WorldWideScience

Sample records for global crop improvement

  1. Climate resilient crops for improving global food security and safety.

    Dhankher, Om Parkash; Foyer, Christine H

    2018-05-01

    Food security and the protection of the environment are urgent issues for global society, particularly with the uncertainties of climate change. Changing climate is predicted to have a wide range of negative impacts on plant physiology metabolism, soil fertility and carbon sequestration, microbial activity and diversity that will limit plant growth and productivity, and ultimately food production. Ensuring global food security and food safety will require an intensive research effort across the food chain, starting with crop production and the nutritional quality of the food products. Much uncertainty remains concerning the resilience of plants, soils, and associated microbes to climate change. Intensive efforts are currently underway to improve crop yields with lower input requirements and enhance the sustainability of yield through improved biotic and abiotic stress tolerance traits. In addition, significant efforts are focused on gaining a better understanding of the root/soil interface and associated microbiomes, as well as enhancing soil properties. © 2018 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  2. Improvements in crop water productivity increase water sustainability and food security—a global analysis

    Brauman, Kate A; Foley, Jonathan A; Siebert, Stefan

    2013-01-01

    Irrigation consumes more water than any other human activity, and thus the challenges of water sustainability and food security are closely linked. To evaluate how water resources are used for food production, we examined global patterns of water productivity—food produced (kcal) per unit of water (l) consumed. We document considerable variability in crop water productivity globally, not only across different climatic zones but also within climatic zones. The least water productive systems are disproportionate freshwater consumers. On precipitation-limited croplands, we found that ∼40% of water consumption goes to production of just 20% of food calories. Because in many cases crop water productivity is well below optimal levels, in many cases farmers have substantial opportunities to improve water productivity. To demonstrate the potential impact of management interventions, we calculated that raising crop water productivity in precipitation-limited regions to the 20th percentile of productivity would increase annual production on rainfed cropland by enough to provide food for an estimated 110 million people, and water consumption on irrigated cropland would be reduced enough to meet the annual domestic water demands of nearly 1.4 billion people. (letter)

  3. Crop improvement in the CGIAR as a global success story of open access and international collaboration

    Derek Byerlee

    2009-12-01

    Full Text Available International agricultural research has historically been an example par excellence of open source approach to biological research. Beginning in the 1950s and especially in the 1960s, a looming global food crisis led to the development of a group of international agricultural research centers with a specific mandate to foster international exchange and crop improvement relevant to many countries. This formalization of a global biological commons in genetic resources was implemented through an elaborate system of international nurseries with a breeding hub, free sharing of germplasm, collaboration in information collection, the development of human resources, and an international collaborative network. This paper traces the history of the international wheat program with particular attention to how this truly open source system operated in practice and the impacts that it had on world poverty and hunger. The paper also highlights the challenges of maintaining and evolving such a system over the long term, both in terms of financing, as well the changing ‘rules of the game’ resulting from international agreements on intellectual property rights and biodiversity. Yet the open source approach is just as relevant today, as witnessed by current crises in food prices and looming crop diseases problem of global significance.

  4. Targeting the right input data to improve crop modeling at global level

    Adam, M.; Robertson, R.; Gbegbelegbe, S.; Jones, J. W.; Boote, K. J.; Asseng, S.

    2012-12-01

    Designed for location-specific simulations, the use of crop models at a global level raises important questions. Crop models are originally premised on small unit areas where environmental conditions and management practices are considered homogeneous. Specific information describing soils, climate, management, and crop characteristics are used in the calibration process. However, when scaling up for global application, we rely on information derived from geographical information systems and weather generators. To run crop models at broad, we use a modeling platform that assumes a uniformly generated grid cell as a unit area. Specific weather, specific soil and specific management practices for each crop are represented for each of the cell grids. Studies on the impacts of the uncertainties of weather information and climate change on crop yield at a global level have been carried out (Osborne et al, 2007, Nelson et al., 2010, van Bussel et al, 2011). Detailed information on soils and management practices at global level are very scarce but recognized to be of critical importance (Reidsma et al., 2009). Few attempts to assess the impact of their uncertainties on cropping systems performances can be found. The objectives of this study are (i) to determine sensitivities of a crop model to soil and management practices, inputs most relevant to low input rainfed cropping systems, and (ii) to define hotspots of sensitivity according to the input data. We ran DSSAT v4.5 globally (CERES-CROPSIM) to simulate wheat yields at 45arc-minute resolution. Cultivar parameters were calibrated and validated for different mega-environments (results not shown). The model was run for nitrogen-limited production systems. This setting was chosen as the most representative to simulate actual yield (especially for low-input rainfed agricultural systems) and assumes crop growth to be free of any pest and diseases damages. We conducted a sensitivity analysis on contrasting management

  5. Improving Crop Yield and Nutrient Use Efficiency via Biofertilization—A Global Meta-analysis

    Lukas Schütz

    2018-01-01

    Full Text Available The application of microbial inoculants (biofertilizers is a promising technology for future sustainable farming systems in view of rapidly decreasing phosphorus stocks and the need to more efficiently use available nitrogen (N. Various microbial taxa are currently used as biofertilizers, based on their capacity to access nutrients from fertilizers and soil stocks, to fix atmospheric nitrogen, to improve water uptake or to act as biocontrol agents. Despite the existence of a considerable knowledge on effects of specific taxa of biofertilizers, a comprehensive quantitative assessment of the performance of biofertilizers with different traits such as phosphorus solubilization and N fixation applied to various crops at a global scale is missing. We conducted a meta-analysis to quantify benefits of biofertilizers in terms of yield increase, nitrogen and phosphorus use efficiency, based on 171 peer reviewed publications that met eligibility criteria. Major findings are: (i the superiority of biofertilizer performance in dry climates over other climatic regions (yield response: dry climate +20.0 ± 1.7%, tropical climate +14.9 ± 1.2%, oceanic climate +10.0 ± 3.7%, continental climate +8.5 ± 2.4%; (ii meta-regression analyses revealed that yield response due to biofertilizer application was generally small at low soil P levels; efficacy increased along higher soil P levels in the order arbuscular mycorrhizal fungi (AMF, P solubilizers, and N fixers; (iii meta-regressions showed that the success of inoculation with AMF was greater at low organic matter content and at neutral pH. Our comprehensive analysis provides a basis and guidance for proper choice and application of biofertilizers.

  6. Improving Crop Yield and Nutrient Use Efficiency via Biofertilization—A Global Meta-analysis

    Schütz, Lukas; Gattinger, Andreas; Meier, Matthias; Müller, Adrian; Boller, Thomas; Mäder, Paul; Mathimaran, Natarajan

    2018-01-01

    The application of microbial inoculants (biofertilizers) is a promising technology for future sustainable farming systems in view of rapidly decreasing phosphorus stocks and the need to more efficiently use available nitrogen (N). Various microbial taxa are currently used as biofertilizers, based on their capacity to access nutrients from fertilizers and soil stocks, to fix atmospheric nitrogen, to improve water uptake or to act as biocontrol agents. Despite the existence of a considerable knowledge on effects of specific taxa of biofertilizers, a comprehensive quantitative assessment of the performance of biofertilizers with different traits such as phosphorus solubilization and N fixation applied to various crops at a global scale is missing. We conducted a meta-analysis to quantify benefits of biofertilizers in terms of yield increase, nitrogen and phosphorus use efficiency, based on 171 peer reviewed publications that met eligibility criteria. Major findings are: (i) the superiority of biofertilizer performance in dry climates over other climatic regions (yield response: dry climate +20.0 ± 1.7%, tropical climate +14.9 ± 1.2%, oceanic climate +10.0 ± 3.7%, continental climate +8.5 ± 2.4%); (ii) meta-regression analyses revealed that yield response due to biofertilizer application was generally small at low soil P levels; efficacy increased along higher soil P levels in the order arbuscular mycorrhizal fungi (AMF), P solubilizers, and N fixers; (iii) meta-regressions showed that the success of inoculation with AMF was greater at low organic matter content and at neutral pH. Our comprehensive analysis provides a basis and guidance for proper choice and application of biofertilizers. PMID:29375594

  7. Improving Crop Yield and Nutrient Use Efficiency via Biofertilization-A Global Meta-analysis.

    Schütz, Lukas; Gattinger, Andreas; Meier, Matthias; Müller, Adrian; Boller, Thomas; Mäder, Paul; Mathimaran, Natarajan

    2017-01-01

    The application of microbial inoculants (biofertilizers) is a promising technology for future sustainable farming systems in view of rapidly decreasing phosphorus stocks and the need to more efficiently use available nitrogen (N). Various microbial taxa are currently used as biofertilizers, based on their capacity to access nutrients from fertilizers and soil stocks, to fix atmospheric nitrogen, to improve water uptake or to act as biocontrol agents. Despite the existence of a considerable knowledge on effects of specific taxa of biofertilizers, a comprehensive quantitative assessment of the performance of biofertilizers with different traits such as phosphorus solubilization and N fixation applied to various crops at a global scale is missing. We conducted a meta-analysis to quantify benefits of biofertilizers in terms of yield increase, nitrogen and phosphorus use efficiency, based on 171 peer reviewed publications that met eligibility criteria. Major findings are: (i) the superiority of biofertilizer performance in dry climates over other climatic regions (yield response: dry climate +20.0 ± 1.7%, tropical climate +14.9 ± 1.2%, oceanic climate +10.0 ± 3.7%, continental climate +8.5 ± 2.4%); (ii) meta-regression analyses revealed that yield response due to biofertilizer application was generally small at low soil P levels; efficacy increased along higher soil P levels in the order arbuscular mycorrhizal fungi (AMF), P solubilizers, and N fixers; (iii) meta-regressions showed that the success of inoculation with AMF was greater at low organic matter content and at neutral pH. Our comprehensive analysis provides a basis and guidance for proper choice and application of biofertilizers.

  8. Decomposing global crop yield variability

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  9. Radiation and crop improvement

    NONE

    1960-09-15

    The present state of the research was reviewed and its results analyzed at an international scientific Symposium on the Effects of Ionizing Radiations on Seeds and their Significance for Crop Improvement held at Karlsruhe, Federal Republic of Germany, in 1960. The experts began a detailed examination of certain special aspects of the radiobiology of seeds. Some of the topics discussed related to the processes initiated in seeds as a result of irradiation. The influence of environmental factors, such as temperature, humidity and the presence or absence of oxygen, was also evaluated. Variations in the sensitivity to radiation were taken into consideration and ways of modifying the sensitivity were examined. Two sessions were devoted to a study of radiation- and chemically-induced chromosome breakage and reunion. The nature and mechanism of chromosome breakage and reunion area subject of basic importance in all radiobiological studies and naturally constituted one of the main topics of discussion at the Karlsruhe symposium. The symposium discussed the relevance of these basic scientific questions to crop improvement. Whether irradiation itself, without producing any hereditary changes, can stimulate crop yields is a matter of considerable interest. It has been found that in some cases the effect is stimulating, while in others it is inhibitive. A number of experiments were described and an attempt was made to deduce certain principles from the results obtained

  10. Improving selenium nutritional value of major crops

    Micronutrient efficiency and development of nutrient-dense crops continue to be one of the most important global challenges. Se is an essential micronutrient to humans and serves as a cancer preventative agent. In order to improve Se nutritional and health promoting values in food crops, a better un...

  11. Chemical mutagenesis for crop improvement

    1986-01-01

    Focusses on methodological aspects for the efficient induction of mutations in crop plants by chemomutagens. Mutagen treatment of barley seeds with ethylmethane sulfonate (EMS) is documented in detail to exemplify procedural phases. Reference is made to safe handling and the prevention of biohazards. Induced biological and genetic effects at various plant generations are documented and the use of mutants for crop improvement is discussed

  12. New indicators for global crop monitoring in CropWatch -case study in North China Plain

    Bingfang, Wu; Miao, Zhang; Hongwei, Zeng; Guoshui, Liu; Sheng, Chang; Gommes, René

    2014-01-01

    CropWatch is a monitoring system developed and operated by the Institute of Remote Sensing and Digital Earth (Chinese Academy of Sciences) to provide global-scale crop information. Now in its 15th year of operation, CropWatch was modified several times to be a timely, comprehensive and independent global agricultural monitoring system using advanced remote sensing technology. Currently CropWatch is being upgraded with new indicators based on new sensors, especially those on board of China Environmental Satellite (HJ-1 CCD), the Medium Resolution Spectral Imager (MERSI) on Chinese meteorological satellite (FY-3A) and cloud classification products of FY-2. With new satellite data, CropWatch will generate new indicators such as fallow land ratio (FLR), crop condition for irrigated (CCI) and non-irrigated (CCNI) areas separately, photosynthetically active radiation (PAR), radiation use efficiency for the photosynthetically active radiation (RUE PAR ) and cropping index (CI) with crop rotation information (CRI). In this paper, the methods for monitoring the new indicators are applied to the North China Plain which is one of the major grain producing areas in China. This paper shows the preliminary results of the new indicators and methods; they still need to be thoroughly validated before being incorporated into the operational CropWatch system. In the future, the new and improved indicators will help us to better understand the global situation of food security

  13. Rural Women's Attitude Towards Adoption Of Improved Crop ...

    Rural Women's Attitude Towards Adoption Of Improved Crop Production Practices In Aguata Agricultural Zone, Anambra State, Nigeria. ... Global Approaches to Extension Practice: A Journal of Agricultural Extension ... Rural women agreed that improved crops normally lose their taste after harvest (mean = 3.02).

  14. Resistance Genes in Global Crop Breeding Networks.

    Garrett, K A; Andersen, K F; Asche, F; Bowden, R L; Forbes, G A; Kulakow, P A; Zhou, B

    2017-10-01

    Resistance genes are a major tool for managing crop diseases. The networks of crop breeders who exchange resistance genes and deploy them in varieties help to determine the global landscape of resistance and epidemics, an important system for maintaining food security. These networks function as a complex adaptive system, with associated strengths and vulnerabilities, and implications for policies to support resistance gene deployment strategies. Extensions of epidemic network analysis can be used to evaluate the multilayer agricultural networks that support and influence crop breeding networks. Here, we evaluate the general structure of crop breeding networks for cassava, potato, rice, and wheat. All four are clustered due to phytosanitary and intellectual property regulations, and linked through CGIAR hubs. Cassava networks primarily include public breeding groups, whereas others are more mixed. These systems must adapt to global change in climate and land use, the emergence of new diseases, and disruptive breeding technologies. Research priorities to support policy include how best to maintain both diversity and redundancy in the roles played by individual crop breeding groups (public versus private and global versus local), and how best to manage connectivity to optimize resistance gene deployment while avoiding risks to the useful life of resistance genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

  15. Induced mutations for crop improvement

    Micke, A.; Donini, B.; Maluszynski, M.

    1990-01-01

    Mutation induction has become an established tool in plant breeding to supplement existing germ plasma and to improve cultivars in certain specific traits. Hundreds of improved varieties have been released to farmers for many different crop species, demonstrating the economic value of the technology. Limitations arise mainly from the large mutagenized populations to be screened and from the unsatisfactory selection methods. Both limitations may be eased to some extent by advances in techniques of plant in-vitro culture. (author). Refs, 1 fig., 7 tabs

  16. Improving the Yield and Nutritional Quality of Forage Crops

    Nicola M. Capstaff

    2018-04-01

    Full Text Available Despite being some of the most important crops globally, there has been limited research on forages when compared with cereals, fruits, and vegetables. This review summarizes the literature highlighting the significance of forage crops, the current improvements and some of future directions for improving yield and nutritional quality. We make the point that the knowledge obtained from model plant and grain crops can be applied to forage crops. The timely development of genomics and bioinformatics together with genome editing techniques offer great scope to improve forage crops. Given the social, environmental and economic importance of forage across the globe and especially in poorer countries, this opportunity has enormous potential to improve food security and political stability.

  17. Integrating livestock manure with a corn-soybean bioenergy cropping system improves short-term carbon sequestration rates and net global warming potential

    Thelen, K.D.; Fronning, B.E.; Kravchenko, A.; Min, D.H.; Robertson, G.P. [Michigan State University, East Lansing, MI 48824 (United States)

    2010-07-15

    Carbon cycling and the global warming potential (GWP) of bioenergy cropping systems with complete biomass removal are of agronomic and environmental concern. Corn growers who plan to remove corn stover as a feedstock for the emerging cellulosic ethanol industry will benefit from carbon amendments such as manure and compost, to replace carbon removed with the corn stover. The objective of this research was to determine the effect of beef cattle feedlot manure and composted dairy manure on short-term carbon sequestration rates and net global warming potential (GWP) in a corn-soybean rotation with complete corn-stover removal. Field experiments consisting of a corn-soybean rotation with whole-plant corn harvest, were conducted near East Lansing, MI over a three-year period beginning in 2002. Compost and manure amendments raised soil carbon (C) at a level sufficient to overcome the C debt associated with manure production, manure collection and storage, land application, and post-application field emissions. The net GWP in carbon dioxide equivalents for the manure and compost amended cropping systems was -934 and -784 g m{sup -2} y{sup -1}, respectively, compared to 52 g m{sup -2} y{sup -1} for the non-manure amended synthetic fertilizer check. This work further substantiates the environmental benefits associated with renewable fuels and demonstrates that with proper management, the integration of livestock manures in biofuel cropping systems can enhance greenhouse gas (GHG) remediation. (author)

  18. Integrating livestock manure with a corn-soybean bioenergy cropping system improves short-term carbon sequestration rates and net global warming potential

    Thelen, K.D.; Fronning, B.E.; Kravchenko, A.; Min, D.H.; Robertson, G.P.

    2010-01-01

    Carbon cycling and the global warming potential (GWP) of bioenergy cropping systems with complete biomass removal are of agronomic and environmental concern. Corn growers who plan to remove corn stover as a feedstock for the emerging cellulosic ethanol industry will benefit from carbon amendments such as manure and compost, to replace carbon removed with the corn stover. The objective of this research was to determine the effect of beef cattle feedlot manure and composted dairy manure on short-term carbon sequestration rates and net global warming potential (GWP) in a corn-soybean rotation with complete corn-stover removal. Field experiments consisting of a corn-soybean rotation with whole-plant corn harvest, were conducted near East Lansing, MI over a three-year period beginning in 2002. Compost and manure amendments raised soil carbon (C) at a level sufficient to overcome the C debt associated with manure production, manure collection and storage, land application, and post-application field emissions. The net GWP in carbon dioxide equivalents for the manure and compost amended cropping systems was -934 and -784 g m -2 y -1 , respectively, compared to 52 g m -2 y -1 for the non-manure amended synthetic fertilizer check. This work further substantiates the environmental benefits associated with renewable fuels and demonstrates that with proper management, the integration of livestock manures in biofuel cropping systems can enhance greenhouse gas (GHG) remediation.

  19. International Global Crop Condition Assessments in the framework of GEOGLAM

    Becker-Reshef, I.; Justice, C. O.; Vermote, E.; Whitcraft, A. K.; Claverie, M.

    2013-12-01

    The Group on Earth Observations (partnership of governments and international organizations) developed the Global Agricultural Monitoring (GEOGLAM) initiative in response to the growing calls for improved agricultural information. The goal of GEOGLAM is to strengthen the international community's capacity to produce and disseminate relevant, timely and accurate forecasts of agricultural production at national, regional and global scales through the use of Earth observations. This initiative is designed to build on existing agricultural monitoring initiatives at national, regional and global levels and to enhance and strengthen them through international networking, operationally focused research, and data/method sharing. GEOGLAM was adopted by the G20 as part of the action plan on food price volatility and agriculture and is being implemented through building on the extensive GEO Agricultural Community of Practice (CoP) that was initiated in 2007 and includes key national and international agencies, organizations, and universities involved in agricultural monitoring. One of the early GEOGLAM activities is to provide harmonized global crop outlooks that offer timely qualitative consensus information on crop status and prospects. This activity is being developed in response to a request from the G-20 Agricultural Market Information System (AMIS) and is implemented within the global monitoring systems component of GEOGLAM. The goal is to develop a transparent, international, multi-source, consensus assessment of crop growing conditions, status, and agro-climatic conditions, likely to impact global production. These assessments are focused on the four primary crop types (corn, wheat, soy and rice) within the main agricultural producing regions of the world. The GEOGLAM approach is to bring together international experts from global, regional and national monitoring systems that can share and discuss information from a variety of independent complementary sources in

  20. A global sensitivity analysis of crop virtual water content

    Tamea, S.; Tuninetti, M.; D'Odorico, P.; Laio, F.; Ridolfi, L.

    2015-12-01

    The concepts of virtual water and water footprint are becoming widely used in the scientific literature and they are proving their usefulness in a number of multidisciplinary contexts. With such growing interest a measure of data reliability (and uncertainty) is becoming pressing but, as of today, assessments of data sensitivity to model parameters, performed at the global scale, are not known. This contribution aims at filling this gap. Starting point of this study is the evaluation of the green and blue virtual water content (VWC) of four staple crops (i.e. wheat, rice, maize, and soybean) at a global high resolution scale. In each grid cell, the crop VWC is given by the ratio between the total crop evapotranspiration over the growing season and the crop actual yield, where evapotranspiration is determined with a detailed daily soil water balance and actual yield is estimated using country-based data, adjusted to account for spatial variability. The model provides estimates of the VWC at a 5x5 arc minutes and it improves on previous works by using the newest available data and including multi-cropping practices in the evaluation. The model is then used as the basis for a sensitivity analysis, in order to evaluate the role of model parameters in affecting the VWC and to understand how uncertainties in input data propagate and impact the VWC accounting. In each cell, small changes are exerted to one parameter at a time, and a sensitivity index is determined as the ratio between the relative change of VWC and the relative change of the input parameter with respect to its reference value. At the global scale, VWC is found to be most sensitive to the planting date, with a positive (direct) or negative (inverse) sensitivity index depending on the typical season of crop planting date. VWC is also markedly dependent on the length of the growing period, with an increase in length always producing an increase of VWC, but with higher spatial variability for rice than for

  1. Compositions comprising lignosulfonates for crop protection and crop improvement

    Stevens, L.H.; Kok, C.J.; Krieken, van der W.M.

    2009-01-01

    International patent application number: WO2004067699http://www.wipo.int/patentscope/search/en/WO2004067699 (EN)The invention relates to a composition for protecting an agricultural crop against external threats, such as weeds, pathogens, abiotic and biotic stresses and/or for improving the quality

  2. Globally Increased Crop Growth and Cropping Intensity from the Long-Term Satellite-Based Observations

    Chen, Bin

    2018-04-01

    Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p impact on the crop growth trend.

  3. GLOBALLY INCREASED CROP GROWTH AND CROPPING INTENSITY FROM THE LONG-TERM SATELLITE-BASED OBSERVATIONS

    B. Chen

    2018-04-01

    Full Text Available Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001, and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.

  4. Functional molecular markers for crop improvement.

    Kage, Udaykumar; Kumar, Arun; Dhokane, Dhananjay; Karre, Shailesh; Kushalappa, Ajjamada C

    2016-10-01

    A tremendous decline in cultivable land and resources and a huge increase in food demand calls for immediate attention to crop improvement. Though molecular plant breeding serves as a viable solution and is considered as "foundation for twenty-first century crop improvement", a major stumbling block for crop improvement is the availability of a limited functional gene pool for cereal crops. Advancement in the next generation sequencing (NGS) technologies integrated with tools like metabolomics, proteomics and association mapping studies have facilitated the identification of candidate genes, their allelic variants and opened new avenues to accelerate crop improvement through development and use of functional molecular markers (FMMs). The FMMs are developed from the sequence polymorphisms present within functional gene(s) which are associated with phenotypic trait variations. Since FMMs obviate the problems associated with random DNA markers, these are considered as "the holy grail" of plant breeders who employ targeted marker assisted selections (MAS) for crop improvement. This review article attempts to consider the current resources and novel methods such as metabolomics, proteomics and association studies for the identification of candidate genes and their validation through virus-induced gene silencing (VIGS) for the development of FMMs. A number of examples where the FMMs have been developed and used for the improvement of cereal crops for agronomic, food quality, disease resistance and abiotic stress tolerance traits have been considered.

  5. Protein improvement in crop plants

    Rabson, R

    1974-07-01

    There are compelling reasons for attempting to increase the quality and quantity of protein available in crop plants through plant breeding, despite the fact that some critics have argued that no worldwide protein shortage exists. What used to be thought of as a 'protein gap' has now come to be considered in terms of protein-calorie malnutrition. This is only right since protein and calorie nutrition are inextricable. t the moment there are still unanswered questions as to the precise protein requirements of humans as a function of age, health and ambient conditions. There are, in addition, some indications that the incidence of Kwashiorkor (protein deficiency disease) is increasing in different parts of the world. At a recent meeting of the Protein Advisory Group of the United Nations System, Dr. Jean Mayer, an eminent human nutritionist of Harvard University, U.S.A., indicated the reasons for concern for the current food situation generally, and the protein food supply in particular. These factors include: - Immoderate continuing human population increases, most pronounced in some poor developing countries. - The highly accelerated consumption of animal foods associated with increasing affluence in the richer countries of the world. The production of such foods as meat demands great expenditures of grain, which is an inefficient mode of obtaining the required calories and protein for human consumption. - The over-exploitation of many of the world's fishery resources resulting in reduced yields, perhaps irreversibly, of some fishes. - Recent price increases in petroleum and fertilizer products which have imposed a major obstacle to increasing crop production. - The apparent alteration of climates in places like Africa, Asia and other parts of the Northern hemisphere which may put significant restrictions on crop production. hey are cogent reasons to be seriously concerned about these matters. (author)

  6. Protein improvement in crop plants

    Rabson, R.

    1974-01-01

    There are compelling reasons for attempting to increase the quality and quantity of protein available in crop plants through plant breeding, despite the fact that some critics have argued that no worldwide protein shortage exists. What used to be thought of as a 'protein gap' has now come to be considered in terms of protein-calorie malnutrition. This is only right since protein and calorie nutrition are inextricable. t the moment there are still unanswered questions as to the precise protein requirements of humans as a function of age, health and ambient conditions. There are, in addition, some indications that the incidence of Kwashiorkor (protein deficiency disease) is increasing in different parts of the world. At a recent meeting of the Protein Advisory Group of the United Nations System, Dr. Jean Mayer, an eminent human nutritionist of Harvard University, U.S.A., indicated the reasons for concern for the current food situation generally, and the protein food supply in particular. These factors include: - Immoderate continuing human population increases, most pronounced in some poor developing countries. - The highly accelerated consumption of animal foods associated with increasing affluence in the richer countries of the world. The production of such foods as meat demands great expenditures of grain, which is an inefficient mode of obtaining the required calories and protein for human consumption. - The over-exploitation of many of the world's fishery resources resulting in reduced yields, perhaps irreversibly, of some fishes. - Recent price increases in petroleum and fertilizer products which have imposed a major obstacle to increasing crop production. - The apparent alteration of climates in places like Africa, Asia and other parts of the Northern hemisphere which may put significant restrictions on crop production. hey are cogent reasons to be seriously concerned about these matters. (author)

  7. Minichromosomes: Vectors for Crop Improvement

    Jon P. Cody

    2015-07-01

    Full Text Available Minichromosome technology has the potential to offer a number of possibilities for expanding current biofortification strategies. While conventional genome manipulations rely on random integration of one or a few genes, engineered minichromosomes would enable researchers to concatenate several gene aggregates into a single independent chromosome. These engineered minichromosomes can be rapidly transferred as a unit to other lines through the utilization of doubled haploid breeding. If used in conjunction with other biofortification methods, it may be possible to significantly increase the nutritional value of crops.

  8. Global Crop Monitoring: A Satellite-Based Hierarchical Approach

    Bingfang Wu

    2015-04-01

    Full Text Available Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, the CropWatch system has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The approach adopts a hierarchical system covering four spatial levels of detail: global, regional, national (thirty-one key countries including China and “sub-countries” (for the nine largest countries. The thirty-one countries encompass more that 80% of both production and exports of maize, rice, soybean and wheat. The methodology resorts to climatic and remote sensing indicators at different scales. The global patterns of crop environmental growing conditions are first analyzed with indicators for rainfall, temperature, photosynthetically active radiation (PAR as well as potential biomass. At the regional scale, the indicators pay more attention to crops and include Vegetation Health Index (VHI, Vegetation Condition Index (VCI, Cropped Arable Land Fraction (CALF as well as Cropping Intensity (CI. Together, they characterize crop situation, farming intensity and stress. CropWatch carries out detailed crop condition analyses at the national scale with a comprehensive array of variables and indicators. The Normalized Difference Vegetation Index (NDVI, cropped areas and crop conditions are integrated to derive food production estimates. For the nine largest countries, CropWatch zooms into the sub-national units to acquire detailed information on crop condition and production by including new indicators (e.g., Crop type proportion. Based on trend analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. The hierarchical approach adopted by CropWatch is the basis of the analyses of climatic and crop conditions assessments published in the quarterly “CropWatch bulletin” which

  9. A database for coconut crop improvement.

    Rajagopal, Velamoor; Manimekalai, Ramaswamy; Devakumar, Krishnamurthy; Rajesh; Karun, Anitha; Niral, Vittal; Gopal, Murali; Aziz, Shamina; Gunasekaran, Marimuthu; Kumar, Mundappurathe Ramesh; Chandrasekar, Arumugam

    2005-12-08

    Coconut crop improvement requires a number of biotechnology and bioinformatics tools. A database containing information on CG (coconut germplasm), CCI (coconut cultivar identification), CD (coconut disease), MIFSPC (microbial information systems in plantation crops) and VO (vegetable oils) is described. The database was developed using MySQL and PostgreSQL running in Linux operating system. The database interface is developed in PHP, HTML and JAVA. http://www.bioinfcpcri.org.

  10. Mutation Breeding for Crop Improvement

    Rajbir, S. Sangwan

    2017-01-01

    Chromosomes contain genes responsible of different traits of any organism. Induced mutation using chemical mutagens and radiation to modify molecular structure of plants played a major role in the development of high genetic variability and help develop new superior crop varieties. The Mutation Breeding is applicable to all plants and has generated lot of agronomically interesting mutants, both in vegetatively and seed propagated plants. The technique is easy but long and challenging to detect, isolate and characterize the mutant and gene. A specific dose of irradiation has to be used to obtain desired mutants. However, with modern molecular technique, the gene responsible for mutation can be identified. The CRISPR-Cas9 allows the removal of a specific gene which is responsible of unwanted trait and replacing it with a gene which induces a desired trait. There have been more than 2700 officially released mutant varieties from 170 different plant species in more than 60 countries throughout the world and A more participatory approach, involving all stakeholders in plant breeding, is needed to ensure that it is demand/farmers driven.

  11. Crop improvement projects in Peru

    Broeshart, H.

    1978-01-01

    Only two percent of the territory of Peru consists of arable land. Sixteen million people depend on the production of about three million hectares of land, which means that on the average only 1800 square metres is available per person. It is clear that Peru is one of the poorest countries of the world as far as available arable land is concerned and consequently it will have to drastically increase its agricultural production per unit area or import large quantities of agricultural products to feed its rapidly growing population. Agricultural research on the efficient use of fertilizers is being carried out by the regional experiment station (CRIA), by the National University of Agriculture, La Molina, Lima, dealing with programmes on maize, potatoes, cereals and forage crops, by national universities in the country and by specialized research institutes for tropical agriculture on sugar-cane, cotton, coffee and tea. Isotope and radiation techniques are a particularly effective means of determining the best cultural practices for the efficient use of fertilizers and water, and the Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture has been involved in the organization of field and greenhouse programmes at experiment stations and universities in Peru since 1963

  12. Genomics of crop wild relatives: expanding the gene pool for crop improvement.

    Brozynska, Marta; Furtado, Agnelo; Henry, Robert J

    2016-04-01

    Plant breeders require access to new genetic diversity to satisfy the demands of a growing human population for more food that can be produced in a variable or changing climate and to deliver the high-quality food with nutritional and health benefits demanded by consumers. The close relatives of domesticated plants, crop wild relatives (CWRs), represent a practical gene pool for use by plant breeders. Genomics of CWR generates data that support the use of CWR to expand the genetic diversity of crop plants. Advances in DNA sequencing technology are enabling the efficient sequencing of CWR and their increased use in crop improvement. As the sequencing of genomes of major crop species is completed, attention has shifted to analysis of the wider gene pool of major crops including CWR. A combination of de novo sequencing and resequencing is required to efficiently explore useful genetic variation in CWR. Analysis of the nuclear genome, transcriptome and maternal (chloroplast and mitochondrial) genome of CWR is facilitating their use in crop improvement. Genome analysis results in discovery of useful alleles in CWR and identification of regions of the genome in which diversity has been lost in domestication bottlenecks. Targeting of high priority CWR for sequencing will maximize the contribution of genome sequencing of CWR. Coordination of global efforts to apply genomics has the potential to accelerate access to and conservation of the biodiversity essential to the sustainability of agriculture and food production. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Proteomics: A Biotechnology Tool for Crop Improvement

    Moustafa eEldakak

    2013-02-01

    Full Text Available A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improvements in proteomic platforms and many other but related advances in plant biotechnology techniques offer various new ways to encourage the usage of these technologies by plant scientists for crop improvement programs. A combinatorial approach of accelerated gene discovery through genomics, proteomics, and other associated -omic branches of biotechnology, as an applied approach, is proving to be an effective way to speed up the crop improvement programs worldwide. In the near future, swift improvements in -omic databases are becoming critical and demand immediate attention for the effective utilization of these techniques to produce next-generation crops for the progressive farmers. Here, we have reviewed the recent advances in proteomics, as tools of biotechnology, which are offering great promise and leading the path towards crop improvement for sustainable agriculture.

  14. Modifying agricultural crops for improved nutrition.

    McGloughlin, Martina Newell

    2010-11-30

    The first generation of biotechnology products commercialized were crops focusing largely on input agronomic traits whose value was often opaque to consumers. The coming generations of crop plants can be grouped into four broad areas each presenting what, on the surface, may appear as unique challenges and opportunities. The present and future focus is on continuing improvement of agronomic traits such as yield and abiotic stress resistance in addition to the biotic stress tolerance of the present generation; crop plants as biomass feedstocks for biofuels and "bio-synthetics"; value-added output traits such as improved nutrition and food functionality; and plants as production factories for therapeutics and industrial products. From a consumer perspective, the focus on value-added traits, especially improved nutrition, is undoubtedly one of the areas of greatest interest. From a basic nutrition perspective, there is a clear dichotomy in demonstrated need between different regions and socioeconomic groups, the starkest being inappropriate consumption in the developed world and under-nourishment in Less Developed Countries (LDCs). Dramatic increases in the occurrence of obesity and related ailments in affluent regions are in sharp contrast to chronic malnutrition in many LDCs. Both problems require a modified food supply, and the tools of biotechnology have a part to play. Developing plants with improved traits involves overcoming a variety of technical, regulatory and indeed perception hurdles inherent in perceived and real challenges of complex traits modifications. Continuing improvements in molecular and genomic technologies are contributing to the acceleration of product development to produce plants with the appropriate quality traits for the different regions and needs. Crops with improved traits in the pipeline, the evolving technologies and the opportunities and challenges that lie ahead are covered. Copyright © 2010. Published by Elsevier B.V.

  15. Global Rice Atlas: Disaggregated seasonal crop calendar and production

    Balanza, Jane Girly; Gutierrez, Mary Anne; Villano, Lorena; Nelson, A.D.; Zwart, S.J.; Boschetti, Mirco; Koo, Jawoo; Reinke, Russell; Murty, M. V.R.; Laborte, Alice G.

    2014-01-01

    Purpose: Rice is an important staple crop cultivated in more than 163 million ha globally. Although information on the distribution of global rice production is available by country and, at times, at subnational level, information on its distribution within a year is often lacking in different rice

  16. Global Status of Genetically Modified Crops: Current Trends and Prospects

    Hautea, Randy A.

    2002-01-01

    Modern biotechnology-facilitated crop improvement is undoubtedly one of the most significant technological developments in agriculture. The first wave of genetically-modified (GM) or transgenic crops include cultivars with important input traits such as herbicide tolerance and insect resistance. Future products are expected to provide benefits that could include tolerance to environmental stresses and enhanced nutritional content, which can be particularly valuable in crops that are important...

  17. Global Food Security Support Analysis Data (GFSAD) Crop Mask 2010 Global 1 km V001

    National Aeronautics and Space Administration — The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security Support Analysis Data (GFSAD) Crop Mask Global 1 kilometer...

  18. Improving Bioenergy Crops through Dynamic Metabolic Modeling

    Mojdeh Faraji

    2017-10-01

    Full Text Available Enormous advances in genetics and metabolic engineering have made it possible, in principle, to create new plants and crops with improved yield through targeted molecular alterations. However, while the potential is beyond doubt, the actual implementation of envisioned new strains is often difficult, due to the diverse and complex nature of plants. Indeed, the intrinsic complexity of plants makes intuitive predictions difficult and often unreliable. The hope for overcoming this challenge is that methods of data mining and computational systems biology may become powerful enough that they could serve as beneficial tools for guiding future experimentation. In the first part of this article, we review the complexities of plants, as well as some of the mathematical and computational methods that have been used in the recent past to deepen our understanding of crops and their potential yield improvements. In the second part, we present a specific case study that indicates how robust models may be employed for crop improvements. This case study focuses on the biosynthesis of lignin in switchgrass (Panicum virgatum. Switchgrass is considered one of the most promising candidates for the second generation of bioenergy production, which does not use edible plant parts. Lignin is important in this context, because it impedes the use of cellulose in such inedible plant materials. The dynamic model offers a platform for investigating the pathway behavior in transgenic lines. In particular, it allows predictions of lignin content and composition in numerous genetic perturbation scenarios.

  19. A global overview of biotech (GM) crops: adoption, impact and future prospects.

    James, Clive

    2010-01-01

    In the early 1990s, some were skeptical that genetically modified (GM) crops, now referred to as biotech crops, could deliver improved products and make an impact at the farm level. There was even more skepticism that developing countries would adopt biotech crops. The adoption of and commercialization of biotech crops in 2008 is reviewed. The impact of biotech crops are summarized including their contribution to: global food, feed and fiber security; a safer environment; a more sustainable agriculture; and the alleviation of poverty, and hunger in the developing countries of the world. Future prospects are discussed. Notably, Egypt planted Bt maize for the first time in 2008 thereby becoming the first country in the Arab world to commercialize biotech crops.

  20. The Crop Journal: A new scientific journal for the global crop science community

    Jianmin Wan

    2013-10-01

    Full Text Available As global population increases and demands for food supplies become greater, we face great challenges in providing more products and in larger quantities from less arable land. Crop science has gained increasing importance in meeting these challenges and results of scientific research must be communicated worldwide on a regular basis. In many countries, however, crop scientists have to publish the results of their investigations in national journals with heterogeneous contents and in their native languages. As a consequence, valuable work often remains unknown to scientists elsewhere. As a big country with a large number of crop scientists, China has a wide range of climatic and ecological environments, diverse plant species and cropping systems, and different regional needs for food supplies, which justify the recent decision by the Crop Science Society of China and the Institute of Crop Science within the Chinese Academy of Agricultural Sciences, to launch a new communication channel, The Crop Journal. The goal of The Crop Journal is to meet an urgent need for a major Asia-based journal that covers the diverse fields of crop science. Our aim is to create a vital and thought-provoking journal that will highlight state-of-the-art original work and reviews by high-profile crop scientists and investigative groups throughout the world — a journal that will respond to the needs of specialists in strategic crop research. We will work with scientific and publishing colleagues worldwide, using The Plant Journal and Crop Science as models, to establish The Crop Journal as a broadly based high quality journal and a premier forum for issues in crop science. The Crop Journal will cover a wide range of topics, including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics. The journal also encourages the submission of review

  1. Climate change and global crop yield: impacts, uncertainties and adaptation

    Deryng, Delphine

    2014-01-01

    As global mean temperature continues to rise steadily, agricultural systems are projected to face unprecedented challenges to cope with climate change. However, understanding of climate change impacts on global crop yield, and of farmers’ adaptive capacity, remains incomplete as previous global assessments: (1) inadequately evaluated the role of extreme weather events; (2) focused on a small subset of the full range of climate change predictions; (3) overlooked uncertainties related to the ch...

  2. Increasing global crop harvest frequency: recent trends and future directions

    Ray, Deepak K; Foley, Jonathan A

    2013-01-01

    The world’s agricultural systems face the challenge of meeting the rising demands from population growth, changing dietary preferences, and expanding biofuel use. Previous studies have put forward strategies for meeting this growing demand by increasing global crop production, either expanding the area under cultivation or intensifying the crop yields of our existing agricultural lands. However, another possible means for increasing global crop production has received less attention: increasing the frequency of global cropland harvested each year. Historically, many of the world’s croplands were left fallow, or had failed harvests, each year, foregoing opportunities for delivering crop production. Furthermore, many regions, particularly in the tropics, may be capable of multiple harvests per year, often more than are harvested today. Here we analyze a global compilation of agricultural statistics to show how the world’s harvested cropland has changed. Between 2000 and 2011, harvested land area grew roughly 4 times faster than total standing cropland area. Using a metric of cropland harvest frequency (CHF)—the ratio of land harvested each year to the total standing cropland—and its recent trends, we identify countries that harvest their croplands more frequently, and those that have the potential to increase their cropland harvest frequency. We suggest that a possible ‘harvest gap’ may exist in many countries that represents an opportunity to increase crop production on existing agricultural lands. However, increasing the harvest frequency of existing croplands could have significant environmental and social impacts, which need careful evaluation. (letter)

  3. Mutation breeding for crop improvement: a review

    Awan, M.A.

    1999-01-01

    More than 70 years have passed since radiation was used successfully to generate genetic variation in plants. Since the research on theoretical basis of mutagenesis was performed with a peak in the mid sixties. The result of these investigations led to the formulation of methodological principles in the use of various mutagens for the creation and selection of desired variability. The induced genetic variability has been extensively used for evolution of crop varieties as well as in breeding programmes. More than 1800 varieties of 154 plants species have so far been released for commercial cultivation, of which cereals are at the top, demonstrating the economics of the mutation breeding technique. The most frequently occurring mutations have been the short stature and really maturity. In Pakistan, the use of mutation breeding technique for the improvement of crops has also led to the development of 34 cultivars of cotton, rice, wheat, chickpea, mungbean and rapeseed which have played a significant role in increasing crop production in the country. In addition, a wealth of genetic variability has been developed for use in the cross breeding programmes, and the breeders in Pakistan have released six varieties of cotton by using an induced mutant as one of the parents. (author)

  4. How can we improve Mediterranean cropping systems?

    Benlhabib, O.; Yazar, A.; Qadir, M.

    2014-01-01

    In the Mediterranean region, crop productivity and food security are closely linked to the adaptation of cropping systems to multiple abiotic stresses. Limited and unpredictable rainfall and low soil fertility have reduced agricultural productivity and environmental sustainability. For this reason...... the tested interventions, incorporation of crop residues coupled with supplementary irrigation showed a significantly positive effect on crop productivity, yield stability and environmental sustainability....

  5. Global warming impact assessment of a crop residue gasification project—A dynamic LCA perspective

    Yang, Jin; Chen, Bin

    2014-01-01

    Highlights: • A dynamic LCA is proposed considering time-varying factors. • Dynamic LCA is used to highlight GHG emission hotspots of gasification projects. • Indicators are proposed to reflect GHG emission performance. • Dynamic LCA alters the static LCA results. • Crop residue gasification project has high GHG abatement potential. - Abstract: Bioenergy from crop residues is one of the prevailing sustainable energy sources owing to the abundant reserves worldwide. Amongst a wide variety of energy conversion technologies, crop residue gasification has been regarded as promising owing to its higher energy efficiency than that of direct combustion. However, prior to large-scale application of crop residue gasification, the lifetime environmental performance should be investigated to shed light on sustainable strategies. As traditional static life cycle assessment (LCA) does not include temporal information for dynamic processes, we proposed a dynamic life cycle assessment approach, which improves the static LCA approach by considering time-varying factors, e.g., greenhouse gas characterization factors and energy intensity. As the gasification project can reduce greenhouse gas (GHG) discharge compared with traditional direct fuel combustion, trade-offs between the benefits of global warming mitigation and the impact on global warming of crop residue gasification should be considered. Therefore, indicators of net global warming mitigation benefit and global warming impact mitigation period are put forward to justify the feasibility of the crop residue gasification project. The proposed dynamic LCA and indicators were then applied to estimate the life cycle global warming impact of a crop residue gasification system in China. Results show that the crop residue gasification project has high net global warming mitigation benefit and a short global warming impact mitigation period, indicating its prominent potential in alleviating global warming impact. During

  6. The imprint of crop choice on global nutrient needs

    Jobbágy, Esteban G; Sala, Osvaldo E

    2014-01-01

    Solutions to meet growing food requirements in a world of limited suitable land and degrading environment focus mainly on increasing crop yields, particularly in poorly performing regions, and reducing animal product consumption. Increasing yields could alleviate land requirements, but imposing higher soil nutrient withdrawals and in most cases larger fertilizer inputs. Lowering animal product consumption favors a more efficient use of land as well as soil and fertilizer nutrients; yet actual saving may largely depend on which crops and how much fertilizer are used to feed livestock versus people. We show, with a global analysis, how the choice of cultivated plant species used to feed people and livestock influences global food production as well as soil nutrient withdrawals and fertilizer additions. The 3 to 15-fold differences in soil nutrient withdrawals per unit of energy or protein produced that we report across major crops explain how composition shifts over the last 20 years have reduced N, maintained P and increased K harvest withdrawals from soils while contributing to increasing dietary energy, protein and, particularly, vegetable fat outputs. Being highly variable across crops, global fertilization rates do not relate to actual soil nutrient withdrawals, but to monetary values of harvested products. Future changes in crop composition could contribute to achieve more sustainable food systems, optimizing land and fertilizer use. (letter)

  7. Trends in global approvals of biotech crops (1992–2014)

    Aldemita, Rhodora R; Reaño, Ian Mari E; Solis, Renando O; Hautea, Randy A

    2015-01-01

    ABSTRACT With the increasing number of genetically modified (GM) events, traits, and crops that are developed to benefit the global population, approval of these technologies for food, feed, cultivation and import in each country may vary depending on needs, demand and trade interest. ISAAA established a GMO Approval Database to document global approvals of biotech crops. GM event name, crops, traits, developer, year of approval for cultivation, food/feed, import, and relevant dossiers were sourced from credible government regulatory websites and biosafety clearinghouses. This paper investigates the trends in GM approvals for food, feed and cultivation based on the number of approving countries, GM crops, events, and traits in the last 23 y (1992–2014), rationale for approval, factors influencing approvals, and their implications in GM crop adoption. Results show that in 2014, there was an accumulative increase in the number of countries granting approvals at 29 (79% developing countries) for commercial cultivation and 31 (70% developing countries) for food and 19 (80% developing developing) for feed; 2012 had the highest number of approving countries and cultivation approvals; 2011 had the highest number of country approvals for feed, and 2014 for food approvals. Herbicide tolerance trait had the highest events approved, followed by insect tolerance traits. Approvals for food product quality increased in the second decade. Maize had the highest number of events approved (single and stacked traits), and stacked traits product gradually increased which is already 30% of the total trait approvals. These results may indicate understanding and acceptance of countries to enhance regulatory capability to be able to benefit from GM crop commercialization. Hence, the paper provided information on the trends on the growth of the GM crop industry in the last 23 y which may be vital in predicting future GM crops and traits. PMID:26039675

  8. Trends in global approvals of biotech crops (1992-2014).

    Aldemita, Rhodora R; Reaño, Ian Mari E; Solis, Renando O; Hautea, Randy A

    2015-01-01

    With the increasing number of genetically modified (GM) events, traits, and crops that are developed to benefit the global population, approval of these technologies for food, feed, cultivation and import in each country may vary depending on needs, demand and trade interest. ISAAA established a GMO Approval Database to document global approvals of biotech crops. GM event name, crops, traits, developer, year of approval for cultivation, food/feed, import, and relevant dossiers were sourced from credible government regulatory websites and biosafety clearinghouses. This paper investigates the trends in GM approvals for food, feed and cultivation based on the number of approving countries, GM crops, events, and traits in the last 23 y (1992-2014), rationale for approval, factors influencing approvals, and their implications in GM crop adoption. Results show that in 2014, there was an accumulative increase in the number of countries granting approvals at 29 (79% developing countries) for commercial cultivation and 31 (70% developing countries) for food and 19 (80% developing developing) for feed; 2012 had the highest number of approving countries and cultivation approvals; 2011 had the highest number of country approvals for feed, and 2014 for food approvals. Herbicide tolerance trait had the highest events approved, followed by insect tolerance traits. Approvals for food product quality increased in the second decade. Maize had the highest number of events approved (single and stacked traits), and stacked traits product gradually increased which is already 30% of the total trait approvals. These results may indicate understanding and acceptance of countries to enhance regulatory capability to be able to benefit from GM crop commercialization. Hence, the paper provided information on the trends on the growth of the GM crop industry in the last 23 y which may be vital in predicting future GM crops and traits.

  9. Particulate matter air pollution may offset ozone damage to global crop production

    Schiferl, Luke D.; Heald, Colette L.

    2018-04-01

    Ensuring global food security requires a comprehensive understanding of environmental pressures on food production, including the impacts of air quality. Surface ozone damages plants and decreases crop production; this effect has been extensively studied. In contrast, the presence of particulate matter (PM) in the atmosphere can be beneficial to crops given that enhanced light scattering leads to a more even and efficient distribution of photons which can outweigh total incoming radiation loss. This study quantifies the impacts of ozone and PM on the global production of maize, rice, and wheat in 2010 and 2050. We show that accounting for the growing season of these crops is an important factor in determining their air pollution exposure. We find that the effect of PM can offset much, if not all, of the reduction in yield associated with ozone damage. Assuming maximum sensitivity to PM, the current (2010) global net impact of air quality on crop production varies by crop (+5.6, -3.7, and +4.5 % for maize, wheat, and rice, respectively). Future emissions scenarios indicate that attempts to improve air quality can result in a net negative effect on crop production in areas dominated by the PM effect. However, we caution that the uncertainty in this assessment is large, due to the uncertainty associated with crop response to changes in diffuse radiation; this highlights that a more detailed physiological study of this response for common cultivars is crucial.

  10. Particulate matter air pollution may offset ozone damage to global crop production

    L. D. Schiferl

    2018-04-01

    Full Text Available Ensuring global food security requires a comprehensive understanding of environmental pressures on food production, including the impacts of air quality. Surface ozone damages plants and decreases crop production; this effect has been extensively studied. In contrast, the presence of particulate matter (PM in the atmosphere can be beneficial to crops given that enhanced light scattering leads to a more even and efficient distribution of photons which can outweigh total incoming radiation loss. This study quantifies the impacts of ozone and PM on the global production of maize, rice, and wheat in 2010 and 2050. We show that accounting for the growing season of these crops is an important factor in determining their air pollution exposure. We find that the effect of PM can offset much, if not all, of the reduction in yield associated with ozone damage. Assuming maximum sensitivity to PM, the current (2010 global net impact of air quality on crop production varies by crop (+5.6, −3.7, and +4.5 % for maize, wheat, and rice, respectively. Future emissions scenarios indicate that attempts to improve air quality can result in a net negative effect on crop production in areas dominated by the PM effect. However, we caution that the uncertainty in this assessment is large, due to the uncertainty associated with crop response to changes in diffuse radiation; this highlights that a more detailed physiological study of this response for common cultivars is crucial.

  11. Air Pollution Impacts on Global Crop Productivity and Nitrogen Depositio

    Heald, C. L.; Tai, A. P. K.; Val Martin, M.

    2014-12-01

    The biosphere is undeniably transformed by air pollution. Emissions, climate change, and land use change are all expected to substantially alter future air quality. In this presentation, we discuss near-term projections (2050) of air quality impacts on both crop productivity and nitrogen deposition. First, we contrast the relative impacts of ozone air pollution and a warming climate on global crop yields. To do so, we define statistical crop yield functions to a warming climate based on the historical record. We combine these relationships with ozone-damage estimates and apply these to future air quality and climate projections from a global coupled chemistry-climate model (CESM). We find substantial variability in the response, with certain regions or crops more sensitive to ozone pollution and others more sensitive to warming. This work demonstrates that air quality management is a key element to ensuring global food security. Second, we examine the relative impacts of anthropogenic emissions, climate change, and land use change on global nitrogen deposition. Nitrogen deposition has rapidly increased over the Anthropocene. Excess deposition of nitrogen to ecosystems can lead to eutrophication of waters, and a decrease in biodiversity. We use the CESM to investigate two scenarios (RCP 4.5 and RCP8.5) and focus our analysis on the impacts on diverse ecoregions in North America, Europe, and Asia.

  12. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement

    Wu, Alex; Song, Youhong; van Oosterom, Erik J.; Hammer, Graeme L.

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation. PMID:27790232

  13. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement.

    Wu, Alex; Song, Youhong; van Oosterom, Erik J; Hammer, Graeme L

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation.

