griffin, Sinéad M.; Neaton, Jeffrey B.; Potter, Andrew C.; Analytis, James G.

    2018-01-01

    We combine transport, magnetization, and torque magnetometry measurements to investigate the electronic structure of ZrTe5, a system that is thought to be near a topological phase transition. At fields beyond the quantum limit, we observe a magnetization reversal from paramagnetic to diamagnetic response, which is characteristic of a Dirac semimetal. However, on increasing temperature across a corresponding transport anomaly, all signatures of this Dirac-like nature are completely suppressed, providing the first thermodynamic evidence of a possible topological phase transition in this compound. ZrTe5 may thus provide a rare, experimentally accessible example in which such phase transitions can be studied directly.

  20. Cyclotron resonance of dirac fermions in InAs/GaSb/InAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Krishtopenko, S. S.; Ikonnikov, A. V., E-mail: antikon@ipmras.ru; Maremyanin, K. V.; Bovkun, L. S.; Spirin, K. E.; Kadykov, A. M. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Marcinkiewicz, M.; Ruffenach, S.; Consejo, C.; Teppe, F.; Knap, W. [Universite Montpellier, Laboratoire Charles Coulomb (L2C), UMR CNRS 5221 (France); Semyagin, B. R.; Putyato, M. A.; Emelyanov, E. A.; Preobrazhenskii, V. V. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2017-01-15

    The band structure of three-layer symmetric InAs/GaSb/InAs quantum wells confined between AlSb barriers is analyzed theoretically. It is shown that, depending on the thicknesses of the InAs and GaSb layers, a normal band structure, a gapless state with a Dirac cone at the center of the Brillouin zone, or inverted band structure (two-dimensional topological insulator) can be realized in this system. Measurements of the cyclotron resonance in structures with gapless band spectra carried out for different electron concentrations confirm the existence of massless Dirac fermions in InAs/GaSb/InAs quantum wells.

  1. Merging Ocean Color and physical Argo data to extend bio-optical properties to depth using neural networks: A global 3D view of phytoplankton biomass and phytoplankton communities composition

    Science.gov (United States)

    Sauzède, R.; Claustre, H.; Jamet, C.; Uitz, J.; Dall'Olmo, G.; D'Ortenzio, F.; Gentili, B.; Poteau, A.; Schmechtig, C.

    2016-02-01

    Ocean color observations enable the estimation of bio-optical proxies of phytoplankton biomass (e.g. chlorophyll a concentration, Chla, and particulate backscattering coefficient, bbp) in the surface layer of the ocean quasi-synoptically. In parallel, the Argo program distributes vertical profiles of the ocean physical properties with a global coverage and a high spatio-temporal resolution (every 10 days for 3°x3° area). Because physical properties influence the vertical distribution of phytoplankton biomass, merging satellite and Argo data bear strong potential to infer the vertical distribution of bio-optical properties at global scale with high space-time resolution. Two neural network-based methods (SOCA for merged Satellite Ocean Color and Argo data) are developed: one to infer the vertical distribution of Chla and phytoplankton community size indices (PCSI); the second for bbp. SOCA is trained and validated using a database of 5000 concurrent vertical profiles of temperature, salinity, and bio-optical properties collected by Bio-Argo floats, matched up with satellite bio-optical products. In practice, SOCA requires as input only the vertically resolved physical properties and concomitant satellite products to extend the surface bio-optical properties to depth. Evaluated against 20% of our database, SOCA-retrieved bio-optical profiles are very consistent with measured in situ profiles (error within 40-55% for Chla and PCSI and of 18% for bbp). Additional validation based on fully independent data acquired during oceanographic cruises shows again very satisfactory results. The data used for training the neural networks are representative of the global ocean in terms of trophic and oceanographic conditions, making SOCA applicable to most open-ocean waters. Finally, global and regional 3D views of Chla, PCSI and bbp obtained from SOCA represent a new important tool to assess seasonal and interannual variability in phytoplankton biomass and community composition.