  14. Precise, flexible and affordable gene stacking for crop improvement.

    Chen, Weiqiang; Ow, David W

    2017-09-03

    The genetic engineering of plants offers a revolutionary advance for crop improvement, and the incorporation of transgenes into crop species can impart new traits that would otherwise be difficult to obtain through conventional breeding. Transgenes introduced into plants, however, can only be useful when bred out to field cultivars. As new traits are continually added to further improve transgenic cultivars, clustering new DNA near previously introduced transgenes keep from inflating the number of segregating units that breeders must assemble back into a breeding line. Here we discuss various options to introduce DNA site-specifically into an existing transgenic locus. As food security is becoming a pressing global issue, the old proverb resonates true to this day: "give a man a fish and you feed him for a day; teach a man to fish and you feed him for a lifetime." Hence, we describe a recombinase-mediate gene stacking system designed with freedom to operate, providing an affordable option for crop improvement by less developed countries where food security is most at risk.

  15. In vitro techniques for crop improvement

    1985-01-01

    The film refers to principles of plant tissue culture - laboratory requirements, media preparation, explant establishment and subculturing method. In vitro growth and development of crop plants are demonstrate and the application of in vitro techniques in plant breeding is discussed. The second part of the film shows the application of cell, tissue and organ culture in plants. Micropropagation and virus eradication are important technologies for the improvement of vegetatively propagated plants; zygotic embryo rescue techniques are used for distant hybridization, especially in cereals. Plant biotechnology offers a potent means for the in vitro generation of enhanced genetic variability - somaclonal and mutagen induced variation. Principles of the isolation and culture of plant protoplasts are explained and their potential for somatic hybridization in higher plants is demonstrated. Haploids are valuable to accelerate breeding cycles of plants. Plant biotechnology is described as an important complementary tool to conventional plant breeding methods

  16. Understanding the Changes in Global Crop Yields Through Changes in Climate and Technology

    Najafi, Ehsan; Devineni, Naresh; Khanbilvardi, Reza M.; Kogan, Felix

    2018-03-01

    During the last few decades, the global agricultural production has risen and technology enhancement is still contributing to yield growth. However, population growth, water crisis, deforestation, and climate change threaten the global food security. An understanding of the variables that caused past changes in crop yields can help improve future crop prediction models. In this article, we present a comprehensive global analysis of the changes in the crop yields and how they relate to different large-scale and regional climate variables, climate change variables and technology in a unified framework. A new multilevel model for yield prediction at the country level is developed and demonstrated. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. El Niño-southern oscillation (ENSO), Palmer drought severity index (PDSI), geopotential height anomalies (GPH), historical carbon dioxide (CO2) concentration and country-based time series of GDP per capita as an approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2013. Results indicate that these variables can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications. While some countries were not generally affected by climatic factors, PDSI and GPH acted both positively and negatively in different regions for crop yields in many countries.

  17. Potential Air Quality Impacts of Global Bioenergy Crop Cultivation

    Porter, W. C.; Rosenstiel, T. N.; Barsanti, K. C.

    2012-12-01

    The use of bioenergy crops as a replacement for traditional coal-powered electricity generation will require large-scale land-use change, and the resulting changes in emissions of biogenic volatile organic compounds (BVOCs) may have negative impacts on local to regional air quality. BVOCs contribute to the formation of both ozone (O3) and fine particulate matter (PM2.5), with magnitudes of specific compound emissions governed largely by plant speciation and land coverage. For this reason, large-scale land-use change has the potential to markedly alter regional O3 and PM2.5 levels, especially if there are large differences between the emission profiles of the replacement bioenergy crops (many of which are high BVOC emitters) and the previous crops or land cover. In this work, replacement areas suitable for the cultivation of the bioenergy crops switchgrass (Panicum virgatum) and giant reed (Arundo donax) were selected based on existing global inventories of under-utilized cropland and local climatological conditions. These two crops are among the most popular current candidates for bioenergy production, and provide contrasting examples of energy densities and emissions profiles. While giant reed has been selected in an ongoing large-scale coal-to-biocharcoal conversion in the Northwestern United States due to its high crop yields and energy density, it is also among the highest biogenic emitters of isoprene. On the other hand, switchgrass produces less biomass per acre, but also emits essentially no isoprene and low total BVOCs. The effects of large-scale conversion to these crops on O3 and PM2.5 were simulated using version 1.1 of the Community Earth System Model (CESM) coupled with version 2.1 of the Model of Emissions of Gases and Aerosols from Nature (MEGAN). By comparing crop replacement scenarios involving A. donax and P. virgatum, the sensitivities of O3 and PM2.5 levels to worldwide increases in bioenergy production were examined, providing an initial

  18. Achievements and trends of using induced mutations in crop improvement

    Nichterlein, K.; Maluszynski, M.; ); Bohlmann, H.; Nielen, S.; )

    2000-01-01

    Mutation techniques have been employed for the genetic improvement of crops and ornamentals leading to the official release of more than 2200 improved varieties. Some of them have made a major impact on crop productivity and achieved great economic success. Induced mutations play an important role in plant genome research to understand the function of genes aiming to improve food security and diversity. (author)

  19. Soil Water Improvements with the Long Term Use of a Winter Rye Cover Crop

    Basche, A.; Kaspar, T.; Archontoulis, S.; Jaynes, D. B.; Sauer, T. J.; Parkin, T.; Miguez, F.

    2015-12-01

    The Midwestern United States, a region that produces one-third of maize and one-quarter of soybeans globally, is projected to experience increasing rainfall variability with future climate change. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance soil water storage, reducing the risks of flooding and runoff as well as drought-induced crop water stress. While some research indicates that a winter cover crop in a maize-soybean rotation increases soil water, producers continue to be concerned that water use by cover crops will reduce water for a following cash crop. We analyzed continuous in-field soil moisture measurements over from 2008-2014 at a Central Iowa research site that has included a winter rye cover crop in a maize-soybean rotation for thirteen years. This period of study included years in the top third of wettest years on record (2008, 2010, 2014) as well as years in the bottom third of driest years (2012, 2013). We found the cover crop treatment to have significantly higher soil water storage from 2012-2014 when compared to the no cover crop treatment and in most years greater soil water content later in the growing season when a cover crop was present. We further found that the winter rye cover crop significantly increased the field capacity water content and plant available water compared to the no cover crop treatment. Finally, in 2012 and 2013, we measured maize and soybean biomass every 2-3 weeks and did not see treatment differences in crop growth, leaf area or nitrogen uptake. Final crop yields were not statistically different between the cover and no cover crop treatment in any of the years of this analysis. This research indicates that the long-term use of a winter rye cover crop can improve soil water dynamics without sacrificing cash crop growth.

  20. Relevance of sexual polyploidization for crop improvement - A review

    Ramanna, M.S.; Jacobsen, E.

    2003-01-01

    Colchicine induced polyploids have not directly contributed for crop improvement in the past. On the other hand, the so-called natural polyploids, derived from the functioning of numerically unreduced (2n) gametes have been shown to be more relevant for crop improvement in many cases. Different

  1. Status of Agricultural Production and Crop Variety Improvement in Thailand

    JIAO Chun-hai; GUO Ying; YAO Ming-hua; WAN Zheng-huang

    2012-01-01

    We introduced basic conditions of agricultural production in Thailand, and variety improvement of major crops, including rice, cassava, rubber, and vegetable, in the hope of providing reference for agricultural production and crop variety improvement in Hubei Province and even in the whole country.

  2. Cover crops and crop residue management under no-till systems improve soils and environmental quality

    Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael

    2015-04-01

    Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under

  3. Radiation technology for the development of improved crop varieties

    D'Souza, Stanislaus F.

    2009-01-01

    One of the peaceful applications of atomic energy is in the field of agriculture. It finds application in crop improvement, crop nutrition, crop protection and food preservation. Genetic improvement of crop plants is a continuous endeavor. Success of a crop improvement programme depends on the availability of large genetic variability, which a plant breeder can combine to generate new varieties. In nature, occurrence of natural variability in the form of spontaneous mutations is extremely low (roughly 10 -6 ), which can be enhanced to several fold (approximately 10 -3 ) by using ionizing radiations or chemical mutagens. Radiation induced genetic variability in crop plants is a valuable resource from which plant breeder can select and combine different desired characteristics to produce better crop varieties. Crop improvement programmes at Bhabha Atomic Research Centre (BARC) envisage radiation based induced mutagenesis along with recombination breeding in country's important cereals (rice and wheat), oilseeds (groundnut, mustard, soybean and sunflower), grain legumes (blackgram, mungbean, pigeonpea and cowpea), banana and sugarcane. The desirable traits which have been bred through induced mutations include higher yield, grain quality, early maturity, disease and pest resistance, improved plant type and abiotic stress resistance

  4. Perspectives and Challenges of Microbial Application for Crop Improvement

    Timmusk, Salme; Behers, Lawrence; Muthoni, Julia; Muraya, Anthony; Aronsson, Anne-Charlotte

    2017-01-01

    Global population increases and climate change pose a challenge to worldwide crop production. There is a need to intensify agricultural production in a sustainable manner and to find solutions to combat abiotic stress, pathogens, and pests. Plants are associated with complex microbiomes, which have an ability to promote plant growth and stress tolerance, support plant nutrition, and antagonize plant pathogens. The integration of beneficial plant-microbe and microbiome interactions may represent a promising sustainable solution to improve agricultural production. The widespread commercial use of the plant beneficial microorganisms will require a number of issues addressed. Systems approach using microscale information technology for microbiome metabolic reconstruction has potential to advance the microbial reproducible application under natural conditions. PMID:28232839

  5. Improving tree establishment with forage crops

    Eric J. Holzmueller; Carl W. Mize

    2003-01-01

    Tree establishment in Iowa can be difficult without adequate weed control. Although herbicides are effective at controlling weeds, they may not be desirable in riparian settings and some landowners are opposed to using them. An alternative to herbicides is the use of forage crops to control weeds. A research project was established in 1998 to evaluate the influence of...

  6. Use of arbuscular mycorrhiza fungi for improved crop production in ...

    Arbuscular mycorrhiza fungi (AMF), endophytic fungi reputed for their ability to enhance P uptake can be used to alleviate P deficiencies and improve crop productivity. Although the technology has been used in developed countries, it has not been applied in crop production systems in Africa to any significant level. This is ...

  7. Assessment of global grey water footprint of major food crops

    Yang, Hong; Liu, Wenfeng; Antonelli, Marta

    2016-04-01

    Agricultural production is one of the major sources of water pollution in the world. This is closely related to the excess application of fertilizers. Leaching of N and P to water bodies has caused serious degradation of water quality in many places. With the persistent increase in the demand for agricultural products, agricultural intensification evident during the past decades will continue in the future. This will lead to further increase in fertilizer application and consequently water pollution. Grey water footprint is a measure of the intensity of water pollution caused by water use for human activities. It is defined as the volume of water that is required to assimilate a load of pollutants to a freshwater body, based on natural background concentrations and water quality standards. This study conducts a global assessment of grey water footprint for major cereal crops, wheat, maize and rice. A crop model, Python-based EPIC (PEPIT), is applied to quantify the leaching of N and P from the fertilizer application in the three crops on a global scale with 0.5 degree spatial resolution. The hotspots of leaching are identified. The results suggest that, based on the definition and method of grey water footprint proposed by the World Water Footprint Network, the grey water footprint in many parts of the world has exceeded their total water resources availability. This indicates the seriousness of water pollution caused by agricultural production. However, the situation may also call for the development of a realistic measurement of grey water footprint which is more pertinent to water resources management. This paper proposes some alternatives in measuring grey water footprint and also discusses incorporation of grey water footprint assessment into water policy formulation and river basins plan development.

  8. Increasing crop diversity mitigates weather variations and improves yield stability.

    Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  9. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops.

    Sharwood, Robert E

    2017-01-01

    494 I. 495 II. 496 III. 496 IV. 499 V. 499 VI. 501 VII. 501 VIII. 502 IX. 505 X. 506 507 References 507 SUMMARY: The uncertainty of future climate change is placing pressure on cropping systems to continue to provide stable increases in productive yields. To mitigate future climates and the increasing threats against global food security, new solutions to manipulate photosynthesis are required. This review explores the current efforts available to improve carbon assimilation within plant chloroplasts by engineering Rubisco, which catalyzes the rate-limiting step of CO 2 fixation. Fixation of CO 2 and subsequent cycling of 3-phosphoglycerate through the Calvin cycle provides the necessary carbohydrate building blocks for maintaining plant growth and yield, but has to compete with Rubisco oxygenation, which results in photorespiration that is energetically wasteful for plants. Engineering improvements in Rubisco is a complex challenge and requires an understanding of chloroplast gene regulatory pathways, and the intricate nature of Rubisco catalysis and biogenesis, to transplant more efficient forms of Rubisco into crops. In recent times, major advances in Rubisco engineering have been achieved through improvement of our knowledge of Rubisco synthesis and assembly, and identifying amino acid catalytic switches in the L-subunit responsible for improvements in catalysis. Improving the capacity of CO 2 fixation in crops such as rice will require further advances in chloroplast bioengineering and Rubisco biogenesis. © 2016 The Author. New Phytologist © 2016 New Phytologist Trust.

  10. Improvement of Selenium Status of Pasture Crops

    Nielsen, Gunnar Gissel

    1984-01-01

    Selenium was applied to pasture crops in a field experiment (1) by foliar application of 10 g Se/ha as selenite in the spring, (2) or by 5 g Se/ha in the spring plus 5 g in early August, (3) as selenite-enriched calcium ammonium nitrate (CAN) at 4 g Se/ha after each cut, and (4) as 4 g Se after...

  11. Global crop yield response to extreme heat stress under multiple climate change futures

    Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R.

    2014-12-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (dY = -12.8 ± 6.7% versus -7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (dY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (dY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.

  12. Winter Crop Mapping for Improving Crop Production Estimates in Argentina Using Moderation Resolution Satellite Imagery

    Humber, M. L.; Copati, E.; Sanchez, A.; Sahajpal, R.; Puricelli, E.; Becker-Reshef, I.

    2017-12-01

    Accurate crop production data is fundamental for reducing uncertainly and volatility in the domestic and international agricultural markets. The Agricultural Estimates Department of the Buenos Aires Grain Exchange has worked since 2000 on the estimation of different crop production data. With this information, the Grain Exchange helps different actors of the agricultural chain, such as producers, traders, seed companies, market analyst, policy makers, into their day to day decision making. Since 2015/16 season, the Grain Exchange has worked on the development of a new earth observations-based method to identify winter crop planted area at a regional scale with the aim of improving crop production estimates. The objective of this new methodology is to create a reliable winter crop mask at moderate spatial resolution using Landsat-8 imagery by exploiting bi-temporal differences in the phenological stages of winter crops as compared to other landcover types. In collaboration with the University of Maryland, the map has been validated by photointerpretation of a stratified statistically random sample of independent ground truth data in the four largest producing provinces of Argentina: Buenos Aires, Cordoba, La Pampa, and Santa Fe. In situ measurements were also used to further investigate conditions in the Buenos Aires province. Preliminary results indicate that while there are some avenues for improvement, overall the classification accuracy of the cropland and non-cropland classes are sufficient to improve downstream production estimates. Continuing research will focus on improving the methodology for winter crop mapping exercises on a yearly basis as well as improving the sampling methodology to optimize collection of validation data in the future.

  13. RNA interference: concept to reality in crop improvement.

    Saurabh, Satyajit; Vidyarthi, Ambarish S; Prasad, Dinesh

    2014-03-01

    The phenomenon of RNA interference (RNAi) is involved in sequence-specific gene regulation driven by the introduction of dsRNA resulting in inhibition of translation or transcriptional repression. Since the discovery of RNAi and its regulatory potentials, it has become evident that RNAi has immense potential in opening a new vista for crop improvement. RNAi technology is precise, efficient, stable and better than antisense technology. It has been employed successfully to alter the gene expression in plants for better quality traits. The impact of RNAi to improve the crop plants has proved to be a novel approach in combating the biotic and abiotic stresses and the nutritional improvement in terms of bio-fortification and bio-elimination. It has been employed successfully to bring about modifications of several desired traits in different plants. These modifications include nutritional improvements, reduced content of food allergens and toxic compounds, enhanced defence against biotic and abiotic stresses, alteration in morphology, crafting male sterility, enhanced secondary metabolite synthesis and seedless plant varieties. However, crop plants developed by RNAi strategy may create biosafety risks. So, there is a need for risk assessment of GM crops in order to make RNAi a better tool to develop crops with biosafety measures. This article is an attempt to review the RNAi, its biochemistry, and the achievements attributed to the application of RNAi in crop improvement.

  14. Using membrane transporters to improve crops for sustainable food production

    With the global population predicted to grow by at least 25% by 2050, the need for sustainable production of nutritious foods is critical for human and environmental well-being. Recent advances show that specialized plant membrane transporters can be utilized to enhance yields of staple crops, incre...

  15. Improving the Monitoring of Crop Productivity Using Spaceborne Solar-Induced Fluorescence

    Guan, Kaiyu; Berry, Joseph A.; Zhang, Yongguang; Joiner, Joanna; Guanter, Luis; Badgley, Grayson; Lobell, David B.

    2015-01-01

    Large-scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar-induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007-2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment-2 satellite, benchmarked with county-level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF-based approach accounting for photosynthetic pathways (i.e. C3 and C4 crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon-use-efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change.

  16. Genetically modified (GM) crops: milestones and new advances in crop improvement.

    Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis

    2016-09-01

    New advances in crop genetic engineering can significantly pace up the development of genetically improved varieties with enhanced yield, nutrition and tolerance to biotic and abiotic stresses. Genetically modified (GM) crops can act as powerful complement to the crops produced by laborious and time consuming conventional breeding methods to meet the worldwide demand for quality foods. GM crops can help fight malnutrition due to enhanced yield, nutritional quality and increased resistance to various biotic and abiotic stresses. However, several biosafety issues and public concerns are associated with cultivation of GM crops developed by transgenesis, i.e., introduction of genes from distantly related organism. To meet these concerns, researchers have developed alternative concepts of cisgenesis and intragenesis which involve transformation of plants with genetic material derived from the species itself or from closely related species capable of sexual hybridization, respectively. Recombinase technology aimed at site-specific integration of transgene can help to overcome limitations of traditional genetic engineering methods based on random integration of multiple copy of transgene into plant genome leading to gene silencing and unpredictable expression pattern. Besides, recently developed technology of genome editing using engineered nucleases, permit the modification or mutation of genes of interest without involving foreign DNA, and as a result, plants developed with this technology might be considered as non-transgenic genetically altered plants. This would open the doors for the development and commercialization of transgenic plants with superior phenotypes even in countries where GM crops are poorly accepted. This review is an attempt to summarize various past achievements of GM technology in crop improvement, recent progress and new advances in the field to develop improved varieties aimed for better consumer acceptance.

  17. Towards systematic evaluation of crop model outputs for global land-use models

    Leclere, David; Azevedo, Ligia B.; Skalský, Rastislav; Balkovič, Juraj; Havlík, Petr

    2016-04-01

    Land provides vital socioeconomic resources to the society, however at the cost of large environmental degradations. Global integrated models combining high resolution global gridded crop models (GGCMs) and global economic models (GEMs) are increasingly being used to inform sustainable solution for agricultural land-use. However, little effort has yet been done to evaluate and compare the accuracy of GGCM outputs. In addition, GGCM datasets require a large amount of parameters whose values and their variability across space are weakly constrained: increasing the accuracy of such dataset has a very high computing cost. Innovative evaluation methods are required both to ground credibility to the global integrated models, and to allow efficient parameter specification of GGCMs. We propose an evaluation strategy for GGCM datasets in the perspective of use in GEMs, illustrated with preliminary results from a novel dataset (the Hypercube) generated by the EPIC GGCM and used in the GLOBIOM land use GEM to inform on present-day crop yield, water and nutrient input needs for 16 crops x 15 management intensities, at a spatial resolution of 5 arc-minutes. We adopt the following principle: evaluation should provide a transparent diagnosis of model adequacy for its intended use. We briefly describe how the Hypercube data is generated and how it articulates with GLOBIOM in order to transparently identify the performances to be evaluated, as well as the main assumptions and data processing involved. Expected performances include adequately representing the sub-national heterogeneity in crop yield and input needs: i) in space, ii) across crop species, and iii) across management intensities. We will present and discuss measures of these expected performances and weight the relative contribution of crop model, input data and data processing steps in performances. We will also compare obtained yield gaps and main yield-limiting factors against the M3 dataset. Next steps include

  18. Radiation-Induced Mutation and Crop Improvement

    Lee, Y. I.; Song, H. S.; Kim, J. S.; Shin, I. C.; Lee, S. J.

    1987-01-01

    Radiation induced mutations have not only been used directly as a cultivar in crop plants, but also indirectly as a genetic resource that is essential to conventional plant breeding. M 1 plant survivals of three rice cultivars treated with gamma rays of 200-350 Gy varied from 30-40%. The survival of the Sawing variety was less sensitive to radiation, but its fertility was more sensitive in comparison with Seomjin and Sponging. Various dwarf or semi-dwarf mutants and early=matured mutants have been selected in the M 2 and M 3 generations of the three rice cultivars irradiated with gamma rays. Other desirable mutants also have been selected, such as high-yielding, high-tailoring and disease-resistant. The genetic nature of most of the selected short calm and earliness mutants was fixed in M 2 or M 3 generations. Dwarfism of IEAR 308 and Monogynol 10 were found to have a single recessive gene. However, the dwarf of IEAR 308 has a recessive deficit phenomenon. The highest genetic heritability of plant height was observed in the cross combination of Monogynol 10 Χ Pawling

  19. A future scenario of the global regulatory landscape regarding genome-edited crops

    Araki, Motoko

    2017-01-01

    ABSTRACT The global agricultural landscape regarding the commercial cultivation of genetically modified (GM) crops is mosaic. Meanwhile, a new plant breeding technique, genome editing is expected to make genetic engineering-mediated crop breeding more socially acceptable because it can be used to develop crop varieties without introducing transgenes, which have hampered the regulatory review and public acceptance of GM crops. The present study revealed that product- and process-based concepts have been implemented to regulate GM crops in 30 countries. Moreover, this study analyzed the regulatory responses to genome-edited crops in the USA, Argentina, Sweden and New Zealand. The findings suggested that countries will likely be divided in their policies on genome-edited crops: Some will deregulate transgene-free crops, while others will regulate all types of crops that have been modified by genome editing. These implications are discussed from the viewpoint of public acceptance. PMID:27960622

  20. Improved Satellite-based Crop Yield Mapping by Spatially Explicit Parameterization of Crop Phenology

    Jin, Z.; Azzari, G.; Lobell, D. B.

    2016-12-01

    Field-scale mapping of crop yields with satellite data often relies on the use of crop simulation models. However, these approaches can be hampered by inaccuracies in the simulation of crop phenology. Here we present and test an approach to use dense time series of Landsat 7 and 8 acquisitions data to calibrate various parameters related to crop phenology simulation, such as leaf number and leaf appearance rates. These parameters are then mapped across the Midwestern United States for maize and soybean, and for two different simulation models. We then implement our recently developed Scalable satellite-based Crop Yield Mapper (SCYM) with simulations reflecting the improved phenology parameterizations, and compare to prior estimates based on default phenology routines. Our preliminary results show that the proposed method can effectively alleviate the underestimation of early-season LAI by the default Agricultural Production Systems sIMulator (APSIM), and that spatially explicit parameterization for the phenology model substantially improves the SCYM performance in capturing the spatiotemporal variation in maize and soybean yield. The scheme presented in our study thus preserves the scalability of SCYM, while significantly reducing its uncertainty.

  1. Improving crop yields for Sahelian Women | IDRC - International ...

    2016-06-07

    Jun 7, 2016 ... Less is more: Improving yields for Sahelian women with tiny dozes of fertilizer Farmers living in the semi-arid Sahel belt of West Africa are increasing the yields and income earned from their crops, thanks to a simple technique that combines small quantities of fertilizers (microdosing) with improved ...

  2. GEOGLAM Crop Assessment Tool: Adapting from global agricultural monitoring to food security monitoring

    Humber, M. L.; Becker-Reshef, I.; Nordling, J.; Barker, B.; McGaughey, K.

    2014-12-01

    The GEOGLAM Crop Monitor's Crop Assessment Tool was released in August 2013 in support of the GEOGLAM Crop Monitor's objective to develop transparent, timely crop condition assessments in primary agricultural production areas, highlighting potential hotspots of stress/bumper crops. The Crop Assessment Tool allows users to view satellite derived products, best available crop masks, and crop calendars (created in collaboration with GEOGLAM Crop Monitor partners), then in turn submit crop assessment entries detailing the crop's condition, drivers, impacts, trends, and other information. Although the Crop Assessment Tool was originally intended to collect data on major crop production at the global scale, the types of data collected are also relevant to the food security and rangelands monitoring communities. In line with the GEOGLAM Countries at Risk philosophy of "foster[ing] the coordination of product delivery and capacity building efforts for national and regional organizations, and the development of harmonized methods and tools", a modified version of the Crop Assessment Tool is being developed for the USAID Famine Early Warning Systems Network (FEWS NET). As a member of the Countries at Risk component of GEOGLAM, FEWS NET provides agricultural monitoring, timely food security assessments, and early warnings of potential significant food shortages focusing specifically on countries at risk of food security emergencies. While the FEWS NET adaptation of the Crop Assessment Tool focuses on crop production in the context of food security rather than large scale production, the data collected is nearly identical to the data collected by the Crop Monitor. If combined, the countries monitored by FEWS NET and GEOGLAM Crop Monitor would encompass over 90 countries representing the most important regions for crop production and food security.

  3. Improving crop nutrient efficiency through root architecture modifications.

    Li, Xinxin; Zeng, Rensen; Liao, Hong

    2016-03-01

    Improving crop nutrient efficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements, among them, nitrogen (N) and phosphorus (P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity, and thereby have become high priority targets for improving nutrient efficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore, root architecture, the 3-dimensional configuration of the plant's root system in the soil, is of great importance for improving crop nutrient efficiency. Furthermore, the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria, are additional important strategies to enhance nutrient acquisition. In this review, we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses, through gene or QTL regulation, which results in enhanced nutrient acquisition. © 2015 Institute of Botany, Chinese Academy of Sciences.

  4. Proteomics: a biotechnology tool for crop improvement

    Eldakak, Moustafa; Milad, Sanaa I. M.; Nawar, Ali I.; Rohila, Jai S.

    2013-01-01

    A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improve...

  5. Global and Time-Resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescence

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; hide

    2014-01-01

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50-75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle.

  6. The Global Pipeline of GM crops: an outlook for 2020

    PARISI CLAUDIA; TILLIE PASCAL; RODRIGUEZ CEREZO Emilio

    2015-01-01

    This study presents the worldwide pipeline of genetically modified (GM) crops that are likely to be commercialized and cultivated by farmers in the short to medium term. The database presented has been built by collecting information about the status of GM crops both in the regulatory pipeline of national biotechnology agencies and in the advanced phase of development by technology providers. Particular attention will be given to the 2020 outlook of new crops and traits, with a special fo...

  7. Using membrane transporters to improve crops for sustainable food production

    Schroeder, Julian I.; Delhaize, Emmanuel; Frommer, Wolf B.; Guerinot, Mary Lou; Harrison, Maria J.; Herrera-Estrella, Luis; Horie, Tomoaki; Kochian, Leon V.; Munns, Rana; Nishizawa, Naoko K.; Tsay, Yi-Fang; Sanders, Dale

    2013-01-01

    With the global population predicted to grow by at least 25 per cent by 2050, the need for sustainable production of nutritious foods is critical for human and environmental health. Recent advances show that specialized plant membrane transporters can be used to enhance yields of staple crops, increase nutrient content and increase resistance to key stresses, including salinity, pathogens and aluminium toxicity, which in turn could expand available arable land. PMID:23636397

  8. Mutation breeding in crop improvement - achievements and prospects

    Kharkwal, M.C.

    2004-01-01

    Crop improvement programmes through induced mutations were initiated about seven decades ago. Majority of the mutant varieties have been released during the last two decades. In terms of the development and release of mutant varieties, China (605), India (309), Russia (204), the Netherlands (176), USA (125) and Japan (120) are the leading countries. Radiation, especially gamma radiation was the most frequently used mutagen for inducing mutations in crop plants. Out of 1072 mutant varieties of cereals, rice alone accounts for 434 varieties followed by barley (269). Mutation breeding has made significant contribution in increasing the production of rice, ground nut, castor, chickpea, mungbean and urd bean in the Indian subcontinent. The future mutation breeding programmes should be aimed at improving the root characters, nodulation in legumes, alteration of fatty acid composition in oil seeds, host pathogen interactions, photo- insensitivity and apomixix in crop plants

  9. Cisgenesis and Intragenesis: New tools For Improving Crops

    C Espinoza

    2013-01-01

    Full Text Available Genetically Modified Organisms (GMO could be the answer for many relevant problems affecting crops. However, improving crops through GMO is also often associated with safety concerns, environmental risks and health issues due to the presence of foreign DNA. These limitations have prompted the development of alternative technologies. Recently, cisgenesis and intragenesis have been developed as new tools aimed to modify crops. While cisgenesis involves genetic modification using a complete copy of natural genes with their regulatory elements that belong exclusively to sexually compatible plants, intragenesis refers to the transference of new combinations of genes and regulatory sequences belonging to that particular species. So far, application of cisgenesis and intragenesis as alternatives to conventional transgenesis are limited to a few species, mainly due to the lack of knowledge of the regulatory sequences required. The grape is one of the most cultivated crops worldwide and is the most economically relevant crop in Chile. Its genomic sequence has been completed, making available new sources of information to improve grape traits by genetic manipulation. This review is focused on the current alternatives to transgenesis in plants, including new approaches to develop marker-free crops, their application to economically relevant crops and future perspectives in the area. Also, the identification of grapevine promoters with a wide range of expression profiles is shown. The expression pattern of these genes was analyzed in different tissues and developmental stages, as well as under several stresses and stimuli, giving a broad range of expression patterns, including genes expressed exclusively during ripening, in response to sugars, senescence and biotic stress, among others. Genes with strong and constitutive expression were also identified. Functional analysis using reporter genes has been conducted in order to confirm the promoter

  10. Simulating the effects of climate and agricultural management practices on global crop yield

    Deryng, D.; Sacks, W. J.; Barford, C. C.; Ramankutty, N.

    2011-06-01

    Climate change is expected to significantly impact global food production, and it is important to understand the potential geographic distribution of yield losses and the means to alleviate them. This study presents a new global crop model, PEGASUS 1.0 (Predicting Ecosystem Goods And Services Using Scenarios) that integrates, in addition to climate, the effect of planting dates and cultivar choices, irrigation, and fertilizer application on crop yield for maize, soybean, and spring wheat. PEGASUS combines carbon dynamics for crops with a surface energy and soil water balance model. It also benefits from the recent development of a suite of global data sets and analyses that serve as model inputs or as calibration data. These include data on crop planting and harvesting dates, crop-specific irrigated areas, a global analysis of yield gaps, and harvested area and yield of major crops. Model results for present-day climate and farm management compare reasonably well with global data. Simulated planting and harvesting dates are within the range of crop calendar observations in more than 75% of the total crop-harvested areas. Correlation of simulated and observed crop yields indicates a weighted coefficient of determination, with the weighting based on crop-harvested area, of 0.81 for maize, 0.66 for soybean, and 0.45 for spring wheat. We found that changes in temperature and precipitation as predicted by global climate models for the 2050s lead to a global yield reduction if planting and harvesting dates remain unchanged. However, adapting planting dates and cultivar choices increases yield in temperate regions and avoids 7-18% of global losses.

  11. Global crop yield response to extreme heat stress under multiple climate change futures

    Deryng, Delphine; Warren, Rachel; Conway, Declan; Ramankutty, Navin; Price, Jeff

    2014-01-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO 2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO 2 fertilization effects, could double global losses of maize yield (ΔY = −12.8 ± 6.7% versus − 7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (ΔY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (ΔY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO 2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries. (paper)

  12. Induced mutations for crop improvement- the generation next

    Bhatia, C.R.

    2000-01-01

    Experiments to use induced mutations for the improvement of crop plants were initiated in the country in mid nineteen fifties. After forty five years and reasonably good success stories, it is no longer an attractive subject for bright young graduate students. The areas of intellectually satisfying, contemporary, plant genetics based on induced mutations that can also bring social and commercial benefits are identified. These are: nodulation mutants in legumes, altering fatty acid composition in oil crops, modification of root characters, altering host-pathogen interactions, flowering time, day length insensitivity and some changes in modulation pattern involve mutations

  13. Plant mutation breeding for crop improvement. V.1

    1991-01-01

    This volume contains the proceedings of the first two sessions of the FAO/IAEA Symposium on Plant Mutation Breeding for Crop Improvement, focussing on mutation breeding in particular countries and crop-specific mutation breeding. The individual contributions are indexed separately. Although a wide variety of topics is included, the emphasis is on the use of (mainly gamma) radiation to induce economically useful mutants in cereals and legumes. The results of many conventional plant breeding programs are also presented. Refs, figs and tabs

  14. Crop improvement by using radiation mutation breeding in Korea

    Lee, Young IL

    1998-01-01

    For crop improvement by the application of radiation technology, induction of mutants by in vivo and in vitro mutagenesis were developed in various crop plants in Korea. Several mutants have been released as recommended cultivars to farmers in rice, soybean, sesame and barley since 1970. Induced mutations were widely used for the introduction of genetic transformation and extending plant genetic resources. High yield, short plant, earliness, resistance to diseases, high protein and oil contents were obtained in the advanced generation of mutation by radiation application to several crops of in vivo and in vitro cultured materials. For induction and selection of promising mutants by in vivo and in vitro mutagenesis, various crops were successively irradiated with radiation to investigate the radiosensitivities, the mutation spectrum and mutation rate for selection of useful mutants. Plant tissue culture methods were developed for in vitro mutagenesis in the seed and the vegetatively propagating crops. Embryogenic callus was obtained from shoot tip culture of sweet potato, and micro propagation was developed from nodal stem culture of potato. The radiosensitivities were investigated in cell, callus, and in vitro plant lets. About 800 lines of mutants were evaluated for the agro-genetic resources. (author). 19 refs., 5 tabs

  15. Hierarchical Satellite-based Approach to Global Monitoring of Crop Condition and Food Production

    Zheng, Y.; Wu, B.; Gommes, R.; Zhang, M.; Zhang, N.; Zeng, H.; Zou, W.; Yan, N.

    2014-12-01

    The assessment of global food security goes beyond the mere estimate of crop production: It needs to take into account the spatial and temporal patterns of food availability, as well as physical and economic access. Accurate and timely information is essential to both food producers and consumers. Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, such as FY-2/3A, HJ-1 CCD, CropWatch has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The new monitoring approach adopts a hierarchical system covering four spatial levels of detail: global (sixty-five Monitoring and Reporting Units, MRU), seven major production zones (MPZ), thirty-one key countries (including China) and "sub- countries." The thirty-one countries encompass more that 80% of both global exports and production of four major crops (maize, rice, soybean and wheat). The methodology resorts to climatic and remote sensing indicators at different scales, using the integrated information to assess global, regional, and national (as well as sub-national) crop environmental condition, crop condition, drought, production, and agricultural trends. The climatic indicators for rainfall, temperature, photosynthetically active radiation (PAR) as well as potential biomass are first analysed at global scale to describe overall crop growing conditions. At MPZ scale, the key indicators pay more attention to crops and include Vegetation health index (VHI), Vegetation condition index (VCI), Cropped arable land fraction (CALF) as well as Cropping intensity (CI). Together, they characterise agricultural patterns, farming intensity and stress. CropWatch carries out detailed crop condition analyses for thirty one individual countries at the national scale with a comprehensive array of variables and indicators. The Normalized difference vegetation index (NDVI), cropped areas and crop condition are

  16. Changes in crop yields and their variability at different levels of global warming

    Ostberg, Sebastian; Schewe, Jacob; Childers, Katelin; Frieler, Katja

    2018-05-01

    An assessment of climate change impacts at different levels of global warming is crucial to inform the policy discussion about mitigation targets, as well as for the economic evaluation of climate change impacts. Integrated assessment models often use global mean temperature change (ΔGMT) as a sole measure of climate change and, therefore, need to describe impacts as a function of ΔGMT. There is already a well-established framework for the scalability of regional temperature and precipitation changes with ΔGMT. It is less clear to what extent more complex biological or physiological impacts such as crop yield changes can also be described in terms of ΔGMT, even though such impacts may often be more directly relevant for human livelihoods than changes in the physical climate. Here we show that crop yield projections can indeed be described in terms of ΔGMT to a large extent, allowing for a fast estimation of crop yield changes for emissions scenarios not originally covered by climate and crop model projections. We use an ensemble of global gridded crop model simulations for the four major staple crops to show that the scenario dependence is a minor component of the overall variance of projected yield changes at different levels of ΔGMT. In contrast, the variance is dominated by the spread across crop models. Varying CO2 concentrations are shown to explain only a minor component of crop yield variability at different levels of global warming. In addition, we find that the variability in crop yields is expected to increase with increasing warming in many world regions. We provide, for each crop model, geographical patterns of mean yield changes that allow for a simplified description of yield changes under arbitrary pathways of global mean temperature and CO2 changes, without the need for additional climate and crop model simulations.

  17. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance

    Koevoets, Iko T.; Venema, Jan Henk; Elzenga, J. Theo. M.; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant’s response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops. PMID:27630659

  18. Non-bee insects are important contributors to global crop pollination

    Rader, Romina; Bartomeus, Ignasi; Garibaldi, Lucas A.; Kleijn, David; Scheper, Jeroen

    2016-01-01

    Wild andmanaged bees arewell documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change.

  19. Genome editing for crop improvement: Challenges and opportunities.

    Abdallah, Naglaa A; Prakash, Channapatna S; McHughen, Alan G

    2015-01-01

    Genome or gene editing includes several new techniques to help scientists precisely modify genome sequences. The techniques also enables us to alter the regulation of gene expression patterns in a pre-determined region and facilitates novel insights into the functional genomics of an organism. Emergence of genome editing has brought considerable excitement especially among agricultural scientists because of its simplicity, precision and power as it offers new opportunities to develop improved crop varieties with clear-cut addition of valuable traits or removal of undesirable traits. Research is underway to improve crop varieties with higher yields, strengthen stress tolerance, disease and pest resistance, decrease input costs, and increase nutritional value. Genome editing encompasses a wide variety of tools using either a site-specific recombinase (SSR) or a site-specific nuclease (SSN) system. Both systems require recognition of a known sequence. The SSN system generates single or double strand DNA breaks and activates endogenous DNA repair pathways. SSR technology, such as Cre/loxP and Flp/FRT mediated systems, are able to knockdown or knock-in genes in the genome of eukaryotes, depending on the orientation of the specific sites (loxP, FLP, etc.) flanking the target site. There are 4 main classes of SSN developed to cleave genomic sequences, mega-nucleases (homing endonuclease), zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs), and the CRISPR/Cas nuclease system (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein). The recombinase mediated genome engineering depends on recombinase (sub-) family and target-site and induces high frequencies of homologous recombination. Improving crops with gene editing provides a range of options: by altering only a few nucleotides from billions found in the genomes of living cells, altering the full allele or by inserting a new gene in a targeted region of

  20. iPot: Improved potato monitoring in Belgium using remote sensing and crop growth modelling

    Piccard, Isabelle; Gobin, Anne; Curnel, Yannick; Goffart, Jean-Pierre; Planchon, Viviane; Wellens, Joost; Tychon, Bernard; Cattoor, Nele; Cools, Romain

    2016-04-01

    Potato processors, traders and packers largely work with potato contracts. The close follow up of contracted parcels is important to improve the quantity and quality of the crop and reduce risks related to storage, packaging or processing. The use of geo-information by the sector is limited, notwithstanding the great benefits that this type of information may offer. At the same time, new sensor-based technologies continue to gain importance and farmers increasingly invest in these. The combination of geo-information and crop modelling might strengthen the competitiveness of the Belgian potato chain in a global market. The iPot project, financed by the Belgian Science Policy Office (Belspo), aims at providing the Belgian potato processing sector, represented by Belgapom, with near real time information on field condition (weather-soil), crop development and yield estimates, derived from a combination of satellite images and crop growth models. During the cropping season regular UAV flights (RGB, 3x3 cm) and high resolution satellite images (DMC/Deimos, 22m pixel size) were combined to elucidate crop phenology and performance at variety trials. UAV images were processed using a K-means clustering algorithm to classify the crop according to its greenness at 5m resolution. Vegetation indices such as %Cover and LAI were calculated with the Cyclopes algorithm (INRA-EMMAH) on the DMC images. Both DMC and UAV-based cover maps showed similar patterns, and helped detect different crop stages during the season. A wide spread field monitoring campaign with crop observations and measurements allowed for further calibration of the satellite image derived vegetation indices. Curve fitting techniques and phenological models were developed and compared with the vegetation indices during the season, both at trials and farmers' fields. Understanding and predicting crop phenology and canopy development is important for timely crop management and ultimately for yield estimates. An

  1. Crop improvement through mutation techniques in Chinese agriculture

    Wen, X.; Qu, L.

    1996-01-01

    Induced mutations for crop improvement is the most developed field in China's nuclear-agricultural sciences. It is well known that China has supported 22% of the world's population with only 7% of its cultivated land. The continued rise in population stresses the importance of increasing food production. Although developing crop varieties is efficient in increasing food production, plant breeders are approaching the outer limits of existing and useful genetic variability. As nuclear techniques provide an efficient route to inducing genetic mutations, more and more efforts have been focused on induced genetic variability. Induced mutations have become an effective way of improving cultivars and supplementing existing germplasm. Since 1981 two nationwide co-operation programs for mutation breeding, organized by the IAEA, have been carried out. 3 tabs

  2. Global scale climate-crop yield relationships and the impacts of recent warming

    Lobell, David B; Field, Christopher B

    2007-01-01

    Changes in the global production of major crops are important drivers of food prices, food security and land use decisions. Average global yields for these commodities are determined by the performance of crops in millions of fields distributed across a range of management, soil and climate regimes. Despite the complexity of global food supply, here we show that simple measures of growing season temperatures and precipitation-spatial averages based on the locations of each crop-explain ∼30% or more of year-to-year variations in global average yields for the world's six most widely grown crops. For wheat, maize and barley, there is a clearly negative response of global yields to increased temperatures. Based on these sensitivities and observed climate trends, we estimate that warming since 1981 has resulted in annual combined losses of these three crops representing roughly 40 Mt or $5 billion per year, as of 2002. While these impacts are small relative to the technological yield gains over the same period, the results demonstrate already occurring negative impacts of climate trends on crop yields at the global scale

  3. Global Simulation of Bioenergy Crop Productivity: Analytical framework and Case Study for Switchgrass

    Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Nichols, Jeff A. {Cyber Sciences} [ORNL; Post, Wilfred M [ORNL; Wang, Dali [ORNL; Wullschleger, Stan D [ORNL; Kline, Keith L [ORNL; Wei, Yaxing [ORNL; Singh, Nagendra [ORNL; Kang, Shujiang [ORNL

    2014-01-01

    Contemporary global assessments of the deployment potential and sustainability aspects of biofuel crops lack quantitative details. This paper describes an analytical framework capable of meeting the challenges associated with global scale agro-ecosystem modeling. We designed a modeling platform for bioenergy crops, consisting of five major components: (i) standardized global natural resources and management data sets, (ii) global simulation unit and management scenarios, (iii) model calibration and validation, (iv) high-performance computing (HPC) modeling, and (v) simulation output processing and analysis. A case study with the HPC- Environmental Policy Integrated Climate model (HPC-EPIC) to simulate a perennial bioenergy crop, switchgrass (Panicum virgatum L.) and global biomass feedstock analysis on grassland demonstrates the application of this platform. The results illustrate biomass feedstock variability of switchgrass and provide insights on how the modeling platform can be expanded to better assess sustainable production criteria and other biomass crops. Feedstock potentials on global grasslands and within different countries are also shown. Future efforts involve developing databases of productivity, implementing global simulations for other bioenergy crops (e.g. miscanthus, energycane and agave), and assessing environmental impacts under various management regimes. We anticipated this platform will provide an exemplary tool and assessment data for international communities to conduct global analysis of biofuel biomass feedstocks and sustainability.

  4. Use of nuclear and biotechnological tools for improving crop yield

    Mukherjee, Prasun K.; Venugopalan, V.P.

    2017-01-01

    Crop improvement, crop production and crop protection are the three pillars of agriculture. Optimum yield can be achieved only by cultivating the best available variety coupled with good agronomic practices and robust plant protection (from pests and diseases). Depletion of soil organic matter has become a serious problem, especially in the post-green revolution era, due to the cultivation of nutrient-exhausting, high yielding crop varieties with intensive chemical inputs. Soil organic matter is crucial not only for restoring soil physical properties, but also to sustain the soil flora and fauna that are involved in nutrient cycling. Depletion of cattle population has resulted in less availability of manures. In order to assess the soil health and extent of carbon depletion, we have developed a user-friendly kit for in situ soil organic carbon detection. This technology has been transferred to six companies and many products are already available in the market. This technology has been adopted by CIFAL (Sweden), an FAO -backed NGO for imparting training to the farmers in African countries

  5. Exploring and Harnessing Haplotype Diversity to Improve Yield Stability in Crops

    Lunwen Qian

    2017-09-01

    Full Text Available In order to meet future food, feed, fiber, and bioenergy demands, global yields of all major crops need to be increased significantly. At the same time, the increasing frequency of extreme weather events such as heat and drought necessitates improvements in the environmental resilience of modern crop cultivars. Achieving sustainably increase yields implies rapid improvement of quantitative traits with a very complex genetic architecture and strong environmental interaction. Latest advances in genome analysis technologies today provide molecular information at an ultrahigh resolution, revolutionizing crop genomic research, and paving the way for advanced quantitative genetic approaches. These include highly detailed assessment of population structure and genotypic diversity, facilitating the identification of selective sweeps and signatures of directional selection, dissection of genetic variants that underlie important agronomic traits, and genomic selection (GS strategies that not only consider major-effect genes. Single-nucleotide polymorphism (SNP markers today represent the genotyping system of choice for crop genetic studies because they occur abundantly in plant genomes and are easy to detect. SNPs are typically biallelic, however, hence their information content compared to multiallelic markers is low, limiting the resolution at which SNP–trait relationships can be delineated. An efficient way to overcome this limitation is to construct haplotypes based on linkage disequilibrium, one of the most important features influencing genetic analyses of crop genomes. Here, we give an overview of the latest advances in genomics-based haplotype analyses in crops, highlighting their importance in the context of polyploidy and genome evolution, linkage drag, and co-selection. We provide examples of how haplotype analyses can complement well-established quantitative genetics frameworks, such as quantitative trait analysis and GS, ultimately

  6. Exploring and Harnessing Haplotype Diversity to Improve Yield Stability in Crops.

    Qian, Lunwen; Hickey, Lee T; Stahl, Andreas; Werner, Christian R; Hayes, Ben; Snowdon, Rod J; Voss-Fels, Kai P

    2017-01-01

    In order to meet future food, feed, fiber, and bioenergy demands, global yields of all major crops need to be increased significantly. At the same time, the increasing frequency of extreme weather events such as heat and drought necessitates improvements in the environmental resilience of modern crop cultivars. Achieving sustainably increase yields implies rapid improvement of quantitative traits with a very complex genetic architecture and strong environmental interaction. Latest advances in genome analysis technologies today provide molecular information at an ultrahigh resolution, revolutionizing crop genomic research, and paving the way for advanced quantitative genetic approaches. These include highly detailed assessment of population structure and genotypic diversity, facilitating the identification of selective sweeps and signatures of directional selection, dissection of genetic variants that underlie important agronomic traits, and genomic selection (GS) strategies that not only consider major-effect genes. Single-nucleotide polymorphism (SNP) markers today represent the genotyping system of choice for crop genetic studies because they occur abundantly in plant genomes and are easy to detect. SNPs are typically biallelic, however, hence their information content compared to multiallelic markers is low, limiting the resolution at which SNP-trait relationships can be delineated. An efficient way to overcome this limitation is to construct haplotypes based on linkage disequilibrium, one of the most important features influencing genetic analyses of crop genomes. Here, we give an overview of the latest advances in genomics-based haplotype analyses in crops, highlighting their importance in the context of polyploidy and genome evolution, linkage drag, and co-selection. We provide examples of how haplotype analyses can complement well-established quantitative genetics frameworks, such as quantitative trait analysis and GS, ultimately providing an effective tool

  7. The AgMIP GRIDded Crop Modeling Initiative (AgGRID) and the Global Gridded Crop Model Intercomparison (GGCMI)

    Elliott, Joshua; Muller, Christoff

    2015-01-01

    Climate change is a significant risk for agricultural production. Even under optimistic scenarios for climate mitigation action, present-day agricultural areas are likely to face significant increases in temperatures in the coming decades, in addition to changes in precipitation, cloud cover, and the frequency and duration of extreme heat, drought, and flood events (IPCC, 2013). These factors will affect the agricultural system at the global scale by impacting cultivation regimes, prices, trade, and food security (Nelson et al., 2014a). Global-scale evaluation of crop productivity is a major challenge for climate impact and adaptation assessment. Rigorous global assessments that are able to inform planning and policy will benefit from consistent use of models, input data, and assumptions across regions and time that use mutually agreed protocols designed by the modeling community. To ensure this consistency, large-scale assessments are typically performed on uniform spatial grids, with spatial resolution of typically 10 to 50 km, over specified time-periods. Many distinct crop models and model types have been applied on the global scale to assess productivity and climate impacts, often with very different results (Rosenzweig et al., 2014). These models are based to a large extent on field-scale crop process or ecosystems models and they typically require resolved data on weather, environmental, and farm management conditions that are lacking in many regions (Bondeau et al., 2007; Drewniak et al., 2013; Elliott et al., 2014b; Gueneau et al., 2012; Jones et al., 2003; Liu et al., 2007; M¨uller and Robertson, 2014; Van den Hoof et al., 2011;Waha et al., 2012; Xiong et al., 2014). Due to data limitations, the requirements of consistency, and the computational and practical limitations of running models on a large scale, a variety of simplifying assumptions must generally be made regarding prevailing management strategies on the grid scale in both the baseline and

  8. Biotechnological approach in crop improvement by mutation breeding in Indonesia

    Soeranto, H.; Sobrizal; Sutarto, Ismiyati; Manurung, Simon; Mastrizal [National Nuclear Energy Agency, Center for Research and Development of Isotope and Radiation Technology, Jakarta (Indonesia)

    2002-02-01

    Mutation breeding has become a proven method of improving crop varieties. Most research on plant mutation breeding in Indonesia is carried out at the Center for Research and Development of Isotope and Radiation Technology, National Nuclear Energy Agency (BATAN). Nowadays, a biotechnological approach has been incorporated in some mutation breeding researches in order to improve crop cultivars. This approach is simply based on cellular totipotency, or the ability to regenerate whole, flowering plants from isolated organs, pieces of tissue, individual cells, and protoplasts. Tissue culture technique has bee extensively used for micro propagation of disease-free plants. Other usage of this technique involves in various steps of the breeding process such as germplasm preservation, clonal propagation, and distant hybridization. Mutation breeding combined with tissue culture technique has made a significant contribution in inducing plant genetic variation, by improving selection technology, and by accelerating breeding time as for that by using anther or pollen culture. In Indonesia, research on mutation breeding combined with tissue culture techniques has been practiced in different crop species including rice, ginger, banana, sorghum etc. Specially in rice, a research on identification of DNA markers linked to blast disease resistance is now still progressing. A compiled report from some research activities is presented in this paper. (author)

  9. Strategies for Improving Enterprise Standardization Management of Tropical Crop Machinery

    2007-01-01

    @@ There are two categories of tropical crop machinery. One comprises operation machinery that is used for planting, managing and harvesting tropical crops, while the other comprises process machinery for processing tropical crops. Tropical crop machinery is distinguished from other agricultural machinery by the special crops that such machinery cultivates and processes.

  10. Improving musculoskeletal health: global issues.

    Mody, Girish M; Brooks, Peter M

    2012-04-01

    Musculoskeletal (MSK) disorders are among the leading reasons why patients consult a family or primary health practitioner, take time off work and become disabled. Many of the MSK disorders are more common in the elderly. Thus, as the proportion of the elderly increases all over the world, MSK disorders will make a greater contribution to the global burden of disease. Epidemiological studies have shown that the spectrum of MSK disorders in developing countries is similar to that seen in industrialised countries, but the burden of disease tends to be higher due to a delay in diagnosis or lack of access to adequate health-care facilities for effective treatment. Musculoskeletal pain is very common in the community while fibromyalgia is being recognised as part of a continuum of chronic widespread pain rather than a narrowly defined entity. This will allow research to improve our understanding of pain in a variety of diffuse pain syndromes. The availability of newer more effective therapies has resulted in efforts to initiate therapy at an earlier stage of diseases. The new criteria for rheumatoid arthritis, and the diagnosis of axial and peripheral involvement in spondyloarthritis, permit an earlier diagnosis without having to wait for radiological changes. One of the major health challenges is the global shortage of health workers, and based on current training of health workers and traditional models of care for service delivery, the global situation is unlikely to change in the near future. Thus, new models of care and strategies to train community health-care workers and primary health-care practitioners to detect and initiate the management of patients with MSK disorders at an earlier stage are required. There is also a need for prevention strategies with campaigns to educate and raise awareness among the entire population. Lifestyle interventions such as maintaining an ideal body weight to prevent obesity, regular exercises, avoidance of smoking and alcohol

  11. Simultaneous Improvement in Water Use, Productivity and Albedo Through Crop Structural Modification

    Drewry, D.; Kumar, P.; Long, S.

    2014-12-01

    Agricultural lands provide a tremendous opportunity to address challenges at the intersection of climate change, food and water security. Global demand for the major grain and seed crops is beginning to outstrip production, while population growth and the expansion of the global middle class have motivated calls for a doubling of food production by the middle of this century. This is occurring as yield gains for the major food crops have stagnated. At current rates of yield improvement this doubling will not be achieved. Plants have evolved to maximize the capture of radiation in the upper leaves, resulting in sub-optimal monoculture crop fields for maximizing productivity and other biogeophysical services. Using the world's most important protein crop, soybean, as an example, we show that by applying numerical optimization to a micrometeorological crop canopy model that significant, simultaneous gains in water use, productivity and reflectivity are possible with no increased demand on resources. Here we apply the MLCan multi-layer canopy biophysical model, which vertically resolves the radiation and micro-environmental variations that stimulate biochemical and ecophysiological functions that govern canopy-atmosphere exchange processes. At each canopy level photosynthesis, stomatal conductance, and energy balance are solved simultaneously for shaded and sunlit foliage. A multi-layer sub-surface model accounts for water availability as a function of root biomass distribution. MLCan runs at sub-hourly temporal resolution, allowing it to capture variability in CO2, water and energy exchange as a function of environmental variability. By modifying total canopy leaf area, its vertical distribution, leaf angle, and shortwave radiation reflectivity, all traits available in most major crop germplasm collections, we show that increases in either productivity (7%), water use (13%) or albedo (34%) could be achieved with no detriment to the other objectives, under United

  12. Uses of in vitro propagation for crop improvement

    Lazarte, J.E.

    1984-01-01

    For crop improvement the uses of tissue culture are multiple; tissue culture alone is important in clonal propagation and for developing new genotypes. Together with other techniques such as the ones used in mutation breeding, tissue culture will increase the chance for mutations to occur by increasing the number of meristems per area of treatment. With this combination of techniques there is the possibility of developing better crops in a shorter period, thus complementing the work done by nature and by traditional breeding methodology. This is important since world population is expected to double by the year 2000, which is only 18 years away. Tissue culture is a general term used to describe any method of aseptic culture, i.e. meristem, callus, cell, shoot tip, anther culture, etc

  13. Global ex-situ crop diversity conservation and the Svalbard Global Seed Vault: assessing the current status.

    Ola T Westengen

    Full Text Available Ex-situ conservation of crop diversity is a global concern, and the development of an efficient and sustainable conservation system is a historic priority recognized in international law and policy. We assess the completeness of the safety duplication collection in the Svalbard Global Seed Vault with respect to data on the world's ex-situ collections as reported by the Food and Agriculture Organization of the United Nations. Currently, 774,601 samples are deposited at Svalbard by 53 genebanks. We estimate that more than one third of the globally distinct accessions of 156 crop genera stored in genebanks as orthodox seeds are conserved in the Seed Vault. The numbers of safety duplicates of Triticum (wheat, Sorghum (sorghum, Pennisetum (pearl millet, Eleusine (finger millet, Cicer (chickpea and Lens (lentil exceed 50% of the estimated numbers of distinct accessions in global ex-situ collections. The number of accessions conserved globally generally reflects importance for food production, but there are significant gaps in the safety collection at Svalbard in some genera of high importance for food security in tropical countries, such as Amaranthus (amaranth, Chenopodium (quinoa, Eragrostis (teff and Abelmoschus (okra. In the 29 food-crop genera with the largest number of accessions stored globally, an average of 5.5 out of the ten largest collections is already represented in the Seed Vault collection or is covered by existing deposit agreements. The high coverage of ITPGRFA Annex 1 crops and of those crops for which there is a CGIAR mandate in the current Seed Vault collection indicates that existence of international policies and institutions are important determinants for accessions to be safety duplicated at Svalbard. As a back-up site for the global conservation system, the Seed Vault plays not only a practical but also a symbolic role for enhanced integration and cooperation for conservation of crop diversity.

  14. Global ex-situ crop diversity conservation and the Svalbard Global Seed Vault: assessing the current status.

    Westengen, Ola T; Jeppson, Simon; Guarino, Luigi

    2013-01-01

    Ex-situ conservation of crop diversity is a global concern, and the development of an efficient and sustainable conservation system is a historic priority recognized in international law and policy. We assess the completeness of the safety duplication collection in the Svalbard Global Seed Vault with respect to data on the world's ex-situ collections as reported by the Food and Agriculture Organization of the United Nations. Currently, 774,601 samples are deposited at Svalbard by 53 genebanks. We estimate that more than one third of the globally distinct accessions of 156 crop genera stored in genebanks as orthodox seeds are conserved in the Seed Vault. The numbers of safety duplicates of Triticum (wheat), Sorghum (sorghum), Pennisetum (pearl millet), Eleusine (finger millet), Cicer (chickpea) and Lens (lentil) exceed 50% of the estimated numbers of distinct accessions in global ex-situ collections. The number of accessions conserved globally generally reflects importance for food production, but there are significant gaps in the safety collection at Svalbard in some genera of high importance for food security in tropical countries, such as Amaranthus (amaranth), Chenopodium (quinoa), Eragrostis (teff) and Abelmoschus (okra). In the 29 food-crop genera with the largest number of accessions stored globally, an average of 5.5 out of the ten largest collections is already represented in the Seed Vault collection or is covered by existing deposit agreements. The high coverage of ITPGRFA Annex 1 crops and of those crops for which there is a CGIAR mandate in the current Seed Vault collection indicates that existence of international policies and institutions are important determinants for accessions to be safety duplicated at Svalbard. As a back-up site for the global conservation system, the Seed Vault plays not only a practical but also a symbolic role for enhanced integration and cooperation for conservation of crop diversity.

  15. Roots withstanding their environment : Exploiting root system architecture responses to abiotic stress to improve crop tolerance

    Koevoets, Iko T; Venema, Jan Henk; Elzenga, J Theo M; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as

  16. Global Simulation of Bioenergy Crop Productivity: Analytical Framework and Case Study for Switchgrass

    Kang, Shujiang [ORNL; Kline, Keith L [ORNL; Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Nichols, Dr Jeff A [ORNL; Post, Wilfred M [ORNL; Brandt, Craig C [ORNL; Wullschleger, Stan D [ORNL; Wei, Yaxing [ORNL; Singh, Nagendra [ORNL

    2013-01-01

    A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulated a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.

  17. Geophysical Global Modeling for Extreme Crop Production Using Photosynthesis Models Coupled to Ocean SST Dipoles

    Kaneko, D.

    2016-12-01

    Climate change appears to have manifested itself along with abnormal meteorological disasters. Instability caused by drought and flood disasters is producing poor harvests because of poor photosynthesis and pollination. Fluctuations of extreme phenomena are increasing rapidly because amplitudes of change are much greater than average trends. A fundamental cause of these phenomena derives from increased stored energy inside ocean waters. Geophysical and biochemical modeling of crop production can elucidate complex mechanisms under seasonal climate anomalies. The models have progressed through their combination with global climate reanalysis, environmental satellite data, and harvest data on the ground. This study examined adaptation of crop production to advancing abnormal phenomena related to global climate change. Global environmental surface conditions, i.e., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. Basic streams of the concepts of modeling rely upon continental energy flow and carbon circulation among crop vegetation, land surface atmosphere combining energy advection from ocean surface anomalies. Global environmental surface conditions, e.g., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. The method of validating the modeling relies upon carbon partitioning in biomass and grains through carbon flow by photosynthesis using carbon dioxide unit in photosynthesis. Results of computations done for this study show global distributions of actual evaporation, stomata opening, and photosynthesis, presenting mechanisms related to advection effects from SST anomalies in the Pacific, Atlantic, and Indian oceans on global and continental croplands. For North America, climate effects appear clearly in severe atmospheric phenomena, which have caused drought and forest fires

  18. Improving crop water use efficiency using carbon isotope discrimination

    Serraj, R.

    2006-01-01

    Water scarcity, drought and salinity are among the most important environmental constraints challenging crop productivity in the arid and semi-arid regions of the world, especially the rain-fed production systems. The current challenge is to enhance food security in water-limited and/or salt-affected areas for the benefit of resource-poor farmers in developing countries. There is also an increasing need that water use in agriculture should focus on improvement in the management of existing water resources and enhancing crop water productivity. The method based on carbon-13 discrimination in plant tissues has a potentially important role in the selection and breeding of some crop species for increased water use efficiency in some specific environments. Under various water-limited environments, low delta in the plants, indicating low carbon isotope discrimination has been generally associated with high transpiration efficiency (TE). In contrast, for well-watered environments many positive genotypic correlations have been reported between delta and grain yield indicating potential value in selecting for greater delta in these environments. Few studies have been reported on the impact of selection for delta on adaptation and grain yield in saline environments. Studies of the impact of genetic selection for greater and lower delta are currently coordinated by the Soil and water Management and Crop Nutrition Section (SWMCN) of the Joint FAO/IAEA Division. A Coordinated Research Project (CRP) is currently on-going on the Selection for Greater Agronomic Water-Use Efficiency in Wheat and Rice using Carbon Isotope Discrimination (D1-20 08). The overall objective of this project is to contribute to increasing the agronomic water-use efficiency of wheat and rice production, where agronomic water-use efficiency is defined as grain yield/total water use including both transpiration and evaporation. The CRP is also aiming at increasing wheat productivity under drought and rice

  19. Plant breeding: Induced mutation technology for crop improvement

    Novak, F.J.; Brunner, H.

    1992-01-01

    Plant breeding requires genetic variation of useful traits for crop improvement, but the desired variation is often lacking. Mutagenic agents, such as radiation and certain chemicals, can be used to induce mutations and generate genetic variations from which desirable mutants may be selected. After a brief summary of the methods currently employed in plant breeding, especially those inducing genetic engineering, this article describes the activities of the Plant Breeding Unit of the IAEA Laboratories at Seibersdorf, summarizing the research and development areas currently being pursued. The banana plant is chosen to exemplify the Laboratories' research

  20. Plant mutation breeding for crop improvement. V.2

    1991-01-01

    This volume contains the proceedings of the final two sessions of the FAO/IAEA Symposium on Plant Mutation Breeding for Crop Improvement, focussing on mutation breeding with particular objectives and the methodology of mutation breeding. The individual contributions are indexed separately. Although a wide variety of topics is included, the emphasis is on the use of (mainly gamma) radiation to induce economically useful mutants in cereals and legumes. The results of many conventional plant breeding programs are also presented. Refs, figs and tabs

  1. An integrated model to simulate sown area changes for major crops at a global scale

    SHIBASAKI; Ryosuke

    2008-01-01

    Dynamics of land use systems have attracted much attention from scientists around the world due to their ecological and socio-economic implications. An integrated model to dynamically simulate future changes in sown areas of four major crops (rice, maize, wheat and soybean) on a global scale is pre- sented. To do so, a crop choice model was developed on the basis of Multinomial Logit (Logit) model to model land users’ decisions on crop choices among a set of available alternatives with using a crop utility function. A GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted to simulate the crop yields under a given geophysical environment and farming management conditions, while the International Food Policy and Agricultural Simulation (IFPSIM) model was utilized to estimate crop price in the international market. The crop choice model was linked with the GIS-based EPIC model and the IFPSIM model through data exchange. This integrated model was then validated against the FAO statistical data in 2001-2003 and the Moderate Resolution Imaging Spectroradiometer (MODIS) global land cover product in 2001. Both validation approaches indicated reliability of the model for ad- dressing the dynamics in agricultural land use and its capability for long-term scenario analysis. Finally, the model application was designed to run over a time period of 30 a, taking the year 2000 as baseline. The model outcomes can help understand and explain the causes, locations and consequences of land use changes, and provide support for land use planning and policy making.

  2. Exploring the direct impacts of particulate matter and surface ozone on global crop production

    Schiferl, L. D.; Heald, C. L.

    2016-12-01

    The current era of rising food demand to feed an increasing population along with expansion of industrialization throughout the globe has been accompanied by deteriorating air quality and an enhancement in agricultural activity. Both air quality and the food supply are vitally important to sustaining human enterprise, and understanding the effects air quality may have on agricultural production is critical. Particulate matter (PM) in the atmosphere decreases the total photosynthetically available radiation (PAR) available to crops through the scattering and absorption of radiation while also increasing the diffuse fraction (DF) of this PAR. Since plants respond positively to a higher DF through the more even distribution of photons to all leaves, the net effect of PM on crop production depends on the magnitudes of these values and the response mechanisms of a specific crop. In contrast, atmospheric ozone always acts to decrease crop production through its phytotoxic properties. While the relationships between ozone and crop production have been readily studied, the effects of PM on crop production and their relative importance compared to ozone is much more uncertain. This study uses the GEOS-Chem chemical transport model linked to the RRTMG radiative transfer model and the DSSAT crop model to explore the impacts of PM and ozone on the globally distributed production of maize, rice, wheat and soybeans. First, we examine how air quality differentially affects total seasonal production by crop and region. Second, we investigate the dependence of simulated production on air quality over different timescales and under varying cloud conditions.

  3. Introgression of Physiological Traits for a Comprehensive Improvement of Drought Adaptation in Crop Plants

    Sheshshayee M. Sreeman

    2018-04-01

    Full Text Available Burgeoning population growth, industrial demand, and the predicted global climate change resulting in erratic monsoon rains are expected to severely limit fresh water availability for agriculture both in irrigated and rainfed ecosystems. In order to remain food and nutrient secure, agriculture research needs to focus on devising strategies to save water in irrigated conditions and to develop superior cultivars with improved water productivity to sustain yield under rainfed conditions. Recent opinions accruing in the scientific literature strongly favor the adoption of a “trait based” crop improvement approach for increasing water productivity. Traits associated with maintenance of positive tissue turgor and maintenance of increased carbon assimilation are regarded as most relevant to improve crop growth rates under water limiting conditions and to enhance water productivity. The advent of several water saving agronomic practices notwithstanding, a genetic enhancement strategy of introgressing distinct physiological, morphological, and cellular mechanisms on to a single elite genetic background is essential for achieving a comprehensive improvement in drought adaptation in crop plants. The significant progress made in genomics, though would provide the necessary impetus, a clear understanding of the “traits” to be introgressed is the most essential need of the hour. Water uptake by a better root architecture, water conservation by preventing unproductive transpiration are crucial for maintaining positive tissue water relations. Improved carbon assimilation associated with carboxylation capacity and mesophyll conductance is important in sustaining crop growth rates under water limited conditions. Besides these major traits, we summarize the available information in literature on classifying various drought adaptive traits. We provide evidences that Water-Use Efficiency when introgressed with moderately higher transpiration, would

  4. Response and potential of agroforestry crops under global change

    Calfapietra, C.; Gielen, B.; Karnosky, D.; Ceulemans, R.; Scarascia Mugnozza, G.

    2010-01-01

    The use of agroforestry crops is a promising tool for reducing atmospheric carbon dioxide concentration through fossil fuel substitution. In particular, plantations characterised by high yields such as short rotation forestry (SRF) are becoming popular worldwide for biomass production and their role acknowledged in the Kyoto Protocol. While their contribution to climate change mitigation is being investigated, the impact of climate change itself on growth and productivity of these plantations needs particular attention, since their management might need to be modified accordingly. Besides the benefits deriving from the establishment of millions of hectares of these plantations, there is a risk of increased release into the atmosphere of volatile organic compounds (VOC) emitted in large amounts by most of the species commonly used. These hydrocarbons are known to play a crucial role in tropospheric ozone formation. This might represent a negative feedback, especially in regions already characterized by elevated ozone level. - Growth and management of agroforestry plantations will be influenced by climate change.

  5. Response and potential of agroforestry crops under global change

    Calfapietra, C., E-mail: carlo.calfapietra@ibaf.cnr.i [Institute of Agro-Environmental and Forest Biology (IBAF), National Research Council (CNR), Via Salaria km 29300, 00015 Monterotondo Scalo, Roma (Italy); Gielen, B. [University of Antwerpen, Campus Drie Eiken, Department of Biology, Research Group of Plant and Vegetation Ecology, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Karnosky, D. [Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Ceulemans, R. [University of Antwerpen, Campus Drie Eiken, Department of Biology, Research Group of Plant and Vegetation Ecology, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Scarascia Mugnozza, G. [Department of Agronomy, Forestry and Land Use (DAF), Agricultural Research Council of Italy (CRA), Via del Caravita 7/a 00186 Roma (Italy)

    2010-04-15

    The use of agroforestry crops is a promising tool for reducing atmospheric carbon dioxide concentration through fossil fuel substitution. In particular, plantations characterised by high yields such as short rotation forestry (SRF) are becoming popular worldwide for biomass production and their role acknowledged in the Kyoto Protocol. While their contribution to climate change mitigation is being investigated, the impact of climate change itself on growth and productivity of these plantations needs particular attention, since their management might need to be modified accordingly. Besides the benefits deriving from the establishment of millions of hectares of these plantations, there is a risk of increased release into the atmosphere of volatile organic compounds (VOC) emitted in large amounts by most of the species commonly used. These hydrocarbons are known to play a crucial role in tropospheric ozone formation. This might represent a negative feedback, especially in regions already characterized by elevated ozone level. - Growth and management of agroforestry plantations will be influenced by climate change.

  6. Response and potential of agroforestry crops under global change.

    Calfapietra, C; Gielen, B; Karnosky, D; Ceulemans, R; Scarascia Mugnozza, G

    2010-04-01

    The use of agroforestry crops is a promising tool for reducing atmospheric carbon dioxide concentration through fossil fuel substitution. In particular, plantations characterised by high yields such as short rotation forestry (SRF) are becoming popular worldwide for biomass production and their role acknowledged in the Kyoto Protocol. While their contribution to climate change mitigation is being investigated, the impact of climate change itself on growth and productivity of these plantations needs particular attention, since their management might need to be modified accordingly. Besides the benefits deriving from the establishment of millions of hectares of these plantations, there is a risk of increased release into the atmosphere of volatile organic compounds (VOC) emitted in large amounts by most of the species commonly used. These hydrocarbons are known to play a crucial role in tropospheric ozone formation. This might represent a negative feedback, especially in regions already characterized by elevated ozone level. 2009 Elsevier Ltd. All rights reserved.

  7. Safeguarding fruit crops in the age of agricultural globalization

    The expansion of fruit production and markets into new geographic areas provides novel opportunities and challenges for the agricultural and marketing industries. In today’s competitive global market environment, growers need access to the best material available in terms of genetics and plant heal...

  8. Improved production systems for traditional food crops: The case of finger millet in Western Kenya

    Christina Handschuch; Meike Wollni

    2013-01-01

    Increasing agricultural productivity through the dissemination of improved cropping practices remains one of the biggest challenges of this century. A considerable amount of literature is dedicated to the adoption of improved cropping practices among smallholder farmers in developing countries. While most studies focus on cash crops or main staple crops, traditional food grains like finger millet have received little attention in the past decades. The present study aims to assess the factors ...

  9. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential.

    Long, Stephen P; Marshall-Colon, Amy; Zhu, Xin-Guang

    2015-03-26

    Increase in demand for our primary foodstuffs is outstripping increase in yields, an expanding gap that indicates large potential food shortages by mid-century. This comes at a time when yield improvements are slowing or stagnating as the approaches of the Green Revolution reach their biological limits. Photosynthesis, which has been improved little in crops and falls far short of its biological limit, emerges as the key remaining route to increase the genetic yield potential of our major crops. Thus, there is a timely need to accelerate our understanding of the photosynthetic process in crops to allow informed and guided improvements via in-silico-assisted genetic engineering. Potential and emerging approaches to improving crop photosynthetic efficiency are discussed, and the new tools needed to realize these changes are presented. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Increasing crop production in Russia and Ukraine—regional and global impacts from intensification and recultivation

    Deppermann, Andre; Balkovič, Juraj; Bundle, Sophie-Charlotte; Di Fulvio, Fulvio; Havlik, Petr; Leclère, David; Lesiv, Myroslava; Prishchepov, Alexander V.; Schepaschenko, Dmitry

    2018-02-01

    Russia and Ukraine are countries with relatively large untapped agricultural potentials, both in terms of abandoned agricultural land and substantial yield gaps. Here we present a comprehensive assessment of Russian and Ukrainian crop production potentials and we analyze possible impacts of their future utilization, on a regional as well as global scale. To this end, the total amount of available abandoned land and potential yields in Russia and Ukraine are estimated and explicitly implemented in an economic agricultural sector model. We find that cereal (barley, corn, and wheat) production in Russia and Ukraine could increase by up to 64% in 2030 to 267 million tons, compared to a baseline scenario. Oilseeds (rapeseed, soybean, and sunflower) production could increase by 84% to 50 million tons, respectively. In comparison to the baseline, common net exports of Ukraine and Russia could increase by up to 86.3 million tons of cereals and 18.9 million tons of oilseeds in 2030, representing 4% and 3.6% of the global production of these crops, respectively. Furthermore, we find that production potentials due to intensification are ten times larger than potentials due to recultivation of abandoned land. Consequently, we also find stronger impacts from intensification at the global scale. A utilization of crop production potentials in Russia and Ukraine could globally save up to 21 million hectares of cropland and reduce average global crop prices by more than 3%.

  11. The global impact of ozone on agricultural crop yields under current and future air quality legislation

    Van Dingenen, Rita; Dentener, Frank J.; Raes, Frank; Krol, Maarten C.; Emberson, Lisa; Cofala, Janusz

    In this paper we evaluate the global impact of surface ozone on four types of agricultural crop. The study is based on modelled global hourly ozone fields for the year 2000 and 2030, using the global 1°×1° 2-way nested atmospheric chemical transport model (TM5). Projections for the year 2030 are based on the relatively optimistic "current legislation (CLE) scenario", i.e. assuming that currently approved air quality legislation will be fully implemented by the year 2030, without a further development of new abatement policies. For both runs, the relative yield loss due to ozone damage is evaluated based on two different indices (accumulated concentration above a 40 ppbV threshold and seasonal mean daytime ozone concentration respectively) on a global, regional and national scale. The cumulative metric appears to be far less robust than the seasonal mean, while the seasonal mean shows satisfactory agreement with measurements in Europe, the US, China and Southern India and South-East Asia. Present day global relative yield losses are estimated to range between 7% and 12% for wheat, between 6% and 16% for soybean, between 3% and 4% for rice, and between 3% and 5% for maize (range resulting from different metrics used). Taking into account possible biases in our assessment, introduced through the global application of "western" crop exposure-response functions, and through model performance in reproducing ozone-exposure metrics, our estimates may be considered as being conservative. Under the 2030 CLE scenario, the global situation is expected to deteriorate mainly for wheat (additional 2-6% loss globally) and rice (additional 1-2% loss globally). India, for which no mitigation measures have been assumed by 2030, accounts for 50% of these global increase in crop yield loss. On a regional-scale, significant reductions in crop losses by CLE-2030 are only predicted in Europe (soybean) and China (wheat). Translating these assumed yield losses into total global economic

  12. Nuclear agriculture and biotechnology: integrated approaches for crop improvement

    Suprasanna, P.; Venugopalan, V.

    2017-01-01

    Use of radiation and radioisotopes in agriculture is one of the most important fields of peaceful applications of atomic energy for societal benefit. They are used to induce genetic variability in crop plants to develop improved mutant varieties, to manage insect pests, to monitor fate and persistence of pesticides, to study fertilizer use efficiency and plant micronutrient uptake and also to preserve agricultural produce. So far, BARC has developed and released 42 Trombay mutant varieties in oilseeds (groundnut, mustard, soybean, sunflower), pulses (pigeonpea, blackgram, greengram, cowpea), rice and jute for commercial cultivation across the nation. Mutant characterization has been benefitted by genomics approaches and availability of crop genome sequencing. In this regard, studies are underway to utilize mutant germplasm for molecular characterization and understanding trait modification. The nuclear technologies have benefited the farmers, traders and end-users and will continue to play a significant role in addressing food and nutritional security. In this presentation, an overview will be given on the activities of the NABTD in the field of nuclear agriculture and biotechnology

  13. The role of Molecular Markers in Improvement of Fruit Crops

    Zahoor Ahmad BHAT

    2010-06-01

    Full Text Available Markers have been used over the years for the classification of plants. Markers are any trait of an organism that can be identified with confidence and relative easy, and can be followed in a mapping population on another hand markers be defined as heritable entities associated with the economically important trait under the control of polygenes. Morphological markers can be detected with naked eye (naked eye polymorphism or as difference in physical or chemical properties of the macromolecules. In other words, there are two types of genetic markers viz. morphological markers or naked eye polymorphism and non-morphological markers or molecular markers. Morphological markers include traits such as plant height, disease response, photoperiod, sensitivity, shape or colour of flowers, fruits or seeds etc. Molecular markers include biochemical constituents. Morphological markers have many limitations for being used as markers particularly in fruit crops because of long generation time and large size of fruit trees besides being influenced by environment. Consequently, molecular markers could be appropriate choice to study and preserve the diversity in any germplasm. Molecular markers have diverse applications in fruit crop improvement, particularly in the areas of genetic diversity and varietal identification studies, gene tagging, disease diagnostics, pedigree analysis, hybrid detection, sex differentiation and marker assisted selection.

  14. Storage of Maize in Purdue Improved Crop Storage (PICS) Bags.

    Williams, Scott B; Murdock, Larry L; Baributsa, Dieudonne

    2017-01-01

    Interest in using hermetic technologies as a pest management solution for stored grain has risen in recent years. One hermetic approach, Purdue Improved Crop Storage (PICS) bags, has proven successful in controlling the postharvest pests of cowpea. This success encouraged farmers to use of PICS bags for storing other crops including maize. To assess whether maize can be safely stored in PICS bags without loss of quality, we carried out laboratory studies of maize grain infested with Sitophilus zeamais (Motshulsky) and stored in PICS triple bags or in woven polypropylene bags. Over an eight month observation period, temperatures in the bags correlated with ambient temperature for all treatments. Relative humidity inside PICS bags remained constant over this period despite the large changes that occurred in the surrounding environment. Relative humidity in the woven bags followed ambient humidity closely. PICS bags containing S. zeamais-infested grain saw a significant decline in oxygen compared to the other treatments. Grain moisture content declined in woven bags, but remained high in PICS bags. Seed germination was not significantly affected over the first six months in all treatments, but declined after eight months of storage when infested grain was held in woven bags. Relative damage was low across treatments and not significantly different between treatments. Overall, maize showed no signs of deterioration in PICS bags versus the woven bags and PICS bags were superior to woven bags in terms of specific metrics of grain quality.

  15. The role of radiation induced mutations in crop Improvement

    Souframanien, J.

    2017-01-01

    Sudden, heritable changes in the genetic material, DNA, are known as mutations. Selection of naturally occurring mutations in wild, ancestral species helped humans in the domestication and further improvement of today's crop plants. Gregor Mendel in 1865 used several such natural mutants in his experiments with garden pea to formulate the laws of inheritance. The term mutation itself was used for the first time by Hugo de Vries in 1901 in his mutation theory. Plant breeding based on the science of genetics, as practiced over the past 100 years, exploited the available genetic variability in the primary gene pool of crop plants, and sometimes in related species. Primarily, simple selection of desirable offspring and cross breeding were the earlier methods of breeding and this utilized the occurrence of spontaneous mutations. In nature, occurrence of natural variability in the form of spontaneous mutations is extremely low (about 10 -6 ), which can be enhanced several fold (∼10 -3 ) by using ionizing radiations or chemical mutagens

  16. Global Adoption of Genetically Modified (GM) Crops: Challenges for the Public Sector.

    Huesing, Joseph E; Andres, David; Braverman, Michael P; Burns, Andrea; Felsot, Allan S; Harrigan, George G; Hellmich, Richard L; Reynolds, Alan; Shelton, Anthony M; Jansen van Rijssen, Wilna; Morris, E Jane; Eloff, Jacobus N

    2016-01-20

    Advances in biotechnology continue to drive the development of a wide range of insect-protected, herbicide-tolerant, stress-tolerant, and nutritionally enhanced genetically modified (GM) crops, yet societal and public policy considerations may slow their commercialization. Such restrictions may disproportionately affect developing countries, as well as smaller entrepreneurial and public sector initiatives. The 2014 IUPAC International Congress of Pesticide Chemistry (San Francisco, CA, USA; August 2014) included a symposium on "Challenges Associated with Global Adoption of Agricultural Biotechnology" to review current obstacles in promoting GM crops. Challenges identified by symposium presenters included (i) poor public understanding of GM technology and the need for enhanced communication strategies, (ii) nonharmonized and prescriptive regulatory requirements, and (iii) limited experience with regulations and product development within some public sector programs. The need for holistic resistance management programs to enable the most effective use of insect-protected crops was also a point of emphasis. This paper provides details on the symposium discussion and provides background information that can be used in support of further adoption of beneficial GM crops. Overall, it emphasizes that global adoption of modern agricultural biotechnology has not only provided benefits to growers and consumers but has great potential to provide solutions to an increasing global population and diminishing agricultural land. This potential will be realized by continued scientific innovation, harmonized regulatory systems, and broader communication of the benefits of the high-yielding, disease-resistant, and nutritionally enhanced crops attainable through modern biotechnology.

  17. Improving plot- and regional-scale crop models for simulating impacts of climate variability and extremes

    Tao, F.; Rötter, R.

    2013-12-01

    Many studies on global climate report that climate variability is increasing with more frequent and intense extreme events1. There are quite large uncertainties from both the plot- and regional-scale models in simulating impacts of climate variability and extremes on crop development, growth and productivity2,3. One key to reducing the uncertainties is better exploitation of experimental data to eliminate crop model deficiencies and develop better algorithms that more adequately capture the impacts of extreme events, such as high temperature and drought, on crop performance4,5. In the present study, in a first step, the inter-annual variability in wheat yield and climate from 1971 to 2012 in Finland was investigated. Using statistical approaches the impacts of climate variability and extremes on wheat growth and productivity were quantified. In a second step, a plot-scale model, WOFOST6, and a regional-scale crop model, MCWLA7, were calibrated and validated, and applied to simulate wheat growth and yield variability from 1971-2012. Next, the estimated impacts of high temperature stress, cold damage, and drought stress on crop growth and productivity based on the statistical approaches, and on crop simulation models WOFOST and MCWLA were compared. Then, the impact mechanisms of climate extremes on crop growth and productivity in the WOFOST model and MCWLA model were identified, and subsequently, the various algorithm and impact functions were fitted against the long-term crop trial data. Finally, the impact mechanisms, algorithms and functions in WOFOST model and MCWLA model were improved to better simulate the impacts of climate variability and extremes, particularly high temperature stress, cold damage and drought stress for location-specific and large area climate impact assessments. Our studies provide a good example of how to improve, in parallel, the plot- and regional-scale models for simulating impacts of climate variability and extremes, as needed for

  18. Towards a globally optimized crop distribution: Integrating water use, nutrition, and economic value

    Davis, K. F.; Seveso, A.; Rulli, M. C.; D'Odorico, P.

    2016-12-01

    Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. In order for food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for `sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing sustainable production has not been considered to date. To this end, we ask: Is it possible to increase crop production and economic value while minimizing water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of yields and evapotranspiration for 14 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine the potential improvements in calorie (+12%) and protein (+51%) production, economic output (+41%) and water demand (-5%). This approach can also incorporate the impact of future climate on cropland suitability, and as such, be used to provide optimized cropping patterns under climate change. Thus, our study provides a novel tool towards achieving sustainable intensification that can be used to recommend optimal crop distributions in the face of a changing climate while simultaneously accounting for food security, freshwater resources, and livelihoods.

  19. “Technology packages” for crop improvement using mutation induction and biotechnology

    Lavi, U. [ARO-Volcani Center, P.O. Box 6, Bet Dagan 50250 (Israel); Heslop-Harrison, J. S. [Department of Biology, University of Leicester, Leicester LE1 7RH (United Kingdom); Spencer, M. M.; Lagoda, P. J.L. [International Atomic Energy Agency, Vienna (Austria)

    2009-05-15

    “Technology packages” in crop breeding may be defined as sets of various technologies used in synergy in order to achieve specific research goals. The tremendous advances in cell, molecular, atomic and even nano-technology afford scientists with powerful tools for exploring the Living Kingdom to the benefit of Human Kind. Mutation induction is undoubtedly one of these technologies, which has resulted in tremendous changes in the way genetics and derived genomics can be applied for crop improvement. Classical breeding approaches associated with agronomy and biotechnologies allow less than 2% of the population of industrialized countries to produce ample food to satisfy their national needs. The rapid expansion in science-based knowledge, relating to genetics, genomics, exploitation of biodiversity and induced mutations now has the potential to bridge the gap from research to application in agriculture in developing countries. In a timescale of decades some important changes could be efficiently implemented. In addition to the current goals of plant breeding new ones such as the following are emerging continuously: a demand for more meat in global diets - requiring serious increase of primary production; the demand for bioenergy crops other than just fuel woods mean that there is a new range of target plants for domestication and improvement where minimal or no classical breeding has been applied so far. When considering the major technological developments together with their potential in crop improvement for developing countries, there is a great need of clear and wise assessment of their usefulness and applicability. Various approaches such as DNA, markers, TILLING, high-throughput sequencing and reverse genetics are applicable to breeding programmes in developing countries. In the present chapter, all approaches considered appropriate are assessed on the basis of their advantages and constraints. (author)

  20. Scope for improved eco-efficiency varies among diverse cropping systems.

    Carberry, Peter S; Liang, Wei-li; Twomlow, Stephen; Holzworth, Dean P; Dimes, John P; McClelland, Tim; Huth, Neil I; Chen, Fu; Hochman, Zvi; Keating, Brian A

    2013-05-21

    Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat-maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems.

  1. Recent trends on crop genetic improvement using mutation techniques

    Kang, Siyong

    2008-01-01

    The radiation breeding technology has been significantly achieved on creation of mutation genetic resources of plants for commercial cultivation and genomic study since 1920s. According to the FAO-IAEA Mutant Variety Database, more than 2600 varieties have been released in the world. Induction of mutations with radiation has been the most frequently used by sources of X-ray and gamma ray, but in recent Japanese scientist have been used the heavy ion beam as a new radiation sources. And China has been made remarkable outcomes in the mutant creation using new space breeding technology since 1990s. In Korea, more about 40 varieties have been developed by using the mutation breeding method since the mid-1960s. Most of the released mutant varieties in Korea were food and oil seed crops, especially for improving agronomic traits such as yield, lodging tolerance, maturity, and functional compounds. Currently the mutation breeding program in Korea has assigned more resources to develop high functional crops and ornamental plants. These functional and ornamental plants are ideal systems for a mutation breeding. A research program for the development of potential varieties of flowering and ornamental crops as rose, chrysanthemum, lily, carnation, orchids, and wild flowers was started with financial support from the Bio green 21 project of Korean government. The potential outcomes from the program will be new highly valued-added varieties which will provide greater money gains to Korean farmers and lots of valued mutants used for a gene isolation of interest and reverse genetics or functional genomic. Scientific interest in mutation breeding has drastically be ed focused to the field of functional genomic. Scientific interest in mutation breeding has drastically be ed focused to the field of functional genomic after a completion of genome sequencing of some model plant species. A direct approach of discovering the function of a novel gene is to use a mutant which has altered

  2. Recent trends on crop genetic improvement using mutation techniques

    Kang, Siyong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-04-15

    The radiation breeding technology has been significantly achieved on creation of mutation genetic resources of plants for commercial cultivation and genomic study since 1920s. According to the FAO-IAEA Mutant Variety Database, more than 2600 varieties have been released in the world. Induction of mutations with radiation has been the most frequently used by sources of X-ray and gamma ray, but in recent Japanese scientist have been used the heavy ion beam as a new radiation sources. And China has been made remarkable outcomes in the mutant creation using new space breeding technology since 1990s. In Korea, more about 40 varieties have been developed by using the mutation breeding method since the mid-1960s. Most of the released mutant varieties in Korea were food and oil seed crops, especially for improving agronomic traits such as yield, lodging tolerance, maturity, and functional compounds. Currently the mutation breeding program in Korea has assigned more resources to develop high functional crops and ornamental plants. These functional and ornamental plants are ideal systems for a mutation breeding. A research program for the development of potential varieties of flowering and ornamental crops as rose, chrysanthemum, lily, carnation, orchids, and wild flowers was started with financial support from the Bio green 21 project of Korean government. The potential outcomes from the program will be new highly valued-added varieties which will provide greater money gains to Korean farmers and lots of valued mutants used for a gene isolation of interest and reverse genetics or functional genomic. Scientific interest in mutation breeding has drastically be ed focused to the field of functional genomic. Scientific interest in mutation breeding has drastically be ed focused to the field of functional genomic after a completion of genome sequencing of some model plant species. A direct approach of discovering the function of a novel gene is to use a mutant which has altered

  3. Fertigation for improved water use efficiency and crop yield

    Al-Wabel, M.I.; Al-Jaloud, A.A.; Hussain, G.; Karimulla, S.

    2002-01-01

    -1 relative to all other treatments. Nitrogen applied through fertigation was more effective towards yield improvement than soil application. The NUE was highest with 60 mg N L -1 as compared to all other higher dose of N application. The research findings showed that there is a lot of potential for adoption of fertigation practices in order to increase the production of greenhouse crops, improving the economics of these crops. (author)

  4. Engineering Mycorrhizal Symbioses to Alter Plant Metabolism and Improve Crop Health

    Katherine E. French

    2017-07-01

    Full Text Available Creating sustainable bioeconomies for the 21st century relies on optimizing the use of biological resources to improve agricultural productivity and create new products. Arbuscular mycorrhizae (phylum Glomeromycota form symbiotic relationships with over 80% of vascular plants. In return for carbon, these fungi improve plant health and tolerance to environmental stress. This symbiosis is over 400 million years old and there are currently over 200 known arbuscular mycorrhizae, with dozens of new species described annually. Metagenomic sequencing of native soil communities, from species-rich meadows to mangroves, suggests biologically diverse habitats support a variety of mycorrhizal species with potential agricultural, medical, and biotechnological applications. This review looks at the effect of mycorrhizae on plant metabolism and how we can harness this symbiosis to improve crop health. I will first describe the mechanisms that underlie this symbiosis and what physiological, metabolic, and environmental factors trigger these plant-fungal relationships. These include mycorrhizal manipulation of host genetic expression, host mitochondrial and plastid proliferation, and increased production of terpenoids and jasmonic acid by the host plant. I will then discuss the effects of mycorrhizae on plant root and foliar secondary metabolism. I subsequently outline how mycorrhizae induce three key benefits in crops: defense against pathogen and herbivore attack, drought resistance, and heavy metal tolerance. I conclude with an overview of current efforts to harness mycorrhizal diversity to improve crop health through customized inoculum. I argue future research should embrace synthetic biology to create mycorrhizal chasses with improved symbiotic abilities and potentially novel functions to improve plant health. As the effects of climate change and anthropogenic disturbance increase, the global diversity of arbuscular mycorrhizal fungi should be monitored

  5. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections

    Gourdji, Sharon M; Sibley, Adam M; Lobell, David B

    2013-01-01

    Long-term warming trends across the globe have shifted the distribution of temperature variability, such that what was once classified as extreme heat relative to local mean conditions has become more common. This is also true for agricultural regions, where exposure to extreme heat, particularly during key growth phases such as the reproductive period, can severely damage crop production in ways that are not captured by most crop models. Here, we analyze exposure of crops to physiologically critical temperatures in the reproductive stage (T crit ), across the global harvested areas of maize, rice, soybean and wheat. Trends for the 1980–2011 period show a relatively weak correspondence (r = 0.19) between mean growing season temperature and T crit exposure trends, emphasizing the importance of separate analyses for T crit . Increasing T crit exposure in the past few decades is apparent for wheat in Central and South Asia and South America, and for maize in many diverse locations across the globe. Maize had the highest percentage (15%) of global harvested area exposed to at least five reproductive days over T crit in the 2000s, although this value is somewhat sensitive to the exact temperature used for the threshold. While there was relatively little sustained exposure to reproductive days over T crit for the other crops in the past few decades, all show increases with future warming. Using projections from climate models we estimate that by the 2030s, 31, 16, and 11% respectively of maize, rice, and wheat global harvested area will be exposed to at least five reproductive days over T crit in a typical year, with soybean much less affected. Both maize and rice exhibit non-linear increases with time, with total area exposed for rice projected to grow from 8% in the 2000s to 27% by the 2050s, and maize from 15 to 44% over the same period. While faster development should lead to earlier flowering, which would reduce reproductive extreme heat exposure for wheat on a

  6. The potential of intercropping food crops and energy crop to improve productivity of a degraded agriculture land in arid tropics

    I.K.D. Jaya

    2014-04-01

    Full Text Available Degraded agricultural lands in the arid tropics have low soil organic carbon (SOC and hence low productivity. Poor farmers that their livelihoods depend highly on these types of lands are suffering. Cropping strategies that are able to improve the soil productivity are needed. In the present study, some intercropping models of food crops with bio-energy crop of castor (Ricinus communis L. were tested to assess their potential to improve the degraded land productivity. The intercropping models were: (1 castor - hybrid maize, (2 castor – short season maize, (3 castor – mungbean, and (4 castor –short season maize – mungbean. The results show that yields of the component crops in monoculture were relatively the same as in intercropping, resulted in a high Land Equivalent Ratio (LER. The highest LER (3.07 was calculated from intercropping castor plants with short season maize crops followed by mungbean with intercropping productivity of IDR 15,097,600.00 ha-1. Intercropping has a great potential to improve degraded agriculture land productivity and castor is a promising plant to improve biodiversity and area coverage on the land.

  7. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land.

    West, Paul C; Gibbs, Holly K; Monfreda, Chad; Wagner, John; Barford, Carol C; Carpenter, Stephen R; Foley, Jonathan A

    2010-11-16

    Expanding croplands to meet the needs of a growing population, changing diets, and biofuel production comes at the cost of reduced carbon stocks in natural vegetation and soils. Here, we present a spatially explicit global analysis of tradeoffs between carbon stocks and current crop yields. The difference among regions is striking. For example, for each unit of land cleared, the tropics lose nearly two times as much carbon (∼120 tons·ha(-1) vs. ∼63 tons·ha(-1)) and produce less than one-half the annual crop yield compared with temperate regions (1.71 tons·ha(-1)·y(-1) vs. 3.84 tons·ha(-1)·y(-1)). Therefore, newly cleared land in the tropics releases nearly 3 tons of carbon for every 1 ton of annual crop yield compared with a similar area cleared in the temperate zone. By factoring crop yield into the analysis, we specify the tradeoff between carbon stocks and crops for all areas where crops are currently grown and thereby, substantially enhance the spatial resolution relative to previous regional estimates. Particularly in the tropics, emphasis should be placed on increasing yields on existing croplands rather than clearing new lands. Our high-resolution approach can be used to determine the net effect of local land use decisions.

  8. Impact of management strategies on the global warming potential at the cropping system level

    Goglio, Pietro; Grant, Brian B.; Smith, Ward N.; Desjardins, Raymond L.; Worth, Devon E.; Zentner, Robert; Malhi, Sukhdev S.

    2014-01-01

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha −1 decreased on average the emissions of N 2 O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO 2 emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact. - Highlights: • LCA was combined with DNDC model to estimate the GWP of a cropping system. • N 2 O, NO and NH 3 flux increased by 39% under the higher fertilizer rate. • A change from 75 to 50 kg N ha −1 reduced the GWP per ha and GJ basis by 18%. • N 2 O emissions contributed 67% to the overall GWP of the cropping system. • Small changes in N fertilizer can have a substantial environmental impact

  9. An integrated model to simulate sown area changes for major crops at a global scale

    WU WenBin; YANG Peng; MENG ChaoYing; SHIBASAKI Ryosuke; ZHOU QingBo; TANG HuaJun; SHI Yun

    2008-01-01

    Dynamics of land use systems have attracted much attention from scientists around the world due to their ecological and socio-economic implications. An integrated model to dynamically simulate future changes in sown areas of four major crops (rice, maize, wheat and soybean) on a global scale is presented. To do so, a crop choice model was developed on the basis of Multinomial Logit (Logit) model to model land users' decisions on crop choices among a set of available alternatives with using a crop utility function. A GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted to simulate the crop yields under a given geophysical environment and farming management conditions,while the International Food Policy and Agricultural Simulation (IFPSIM) model was utilized to estimate crop price in the international market. The crop choice model was linked with the GIS-based EPIC model and the IFPSIM model through data exchange. This integrated model was then validated against the FAO statistical data in 2001-2003 and the Moderate Resolution Imaging Spectroradiometer (MODIS)global land cover product in 2001. Both validation approaches indicated reliability of the model for addressing the dynamics in agricultural land use and its capability for long-term scenario analysis. Finally,the model application was designed to run over a time period of 30 a, taking the year 2000 as baseline.The model outcomes can help understand and explain the causes, locations and consequences of land use changes, and provide support for land use planning and policy making.

  10. The global income and production effects of genetically modified (GM) crops 1996-2011.

    Brookes, Graham; Barfoot, Peter

    2013-01-01

    A key part of any assessment of the global value of crop biotechnology in agriculture is an examination of its economic impact at the farm level. This paper follows earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects and impacts on the production base of the four main crops of soybeans, corn, cotton and canola. The commercialization of genetically modified (GM) crops has continued to occur at a rapid rate, with important changes in both the overall level of adoption and impact occurring in 2011. This annual updated analysis shows that there have been very significant net economic benefits at the farm level amounting to $19.8 billion in 2011 and $98.2 billion for the 16 year period (in nominal terms). The majority (51.2%) of these gains went to farmers in developing countries. GM technology have also made important contributions to increasing global production levels of the four main crops, having added 110 million tonnes and 195 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990s.

  11. Economic impact of GM crops: the global income and production effects 1996-2012.

    Brookes, Graham; Barfoot, Peter

    2014-01-01

    A key part of any assessment of the global value of crop biotechnology in agriculture is an examination of its economic impact at the farm level. This paper follows earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the four main crops of soybeans, corn, cotton and canola. The commercialization of genetically modified (GM) crops has continued to occur at a rapid rate, with important changes in both the overall level of adoption and impact occurring in 2012. This annual updated analysis shows that there have been very significant net economic benefits at the farm level amounting to $18.8 billion in 2012 and $116.6 billion for the 17-year period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. GM technology have also made important contributions to increasing global production levels of the four main crops, having added 122 million tonnes and 230 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990s.

  12. Introgression of physiological traits for a comprehensive improvement of drought adaptation in crop plants

    Sreeman, Sheshshayee M.; Vijayaraghavareddy, Preethi; Sreevathsa, Rohini; Rajendrareddy, Sowmya; Arakesh, Smitharani; Bharti, Pooja; Dharmappa, Prathibha; Soolanayakanahally, Raju

    2018-04-01

    Burgeoning population growth, industrial demand and the predicted global climate change resulting in erratic monsoon rains are expected to severely limit fresh water availability for agriculture both in irrigated and rainfed ecosystems. In order to remain food and nutrient secure, agriculture research needs to focus on devising strategies to save water in irrigated conditions and to develop superior cultivars with improved water productivity to sustain yield under rainfed conditions. Recent opinions accruing in the scientific literature strongly favour the adoption of a “trait based” approach for increasing water productivity especially the traits associated with maintenance of positive tissue turgor and maintenance of increased carbon assimilation as the most relevant traits to improve crop growth rates under water limiting conditions and to enhance water productivity. The advent of several water saving agronomic practices notwithstanding, a genetic enhancement strategy of introgressing distinct physiological, morphological and cellular mechanisms on to a single elite genetic background is essential for achieving a comprehensive improvement in drought adaptation in crop plants. The significant progress made in genomics, though would provide the necessary impetus, a clear understanding of the “traits” to be introgressed is the most essential need of the hour. Water uptake by a better root architecture, water conservation by preventing unproductive transpiration is crucial for maintaining positive tissue water relations. Improved carbon assimilation associated with carboxylation capacity and mesophyll conductance is equally important in sustaining crop growth rates under water limited conditions. Besides these major traits, we summarized the available information in literature on classifying various drought adaptive traits. We provide evidences that water-use efficiency when introgressed with moderately higher transpiration, would significantly enhance

  13. Physiological and Agronomic Performance of the Coffee Crop in the Context of Climate Change and Global Warming: A Review.

    DaMatta, Fábio M; Avila, Rodrigo T; Cardoso, Amanda A; Martins, Samuel C V; Ramalho, José C

    2018-05-30

    Coffee is one of the most important global crops and provides a livelihood to millions of people living in developing countries. Coffee species have been described as being highly sensitive to climate change, as largely deduced from modeling studies based on predictions of rising temperatures and changing rainfall patterns. Here, we discuss the physiological responses of the coffee tree in the context of present and ongoing climate changes, including drought, heat, and light stresses, and interactions between these factors. We also summarize recent insights on the physiological and agronomic performance of coffee at elevated atmospheric CO 2 concentrations and highlight the key role of CO 2 in mitigating the harmful effects of heat stress. Evidence is shown suggesting that warming, per se, may be less harmful to coffee suitability than previously estimated, at least under the conditions of an adequate water supply. Finally, we discuss several mitigation strategies to improve crop performance in a changing world.

  14. Crop improvement using life cycle datasets acquired under field conditions

    Keiichi eMochida

    2015-09-01

    Full Text Available Crops are exposed to various environmental stresses in the field throughout their life cycle. Modern plant science has provided remarkable insights into the molecular networks of plant stress responses in laboratory conditions, but the responses of different crops to environmental stresses in the field need to be elucidated. Recent advances in omics analytical techniques and information technology have enabled us to integrate data from a spectrum of physiological metrics of field crops. The interdisciplinary efforts of plant science and data science enable us to explore factors that affect crop productivity and identify stress tolerance-related genes and alleles. Here, we describe recent advances in technologies that are key components for data driven crop design, such as population genomics, chronological omics analyses, and computer-aided molecular network prediction. Integration of the outcomes from these technologies will accelerate our understanding of crop phenology under practical field situations and identify key characteristics to represent crop stress status. These elements would help us to genetically engineer designed crops to prevent yield shortfalls because of environmental fluctuations due to future climate change.

  15. Crop improvement using life cycle datasets acquired under field conditions.

    Mochida, Keiichi; Saisho, Daisuke; Hirayama, Takashi

    2015-01-01

    Crops are exposed to various environmental stresses in the field throughout their life cycle. Modern plant science has provided remarkable insights into the molecular networks of plant stress responses in laboratory conditions, but the responses of different crops to environmental stresses in the field need to be elucidated. Recent advances in omics analytical techniques and information technology have enabled us to integrate data from a spectrum of physiological metrics of field crops. The interdisciplinary efforts of plant science and data science enable us to explore factors that affect crop productivity and identify stress tolerance-related genes and alleles. Here, we describe recent advances in technologies that are key components for data driven crop design, such as population genomics, chronological omics analyses, and computer-aided molecular network prediction. Integration of the outcomes from these technologies will accelerate our understanding of crop phenology under practical field situations and identify key characteristics to represent crop stress status. These elements would help us to genetically engineer "designed crops" to prevent yield shortfalls because of environmental fluctuations due to future climate change.

  16. Utilization of sunflower crop wild relatives for cultivated sunflower improvement

    Sunflower (Helianthus annuus L.) is one of the few crops native to the U.S. The current USDA-ARS-NPGS crop wild relatives sunflower collection is the largest extant collection in the world, containing 2,519 accessions comprised of 53 species; 39 perennial and 14 annual. To fully utilize gene bank co...

  17. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.

    Yabe, Shiori; Yamasaki, Masanori; Ebana, Kaworu; Hayashi, Takeshi; Iwata, Hiroyoshi

    2016-01-01

    Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS), which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the potential of genomic

  18. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.

    Shiori Yabe

    Full Text Available Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS, which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the

  19. Global income and production impacts of using GM crop technology 1996–2014

    Brookes, Graham; Barfoot, Peter

    2016-01-01

    ABSTRACT This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2014. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $17.7 billion in 2014 and $150.3 billion for the 19-year period 1996–2014 (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 65% of the gains have derived from yield and production gains with the remaining 35% coming from cost savings. The technology has also made important contributions to increasing global production levels of the 4 main crops, having, for example, added 158 million tonnes and 322 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s. PMID:27116697

  20. Global income and production impacts of using GM crop technology 1996–2013

    Brookes, Graham; Barfoot, Peter

    2015-01-01

    abstract This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2013. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $20.5 billion in 2013 and $133.4 billion for the 18 years period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 70% of the gains have derived from yield and production gains with the remaining 30% coming from cost savings. The technology have also made important contributions to increasing global production levels of the 4 main crops, having added 138 million tonnes and 273 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s. PMID:25738324

  1. Historical effects of CO2 and climate trends on global crop water demand

    Urban, Daniel W.; Sheffield, Justin; Lobell, David B.