  2. dftatom: A robust and general Schrödinger and Dirac solver for atomic structure calculations

    Science.gov (United States)

    Čertík, Ondřej; Pask, John E.; Vackář, Jiří

    2013-07-01

    A robust and general solver for the radial Schrödinger, Dirac, and Kohn-Sham equations is presented. The formulation admits general potentials and meshes: uniform, exponential, or other defined by nodal distribution and derivative functions. For a given mesh type, convergence can be controlled systematically by increasing the number of grid points. Radial integrations are carried out using a combination of asymptotic forms, Runge-Kutta, and implicit Adams methods. Eigenfunctions are determined by a combination of bisection and perturbation methods for robustness and speed. An outward Poisson integration is employed to increase accuracy in the core region, allowing absolute accuracies of 10-8 Hartree to be attained for total energies of heavy atoms such as uranium. Detailed convergence studies are presented and computational parameters are provided to achieve accuracies commonly required in practice. Comparisons to analytic and current-benchmark density-functional results for atomic number Z=1-92 are presented, verifying and providing a refinement to current benchmarks. An efficient, modular Fortran 95 implementation, dftatom, is provided as open source, including examples, tests, and wrappers for interface to other languages; wherein particular emphasis is placed on the independence (no global variables), reusability, and generality of the individual routines. Program summaryProgram title:dftatom Catalogue identifier: AEPA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: MIT license No. of lines in distributed program, including test data, etc.: 14122 No. of bytes in distributed program, including test data, etc.: 157453 Distribution format: tar.gz Programming language: Fortran 95 with interfaces to Python and C. Computer: Any computer with a Fortran 95 compiler. Operating system: Any OS with a Fortran 95 compiler. RAM: 500 MB

  3. Online Simulations of Global Aerosol Distributions in the NASA GEOS-4 Model and Comparisons to Satellite and Ground-Based Aerosol Optical Depth

    Science.gov (United States)

    Colarco, Peter; daSilva, Arlindo; Chin, Mian; Diehl, Thomas

    2010-01-01

    We have implemented a module for tropospheric aerosols (GO CART) online in the NASA Goddard Earth Observing System version 4 model and simulated global aerosol distributions for the period 2000-2006. The new online system offers several advantages over the previous offline version, providing a platform for aerosol data assimilation, aerosol-chemistry-climate interaction studies, and short-range chemical weather forecasting and climate prediction. We introduce as well a methodology for sampling model output consistently with satellite aerosol optical thickness (AOT) retrievals to facilitate model-satellite comparison. Our results are similar to the offline GOCART model and to the models participating in the AeroCom intercomparison. The simulated AOT has similar seasonal and regional variability and magnitude to Aerosol Robotic Network (AERONET), Moderate Resolution Imaging Spectroradiometer, and Multiangle Imaging Spectroradiometer observations. The model AOT and Angstrom parameter are consistently low relative to AERONET in biomass-burning-dominated regions, where emissions appear to be underestimated, consistent with the results of the offline GOCART model. In contrast, the model AOT is biased high in sulfate-dominated regions of North America and Europe. Our model-satellite comparison methodology shows that diurnal variability in aerosol loading is unimportant compared to sampling the model where the satellite has cloud-free observations, particularly in sulfate-dominated regions. Simulated sea salt burden and optical thickness are high by a factor of 2-3 relative to other models, and agreement between model and satellite over-ocean AOT is improved by reducing the model sea salt burden by a factor of 2. The best agreement in both AOT magnitude and variability occurs immediately downwind of the Saharan dust plume.

  4. Nonsymmorphic-symmetry-protected hourglass Dirac loop, nodal line, and Dirac point in bulk and monolayer X3SiTe6 (X = Ta, Nb)

    Science.gov (United States)

    Li, Si; Liu, Ying; Wang, Shan-Shan; Yu, Zhi-Ming; Guan, Shan; Sheng, Xian-Lei; Yao, Yugui; Yang, Shengyuan A.