    2017-12-01

    A critical question for agricultural production and food security is how water demand for staple crops will respond to climate and carbon dioxide (CO2) changes1, especially in light of the expected increases in extreme heat exposure2. To quantify the trade-offs between the effects of climate and CO2 on water demand, we use a `sink-strength' model of demand3,4 which relies on the vapour-pressure deficit (VPD), incident radiation and the efficiencies of canopy-radiation use and canopy transpiration; the latter two are both dependent on CO2. This model is applied to a global data set of gridded monthly weather data over the cropping regions of maize, soybean, wheat and rice during the years 1948-2013. We find that this approach agrees well with Penman-Monteith potential evapotranspiration (PM) for the C3 crops of soybean, wheat and rice, where the competing CO2 effects largely cancel each other out, but that water demand in maize is significantly overstated by a demand measure that does not include CO2, such as the PM. We find the largest changes in wheat, for which water demand has increased since 1981 over 86% of the global cropping area and by 2.3-3.6 percentage points per decade in different regions.

  2. Quality improvement and emerging global health priorities

    Mensah Abrampah, Nana; Syed, Shamsuzzoha Babar; Hirschhorn, Lisa R; Nambiar, Bejoy; Iqbal, Usman; Garcia-Elorrio, Ezequiel; Chattu, Vijay Kumar; Devnani, Mahesh; Kelley, Edward

    2018-01-01

    Abstract Quality improvement approaches can strengthen action on a range of global health priorities. Quality improvement efforts are uniquely placed to reorient care delivery systems towards integrated people-centred health services and strengthen health systems to achieve Universal Health Coverage (UHC). This article makes the case for addressing shortfalls of previous agendas by articulating the critical role of quality improvement in the Sustainable Development Goal era. Quality improvement can stimulate convergence between health security and health systems; address global health security priorities through participatory quality improvement approaches; and improve health outcomes at all levels of the health system. Entry points for action include the linkage with antimicrobial resistance and the contentious issue of the health of migrants. The work required includes focussed attention on the continuum of national quality policy formulation, implementation and learning; alongside strengthening the measurement-improvement linkage. Quality improvement plays a key role in strengthening health systems to achieve UHC. PMID:29873793

  3. Simultaneous improvement in productivity, water use, and albedo through crop structural modification.

    Drewry, Darren T; Kumar, Praveen; Long, Stephen P

    2014-06-01

    Spanning 15% of the global ice-free terrestrial surface, agricultural lands provide an immense and near-term opportunity to address climate change, food, and water security challenges. Through the computationally informed breeding of canopy structural traits away from those of modern cultivars, we show that solutions exist that increase productivity and water use efficiency, while increasing land-surface reflectivity to offset greenhouse gas warming. Plants have evolved to maximize capture of radiation in the upper leaves, thus shading competitors. While important for survival in the wild, this is suboptimal in monoculture crop fields for maximizing productivity and other biogeophysical services. Crop progenitors evolved over the last 25 million years in an atmosphere with less than half the [CO2] projected for 2050. By altering leaf photosynthetic rates, rising [CO2] and temperature may also alter the optimal canopy form. Here using soybean, the world's most important protein crop, as an example we show by applying optimization routines to a micrometeorological leaf canopy model linked to a steady-state model of photosynthesis, that significant gains in production, water use, and reflectivity are possible with no additional demand on resources. By modifying total canopy leaf area, its vertical profile and angular distribution, and shortwave radiation reflectivity, all traits available in most major crop germplasm collections, increases in productivity (7%) are possible with no change in water use or albedo. Alternatively, improvements in water use (13%) or albedo (34%) can likewise be made with no loss of productivity, under Corn Belt climate conditions. © 2014 California Institute of Technology. Government sponsorship acknowledged.

  4. Cooking with traditional crops improves nutrition and boosts ...

    2013-01-11

    Jan 11, 2013 ... It's no secret that traditional crops such as millets and pulses are highly nutritious. ... A survey of 310 families in India's Karnataka state determined that the ... developing recipes and food preparation methods that maximized ...

  5. CRISPR/Cas9 Mediated Genome Engineering for Improvement of Horticultural Crops.

    Karkute, Suhas G; Singh, Achuit K; Gupta, Om P; Singh, Prabhakar M; Singh, Bijendra

    2017-01-01

    Horticultural crops are an important part of agriculture for food as well as nutritional security. However, several pests and diseases along with adverse abiotic environmental factors pose a severe threat to these crops by affecting their quality and productivity. This warrants the effective and accelerated breeding programs by utilizing innovative biotechnological tools that can tackle aforementioned issues. The recent technique of genome editing by Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9 (CRISPR/Cas9) has greatly advanced the breeding for crop improvement due to its simplicity and high efficiency over other nucleases such as Zinc Finger Nucleases and Transcription Activator Like Effector Nucleases. CRISPR/Cas9 tool contains a non-specific Cas9 nuclease and a single guide RNA that directs Cas9 to the specific genomic location creating double-strand breaks and subsequent repair process creates insertion or deletion mutations. This is currently the widely adopted tool for reverse genetics, and crop improvement in large number of agricultural crops. The use of CRISPR/Cas9 in horticultural crops is limited to few crops due to lack of availability of regeneration protocols and sufficient sequence information in many horticultural crops. In this review, the present status of applicability of CRISPR/Cas9 in horticultural crops was discussed along with the challenges and future potential for possible improvement of these crops for their yield, quality, and resistance to biotic and abiotic stress.

  6. Biochar Application in Malaysian Sandy and Acid Sulfate Soils: Soil Amelioration Effects and Improved Crop Production over Two Cropping Seasons

    Theeba Manickam

    2015-12-01

    Full Text Available The use of biochar as an agricultural soil improvement was tested in acid sulfate and sandy soils from Malaysia, cropped with rice and corn. Malaysia has an abundance of waste rice husks that could be used to produce biochar. Rice husk biochar was produced in a gasifier at a local mill in Kelantan as well as in the laboratory using a controlled, specially designed, top lift up draft system (Belonio unit. Rice husk biochar was applied once to both soils at two doses (2% and 5%, in a pot set up that was carried out for two cropping seasons. Positive and significant crop yield effects were observed for both soils, biochars and crops. The yield effects varied with biochar type and dosage, with soil type and over the cropping seasons. The yield increases observed for the sandy soil were tentatively attributed to significant increases in plant-available water contents (from 4%–5% to 7%–8%. The yield effects in the acid sulfate soil were likely a consequence of a combination of (i alleviation of plant root stress by aluminum (Ca/Al molar ratios significantly increased, from around 1 to 3–5 and (ii increases in CEC. The agricultural benefits of rice husk biochar application to Malaysian soils holds promise for its future use.

  7. Impact of management strategies on the global warming potential at the cropping system level.

    Goglio, Pietro; Grant, Brian B; Smith, Ward N; Desjardins, Raymond L; Worth, Devon E; Zentner, Robert; Malhi, Sukhdev S

    2014-08-15

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha(-1) decreased on average the emissions of N2O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO2 emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  8. Non-bee insects are important contributors to global crop pollination.

    Rader, Romina; Bartomeus, Ignasi; Garibaldi, Lucas A; Garratt, Michael P D; Howlett, Brad G; Winfree, Rachael; Cunningham, Saul A; Mayfield, Margaret M; Arthur, Anthony D; Andersson, Georg K S; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G; Chacoff, Natacha P; Entling, Martin H; Foully, Benjamin; Freitas, Breno M; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R; Gross, Caroline L; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q; Lindström, Sandra A M; Mandelik, Yael; Monteiro, Victor M; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E; Pereira, Natália de O; Pisanty, Gideon; Potts, Simon G; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G; Stanley, Dara A; Stout, Jane C; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H; Viana, Blandina F; Woyciechowski, Michal

    2016-01-05

    Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.

  9. Exploiting Genomic Resources for Efficient Conservation and Use of Chickpea, Groundnut, and Pigeonpea Collections for Crop Improvement

    C. L. Laxmipathi Gowda

    2013-11-01

    Full Text Available Both chickpea ( L. and pigeonpea [ (L. Millsp.] are important dietary source of protein while groundnut ( L. is one of the major oil crops. Globally, approximately 1.1 million grain legume accessions are conserved in genebanks, of which the ICRISAT genebank holds 49,485 accessions of cultivated species and wild relatives of chickpea, pigeonpea, and groundnut from 133 countries. These genetic resources are reservoirs of many useful genes for present and future crop improvement programs. Representative subsets in the form of core and mini core collections have been used to identify trait-specific genetically diverse germplasm for use in breeding and genomic studies in these crops. Chickpea, groundnut, and pigeonpea have moved from “orphan” to “genomic resources rich crops.” The chickpea and pigeonpea genomes have been decoded, and the sequences of groundnut genome will soon be available. With the availability of these genomic resources, the germplasm curators, breeders, and molecular biologists will have abundant opportunities to enhance the efficiency of genebank operations, mine allelic variations in germplasm collection, identify genetically diverse germplasm with beneficial traits, broaden the cultigen’s genepool, and accelerate the cultivar development to address new challenges to production, particularly with respect to climate change and variability. Marker-assisted breeding approaches have already been initiated for some traits in chickpea and groundnut, which should lead to enhanced efficiency and efficacy of crop improvement. Resistance to some pests and diseases has been successfully transferred from wild relatives to cultivated species.

  10. Impact of management strategies on the global warming potential at the cropping system level

    Goglio, Pietro; Grant, Brian B.; Smith, Ward N. [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Desjardins, Raymond L., E-mail: ray.desjardins@agr.gc.ca [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Worth, Devon E. [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Zentner, Robert [Swift Current Research Station, Swift Current, Saskatchewan S0E 1A0 (Canada); Malhi, Sukhdev S. [Melfort Research Farm, PO Box 1240, Melfort, Saskatchewan S0E 1A0 (Canada)

    2014-08-15

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha{sup −1} decreased on average the emissions of N{sub 2}O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO{sub 2} emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact. - Highlights: • LCA was combined with DNDC model to estimate the GWP of a cropping system. • N{sub 2}O, NO and NH{sub 3} flux increased by 39% under the higher fertilizer rate. • A change from 75 to 50 kg N ha{sup −1} reduced the GWP per ha and GJ basis by 18%. • N{sub 2}O emissions contributed 67% to the overall GWP of the cropping system. • Small changes in N fertilizer can have a substantial environmental impact.

  11. Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison

    Rosenzweig, Cynthia E.; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Mueller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.

  12. Economic and physical determinants of the global distributions of crop pests and pathogens.

    Bebber, Daniel P; Holmes, Timothy; Smith, David; Gurr, Sarah J

    2014-05-01

    Crop pests and pathogens pose a significant and growing threat to food security, but their geographical distributions are poorly understood. We present a global analysis of pest and pathogen distributions, to determine the roles of socioeconomic and biophysical factors in determining pest diversity, controlling for variation in observational capacity among countries. Known distributions of 1901 pests and pathogens were obtained from CABI. Linear models were used to partition the variation in pest species per country amongst predictors. Reported pest numbers increased with per capita gross domestic product (GDP), research expenditure and research capacity, and the influence of economics was greater in micro-organisms than in arthropods. Total crop production and crop diversity were the strongest physical predictors of pest numbers per country, but trade and tourism were insignificant once other factors were controlled. Islands reported more pests than mainland countries, but no latitudinal gradient in species richness was evident. Country wealth is likely to be a strong indicator of observational capacity, not just trade flow, as has been interpreted in invasive species studies. If every country had US levels of per capita GDP, then 205 ± 9 additional pests per country would be reported, suggesting that enhanced investment in pest observations will reveal the hidden threat of crop pests and pathogens. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  13. Summer cover crops and soil amendments to improve growth and nutrient uptake of okra

    Wang, Q.R.; Li, Y.C.; Klassen, W. [University of Florida, Homestead, FL (United States). Center for Tropical Research & Education

    2006-04-15

    A pot experiment with summer cover crops and soil amendments was conducted in two consecutive years to elucidate the effects of these cover crops and soil amendments on 'Clemson Spineless 80' okra (Abelmoschus esculentus) yields and biomass production, and the uptake and distribution of soil nutrients and trace elements. The cover crops were sunn hemp (Crotalaria juncea), cowpea (Vigna unguiculata), velvetbean (Mucuna deeringiana), and sorghum sudan-grass (Sorghum bicolor x S. bicolor var. sudanense) with fallow as the control. The organic soil amendments were biosolids (sediment from wastewater plants), N-Viro Soil (a mixture of biosolids and coal ash), coal ash (a combustion by-product from power plants), co-compost (a mixture of 3 biosolids: 7 yard waste), and yard waste compost (mainly from leaves and branches of trees and shrubs, and grass clippings) with a soil-incorporated cover crop as the control. As a subsequent vegetable crop, okra was grown after the cover crops, alone or together with the organic soil amendments, had been incorporated. All of the cover crops, except sorghum sudangrass in 2002-03, significantly improved okra fruit yields and the total biomass production. Both cover crops and soil amendments can substantially improve nutrient uptake and distribution. The results suggest that cover crops and appropriate amounts of soil amendments can be used to improve soil fertility and okra yield without adverse environmental effects or risk of contamination of the fruit. Further field studies will be required to confirm these findings.

  14. Heterogeneous global crop yield response to biochar: a meta-regression analysis

    Crane-Droesch, Andrew; Torn, Margaret S; Abiven, Samuel; Jeffery, Simon

    2013-01-01

    Biochar may contribute to climate change mitigation at negative cost by sequestering photosynthetically fixed carbon in soil while increasing crop yields. The magnitude of biochar’s potential in this regard will depend on crop yield benefits, which have not been well-characterized across different soils and biochars. Using data from 84 studies, we employ meta-analytical, missing data, and semiparametric statistical methods to explain heterogeneity in crop yield responses across different soils, biochars, and agricultural management factors, and then estimate potential changes in yield across different soil environments globally. We find that soil cation exchange capacity and organic carbon were strong predictors of yield response, with low cation exchange and low carbon associated with positive response. We also find that yield response increases over time since initial application, compared to non-biochar controls. High reported soil clay content and low soil pH were weaker predictors of higher yield response. No biochar parameters in our dataset—biochar pH, percentage carbon content, or temperature of pyrolysis—were significant predictors of yield impacts. Projecting our fitted model onto a global soil database, we find the largest potential increases in areas with highly weathered soils, such as those characterizing much of the humid tropics. Richer soils characterizing much of the world’s important agricultural areas appear to be less likely to benefit from biochar. (letter)

  15. Improving global health: counting reasons why.

    Selgelid, Michael J

    2008-08-01

    This paper examines cumulative ethical and self-interested reasons why wealthy developed nations should be motivated to do more to improve health care in developing countries. Egalitarian and human rights reasons why wealthy nations should do more to improve global health are that doing so would (1) promote equality of opportunity (2) improve the situation of the worst-off, (3) promote respect of the human right to have one's most basic needs met, and (4) reduce undeserved inequalities in well-being. Utilitarian reasons for improving global health are that this would (5) promote the greater good of humankind, and (6) achieve enormous benefits while requiring only small sacrifices. Libertarian reasons are that this would (7) amend historical injustices and (8) meet the obligation to amend injustices that developed world countries have contributed to. Self-interested reasons why wealthy nations should do more to improve global health are that doing so would (9) reduce the threat of infectious diseases to developed countries, (10) promote developed countries' economic interests, and (11) promote global security. All of these reasons count, and together they add up to make an overwhelmingly powerful case for change. Those opposed to wealthy government funding of developing world health improvement would most likely appeal, implicitly or explicitly to the idea that coercive taxation for redistributive purposes would violate the right of an individual to keep his hard-earned income. The idea that this reason not to improve global health should outweigh the combination of rights and values embodied in the eleven reasons enumerated above, however is implausibly extreme, morally repugnant and perhaps imprudent.

  16. Cooking with traditional crops improves nutrition and boosts ...

    Millets in India and pulses in Ethiopia were dietary staples before crops like corn, ... For some communities it's cultural — millets tend to be eaten only on special ... The goal is to scale up these successes in other regions of India and South Asia. ... We are also trying to overcome the perception of pulse as 'poor man's food',” ...

  17. Understanding and improving global crop response to ozone pollution

    Concentrations of ground-level ozone ([O3]) over much of the Earth’s land surface have more than doubled since pre-industrial times. The air pollutant is highly variable over time and space, which makes it difficult to assess the average agronomic and economic impacts of the pollutant as well as to ...

  18. Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement

    Muñoz, Nacira; Liu, Ailin; Kan, Leo; Li, Man-Wah; Lam, Hon-Ming

    2017-01-01

    Challenged by population increase, climatic change, and soil deterioration, crop improvement is always a priority in securing food supplies. Although the production of grain legumes is in general lower than that of cereals, the nutritional value of grain legumes make them important components of food security. Nevertheless, limited by severe genetic bottlenecks during domestication and human selection, grain legumes, like other crops, have suffered from a loss of genetic diversity which is essential for providing genetic materials for crop improvement programs. Illustrated by whole-genome-sequencing, wild relatives of crops adapted to various environments were shown to maintain high genetic diversity. In this review, we focused on nine important grain legumes (soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin, and pigeonpea) to discuss the potential uses of their wild relatives as genetic resources for crop breeding and improvement, and summarized the various genetic/genomic approaches adopted for these purposes. PMID:28165413

  19. Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement

    Nacira Muñoz

    2017-02-01

    Full Text Available Challenged by population increase, climatic change, and soil deterioration, crop improvement is always a priority in securing food supplies. Although the production of grain legumes is in general lower than that of cereals, the nutritional value of grain legumes make them important components of food security. Nevertheless, limited by severe genetic bottlenecks during domestication and human selection, grain legumes, like other crops, have suffered from a loss of genetic diversity which is essential for providing genetic materials for crop improvement programs. Illustrated by whole-genome-sequencing, wild relatives of crops adapted to various environments were shown to maintain high genetic diversity. In this review, we focused on nine important grain legumes (soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin, and pigeonpea to discuss the potential uses of their wild relatives as genetic resources for crop breeding and improvement, and summarized the various genetic/genomic approaches adopted for these purposes.

  20. Soil quality improvement for crop production in semi-arid West Africa

    Ouédraogo, E.

    2004-01-01

    Soil quality maintenance and crop production improvement in semi-arid West Africa require appropriate cropping technologies, which are ecologically sound and economically viable. Thus, on-farm and on-station experiments have been carried out on the central plateau and in the south of Burkina Faso

  1. Crop domestication, global human-mediated migration, and the unresolved role of geography in pest control

    Yolanda H. Chen

    2016-05-01

    Full Text Available Abstract Ecological pest management seeks to improve pest control through the manipulation of ecological processes that promote natural enemies and suppress pests. These approaches can involve cultural practices such as reduced tillage, increased use of non-crop plants that provide food and shelter for natural enemies, and intercropping to enhance the abundance and diversity of natural enemies. A major assumption of ecological pest management is that these activities can be equally effective for all insect herbivores. Here, I propose that these strategies may only be effective for a subset of pests and geographic regions because most insect pests have complex evolutionary histories that make them difficult to manage. I discuss how crop domestication and human-mediated migration are major evolutionary events that shape the geography of interactions between plants, herbivores, and natural enemies. Insect herbivores can evolve to be pests through three major modes: 1 herbivores associated with the crop wild ancestor may shift onto the domesticated crop, 2 herbivores may host-shift from native host plants onto an introduced crop, or 3 human-mediated migration can introduce insect pests into new cropping regions. The resulting geographic structure can influence the success of pest management by altering ecological factors such as: species distributions, patterns of biodiversity, community structure, and natural enemy attack rates. I discuss how the different modes of insect pest evolution structure a set of relevant questions and approaches for ecological pest management. By acknowledging how agricultural history and geography shape the ecology and evolution of insect pests, we may collectively develop a better capacity to identify where and how ecological pest management approaches can be most broadly effective.

  2. How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems.

    E Birch, A Nicholas; Begg, Graham S; Squire, Geoffrey R

    2011-06-01

    Drivers behind food security and crop protection issues are discussed in relation to food losses caused by pests. Pests globally consume food estimated to feed an additional one billion people. Key drivers include rapid human population increase, climate change, loss of beneficial on-farm biodiversity, reduction in per capita cropped land, water shortages, and EU pesticide withdrawals under policies relating to 91/414 EEC. IPM (Integrated Pest Management) will be compulsory for all EU agriculture by 2014 and is also being widely adopted globally. IPM offers a 'toolbox' of complementary crop- and region-specific crop protection solutions to address these rising pressures. IPM aims for more sustainable solutions by using complementary technologies. The applied research challenge now is to reduce selection pressure on single solution strategies, by creating additive/synergistic interactions between IPM components. IPM is compatible with organic, conventional, and GM cropping systems and is flexible, allowing regional fine-tuning. It reduces pests below economic thresholds utilizing key 'ecological services', particularly biocontrol. A recent global review demonstrates that IPM can reduce pesticide use and increase yields of most of the major crops studied. Landscape scale 'ecological engineering', together with genetic improvement of new crop varieties, will enhance the durability of pest-resistant cultivars (conventional and GM). IPM will also promote compatibility with semiochemicals, biopesticides, precision pest monitoring tools, and rapid diagnostics. These combined strategies are urgently needed and are best achieved via multi-disciplinary research, including complex spatio-temporal modelling at farm and landscape scales. Integrative and synergistic use of existing and new IPM technologies will help meet future food production needs more sustainably in developed and developing countries, in an era of reduced pesticide availability. Current IPM research gaps are

  3. Improvement of new and traditional industrial crops by induced mutations and related biotechnology

    NONE

    2003-08-01

    Industrial crops are an important source of income for many small landholders in developing countries and contribute directly or indirectly to food security in rural areas. Crop diversification, finding alternative crops, development of new uses for existing crops and introduction of new crops are important components in the efforts to meet the demand for food, pharmaceuticals, chemical raw materials, fibres and fuel in developing and developed countries. Plant breeding efforts combining genetic resources and induced mutations using classical, in vitro and innovative molecular approaches have been responsible for much of the development of industrial crops. This co-ordinated research project (CRP) was initiated in 1994. It focused on developing mutagenesis approaches for previously unstudied species, screening procedures for agricultural and industrial requirements and suitable genotypes of traditional industrial crops adapted to new areas and for new needs. The industrial crops selected for improvement under this CRP were oilseeds and fibre plants. The potential of induced mutations to affect critical steps in various biosynthetic pathways leading to oil quality and other metabolic modifications was investigated. The success of this CRP is evidenced by the application of mutation techniques, in combination with in vitro and molecular techniques in genetic improvement of oilseed crops such as soybean, rapeseed, sunflower, linseed, cuphea, meadowfoam and fibre plants such as cotton and jute. As a result, improved breeding lines are available in all the industrial crops that the CRP focused on. Novel oil types were developed in cuphea with potential use as a renewable, economical and safe energy source and in linseed with increased levels of saturated fatty acids. Genes of fatty acid synthesis were isolated from one species and used for modification of quality of other oilseeds. Disease and pest resistance was improved in oilseeds and fibre crops through transgenesis

  4. Improvement of new and traditional industrial crops by induced mutations and related biotechnology

    2003-08-01

    Industrial crops are an important source of income for many small landholders in developing countries and contribute directly or indirectly to food security in rural areas. Crop diversification, finding alternative crops, development of new uses for existing crops and introduction of new crops are important components in the efforts to meet the demand for food, pharmaceuticals, chemical raw materials, fibres and fuel in developing and developed countries. Plant breeding efforts combining genetic resources and induced mutations using classical, in vitro and innovative molecular approaches have been responsible for much of the development of industrial crops. This co-ordinated research project (CRP) was initiated in 1994. It focused on developing mutagenesis approaches for previously unstudied species, screening procedures for agricultural and industrial requirements and suitable genotypes of traditional industrial crops adapted to new areas and for new needs. The industrial crops selected for improvement under this CRP were oilseeds and fibre plants. The potential of induced mutations to affect critical steps in various biosynthetic pathways leading to oil quality and other metabolic modifications was investigated. The success of this CRP is evidenced by the application of mutation techniques, in combination with in vitro and molecular techniques in genetic improvement of oilseed crops such as soybean, rapeseed, sunflower, linseed, cuphea, meadowfoam and fibre plants such as cotton and jute. As a result, improved breeding lines are available in all the industrial crops that the CRP focused on. Novel oil types were developed in cuphea with potential use as a renewable, economical and safe energy source and in linseed with increased levels of saturated fatty acids. Genes of fatty acid synthesis were isolated from one species and used for modification of quality of other oilseeds. Disease and pest resistance was improved in oilseeds and fibre crops through transgenesis

  5. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-01-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26–141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture. - Highlights: ► Global energy crop potentials in 2050 are calculated with a biophysical biomass-balance model. ► The study is focused on dedicated energy crops, forestry and residues are excluded. ► Depending on food-system change, global energy crop potentials range from 26–141 EJ/yr. ► Exclusion of protected areas and failed states may reduce the potential up to 45%. ► The bioenergy potential may be 26% lower or 45% higher, depending on energy crop yields.

  6. Improved Global Ocean Color Using Polymer Algorithm

    Steinmetz, Francois; Ramon, Didier; Deschamps, ierre-Yves; Stum, Jacques

    2010-12-01

    A global ocean color product has been developed based on the use of the POLYMER algorithm to correct atmospheric scattering and sun glint and to process the data to a Level 2 ocean color product. Thanks to the use of this algorithm, the coverage and accuracy of the MERIS ocean color product have been significantly improved when compared to the standard product, therefore increasing its usefulness for global ocean monitor- ing applications like GLOBCOLOUR. We will present the latest developments of the algorithm, its first application to MODIS data and its validation against in-situ data from the MERMAID database. Examples will be shown of global NRT chlorophyll maps produced by CLS with POLYMER for operational applications like fishing or oil and gas industry, as well as its use by Scripps for a NASA study of the Beaufort and Chukchi seas.

  7. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    Torok, Tamas

    2013-02-04

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  8. RNA interference: a promising technique for the improvement of traditional crops.

    Katoch, Rajan; Thakur, Neelam

    2013-03-01

    RNA interference (RNAi) is a homology-dependent gene-silencing technology that involves double-stranded RNA directed against a target gene. This technique has emerged as powerful tool in understanding the functions of a number of genes in recent years. For the improvement in the nutritional status of the plants and reduction in the level of antinutrients, the conventional breeding methods were not completely successful in achieving the tissue-specific regulation of some genes. RNAi has shown successful results in a number of plant species for nutritional improvement, change in morphology and alteration in metabolite synthesis. This technology has been applied mostly in genetic engineering of important crop plants, and till date there are no reports of its application for the improvement of traditional/underutilized crops. In this study, we discuss current knowledge of RNAi function and concept and strategies for the improvement of traditional crops. Practical application. Although RNAi has been extensively used for the improvement of popular crops, no attention has been given for the use of this technology for the improvement of underutilized crops. This study describes the importance of use of this technology for the improvement of underutilized crops.

  9. Induced mutations and molecular techniques for crop improvement. Proceedings of an international symposium

    1995-01-01

    The symposium was aimed at reviewing current aspects of mutation and molecular biology techniques for use in crop improvement and to bridge the gap between practical plant breeding and molecular laboratory techniques. Over the past few years, many transgenic plants have been developed in important crops such as rice, wheat, maize, soybean, banana, cassava and cotton, as well as in many food, industrial and pharmaceutical plant species. More than 180 participants from 48 countries of which 31 were from developing countries, attended which provided a forum for the discussion of problems related to crop improvement world wide, and their possible solutions. Refs, figs and tabs

  10. Soil quality improvement for crop production in semi-arid West Africa

    Ouédraogo, E.

    2004-01-01

    Soil quality maintenance and crop production improvement in semi-arid West Africa require appropriate cropping technologies, which are ecologically sound and economically viable. Thus, on-farm and on-station experiments have been carried out on the central plateau and in the south of Burkina Faso The results show that adoption of improved soil fertility technologies such as composting by farmers is determined by soil fertility status, access to the market and social reasons. Organic amendment...

  11. Improvement of root and tuber crops by induced mutations

    1987-03-01

    The aim of the FAO/IAEA Co-ordinated Research Programme is to breed cultivars which are more productive, more resistant to diseases and pests and which have better quality. Two Research Co-ordination Meetings in this programme were convened. They reviewed in detail the status and breeding research needs of the major root and tuber crops and other vegetatively propagated corps, viz. cassava, yam, sweet potato, potato and sugar cane. The participants presented their research achievements and difficulties, exchanged information, co-ordinated their future research and made recommendations

  12. The Space-Time Variation of Global Crop Yields, Detecting Simultaneous Outliers and Identifying the Teleconnections with Climatic Patterns

    Najafi, E.; Devineni, N.; Pal, I.; Khanbilvardi, R.

    2017-12-01

    An understanding of the climate factors that influence the space-time variability of crop yields is important for food security purposes and can help us predict global food availability. In this study, we address how the crop yield trends of countries globally were related to each other during the last several decades and the main climatic variables that triggered high/low crop yields simultaneously across the world. Robust Principal Component Analysis (rPCA) is used to identify the primary modes of variation in wheat, maize, sorghum, rice, soybeans, and barley yields. Relations between these modes of variability and important climatic variables, especially anomalous sea surface temperature (SSTa), are examined from 1964 to 2010. rPCA is also used to identify simultaneous outliers in each year, i.e. systematic high/low crop yields across the globe. The results demonstrated spatiotemporal patterns of these crop yields and the climate-related events that caused them as well as the connection of outliers with weather extremes. We find that among climatic variables, SST has had the most impact on creating simultaneous crop yields variability and yield outliers in many countries. An understanding of this phenomenon can benefit global crop trade networks.

  13. Governing the management and use of pooled microbial genetic resources: Lessons from the global crop commons

    Michael Halewood

    2010-01-01

    Full Text Available The paper highlights lessons learned over the last thirty years establishing a governance structure for the global crop commons that are of relevance to current champions of the microbial commons. It argues that the political, legal and biophysical situation in which microbial genetic resources (and their users are located today are similar to the situation of plant genetic resources in the mid-1990s, before the International Treaty on Plant Genetic Resources was negotiated. Consequently, the paper suggests that it may be useful to look to the model of global network of ex situ plant genetic resources collections as a precedent to follow – even if only loosely – in developing an intergovernmentally endorsed legal substructure and governance framework for the microbial commons.

  14. CropWatch agroclimatic indicators (CWAIs) for weather impact assessment on global agriculture

    Gommes, René; Wu, Bingfang; Zhang, Ning; Feng, Xueliang; Zeng, Hongwei; Li, Zhongyuan; Chen, Bo

    2017-02-01

    CropWatch agroclimatic indicators (CWAIs) are a monitoring tool developed by the CropWatch global crop monitoring system in the Chinese Academy of Sciences (CAS; http://www.cropwatch.com.cn, Wu et al Int J Digital Earth 7(2):113-137, 2014, Wu et al Remote Sens 7:3907-3933, 2015). Contrary to most other environmental and agroclimatic indicators, they are "agronomic value-added", i.e. they are spatial values averaged over agricultural areas only and they include a weighting that enhances the contribution of the areas with the largest production potential. CWAIs can be computed for any time interval (starting from dekads) and yield one synthetic value per variable over a specific area and time interval, for instance a national annual value. Therefore, they are very compatible with socio-economic and other variables that are usually reported at regular time intervals over administrative units, such as national environmental or agricultural statistics. Two of the CWAIs are satellite-based (RAIN and Photosynthetically Active radiation, PAR) while the third is ground based (TEMP, air temperature); capitals are used when specifically referring to CWAIs rather than the climate variables in general. The paper first provides an overview of some common agroclimatic indicators, describing their procedural, systemic and normative features in subsequent sections, following the terminology of Binder et al Environ Impact Assess Rev 30:71-81 (2010). The discussion focuses on the systemic and normative aspects: the CWAIs are assessed in terms of their coherent description of the agroclimatic crop environment, at different spatial scales (systemic). The final section shows that the CWAIs retain key statistical properties of the underlying climate variables and that they can be compared to a reference value and used as monitoring and early warning variables (normative).

  15. CropWatch agroclimatic indicators (CWAIs) for weather impact assessment on global agriculture.

    Gommes, René; Wu, Bingfang; Zhang, Ning; Feng, Xueliang; Zeng, Hongwei; Li, Zhongyuan; Chen, Bo

    2017-02-01

    CropWatch agroclimatic indicators (CWAIs) are a monitoring tool developed by the CropWatch global crop monitoring system in the Chinese Academy of Sciences (CAS; www.cropwatch.com.cn , Wu et al Int J Digital Earth 7(2):113-137, 2014, Wu et al Remote Sens 7:3907-3933, 2015). Contrary to most other environmental and agroclimatic indicators, they are "agronomic value-added", i.e. they are spatial values averaged over agricultural areas only and they include a weighting that enhances the contribution of the areas with the largest production potential. CWAIs can be computed for any time interval (starting from dekads) and yield one synthetic value per variable over a specific area and time interval, for instance a national annual value. Therefore, they are very compatible with socio-economic and other variables that are usually reported at regular time intervals over administrative units, such as national environmental or agricultural statistics. Two of the CWAIs are satellite-based (RAIN and Photosynthetically Active radiation, PAR) while the third is ground based (TEMP, air temperature); capitals are used when specifically referring to CWAIs rather than the climate variables in general. The paper first provides an overview of some common agroclimatic indicators, describing their procedural, systemic and normative features in subsequent sections, following the terminology of Binder et al Environ Impact Assess Rev 30:71-81 (2010). The discussion focuses on the systemic and normative aspects: the CWAIs are assessed in terms of their coherent description of the agroclimatic crop environment, at different spatial scales (systemic). The final section shows that the CWAIs retain key statistical properties of the underlying climate variables and that they can be compared to a reference value and used as monitoring and early warning variables (normative).

  16. Future contributions of crop modelling : from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement

    Hammer, G.L.; Kropff, M.J.; Sinclair, T.R.; Porter, J.R.

    2002-01-01

    Crop modelling has evolved over the last 30 or so years in concert with advances in crop physiology, crop ecology and computing technology. Having reached a respectable degree of acceptance, it is appropriate to review briefly the course of developments in crop modelling and to project what might be

  17. Next biotech plants: new traits, crops, developers and technologies for addressing global challenges.

    Ricroch, Agnès E; Hénard-Damave, Marie-Cécile

    2016-08-01

    Most of the genetically modified (GM) plants currently commercialized encompass a handful of crop species (soybean, corn, cotton and canola) with agronomic characters (traits) directed against some biotic stresses (pest resistance, herbicide tolerance or both) and created by multinational companies. The same crops with agronomic traits already on the market today will continue to be commercialized, but there will be also a wider range of species with combined traits. The timeframe anticipated for market release of the next biotech plants will not only depend on science progress in research and development (R&D) in laboratories and fields, but also primarily on how demanding regulatory requirements are in countries where marketing approvals are pending. Regulatory constraints, including environmental and health impact assessments, have increased significantly in the past decades, delaying approvals and increasing their costs. This has sometimes discouraged public research entities and small and medium size plant breeding companies from using biotechnology and given preference to other technologies, not as stringently regulated. Nevertheless, R&D programs are flourishing in developing countries, boosted by the necessity to meet the global challenges that are food security of a booming world population while mitigating climate change impacts. Biotechnology is an instrument at the service of these imperatives and a wide variety of plants are currently tested for their high yield despite biotic and abiotic stresses. Many plants with higher water or nitrogen use efficiency, tolerant to cold, salinity or water submergence are being developed. Food security is not only a question of quantity but also of quality of agricultural and food products, to be available and accessible for the ones who need it the most. Many biotech plants (especially staple food) are therefore being developed with nutritional traits, such as biofortification in vitamins and metals. The main

  18. Soil water improvements with the long-term use of a winter rye cover crop

    The Midwestern United States, a region that produces one-third of maize and one-quarter of soybeans globally, is projected to experience increasing rainfall variability with future climate change. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance ...

  19. Improvement of some important crops in Yemen through induced mutations

    Saif, Abdulwahed; Abdul-Habeeb, A.; Zaid, N.; Hazah, A.; Alsaghir, M.; Makbul, M. A.; Alsamiri, A.; Shualan, S.; Almaktari, A.

    2004-01-01

    The seeds of several Wheat, Lentil, Sesame and Cotton cultivars were irradiated with different doses of gamma rays 200, 250, 300 and 100, 250, 200 and 300, 400, 500 and 400, 500, 600 Gy respectively. The plants of M1 were shown at closer distance between rows and seeds in order to reduce tillering. Further studies were carried out in the field to evaluate the M2 and M3 generations. The selection was done on the basis of productivity, earliness, resistance to lodging and growth habitat traits. The date were collected indicated that, the reduction of seed germination occurred at increasing radiation doses was observed of all cultivars of the same crops. Noticed, also useful variation amongst the M2 and M3 generations for many traits such as, earliness, plant height, productivity of plants and growth habitat. For example we obtained on six segregating mutants having longer spike with more number seeds, more productive tillers than of control (untreated) and early maturing which took 54 days to flowering compared to 63 days by the original cultivar of wheat. Some promising segregating mutants of lentil crop were selected for earliness and increase a number of branches per plant which have three pods per each peduncle compared with the tow in the parent. For sesame we bred 43 mutants with high number of capsules, higher number of branches, early maturity and higher yield per plant. The same trend also was observed for cotton, we obtained on mutants having higher yield per plant with early maturity compared with control. All theses mutants will evaluate them further, select the best having high yield per plant with good quality. (Authors)

  20. Improvement of red pepper yield and soil environment by summer catch aquatic crops in greenhouses

    Du, X. F.; Wang, L. Z.; Peng, J.; Wang, G. L.; Guo, X. S.; Wen, T. G.; Gu, D. L.; Wang, W. Z.; Wu, C. W.

    2016-08-01

    To investigate effects of the rotation of summer catch crops on remediation retrogressed soils in continuous cropping, a field experiment was conducted. Rice, water spinach, or cress were selected as summer catch crops; bare fallow during summer fallow was used as the control group. Results showed that aquatic crops grown in summer fallow period could effectively reduce soil bulk density and pH, facilitate soil nutrient release, and improve soil physical and chemical properties compared with those grown in fallow period. Paddy-upland rotation could improve soil microbial members and increase bacterial and actinomycete populations; by contrast, paddy-upland rotation could reduce fungal populations and enhance bacterium-to-fungus ratio. Paddy-upland rotation could also actively promote activities of soil enzymes, such as urease, phosphatase, invertase, and catalase. The proposed paddy-upland rotation significantly affected the growth of red pepper; the yield and quality of the grown red pepper were enhanced. Summer catch crops, such as rice, water spinach, and cress significantly increased pepper yield in the following growing season by 15.4%, 10.2% and 14.0%, respectively, compared with those grown in fallow treatment. Therefore, the proposed paddy-upland crop rotation could be a useful method to alleviate continuous cropping problems involved in cultivating red pepper in greenhouses.

  1. Utilization of ionizing radiations and radioisotopes in plant breeding and crop improvement in Arab countries

    Abo-Hegazi, A.M.T.

    1983-01-01

    A review for research work in the field of utilizing ionizing radiations and radioisotopes in plant breeding and crop improvement conducted in Arab countries has been summerized and discussed in the light of some economic features of the crop or the plant on national or regional (arab) level. Among the 241 articles in the above mentioned fields reviewed, around 230 articles were conducted in Egypt, 6 in Iraq, 2 in Algeria and 2 in Sudan. Some of the articles dealing with more than one crop and/or more than one type of radiation or radioisotope

  2. The iPot Project: improved potato monitoring in Belgium using remote sensing and crop growth modelling

    Piccard, Isabelle; Nackaerts, Kris; Gobin, Anne; Goffart, Jean-Pierre; Planchon, Viviane; Curnel, Yannick; Tychon, Bernard; Wellens, Joost; Cools, Romain; Cattoor, Nele

    2015-04-01

    Belgian potato processors, traders and packers are increasingly working with potato contracts. The close follow up of contracted parcels on the land as well as from above is becoming an important tool to improve the quantity and quality of the potato crop and reduce risks in order to plan the storage, packaging or processing and as such to strengthen the competitiveness of the Belgian potato chain in a global market. At the same time, precision agriculture continues to gain importance and progress. Farmers are obligated to invest in new technologies. Between mid-May and the end of June 2014 potato fields in Gembloux were monitored from emergence till canopy closure. UAV images (RGB) and digital (hemispherical) photographs were taken at ten-daily intervals. Crop emergence maps show the time (date) and degree of crop emergence and crop closure (in terms of % cover). For three UAV flights during the growing season RGB images at 3 cm resolution were processed using a K-means clustering algorithm to classify the crop according to its greenness. Based on the greenness %cover and daily cover growth were derived for 5x5m pixels and 25x25m pixels. The latter resolution allowed for comparison with high resolution satellite imagery. Vegetation indices such as %Cover and LAI were calculated with the Cyclopes algorithm (INRA-EMMAH) from high resolution satellite images (DMC/Deimos, 22m pixel size). DMC based cover maps showed similar patterns as compared with the UAV-based cover maps, and allows for further applications of the data in crop management. Today the use of geo-information by the (private) agricultural sector in Belgium is rather limited, notwithstanding the great benefits this type of information may offer, as recognized by the sector. The iPot project, financed by the Belgian Science Policy Office (BELSPO), aims to provide the Belgian potato sector, represented by Belgapom, with near real time information on field condition (weather-soil) and crop development and

  3. Global regulatory framework for production and marketing of crops biofortified with vitamins and minerals.

    Mejia, Luis A; Dary, Omar; Boukerdenna, Hala

    2017-02-01

    Biofortification of crops is being introduced in several countries as a strategy to reduce micronutrient deficiencies. Biofortified products, with increased contents of micronutrients, are currently produced by conventional plant breeding, genetic modification, or nutrient-enhanced fertilization. Corn, rice, wheat, beans, pearl millet, sweet potato, and cassava have been biofortified with increased contents of provitamin A carotenoids, iron, or zinc. However, regulatory considerations are rare or nonexistent. The objective of this paper is to review the regulatory framework for production and marketing of biofortified crops in countries that have adopted this strategy. The information was identified using Internet search engines and websites of health and nutrition organizations and nongovernmental organizations and by consulting scientists and government authorities. Thus far, biofortified products introduced in Latin America, Africa, and Asia have been produced only by conventional breeding. Cultivars using other techniques are still under testing. The production and marketing of these products have been conducted without regulatory framework and under limited government control or regulatory guidance. Nevertheless, some countries have integrated biofortified crops into their nutrition agendas. Although improvements by conventional breeding have not been subject to regulations, when biofortification becomes expanded by including other techniques, an appropriate regulatory framework will be necessary. © 2016 New York Academy of Sciences.

  4. Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems

    Wang, Guocheng; Zhang, Wen; Sun, Wenjuan; Li, Tingting; Han, Pengfei

    2017-10-01

    Changes in the soil organic carbon (SOC) stock are determined by the balance between the carbon input from organic materials and the output from the decomposition of soil C. The fate of SOC in cropland soils plays a significant role in both sustainable agricultural production and climate change mitigation. The spatiotemporal changes of soil organic carbon in croplands in response to different carbon (C) input management and environmental conditions across the main global cereal systems were studied using a modeling approach. We also identified the key variables that drive SOC changes at a high spatial resolution (0.1° × 0.1°) and over a long timescale (54 years from 1961 to 2014). A widely used soil C turnover model (RothC) and state-of-the-art databases of soil and climate variables were used in the present study. The model simulations suggested that, on a global average, the cropland SOC density increased at annual rates of 0.22, 0.45 and 0.69 Mg C ha-1 yr-1 under crop residue retention rates of 30, 60 and 90 %, respectively. Increasing the quantity of C input could enhance soil C sequestration or reduce the rate of soil C loss, depending largely on the local soil and climate conditions. Spatially, under a specific crop residue retention rate, relatively higher soil C sinks were found across the central parts of the USA, western Europe, and the northern regions of China. Relatively smaller soil C sinks occurred in the high-latitude regions of both the Northern and Southern hemispheres, and SOC decreased across the equatorial zones of Asia, Africa and America. We found that SOC change was significantly influenced by the crop residue retention rate (linearly positive) and the edaphic variable of initial SOC content (linearly negative). Temperature had weak negative effects, and precipitation had significantly negative impacts on SOC changes. The results can help guide carbon input management practices to effectively mitigate climate change through soil C

  5. Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems

    G. Wang

    2017-10-01

    Full Text Available Changes in the soil organic carbon (SOC stock are determined by the balance between the carbon input from organic materials and the output from the decomposition of soil C. The fate of SOC in cropland soils plays a significant role in both sustainable agricultural production and climate change mitigation. The spatiotemporal changes of soil organic carbon in croplands in response to different carbon (C input management and environmental conditions across the main global cereal systems were studied using a modeling approach. We also identified the key variables that drive SOC changes at a high spatial resolution (0.1°  ×  0.1° and over a long timescale (54 years from 1961 to 2014. A widely used soil C turnover model (RothC and state-of-the-art databases of soil and climate variables were used in the present study. The model simulations suggested that, on a global average, the cropland SOC density increased at annual rates of 0.22, 0.45 and 0.69 Mg C ha−1 yr−1 under crop residue retention rates of 30, 60 and 90 %, respectively. Increasing the quantity of C input could enhance soil C sequestration or reduce the rate of soil C loss, depending largely on the local soil and climate conditions. Spatially, under a specific crop residue retention rate, relatively higher soil C sinks were found across the central parts of the USA, western Europe, and the northern regions of China. Relatively smaller soil C sinks occurred in the high-latitude regions of both the Northern and Southern hemispheres, and SOC decreased across the equatorial zones of Asia, Africa and America. We found that SOC change was significantly influenced by the crop residue retention rate (linearly positive and the edaphic variable of initial SOC content (linearly negative. Temperature had weak negative effects, and precipitation had significantly negative impacts on SOC changes. The results can help guide carbon input management practices to

  6. Natural Ecosystem Surrounding a Conventional Banana Crop Improves Plant Health and Fruit Quality

    Florence P. Castelan

    2018-06-01

    Full Text Available Natural ecosystems near agricultural landscapes may provide rich environments for growing crops. However, the effect of a natural ecosystem on crop health and fruit quality is poorly understood. In the present study, it was investigated whether the presence of a natural ecosystem surrounding a crop area influences banana plant health and fruit postharvest behavior. Plants from two conventional banana crop areas with identical planting time and cultural practices were used; the only difference between banana crop areas is that one area was surrounded by a natural forest (Atlantic forest fragment (Near-NF, while the other area was inserted at the center of a conventional banana crop (Distant-NF. Results showed that bananas harvested from Near-NF showed higher greenlife and a more homogeneous profile during ripening compared to fruits harvested from Distant-NF. Differences in quality parameters including greenlife, carbohydrate profile, and pulp firmness between fruits harvested from Near-NF and Distant-NF are explained, at least partly, by differences in the balance of plant growth regulators (indole-3-acetic acid and abscisic acid in bananas during ripening. Furthermore, plants from Near-NF showed a lower severity index of black leaf streak disease (BLSD and higher levels of phenolic compounds in leaves compared to plants from Distant-NF. Together, the results provide additional evidence on how the maintenance of natural ecosystems near conventional crop areas could be a promising tool to improve plant health and fruit quality.

  7. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency.

    Kant, Surya; Bi, Yong-Mei; Rothstein, Steven J

    2011-02-01

    Development of genetic varieties with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. Generally, NUE can be divided into two parts. First, assimilation efficiency involves nitrogen (N) uptake and assimilation and second utilization efficiency involves N remobilization. Understanding the mechanisms regulating these processes is crucial for the improvement of NUE in crop plants. One important approach is to develop an understanding of the plant response to different N regimes, especially to N limitation, using various methods including transcription profiling, analysing mutants defective in their normal response to N limitation, and studying plants that show better growth under N-limiting conditions. One can then attempt to improve NUE in crop plants using the knowledge gained from these studies. There are several potential genetic and molecular approaches for the improvement of crop NUE discussed in this review. Increased knowledge of how plants respond to different N levels as well as to other environmental conditions is required to achieve this.

  8. Canaryseed Crop

    Maximiliano Cogliatti

    2012-03-01

    Full Text Available Canaryseed (Phalaris canariensis L. is a graminaceous crop species with production practices and cycle similar to those of other winter cereal crops such as spring wheat (Triticum aestivum L. and oat (Avena sativa L.. Currently its grains are used almost exclusively as feed for birds, alone or mixed with other grains like millet, sunflower seed, and flaxseed. Canaryseed is a genuine cereal with a unique composition that suggests its potential for food use. P. canariensis is cultivated in many areas of temperate climates. Currently, its production is concentrated in the southwestern provinces of Canada (Alberta, Saskatchewan and Manitoba and on a smaller scale in Argentina, Thailand and Australia. Globally it is considered to be a minor crop with regional relevance, with a production about of 250000 tonnes per year, which restricts private investment and public research on its genetic and technological improvement. For this reason, the type of crop management that is applied to this species largely depends on innovations made in other similar crops. This work provides an updated summary of the available information on the species: its requirements, distribution, genetic resources, cultivation practices, potential uses, marketing and other topics of interest to researchers and producers.

  9. The Imperative for Improved Global Economic Coordination

    Stiglitz, Joseph E.

    2009-01-01

    While global coordination is absolutely essential, success in achieving it may prove difficult because economic globalization has outpaced political globalization. If we are to succeed, we will have to manage coordination better than we have in the past.

  10. Improvement of oil-seed and industrial crops by induced mutations

    1982-01-01

    Out of 22 papers presented, seven dealing with the genetic improvement of crops using ionizing radiations, fall within the INIS subject scope. Other topics covered were oil-seed quality requirements for industrial processing and concepts of improving biomass production from higher plants

  11. Bacterial Artificial Chromosome Libraries of Pulse Crops: Characteristics and Applications

    Yu, Kangfu

    2012-01-01

    Pulse crops are considered minor on a global scale despite their nutritional value for human consumption. Therefore, they are relatively less extensively studied in comparison with the major crops. The need to improve pulse crop production and quality will increase with the increasing global demand for food security and people's awareness of nutritious food. The improvement of pulse crops will require fully utilizing all their genetic resources. Bacterial artificial chromosome (BAC) libraries of pulse crops are essential genomic resources that have the potential to accelerate gene discovery and enhance molecular breeding in these crops. Here, we review the availability, characteristics, applications, and potential applications of the BAC libraries of pulse crops. PMID:21811383

  12. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability.

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-08-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26-141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture.

  13. Approaches to Improvement of Crop Genotypes with High Water and Nutrient Use Efficiency for Water Scarce Environments. Final Report of a Coordinated Research Project

    2017-12-01

    Projected global population increase and the impacts of climate change on agriculture highlight the importance of the use of improved crop varieties coupled with better soil, water and fertilizer management practices designed to protect the natural resource base. This publication is the outcome of a coordinated research project (CRP) and focuses on the practical application of nuclear and related techniques, such as mutation induction and the use of stable isotopes of nitrogen [N-15] and carbon [C-13]. The use of such techniques can improve crop productivity with mutant varieties and best-fit soil management practices in diverse agro-ecological zones affected by drought, high temperatures, water scarcity, soil acidity and soil salinity. The findings of the CRP will be highly valuable to agricultural scientists and laboratory technicians of national agricultural research organizations in Member States as a resource for improving soil and crop productivity.

  14. Improving the delivery of global tobacco control.

    Bitton, Asaf; Green, Carol; Colbert, James

    2011-01-01

    Tobacco control must remain a critical global health priority given the growing burden of tobacco-induced disease in the developing world. Insights from the emerging field of global health delivery suggest that tobacco control could be improved through a systematic, granular analysis of the processes through which it is promoted, implemented, and combated. Using this framework, a critical bottleneck to the delivery of proven health promotion emerges in the role that the tobacco industry plays in promoting tobacco use and blocking effective tobacco-control policies. This "corporate bottleneck" can also be understood as a root cause of massive disease and suffering upon vulnerable populations worldwide, for the goal of maximizing corporate profit. Naming, understanding, and responding to this corporate bottleneck is crucial to the success of tobacco-control policies. Three case studies of tobacco-control policy--South Africa, the Framework Convention on Tobacco Control, and Uruguay--are presented to explore and understand the implications of this analysis. © 2011 Mount Sinai School of Medicine.

  15. Rapeseed is an efficient energy crop which can still improve

    Flenet Francis

    2007-11-01

    Full Text Available The ability of biofuels to contribute efficiently to the replacement of fossil energy and to the reduction of greenhouse gas emissions has been a matter of debate. Hence, there is a need to assess accurately the energy balance of biofuels and their ability to reduce greenhouse gas emissions, in order to evaluate and to improve the benefit for society. In rapeseed, the energy ratio (energy produced per unit of non-renewable energy input is well above 2 whatever the method of calculation. In order to investigate the variability of energy ratios and to identify ways of improvement, a study was conducted in France in 2005 and 2006. The method of mass allocation of input energy was used for calculations, instead of the substitution method, because with this method the results do not depend on the utilization of co-products. Hence, this method is better adapted to follow improvements. A great variability in the energy ratio was observed in 2005 and 2006. Seed yields and energy cost of fertilizer N explained most of this variability. Hence, improvements should focus on increasing yield with little increase in energy cost, and on decreasing wasting of N fertilizer. However the farmer incomes, and the net production of energy per hectare, must also be a matter of concern. The inventories of greenhouse gas emissions of biofuels are still uncertain because of the great variability of soil emissions, due to environmental and management factors. Hence, in order to assess the effect of rapeseed on greenhouse gas emissions, methods based on process-oriented models accounting for these factors must be used. Such models give promising results, but further testing is still needed.