    2018-01-01

    Nonsymmorphic space group symmetries can generate exotic band crossings in topological metals and semimetals. Here, based on symmetry analysis and first-principles calculations, we reveal rich band-crossing features in the existing layered compounds Ta3SiTe6 and Nb3SiTe6 , enabled by nonsymmorphic symmetries. We show that in the absence of spin-orbit coupling (SOC), these three-dimensional (3D) bulk materials possess accidental Dirac loops and essential fourfold nodal lines. In the presence of SOC, there emerges an hourglass Dirac loop—a fourfold degenerate nodal loop, on which each point is a neck point of an hourglass-type dispersion. We show that this interesting type of band crossing is protected and dictated by the nonsymmorphic space group symmetries and it gives rise to drumheadlike surface states. Furthermore, we also investigate these materials in the monolayer form. We show that these two-dimensional (2D) monolayers host nodal lines in the absence of SOC and the nodal lines transform to essential spin-orbit Dirac points when SOC is included. Our work suggests a realistic material platform for exploring the fascinating physics associated with nonsymmorphic band crossings in both 3D and 2D systems.

  5. Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010

    Science.gov (United States)

    Hsu, N. C.; Gautam, R.; Sayer, A. M.; Bettenhausen, C.; Li, C.; Jeong, M. J.; Tsay, S.-C.; Holben, B. N.

    2012-09-01

    Both sensor calibration and satellite retrieval algorithm play an important role in the ability to determine accurately long-term trends from satellite data. Owing to the unprecedented accuracy and long-term stability of its radiometric calibration, SeaWiFS measurements exhibit minimal uncertainty with respect to sensor calibration. In this study, we take advantage of this well-calibrated set of measurements by applying a newly-developed aerosol optical depth (AOD) retrieval algorithm over land and ocean to investigate the distribution of AOD, and to identify emerging patterns and trends in global and regional aerosol loading during its 13-yr mission. Our correlation analysis between climatic indices (such as ENSO) and AOD suggests strong relationships for Saharan dust export as well as biomass-burning activity in the tropics, associated with large-scale feedbacks. The results also indicate that the averaged AOD trend over global ocean is weakly positive from 1998 to 2010 and comparable to that observed by MODIS but opposite in sign to that observed by AVHRR during overlapping years. On regional scales, distinct tendencies are found for different regions associated with natural and anthropogenic aerosol emission and transport. For example, large upward trends are found over the Arabian Peninsula that indicate a strengthening of the seasonal cycle of dust emission and transport processes over the whole region as well as over downwind oceanic regions. In contrast, a negative-neutral tendency is observed over the desert/arid Saharan region as well as in the associated dust outflow over the north Atlantic. Additionally, we found decreasing trends over the eastern US and Europe, and increasing trends over countries such as China and India that are experiencing rapid economic development. In general, these results are consistent with those derived from ground-based AERONET measurements.

  6. OPTICAL TRANSIENT DETECTOR (OTD) LIGHTNING V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Transient Detector (OTD) records optical measurements of global lightning events in the daytime and nighttime. The data includes individual point...

  7. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  8. Global optical model potentials for symmetrical lithium systems: 6Li+6Li, 7Li+7Li at Elab = 5-40 MeV

    International Nuclear Information System (INIS)

    Potthast, K.W.; Brand, H.; Freiesleben, H.; Rosenthal, P.; Kamys, B.; Paetz genannt Schiek, H.; Sydow, L.

    1997-01-01

    Angular distributions of 6 Li+ 6 Li elastic scattering were measured for E lab =5-40 MeV. An optical model analysis of these data together with older data of 7 Li+ 7 Li elastic scattering taken at E lab = 8-17 MeV was performed with the aim to search for a ''global'' OM potential which describes elastic scattering in both Li-Li systems in a broad energy range. Both surface and volume absorbing potentials can be found which fulfill this requirement if a linear energy dependence is assumed of the depths of the real as well as the imaginary potential. These depths, if fitted to individual angular distributions, are found to vary in a correlated manner with the beam energy. This is taken as indication of strong coupling between elastic, inelastic, and reaction channels. This is corroborated by the existence of resonances in reaction channels at these energies where the potential depths are most pronouncedly changing. (orig.)