  16. Crop scheduling improvements for rainfed agriculture in the high jungle of Peru

    Enrique Meseth

    2014-12-01

    Full Text Available This work was aimed to improve the water management for agriculture by applying efficient crop schedules in Vilcabamba and similar areas of the high jungle, which can satisfy most of the water requirements with rainfed agriculture to maximize the crops yield. For this purpose, two field practices were carried out during the dry (September 2012 and wet season (February 2013 to measure rivers and canals flows with the velocity/area method; 19 soil samples were collected on-site and analyzed, presenting prevalent sandy loam and loam textures. Cropwat program was used to estimate crop water requirements and scheme irrigation requirements, resulting in a maximum flow capacity of 1.72 l s-1 in May, during the dry season. The flow capacity can be satisfied, since small ditches convey approximately 2 to 6 l s-1 on the same season. The research findings indicate that rainfed farming can be practised, yet an initial pre-irrigation needs to be applied, for crops should not be water stressed. However, if soil is not pre-irrigated the production can be affected, with vegetables and potato crop yields being reduced by 4.7% and 1.4% respectively. To minimize these effects, both crops are suggested to be sowed one month later, adapting their growth period to the rainy season.

  17. Simply obtained global radiation, soil temperature and soil moisture in an alley cropping system in semi-arid Kenya

    Mungai, D.N.; Stigter, C.J.; Coulson, C.L.; Ng'ang'a, J.K.

    2000-01-01

    Global radiation, soil temperature and soil moisture data were obtained from a 4-6 year old Cassia siamea/maize (CM) alley cropping (or hedgerow intercropping) system, at a semi-arid site at Machakos, Kenya, in the late eighties. With the growing need to explore and manage variations in

  18. Comparison of net global warming potential and greenhouse gas intensity affected by management practices in two dryland cropping sites

    Little is known about the effect of management practices on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of greenhouse gas (GHG) emissions in dryland cropping systems. The objective of this study was to compare the effect of a combinat...

  19. Net global warming potential and greenhouse gas intensity influenced by irrigation, tillage, crop rotation, and nitrogen fertilization

    Little information exists about sources and sinks of greenhouse gases (GHGs) affected by management practices to account for net emissions from agroecosystems. We evaluated the effects of irrigation, tillage, crop rotation, and N fertilization on net global warming potential (GWP) and greenhouse gas...

  20. Global impacts of surface ozone changes on crop yields and land use

    Chuwah, Clifford; van Noije, Twan; van Vuuren, Detlef P.; Stehfest, Elke; Hazeleger, Wilco

    2015-01-01

    Exposure to surface ozone has detrimental impacts on vegetation and crop yields. In this study, we estimate ozone impacts on crop production and subsequent impacts on land use in the 2005-2050 period using results of the TM5 atmospheric chemistry and IMAGE integrated assessment model. For the crops

  1. Functions and Application of the AP2/ERF Transcription Factor Family in Crop Improvement

    Zhao-Shi Xu; Ming Chen; Lian-Cheng Li; You-Zhi Ma

    2011-01-01

    Plants have acquired sophisticated stress response systems to adapt to changing environments. It is important to understand plants' stress response mechanisms in the effort to improve crop productivity under stressful conditions. The AP2/ERF transcription factors are known to regulate diverse processes of plant development and stress responses.In this study, the molecular characteristics and biological functions of AP2/ERFs in a variety of plant species were analyzed. AP2/ERFs,especially those in DREB and ERF subfamilies, are ideal candidates for crop improvement because their overexpression enhances tolerances to drought, salt, freezing, as well as resistances to multiple diseases in the transgenic plants. The comprehensive analysis of physiological functions is useful in elucidating the biological roles of AP2/ERF family genes in gene interaction, pathway regulation, and defense response under stress environments, which should provide new opportunities for the crop tolerance engineering.

  2. Management of Lignite Fly Ash for Improving Soil Fertility and Crop Productivity

    Ram, Lal C.; Srivastava, Nishant K.; Jha, Sangeet K.; Sinha, Awadhesh K.; Masto, Reginald E.; Selvi, Vetrivel A.

    2007-09-01

    Lignite fly ash (LFA), being alkaline and endowed with excellent pozzolanic properties, a silt loam texture, and plant nutrients, has the potential to improve soil quality and productivity. Long-term field trials with groundnut, maize, and sun hemp were carried out to study the effect of LFA on growth and yield. Before crop I was sown, LFA was applied at various doses with and without press mud (an organic waste from the sugar industry, used as an amendment and source of nutrients). LFA with and without press mud was also applied before crops III and V were cultivated. Chemical fertilizer, along with gypsum, humic acid, and biofertilizer, was applied in all treatments, including the control. With one-time and repeat applications of LFA (with and without press mud), yield increased significantly (7.0-89.0%) in relation to the control crop. The press mud enhanced the yield (3.0-15.0%) with different LFA applications. The highest yield LFA dose was 200 t/ha for one-time and repeat applications, the maximum yield being with crop III (combination treatment). One-time and repeat application of LFA (alone and in combination with press mud) improved soil quality and the nutrient content of the produce. The highest dose of LFA (200 t/ha) with and without press mud showed the best residual effects (eco-friendly increases in the yield of succeeding crops). Some increase in trace- and heavy-metal contents and in the level of γ-emitters in soil and crop produce, but well within permissible limits, was observed. Thus, LFA can be used on a large scale to boost soil fertility and productivity with no adverse effects on the soil or crops, which may solve the problem of bulk disposal of fly ash in an eco-friendly manner.

  3. Photo-biotechnology as a tool to improve agronomic traits in crops.

    Gururani, Mayank Anand; Ganesan, Markkandan; Song, Pill-Soon

    2015-01-01

    Phytochromes are photosensory phosphoproteins with crucial roles in plant developmental responses to light. Functional studies of individual phytochromes have revealed their distinct roles in the plant's life cycle. Given the importance of phytochromes in key plant developmental processes, genetically manipulating phytochrome expression offers a promising approach to crop improvement. Photo-biotechnology refers to the transgenic expression of phytochrome transgenes or variants of such transgenes. Several studies have indicated that crop cultivars can be improved by modulating the expression of phytochrome genes. The improved traits include enhanced yield, improved grass quality, shade-tolerance, and stress resistance. In this review, we discuss the transgenic expression of phytochrome A and its hyperactive mutant (Ser599Ala-PhyA) in selected crops, such as Zoysia japonica (Japanese lawn grass), Agrostis stolonifera (creeping bentgrass), Oryza sativa (rice), Solanum tuberosum (potato), and Ipomea batatas (sweet potato). The transgenic expression of PhyA and its mutant in various plant species imparts biotechnologically useful traits. Here, we highlight recent advances in the field of photo-biotechnology and review the results of studies in which phytochromes or variants of phytochromes were transgenically expressed in various plant species. We conclude that photo-biotechnology offers an excellent platform for developing crops with improved properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Improving crop tolerance to heavy metal stress by polyamine application.

    Soudek, Petr; Ursu, Marina; Petrová, Šárka; Vaněk, Tomáš

    2016-12-15

    Many areas have been heavily contaminated by heavy metals from industry and are not suitable for food production. The consumption of contaminated foods represents a health risk in humans, although some heavy metals are essential at low concentrations. Increasing the concentrations of essential elements in foods is one goal to improve nutrition. The aim of this study was to increase the accumulation of heavy metals in plant foods by the external application of putrescine. The levels of cadmium, zinc and iron were measured in different vegetables grown in hydroponic medium supplemented with heavy metals and compared with those grown in a reference medium. The estimated daily intake, based on the average daily consumption for various vegetable types, and the influence of polyamines on metal uptake were calculated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Gamma greenhouse: A chronic facility for crops improvement and agrobiotechnology

    Azhar, M., E-mail: azhar-m@nuclearmalaysia.gov.my; Ahsanulkhaliqin, A. W., E-mail: azhar-m@nuclearmalaysia.gov.my [Malaysian Nuclear Agency, Bangi, 43000 KAJANG, Selangor (Malaysia)

    2014-02-12

    Gamma irradiation is one of the most common procedures in plant mutagenesis and agrobiotechnology activities. The procedures consist of chronic and acute gamma radiation. Generally, {sup 60}Co and {sup 137}Cs are gamma radiation sources for radiation processing with relatively high energy (half-life 5.27 years for {sup 60}Co and 30.1 years for {sup 137}Cs). The energy associated with gamma radiation is high enough to break the molecular bonds and ionize atoms without affecting structure of the atomic nucleus (avoiding induction of radioactivity). The Gamma Green House (GGH) is the only chronic irradiation facility in Malaysia, located at Malaysian Nuclear Agency (Nuclear Malaysia). GGH is used for induction of mutation in plants and other biological samples at low dose radiation over period of time depending on the nature and sensitivity of the plant species. The GGH consist of circular green house with 30 meters radius, control room and irradiator with interlock system. The irradiator produces low dose gamma radiation derived from Caesium-137 radioactive source. The biological samples can be exposed to low dose radiation in days, weeks, months or years. The current irradiation rate for GGH is 2.67 Gy/hr at 1 meter from the source. Chronic gamma irradiation produces a wider mutation spectrum and useful for minimizing radiation damages towards obtaining new improved traits for research and commercial values. The prospect of the gamma greenhouse is its uses in research, educations and services on induced mutation techniques for the improvement of plant varieties and microbes. In generating awareness and attract users to the facility, Nuclear Malaysia provides wide range of irradiation services for plant species and mutagenesis consultancies to academicians, students scientists, and plant breeders, from local universities, other research institutes, and growers. Charges for irradiation and consultancy services are at nominal rates. The utilization activities of the

  6. Gamma greenhouse: A chronic facility for crops improvement and agrobiotechnology

    Azhar, M.; Ahsanulkhaliqin, A. W.

    2014-01-01

    Gamma irradiation is one of the most common procedures in plant mutagenesis and agrobiotechnology activities. The procedures consist of chronic and acute gamma radiation. Generally, 60 Co and 137 Cs are gamma radiation sources for radiation processing with relatively high energy (half-life 5.27 years for 60 Co and 30.1 years for 137 Cs). The energy associated with gamma radiation is high enough to break the molecular bonds and ionize atoms without affecting structure of the atomic nucleus (avoiding induction of radioactivity). The Gamma Green House (GGH) is the only chronic irradiation facility in Malaysia, located at Malaysian Nuclear Agency (Nuclear Malaysia). GGH is used for induction of mutation in plants and other biological samples at low dose radiation over period of time depending on the nature and sensitivity of the plant species. The GGH consist of circular green house with 30 meters radius, control room and irradiator with interlock system. The irradiator produces low dose gamma radiation derived from Caesium-137 radioactive source. The biological samples can be exposed to low dose radiation in days, weeks, months or years. The current irradiation rate for GGH is 2.67 Gy/hr at 1 meter from the source. Chronic gamma irradiation produces a wider mutation spectrum and useful for minimizing radiation damages towards obtaining new improved traits for research and commercial values. The prospect of the gamma greenhouse is its uses in research, educations and services on induced mutation techniques for the improvement of plant varieties and microbes. In generating awareness and attract users to the facility, Nuclear Malaysia provides wide range of irradiation services for plant species and mutagenesis consultancies to academicians, students scientists, and plant breeders, from local universities, other research institutes, and growers. Charges for irradiation and consultancy services are at nominal rates. The utilization activities of the gamma greenhouse

  7. Improving Resilience of Northern Field Crop Systems Using Inter-Seeded Red Clover: A Review

    William Deen

    2013-02-01

    Full Text Available In light of the environmental challenges ahead, resilience of the most abundant field crop production systems must be improved to guarantee yield stability with more efficient use of nitrogen inputs, soil and water resources. Along with genetic and agronomic innovations, diversification of northern agro-ecosystems using inter-seeded legumes provides further opportunities to improve land management practices that sustain crop yields and their resilience to biotic and abiotic stresses. Benefits of legume cover crops have been known for decades and red clover (Trifolium pratense is one of the most common and beneficial when frost-seeded under winter wheat in advance of maize in a rotation. However, its use has been declining mostly due to the use of synthetic fertilizers and herbicides, concerns over competition with the main crop and the inability to fully capture red clover benefits due to difficulties in the persistence of uniform stands. In this manuscript, we first review the environmental, agronomic, rotational and economical benefits associated with inter-seeded red clover. Red clover adaptation to a wide array of common wheat-based rotations, its potential to mitigate the effects of land degradation in a changing climate and its integration into sustainable food production systems are discussed. We then identify areas of research with significant potential to impact cropping system profitability and sustainability.

  8. SACRA - global data sets of satellite-derived crop calendars for agricultural simulations: an estimation of a high-resolution crop calendar using satellite-sensed NDVI

    Kotsuki, S.; Tanaka, K.

    2015-01-01

    To date, many studies have performed numerical estimations of food production and agricultural water demand to understand the present and future supply-demand relationship. A crop calendar (CC) is an essential input datum to estimate food production and agricultural water demand accurately with the numerical estimations. CC defines the date or month when farmers plant and harvest in cropland. This study aims to develop a new global data set of a satellite-derived crop calendar for agricultural simulations (SACRA) and reveal advantages and disadvantages of the satellite-derived CC compared to other global products. We estimate global CC at a spatial resolution of 5 min (≈10 km) using the satellite-sensed NDVI data, which corresponds well to vegetation growth and death on the land surface. We first demonstrate that SACRA shows similar spatial pattern in planting date compared to a census-based product. Moreover, SACRA reflects a variety of CC in the same administrative unit, since it uses high-resolution satellite data. However, a disadvantage is that the mixture of several crops in a grid is not considered in SACRA. We also address that the cultivation period of SACRA clearly corresponds to the time series of NDVI. Therefore, accuracy of SACRA depends on the accuracy of NDVI used for the CC estimation. Although SACRA shows different CC from a census-based product in some regions, multiple usages of the two products are useful to take into consideration the uncertainty of the CC. An advantage of SACRA compared to the census-based products is that SACRA provides not only planting/harvesting dates but also a peak date from the time series of NDVI data.

  9. Crop improvement for salinity and drought tolerance using nuclear and related techniques (abstract)

    Serraj, R.; Lagoda, P.J.

    2005-01-01

    Although drought and salinity stresses have long been recognised as major constraints of crop productivity, the genetic advances in breeding programs for drought-prone and saline environments have been slow. An important reason for this is that dry environments are often characterized by unpredictable and highly variable seasonal rainfall, and hence highly variable yields and genotype-by-environment interaction (G x E). Similarly, saline environments show large spatial and temporal variability in the nature and degree of sanotiazol. Another major constraint to the genetic improvement of drought and salinity tolerance traits is the lack of understanding of their complex physiological and genetic bases, and the difficulty in combining favourable alleles into adapted and high yielding genotypes. Many claims have been made for the improvement of drought and salinity tolerance through biotechnology and genetic engineering, but there have been few if any successful examples of these resulting in increased yields in farmers' fields. Conventional breeding for drought has been slightly successful, although for salinity only a few examples of improved cultivars have been released. Similarly, marker assisted breeding (MAB) can be effective in a trait-based approach to crop improvement for stress environments, as it allows the incorporation of quantitative trait loci (QTL) for superior expression of major yield components under stress, where there are regular associations between such components and overall grain yield. MAB provides opportunities for both the introgression of various individual physiological or biochemical tolerance traits and/or for selection for complex, whole crop responses involved In crop tolerance to stress. Systematically pyramiding tolerance traits, which individually may have only a limited effect on the overall phenotype, in selected genotypes can provide a significant cumulative effect on crop yield under stress. In view of the multigenic and

  10. Bacterial Artificial Chromosome Libraries of Pulse Crops: Characteristics and Applications

    Kangfu Yu

    2012-01-01

    Pulse crops are considered minor on a global scale despite their nutritional value for human consumption. Therefore, they are relatively less extensively studied in comparison with the major crops. The need to improve pulse crop production and quality will increase with the increasing global demand for food security and people's awareness of nutritious food. The improvement of pulse crops will require fully utilizing all their genetic resources. Bacterial artificial chromosome (BAC) libraries...

  11. The use of DNA markers for rapid improvement of crops in Africa ...

    Genetic engineering and biotechnology are providing new tools for genetic improvement of food crops. Molecular DNA markers are some of these tools which can be used in various fields of plant breeding and germplasm management. For example, molecular markers have been used to confirm the identity of hybrids in ...

  12. Genetically Engineered Crops and Certified Organic Agriculture for Improving Nutrition Security in Africa and South Asia.

    Pray, Carl; Ledermann, Samuel

    2016-01-01

    In Africa and South Asia, where nutrition insecurity is severe, two of the most prominent production technologies are genetically modified (GM) crops and certified organic agriculture. We analyze the potential impact pathways from agricultural production to nutrition. Our review of data and the literature reveals increasing farm-level income from cash crop production as the main pathway by which organic agriculture and GM agriculture improve nutrition. Potential secondary pathways include reduced prices of important food crops like maize due to GM maize production and increased food production using organic technology. Potential tertiary pathways are improvements in health due to reduced insecticide use. Challenges to the technologies achieving their impact include the politics of GM agriculture and the certification costs of organic agriculture. Given the importance of agricultural production in addressing nutrition security, accentuated by the post-2015 sustainable development agenda, the chapter concludes by stressing the importance of private and public sector research in improving the productivity and adoption of both GM and organic crops. In addition, the chapter reminds readers that increased farm income and productivity require complementary investments in health, education, food access and women's empowerment to actually improve nutrition security. © 2016 S. Karger AG, Basel.

  13. Re-orienting crop improvement for the changing climatic conditions of the 21st century

    Mba Chikelu

    2012-06-01

    Full Text Available Abstract A 70% increase in food production is required over the next four decades to feed an ever-increasing population. The inherent difficulties in achieving this unprecedented increase are exacerbated by the yield-depressing consequences of climate change and variations and by the pressures on food supply by other competing demographic and socioeconomic demands. With the dwindling or stagnant agricultural land and water resources, the sought-after increases will therefore be attained mainly through the enhancement of crop productivity under eco-efficient crop production systems. ‘Smart’ crop varieties that yield more with fewer inputs will be pivotal to success. Plant breeding must be re-oriented in order to generate these ‘smart’ crop varieties. This paper highlights some of the scientific and technological tools that ought to be the staple of all breeding programs. We also make the case that plant breeding must be enabled by adequate policies, including those that spur innovation and investments. To arrest and reverse the worrisome trend of declining capacities for crop improvement, a new generation of plant breeders must also be trained. Equally important, winning partnerships, including public-private sector synergies, are needed for 21st century plant breeding to bear fruits. We also urge the adoption of the continuum approach to the management of plant genetic resources for food and agriculture as means to improved cohesion of the components of its value chain. Compellingly also, the National Agricultural Research and Extension System of developing countries require comprehensive overhauling and strengthening as crop improvement and other interventions require a sustained platform to be effective. The development of a suite of actionable policy interventions to be packaged for assisting countries in developing result-oriented breeding programs is also called for.

  14. Green biotechnology, nanotechnology and bio-fortification: perspectives on novel environment-friendly crop improvement strategies.

    Yashveer, Shikha; Singh, Vikram; Kaswan, Vineet; Kaushik, Amit; Tokas, Jayanti

    2014-10-01

    Food insecurity and malnutrition are prominent issues for this century. As the world's population continues to increase, ensuring that the earth has enough food that is nutritious too will be a difficult task. Today one billion people of the world are undernourished and more than a third are malnourished. Moreover, the looming threat of climate change is exasperating the situation even further. At the same time, the total acreage of arable land that could support agricultural use is already near its limits, and may even decrease over the next few years due to salination and desertification patterns resulting from climate change. Clearly, changing the way we think about crop production must take place on multiple levels. New varieties of crops must be developed which can produce higher crop yields with less water and fewer agricultural inputs. Besides this, the crops themselves must have improved nutritional qualities or become biofortified in order to reduce the chances of 'hidden hunger' resulting from malnourishment. It is difficult to envision the optimum way to increase crop production using a single uniform strategy. Instead, a variety of approaches must be employed and tailored for any particular agricultural setting. New high-impact technologies such as green biotechnology, biofortification, and nanotechnology offer opportunities for boosting agricultural productivity and enhancing food quality and nutritional value with eco-friendly manner. These agricultural technologies currently under development will renovate our world to one that can comfortably address the new directions, our planet will take as a result of climate change.

  15. Transgenic crops with an improved resistance to biotic stresses. A review

    Tohidfar, M.

    2015-01-01

    Full Text Available Introduction. Pests, diseases and weeds (biotic stresses are significant limiting factors for crop yield and production. However, the limitations associated with conventional breeding methods necessitated the development of alternative methods for improving new varieties with higher resistance to biotic stresses. Molecular techniques have developed applicable methods for genetic transformation of a wide range of plants. Genetic engineering approach has been demonstrated to provide enormous options for the selection of the resistance genes from different sources to introduce them into plants to provide resistance against different biotic stresses. Literature. In this review, we focus on strategies to achieve the above mentioned objectives including expression of insecticidal, antifungal, antibacterial, antiviral resistance and herbicide detoxification for herbicide resistance. Conclusion. Regardless of the concerns about commercialization of products from genetically modified (GM crops resistant to biotic stresses, it is observed that the cultivation area of these crops is growing fast each year. Considering this trend, it is expected that production and commercialization of GM crops resistant to biotic stresses will continue to increase but will also extend to production of crops resistant to abiotic stresses (e.g. drought, salinity, etc. in a near future.

  16. Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    Kumar, Pankaj; Srivastava, Dinesh Kumar

    2016-07-01

    With the advent of molecular biotechnology, plant genetic engineering techniques have opened an avenue for the genetic improvement of important vegetable crops. Vegetable crop productivity and quality are seriously affected by various biotic and abiotic stresses which destabilize rural economies in many countries. Moreover, absence of proper post-harvest storage and processing facilities leads to qualitative and quantitative losses. In the past four decades, conventional breeding has significantly contributed to the improvement of vegetable yields, quality, post-harvest life, and resistance to biotic and abiotic stresses. However, there are many constraints in conventional breeding, which can only be overcome by advancements made in modern biology. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop, of the family Brassicaceae; however, various biotic and abiotic stresses cause enormous crop yield losses during the commercial cultivation of broccoli. Thus, genetic engineering can be used as a tool to add specific characteristics to existing cultivars. However, a pre-requisite for transferring genes into plants is the availability of efficient regeneration and transformation techniques. Recent advances in plant genetic engineering provide an opportunity to improve broccoli in many aspects. The goal of this review is to summarize genetic transformation studies on broccoli to draw the attention of researchers and scientists for its further genetic advancement.

  17. Seventy five years of research on induced mutations with special reference to crop improvement in India

    Kharkwal, M.C.; Pawar, S.E.; Pandey, R.N.

    2001-01-01

    Mutation research programmes for crop improvement were initiated about seven decades ago, immediately after the discovery of mutagenic effects X-rays on Drosophila by Muller 1927 and barley and maize by Stadler in 1929. During fifties and sixties, several countries including China, India, the Netherlands, USA and Japan took up the task of crop improvement through mutation breeding approaches. By the end of the 20 th century about 2252 mutant varieties of crop plants including cereals, oil seeds, pulses, vegetables, fruits, fibres and ornamentals have been developed and released for cultivation worldwide. More than 60% of the varieties were released after 1985. While 1585 varieties were released as direct mutants, 667 varieties were developed by using mutants in cross breeding. Physical mutagens (X-rays, gamma rays, thermal and fast neutrons) account for the development of about 89% of the total varieties. Gamma rays alone were used to develop about 60% of the mutant varieties. India has made an appreciable contribution with the development of 301 mutant varieties (> 13% ) of forty four crop species. The mutant varieties have been improved for plant architecture, yield, quality and tolerance to biotic and abiotic stresses. Mutation breeding has made a significant contribution to the national economy of the countries like China, India, Japan, Pakistan and USA. Induced mutagenesis is gaining importance in plant molecular biology as a tool to identify and isolate gene and to study their structure and function. (author)

  18. Molecular approaches to improvement of Jatropha curcas Linn. as a sustainable energy crop.

    Sudhakar Johnson, T; Eswaran, Nalini; Sujatha, M

    2011-09-01

    With the increase in crude oil prices, climate change concerns and limited reserves of fossil fuel, attention has been diverted to alternate renewable energy sources such as biofuel and biomass. Among the potential biofuel crops, Jatropha curcas L, a non-domesticated shrub, has been gaining importance as the most promising oilseed, as it does not compete with the edible oil supplies. Economic relevance of J. curcas for biodiesel production has promoted world-wide prospecting of its germplasm for crop improvement and breeding. However, lack of adequate genetic variation and non-availability of improved varieties limited its prospects of being a successful energy crop. In this review, we present the progress made in molecular breeding approaches with particular reference to tissue culture and genetic transformation, genetic diversity assessment using molecular markers, large-scale transcriptome and proteome studies, identification of candidate genes for trait improvement, whole genome sequencing and the current interest by various public and private sector companies in commercial-scale cultivation, which highlights the revival of Jatropha as a sustainable energy crop. The information generated from molecular markers, transcriptome profiling and whole genome sequencing could accelerate the genetic upgradation of J. curcas through molecular breeding.

  19. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  20. Small RNAs in plants: Recent development and application for crop improvement

    Ayushi eKamthan

    2015-04-01

    Full Text Available The phenomenon of RNA interference (RNAi which involves sequence specific gene regulation by small non-coding RNAs i.e small interfering RNA (siRNA and micro RNA (miRNA has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits & vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects and abiotic stresses (drought, salinity, cold etc.. Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. Micro RNAs are key regulators of important plant processes like growth, development and response to various stresses. In spite of similarity in size (20-24nt, miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. Micro RNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA based transgenics are much safer for consumption than those over expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of small RNAs and its application for crop improvement.

  1. Small RNAs in plants: recent development and application for crop improvement.

    Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis

    2015-01-01

    The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits and vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects) and abiotic stresses (drought, salinity, cold, etc.). Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. microRNAs are key regulators of important plant processes like growth, development, and response to various stresses. In spite of similarity in size (20-24 nt), miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. microRNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA (sRNA) based transgenics are much safer for consumption than those over-expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of sRNAs and its application for crop improvement.

  2. The Role of Transgenic Crops in the Future of Global Food and Feed

    O. Škubna; H. Řezbová

    2012-01-01

    The paper is aimed on the problematic of biotech crops planting (GM, transgenic crops). The main aim of this paper is to analyze the trends in the main biotech crops planting groups in the sense of their use for food and feed in the future. The selected groups of biotech crops analyzed in this article are soybeans, maize (corn), cotton and rapeseed (canola). The used methods are chain and basic indexes and regression analysis of times series/ trend data - for predicting on next four years (20...

  3. Breaking continuous potato cropping with legumes improves soil microbial communities, enzyme activities and tuber yield

    Qin, Shuhao; Yeboah, Stephen; Cao, Li; Zhang, Junlian; Shi, Shangli; Liu, Yuhui

    2017-01-01

    This study was conducted to explore the changes in soil microbial populations, enzyme activity, and tuber yield under the rotation sequences of Potato–Common vetch (P–C), Potato–Black medic (P–B) and Potato–Longdong alfalfa (P–L) in a semi–arid area of China. The study also determined the effects of continuous potato cropping (without legumes) on the above mentioned soil properties and yield. The number of bacteria increased significantly (p continuous cropping soils, respectively compared to P–C rotation. The highest fungi/bacteria ratio was found in P–C (0.218), followed by P–L (0.184) and then P–B (0.137) rotation over the different cropping years. In the continuous potato cropping soils, the greatest fungi/bacteria ratio was recorded in the 4–year (0.4067) and 7–year (0.4238) cropping soils and these were significantly higher than 1–year (0.3041), 2–year (0.2545) and 3–year (0.3030) cropping soils. Generally, actinomycetes numbers followed the trend P–L>P–C>P–B. The P–L rotation increased aerobic azotobacters in 2–year (by 26% and 18%) and 4–year (40% and 21%) continuous cropping soils compared to P–C and P–B rotation, respectively. Generally, the highest urease and alkaline phosphate activity, respectively, were observed in P–C (55.77 mg g–1) and (27.71 mg g–1), followed by P–B (50.72 mg mg–1) and (25.64 mg g–1) and then P–L (41.61 mg g–1) and (23.26 mg g–1) rotation. Soil urease, alkaline phosphatase and hydrogen peroxidase activities decreased with increasing years of continuous potato cropping. On average, the P–B rotation significantly increased (p improve soil biology environment, alleviate continuous cropping obstacle and increase potato tuber yield in semi–arid region. PMID:28463981

  4. Towards Global Simulation of Irrigation in a Land Surface Model: Multiple Cropping and Rice Paddy in Southeast Asia

    Beaudoing, Hiroko Kato; Rodell, Matthew; Ozdogan, Mutlu

    2010-01-01

    Agricultural land use significantly influences the surface water and energy balances. Effects of irrigation on land surface states and fluxes include repartitioning of latent and sensible heat fluxes, an increase in net radiation, and an increase in soil moisture and runoff. We are working on representing irrigation practices in continental- to global-scale land surface simulation in NASA's Global Land Data Assimilation System (GLDAS). Because agricultural practices across the nations are diverse, and complex, we are attempting to capture the first-order reality of the regional practices before achieving a global implementation. This study focuses on two issues in Southeast Asia: multiple cropping and rice paddy irrigation systems. We first characterize agricultural practices in the region (i.e., crop types, growing seasons, and irrigation) using the Global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000) dataset. Rice paddy extent is identified using remote sensing products. Whether irrigated or rainfed, flooded fields need to be represented and treated explicitly. By incorporating these properties and processes into a physically based land surface model, we are able to quantify the impacts on the simulated states and fluxes.

  5. Genomics-assisted breeding for boosting crop improvement in pigeonpea (Cajanus cajan

    Lekha ePazhamala

    2015-02-01

    Full Text Available Pigeonpea is an important pulse crop grown predominantly in the tropical and sub-tropical regions of the world. Although pigeonpea growing area has considerably increased, yield has remained stagnant for the last six decades mainly due to the exposure of the crop to various biotic and abiotic constraints. In addition, low level of genetic variability and limited genomic resources have been serious impediments to pigeonpea crop improvement through modern breeding approaches. In recent years, however, due to the availability of next generation sequencing and high-throughput genotyping technologies, the scenario has changed tremendously. The reduced sequencing costs resulting in the decoding of the pigeonpea genome has led to the development of various genomic resources including molecular markers, transcript sequences and comprehensive genetic maps. Mapping of some important traits including resistance to Fusarium wilt and sterility mosaic disease, fertility restoration, determinacy with other agronomically important traits have paved the way for applying genomics-assisted breeding (GAB through marker assisted selection as well as genomic selection. This would lead to accelerate the development and improvement of both varieties and hybrids in pigeonpea. Particularly for hybrid breeding programme, mitochondrial genomes of cytoplasmic male sterile lines, maintainers and hybrids have also been sequenced to identify genes responsible for cytoplasmic male sterility. Furthermore, several diagnostic molecular markers have been developed to assess the purity of commercial hybrids. In summary, pigeonpea has become a genomic resources-rich crop and efforts have already been initiated to integrate these resources in pigeonpea breeding.

  6. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemical Inputs for Main Cultivated Crops in Kerman Province: - Horticultural Crops

    Nasibe Pourghasemian

    2017-12-01

    Full Text Available Introduction The latest report of the IPCC states that future emissions of greenhouse gases (GHGs will continue to increase and will be the main cause of global climatic changes, as well as Iran. The three greenhouse gases associated with agriculture are CO2, CH4, and N2O. Chemical inputs consumption in agriculture has increased annually, while more intensive use of energy led to some important human health and environmental problems such as greenhouse gas emissions and global warming. Therefore, it is necessary to reduce the application of chemical inputs in agricultural systems. Agriculture contributes significantly to atmospheric GHG emissions, with 14% of the global net CO2 emissions coming from this sector. Chemical inputs have a major role in this hazards. There is even less data on CO2, N2O, and CH4 gas emission analysis as affected by cultivating various crops in Kerman province. Therefore, this study was conducted to assess the GHGs emission and Global warming Potential GWP caused by chemical inputs (various chemical fertilizers and pesticides for cultivating potato, onion and watermelon in some regions of Kerman province at 2011-2012 growth season. Material and Methods The study was conducted in Kerman province of Iran. Data of planting area, application rates of the chemical inputs and other different parameter were collected from potato, onion and watermelon growers by using a face to face questionnaire in 2014 for different regions of Kerman(Bardsir, Bam, Jiroft, Kerman, Ravar, Rafsanjan and Sirjan. In addition to the data obtained by surveys, previous studies of related organization (Agricultural Ministry of Kerman were also utilized during the study. Farm random sampling was done within whole population and the sample size was determined by proper equations. The amounts of GHG emissions from chemical inputs in the studied crops were calculated by using CO2, N2O and CH4 emissions coefficient of chemical inputs. Then the amount of

  7. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production.

    Chakraborty, Debashis; Ladha, Jagdish Kumar; Rana, Dharamvir Singh; Jat, Mangi Lal; Gathala, Mahesh Kumar; Yadav, Sudhir; Rao, Adusumilli Narayana; Ramesha, Mugadoli S; Raman, Anitha

    2017-08-24

    Alternative tillage and rice establishment options should aim at less water and labor to produce similar or improved yields compared with traditional puddled-transplanted rice cultivation. The relative performance of these practices in terms of yield, water input, and economics varies across rice-growing regions. A global meta and mixed model analysis was performed, using a dataset involving 323 on-station and 9 on-farm studies (a total of 3878 paired data), to evaluate the yield, water input, greenhouse gas emissions, and cost and net return with five major tillage/crop establishment options. Shifting from transplanting to direct-seeding was advantageous but the change from conventional to zero or reduced tillage reduced yields. Direct-seeded rice under wet tillage was the best alternative with yield advantages of 1.3-4.7% (p Direct-seeding under zero tillage was another potential alternative with high savings in water input and cost of cultivation, with no yield penalty. The alternative practices reduced methane emissions but increased nitrous oxide emissions. Soil texture plays a key role in relative yield advantages, and therefore refinement of the practice to suit a specific agro-ecosystem is needed.

  8. Global impacts of surface ozone changes on crop yields and land use

    Chuwah, C.D.; Noije, van Twan; Vuuren, van Detlef P.; Stehfest, Elke; Hazeleger, Wilco

    2015-01-01

    Exposure to surface ozone has detrimental impacts on vegetation and crop yields. In this study, we estimate ozone impacts on crop production and subsequent impacts on land use in the 2005-2050 period using results of the TM5 atmospheric chemistry and IMAGE integrated assessment model. For the

  9. Improvement of Alternative Crop Phenology Detection Algorithms using MODIS NDVI Time Series Data in US Corn Belt Region

    Lee, J.; Kang, S.; Seo, B.; Lee, K.

    2017-12-01

    Predicting crop phenology is important for understanding of crop development and growth processes and improving the accuracy of crop model. Remote sensing offers a feasible tool for monitoring spatio-temporal patterns of crop phenology in region and continental scales. Various methods have been developed to determine the timing of crop phenological stages using spectral vegetation indices (i.e. NDVI and EVI) derived from satellite data. In our study, it was compared four alternative detection methods to identify crop phenological stages (i.e. the emergence and harvesting date) using high quality NDVI time series data derived from MODIS. Also we investigated factors associated with crop development rate. Temperature and photoperiod are the two main factors which would influence the crop's growth pattern expressed in the VI data. Only the effect of temperature on crop development rate was considered. The temperature response function in the Wang-Engel (WE) model was used, which simulates crop development using nonlinear models with response functions that range from zero to one. It has attempted at the state level over 14 years (2003-2016) in Iowa and Illinois state of USA, where the estimated phenology date by using four methods for both corn and soybean. Weekly crop progress reports produced by the USDA NASS were used to validate phenology detection algorithms effected by temperature. All methods showed substantial uncertainty but the threshold method showed relatively better agreement with the State-level data for soybean phenology.

  10. Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone

    Reilly, J.; Paltsev, S.; Felzer, B.; Wang, X.; Kicklighter, D.; Melillo, J.; Prinn, R.; Sarofim, M.; Sokolov, A.; Wang, C.

    2007-01-01

    Multiple environmental changes will have consequences for global vegetation. To the extent that crop yields and pasture and forest productivity are affected, there can be important economic consequences. We examine the combined effects of changes in climate, increases in carbon dioxide (CO 2 ), and changes in tropospheric ozone on crop, pasture, and forest lands and the consequences for the global and regional economies. We examine scenarios where there is limited or little effort to control these substances, and policy scenarios that limit emissions of CO 2 and ozone precursors. We find the effects of climate and CO 2 to be generally positive, and the effects of ozone to be very detrimental. Unless ozone is strongly controlled, damage could offset CO 2 and climate benefits. We find that resource allocation among sectors in the economy, and trade among countries, can strongly affect the estimate of economic effect in a country

  11. Application of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and Challenges

    Effi Haque

    2018-05-01

    Full Text Available The world population is expected to increase from 7.3 to 9.7 billion by 2050. Pest outbreak and increased abiotic stresses due to climate change pose a high risk to tropical crop production. Although conventional breeding techniques have significantly increased crop production and yield, new approaches are required to further improve crop production in order to meet the global growing demand for food. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9 (CRISPR-associated protein9 genome editing technology has shown great promise for quickly addressing emerging challenges in agriculture. It can be used to precisely modify genome sequence of any organism including plants to achieve the desired trait. Compared to other genome editing tools such as zinc finger nucleases (ZFNs and transcriptional activator-like effector nucleases (TALENs, CRISPR/Cas9 is faster, cheaper, precise and highly efficient in editing genomes even at the multiplex level. Application of CRISPR/Cas9 technology in editing the plant genome is emerging rapidly. The CRISPR/Cas9 is becoming a user-friendly tool for development of non-transgenic genome edited crop plants to counteract harmful effects from climate change and ensure future food security of increasing population in tropical countries. This review updates current knowledge and potentials of CRISPR/Cas9 for improvement of crops cultivated in tropical climates to gain resiliency against emerging pests and abiotic stresses.

  12. Application of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and Challenges.

    Haque, Effi; Taniguchi, Hiroaki; Hassan, Md Mahmudul; Bhowmik, Pankaj; Karim, M Rezaul; Śmiech, Magdalena; Zhao, Kaijun; Rahman, Mahfuzur; Islam, Tofazzal

    2018-01-01

    The world population is expected to increase from 7.3 to 9.7 billion by 2050. Pest outbreak and increased abiotic stresses due to climate change pose a high risk to tropical crop production. Although conventional breeding techniques have significantly increased crop production and yield, new approaches are required to further improve crop production in order to meet the global growing demand for food. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 (CRISPR-associated protein9) genome editing technology has shown great promise for quickly addressing emerging challenges in agriculture. It can be used to precisely modify genome sequence of any organism including plants to achieve the desired trait. Compared to other genome editing tools such as zinc finger nucleases (ZFNs) and transcriptional activator-like effector nucleases (TALENs), CRISPR/Cas9 is faster, cheaper, precise and highly efficient in editing genomes even at the multiplex level. Application of CRISPR/Cas9 technology in editing the plant genome is emerging rapidly. The CRISPR/Cas9 is becoming a user-friendly tool for development of non-transgenic genome edited crop plants to counteract harmful effects from climate change and ensure future food security of increasing population in tropical countries. This review updates current knowledge and potentials of CRISPR/Cas9 for improvement of crops cultivated in tropical climates to gain resiliency against emerging pests and abiotic stresses.

  13. The Nicotianamine Synthase Gene Is a Useful Candidate for Improving the Nutritional Qualities and Fe-Deficiency Tolerance of Various Crops

    Tomoko Nozoye

    2018-03-01

    Full Text Available With the global population predicted to grow by at least 25% by the year 2050, the sustainable production of nutritious foods will be necessary for human health and the environment. Iron (Fe is an essential nutrient for both plants and humans. Fe is poorly soluble, especially at high pH levels, at which it is difficult for living organisms to accumulate sufficient Fe. In plants, Fe deficiency leads to low yield and poor nutritional quality, as it significantly affects chlorophyll synthesis. Fe deficiency is a worldwide agricultural problem that is especially serious in soils with a high pH, such as calcareous soils, which comprise approximately 30% of cultivated soils worldwide. Genetic improvements in crops that can tolerate Fe deficiency will be required to meet the demands for crop production and could ultimately contribute to the amelioration of global warming. Nicotianamine (NA is an Fe chelator in plants that is involved in metal translocation in the plant body. In mammals, NA inhibits angiotensin I-converting enzyme, which plays a key role in blood pressure control. It was recently shown that the enhancement of NA production using nicotianamine synthase is useful for increasing not only NA but also Fe and Zn levels in crops such as rice, soybean, and sweet potato. Additionally, these plants showed Fe-deficiency tolerance in calcareous soil. These results suggested that NAS overexpression simultaneously improves food quality and increases plant production. This review summarizes progress in generating crops overexpressing NAS.

  14. Cereal Crops Are not Created Equal: Wheat Consumption Associated with Obesity Prevalence Globally and Regionally

    Wenpeng You

    2016-05-01

    Full Text Available Background: Cereals have been extensively advocated as the beneficial food group in terms of body weight management, but each staple cereal crop may contribute in different ways. Studies of the association between wheat availability and risk of obesity are controversial. This study aimed to test the global and regional association between wheat availability as reported by FAO and obesity prevalence at a population level. FAO does not distinguish between whole grain wheat and refined wheat. Methods: Population-specific data from 170 countries on prevalence of obesity, availabilities of mixed cereals, wheat, rice, maize, meat, sugar, fat, soy and calories and GDP are obtained from the UN agencies. All variables were measured as per capita per day (or per year. Each country is treated as an individual subject. SPSS v. 22 is used to analyse these data for all the 170 countries and official country groupings (regions using non parametric and parametric correlations, including partial correlation analysis. Results: Pearson’s correlation coefficient analysis showed that obesity prevalence is positively associated with wheat availability (r = 0.500, p < 0.001, but is inversely associated with availabilities of total cereals (r = -0.132, p = 0.087, rice (r = -0.405, p < 0.001 and maize (r = -0.227, p = 0.004. These associations remain in partial correlation model when we keep availabilities of meat, fat, sugar, soy, caloric intake and GDP statistically constant. Overall, positive associations between wheat availability and obesity prevalence remain in different regions. Maize and mixed cereal availabilities do not show independent associations with the obesity prevalence. Conclusions: Our study suggests that wheat availability is an independent predictor of the obesity prevalence both worldwide and with special regard to the regions of Africa, Americas and Asia. Future studies should distinguish between possible influence of whole grain and ultra

  15. Using spectrotemporal indices to improve the fruit-tree crop classification accuracy

    Peña, M. A.; Liao, R.; Brenning, A.

    2017-06-01

    This study assesses the potential of spectrotemporal indices derived from satellite image time series (SITS) to improve the classification accuracy of fruit-tree crops. Six major fruit-tree crop types in the Aconcagua Valley, Chile, were classified by applying various linear discriminant analysis (LDA) techniques on a Landsat-8 time series of nine images corresponding to the 2014-15 growing season. As features we not only used the complete spectral resolution of the SITS, but also all possible normalized difference indices (NDIs) that can be constructed from any two bands of the time series, a novel approach to derive features from SITS. Due to the high dimensionality of this "enhanced" feature set we used the lasso and ridge penalized variants of LDA (PLDA). Although classification accuracies yielded by the standard LDA applied on the full-band SITS were good (misclassification error rate, MER = 0.13), they were further improved by 23% (MER = 0.10) with ridge PLDA using the enhanced feature set. The most important bands to discriminate the crops of interest were mainly concentrated on the first two image dates of the time series, corresponding to the crops' greenup stage. Despite the high predictor weights provided by the red and near infrared bands, typically used to construct greenness spectral indices, other spectral regions were also found important for the discrimination, such as the shortwave infrared band at 2.11-2.19 μm, sensitive to foliar water changes. These findings support the usefulness of spectrotemporal indices in the context of SITS-based crop type classifications, which until now have been mainly constructed by the arithmetic combination of two bands of the same image date in order to derive greenness temporal profiles like those from the normalized difference vegetation index.

  16. Improving yield potential in crops under elevated CO(2): Integrating the photosynthetic and nitrogen utilization efficiencies.

    Kant, Surya; Seneweera, Saman; Rodin, Joakim; Materne, Michael; Burch, David; Rothstein, Steven J; Spangenberg, German

    2012-01-01

    Increasing crop productivity to meet burgeoning human food demand is challenging under changing environmental conditions. Since industrial revolution atmospheric CO(2) levels have linearly increased. Developing crop varieties with increased utilization of CO(2) for photosynthesis is an urgent requirement to cope with the irreversible rise of atmospheric CO(2) and achieve higher food production. The primary effects of elevated CO(2) levels in most crop plants, particularly C(3) plants, include increased biomass accumulation, although initial stimulation of net photosynthesis rate is only temporal and plants fail to sustain the maximal stimulation, a phenomenon known as photosynthesis acclimation. Despite this acclimation, grain yield is known to marginally increase under elevated CO(2). The yield potential of C(3) crops is limited by their capacity to exploit sufficient carbon. The "C fertilization" through elevated CO(2) levels could potentially be used for substantial yield increase. Rubisco is the rate-limiting enzyme in photosynthesis and its activity is largely affected by atmospheric CO(2) and nitrogen availability. In addition, maintenance of the C/N ratio is pivotal for various growth and development processes in plants governing yield and seed quality. For maximizing the benefits of elevated CO(2), raising plant nitrogen pools will be necessary as part of maintaining an optimal C/N balance. In this review, we discuss potential causes for the stagnation in yield increases under elevated CO(2) levels and explore possibilities to overcome this limitation by improved photosynthetic capacity and enhanced nitrogen use efficiency. Opportunities of engineering nitrogen uptake, assimilatory, and responsive genes are also discussed that could ensure optimal nitrogen allocation toward expanding source and sink tissues. This might avert photosynthetic acclimation partially or completely and drive for improved crop production under elevated CO(2) levels.

  17. Improving yield potential in crops under elevated CO2: Integrating the photosynthetic and nitrogen utilization efficiencies

    Kant, Surya; Seneweera, Saman; Rodin, Joakim; Materne, Michael; Burch, David; Rothstein, Steven J.; Spangenberg, German

    2012-01-01

    Increasing crop productivity to meet burgeoning human food demand is challenging under changing environmental conditions. Since industrial revolution atmospheric CO2 levels have linearly increased. Developing crop varieties with increased utilization of CO2 for photosynthesis is an urgent requirement to cope with the irreversible rise of atmospheric CO2 and achieve higher food production. The primary effects of elevated CO2 levels in most crop plants, particularly C3 plants, include increased biomass accumulation, although initial stimulation of net photosynthesis rate is only temporal and plants fail to sustain the maximal stimulation, a phenomenon known as photosynthesis acclimation. Despite this acclimation, grain yield is known to marginally increase under elevated CO2. The yield potential of C3 crops is limited by their capacity to exploit sufficient carbon. The “C fertilization” through elevated CO2 levels could potentially be used for substantial yield increase. Rubisco is the rate-limiting enzyme in photosynthesis and its activity is largely affected by atmospheric CO2 and nitrogen availability. In addition, maintenance of the C/N ratio is pivotal for various growth and development processes in plants governing yield and seed quality. For maximizing the benefits of elevated CO2, raising plant nitrogen pools will be necessary as part of maintaining an optimal C/N balance. In this review, we discuss potential causes for the stagnation in yield increases under elevated CO2 levels and explore possibilities to overcome this limitation by improved photosynthetic capacity and enhanced nitrogen use efficiency. Opportunities of engineering nitrogen uptake, assimilatory, and responsive genes are also discussed that could ensure optimal nitrogen allocation toward expanding source and sink tissues. This might avert photosynthetic acclimation partially or completely and drive for improved crop production under elevated CO2 levels. PMID:22833749

  18. A Global and Spatially Explicit Assessment of Climate Change Impacts on Crop Production and Consumptive Water Use

    Liu, Junguo; Folberth, Christian; Yang, Hong; Röckström, Johan; Abbaspour, Karim; Zehnder, Alexander J. B.

    2013-01-01

    Food security and water scarcity have become two major concerns for future human's sustainable development, particularly in the context of climate change. Here we present a comprehensive assessment of climate change impacts on the production and water use of major cereal crops on a global scale with a spatial resolution of 30 arc-minutes for the 2030s (short term) and the 2090s (long term), respectively. Our findings show that impact uncertainties are higher on larger spatial scales (e.g., global and continental) but lower on smaller spatial scales (e.g., national and grid cell). Such patterns allow decision makers and investors to take adaptive measures without being puzzled by a highly uncertain future at the global level. Short-term gains in crop production from climate change are projected for many regions, particularly in African countries, but the gains will mostly vanish and turn to losses in the long run. Irrigation dependence in crop production is projected to increase in general. However, several water poor regions will rely less heavily on irrigation, conducive to alleviating regional water scarcity. The heterogeneity of spatial patterns and the non-linearity of temporal changes of the impacts call for site-specific adaptive measures with perspectives of reducing short- and long-term risks of future food and water security. PMID:23460901

  19. A global and spatially explicit assessment of climate change impacts on crop production and consumptive water use.

    Junguo Liu

    Full Text Available Food security and water scarcity have become two major concerns for future human's sustainable development, particularly in the context of climate change. Here we present a comprehensive assessment of climate change impacts on the production and water use of major cereal crops on a global scale with a spatial resolution of 30 arc-minutes for the 2030s (short term and the 2090s (long term, respectively. Our findings show that impact uncertainties are higher on larger spatial scales (e.g., global and continental but lower on smaller spatial scales (e.g., national and grid cell. Such patterns allow decision makers and investors to take adaptive measures without being puzzled by a highly uncertain future at the global level. Short-term gains in crop production from climate change are projected for many regions, particularly in African countries, but the gains will mostly vanish and turn to losses in the long run. Irrigation dependence in crop production is projected to increase in general. However, several water poor regions will rely less heavily on irrigation, conducive to alleviating regional water scarcity. The heterogeneity of spatial patterns and the non-linearity of temporal changes of the impacts call for site-specific adaptive measures with perspectives of reducing short- and long-term risks of future food and water security.

  20. Impacts of multiple global environmental changes on African crop yield and water use efficiency: Implications to food and water security

    Pan, S.; Yang, J.; Zhang, J.; Xu, R.; Dangal, S. R. S.; Zhang, B.; Tian, H.

    2016-12-01

    Africa is one of the most vulnerable regions in the world to climate change and climate variability. Much concern has been raised about the impacts of climate and other environmental factors on water resource and food security through the climate-water-food nexus. Understanding the responses of crop yield and water use efficiency to environmental changes is particularly important because Africa is well known for widespread poverty, slow economic growth and agricultural systems particularly sensitive to frequent and persistent droughts. However, the lack of integrated understanding has limited our ability to quantify and predict the potential of Africa's agricultural sustainability and freshwater supply, and to better manage the system for meeting an increasing food demand in a way that is socially and environmentally or ecologically sustainable. By using the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed the spatial and temporal patterns of crop yield, evapotranspiration (ET) and water use efficiency across entire Africa in the past 35 years (1980-2015) and the rest of the 21st century (2016-2099). Our preliminary results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion (about 50%), elevated atmospheric CO2 concentration, and nitrogen deposition. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Climate extremes especially droughts and heat wave have largely reduced crop yield in the most vulnerable regions. Our results indicate that N fertilizer could be a major driver to improve food security in Africa. Future climate warming could reduce crop yield and shift cropland distribution. Our study further suggests that improving water use efficiency through land

  1. Foregone benefits of important food crop improvements in Sub-Saharan Africa

    2017-01-01

    A number of new crops have been developed that address important traits of particular relevance for smallholder farmers in Africa. Scientists, policy makers, and other stakeholders have raised concerns that the approval process for these new crops causes delays that are often scientifically unjustified. This article develops a real option model for the optimal regulation of a risky technology that enhances economic welfare and reduces malnutrition. We consider gradual adoption of the technology and show that delaying approval reduces uncertainty about perceived risks of the technology. Optimal conditions for approval incorporate parameters of the stochastic processes governing the dynamics of risk. The model is applied to three cases of improved crops, which either are, or are expected to be, delayed by the regulatory process. The benefits and costs of the crops are presented in a partial equilibrium that considers changes in adoption over time and the foregone benefits caused by a delay in approval under irreversibility and uncertainty. We derive the equilibrium conditions where the net-benefits of the technology equal the costs that would justify a delay. The sooner information about the safety of the technology arrive, the lower the costs for justifying a delay need to be i.e. it pays more to delay. The costs of a delay can be substantial: e.g. a one year delay in approval of the pod-borer resistant cowpea in Nigeria will cost the country about 33 million USD to 46 million USD and between 100 and 3,000 lives. PMID:28749984

  2. Epi-fingerprinting and epi-interventions for improved crop production and food quality

    CARLOS Marcelino Rodriguez Lopez

    2015-06-01

    Full Text Available Increasing crop production at a time of rapid climate change represents the greatest challenge facing contemporary agricultural research. Our understanding of the genetic control of yield derives from controlled field experiments designed to minimise environmental variance. In spite of these efforts there is substantial residual variability among plants attributable to Genotype x Environment (GxE interactions. Recent advances in the field of epigenetics have revealed a plethora of gene control mechanisms that could account for much of this unassigned variation. These systems act as a regulatory interface between the perception of the environment and associated alterations in gene expression. Direct intervention of epigenetic control systems hold the enticing promise of creating new sources of variability that could enhance crop performance. Equally, understanding the relationship between various epigenetic states and responses of the crop to specific aspects of the growing environment (epigenetic fingerprinting could allow for a more tailored approach to plant agronomy. In this review, we explore the many ways in which epigenetic interventions and epigenetic fingerprinting can be deployed for the improvement of crop production and quality.

  3. Grain and straw for whole plant: implications for crop management and genetic improvement strategies

    Schiere, J.B.; Joshi, A.L.; Seetharam, A.; Oosting, S.J.; Goodchild, A.V.; Deinum, B.; Keulen, van, H.

    2004-01-01

    Straws and stovers are often called `by-products` of grain production even though they are increasingly important, e.g. for animal feed, thatching, soil improvement, mushroom production and industrial use. As a result, plant breeders, agronomists, economists and animal nutritionists have to pay more attention than before to the total value of crops, i.e. whole plant value in which straws and grain both play a part. This paper reviews literature about the technical potential of breeding and/or...

  4. Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance

    Coleman-Derr, Devin [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Tringe, Susannah G. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2014-06-06

    The exponential growth in world population is feeding a steadily increasing global need for arable farmland, a resource that is already in high demand. This trend has led to increased farming on subprime arid and semi-arid lands, where limited availability of water and a host of environmental stresses often severely reduce crop productivity. The conventional approach to mitigating the abiotic stresses associated with arid climes is to breed for stress-tolerant cultivars, a time and labor intensive venture that often neglects the complex ecological context of the soil environment in which the crop is grown. In recent years, studies have attempted to identify microbial symbionts capable of conferring the same stress-tolerance to their plant hosts, and new developments in genomic technologies have greatly facilitated such research. Here in this paper, we highlight many of the advantages of these symbiont-based approaches and argue in favor of the broader recognition of crop species as ecological niches for a diverse community of microorganisms that function in concert with their plant hosts and each other to thrive under fluctuating environmental conditions

  5. Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance

    Devin eColeman-Derr

    2014-06-01

    Full Text Available The exponential growth in world population is feeding a steadily increasing global need for arable farmland, a resource that is already in high demand. This trend has led to increased farming on subprime arid and semi-arid lands, where limited availability of water and a host of environmental stresses often severely reduce crop productivity. The conventional approach to mitigating the abiotic stresses associated with arid climes is to breed for stress-tolerant cultivars, a time and labor intensive venture that often neglects the complex ecological context of the soil environment in which the crop is grown. In recent years, studies have attempted to identify microbial symbionts capable of conferring the same stress-tolerance to their plant hosts, and new developments in genomic technologies have greatly facilitated such research. Here, we highlight many of the advantages of these symbiont-based approaches and argue in favor of the broader recognition of crop species as ecological niches for a diverse community of microorganisms that function in concert with their plant hosts and each other to thrive under fluctuating environmental conditions.

  6. The In Vitro Mass-Produced Model Mycorrhizal Fungus, Rhizophagus irregularis, Significantly Increases Yields of the Globally Important Food Security Crop Cassava

    Ceballos, Isabel; Ruiz, Michael; Fernández, Cristhian; Peña, Ricardo

    2013-01-01

    The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future. PMID:23950975

  7. The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava.

    Isabel Ceballos

    Full Text Available The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF and plant roots. The fungi provide the plant with inorganic phosphate (P. The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future.

  8. Use of composts to improve soil properties and crop productivity under low input agricultural system in West Africa

    Ouédraogo, E.; Mando, A.; Zombré, N.P.

    2000-01-01

    Lack of adequate nutrient supply and poor soil structure are the principal constraints to crop production under low input agriculture systems of West Africa. Experiments at two sites (Mediga and Yimtenga) were conducted in Burkina Faso to assess the impact of compost on improving crop production and

  9. Improvement of crop yield in dry environments: benchmarks, levels of organisation and the role of nitrogen.

    Sadras, V O; Richards, R A

    2014-05-01

    Crop yield in dry environments can be improved with complementary approaches including selecting for yield in the target environments, selecting for yield potential, and using indirect, trait- or genomic-based methods. This paper (i) outlines the achievements of direct selection for yield in improving drought adaptation, (ii) discusses the limitations of indirect approaches in the context of levels of organization, and (iii) emphasizes trade-offs and synergies between nitrogen nutrition and drought adaptation. Selection for yield in the water- and nitrogen-scarce environments of Australia improved wheat yield per unit transpiration at a rate of 0.12kg ha(-1) mm(-1) yr(-1); for indirect methods to be justified, they must return superior rates of improvement, achieve the same rate at lower cost or provide other cost-effective benefits, such as expanding the genetic basis for selection. Slow improvement of crop adaptation to water stress using indirect methods is partially related to issues of scale. Traits are thus classified into three broad groups: those that generally scale up from low levels of organization to the crop level (e.g. herbicide resistance), those that do not (e.g. grain yield), and traits that might scale up provided they are considered in a integrated manner with scientifically sound scaling assumptions, appropriate growing conditions, and screening techniques (e.g. stay green). Predicting the scalability of traits may help to set priorities in the investment of research efforts. Primary productivity in arid and semi-arid environments is simultaneously limited by water and nitrogen, but few attempts are made to target adaptation to water and nitrogen stress simultaneously. Case studies in wheat and soybean highlight biological links between improved nitrogen nutrition and drought adaptation.

  10. Atmospheric Inversion of the Global Surface Carbon Flux with Consideration of the Spatial Distributions of US Crop Production and Consumption

    Fung, Jonathan Winston

    Carbon dioxide is taken up by crops during production and released back to the atmosphere at different geographical locations through respiration of consumed crop commodities. In this study, spatially distributed county-level US cropland net primary productivity, harvested biomass, changes in soil carbon, and human and livestock consumption data were integrated into the prior terrestrial biosphere flux generated by the Boreal Ecosystem Productivity Simulator (BEPS). A global time-dependent Bayesian synthesis inversion with a nested focus on North America was carried out based on CO2 observations at 210 stations. Overall, the inverted annual North American CO2 sink weakened by 6.5% over the period from 2002 to 2007 compared to simulations disregarding US crop statistical data. The US Midwest is found to be the major sink of 0.36±0.13 PgC yr-1 whereas the large sink in the US Southeast forests weakened to 0.16±0.12 PgC yr-1 partly due to local CO2 sources from crop consumption.

  11. Participatory tools working with crops, varieties and seeds. A guide for professionals applying participatory approaches in agrobiodiversity management, crop improvement and seed sector development

    Boef, de W.S.; Thijssen, M.H.

    2007-01-01

    Outline to the guide Within our training programmes on local management of agrobiodiversity, participatory crop improvement and the support of local seed supply participatory tools get ample attention. Tools are dealt with theoretically, are practised in class situations, but are also applied in

  12. An improved UHPLC-UV method for separation and quantification of carotenoids in vegetable crops.

    Maurer, Megan M; Mein, Jonathan R; Chaudhuri, Swapan K; Constant, Howard L

    2014-12-15

    Carotenoid identification and quantitation is critical for the development of improved nutrition plant varieties. Industrial analysis of carotenoids is typically carried out on multiple crops with potentially thousands of samples per crop, placing critical needs on speed and broad utility of the analytical methods. Current chromatographic methods for carotenoid analysis have had limited industrial application due to their low throughput, requiring up to 60 min for complete separation of all compounds. We have developed an improved UHPLC-UV method that resolves all major carotenoids found in broccoli (Brassica oleracea L. var. italica), carrot (Daucus carota), corn (Zea mays), and tomato (Solanum lycopersicum). The chromatographic method is completed in 13.5 min allowing for the resolution of the 11 carotenoids of interest, including the structural isomers lutein/zeaxanthin and α-/β-carotene. Additional minor carotenoids have also been separated and identified with this method, demonstrating the utility of this method across major commercial food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Investigating Engineered Ribonucleoprotein Particles to Improve Oral RNAi Delivery in Crop Insect Pests

    François-Xavier Gillet

    2017-04-01

    Full Text Available Genetically modified (GM crops producing double-stranded RNAs (dsRNAs are being investigated largely as an RNA interference (RNAi-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil (Anthonomus grandis, we showed that the chimeric protein PTD-DRBD (peptide transduction domain—dsRNA binding domain combined with dsRNA forms a ribonucleoprotein particle (RNP that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.

  14. Investigating Engineered Ribonucleoprotein Particles to Improve Oral RNAi Delivery in Crop Insect Pests.

    Gillet, François-Xavier; Garcia, Rayssa A; Macedo, Leonardo L P; Albuquerque, Erika V S; Silva, Maria C M; Grossi-de-Sa, Maria F

    2017-01-01

    Genetically modified (GM) crops producing double-stranded RNAs (dsRNAs) are being investigated largely as an RNA interference (RNAi)-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil ( Anthonomus grandis ), we showed that the chimeric protein PTD-DRBD (peptide transduction domain-dsRNA binding domain) combined with dsRNA forms a ribonucleoprotein particle (RNP) that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.

  15. Iraq uses nuclear technology to improve crop productivity and adapt to climate change

    Gil, Laura

    2016-01-01

    A new drought-tolerant wheat variety developed with the support of the IAEA and the Food and Agriculture Organization of the United Nations (FAO) has increased yields fourfold in Iraq. This mutant variety now accounts for close to two thirds of all the wheat produced in the country. Iraq is increasingly making use of nuclear technology to improve its crop yields and cope with the consequences of a changing climate. Researchers in the country have developed new drought-tolerant plant varieties and improved water and soil management.

  16. Nutritionally Enhanced Food Crops; Progress and Perspectives

    Kathleen L. Hefferon

    2015-02-01

    Full Text Available Great progress has been made over the past decade with respect to the application of biotechnology to generate nutritionally improved food crops. Biofortified staple crops such as rice, maize and wheat harboring essential micronutrients to benefit the world’s poor are under development as well as new varieties of crops which have the ability to combat chronic disease. This review discusses the improvement of the nutritional status of crops to make a positive impact on global human health. Several examples of nutritionally enhanced crops which have been developed using biotechnological approaches will be discussed. These range from biofortified crops to crops with novel abilities to fight disease. The review concludes with a discussion of hurdles faced with respect to public perception, as well as directions of future research and development for nutritionally enhanced food crops.

  17. Agricultural interventions for water saving and crop yield improvement, in a Mediterranean area - an experimental design

    Morianou, Giasemi; Kourgialas, Nektarios; Psarras, George; Koubouris, George; Arampatzis, George; Karatzas, George; Pavlidou, Elisavet

    2017-04-01

    This work is a part of LIFE+ AGROCLIMAWATER project and the aim is to improve the water efficiency, increase the adaptive capacity of tree corps and save water, in a Mediterranean area, under different climatic conditions and agricultural practices. The experimental design as well as preliminary results at farm and river basin scales are presented in this work. Specifically, ten (10) pilot farms, both organic and conventional ones have been selected in the sub-basin of Platanias in western Crete - Greece. These ten pilot farms were selected representing the most typical crops in Platanias area (olive trees and citrus trees), as well as the typical soil, landscape and agricultural practices differentiation for each crop (field slope, water availability, soil type, management regime). From the ten pilot farms, eight were olive farms and the rest two citrus. This proportion correspond adequacy to the presentence of olive and citrus crops in the extended area of Platanias prefecture. Each of the ten pilot farm has been divided in two parts, the first one will be used as a control part, while the other one as the demonstration part where the interventions will be applied. The action plans for each selected farm are based on the following groups of possible interventions: a) reduction of water evaporation losses from soil surface, b) reduction of transpiration water losses through winter pruning and summer pruning, c) reduction of deep percolation water and nutrient losses, d) reduction of surface runoff, e) measures in order to maximize the efficiency of irrigation and f) rationalization of fertilizers and agrochemicals utilized. Preliminary results indicate that water saving and crop yield can be significantly improved based on the above innervations both at farm and river basin scale.

  18. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling

    Portmann, Felix T.; Siebert, Stefan; DöLl, Petra

    2010-03-01

    To support global-scale assessments that are sensitive to agricultural land use, we developed the global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000). With a spatial resolution of 5 arc min (about 9.2 km at the equator), MIRCA2000 provides both irrigated and rainfed crop areas of 26 crop classes for each month of the year. The data set covers all major food crops as well as cotton. Other crops are grouped into categories (perennial, annual, and fodder grasses). It represents multicropping systems and maximizes consistency with census-based national and subnational statistics. According to MIRCA2000, 25% of the global harvested areas are irrigated, with a cropping intensity (including fallow land) of 1.12, as compared to 0.84 for the sum of rainfed and irrigated harvested crops. For the dominant crops (rice (1.7 million km2 harvested area), wheat (2.1 million km2), and maize (1.5 million km2)), roughly 60%, 30%, and 20% of the harvested areas are irrigated, respectively, and half of the citrus, sugar cane, and cotton areas. While wheat and maize are the crops with the largest rainfed harvested areas (1.5 million km2 and 1.2 million km2, respectively), rice is clearly the crop with the largest irrigated harvested area (1.0 million km2), followed by wheat (0.7 million km2) and maize (0.3 million km2). Using MIRCA2000, 33% of global crop production and 44% of total cereal production were determined to come from irrigated agriculture.

  19. Opportunities and challenges for harvest weed seed control in global cropping systems.

    Walsh, Michael J; Broster, John C; Schwartz-Lazaro, Lauren M; Norsworthy, Jason K; Davis, Adam S; Tidemann, Breanne D; Beckie, Hugh J; Lyon, Drew J; Soni, Neeta; Neve, Paul; Bagavathiannan, Muthukumar V

    2017-11-28

    The opportunity to target weed seeds during grain harvest was established many decades ago following the introduction of mechanical harvesting and the recognition of high weed-seed retention levels at crop maturity; however, this opportunity remained largely neglected until more recently. The introduction and adoption of harvest weed seed control (HWSC) systems in Australia has been in response to widespread occurrence of herbicide-resistant weed populations. With diminishing herbicide resources and the need to maintain highly productive reduced tillage and stubble-retention practices, growers began to develop systems that targeted weed seeds during crop harvest. Research and development efforts over the past two decades have established the efficacy of HWSC systems in Australian cropping systems, where widespread adoption is now occurring. With similarly dramatic herbicide resistance issues now present across many of the world's cropping regions, it is timely for HWSC systems to be considered for inclusion in weed-management programs in these areas. This review describes HWSC systems and establishing the potential for this approach to weed control in several cropping regions. As observed in Australia, the inclusion of HWSC systems can reduce weed populations substantially reducing the potential for weed adaptation and resistance evolution. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Empowering the Girl Child, Improving Global Health.

    Cesario, Sandra K; Moran, Barbara

    The health and productivity of a global society is dependent upon the elimination of gender inequities that prevent girls from achieving their full potential. Although some progress has been made in reducing social, economic, and health disparities between men and women, gender equality continues to be an elusive goal. The Millennium Development Goals (2000-2015) and the Sustainable Development Goals (2015-2030) include intergovernmental aspirations to empower women and stress that change must begin with the girl child. Copyright © 2017 AWHONN, the Association of Women’s Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights reserved.

  1. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments

    Ramalingam Radhakrishnan

    2017-09-01

    , nutrient up-take and the activation of the antioxidant and defense systems. Bacillus association stimulates plant immunity against stresses by altering stress-responsive genes, proteins, phytohormones and related metabolites. This review describes the beneficial effect of Bacillus spp. on crop plants, which improves plant productivity under unfavorable climatic conditions, and the current understanding of the mitigation mechanism of Bacillus spp. in stress-tolerant and/or stress-resistant plants.

  2. Affordable nutrient solutions for improved food security as evidenced by crop trials

    van der Velde, Marijn; See, Linda; You, Liangzhi; Balkovic, Juraj; Fritz, Steffen; Khabarov, Nikolay; Obersteiner, Michael; Wood, Stanley

    2013-04-01

    yet still conservative fertilizer application rates, where yield increases of 30 to 190% are possible. External investment in this low technology solution has the potential to kick start development and could complement other interventions such as better crop varieties and improved economic instruments to support farmers.

  3. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments

    Radhakrishnan, Ramalingam; Hashem, Abeer; Abd_Allah, Elsayed F.

    2017-01-01

    the activation of the antioxidant and defense systems. Bacillus association stimulates plant immunity against stresses by altering stress-responsive genes, proteins, phytohormones and related metabolites. This review describes the beneficial effect of Bacillus spp. on crop plants, which improves plant productivity under unfavorable climatic conditions, and the current understanding of the mitigation mechanism of Bacillus spp. in stress-tolerant and/or stress-resistant plants. PMID:28932199

  4. SOIL MOISTURE SPACE-TIME ANALYSIS TO SUPPORT IMPROVED CROP MANAGEMENT

    Bruno Montoani Silva

    2015-02-01

    Full Text Available The knowledge of the water content in the soil profile is essential for an efficient management of crop growth and development. This work aimed to use geostatistical techniques in a spatio-temporal study of soil moisture in an Oxisol in order to provide that information for improved crop management. Data were collected in a coffee crop area at São Roque de Minas, in the upper São Francisco River basin, MG state, Brazil. The soil moisture was measured with a multi-sensor capacitance (MCP probe at 10-, 20-, 30-, 40-, 60- and 100-cm depths between March and December, 2010. After adjusting the spherical semivariogram model using ordinary least squares, best model, the values were interpolated by kriging in order to have a continuous surface relating depth x time (CSDT and the soil water availability to plant (SWAP. The results allowed additional insight on the dynamics of soil water and its availability to plant, and pointed to the effects of climate on the soil water content. These results also allowed identifying when and where there was greater water consumption by the plants, and the soil layers where water was available and potentially explored by the plant root system.

  5. Trade and commerce in improved crops and food: an essay on food security.

    Kershen, Drew L

    2010-11-30

    Agricultural trade between nations is a significant proportion of total international trade. Agricultural trade in transgenic crops faces extra complications due to the existence of domestic and international regimes that focus specifically on agricultural biotechnology. These specialized regimes create legal and commercial challenges for trade in transgenic crops that have significant implications for the food security of the nations of the world. By food security, one should understand not just the available supply of food, but also the quality of the food and the environmental impact of agricultural production systems. These specialized regimes for transgenic crops can either encourage or hinder the adoption of agricultural biotechnology as a sustainable intensive agriculture. Sustainable intensive agriculture offers hope for agronomic improvements for agricultural production, socio-economic betterment for farmers and environmental benefits for societies. Sustainable intensive agriculture offers particular hope for the poorest farmers of the world because agricultural biotechnology is a technology in the seed. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Alkaline coal fly ash amendments are recommended for improving rice-peanut crops

    Swain, D.K.; Ghosh, B.C. [Agricultural and Food Engineering Department, Indi an Inst. of Technology, Kharagpur, West Bengal (India); Rautaray, S.K. [RRLRRS, Gerua Via-Hajo, Dist-Kamrup, Assam (India)

    2007-05-15

    A field experiment investigating amendments of organic material including farmyard manure, paper factory sludge and crop residues combined with fly ash, lime and chemical fertilizer in a rice-peanut cropping system was conducted during 1997-98 and 1998-99 at the Indian Institute of Technology, Kharagpur, India. The soil was an acid lateritic (Halustaf) sandy loam. For rice, an N:P:K level of 90:26.2:33.3 kg/ha was supplied through the organic materials and chemical fertilizer to all the treatments except control and fly ash alone. The required quantities of organic materials were added to supply 30 kg N/ha and the balance amount of N, P and K was supplied through chemical fertilizer. Amendment materials as per fertilization treatments were incorporated to individual plots 15 days before planting of rice during the rainy season. The residual effects were studied on the following peanut crop with application of N:P:K at 30:26.2:33.3 kg/ha through chemical fertilizer alone in all treatments, apart from the control. An application of fly ash at 10 t/ha in combination with chemical fertilizer and organic materials increased the grain yield of rice by 11% compared to chemical fertilizer alone. The residual effect of both lime and fly ash applications combined with direct application of chemical fertilizer increased peanut yields by 30% and 24%, respectively, compared to chemical fertilizer alone. Treatments with fly ash or lime increased P and K uptake in both the crops and oil content in peanut kernel compared to those without the amendments. Alkaline coal fly ash proved to be a better amendment than lime for improving productivity of an acid lateritic soil and enriching the soil with P and K.

  7. Using modern plant breeding to improve the nutritional and technological qualities of oil crops

    Murphy Denis J.

    2014-11-01

    Full Text Available The last few decades have seen huge advances in our understanding of plant biology and in the development of new technologies for the manipulation of crop plants. The application of relatively straightforward breeding and selection methods made possible the “Green Revolution” of the 1960s and 1970s that effectively doubled or trebled cereal production in much of the world and averted mass famine in Asia. During the 2000s, much attention has been focused on genomic approaches to plant breeding with the deployment of a new generation of technologies, such as marker-assisted selection, next-generation sequencing, transgenesis (genetic engineering or GM and automatic mutagenesis/selection (TILLING, TargetIng Local Lesions IN Genomes. These methods are now being applied to a wide range of crops and have particularly good potential for oil crop improvement in terms of both overall food and non-food yield and nutritional and technical quality of the oils. Key targets include increasing overall oil yield and stability on a per seed or per fruit basis and very high oleic acid content in seed and fruit oils for both premium edible and oleochemical applications. Other more specialised targets include oils enriched in nutritionally desirable “fish oil”-like fatty acids, especially very long chain !-3 acids such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, or increased levels of lipidic vitamins such as carotenoids, tocopherols and tocotrienes. Progress in producing such oils in commercial crops has been good in recent years with several varieties being released or at advanced stages of development.

  8. Improving the use of crop models for risk assessment and climate change adaptation.

    Challinor, Andrew J; Müller, Christoph; Asseng, Senthold; Deva, Chetan; Nicklin, Kathryn Jane; Wallach, Daniel; Vanuytrecht, Eline; Whitfield, Stephen; Ramirez-Villegas, Julian; Koehler, Ann-Kristin

    2018-01-01

    Crop models are used for an increasingly broad range of applications, with a commensurate proliferation of methods. Careful framing of research questions and development of targeted and appropriate methods are therefore increasingly important. In conjunction with the other authors in this special issue, we have developed a set of criteria for use of crop models in assessments of impacts, adaptation and risk. Our analysis drew on the other papers in this special issue, and on our experience in the UK Climate Change Risk Assessment 2017 and the MACSUR, AgMIP and ISIMIP projects. The criteria were used to assess how improvements could be made to the framing of climate change risks, and to outline the good practice and new developments that are needed to improve risk assessment. Key areas of good practice include: i. the development, running and documentation of crop models, with attention given to issues of spatial scale and complexity; ii. the methods used to form crop-climate ensembles, which can be based on model skill and/or spread; iii. the methods used to assess adaptation, which need broadening to account for technological development and to reflect the full range options available. The analysis highlights the limitations of focussing only on projections of future impacts and adaptation options using pre-determined time slices. Whilst this long-standing approach may remain an essential component of risk assessments, we identify three further key components: 1.Working with stakeholders to identify the timing of risks. What are the key vulnerabilities of food systems and what does crop-climate modelling tell us about when those systems are at risk?2.Use of multiple methods that critically assess the use of climate model output and avoid any presumption that analyses should begin and end with gridded output.3.Increasing transparency and inter-comparability in risk assessments. Whilst studies frequently produce ranges that quantify uncertainty, the assumptions

  9. The estimation of soil parameters using observations on crop biophysical variables and the crop model STICS improve the predictions of agro environmental variables.

    Varella, H.-V.

    2009-04-01

    Dynamic crop models are very useful to predict the behavior of crops in their environment and are widely used in a lot of agro-environmental work. These models have many parameters and their spatial application require a good knowledge of these parameters, especially of the soil parameters. These parameters can be estimated from soil analysis at different points but this is very costly and requires a lot of experimental work. Nevertheless, observations on crops provided by new techniques like remote sensing or yield monitoring, is a possibility for estimating soil parameters through the inversion of crop models. In this work, the STICS crop model is studied for the wheat and the sugar beet and it includes more than 200 parameters. After a previous work based on a large experimental database for calibrate parameters related to the characteristics of the crop, a global sensitivity analysis of the observed variables (leaf area index LAI and absorbed nitrogen QN provided by remote sensing data, and yield at harvest provided by yield monitoring) to the soil parameters is made, in order to determine which of them have to be estimated. This study was made in different climatic and agronomic conditions and it reveals that 7 soil parameters (4 related to the water and 3 related to the nitrogen) have a clearly influence on the variance of the observed variables and have to be therefore estimated. For estimating these 7 soil parameters, a Bayesian data assimilation method is chosen (because of available prior information on these parameters) named Importance Sampling by using observations, on wheat and sugar beet crop, of LAI and QN at various dates and yield at harvest acquired on different climatic and agronomic conditions. The quality of parameter estimation is then determined by comparing the result of parameter estimation with only prior information and the result with the posterior information provided by the Bayesian data assimilation method. The result of the

  10. Small RNAs in plants: Recent development and application for crop improvement

    Ayushi eKamthan; Abira eChaudhuri; Mohan eKamthan; Asis eDatta

    2015-01-01

    The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RN...

  11. Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles

    Maiorano, Andrea; Martre, Pierre; Asseng, Senthold

    2017-01-01

    of models needed in a MME. Herein, 15 wheat growth models of a larger MME were improved through re-parameterization and/or incorporating or modifying heat stress effects on phenology, leaf growth and senescence, biomass growth, and grain number and size using detailed field experimental data from the USDA...... ensemble percentile range) of grain yields simulated by the MME on average by 39% in the calibration data set and by 26% in the independent evaluation data set for crops grown in mean seasonal temperatures >24 °C. MME mean squared error in simulating grain yield decreased by 37%. A reduction in MME...

  12. Improvement of pulse crops through induced mutations: Reconstruction of plant type

    Rao, C.H.; Tickoo, J.L.; Ram, H.; Jain, H.K.

    1975-01-01

    Many species of grain legumes, because of their cultivation under marginal conditions for centuries, have retained a number of semi-wild characteristics, such as a bushy and spreading growth, which contribute to their adaptability but reduce their yields. The observations presented here indicate that induced mutations may prove effective in generating new plant-types in these crops, which are marked by an improvement in the harvest index and which will show a response to increased plant densities. The present report describes observations on the M 2 progenies of pigeon pea and mung bean on which work has been initiated. (author)

  13. Crop Model Improvement Reduces the Uncertainty of the Response to Temperature of Multi-Model Ensembles

    Maiorano, Andrea; Martre, Pierre; Asseng, Senthold; Ewert, Frank; Mueller, Christoph; Roetter, Reimund P.; Ruane, Alex C.; Semenov, Mikhail A.; Wallach, Daniel; Wang, Enli

    2016-01-01

    To improve climate change impact estimates and to quantify their uncertainty, multi-model ensembles (MMEs) have been suggested. Model improvements can improve the accuracy of simulations and reduce the uncertainty of climate change impact assessments. Furthermore, they can reduce the number of models needed in a MME. Herein, 15 wheat growth models of a larger MME were improved through re-parameterization and/or incorporating or modifying heat stress effects on phenology, leaf growth and senescence, biomass growth, and grain number and size using detailed field experimental data from the USDA Hot Serial Cereal experiment (calibration data set). Simulation results from before and after model improvement were then evaluated with independent field experiments from a CIMMYT worldwide field trial network (evaluation data set). Model improvements decreased the variation (10th to 90th model ensemble percentile range) of grain yields simulated by the MME on average by 39% in the calibration data set and by 26% in the independent evaluation data set for crops grown in mean seasonal temperatures greater than 24 C. MME mean squared error in simulating grain yield decreased by 37%. A reduction in MME uncertainty range by 27% increased MME prediction skills by 47%. Results suggest that the mean level of variation observed in field experiments and used as a benchmark can be reached with half the number of models in the MME. Improving crop models is therefore important to increase the certainty of model-based impact assessments and allow more practical, i.e. smaller MMEs to be used effectively.

  14. Potential of in vitro mutation breeding for the improvement of vegetatively propagated crop plants

    Constantin, M.J.

    1984-01-01

    Significant progress has been realized in a number of technologies (e.g., protoplast cultures), collectively referred to as plant cell and tissue culture, within the last decade. In vitro culture technologies offer great potentials for the improvement of crop plants, both sexually and asexually propagated; however, to realize these potentials plant regeneration from selected cells must be achieved for the species of interest. Where whole plants have been regenerated from selected cells, the mutant trait was expressed in some but not in all cases, and the inheritance patterns included maternal, recessive, semi-dominant and dominant (epigenetic events have also been reported). Improved cultivars of sugarcane have been developed from in vitro culture selections. In vitro mutation breeding can be done using an array of physical and chemical mutagens that has been found to be effective in the treatment of seeds, pollen, vegetative plant parts and growing plants. Selection at the cell level for a range of mutant traits has been demonstrated; however, innovative selection schemes will have to be developed to select for agriculturally important traits such as date of maturity, resistance to lodging, height etc. An interdisciplinary team approach involving the combined use of in vitro culture technology, mutagenesis, and plant breeding/genetics offers the greatest probability for success in crop improvement. (author)

  15. Use of radioisotopes in agriculture: DNA based molecular markers in crop improvement

    Sivaramakrishnan, S.; Seetharama, N.; Kannan, Seetha

    2001-01-01

    Agriculture has always benefited from the use of radioisotopes in many ways. In the beginning radioisotopes were mostly used for physiological studies to measure photosynthetic efficiency, nutrient uptake, and for mutation breeding. Radioisotopes have now become a part of the biotechnological tools that are being increasingly used in improving crops and production systems. The tools of biotechnology are being increasingly used to hasten breeding and address problems of biotic and abiotic stresses. Some of the non-radioactive methods have replaced radiotracer techniques and thus led to automation often at high cost. However, still there remain many applications where radioisotopes seem almost indispensable. For some of the applications like comparative genome mapping, the confirmation of transgenics, and establishment of gene copy number, use of RFLP with radioisotopes is essential. The following research areas at ICRISAT use radioisotopes: (1) physiological basis of adaptation to abiotic stresses (ii) development and use of appropriate DNA markers crop improvement; (iii) characterization of cytoplasmic male sterile systems and genetic diversity of breeding materials, land races and the wild relatives and (iv) molecular basis of disease resistance; (v) comparative genome mapping across cereals, (vi) isolation and characterization of genes of potential value to genetic improvement and (vii) verification of genetic transformation events. (author)

  16. Solid waste management with the help of vermicomposting and its applications in crop improvement

    Nandita Mehta

    2013-01-01

    Full Text Available Management of solid waste has become one of the biggest problems that we are facing today. Vermicomposting is the better option to tackle with this problem. Vermicomposting is the process of conversion of organic wastes by earthworms to valuable humus like material which is used as a natural soil conditioner. Vermicomposting is environment friendly and cost effective technique for solid waste management. Vermicomposting serves two main purposes for the welfare of humans as it helps in the degradation of solid waste and the cast produced during this process is used as a natural fertilizer. Vermicompost is much better than chemical fertilizer because it is not associated with any kind of risk. Earthworms are potentially important creatures that are capable of transforming garbage into gold. Eisenia fetida is the most commonly used species of earthworms for vermicomposting. Vermicomposting is a mesophilic process and should be maintained up to 32°C with the moisture content of 60-80%. Earthworms break down organic matter and leave behind castings that are an exceptionally valuable fertilizer. Vermicomposting has many applications in crop improvement such as pathogen destruction, water holding capacity of soil, improved crop growth and yield, improved soil physical, chemical and biological properties and production of plant growth regulators.

  17. Overcoming Phosphorus Deficiency in West African Pearl Millet and Sorghum Production Systems: Promising Options for Crop Improvement

    Dorcus C. GEMENET

    2016-09-01

    Full Text Available West Africa (WA is among the most food insecure regions. Rapid human population growth and stagnating crop yields greatly contribute to this fact. Poor soil fertility, especially low plant available phosphorus (P is constraining food production in the region. P-fertilizer use in WA is among the lowest in the world due to inaccessibility and high prices, unaffordable to resource-poor farmers. This article provides an overview of soil P-deficiency in WA and opportunities to overcome it by exploiting sorghum and pearl millet genetic diversity. The topic is examined from the perspectives of plant breeding, soil science, plant physiology, plant nutrition, and agronomy, thereby referring to recent results obtained in a joint interdisciplinary research project, and reported literature. Specific objectives are to summarize: (1 The global problem of P scarcity and how it will affect WA farmers; (2 Soil P dynamics in WA soils; (3 Plant responses to P deficiency; (4 Opportunities to breed for improved crop adaptation to P-limited conditions; (5 Challenges and trade-offs for improving sorghum and pearl millet adaptation to low-P conditions in WA; and (6 Systems approaches to addressing soil P-deficiency in WA.Sorghum and pearl millet in WA exhibit highly significant genetic variation for P-uptake efficiency, P-utilization efficiency, and grain yield under P-limited conditions indicating the possibility of breeding P-efficient varieties. Direct selection under P-limited conditions was more efficient than indirect selection under high-P conditions. Combining P-uptake and P-utilization efficiency is recommendable for WA to avoid further soil mining. Genomic regions responsible for P-uptake, P-utilization efficiency, and grain yield under low-P have been identified in WA sorghum and pearl millet, and marker-assisted selection could be possible once these genomic regions are validated. Developing P-efficient genotypes may not however be a sustainable solution in

  18. Overcoming Phosphorus Deficiency in West African Pearl Millet and Sorghum Production Systems: Promising Options for Crop Improvement.

    Gemenet, Dorcus C; Leiser, Willmar L; Beggi, Francesca; Herrmann, Ludger H; Vadez, Vincent; Rattunde, Henry F W; Weltzien, Eva; Hash, Charles T; Buerkert, Andreas; Haussmann, Bettina I G

    2016-01-01

    West Africa (WA) is among the most food insecure regions. Rapid human population growth and stagnating crop yields greatly contribute to this fact. Poor soil fertility, especially low plant available phosphorus (P) is constraining food production in the region. P-fertilizer use in WA is among the lowest in the world due to inaccessibility and high prices, often unaffordable to resource-poor subsistence farmers. This article provides an overview of soil P-deficiency in WA and opportunities to overcome it by exploiting sorghum and pearl millet genetic diversity. The topic is examined from the perspectives of plant breeding, soil science, plant physiology, plant nutrition, and agronomy, thereby referring to recent results obtained in a joint interdisciplinary research project, and reported literature. Specific objectives are to summarize: (1) The global problem of P scarcity and how it will affect WA farmers; (2) Soil P dynamics in WA soils; (3) Plant responses to P deficiency; (4) Opportunities to breed for improved crop adaptation to P-limited conditions; (5) Challenges and trade-offs for improving sorghum and pearl millet adaptation to low-P conditions in WA; and (6) Systems approaches to address soil P-deficiency in WA. Sorghum and pearl millet in WA exhibit highly significant genetic variation for P-uptake efficiency, P-utilization efficiency, and grain yield under P-limited conditions indicating the possibility of breeding P-efficient varieties. Direct selection under P-limited conditions was more efficient than indirect selection under high-P conditions. Combining P-uptake and P-utilization efficiency is recommendable for WA to avoid further soil mining. Genomic regions responsible for P-uptake, P-utilization efficiency, and grain yield under low-P have been identified in WA sorghum and pearl millet, and marker-assisted selection could be possible once these genomic regions are validated. Developing P-efficient genotypes may not, however, be a sustainable

  19. Affordable nutrient solutions for improved food security as evidenced by crop trials.

    van der Velde, Marijn; See, Linda; You, Liangzhi; Balkovič, Juraj; Fritz, Steffen; Khabarov, Nikolay; Obersteiner, Michael; Wood, Stanley

    2013-01-01

    The continuing depletion of nutrients from agricultural soils in Sub-Saharan African is accompanied by a lack of substantial progress in crop yield improvement. In this paper we investigate yield gaps for corn under two scenarios: a micro-dosing scenario with marginal increases in nitrogen (N) and phosphorus (P) of 10 kg ha(-1) and a larger yet still conservative scenario with proposed N and P applications of 80 and 20 kg ha(-1) respectively. The yield gaps are calculated from a database of historical FAO crop fertilizer trials at 1358 locations for Sub-Saharan Africa and South America. Our approach allows connecting experimental field scale data with continental policy recommendations. Two critical findings emerged from the analysis. The first is the degree to which P limits increases in corn yields. For example, under a micro-dosing scenario, in Africa, the addition of small amounts of N alone resulted in mean yield increases of 8% while the addition of only P increased mean yields by 26%, with implications for designing better balanced fertilizer distribution schemes. The second finding was the relatively large amount of yield increase possible for a small, yet affordable amount of fertilizer application. Using African and South American fertilizer prices we show that the level of investment needed to achieve these results is considerably less than 1% of Agricultural GDP for both a micro-dosing scenario and for the scenario involving higher yet still conservative fertilizer application rates. In the latter scenario realistic mean yield increases ranged between 28 to 85% in South America and 71 to 190% in Africa (mean plus one standard deviation). External investment in this low technology solution has the potential to kick start development and could complement other interventions such as better crop varieties and improved economic instruments to support farmers.

  20. Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions.

    Hertel, Thomas W; Ramankutty, Navin; Baldos, Uris Lantz C

    2014-09-23

    There has been a resurgence of interest in the impacts of agricultural productivity on land use and the environment. At the center of this debate is the assertion that agricultural innovation is land sparing. However, numerous case studies and global empirical studies have found little evidence of higher yields being accompanied by reduced area. We find that these studies overlook two crucial factors: estimation of a true counterfactual scenario and a tendency to adopt a regional, rather than a global, perspective. This paper introduces a general framework for analyzing the impacts of regional and global innovation on long run crop output, prices, land rents, land use, and associated CO2 emissions. In so doing, it facilitates a reconciliation of the apparently conflicting views of the impacts of agricultural productivity growth on global land use and environmental quality. Our historical analysis demonstrates that the Green Revolution in Asia, Latin America, and the Middle East was unambiguously land and emissions sparing, compared with a counterfactual world without these innovations. In contrast, we find that the environmental impacts of a prospective African Green Revolution are potentially ambiguous. We trace these divergent outcomes to relative differences between the innovating region and the rest of the world in yields, emissions efficiencies, cropland supply response, and intensification potential. Globalization of agriculture raises the potential for adverse environmental consequences. However, if sustained for several decades, an African Green Revolution will eventually become land sparing.

  1. Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions

    Hertel, Thomas W.; Ramankutty, Navin; Baldos, Uris Lantz C.

    2014-01-01

    There has been a resurgence of interest in the impacts of agricultural productivity on land use and the environment. At the center of this debate is the assertion that agricultural innovation is land sparing. However, numerous case studies and global empirical studies have found little evidence of higher yields being accompanied by reduced area. We find that these studies overlook two crucial factors: estimation of a true counterfactual scenario and a tendency to adopt a regional, rather than a global, perspective. This paper introduces a general framework for analyzing the impacts of regional and global innovation on long run crop output, prices, land rents, land use, and associated CO2 emissions. In so doing, it facilitates a reconciliation of the apparently conflicting views of the impacts of agricultural productivity growth on global land use and environmental quality. Our historical analysis demonstrates that the Green Revolution in Asia, Latin America, and the Middle East was unambiguously land and emissions sparing, compared with a counterfactual world without these innovations. In contrast, we find that the environmental impacts of a prospective African Green Revolution are potentially ambiguous. We trace these divergent outcomes to relative differences between the innovating region and the rest of the world in yields, emissions efficiencies, cropland supply response, and intensification potential. Globalization of agriculture raises the potential for adverse environmental consequences. However, if sustained for several decades, an African Green Revolution will eventually become land sparing. PMID:25201962

  2. Global assessment of the economics of land degradation and improvement

    Nkonya, Ephraim

    2017-04-01

    about US15 billion per year or 0.07 % of the global GDP. Though these results are based on a crop simulation approach that underestimates the impact of land degradation and covers only three crops, they reveal the high cost of land degradation for the production of the major food crops of the world. Our simulations also show that returns to investment in action against land degradation are twice larger than the cost of inaction in the first six years alone. Moreover, when one takes a 30-year planning horizon, the returns are five dollars per each dollar invested in action against land degradation. The opportunity cost accounts for the largest share of the cost of action against land degradation. This explains why land users, often basing their decisions in very short-time horizons, could degrade their lands even when they are aware of bigger longer-term losses that are incurred in the process.

  3. Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes.

    Tito, Richard; Vasconcelos, Heraldo L; Feeley, Kenneth J

    2018-02-01

    One of the greatest current challenges to human society is ensuring adequate food production and security for a rapidly growing population under changing climatic conditions. Climate change, and specifically rising temperatures, will alter the suitability of areas for specific crops and cultivation systems. In order to maintain yields, farmers may be forced to change cultivation practices, the timing of cultivation, or even the type of crops grown. Alternatively, farmers can change the location where crops are cultivated (e.g., to higher elevations) to track suitable climates (in which case the plants will have to grow in different soils), as cultivated plants will otherwise have to tolerate warmer temperatures and possibly face novel enemies. We simulated these two last possible scenarios (for temperature increases of 1.3°C and 2.6°C) in the Peruvian Andes through a field experiment in which several traditionally grown varieties of potato and maize were planted at different elevations (and thus temperatures) using either the local soil or soil translocated from higher elevations. Maize production declined by 21%-29% in response to new soil conditions. The production of maize and potatoes declined by >87% when plants were grown under warmer temperatures, mainly as a result of the greater incidence of novel pests. Crop quality and value also declined under simulated migration and warming scenarios. We estimated that local farmers may experience severe economic losses of up to 2,300 US$ ha -1  yr -1 . These findings reveal that climate change is a real and imminent threat to agriculture and that there is a pressing need to develop effective management strategies to reduce yield losses and prevent food insecurity. Importantly, such strategies should take into account the influences of non-climatic and/or biotic factors (e.g., novel pests) on plant development. © 2017 John Wiley & Sons Ltd.

  4. Improved methods for irrigation and planting of major crops in waterlogged areas

    Kahlown, M.A.; Iqbal, M.; Raoof, A.

    2002-01-01

    The improved irrigation methods for wheat and cotton were evaluated in the fordwah Eastern Sadigia (South) Irrigation and Drainage Project area, during 1996-97 and 1997-98 cropping seasons, under three water table depths. Irrigation methods for wheat included 70, 95 and 120 cm Beds, with Flat Basin, as a check for comparative evaluation. Cotton had Ridge-planting on the top and side, Bed and Furrow, and Flat Basin as control. These irrigation methods were compared at water table depths of < 1 m, 1-2 and 2-3 m. The wheat variety inqalab-91, and cotton cultivar, CIM-109, were planted during the 3rd week of November and May every year. All the inputs and management practices, such as seed-rate, fertilizer, seeding method, weed control, plant-protection measures, etc. were kept common. The results on cotton indicated maximum water-use efficiency with the Bed and Furrow Method of irrigation Followed by ridge planting. The traditional Flat-planting had the lowest yield and the highest water-consumption, resulting in the minimum water-use efficiency. In harmony with cotton, the Flat Method of planting had maximum water-consumption. For wheat crop, the water-use efficiency was in descending order, with 120, 95 and 70 cm for Bed and Flat Methods. Bed planting of 95 cm had a fairly high water-use efficiency and yields were more were more comparable than Flat planting. This method had a high level of adaptabilities, especially when the groundwater was close to the root-zone and higher possibilities, especially when the groundwater was close to the root-zone and higher possibility of crop-submergence are existent during rainy spells. The results of the investigation strongly favoured the Bed and furrow methods to irrigate cotton and wheat. However, under well-drained soil conditions, Bed planting of wheat is not recommended. (author)

  5. Principle and application of plant mutagenesis in crop improvement: a review

    Yusuff Oladosu

    2016-01-01

    Full Text Available The first step in plant breeding is to identify suitable genotypes containing the desired genes among existing varieties, or to create one if it is not found in nature. In nature, variation occurs mainly as a result of mutations and without it, plant breeding would be impossible. In this context, the major aim in mutation-based breeding is to develop and improve well-adapted plant varieties by modifying one or two major traits to increase their productivity or quality. Both physical and chemical mutagenesis is used in inducing mutations in seeds and other planting materials. Then, selection for agronomic traits is done in the first generation, whereby most mutant lines may be discarded. The agronomic traits are confirmed in the second and third generations through evident phenotypic stability, while other evaluations are carried out in the subsequent generations. Finally, only the mutant lines with desirable traits are selected as a new variety or as a parent line for cross breeding. New varieties derived by induced mutatgenesis are used worldwide: rice in Vietnam, Thailand, China and the United States; durum wheat in Italy and Bulgaria; barley in Peru and European nations; soybean in Vietnam and China; wheat in China; as well as leguminous food crops in Pakistan and India. This paper integrates available data about the impact of mutation breeding-derived crop varieties around the world and highlights the potential of mutation breeding as a flexible and practicable approach applicable to any crop provided that appropriate objectives and selection methods are used.

  6. Converging strategies by farmers and scientists to improve soil fertility and enhance crop production in Benin

    Saidou, A.

    2006-01-01

    Keywords: Farmer perception, indigenous knowledge, extensive cassava, earthworm casts, arbuscular mycorrhiza, crop rotation, nutrient uptake, soil fertility, co-research, land tenure.Farmers in the transitional zone of Benin claim that extensive cassava cropping and prior cotton fertiliser enhance

  7. Effect of Estimated Daily Global Solar Radiation Data on the Results of Crop Growth Models

    Trnka, M.; Eitzinger, J.; Kapler, P.; Dubrovský, Martin; Semerádová, Daniela; Žalud, Z.; Formayer, H.

    2007-01-01

    Roč. 7, č. 10 (2007), s. 2330-2362 ISSN 1424-8220 R&D Projects: GA ČR GA205/05/2265 Grant - others:ADAGIO(XE) SSPE-CT-2006-044210 Institutional research plan: CEZ:AV0Z30420517 Keywords : crop yields * spring barley * winter wheat * CERES-Barley * CERES-Wheat * WOFOST Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.573, year: 2007 http://www.mdpi.org/sensors/papers/s7102330.pdf

  8. Potential use of phytocystatins in crop improvement, with a particular focus on legumes.

    Kunert, Karl J; van Wyk, Stefan G; Cullis, Christopher A; Vorster, Barend J; Foyer, Christine H

    2015-06-01

    Phytocystatins are a well-characterized class of naturally occurring protease inhibitors that function by preventing the catalysis of papain-like cysteine proteases. The action of cystatins in biotic stress resistance has been studied intensively, but relatively little is known about their functions in plant growth and defence responses to abiotic stresses, such as drought. Extreme weather events, such as drought and flooding, will have negative impacts on the yields of crop plants, particularly grain legumes. The concepts that changes in cellular protein content and composition are required for acclimation to different abiotic stresses, and that these adjustments are achieved through regulation of proteolysis, are widely accepted. However, the nature and regulation of the protein turnover machinery that underpins essential stress-induced cellular restructuring remain poorly characterized. Cysteine proteases are intrinsic to the genetic programmes that underpin plant development and senescence, but their functions in stress-induced senescence are not well defined. Transgenic plants including soybean that have been engineered to constitutively express phytocystatins show enhanced tolerance to a range of different abiotic stresses including drought, suggesting that manipulation of cysteine protease activities by altered phytocystatin expression in crop plants might be used to improve resilience and quality in the face of climate change. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Relay cropping of wheat (Triticum aestivum L.) in cotton (Gossypium hirsutum L.) improves the profitability of cotton-wheat cropping system in Punjab, Pakistan.

    Sajjad, Aamer; Anjum, Shakeel Ahmad; Ahmad, Riaz; Waraich, Ejaz Ahmad

    2018-01-01

    Delayed sowing of wheat (Triticum aestivum L.) in cotton-based system reduces the productivity and profitability of the cotton-wheat cropping system. In this scenario, relay cropping of wheat in standing cotton might be a viable option to ensure the timely wheat sowing with simultaneous improvement in wheat yields and system profitability. This 2-year study (2012-2013 and 2013-2014) aimed to evaluate the influence of sowing dates and relay cropping combined with different management techniques of cotton sticks on the wheat yield, soil physical properties, and the profitability of the cotton-wheat system. The experiment consisted of five treatments viz. (S1) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, (S2) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator, (S3) sowing of wheat at the 7th of November as relay crop in standing cotton with broadcast method, (S4) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, and (S5) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator. The highest seed cotton yield was observed in the S5 treatment which was statistically similar with the S3 and S4 treatments; seed cotton yield in the S1 and S2 treatments has been the lowest in both years of experimentation. However, the S2 treatment produced substantially higher root length, biological yield, and grain yield of wheat than the other treatments. The lower soil bulk density at 0-10-cm depth was recorded in the S2 treatment which was statistically similar with the S5 treatment during both years of experimentation. The volumetric water contents, net

  10. Improved regional-scale Brazilian cropping systems' mapping based on a semi-automatic object-based clustering approach

    Bellón, Beatriz; Bégué, Agnès; Lo Seen, Danny; Lebourgeois, Valentine; Evangelista, Balbino Antônio; Simões, Margareth; Demonte Ferraz, Rodrigo Peçanha

    2018-06-01

    Cropping systems' maps at fine scale over large areas provide key information for further agricultural production and environmental impact assessments, and thus represent a valuable tool for effective land-use planning. There is, therefore, a growing interest in mapping cropping systems in an operational manner over large areas, and remote sensing approaches based on vegetation index time series analysis have proven to be an efficient tool. However, supervised pixel-based approaches are commonly adopted, requiring resource consuming field campaigns to gather training data. In this paper, we present a new object-based unsupervised classification approach tested on an annual MODIS 16-day composite Normalized Difference Vegetation Index time series and a Landsat 8 mosaic of the State of Tocantins, Brazil, for the 2014-2015 growing season. Two variants of the approach are compared: an hyperclustering approach, and a landscape-clustering approach involving a previous stratification of the study area into landscape units on which the clustering is then performed. The main cropping systems of Tocantins, characterized by the crop types and cropping patterns, were efficiently mapped with the landscape-clustering approach. Results show that stratification prior to clustering significantly improves the classification accuracies for underrepresented and sparsely distributed cropping systems. This study illustrates the potential of unsupervised classification for large area cropping systems' mapping and contributes to the development of generic tools for supporting large-scale agricultural monitoring across regions.

  11. Global warming likely reduces crop yield and water availability of the dryland cropping systems in the U.S. central Great Plains

    We investigated impacts of GCM-projected climate change on dryland crop rotations of wheat-fallow and wheat-corn-fallow in the Central Great Plains (Akron in Colorado, USA) using the CERES 4.0 crop modules in RZWQM2. The climate change scenarios for CO2, temperature, and precipitation were produced ...

  12. Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0 °C

    Chen, Yi; Zhang, Zhao; Tao, Fulu

    2018-05-01

    A new temperature goal of holding the increase in global average temperature well below 2 °C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 °C above pre-industrial levels has been established in the Paris Agreement, which calls for an understanding of climate risk under 1.5 and 2.0 °C warming scenarios. Here, we evaluated the effects of climate change on growth and productivity of three major crops (i.e. maize, wheat, rice) in China during 2106-2115 in warming scenarios of 1.5 and 2.0 °C using a method of ensemble simulation with well-validated Model to capture the Crop-Weather relationship over a Large Area (MCWLA) family crop models, their 10 sets of optimal crop model parameters and 70 climate projections from four global climate models. We presented the spatial patterns of changes in crop growth duration, crop yield, impacts of heat and drought stress, as well as crop yield variability and the probability of crop yield decrease. Results showed that climate change would have major negative impacts on crop production, particularly for wheat in north China, rice in south China and maize across the major cultivation areas, due to a decrease in crop growth duration and an increase in extreme events. By contrast, with moderate increases in temperature, solar radiation, precipitation and atmospheric CO2 concentration, agricultural climate resources such as light and thermal resources could be ameliorated, which would enhance canopy photosynthesis and consequently biomass accumulations and yields. The moderate climate change would slightly worsen the maize growth environment but would result in a much more appropriate growth environment for wheat and rice. As a result, wheat, rice and maize yields would change by +3.9 (+8.6), +4.1 (+9.4) and +0.2 % (-1.7 %), respectively, in a warming scenario of 1.5 °C (2.0 °C). In general, the warming scenarios would bring more opportunities than risks for crop development and food

  13. [Progress in improvement of continuous monoculture cropping problem in Panax ginseng by controlling soil-borne disease management].

    Wang, Rui; Dong, Lin-Lin; Xu, Jiang; Chen, Jun-Wen; Li, Xi-Wen; Chen, Shi-Lin

    2016-11-01

    The continuous monoculture cropping problem severely has hindered the land resource of Panax ginseng cultivation and threatened the sustainable development of ginseng industry. There are comprehensive factors causing the continuous monoculture cropping problem, such as deterioration of soil physical and chemical properties, accumulation of allelochemical, increase of pesticide residue and heavy metal, imbalance of rhizospheric micro-ecosystem, and increase of soil-borne diseases. Among soil-borne disease was one of the key factors. More than 40 soil-borne diseases have been reported in the ginseng cultivation, especially, the diseases were more serious in the ginseng replanting land. Here main soil-borne diseases and their prevention way have been summarized, and we try to provide the effective improvement strategy of continuous monoculture cropping problem focusing on the disease control and offer reference for overcoming the ginseng continuous monoculture cropping problem. Copyright© by the Chinese Pharmaceutical Association.