  9. Use of ENVISAT ASAR Global Monitoring Mode to complement optical data in the mapping of rapid broad-scale flooding in Pakistan

    Directory of Open Access Journals (Sweden)

    D. O'Grady

    2011-11-01

    Full Text Available Envisat ASAR Global Monitoring Mode (GM data are used to produce maps of the extent of the flooding in Pakistan which are made available to the rapid response effort within 24 h of acquisition. The high temporal frequency and independence of the data from cloud-free skies makes GM data a viable tool for mapping flood waters during those periods where optical satellite data are unavailable, which may be crucial to rapid response disaster planning, where thousands of lives are affected. Image differencing techniques are used, with pre-flood baseline image backscatter values being deducted from target values to eliminate regions with a permanent flood-like radar response due to volume scattering and attenuation, and to highlight the low response caused by specular reflection by open flood water. The effect of local incidence angle on the received signal is mitigated by ensuring that the deducted image is acquired from the same orbit track as the target image. Poor separability of the water class with land in areas beyond the river channels is tackled using a region-growing algorithm which seeks threshold-conformance from seed pixels at the center of the river channels. The resultant mapped extents are tested against MODIS SWIR data where available, with encouraging results.

  10. Self-adjointness and spectral properties of Dirac operators with magnetic links

    DEFF Research Database (Denmark)

    Portmann, Fabian; Sok, Jérémy; Solovej, Jan Philip

    2018-01-01

    We define Dirac operators on $\\mathbb{S}^3$ (and $\\mathbb{R}^3$) with magnetic fields supported on smooth, oriented links and prove self-adjointness of certain (natural) extensions. We then analyze their spectral properties and show, among other things, that these operators have discrete spectrum...

  11. Spin-orbit splittings in heavy-light mesons and Dirac equation

    Energy Technology Data Exchange (ETDEWEB)

    Riazuddin, [Quaid-i-Azam University Campus, National Centre for Physics, Islamabad (Pakistan); Shafiq, Sidra [National University of Science and Technology, Centre for Advance Mathematics and Physics, Islamabad (Pakistan)

    2012-03-15

    The spin-orbit splitting in heavy-light mesons is seen to be suppressed experimentally, which may be due to a relativistic dynamical symmetry for the Dirac Hamiltonian. An alternative derivation of such a symmetry is given. Furthermore, the dynamics necessary for a qualitative understanding of the spin-orbit splitting seen experimentally is discussed. (orig.)

  12. Spin-orbit splittings in heavy-light mesons and Dirac equation

    International Nuclear Information System (INIS)

    Riazuddin; Shafiq, Sidra

    2012-01-01

    The spin-orbit splitting in heavy-light mesons is seen to be suppressed experimentally, which may be due to a relativistic dynamical symmetry for the Dirac Hamiltonian. An alternative derivation of such a symmetry is given. Furthermore, the dynamics necessary for a qualitative understanding of the spin-orbit splitting seen experimentally is discussed. (orig.)

  13. Orbiting the moons of Pluto complex solutions to the Einstein, Maxwell, Schroedinger and Dirac equations

    CERN Document Server

    Rauscher, Elizabeth A

    2011-01-01

    The Maxwell, Einstein, Schrödinger and Dirac equations are considered the most important equations in all of physics. This volume aims to provide new eight- and twelve-dimensional complex solutions to these equations for the first time in order to reveal

  14. The Dirac equation in quantum chemistry: Strategies to overcome the current computational problems

    NARCIS (Netherlands)

    Visscher, L.

    2002-01-01

    A perspective on the use of the relativistic Dirac equation in quantum chemistry is given. It is demonstrated that many of the computational problems that plague the current implementations of the different electronic structure methods can be overcome by utilizing the locality of the small component

  15. Dirac equation with spin symmetry for the modified Pöschl–Teller ...

    Indian Academy of Sciences (India)

    Dirac equation with spin symmetry. Therefore, one gets a general quadratic equation for t. The values of t can be used for calculating the energy eigenvalues using the following equation: λ = t + π (s) = −nr τ (s) − nr (nr − 1). 2 σ (s). (19). Furthermore, the other part ynr (s) of the wave function in eq. (12) is the hypergeometric-.

  16. Dirac equation with spin symmetry for the modified Pöschl–Teller ...

    Indian Academy of Sciences (India)

    AUTHOR INDEX. Abu-Sei'Leek Mohammed H E. Investigation of (3,3) resonance effects on the properties of neutron-rich double magic spherical finite nucleus, 132Sn, in the ground state and under compression. 573. Agboola D. Dirac equation with spin symmetry for the modified Pöschl–Teller potential in D dimensions.

  17. Intact Dirac Cones at Broken Sublattice Symmetry: Photoemission Study of Graphene on Ni and Co

    Directory of Open Access Journals (Sweden)

    A. Varykhalov

    2012-12-01

    Full Text Available The appearance of massless Dirac fermions in graphene requires two equivalent carbon sublattices of trigonal shape. While the generation of an effective mass and a band gap at the Dirac point remains an unresolved problem for freestanding extended graphene, it is well established by breaking translational symmetry by confinement and by breaking sublattice symmetry by interaction with a substrate. One of the strongest sublattice-symmetry-breaking interactions with predicted and measured band gaps ranging from 400 meV to more than 3 eV has been attributed to the interfaces of graphene with Ni and Co, which are also promising spin-filter interfaces. Here, we apply angle-resolved photoemission to epitaxial graphene on Ni(111 and Co(0001 to show the presence of intact Dirac cones 2.8 eV below the Fermi level. Our results challenge the common belief that the breaking of sublattice symmetry by a substrate and the opening of the band gap at the Dirac energy are in a straightforward relation. A simple effective model of a biased bilayer structure composed of graphene and a sublattice-symmetry-broken layer, corroborated by density-functional-theory calculations, demonstrates the general validity of our conclusions.

  18. Bound states of the Dirac equation with some physical potentials by the Nikiforov-Uvarov method

    Energy Technology Data Exchange (ETDEWEB)

    Setare, Mohammad R; Haidari, S [Department of Physics, University of Kurdistan, Pasdaran Avenue, Sanandaj (Iran, Islamic Republic of)], E-mail: rezakord@ipm.ir, E-mail: heidary.somayeh@gmail.com

    2010-01-15

    Exact analytical solutions for the s-wave Dirac equation with the reflectionless-type, Rosen-Morse and Manning-Rosen potentials are obtained, under the condition of spin symmetry. We obtained bound state energy eigenvalues and corresponding spinor wave function in the framework of the Nikiforov-Uvarov (NU) method.

  19. Solution of Dirac Equation in External Yang-Mills Gauge Field

    Science.gov (United States)

    Koshelkin, A. V.

    2011-05-01

    The exact solution of the Dirac equation in the external non-abelian SU(N) gauge field, which is governed by the Yang-Mills equations and is in the form of a plane wave on the light cone, is obtained.

  20. Crystal growth of Dirac semimetal ZrSiS with high magnetoresistance and mobility

    Science.gov (United States)

    Sankar, Raman; Peramaiyan, G.; Muthuselvam, I. Panneer; Butler, Christopher J.; Dimitri, Klauss; Neupane, Madhab; Rao, G. Narsinga; Lin, M.-T.; Chou, F. C.

    2017-01-01

    High quality single crystal ZrSiS as a theoretically predicted Dirac semimetal has been grown successfully using a vapor phase transport method. The single crystals of tetragonal structure are easy to cleave into perfect square-shaped pieces due to the van der Waals bonding between the sulfur atoms of the quintuple layers. Physical property measurement results including resistivity, Hall coefficient (RH), and specific heat are reported. The transport and thermodynamic properties suggest a Fermi liquid behavior with two Fermi pockets at low temperatures. At T = 3 K and magnetic field of Hǁc up to 9 Tesla, large magneto-resistance up to 8500% and 7200% for Iǁ(100) and Iǁ(110) were found. Shubnikov de Haas (SdH) oscillations were identified from the resistivity data, revealing the existence of two Fermi pockets at the Fermi level via the fast Fourier transform (FFT) analysis. The Hall coefficient (RH) showed hole-dominated carriers with a high mobility of 3.05 × 104 cm2 V-1 s-1 at 3 K. ZrSiS has been confirmed to be a Dirac semimetal by the Dirac cone mapping near the X-point via angle resolved photoemission spectroscopy (ARPES) with a Dirac nodal line near the Fermi level identified using scanning tunneling spectroscopy (STS).