  14. Nitrogen fixation in Acacia auriculiformis and Albizia lebbeck and their contributions to crop-productivity improvement

    Mbaya, N.; Mwange, K.Nk.; Luyindula, N.

    1998-01-01

    Pot and field experiments assessed N 2 fixation by Albizia lebbeck and Acacia auriculiformis and contributions from prunings to yields of corn and hibiscus. Nitrogen fixation in these tree legumes was poor, with less than 50% N derived from fixation (%Ndfa) when grown in pots, but higher (>70%) in field conditions, after inoculation with compatible Bradyrhizobium strains. Prunings from A. lebbeck, as green manure improved growth of maize and hibiscus, inducing greater corn-kernel yields than did urea. Acacia auriculiformis prunings were similarly beneficial when mixed with leaves of A. lebbeck or L. leucocephala. Application of slow- and fast-nutrient-releasing leaves is required to maximize their contributions to crop productivity. (author)

  15. Sugar Release and Growth of Biofuel Crops are Improved by Downregulation of Pectin Biosynthesis

    Donohoe, Bryon S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sykes, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gjersing, Erica L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ziebell, Angela [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Turner, Geoffrey [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Decker, Steve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Davis, Mark F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Biswal, Ajaya K. [University of Georgia; Oak Ridge National Laboratory; Atmodjo, Melani A. [University of Georgia; Oak Ridge National Laboratory; Li, Mi [Oak Ridge National Laboratory; UT-ORNL Joint Institute for Biological Sciences; Baxter, Holly L. [Oak Ridge National Laboratory; University of Tennessee; Yoo, Chang Geun [Oak Ridge National Laboratory; UT-ORNL Joint Institute for Biological Sciences; Pu, Yunqiao [Oak Ridge National Laboratory; UT-ORNL Joint Institute for Biological Sciences; Lee, Yi-Ching [Oak Ridge National Laboratory; Noble Research Institute; Mazarei, Mitra [Oak Ridge National Laboratory; University of Tennessee; Black, Ian M. [University of Georgia; Zhang, Ji-Yi [Oak Ridge National Laboratory; Noble Research Institute; Ramanna, Hema [Oak Ridge National Laboratory; Noble Research Institute; Bray, Adam L. [Oak Ridge National Laboratory; University of Georgia; King, Zachary R. [Oak Ridge National Laboratory; University of Georgia; LaFayette, Peter R. [Oak Ridge National Laboratory; University of Georgia; Pattathil, Sivakumar [University of Georgia; Oak Ridge National Laboratory; Mohanty, Sushree S. [University of Georgia; Oak Ridge National Laboratory; Ryno, David [University of Georgia; Oak Ridge National Laboratory; Yee, Kelsey [Oak Ridge National Laboratory; Thompson, Olivia A. [Oak Ridge National Laboratory; Rodriguez Jr., Miguel [Oak Ridge National Laboratory; Dumitrache, Alexandru [Oak Ridge National Laboratory; Natzke, Jace [Oak Ridge National Laboratory; Winkeler, Kim [Oak Ridge National Laboratory; ArborGen, Inc.; Collins, Cassandra [Oak Ridge National Laboratory; ArborGen, Inc.; Yang, Xiaohan [Oak Ridge National Laboratory; Tan, Li [University of Georgia; Oak Ridge National Laboratory; Hahn, Michael G. [University of Georgia; Oak Ridge National Laboratory; Davison, Brian H. [Oak Ridge National Laboratory; Udvardi, Michael K. [Oak Ridge National Laboratory; Noble Research Institute; Mielenz, Jonathan R. [Oak Ridge National Laboratory; Nelson, Richard S. [Oak Ridge National Laboratory; Noble Research Institute; Parrott, Wayne A. [Oak Ridge National Laboratory; University of Georgia; Ragauskas, Arthur J. [Oak Ridge National Laboratory; UT-ORNL Joint Institute for Biological Sciences; University of Tennessee; Stewart Jr., C. Neal [Oak Ridge National Laboratory; University of Tennessee; Mohnen, Debra [University of Georgia; Oak Ridge National Laboratory

    2018-02-12

    Cell walls in crops and trees have been engineered for production of biofuels and commodity chemicals, but engineered varieties often fail multi-year field trials and are not commercialized. We engineered reduced expression of a pectin biosynthesis gene (Galacturonosyltransferase 4, GAUT4) in switchgrass and poplar, and find that this improves biomass yields and sugar release from biomass processing. Both traits were maintained in a 3-year field trial of GAUT4-knockdown switchgrass, with up to sevenfold increased saccharification and ethanol production and sixfold increased biomass yield compared with control plants. We show that GAUT4 is an a-1,4-galacturonosyltransferase that synthesizes homogalacturonan (HG). Downregulation of GAUT4 reduces HG and rhamnogalacturonan II (RGII), reduces wall calcium and boron, and increases extractability of cell wall sugars. Decreased recalcitrance in biomass processing and increased growth are likely due to reduced HG and RGII cross-linking in the cell wall.

  16. Utility of T-DNA insertion mutagenesis in arabidopsis for crop improvement

    Feldmann, K A [Arizona Univ., Tucson, AZ (United States). Dept. of Plant Sciences

    1995-11-01

    T-DNA insertion mutagenesis in Arabidopsis is an efficient and expedient method for isolating genes that may have agronomic importance in crop plants. More than 14,000 transformants, with an average of 1.5 inserts per transformant, have been generated in the laboratory at the University of Arizona, Tucson, United States of America. Assuming that the genome of Arabidopsis is 100 Mb and that insertion is random, there is a greater than 50% probability that any particular gene has been tagged in this population. These transformed lines have been screened for any visible alteration in phenotype. In addition, they have been screened under numerous selective regimes such as cold tolerance, auxin and ethylene resistance or sensitivity, and nitrate utilization, among many others. Twenty per cent of these transformants segregate for some type of mutation. Approximately 40% of these are due to T-DNA insertion. Genes have already been cloned from various developmental and biochemical pathways, including flower, root and trichome morphology, light and ethylene regulated growth, fatty acid desaturation and epicuticular wax (EW) production. Some of the isolated genes are being introduced into agronomic species in an attempt to improve specific traits. For example, two genes important in EW production have been introduced into Brassica oleracea (broccoli) to modify the nature of the EW such that engineered plants will show greater resistance to herbivorous insects. Similarly, genes involved in fatty acid desaturation, male sterility, height or nitrogen metabolism, to mention only a few, could also be utilized to improve certain crop traits via genetic engineering. Several of these examples are described. (author). 57 refs, 1 fig., 2 tabs.

  17. Molecular Breeding Strategy and Challenges toward Improvement of Blast Disease Resistance in Rice Crops

    Sadegh eAshkani

    2015-11-01

    Full Text Available Rice is a staple and most important security food crop consumed by almost half of the world’s population. More rice production is needed due to the rapid population growth in the world. Rice blast caused by the fungus, Magnaporthe oryzae is one of the most destructive diseases of this crop in different part of the world. Breakdown of blast resistance is the major cause of yield instability in several rice growing areas. There is a need to develop strategies providing long-lasting disease resistance against a broad spectrum of pathogens, giving protection for a long time over a broad geographic area, promising for sustainable rice production in the future. So far, molecular breeding approaches involving DNA markers, such as QTL mapping, marker-aided selection, gene pyramiding, allele mining and genetic transformation have been used to develop new resistant rice cultivars. Such techniques now are used as a low-cost, high-throughput alternative to conventional methods allowing rapid introgression of disease resistance genes into susceptible varieties as well as the incorporation of multiple genes into individual lines for more durable blast resistance. The paper briefly reviewed the progress of studies on this aspect to provide the interest information for rice disease resistance breeding. This review includes examples of how advanced molecular method have been used in breeding programs for improve blast resistance. New information and knowledge gained from previous research on the recent strategy and challenges toward improvement of blast disease such as pyramiding disease resistance gene for creating new rice varieties with high resistance against multiple diseases will undoubtedly provide new insights into the rice disease control.

  18. Effect of Estimated Daily Global Solar Radiation Data on the Results of Crop Growth Models

    Herbert Formayer

    2007-10-01

    Full Text Available The results of previous studies have suggested that estimated daily globalradiation (RG values contain an error that could compromise the precision of subsequentcrop model applications. The following study presents a detailed site and spatial analysis ofthe RG error propagation in CERES and WOFOST crop growth models in Central Europeanclimate conditions. The research was conducted i at the eight individual sites in Austria andthe Czech Republic where measured daily RG values were available as a reference, withseven methods for RG estimation being tested, and ii for the agricultural areas of the CzechRepublic using daily data from 52 weather stations, with five RG estimation methods. In thelatter case the RG values estimated from the hours of sunshine using the ångström-Prescottformula were used as the standard method because of the lack of measured RG data. At thesite level we found that even the use of methods based on hours of sunshine, which showedthe lowest bias in RG estimates, led to a significant distortion of the key crop model outputs.When the ångström-Prescott method was used to estimate RG, for example, deviationsgreater than ±10 per cent in winter wheat and spring barley yields were noted in 5 to 6 percent of cases. The precision of the yield estimates and other crop model outputs was lowerwhen RG estimates based on the diurnal temperature range and cloud cover were used (mean bias error 2.0 to 4.1 per cent. The methods for estimating RG from the diurnal temperature range produced a wheat yield bias of more than 25 per cent in 12 to 16 per cent of the seasons. Such uncertainty in the crop model outputs makes the reliability of any seasonal yield forecasts or climate change impact assessments questionable if they are based on this type of data. The spatial assessment of the RG data uncertainty propagation over the winter wheat yields also revealed significant differences within the study area. We

  19. Estimating yield gaps at the cropping system level.

    Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G

    2017-05-01

    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

  20. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China.

    Xiong, Zhengqin; Liu, Yinglie; Wu, Zhen; Zhang, Xiaolin; Liu, Pingli; Huang, Taiqing

    2015-12-02

    Double rice (DR) and upland crop-single rice (UR) systems are the major rice-based cropping systems in China, yet differences in net global warming potential (NGWP) and greenhouse gas intensity (GHGI) between the two systems are poorly documented. Accordingly, a 3-year field experiment was conducted to simultaneously measure methane (CH4) and nitrous oxide (N2O) emissions and changes in soil organic carbon (SOC) in oil rape-rice-rice and wheat-rice (representing DR and UR, respectively) systems with straw incorporation (0, 3 and 6 t/ha) during the rice-growing seasons. Compared with the UR system, the annual CH4, N2O, grain yield and NGWP were significantly increased in the DR system, though little effect on SOC sequestration or GHGI was observed without straw incorporation. Straw incorporation increased CH4 emission and SOC sequestration but had no significant effect on N2O emission in both systems. Averaged over the three study years, straw incorporation had no significant effect on NGWP and GHGI in the UR system, whereas these parameters were greatly increased in the DR system, i.e., by 108% (3 t/ha) and 180% (6 t/ha) for NGWP and 103% (3 t/ha) and 168% (6 t/ha) for GHGI.

  1. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China

    Xiong, Zhengqin; Liu, Yinglie; Wu, Zhen; Zhang, Xiaolin; Liu, Pingli; Huang, Taiqing

    2015-01-01

    Double rice (DR) and upland crop-single rice (UR) systems are the major rice-based cropping systems in China, yet differences in net global warming potential (NGWP) and greenhouse gas intensity (GHGI) between the two systems are poorly documented. Accordingly, a 3-year field experiment was conducted to simultaneously measure methane (CH4) and nitrous oxide (N2O) emissions and changes in soil organic carbon (SOC) in oil rape-rice-rice and wheat-rice (representing DR and UR, respectively) systems with straw incorporation (0, 3 and 6 t/ha) during the rice-growing seasons. Compared with the UR system, the annual CH4, N2O, grain yield and NGWP were significantly increased in the DR system, though little effect on SOC sequestration or GHGI was observed without straw incorporation. Straw incorporation increased CH4 emission and SOC sequestration but had no significant effect on N2O emission in both systems. Averaged over the three study years, straw incorporation had no significant effect on NGWP and GHGI in the UR system, whereas these parameters were greatly increased in the DR system, i.e., by 108% (3 t/ha) and 180% (6 t/ha) for NGWP and 103% (3 t/ha) and 168% (6 t/ha) for GHGI. PMID:26626733

  2. Assessing energy efficiencies, economy, and global warming potential (GWP) effects of major crop production systems in Iran: a case study in East Azerbaijan province.

    Mohammadzadeh, Arash; Mahdavi Damghani, Abdolmajid; Vafabakhsh, Javad; Deihimfard, Reza

    2017-07-01

    Efficient use of energy in farming systems is one of the most important implications for decreasing greenhouse gas (GHG) emissions and mitigating global warming (GW). This paper describes the energy use patterns, analyze the economics, and report global warming potential effects of major crop production systems in East Azerbaijan province, Iran. For this purpose, 110 farmers whose main activity was major crop production in the region, including wheat, barley, carrot, tomato, onion, potato, alfalfa, corn silage, canola, and saffron, were surveyed. Some other data was obtained from the Ministry of Agriculture Jihad of Iran. Results showed that, in terms of total energy input, onion (87,556 Mj ha -1 ) and potato (80,869 Mj ha -1 ) production systems were more energy-intensive than other crops. Among the studied crops, the highest values of net return (6563.8 $ ha -1 ) and benefit/cost ratio (1.95) were related to carrot and corn silage production systems, respectively. Studies have also shown that onion and saffron production systems emit the highest (5332.6 kg CO2eq ha -1 ) and lowest (646.24 kg CO 2 eq ha -1 ) CO 2 eq. emission, respectively. When it was averaged across crops, diesel fuel accounted for the greatest GHG contribution with 43% of the total, followed by electric power (28%) and nitrogen fertilizer (21%). In the present study, eco-efficiency was calculated as a ratio of the gross production value and global warming potential effect for the studied crops. Out of all the studied crops, the highest values of eco-efficiency were calculated to be 8.65 $ kg CO 2 eq -1 for the saffron production system followed by the carrot (3.65 $ kg CO 2 eq -1 ) production. Generally, from the aspect of energy balance and use efficiency, the alfalfa production system was the best; however, from an economical point of view, the carrot production system was better than the other crops.

  3. Consequences of the cultivation of energy crops for the global nitrogen cycle

    Bouwman, A.F.; Grinsven, van J.J.M.; Eickhout, B.

    2010-01-01

    In this paper, we assess the global consequences of implementing first- and second-generation bioenergy in the coming five decades, focusing on the nitrogen cycle. We Use a climate mitigation scenario from the Organization for Economic Cooperation and Development's (OECD) Environmental Outlook, in

  4. The green, blue and grey water footprint of crops and derived crop products

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2011-01-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996–2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid.

  5. An Effective Model for Improving Global Health Nursing Competence.

    Kang, Sun-Joo

    2016-01-01

    This paper proposed an effective model for improving global health nursing competence among undergraduate students. A descriptive case study was conducted by evaluation of four implemented programs by the author. All programs were conducted with students majoring in nursing and healthcare, where the researcher was a program director, professor, or facilitator. These programs were analyzed in terms of students' needs assessment, program design, and implementation and evaluation factors. The concept and composition of global nursing competence, identified within previous studies, were deemed appropriate in all of our programs. Program composition varied from curricular to extracurricular domains. During the implementation phase, some of the programs included non-Korean students to improve cultural diversity and overcome language barriers. Qualitative and quantitative surveys were conducted to assess program efficacy. Data triangulation from students' reflective journals was examined. Additionally, students' awareness regarding changes within global health nursing, improved critical thinking, cultural understanding, and global leadership skills were investigated pre- and post-program implementation. The importance of identifying students' needs regarding global nursing competence when developing appropriate curricula is discussed.

  6. An Effective Model for Improving Global Health Nursing Competence

    Sunjoo Kang

    2016-09-01

    Full Text Available This paper developed an effective model for improving global health nursing competence among undergraduate students. A descriptive case study was conducted by implementing four programs. All programs were conducted with students majoring nursing and healthcare, where the researcher was a program director, professor, or facilitator. These programs were analyzed in terms of students’ needs assessment, program design, and implementation and evaluation factors. The concept and composition of global nursing competence, identified within previous studies, were deemed appropriate in all of our programs. Program composition varied from curricular to extracurricular domains. During the implementation phase, most of the programs included non-Korean students to improve cultural diversity and overcome language barriers. Qualitative and quantitative surveys were conducted to assess program efficacy. Data triangulation from students’ reflective journals was examined. Additionally, students’ awareness regarding changes within global health nursing, improved critical thinking, cultural understanding, and global leadership skills were investigated pre and post-program implementation. We discuss how identifying students’ needs regarding global nursing competence when developing appropriate curricula.

  7. Monitoring Crop Productivity over the U.S. Corn Belt using an Improved Light Use Efficiency Model

    Wu, X.; Xiao, X.; Zhang, Y.; Qin, Y.; Doughty, R.

    2017-12-01

    Large-scale monitoring of crop yield is of great significance for forecasting food production and prices and ensuring food security. Satellite data that provide temporally and spatially continuous information that by themselves or in combination with other data or models, raises possibilities to monitor and understand agricultural productivity regionally. In this study, we first used an improved light use efficiency model-Vegetation Photosynthesis Model (VPM) to simulate the gross primary production (GPP). Model evaluation showed that the simulated GPP (GPPVPM) could well captured the spatio-temporal variation of GPP derived from FLUXNET sites. Then we applied the GPPVPM to further monitor crop productivity for corn and soybean over the U.S. Corn Belt and benchmarked with county-level crop yield statistics. We found VPM-based approach provides pretty good estimates (R2 = 0.88, slope = 1.03). We further showed the impacts of climate extremes on the crop productivity and carbon use efficiency. The study indicates the great potential of VPM in estimating crop yield and in understanding of crop yield responses to climate variability and change.

  8. In vitro plant propagation and crop improvement in Lisianthus (Lisianthus Russelianus Hook.

    Rodica Pop

    2016-11-01

    Full Text Available Romania assists at the present time to an increase of production crops for ornamental plants and as a consequence an increased demand of planting material. Thus, improvements of the current multiplication methods are sought after. Lisianthus russelianus Hook. (Eustoma grandiflorum Grise. is a relatively new floral crop to the international market, known for beautiful flowers of various colors and for having a long vase life. This study focused on the development of an efficient protocol for rapid regeneration of this species following known basic and applied aspects of lisianthus biotechnology but exploring new potentials. In the course of experiments conducted, for in vitro multiplication there were used nodal segments (1.5 cm with axillary buds from three F1 hybrids ‘Echo Lavender’, ‘Flamenco White’, ‘Mirage Pastel Pink’ that were inoculated on MS basal medium supplemented with 0.50 mg 1-1 TDZ, 1.0 mg 1-1 BAP and 0.50 mg 1-1 AIA. The results show that the medium with BAP was most effective for obtaining the highest shoots number compared to medium containing TDZ. For rooting induction, two different concentrations of auxin IBA 0.5 mg 1-1 and 1.5 mg 1-1 were used simultaneously on MS basal medium. The highest roots number occurred when using 1.5 mg 1-1 IBA. Both the number of shoots and rooting regeneration were dependent on the cultivar. The highest shoots number was achieved for ’Mirage Pastel Pink’ hybrid (6.91 on the medium containing 1.0 mg 1-1 BAP and 0.50 mg 1-1 IAA.

  9. The family farm in a globalizing world: the role of crop science in alleviating poverty

    Lipton, Michael

    2005-01-01

    "The topic of family farms has been gaining prominence in the academic, policy, and donor communities in recent years. Small farms dominate the agricultural landscape in the developing world, providing the largest source of employment and income to the rural poor, yet smallholders remain highly susceptible to poverty and hunger. With the advance of globalization and greater integration of agricultural markets, the need for increases in agricultural productivity for family farms is particularl...

  10. Global and Country-Level Fragility to Major Disruptions in Crop Production

    Puma, M. J.; Wada, Y.; Chon, S. Y.; Cook, B. I.; Nordbotten, J. M.

    2016-12-01

    New food polices are needed to mitigate vulnerabilities in the global food system to unexpected and severe production losses. The starting point for developing such policies is the ability to quantify the potential range of food and economic losses associated with major food-production shocks. Although individual major shock events are unpredictable, it is possible to quantify the relative vulnerabilities of the global food system as a whole and of individual countries within the system to production shocks. Here we combine a scale for food disruptions, which links the magnitude for a production shock with the corresponding short-term food and economic losses for that event (analogous to the well-known Richter magnitude scale for earthquakes), with country-level food system metrics. We demonstrate the value of our approach using the recent El Niño event of 2015-2016. Ultimately, these metrics can be used as part of efforts to develop national and global level food policies to prepare for and mitigate possible food-supply disruptions.

  11. Toward an Improved Understanding of the Global Fresh Water Budget

    Hildebrand, Peter H.

    2005-01-01

    The major components of the global fresh water cycle include the evaporation from the land and ocean surfaces, precipitation onto the Ocean and land surfaces, the net atmospheric transport of water from oceanic areas over land, and the return flow of water from the land back into the ocean. The additional components of oceanic water transport are few, principally, the mixing of fresh water through the oceanic boundary layer, transport by ocean currents, and sea ice processes. On land the situation is considerably more complex, and includes the deposition of rain and snow on land; water flow in runoff; infiltration of water into the soil and groundwater; storage of water in soil, lakes and streams, and groundwater; polar and glacial ice; and use of water in vegetation and human activities. Knowledge of the key terms in the fresh water flux budget is poor. Some components of the budget, e.g. precipitation, runoff, storage, are measured with variable accuracy across the globe. We are just now obtaining precise measurements of the major components of global fresh water storage in global ice and ground water. The easily accessible fresh water sources in rivers, lakes and snow runoff are only adequately measured in the more affluent portions of the world. presents proposals are suggesting methods of making global measurements of these quantities from space. At the same time, knowledge of the global fresh water resources under the effects of climate change is of increasing importance and the human population grows. This paper provides an overview of the state of knowledge of the global fresh water budget, evaluating the accuracy of various global water budget measuring and modeling techniques. We review the measurement capabilities of satellite instruments as compared with field validation studies and modeling approaches. Based on these analyses, and on the goal of improved knowledge of the global fresh water budget under the effects of climate change, we suggest

  12. Jatropha curcas, a biofuel crop: functional genomics for understanding metabolic pathways and genetic improvement.

    Maghuly, Fatemeh; Laimer, Margit

    2013-10-01

    Jatropha curcas is currently attracting much attention as an oilseed crop for biofuel, as Jatropha can grow under climate and soil conditions that are unsuitable for food production. However, little is known about Jatropha, and there are a number of challenges to be overcome. In fact, Jatropha has not really been domesticated; most of the Jatropha accessions are toxic, which renders the seedcake unsuitable for use as animal feed. The seeds of Jatropha contain high levels of polyunsaturated fatty acids, which negatively impact the biofuel quality. Fruiting of Jatropha is fairly continuous, thus increasing costs of harvesting. Therefore, before starting any improvement program using conventional or molecular breeding techniques, understanding gene function and the genome scale of Jatropha are prerequisites. This review presents currently available and relevant information on the latest technologies (genomics, transcriptomics, proteomics and metabolomics) to decipher important metabolic pathways within Jatropha, such as oil and toxin synthesis. Further, it discusses future directions for biotechnological approaches in Jatropha breeding and improvement. © 2013 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Mutation breeding for quality improvement a case study for oilseed crops

    Roebbelen, G.

    1990-01-01

    The effectiveness of mutation breeding depends on the nature of the genetic system in question, on the availability of efficient screening techniques and on an intelligent integration of the novel genetic variation into an appropriate breeding programme. Oil storage in seeds offer an outstanding example of a biosynthetic process, the end products of which are diverse and sufficiently flexible in their genetic control to allow for improvements of product quality such as economically desired. Sophisticated analytical methods have been developed during the recent decades to quantify relevant steps in seedoil storage even in early generations and in large numbers of small samples. Genetic selection for oilseed quality has been of low intensity in nature; but it has also been one-sided only durign the earlier decades of plant breeding because of the predominantly nutritional consumption of vegetable oils. Today an expanding array of new breeding goals for oleochemical and technical uses is developing. In addition, biotechnical innovations offer promising support to mutation breeding for the domestication or even construction of virtually new oilseed crops for application in both food and non-food uses. The purpose of this paper is to exemplify recent advances and to outline future prospects of mutation breeding for the improvement of oilseed quality. (author). 136 refs, 8 figs, 12 tabs

  14. Improved Environmental Life Cycle Assessment of Crop Production at the Catchment Scale via a Process-Based Nitrogen Simulation Model.

    Liao, Wenjie; van der Werf, Hayo M G; Salmon-Monviola, Jordy

    2015-09-15

    One of the major challenges in environmental life cycle assessment (LCA) of crop production is the nonlinearity between nitrogen (N) fertilizer inputs and on-site N emissions resulting from complex biogeochemical processes. A few studies have addressed this nonlinearity by combining process-based N simulation models with LCA, but none accounted for nitrate (NO3(-)) flows across fields. In this study, we present a new method, TNT2-LCA, that couples the topography-based simulation of nitrogen transfer and transformation (TNT2) model with LCA, and compare the new method with a current LCA method based on a French life cycle inventory database. Application of the two methods to a case study of crop production in a catchment in France showed that, compared to the current method, TNT2-LCA allows delineation of more appropriate temporal limits when developing data for on-site N emissions associated with specific crops in this catchment. It also improves estimates of NO3(-) emissions by better consideration of agricultural practices, soil-climatic conditions, and spatial interactions of NO3(-) flows across fields, and by providing predicted crop yield. The new method presented in this study provides improved LCA of crop production at the catchment scale.

  15. Radioactively labelled DNA probes for crop improvement. Proceedings of a final research co-ordination meeting

    NONE

    2001-11-01

    With the advent of DNA molecular marker technology in the 1980s plant breeding had a new and powerful tool with which to increase its efficacy. Such markers are abundant and directly reveal information about the genotype and therefore are more useful than simple phenotypic markers. In plant breeding applications, molecular markers reveal information about variability and genetic relationships, and enable genetic mapping, which greatly assists the breeder in selection of parents and progeny, as well as in management of breeding strategies. Furthermore, molecular markers linked to phenotypic traits permit very early selection of superior progenies from breeding populations, therefore significantly reducing the need for field testing and greatly increasing efficiency of plant breeding programmes. For this to occur the oligonucleotide probes for labelling genetic markers and/or the primers for polymerase chain reactions to amplify genetic markers needed to be also accessible to scientists in developing Member States. In addition, technical information, training and troubleshooting were needed to support the utilization of DNA markers. In the early 1990s there was a dramatic increase in requests for access to this technology. This co-ordinated research project (CRP) facilitated the transfer of molecular marker technology, in terms of both material and information, from advanced laboratories to assist breeding programmes in developing countries. Two other CRPs were conducted concurrently in order to assist developing Member States to utilise molecular markers - Application of DNA Based Marker Mutations for Improvement of Cereals and other Sexually Reproduced Crop Plants, and Use of Novel DNA Fingerprinting Techniques for the Detection and Characterisation of Genetic Variation in Vegetatively Propagated Crops (IAEA-TECDOC-1010 and IAEA-TECDOC-1047, respectively). The present CRP built upon the success of the former projects by ensuring the availability of probes

  16. Radioactively labelled DNA probes for crop improvement. Proceedings of a final research co-ordination meeting

    2001-11-01

    With the advent of DNA molecular marker technology in the 1980s plant breeding had a new and powerful tool with which to increase its efficacy. Such markers are abundant and directly reveal information about the genotype and therefore are more useful than simple phenotypic markers. In plant breeding applications, molecular markers reveal information about variability and genetic relationships, and enable genetic mapping, which greatly assists the breeder in selection of parents and progeny, as well as in management of breeding strategies. Furthermore, molecular markers linked to phenotypic traits permit very early selection of superior progenies from breeding populations, therefore significantly reducing the need for field testing and greatly increasing efficiency of plant breeding programmes. For this to occur the oligonucleotide probes for labelling genetic markers and/or the primers for polymerase chain reactions to amplify genetic markers needed to be also accessible to scientists in developing Member States. In addition, technical information, training and troubleshooting were needed to support the utilization of DNA markers. In the early 1990s there was a dramatic increase in requests for access to this technology. This co-ordinated research project (CRP) facilitated the transfer of molecular marker technology, in terms of both material and information, from advanced laboratories to assist breeding programmes in developing countries. Two other CRPs were conducted concurrently in order to assist developing Member States to utilise molecular markers - Application of DNA Based Marker Mutations for Improvement of Cereals and other Sexually Reproduced Crop Plants, and Use of Novel DNA Fingerprinting Techniques for the Detection and Characterisation of Genetic Variation in Vegetatively Propagated Crops (IAEA-TECDOC-1010 and IAEA-TECDOC-1047, respectively). The present CRP built upon the success of the former projects by ensuring the availability of probes

  17. Bacterial Artificial Chromosome Libraries of Pulse Crops: Characteristics and Applications

    Kangfu Yu

    2012-01-01

    Full Text Available Pulse crops are considered minor on a global scale despite their nutritional value for human consumption. Therefore, they are relatively less extensively studied in comparison with the major crops. The need to improve pulse crop production and quality will increase with the increasing global demand for food security and people's awareness of nutritious food. The improvement of pulse crops will require fully utilizing all their genetic resources. Bacterial artificial chromosome (BAC libraries of pulse crops are essential genomic resources that have the potential to accelerate gene discovery and enhance molecular breeding in these crops. Here, we review the availability, characteristics, applications, and potential applications of the BAC libraries of pulse crops.

  18. Improving runoff prediction using agronomical information in a cropped, loess covered catchment

    Lefrancq, Marie; Van Dijk, Paul; Jetten, Victor; Schwob, Matthieu; Payraudeau, Sylvain

    2017-01-01

    Predicting runoff hot spots and hot-moments within a headwater crop-catchment is of the utmost importance to reduce adverse effects on aquatic ecosystems by adapting land use management to control runoff. Reliable predictions of runoff patterns during a crop growing season remain challenging. This

  19. Direct use of phosphate rock to improve crop production in Indonesia

    Sisworo, E.L.; Rasjid, H.; Sisworo, W.H.; Haryanto; Idris, K.

    2002-01-01

    In Indonesia most of the areas left for producing crops have soils such as Ultisols and Oxisols that are highly weathered, acid and of low fertility. One of the main constraints is their low available P to support food crop production. P inputs such as inorganic fertilizers, organic matter, and phosphate rock (PR) must be applied. Phosphate rock is one of the options for farmers to use as a P-source for food crops. In the frame of the coordinated research program three pot and five field experiments were conducted to determine the agronomic effectiveness of PR for food crops using 32 P isotopic techniques. Crops used in the pot experiments were lowland rice, soybean, and mungbean. One of the pot experiments was a crop rotation simulation where upland rice, soybean, and mungbean were grown in sequence. Two of the field experiments were a crop rotation of upland rice, soybean, and mungbean. In the field experiments, 32 P was used to determine the agronomic effectiveness, whenever possible. In general, the direct application of PR was able to increase plant growth in the pot experiments and crop production in the field experiments. Use of 32 P was a good tool to determine the agronomic effectiveness of PR in the pot and field experiments. (author)

  20. Direct use of phosphate rock to improve crop production in Indonesia

    Sisworo, E L; Rasjid, H; Sisworo, W H; Haryanto, [Batan, Center for the application of isotopes and radiation, Jakarta (Indonesia); Idris, K [Bogor Agriculture Institute, Bogor (Indonesia)

    2002-02-01

    In Indonesia most of the areas left for producing crops have soils such as Ultisols and Oxisols that are highly weathered, acid and of low fertility. One of the main constraints is their low available P to support food crop production. P inputs such as inorganic fertilizers, organic matter, and phosphate rock (PR) must be applied. Phosphate rock is one of the options for farmers to use as a P-source for food crops. In the frame of the coordinated research program three pot and five field experiments were conducted to determine the agronomic effectiveness of PR for food crops using {sup 32}P isotopic techniques. Crops used in the pot experiments were lowland rice, soybean, and mungbean. One of the pot experiments was a crop rotation simulation where upland rice, soybean, and mungbean were grown in sequence. Two of the field experiments were a crop rotation of upland rice, soybean, and mungbean. In the field experiments, {sup 32}P was used to determine the agronomic effectiveness, whenever possible. In general, the direct application of PR was able to increase plant growth in the pot experiments and crop production in the field experiments. Use of {sup 32}P was a good tool to determine the agronomic effectiveness of PR in the pot and field experiments. (author)

  1. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis

    Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine

    2016-01-01

    A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement. PMID:26799483

  2. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis.

    Pierre Casadebaig

    Full Text Available A crop can be viewed as a complex system with outputs (e.g. yield that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background. The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90 was evaluated in a wide target population of environments (4 sites × 125 years, management practices (3 sowing dates × 3 nitrogen fertilization levels and CO2 (2 levels. The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total. The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear and interaction (i.e. non-linear and interaction sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model improvement.

  3. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis.

    Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine

    2016-01-01

    A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement.

  4. Lasting effects of soil health improvements with management changes in cotton-based cropping systems in a sandy soil

    The soil microbial component is essential for sustainable agricultural systems and soil health. This study evaluated the lasting impacts of 5 years of soil health improvements from alternative cropping systems compared to intensively tilled continuous cotton (Cont. Ctn) in a low organic matter sandy...

  5. Combating a Global Threat to a Clonal Crop: Banana Black Sigatoka Pathogen Pseudocercospora fijiensis (Synonym Mycosphaerella fijiensis) Genomes Reveal Clues for Disease Control

    Arango Isaza, Rafael E.; Diaz-Trujillo, Caucasella; Dhillon, Braham; Aerts, Andrea; Carlier, Jean; Crane, Charles F.; V. de Jong, Tristan; de Vries, Ineke; Dietrich, Robert; Farmer, Andrew D.; Fortes Fereira, Claudia; Garcia, Suzana; Guzman, Mauricio; Hamelin, Richard C.; Lindquist, Erika A.; Mehrabi, Rahim; Quiros, Olman; Schmutz, Jeremy; Shapiro, Harris; Reynolds, Elizabeth; Scalliet, Gabriel; Souza Manoel, Jr.; Stergiopoulos, Ioannis; Van der Lee, Theo A. J.; De Wit, Pierre J. G. M.; Zapater, Marie-Françoise; Zwiers, Lute-Harm; Grigoriev, Igor V.; Goodwin, Stephen B.; Kema, Gert H. J.

    2016-01-01

    Black Sigatoka or black leaf streak disease, caused by the ascomycete fungus Pseudocercospora fijiensis, inflicts huge costs on banana producers, due to crop losses and expenses for disease control. The global banana export trade relies on Cavendish clones that are highly susceptible to P.

  6. Mining waste contaminated lands: an uphill battle for improving crop productivity

    B M Kumar

    2013-10-01

    Full Text Available Mining drastically alters the physico-chemical and biological environment of the landscape. Low organic matter content, unfavourable pH, low water holding capacity, salinity, coarse texture, compaction, siltation of water bodies due to wash off of mineral overburden dumps, inadequate supply of plant nutrients, accelerated erosion, acid generating materials, and mobilization of contaminated sediments into the aquatic environment are the principal constraints experienced in mining contaminated sites. A variety of approaches have been considered for reclaiming mine wastes including direct revegetation of amended waste materials, top soiling, and the use of capillary barriers. The simplest technology to improve crop productivity is the addition of organic amendments. Biosolids and animal manure can support revegetation, but its rapid decomposition especially in the wet tropics, necessitates repeated applications. Recalcitrant materials such as “biochars”, which improve soil properties on a long term basis as well as promote soil carbon sequestration, hold enormous promise. An eco-friendly and cost-effective Microbe Assisted Phytoremediation system has been proposed to increase biological productivity and fertility of mine spoil dumps. Agroforestry practices may enhance the nutrient status of degraded mine spoil lands (facilitation. N-fixing trees are important in this respect. Metal tolerant ecotypes of grasses and calcium-loving plants help restore lead, zinc, and copper mine tailings and gypsum mine spoils, respectively. Overall, an integrated strategy of introduction of metal tolerant plants, genetic engineering for enhanced synthesis and exudation of natural chelators into the rhizosphere, improvement of rhizosphere, and integrated management including agroforestry will be appropriate for reclaiming mining contaminated lands.

  7. Current Knowledge in lentil genomics and its application for crop improvement

    Shiv eKumar

    2015-02-01

    Full Text Available Most of the lentil growing countries face a certain set of abiotic and biotic stresses causing substantial reduction in crop growth, yield, and production. Until-to date, lentil breeders have used conventional plant breeding techniques of selection-recombination-selection cycle to develop improved cultivars. These techniques have been successful in mainstreaming some of the easy-to-manage monogenic traits. However in case of complex quantitative traits, these conventional techniques are less precise. As most of the economic traits are complex, quantitative and often influenced by environments and genotype-environment (GE interaction, the genetic improvement of these traits becomes difficult. Genomics assisted breeding is relatively powerful and fast approach to develop high yielding varieties more suitable to adverse environmental conditions. New tools such as molecular markers and bioinformatics are expected to generate new knowledge and improve our understanding on the genetics of complex traits. In the past, the limited availability of genomic resources in lentil could not allow breeders to employ these tools in mainstream breeding program. The recent application of the Next Generation Sequencing (NGS and Genotyping by sequencing (GBS technologies has facilitated to speed up the lentil genome sequencing project and large discovery of genome-wide SNP markers. Recently, several linkage maps have been developed in lentil through the use of Expressed Sequenced Tag (EST-derived Simple Sequence Repeat (SSR and Single Nucleotide Polymorphism (SNP markers. These maps have emerged as useful genomic resources to identify QTL imparting tolerance to biotic and abiotic stresses in lentil. In this review, the current knowledge on available genomic resources and its application in lentil breeding program are discussed.

  8. Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil.

    Battisti, R; Sentelhas, P C; Boote, K J

    2018-05-01

    Crop growth models have many uncertainties that affect the yield response to climate change. Based on that, the aim of this study was to evaluate the sensitivity of crop models to systematic changes in climate for simulating soybean attainable yield in Southern Brazil. Four crop models were used to simulate yields: AQUACROP, MONICA, DSSAT, and APSIM, as well as their ensemble. The simulations were performed considering changes of air temperature (0, + 1.5, + 3.0, + 4.5, and + 6.0 °C), [CO 2 ] (380, 480, 580, 680, and 780 ppm), rainfall (- 30, - 15, 0, + 15, and + 30%), and solar radiation (- 15, 0, + 15), applied to daily values. The baseline climate was from 1961 to 2014, totalizing 53 crop seasons. The crop models simulated a reduction of attainable yield with temperature increase, reaching 2000 kg ha -1 for the ensemble at + 6 °C, mainly due to shorter crop cycle. For rainfall, the yield had a higher rate of reduction when it was diminished than when rainfall was increased. The crop models increased yield variability when solar radiation was changed from - 15 to + 15%, whereas [CO 2 ] rise resulted in yield gains, following an asymptotic response, with a mean increase of 31% from 380 to 680 ppm. The models used require further attention to improvements in optimal and maximum cardinal temperature for development rate; runoff, water infiltration, deep drainage, and dynamic of root growth; photosynthesis parameters related to soil water availability; and energy balance of soil-plant system to define leaf temperature under elevated CO 2 .

  9. Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil

    Battisti, R.; Sentelhas, P. C.; Boote, K. J.

    2017-12-01

    Crop growth models have many uncertainties that affect the yield response to climate change. Based on that, the aim of this study was to evaluate the sensitivity of crop models to systematic changes in climate for simulating soybean attainable yield in Southern Brazil. Four crop models were used to simulate yields: AQUACROP, MONICA, DSSAT, and APSIM, as well as their ensemble. The simulations were performed considering changes of air temperature (0, + 1.5, + 3.0, + 4.5, and + 6.0 °C), [CO2] (380, 480, 580, 680, and 780 ppm), rainfall (- 30, - 15, 0, + 15, and + 30%), and solar radiation (- 15, 0, + 15), applied to daily values. The baseline climate was from 1961 to 2014, totalizing 53 crop seasons. The crop models simulated a reduction of attainable yield with temperature increase, reaching 2000 kg ha-1 for the ensemble at + 6 °C, mainly due to shorter crop cycle. For rainfall, the yield had a higher rate of reduction when it was diminished than when rainfall was increased. The crop models increased yield variability when solar radiation was changed from - 15 to + 15%, whereas [CO2] rise resulted in yield gains, following an asymptotic response, with a mean increase of 31% from 380 to 680 ppm. The models used require further attention to improvements in optimal and maximum cardinal temperature for development rate; runoff, water infiltration, deep drainage, and dynamic of root growth; photosynthesis parameters related to soil water availability; and energy balance of soil-plant system to define leaf temperature under elevated CO2.

  10. Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil

    Battisti, R.; Sentelhas, P. C.; Boote, K. J.

    2018-05-01

    Crop growth models have many uncertainties that affect the yield response to climate change. Based on that, the aim of this study was to evaluate the sensitivity of crop models to systematic changes in climate for simulating soybean attainable yield in Southern Brazil. Four crop models were used to simulate yields: AQUACROP, MONICA, DSSAT, and APSIM, as well as their ensemble. The simulations were performed considering changes of air temperature (0, + 1.5, + 3.0, + 4.5, and + 6.0 °C), [CO2] (380, 480, 580, 680, and 780 ppm), rainfall (- 30, - 15, 0, + 15, and + 30%), and solar radiation (- 15, 0, + 15), applied to daily values. The baseline climate was from 1961 to 2014, totalizing 53 crop seasons. The crop models simulated a reduction of attainable yield with temperature increase, reaching 2000 kg ha-1 for the ensemble at + 6 °C, mainly due to shorter crop cycle. For rainfall, the yield had a higher rate of reduction when it was diminished than when rainfall was increased. The crop models increased yield variability when solar radiation was changed from - 15 to + 15%, whereas [CO2] rise resulted in yield gains, following an asymptotic response, with a mean increase of 31% from 380 to 680 ppm. The models used require further attention to improvements in optimal and maximum cardinal temperature for development rate; runoff, water infiltration, deep drainage, and dynamic of root growth; photosynthesis parameters related to soil water availability; and energy balance of soil-plant system to define leaf temperature under elevated CO2.

  11. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops.

    Wasson, A P; Richards, R A; Chatrath, R; Misra, S C; Prasad, S V Sai; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Watt, M

    2012-05-01

    Wheat yields globally will depend increasingly on good management to conserve rainfall and new varieties that use water efficiently for grain production. Here we propose an approach for developing new varieties to make better use of deep stored water. We focus on water-limited wheat production in the summer-dominant rainfall regions of India and Australia, but the approach is generally applicable to other environments and root-based constraints. Use of stored deep water is valuable because it is more predictable than variable in-season rainfall and can be measured prior to sowing. Further, this moisture is converted into grain with twice the efficiently of in-season rainfall since it is taken up later in crop growth during the grain-filling period when the roots reach deeper layers. We propose that wheat varieties with a deeper root system, a redistribution of branch root density from the surface to depth, and with greater radial hydraulic conductivity at depth would have higher yields in rainfed systems where crops rely on deep water for grain fill. Developing selection systems for mature root system traits is challenging as there are limited high-throughput phenotyping methods for roots in the field, and there is a risk that traits selected in the lab on young plants will not translate into mature root system traits in the field. We give an example of a breeding programme that combines laboratory and field phenotyping with proof of concept evaluation of the trait at the beginning of the selection programme. This would greatly enhance confidence in a high-throughput laboratory or field screen, and avoid investment in screens without yield value. This approach requires careful selection of field sites and years that allow expression of deep roots and increased yield. It also requires careful selection and crossing of germplasm to allow comparison of root expression among genotypes that are similar for other traits, especially flowering time and disease and toxicity

  12. Genetically modified crops: the fastest adopted crop technology in the history of modern agriculture

    Khush Gurdev S

    2012-09-01

    Full Text Available Abstract The major scientific advances of the last century featured the identification of the structure of DNA, the development of molecular biology and the technology to exploit these advances. These breakthroughs gave us new tools for crop improvement, including molecular marker-aided selection (MAS and genetic modification (GM. MAS improves the efficiency of breeding programs, and GM allows us to accomplish breeding objectives not possible through conventional breeding approaches. MAS is not controversial and is now routinely used in crop improvement programs. However, the international debate about the application of genetic manipulation to crop improvement has slowed the adoption of GM crops in developing as well as in European countries. Since GM crops were first introduced to global agriculture in 1996, Clive James has published annual reports on the global status of commercialized GM crops as well as special reports on individual GM crops for The International Service for the Acquisition of Agri-biotech Applications (ISAAA. His 34th report, Global Status of Commercialized Biotech/ GM crops: 2011 [1] is essential reading for those who are concerned about world food security.

  13. Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants.

    Zalabák, David; Pospíšilová, Hana; Šmehilová, Mária; Mrízová, Katarína; Frébort, Ivo; Galuszka, Petr

    2013-01-01

    Cytokinins (CKs) are ubiquitous phytohormones that participate in development, morphogenesis and many physiological processes throughout plant kingdom. In higher plants, mutants and transgenic cells and tissues with altered activity of CK metabolic enzymes or perception machinery, have highlighted their crucial involvement in different agriculturally important traits, such as productivity, increased tolerance to various stresses and overall plant morphology. Furthermore, recent precise metabolomic analyses have elucidated the specific occurrence and distinct functions of different CK types in various plant species. Thus, smooth manipulation of active CK levels in a spatial and temporal way could be a very potent tool for plant biotechnology in the future. This review summarises recent advances in cytokinin research ranging from transgenic alteration of CK biosynthetic, degradation and glucosylation activities and CK perception to detailed elucidation of molecular processes, in which CKs work as a trigger in model plants. The first attempts to improve the quality of crop plants, focused on cereals are discussed, together with proposed mechanism of action of the responses involved. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Application of radiation induced mutations in the improvement of vegetatively propagated crops

    Mohan Jain, S.

    2009-01-01

    Full text: The NOBEL PEACE PRIZE, 2005, award to the International Atomic Energy Agency (IAEA) is a recognition to the contributions of nuclear technique applications, in a tough face off with plant genetic engineering, in sustainable food production, improvement of nutrition balance, and food security. Nuclear technology is effective in generating genetic variability, selection of useful mutants and multiplication in large numbers. A wide range of mutants of various vegetatively propagated crops have been isolated (www.iaea.org). In vitro plant regeneration is very much genotypic dependent, type of explants; culture medium, plant growth regulators etc. Somatic embryogenesis is an ideal system for the selection and multiplication of mutants and also would save time to dissociate chimeras. The role of molecular tools has become very crucial in understanding the molecular basis of differentiation and genetic variability; gene identification, isolation, and transfer. The new gene discovery with reverse and forward genetics will open the way for developing functional genomic plant breeding. There is no opposition from the consumers to consume food products derived from mutants, unlike strong opposition to the consumption of genetically modified (GM) food. Moreover, bio-safety regulations are not applied to mutants, however, strictly adhere to GM food. Tomorrow's agriculture will be under tremendous pressure for feeding the world's population in the face of climatic changes, salt and drought stresses, and biotic stresses; and mutagenesis would be the answer

  15. The potential of Arachis pintoi biomass to improve quality of soil continuously used for cassava cropping

    N. Muddarisna

    2014-01-01

    Full Text Available A field experiment that was aimed to elucidate the effects of application of Arachis pintoi biomass and animal dung on quality of soil continuously used for cassava cropping was conducted at Jatikerto Village, Kromengan District of Malang Regency. Eight treatments tested were 100% NPK inorganic fertilizer, 100 kg N Arachis pintoi/ha, (3 100 kg N chicken dung/ ha, 100 kg N cow dung /ha, 100 kg N goat dung /ha, 100 kg N Arachis pintoi + chicken dung /ha, 100 kg N Arachis pintoi + cow dung /ha, and 100 kg N Arachis pintoi + goat dung /ha. Monitoring quality of top soil (0-20 cm was carried out at planting time and 3 months after planting. Soil samples were collected and analyzed for chemical and physical properties. Yield of cassava was measured at 6 months after planting. Results of this study showed that application of organic fertilizer in forms of green manure (Arachis pintoi biomass, and animal dung significantly improved physical and chemical properties of soil. Application of 50% NPK combined with organic manures did not significantly gave different tuber yield with that of 100% NPK.

  16. The uncertainty of crop yield projections is reduced by improved temperature response functions

    Wang, Enli; Martre, Pierre; Zhao, Zhigan

    2017-01-01

    , we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature......Quality) and analysing their results against the HSC data and an additional global dataset from the International Heat Stress Genotpye Experiment (IHSGE)8 carried out by the International Maize and Wheat Improvement Center (CIMMYT). More importantly, we derive, based on newest knowledge and data, a set of new...

  17. Photosynthetic energy conversion efficiency: setting a baseline for gauging future improvements in important food and biofuel crops.

    Slattery, Rebecca A; Ort, Donald R

    2015-06-01

    The conversion efficiency (ε(c)) of absorbed radiation into biomass (MJ of dry matter per MJ of absorbed photosynthetically active radiation) is a component of yield potential that has been estimated at less than half the theoretical maximum. Various strategies have been proposed to improve ε(c), but a statistical analysis to establish baseline ε(c) levels across different crop functional types is lacking. Data from 164 published ε(c) studies conducted in relatively unstressed growth conditions were used to determine the means, greatest contributors to variation, and genetic trends in ε(c )across important food and biofuel crop species. ε(c) was greatest in biofuel crops (0.049-0.066), followed by C4 food crops (0.046-0.049), C3 nonlegumes (0.036-0.041), and finally C3 legumes (0.028-0.035). Despite confining our analysis to relatively unstressed growth conditions, total incident solar radiation and average growing season temperature most often accounted for the largest portion of ε(c) variability. Genetic improvements in ε(c), when present, were less than 0.7% per year, revealing the unrealized potential of improving ε(c) as a promising contributing strategy to meet projected future agricultural demand. © 2015 American Society of Plant Biologists. All Rights Reserved.

  18. Global, Persistent, Real-time Multi-sensor Automated Satellite Image Analysis and Crop Forecasting in Commercial Cloud

    Brumby, S. P.; Warren, M. S.; Keisler, R.; Chartrand, R.; Skillman, S.; Franco, E.; Kontgis, C.; Moody, D.; Kelton, T.; Mathis, M.

    2016-12-01

    Cloud computing, combined with recent advances in machine learning for computer vision, is enabling understanding of the world at a scale and at a level of space and time granularity never before feasible. Multi-decadal Earth remote sensing datasets at the petabyte scale (8×10^15 bits) are now available in commercial cloud, and new satellite constellations will generate daily global coverage at a few meters per pixel. Public and commercial satellite observations now provide a wide range of sensor modalities, from traditional visible/infrared to dual-polarity synthetic aperture radar (SAR). This provides the opportunity to build a continuously updated map of the world supporting the academic community and decision-makers in government, finanace and industry. We report on work demonstrating country-scale agricultural forecasting, and global-scale land cover/land, use mapping using a range of public and commercial satellite imagery. We describe processing over a petabyte of compressed raw data from 2.8 quadrillion pixels (2.8 petapixels) acquired by the US Landsat and MODIS programs over the past 40 years. Using commodity cloud computing resources, we convert the imagery to a calibrated, georeferenced, multiresolution tiled format suited for machine-learning analysis. We believe ours is the first application to process, in less than a day, on generally available resources, over a petabyte of scientific image data. We report on work combining this imagery with time-series SAR collected by ESA Sentinel 1. We report on work using this reprocessed dataset for experiments demonstrating country-scale food production monitoring, an indicator for famine early warning. We apply remote sensing science and machine learning algorithms to detect and classify agricultural crops and then estimate crop yields and detect threats to food security (e.g., flooding, drought). The software platform and analysis methodology also support monitoring water resources, forests and other general

  19. An Effective Model for Improving Global Health Nursing Competence

    Sunjoo Kang

    2016-01-01

    This paper proposed an effective model for improving global health nursing competence among undergraduate students. A descriptive case study was conducted by evaluation of four implemented programs by the author. All programs were conducted with students majoring in nursing and healthcare, where the researcher was a program director, professor, or facilitator. These programs were analyzed in terms of students’ needs assessment, program design, and implementation and evaluation factors. The co...

  20. Improving Global Precipitation Product Access at the GES DISC

    Liu, Z.; Vollmer, B.; Savtchenko, A.; Ostrenga, D.; DeShong, B.; Fang, F.; Albayrak, R,; Sherman, E.; Greene, M.; Li, A.; hide

    2018-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has been actively and continually engaged in improving the access to and use of Global Precipitation Measurement (GPM), Tropical Precipitation Measuring Mission (TRMM), and other precipitation data, including the following new services and Ongoing development activities: Updates on GPM products and data services, New features in Giovanni, Ongoing development activities; and Precipitation product and service outreach activities.

  1. IMPROVING SEMI-GLOBAL MATCHING: COST AGGREGATION AND CONFIDENCE MEASURE

    P. d’Angelo

    2016-06-01

    Full Text Available Digital elevation models are one of the basic products that can be generated from remotely sensed imagery. The Semi Global Matching (SGM algorithm is a robust and practical algorithm for dense image matching. The connection between SGM and Belief Propagation was recently developed, and based on that improvements such as correction of over-counting the data term, and a new confidence measure have been proposed. Later the MGM algorithm has been proposed, it aims at improving the regularization step of SGM, but has only been evaluated on the Middlebury stereo benchmark so far. This paper evaluates these proposed improvements on the ISPRS satellite stereo benchmark, using a Pleiades Triplet and a Cartosat-1 Stereo pair. The over-counting correction slightly improves matching density, at the expense of adding a few outliers. The MGM cost aggregation shows leads to a slight increase of accuracy.

  2. Alternate bearing in citrus: changes in the expression of flowering control genes and in global gene expression in ON- versus OFF-crop trees.

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Zemach, Hanita; Weissberg, Mira; Ophir, Ron; Blumwald, Eduardo; Sadka, Avi

    2012-01-01

    Alternate bearing (AB) is the process in fruit trees by which cycles of heavy yield (ON crop) one year are followed by a light yield (OFF crop) the next. Heavy yield usually reduces flowering intensity the following year. Despite its agricultural importance, how the developing crop influences the following year's return bloom and yield is not fully understood. It might be assumed that an 'AB signal' is generated in the fruit, or in another organ that senses fruit presence, and moves into the bud to determine its fate-flowering or vegetative growth. The bud then responds to fruit presence by altering regulatory and metabolic pathways. Determining these pathways, and when they are altered, might indicate the nature of this putative AB signal. We studied bud morphology, the expression of flowering control genes, and global gene expression in ON- and OFF-crop buds. In May, shortly after flowering and fruit set, OFF-crop buds were already significantly longer than ON-crop buds. The number of differentially expressed genes was higher in May than at the other tested time points. Processes differentially expressed between ON- and OFF-crop trees included key metabolic and regulatory pathways, such as photosynthesis and secondary metabolism. The expression of genes of trehalose metabolism and flavonoid metabolism was validated by nCounter technology, and the latter was confirmed by metabolomic analysis. Among genes induced in OFF-crop trees was one homologous to SQUAMOSA PROMOTER BINDING-LIKE (SPL), which controls juvenile-to-adult and annual phase transitions, regulated by miR156. The expression pattern of SPL-like, miR156 and other flowering control genes suggested that fruit load affects bud fate, and therefore development and metabolism, a relatively long time before the flowering induction period. Results shed light on some of the metabolic and regulatory processes that are altered in ON and OFF buds.

  3. Crop maize evapotranspiration; 2: ratios between the evapotranspiration to class A pan evaporation, to the reference evapotranspiration and to global solar radiation, at three sowing dates

    Matzenauer, R.; Bergamashi, H.; Berlato, M.A.

    1998-01-01

    Water availability is the most limiting factor for growth and grain yield of maize in the State of Rio Grande do Sul, Brazil, reducing frequently this production. Therefore, studies involving the determination of the water requirements are important for irrigation management to minimize the water availability problem. The main objective of this study was to calculate ratios between the maize crop evapotranspiration (ETm) to the class A pan evaporation (Eo), to the reference evapotranspiration (ETo) and to global solar radiation (Rs), in order to obtain ralations between ETm/Eo, ETm/ETo and ETm/Rs, at different crop stages for three different sowing dates. Field experiments were carried out at the Experimental Station of Taquari/RS, 29°48’ of south latitude, 51°49’of west longitude, and 76m of altitude, from 1976/77 to 1988/89. ETm was measured using drainage lysimeters (Thornthwaite-Mather type). The average ratio between ETm and Eo for whole crop cycle (from sowing to physiological maturity) was 0.66, 0.72, and 0.68, respectively, in crops sown on September, October, and November. The average ratio between ETm and ETo for whole crop cycle was 0.74, 0.81, and 0.8, in crops sown on September, October, and November, while the average ratio between ETm and Rs was 0.45, 0.51, and 0.49 for the same sowing dates. The higher average values of crop coefficients occured from tasseling to the milk grain stage, when ETm/Eo was 0.81, 0.92, and 0.81; ETm/ETo was 0.97, 1.05, and 0.96, whereas ETm/Rs was 0.6, 0.68, and 0.6 for crops sown on September, October, and November, respectively [pt

  4. Greenhouse Gas Emissions and Global Warming Potential of Traditional and Diversified Tropical Rice Rotation Systems including Impacts of Upland Crop Management Practices i.e. Mulching and Inter-crop Cultivation

    Janz, Baldur; Weller, Sebastian; Kraus, David; Wassmann, Reiner; Butterbach-Bahl, Klaus; Kiese, Ralf

    2016-04-01

    Paddy rice cultivation is increasingly challenged by irrigation water scarcity, while at the same time changes in demand (e.g. changes in diets or increasing demand for biofuels) will feed back on agricultural practices. These factors are changing traditional cropping patterns from flooded double-rice systems to the introduction of well-aerated upland crop systems in the dry season. Emissions of methane (CH4) are expected to decrease, while emissions of nitrous oxide (N2O) will increase and soil organic carbon (SOC) stocks will most likely be volatilized in the form of carbon dioxide (CO2). We measured greenhouse gas (GHG) emissions at the International Rice Research Institute (IRRI) in the Philippines to provide a comparative assessment of the global warming potentials (GWP) as well as yield scaled GWPs of different crop rotations and to evaluate mitigation potentials or risks of new management practices i.e. mulching and inter-crop cultivation. New management practices of mulching and intercrop cultivation will also have the potential to change SOC dynamics, thus can play the key role in contributing to the GWP of upland cropping systems. To present, more than three years of continuous measurement data of CH4 and N2O emissions in double-rice cropping (R-R) and paddy rice rotations diversified with either maize (R-M) or aerobic rice (R-A) in upland cultivation have been collected. Introduction of upland crops in the dry season reduced irrigation water use and CH4 emissions by 66-81% and 95-99%, respectively. Moreover, for practices including upland crops, CH4 emissions in the subsequent wet season with paddy rice were reduced by 54-60%. Although annual N2O emissions increased twice- to threefold in the diversified systems, the strong reduction of CH4 led to a significantly lower (pbalance but also with regard to soil fertility. New upland crop management practices where first implemented during land-preparation for dry season (July) 2015 where i) 6t/ha rice straw

  5. Water balance and fertigation for crop improvement in West Asia. Results of a technical co-operation project

    2002-01-01

    Mediterranean countries have a severe shortage of water resources for agricultural, municipal and industrial purposes. This situation is aggravated daily due to the rapidly increasing population in the area. Agriculture is the biggest consumer of water with about 80% of the renewable resource used for irrigation. Traditional irrigation methods are highly inefficient: only about one-third of the applied water is actually transpired by the crops. Clearly, there is great scope for improved irrigation management. Intensification of agricultural production to meet growing market demand requires the simultaneous application of irrigation water and fertilizers. Application of fertilizer in drip irrigation (fertigation) is an effective way to promote efficient use of these scarce and expensive resources. There is widespread interest in Mediterranean countries in fertigation. Nevertheless, information on the form and concentration of the nutrients required for different crops is presently inadequate. Moreover, the low fertilizer recoveries due to extensive fertilization practiced during the last few decades have created serious agricultural and environmental problems. High nitrate concentrations in groundwater and deterioration of some important quality parameters of agricultural products are the main concerns. Recognizing the potential role of nuclear techniques in identifying improved water and fertilizer management practices, the IAEA implemented two regional technical co-operation projects during the period 1995-2000 with eight participating countries from the West Asia region: The Islamic Republic of Iran, Jordan, Lebanon, Saudi Arabia, the Syria Arab Republic, Turkey, United Arab Emirates and Yemen. The main objective was to establish water balance and fertigation practices using nuclear techniques, with a view to improving crop production in arid and semi-arid zones. The projects aimed to compare the following parameters under conventional fertilizer and water

  6. Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance

    Neeru Kaushal

    2016-12-01

    Full Text Available The rising temperatures are resulting in heat stress for various agricultural crops to limit their growth, metabolism, and leading to significant loss of yield potential worldwide. Heat stress adversely affects normal plant growth and development depending on the sensitivity of each crop species. Each crop species has its own range of temperature maxima and minima at different developmental stages beyond which all these processes get inhibited. The reproductive stage is on the whole more sensitive to heat stress, resulting in impaired fertilization to cause abortion of flowers. During seed filling, heat stress retards seed growth by affecting all the biochemical events to reduce seed size. Unfavorable temperature may significantly affect photosynthesis, respiration, water balance, and membrane stability of leaves. To combat heat stress, plants acquire various defense mechanisms for their survival such as maintaining membrane stability, and scavenging reactive oxygen species by generating antioxidants and stress proteins. Thermo-tolerance can be improved by the accumulation of various compounds of low molecular mass known as thermo-protectants as well as phyto-hormones. Exogenous application of these molecules has benefited plants growing under heat stress. Alternatively, transgenic plants over-expressing the enzymes catalyzing the synthesis of these molecules may be raised to increase their endogenous levels to improve heat tolerance. In recent times, various transgenics have been developed with improved thermo-tolerance having potential benefits for inducing heat tolerance in food crops. Updated information about of the effects of heat stress on various food crops and their responses as well as adaptive mechanisms is reviewed here.

  7. Potential Global Benefits of Improved Ceiling Fan Energy Efficiency

    Sathaye, Nakul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Letschert, Virginie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-10-31

    Ceiling fans contribute significantly to residential electricity consumption, both in an absolute sense and as a proportion of household consumption in many locations, especially in developing countries in warm climates. However, there has been little detailed assessment of the costs and benefits of efficiency improvement options for ceiling fans and the potential resulting electricity consumption and greenhouse gas (GHG) emissions reductions. We analyze the costs and benefits of several options to improve the efficiency of ceiling fans and assess the global potential for electricity savings and GHG emission reductions with more detailed assessments for India, China, and the U.S. We find that ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terrawatt hours per year (TWh/year) could be saved and 25 million metric tons of carbon dioxide (CO2) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize this savings potential.

  8. Improving global laboratory capabilities for emergency radionuclide bioassay

    Li, C.; Jourdain, J.; Kramer, G. H.

    2012-01-01

    During a radiological or nuclear emergency, first-responders and the general public may be internally contaminated with the radionuclide(s) involved. A timely radionuclide bioassay provides important information about contamination, for subsequent dose assessment and medical management. Both technical and operational gaps are discussed in this paper. As many people may need to be assessed in a short period of time, any single laboratory may find its capabilities insufficient. Laboratories from other regions or other countries may be called upon for assistance. This paper proposes a road-map to improve global capabilities in emergency radionuclide bioassay, suggesting a phased approach for establishing a global laboratory network. Existing international collaboration platforms could provide the base on which to build such a network. (authors)

  9. Organic farming and cover crops as an alternative to mineral fertilizers to improve soil physical properties

    Sánchez de Cima, Diego; Luik, Anne; Reintam, Endla

    2015-10-01

    For testing how cover crops and different fertilization managements affect the soil physical properties in a plough based tillage system, a five-year crop rotation experiment (field pea, white potato, common barley undersown with red clover, red clover, and winter wheat) was set. The rotation was managed under four different farming systems: two conventional: with and without mineral fertilizers and two organic, both with winter cover crops (later ploughed and used as green manure) and one where cattle manure was added yearly. The measurements conducted were penetration resistance, soil water content, porosity, water permeability, and organic carbon. Yearly variations were linked to the number of tillage operations, and a cumulative effect of soil organic carbon in the soil as a result of the different fertilization amendments, organic or mineral. All the systems showed similar tendencies along the three years of study and differences were only found between the control and the other systems. Mineral fertilizers enhanced the overall physical soil conditions due to the higher yield in the system. In the organic systems, cover crops and cattle manure did not have a significant effect on soil physical properties in comparison with the conventional ones, which were kept bare during the winter period. The extra organic matter boosted the positive effect of crop rotation, but the higher number of tillage operations in both organic systems counteracted this effect to a greater or lesser extent.

  10. Global gravity field from recent satellites (DTU15) - Arctic improvements

    Andersen, O. B.; Knudsen, P.; Kenyon, S.

    2017-01-01

    Global marine gravity field modelling using satellite altimetry is currently undergoing huge improvement with the completion of the Jason-1 end-of-life geodetic mission, but particularly with the continuing Cryosat-2 mission. These new satellites provide three times as many geodetic mission...... altimetric sea surface height observations as ever before. The impact of these new geodetic mission data is a dramatic improvement of particularly the shorter wavelength of the gravity field (10-20 km) which is now being mapped at significantly higher accuracy. The quality of the altimetric gravity field...... is in many places surpassing the quality of gravity fields derived using non-commercial marine gravity observations. Cryosat-2 provides for the first time altimetry throughout the Arctic Ocean up to 88°N. Here, the huge improvement in marine gravity mapping is shown through comparison with high quality...

  11. Improved data for integrated modeling of global environmental change

    Lotze-Campen, Hermann

    2011-12-01

    The assessment of global environmental changes, their impact on human societies, and possible management options requires large-scale, integrated modeling efforts. These models have to link biophysical with socio-economic processes, and they have to take spatial heterogeneity of environmental conditions into account. Land use change and freshwater use are two key research areas where spatial aggregation and the use of regional average numbers may lead to biased results. Useful insights can only be obtained if processes like economic globalization can be consistently linked to local environmental conditions and resource constraints (Lambin and Meyfroidt 2011). Spatially explicit modeling of environmental changes at the global scale has a long tradition in the natural sciences (Woodward et al 1995, Alcamo et al 1996, Leemans et al 1996). Socio-economic models with comparable spatial detail, e.g. on grid-based land use change, are much less common (Heistermann et al 2006), but are increasingly being developed (Popp et al 2011, Schneider et al 2011). Spatially explicit models require spatially explicit input data, which often constrains their development and application at the global scale. The amount and quality of available data on environmental conditions is growing fast—primarily due to improved earth observation methods. Moreover, systematic efforts for collecting and linking these data across sectors are on the way (www.earthobservations.org). This has, among others, also helped to provide consistent databases on different land cover and land use types (Erb et al 2007). However, spatially explicit data on specific anthropogenic driving forces of global environmental change are still scarce—also because these cannot be collected with satellites or other devices. The basic data on socio-economic driving forces, i.e. population density and wealth (measured as gross domestic product per capita), have been prepared for spatially explicit analyses (CIESIN, IFPRI

  12. Tanzanian farmers' knowledge and attitudes to GM biotechnology and the potential use of GM crops to provide improved levels of food security. A Qualitative Study

    Herron Caroline M; Newell James N; Lewis Christopher P; Nawabu Haidari

    2010-01-01

    Abstract Background Genetically Modified (GM) crops have been championed as one possible method to improve food security and individual nutritional status in sub Saharan Africa. Understanding and acceptability of GM crop technology to farmers and consumers have not been assessed. We developed a qualitative research study involving farmers as both producers and consumers to gauge the understanding of GM crop technology, its acceptability, and identifying issues of concern. Methods Nineteen ind...

  13. Improving Allergen Prediction in Main Crops Using a Weighted Integrative Method.

    Li, Jing; Wang, Jing; Li, Jing

    2017-12-01

    As a public health problem, food allergy is frequently caused by food allergy proteins, which trigger a type-I hypersensitivity reaction in the immune system of atopic individuals. The food allergens in our daily lives are mainly from crops including rice, wheat, soybean and maize. However, allergens in these main crops are far from fully uncovered. Although some bioinformatics tools or methods predicting the potential allergenicity of proteins have been proposed, each method has their limitation. In this paper, we built a novel algorithm PREAL W , which integrated PREAL, FAO/WHO criteria and motif-based method by a weighted average score, to benefit the advantages of different methods. Our results illustrated PREAL W has better performance significantly in the crops' allergen prediction. This integrative allergen prediction algorithm could be useful for critical food safety matters. The PREAL W could be accessed at http://lilab.life.sjtu.edu.cn:8080/prealw .

  14. A report on 36 years practical work on crop improvement through induced mutagenesis

    Datta, S.K. [CSIR, Madhyamgram Experimental Farm, Bose Institute, Kolkata (India)], E-mail: subodhskdatta@rediffmail.com

    2008-07-01

    Physical and/or chemical mutagens cause random changes in the nuclear DNA or cytoplasmic organelles, resulting in gene, chromosomal or genomic mutations. The author will share his life time experience and achievement on induced mutagenesis. The author initiated induced mutagenesis work in 1971 till July 2007 and used both physical (X-ray and Gamma rays) and chemical (EMS, MMS, Colchicine) mutagens for improvement of vegetables (Trichosanthes anguina L, T. cucumarina , Cucurbita maxima L, Cephalandra indica, Luffa acutangula Roxb., Lagenaria ciceraria), medicinal (Trigonella foenum-graecum L, Mentha citrate Ehrh), pulse (Winged Bean (Psophocarpus tetragonolobus L. D.C.), oil bearing (Jatropha curcas L, Rosa damascene, Cymbopogon flexuosus (Nees) Wats) and ornamental (Bougainvillea, Chrysanthemum, Dahlia, Gladiolus, Hibiscus, Lantana depressa Naud, Rose, Tuberose, Narcissus etc.) crops. All classical and advanced mutagenesis methods have been extensively used for the development of new and novel cultivars of economic importance. Early flowering, late flowering, dwarf, yellow fruit color, crinkled leaf, short thick fruit, increased branching, increased pod and seed number, seed size, seed color (green, brown, chocolate color) high fruit-, seed-, oil- and punicic acidyielding mutants have been developed in T. anguina, T. fornum-graecum, Winged Bean and in J.curcas containing 'curcas oil', an efficient substitute fuel for diesel engines. Induction of flower color and chlorophyll variegated mutants in L. depressa proved the efficiency of mutation technique for domestication of wild relatives. Author was deeply engaged for the last 30 years for improvement of ornamentals and has been most successful to produce quite a large number of new promising mutant varieties in different ornamentals. Colchicine has been successfully used to develop new flower color in chrysanthemum and rose and high yielding strains in T. anguina. A novel direct in vitro regeneration technique has

  15. Farmers Participatory Research in the Evaluation of Maize Crop Residues for Improved Dairy Cattle Production in Eastern Kenya

    Kiruiro, E.M.; Kariuki, I.W.; Kang'ara, J.; Ouma, O.

    1999-01-01

    Informal and formal surveys, and participatory rural appraisal conducted within the coffee land-use system of Embu District in Eastern Kenya identified feed shortage as a major constraint to increased dairy production on small holder farms. To address this constraint, a two-year (1996-1998) on-farm research project involving 20 farms in Manyatta division, Embu District was initiated with broad objectives of developing components technologies that would use maize crop residues. This was due to the recognition of the fact that the greatest potential for improving field availability would be in the exploitation of crop residues, especially those derived from maize, the main staple crop in the region. Based on these reality appropriate technologies that would offer viable offers for the use of crop residues were identified and discussed during workshops and meetings with farmers. Component technologies considered included drying of maize leaves after defoliation and post-harvest storage methods for dry maize stover. this paper discussed the results of the participatory research in context of farmers' involvement in the technology development, testing, evaluation and promotion. The study demonstrated that involving farmers in all stages of the research process, enhanced their interest and participation in the testing and subsequent adoption of appropriate technologies

  16. What is the potential of cropland albedo management in the fight against global warming? A case study based on the use of cover crops

    Carrer, Dominique; Pique, Gaétan; Ferlicoq, Morgan; Ceamanos, Xavier; Ceschia, Eric

    2018-04-01

    Land cover management in agricultural areas is a powerful tool that could play a role in the mitigation of climate change and the counterbalance of global warming. First, we attempted to quantify the radiative forcing that would increase the surface albedo of croplands in Europe following the inclusion of cover crops during the fallow period. This is possible since the albedo of bare soil in many areas of Europe is lower than the albedo of vegetation. By using satellite data, we demonstrated that the introduction of cover crops into the crop rotation during the fallow period would increase the albedo over 4.17% of Europe’s surface. According to our study, the effect resulting from this increase in the albedo of the croplands would be equivalent to a mitigation of 3.16 MtCO2-eq.year‑1 over a 100 year time horizon. This is equivalent to a mitigation potential per surface unit (m2) of introduced cover crop over Europe of 15.91 gCO2-eq.year‑1.m‑2. This value, obtained at the European scale, is consistent with previous estimates. We show that this mitigation potential could be increased by 27% if the cover crop is maintained for a longer period than 3 months and reduced by 28% in the case of no irrigation. In the second part of this work, based on recent studies estimating the impact of cover crops on soil carbon sequestration and the use of fertilizer, we added the albedo effect to those estimates, and we argued that, by considering areas favourable to their introduction, cover crops in Europe could mitigate human-induced agricultural greenhouse gas emissions by up to 7% per year, using 2011 as a reference. The impact of the albedo change per year would be between 10% and 13% of this total impact. The countries showing the greatest mitigation potentials are France, Bulgaria, Romania, and Germany.

  17. Improved Hydrology over Peatlands in a Global Land Modeling System

    Bechtold, M.; Delannoy, G.; Reichle, R.; Koster, R.; Mahanama, S.; Roose, Dirk

    2018-01-01

    Peatlands of the Northern Hemisphere represent an important carbon pool that mainly accumulated since the last ice age under permanently wet conditions in specific geological and climatic settings. The carbon balance of peatlands is closely coupled to water table dynamics. Consequently, the future carbon balance over peatlands is strongly dependent on how hydrology in peatlands will react to changing boundary conditions, e.g. due to climate change or regional water level drawdown of connected aquifers or streams. Global land surface modeling over organic-rich regions can provide valuable global-scale insights on where and how peatlands are in transition due to changing boundary conditions. However, the current global land surface models are not able to reproduce typical hydrological dynamics in peatlands well. We implemented specific structural and parametric changes to account for key hydrological characteristics of peatlands into NASA's GEOS-5 Catchment Land Surface Model (CLSM, Koster et al. 2000). The main modifications pertain to the modeling of partial inundation, and the definition of peatland-specific runoff and evapotranspiration schemes. We ran a set of simulations on a high performance cluster using different CLSM configurations and validated the results with a newly compiled global in-situ dataset of water table depths in peatlands. The results demonstrate that an update of soil hydraulic properties for peat soils alone does not improve the performance of CLSM over peatlands. However, structural model changes for peatlands are able to improve the skill metrics for water table depth. The validation results for the water table depth indicate a reduction of the bias from 2.5 to 0.2 m, and an improvement of the temporal correlation coefficient from 0.5 to 0.65, and from 0.4 to 0.55 for the anomalies. Our validation data set includes both bogs (rain-fed) and fens (ground and/or surface water influence) and reveals that the metrics improved less for fens. In

  18. Global sensitivity and uncertainty analysis of the nitrate leaching and crop yield simulation under different water and nitrogen management practices

    Agricultural system models have become important tools in studying water and nitrogen (N) dynamics, as well as crop growth, under different management practices. Complexity in input parameters often leads to significant uncertainty when simulating dynamic processes such as nitrate leaching or crop y...

  19. UAV-based multi-angular measurements for improved crop parameter retrieval

    Roosjen, Peter P.J.

    2017-01-01

    Optical remote sensing enables the estimation of crop parameters based on reflected light through empirical-statistical methods or inversion of radiative transfer models. Natural surfaces, however, reflect light anisotropically, which means that the intensity of reflected light depends on the

  20. Tomato : a crop species amenable to improvement by cellular and molecular methods

    Hille, Jacques; Koornneef, Maarten; Ramanna, M.S.; Zabel, Pim

    1989-01-01

    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants

  1. Improving the efficiency of spatially selective operations for agricultural robotics in cropping field

    Y. L. Li

    2013-01-01

    Full Text Available Cropping fields often have well-defined poor-performing patches due to spatial and temporal variability. In an attempt to increase crop performance on poor patches, spatially selective field operations may be performed by agricultural robotics to apply additional inputs with targeted requirements. This paper addresses the route planning problem for an agricultural robot that has to treat some poor-patches in a field with row crops, with respect to the minimization of the total non-working distance travelled during headland turnings and in-field travel distance. The traversal of patches in the field is expressed as the traversal of a mixed weighted graph, and then the problem of finding an optimal patch sequence is formulated as an asymmetric traveling salesman problem and solved by the partheno-genetic algorithm. The proposed method is applied on a cropping field located in Northwestern China. Research results show that by using optimum patch sequences, the total non-working distance travelled during headland turnings and in-field travel distance can be reduced. But the savings on the non-working distance inside the field interior depend on the size and location of patches in the field, and the introduction of agricultural robotics is beneficial to increase field efficiency.

  2. Incorporating field wind data to improve crop evapotranspiration parameterization in heterogeneous regions

    Accurate parameterization of reference evapotranspiration (ET0) is necessary for optimizing irrigation scheduling and avoiding costs associated with over-irrigation (water expense, loss of water productivity, energy costs, pollution) or with under-irrigation (crop stress and suboptimal yields or qua...

  3. Tomato: a crop species amenable to improvement by cellular and molecular methods.

    Hille, J.; Koornneef, M.; Ramanna, M.S.; Zabel, P.

    1989-01-01

    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures.

    In view of the current data, the isolation of useful

  4. Improving the efficiency of spatially selective operations for agricultural robotics in cropping field

    Li, Y. L.; Yi, S. P.

    2013-05-01

    Cropping fields often have well-defined poor-performing patches due to spatial and temporal variability. In an attempt to increase crop performance on poor patches, spatially selective field operations may be performed by agricultural robotics to apply additional inputs with targeted requirements. This paper addresses the route planning problem for an agricultural robot that has to treat some poor-patches in a field with row crops, with respect to the minimization of the total non-working distance travelled during headland turnings and in-field travel distance. The traversal of patches in the field is expressed as the traversal of a mixed weighted graph, and then the problem of finding an optimal patch sequence is formulated as an asymmetric traveling salesman problem and solved by the parthenogenetic algorithm. The proposed method is applied on a cropping field located in Northwestern China. Research results show that by using optimum patch sequences, the total non-working distance travelled during headland turnings and in-field travel distance can be reduced. But the savings on the non-working distance inside the field interior depend on the size and location of patches in the field, and the introduction of agricultural robotics is beneficial to increase field efficiency. (Author) 21 refs.

  5. How does Software Process Improvement Address Global Software Engineering?

    Kuhrmann, Marco; Diebold, Philipp; Münch, Jürgen

    2016-01-01

    a systematic mapping study on the state-of-the-art in SPI from a general perspective, we observed Global Software Engineering (GSE) becoming a topic of interest in recent years. Therefore, in this paper, we provide a detailed investigation of those papers from the overall systematic mapping study that were......For decades, Software Process Improvement (SPI) programs have been implemented, inter alia, to improve quality and speed of software development. To set up, guide, and carry out SPI projects, and to measure SPI state, impact, and success, a multitude of different SPI approaches and considerable...... experience are available. SPI addresses many aspects ranging from individual developer skills to entire organizations. It comprises for instance the optimization of specific activities in the software lifecycle as well as the creation of organization awareness and project culture. In the course of conducting...

  6. Can Global Visual Features Improve Tag Recommendation for Image Annotation?

    Oge Marques

    2010-08-01

    Full Text Available Recent advances in the fields of digital photography, networking and computing, have made it easier than ever for users to store and share photographs. However without sufficient metadata, e.g., in the form of tags, photos are difficult to find and organize. In this paper, we describe a system that recommends tags for image annotation. We postulate that the use of low-level global visual features can improve the quality of the tag recommendation process when compared to a baseline statistical method based on tag co-occurrence. We present results from experiments conducted using photos and metadata sourced from the Flickr photo website that suggest that the use of visual features improves the mean average precision (MAP of the system and increases the system's ability to suggest different tags, therefore justifying the associated increase in complexity.

  7. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemical Inputs for Main Cultivated Crops in Kerman Province: - Horticultural Crops

    Nasibe Pourghasemian; Rooholla Moradi

    2017-01-01

    Introduction The latest report of the IPCC states that future emissions of greenhouse gases (GHGs) will continue to increase and will be the main cause of global climatic changes, as well as Iran. The three greenhouse gases associated with agriculture are CO2, CH4, and N2O. Chemical inputs consumption in agriculture has increased annually, while more intensive use of energy led to some important human health and environmental problems such as greenhouse gas emissions and global warming. Th...

  8. The effective use of physical and chemical mutagen in the induction of mutation for crop improvement in Malaysia

    Abdul Rahim Harun

    2001-01-01

    The earliest work of induced mutations breeding program in Malaysia was reported in 1967. The project was carried out by Rubber Research Institute of Malaysia using x-radiation in an attempt to improve rubber trees for dwarfism and disease resistance. Subsequently, more efforts were taken up by the universities to promote the technology for genetic changes and creation of new genetic resources, particularly in crops that are not easily achievable through conventional techniques. Gamma radiation is always been used as physical mutagen, while ethyl methane sulfonate (EMS) was a popular chemical mutagen used in induced mutation breeding in the country. Gamma rays is an effective mutagen to which more than 30 potential mutants were produced up to now through mutagenesis of several important food crops and ornamental plants. Although chemical mutagen such as EMS were reported being used, the result is not so convincing as compared to gamma radiation. Malaysian Institute for Nuclear Technology Research (MINT) has initiated and promoted nuclear technique in mutation breeding for the improvement of importance food crops such as rice, legume and other potential crops for export, like fruit trees and ornamentals. Gamma radiation is the main source of mutagen used in mutation-breeding programme at MINT. The effectiveness of these two mutagens were verified with mutants derived through induced mutation breeding in the country which some mutant has shown outstanding improvement and released as new varieties and cultivars. This paper summarises and discuss the effects as well as achievement attained through the use of ionizing radiation and chemical mutagen in plant mutation breeding in Malaysia. (author)

  9. The effective use of physical and chemical mutagen in the induction of mutation for crop improvement in Malaysia

    Abdul Rahim Harun [Malaysian Institute for Nuclear Technology Research, Bangi, Selangor (Malaysia)

    2001-03-01

    The earliest work of induced mutations breeding program in Malaysia was reported in 1967. The project was carried out by Rubber Research Institute of Malaysia using x-radiation in an attempt to improve rubber trees for dwarfism and disease resistance. Subsequently, more efforts were taken up by the universities to promote the technology for genetic changes and creation of new genetic resources, particularly in crops that are not easily achievable through conventional techniques. Gamma radiation is always been used as physical mutagen, while ethyl methane sulfonate (EMS) was a popular chemical mutagen used in induced mutation breeding in the country. Gamma rays is an effective mutagen to which more than 30 potential mutants were produced up to now through mutagenesis of several important food crops and ornamental plants. Although chemical mutagen such as EMS were reported being used, the result is not so convincing as compared to gamma radiation. Malaysian Institute for Nuclear Technology Research (MINT) has initiated and promoted nuclear technique in mutation breeding for the improvement of importance food crops such as rice, legume and other potential crops for export, like fruit trees and ornamentals. Gamma radiation is the main source of mutagen used in mutation-breeding programme at MINT. The effectiveness of these two mutagens were verified with mutants derived through induced mutation breeding in the country which some mutant has shown outstanding improvement and released as new varieties and cultivars. This paper summarises and discuss the effects as well as achievement attained through the use of ionizing radiation and chemical mutagen in plant mutation breeding in Malaysia. (author)

  10. Hands-On Crops! How Long-Term Activities Improve Students' Knowledge of Crop Species. A Pretest-Posttest Study of the Greenhouse Project

    Fritsch, Eva-Maria; Lechner-Walz, Cornelia; Dreesmann, Daniel C.

    2015-01-01

    In terms of sustainability, renewable resources, nourishment and healthy diet, crops are important to the public. Thus, knowledge of crops is needed in order to enable people to participate in public discussions and take responsibility. This is in contrast to former surveys showing that students' knowledge of and interest in plants in general,…

  11. Are we on the right track: Can our understanding of abscission in model systems promote or derail making improvements in less studied crops

    As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abs...

  12. Irrigation management strategies to improve Water Use Efficiency of potatoes crop in Central Tunisia

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2015-04-01

    In Tunisia, the expansion of irrigated area and the semiarid climate make it compulsory to adopt strategies of water management to increase water use efficiency. Subsurface drip irrigation (SDI), providing the application of high frequency small irrigation volumes below the soil surface have been increasingly used to enhance irrigation efficiency. At the same time, deficit irrigation (DI) has shown successful results with a large number of crop in various countries. However, for some crops like potatoes, DI is difficult to manage due to the rapid effect of water stress on tuber yield. Irrigation frequency is a key factor to schedule subsurface drip irrigation because, even maintaining the total seasonal volume, soil wetting patterns can result different during the growth period, with consequence on crop yield. Despite the need to enhance water use efficiency, only a few studies related to deficit irrigation of horticultural crops have been made in Tunisia. Objective of the paper was to assess the effects of different on-farm irrigation strategies on water use efficiency of potatoes crop irrigated with subsurface drip irrigation in a semiarid area of central Tunisia. After validation, Hydrus-2D model was used to simulate soil water status in the root zone, to evaluate actual crop evapotranspiration and then to estimate indirectly water use efficiency (IWUE), defined as the ratio between crop yield and total amount of water supplied with irrigation. Field experiments, were carried out in Central Tunisia (10° 33' 47.0" E, 35° 58' 8.1° N, 19 m a.s.l) on a potatoes crop planted in a sandy loam soil, during the growing season 2014, from January 15 (plantation of tubers) to May 6 (harvesting). Soil water status was monitored in two plots (T1 and T2) maintained under the same management, but different irrigation volumes, provided by a SDI system. In particular, irrigation was scheduled according to the average water content measured in the root zone, with a total of 8

  13. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity.

    Bhardwaj, Deepak; Ansari, Mohammad Wahid; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2014-05-08

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers.

  14. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity

    2014-01-01

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers. PMID:24885352

  15. Assessing the Use of Remote Sensing and a Crop Growth Model to Improve Modeled Streamflow in Central Asia

    Richey, A. S.; Richey, J. E.; Tan, A.; Liu, M.; Adam, J. C.; Sokolov, V.

    2015-12-01

    Central Asia presents a perfect case study to understand the dynamic, and often conflicting, linkages between food, energy, and water in natural systems. The destruction of the Aral Sea is a well-known environmental disaster, largely driven by increased irrigation demand on the rivers that feed the endorheic sea. Continued reliance on these rivers, the Amu Darya and Syr Darya, often place available water resources at odds between hydropower demands upstream and irrigation requirements downstream. A combination of tools is required to understand these linkages and how they may change in the future as a function of climate change and population growth. In addition, the region is geopolitically complex as the former Soviet basin states develop management strategies to sustainably manage shared resources. This complexity increases the importance of relying upon publically available information sources and tools. Preliminary work has shown potential for the Variable Infiltration Capacity (VIC) model to recreate the natural water balance in the Amu Darya and Syr Darya basins by comparing results to total terrestrial water storage changes observed from NASA's Gravity Recovery and Climate Experiment (GRACE) satellite mission. Modeled streamflow is well correlated to observed streamflow at upstream gauges prior to the large-scale expansion of irrigation and hydropower. However, current modeled results are unable to capture the human influence of water use on downstream flow. This study examines the utility of a crop simulation model, CropSyst, to represent irrigation demand and GRACE to improve modeled streamflow estimates in the Amu Darya and Syr Darya basins. Specifically we determine crop water demand with CropSyst utilizing available data on irrigation schemes and cropping patterns. We determine how this demand can be met either by surface water, modeled by VIC with a reservoir operation scheme, and/or by groundwater derived from GRACE. Finally, we assess how the

  16. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  17. Improving the global efficiency in small hydropower practice

    Razurel, P.; Gorla, L.; Crouzy, B.; Perona, P.

    2015-12-01

    The global increase in energy production from renewable sources has seen river exploitation for small hydropower plants to also grow considerably in the last decade. River intakes used to divert water from the main course to the power plant are at the base of such practice. A key issue concern with finding innovative concepts to both design and manage such structures in order to improve classic operational rules. Among these, the Minimal Flow Release (MFR) concept has long been used in spite of its environmental inconsistency.In this work, we show that the economical and ecological efficiency of diverting water for energy production in small hydropower plants can be improved towards sustainability by engineering a novel class of flow-redistribution policies. We use the mathematical form of the Fermi-Dirac statistical distribution to define non-proportional dynamic flow-redistribution rules, which broadens the spectrum of dynamic flow releases based on proportional redistribution. The theoretical background as well as the economic interpretation is presented and applied to three case studies in order to systematically test the global performance of such policies. Out of numerical simulations, a Pareto frontier emerges in the economic vs environmental efficiency plot, which show that non-proportional distribution policies improve both efficiencies with respect to those obtained from some traditional MFR and proportional policies. This picture is shown also for long term climatic scenarios affecting water availability and the natural flow regime.In a time of intense and increasing exploitation close to resource saturation, preserving natural river reaches requires to abandon inappropriate static release policies in favor of non-proportional ones towards a sustainable use of the water resource.

  18. Genetic improvement of under-utilized and neglected crops in low income food deficit countries through irradiation and related techniques. Proceedings of a final research coordination meeting

    2004-11-01

    The majority of the world's food is produced from only a few crops, and yet many neglected and under-utilized crops are extremely important for food production in low income food deficit countries (LIFDCs). As the human population grows at an alarming rate in LIFDCs, food availability has declined and is also affected due to environmental factors, lack of improvement of local crop species, erosion of genetic diversity and dependence on a few crop species for food supply. Neglected crops are traditionally grown by farmers in their centres of origin or centres of diversity, where they are still important for the subsistence of local communities, and maintained by socio-cultural preferences and traditional uses. These crops remain inadequately characterised and, until very recently, have been largely ignored by research and conservation. Farmers are losing these crops because they are less competitive with improved major crop species. Radiation-induced mutation techniques have successfully been used that benefited the most genetic improvement of 'major crops' and their know-how have a great potential for enhancing the use of under-utilized and neglected species and speeding up their domestication and crop improvement. The FAO/IAEA efforts on genetic improvement of under-utilized and neglected species play a strategic role in complementing the work that is being carried out worldwide in their promotion. This CRP entitled Genetic Improvement of Under-utilized and Neglected Crops in LIFDCs through Irradiation and Related Techniques was initiated in 1998 with an overall objective to improve food security, enhance nutritional balance, and promote sustainable agriculture in LIFDCs. Specific objectives addressed major constraints to productivity of neglected and under-utilized crops by genetic improvement with radiation-induced mutations and biotechnology in order to enhance economic viability and sustain crop species diversity, and in future to benefit small farmers. This

  19. Evidence for a climate signal in trends of global crop yield variability over the past 50 years

    Osborne, T M; Wheeler, T R

    2013-01-01

    Low variability of crop production from year to year is desirable for many reasons, including reduced income risk and stability of supplies. Therefore, it is important to understand the nature of yield variability, whether it is changing through time, and how it varies between crops and regions. Previous studies have shown that national crop yield variability has changed in the past, with the direction and magnitude dependent on crop type and location. Whilst such studies acknowledge the importance of climate variability in determining yield variability, it has been assumed that its magnitude and its effect on crop production have not changed through time and, hence, that changes to yield variability have been due to non-climatic factors. We address this assumption by jointly examining yield and climate variability for three major crops (rice, wheat and maize) over the past 50 years. National yield time series and growing season temperature and precipitation were de-trended and related using multiple linear regression. Yield variability changed significantly in half of the crop–country combinations examined. For several crop–country combinations, changes in yield variability were related to changes in climate variability. (letter)

  20. The Agricultural Model Intercomparison and Improvement Project: Phase I Activities by a Global Community of Science. Chapter 1

    Rosenzweig, Cynthia E.; Jones, James W.; Hatfield, Jerry L.; Antle, John M.; Ruane, Alexander C.; Mutter, Carolyn Z.

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) was founded in 2010. Its mission is to improve substantially the characterization of world food security as affected by climate variability and change, and to enhance adaptation capacity in both developing and developed countries. The objectives of AgMIP are to: Incorporate state-of-the-art climate, crop/livestock, and agricultural economic model improvements into coordinated multi-model regional and global assessments of future climate impacts and adaptation and other key aspects of the food system. Utilize multiple models, scenarios, locations, crops/livestock, and participants to explore uncertainty and the impact of data and methodological choices. Collaborate with regional experts in agronomy, animal sciences, economics, and climate to build a strong basis for model applications, addressing key climate related questions and sustainable intensification farming systems. Improve scientific and adaptive capacity in modeling for major agricultural regions in the developing and developed world, with a focus on vulnerable regions. Improve agricultural data and enhance data-sharing based on their intercomparison and evaluation using best scientific practices. Develop modeling frameworks to identify and evaluate promising adaptation technologies and policies and to prioritize strategies.

  1. Improving mine safety technology and training: establishing US global leadership

    NONE

    2006-12-15

    In 2006, the USA's record of mine safety was interrupted by fatalities that rocked the industry and caused the National Mining Association and its members to recommit to returning the US underground coal mining industry to a global mine safety leadership role. This report details a comprehensive approach to increase the odds of survival for miners in emergency situations and to create a culture of prevention of accidents. Among its 75 recommendations are a need to improve communications, mine rescue training, and escape and protection of miners. Section headings of the report are: Introduction; Review of mine emergency situations in the past 25 years: identifying and addressing the issues and complexities; Risk-based design and management; Communications technology; Escape and protection strategies; Emergency response and mine rescue procedures; Training for preparedness; Summary of recommendations; and Conclusions. 37 refs., 3 figs., 5 apps.

  2. Sustainable Development Goals for Monitoring Action to Improve Global Health.

    Cesario, Sandra K

    2016-01-01

    Women and children compose the largest segment of the more than 1 billion people worldwide who are unable to access needed health care services. To address this and other global health issues, the United Nations brought together world leaders to address growing health inequities, first by establishing the Millennium Development Goals in 2000 and more recently establishing Sustainable Development Goals, which are an intergovernmental set of 17 goals consisting of 169 targets with 304 indicators to measure compliance; they were designed to be applicable to all countries. Goal number 3, "Good Health and Well-Being: Ensure Heathy Lives and Promote Well-Being for All at All Ages," includes targets to improve the health of women and newborns. © 2016 AWHONN, the Association of Women’s Health, Obstetric and Neonatal Nurses.

  3. Flavone-rich maize: An opportunity to improve the nutritional value of an important commodity crop

    Maria Isabel Casas

    2014-09-01

    Full Text Available Agricultural outputs have resulted in food production continuously expanding. Satisfying the needs of a fast growing human population, higher yields, more efficient food processing, and food esthetic value, resulted in crop varieties with higher caloric intake but lacking many phytochemicals important for plant protection and adequate human nutrition. The increasing incidence of chronic diseases such as obesity, diabetes and cardiovascular diseases, combined with social disparity worldwide prompted the interest in developing enhanced crops that can simultaneously address the two sides of the current malnutrition sword, increasing yield while providing added nutritional value. Flavones, phytochemicals associated with the beneficial effects of the Mediterranean diet, have potent anti-inflammatory and anti-carcinogenic activities. However, many Mediterranean diet-associated vegetables are inaccessible, or lowly consumed, in many parts of the world. Maize is the most widely grown cereal crop, yet most lines used for hybrid maize production lack flavones. As a first step towards a sustainable strategy to increasing the nutritional value of maize-based diets, we investigated the accumulation and chemical properties of flavones in maize seeds of defined genotypes. We show that the pericarps of the P1-rr genotype accumulate flavones at levels comparable to those present in some flavone-rich vegetables, and are mostly present in their C- and O-glycosylated forms. Some of these glycosides can be readily converted into the corresponding more active health beneficial aglycones during food processing. Our results provide evidence that nutritionally beneficial flavones could be re-introduced into elite lines to increase the dietary benefits of maize.

  4. An integrated, probabilistic model for improved seasonal forecasting of agricultural crop yield under environmental uncertainty

    Nathaniel K. Newlands

    2014-06-01

    Full Text Available We present a novel forecasting method for generating agricultural crop yield forecasts at the seasonal and regional-scale, integrating agroclimate variables and remotely-sensed indices. The method devises a multivariate statistical model to compute bias and uncertainty in forecasted yield at the Census of Agricultural Region (CAR scale across the Canadian Prairies. The method uses robust variable-selection to select the best predictors within spatial subregions. Markov-Chain Monte Carlo (MCMC simulation and random forest-tree machine learning techniques are then integrated to generate sequential forecasts through the growing season. Cross-validation of the model was performed by hindcasting/backcasting it and comparing its forecasts against available historical data (1987-2011 for spring wheat (Triticum aestivum L.. The model was also validated for the 2012 growing season by comparing its forecast skill at the CAR, provincial and Canadian Prairie region scales against available statistical survey data. Mean percent departures between wheat yield forecasted were under-estimated by 1-4 % in mid-season and over-estimated by 1 % at the end of the growing season. This integrated methodology offers a consistent, generalizable approach for sequentially forecasting crop yield at the regional-scale. It provides a statistically robust, yet flexible way to concurrently adjust to data-rich and data-sparse situations, adaptively select different predictors of yield to changing levels of environmental uncertainty, and to update forecasts sequentially so as to incorporate new data as it becomes available. This integrated method also provides additional statistical support for assessing the accuracy and reliability of model-based crop yield forecasts in time and space.

  5. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemicals Inputs for Main Cultivated Crops in Kerman Province: - Cereal

    Rooholla Moradi

    2017-10-01

    the global warming potential. According to this research, the following strategies can be considered for reducing greenhouse gas emissions: Improvement of the nitrogen use efficiency Use of crop rotations Use of organic (manure, compost, green manure, plant debris and bio (nitrogen fixation microcrystalline resources than chemical fertilizers Use of ecological and biological methods for pest and weed management Use of intercropping systems

  6. Use of nuclear and biotechnological methods to improve drought tolerance in rice an tomato crops

    Gonzalez, Maria C.; Suarez, Lorenzo; Mukandama, Jean P.; Mansoor, Mohamed Ali; Cristo, Elizabeth; Perez, Noraida; Fuentes, Jorge L.; Rodriguez, Yanet

    2001-01-01

    Drought is a limiting factor in the production of different crops and programs for to drought tolerance through mutation inductions are taking place in many countries. At The National Institute of Agricultural Science had been development an Program Breeding in order to obtained new rice an tomato varieties adapted to different drought conditions. For this purposes were irradiated with protons and gamma rays of 60Co different local varieties. Promising line were selected in drought condition during six generation. Was possible to obtain one rice and three tomato drought tolerant genotypes

  7. The potential of Arachis pintoi biomass to improve quality of soil continuously used for cassava cropping

    N. Muddarisna; S. Prijono

    2014-01-01

    A field experiment that was aimed to elucidate the effects of application of Arachis pintoi biomass and animal dung on quality of soil continuously used for cassava cropping was conducted at Jatikerto Village, Kromengan District of Malang Regency. Eight treatments tested were 100% NPK inorganic fertilizer, 100 kg N Arachis pintoi/ha, (3) 100 kg N chicken dung / ha, 100 kg N cow dung /ha, 100 kg N goat dung /ha, 100 kg N Arachis pintoi + chicken dung /ha, 100 kg N Arachis pintoi + cow dung /h...

  8. Role of plant biotechnology and genetic engineering in crop-improvement, with special emphases on cotton: A review

    Akhtar, L.H.; Siddiq, S.Z.; Tariq, A.H.; Arshad, M.; Gorham, J.

    2003-01-01

    Plant biotechnology and genetic engineering offer novel approaches to plant-breeding, production, propagation and preservation of germplasm. In this manuscript, the population and food-requirements of Pakistan, role of biotechnology and genetic engineering in crop-improvement, along with potential uses in cotton, have been discussed. The latest position of plant biotechnology and genetic engineering in Pakistan and the advantages of biotechnology and genetic-engineering techniques over conventional plant-breeding techniques, along with critical views of various scientists have been reviewed. (author)

  9. First TILLING platform in Cucurbita pepo: a new mutant resource for gene function and crop improvement.

    Vicente-Dólera, Nelly; Troadec, Christelle; Moya, Manuel; del Río-Celestino, Mercedes; Pomares-Viciana, Teresa; Bendahmane, Abdelhafid; Picó, Belén; Román, Belén; Gómez, Pedro

    2014-01-01

    Although the availability of genetic and genomic resources for Cucurbita pepo has increased significantly, functional genomic resources are still limited for this crop. In this direction, we have developed a high throughput reverse genetic tool: the first TILLING (Targeting Induced Local Lesions IN Genomes) resource for this species. Additionally, we have used this resource to demonstrate that the previous EMS mutant population we developed has the highest mutation density compared with other cucurbits mutant populations. The overall mutation density in this first C. pepo TILLING platform was estimated to be 1/133 Kb by screening five additional genes. In total, 58 mutations confirmed by sequencing were identified in the five targeted genes, thirteen of which were predicted to have an impact on the function of the protein. The genotype/phenotype correlation was studied in a peroxidase gene, revealing that the phenotype of seedling homozygous for one of the isolated mutant alleles was albino. These results indicate that the TILLING approach in this species was successful at providing new mutations and can address the major challenge of linking sequence information to biological function and also the identification of novel variation for crop breeding.

  10. The CRISPR/Cas genome-editing tool: application in improvement of crops

    SURENDER eKHATODIA

    2016-04-01

    Full Text Available The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR associated Cas9/sgRNA system is a novel fledgling targeted genome-editing technique from bacterial immune system, which is a cheap, easy and most rapidly adopted genome editing tool transforming to revolutionary paradigm. Cas9 protein is an RNA guided endonuclease utilized for creating targeted double stranded breaks with only a short RNA sequence to confer recognition of the target in animals and plants. Development of genetically edited (GE crops similar to those developed by conventional or mutation breeding using this potential technique makes it a promising and extremely versatile tool for providing sustainable productive agriculture for better feeding of rapidly growing population in changing climate. The emerging areas of research for the genome editing in plants are like, interrogating gene function, rewiring the regulatory signaling networks, sgRNA library for high-throughput loss-of-function screening. In this review, we will discuss the broad applicability of the Cas9 nuclease mediated targeted plant genome editing for development of designer crops. The regulatory uncertainty and social acceptance of plant breeding by Cas9 genome editing have also been discussed. The non-GM designer genetically edited plants could prospect climate resilient and sustainable energy agriculture in coming future for maximizing the yield by combating abiotic and biotic stresses with this new innovative plant breeding technique.

  11. Insect pollination and self-incompatibility in edible and/or medicinal crops in southwestern China, a global hotspot of biodiversity.

    Ren, Zong-Xin; Wang, Hong; Bernhardt, Peter; Li, De-Zhu

    2014-10-01

    An increasing global demand for food, coupled with the widespread decline of pollinator diversity, remains an international concern in agriculture and genetic conservation. In particular, there are large gaps in the study of the pollination of economically important and traditionally grown species in China. Many plant species grown in China are both edible and used medicinally. The country retains extensive written records of agricultural and apicultural practices, facilitating contemporary studies of some important taxa. Here, we focus on Yunnan in southwestern China, a mega-biodiversity hotspot for medicinal/food plants. We used plant and insect taxa as model systems to understand the patterns and consequences of pollinator deficit to crops. We identified several gaps and limitations in research on the pollination ecology and breeding systems of domesticated taxa and their wild relatives in Yunnan and asked the following questions: (1) What is known about pollination systems of edible and medicinal plants in Yunnan? (2) What are the most important pollinators of Codonopsis subglobosa (Campanulaceae)? (3) How important are native pollinator species for maximizing yield in Chinese crops compared with the introduced Apis mellifera? We found that some crops that require cross-pollination now depend exclusively on hand pollination. Three domesticated crops are dependent primarily on the native but semidomesticated Apis cerana and the introduced A. mellifera. Other species of wild pollinators often play important roles for certain specialty crops (e.g., Vespa velutina pollinates Codonopsis subglobosa). We propose a more systematic and comprehensive approach to applied research in the future. © 2014 Botanical Society of America, Inc.

  12. Forty years of improvements in European air quality: regional policy-industry interactions with global impacts

    M. Crippa

    2016-03-01

    Full Text Available The EDGARv4.3.1 (Emissions Database for Global Atmospheric Research global anthropogenic emissions inventory of gaseous (SO2, NOx, CO, non-methane volatile organic compounds and NH3 and particulate (PM10, PM2.5, black and organic carbon air pollutants for the period 1970–2010 is used to develop retrospective air pollution emissions scenarios to quantify the roles and contributions of changes in energy consumption and efficiency, technology progress and end-of-pipe emission reduction measures and their resulting impact on health and crop yields at European and global scale. The reference EDGARv4.3.1 emissions include observed and reported changes in activity data, fuel consumption and air pollution abatement technologies over the past 4 decades, combined with Tier 1 and region-specific Tier 2 emission factors. Two further retrospective scenarios assess the interplay of policy and industry. The highest emission STAG_TECH scenario assesses the impact of the technology and end-of-pipe reduction measures in the European Union, by considering historical fuel consumption, along with a stagnation of technology with constant emission factors since 1970, and assuming no further abatement measures and improvement imposed by European emission standards. The lowest emission STAG_ENERGY scenario evaluates the impact of increased fuel consumption by considering unchanged energy consumption since the year 1970, but assuming the technological development, end-of-pipe reductions, fuel mix and energy efficiency of 2010. Our scenario analysis focuses on the three most important and most regulated sectors (power generation, manufacturing industry and road transport, which are subject to multi-pollutant European Union Air Quality regulations. Stagnation of technology and air pollution reduction measures at 1970 levels would have led to 129 % (or factor 2.3 higher SO2, 71 % higher NOx and 69 % higher PM2.5 emissions in Europe (EU27, demonstrating the large

  13. Combating healthcare corruption and fraud with improved global health governance

    2012-01-01

    Corruption is a serious threat to global health outcomes, leading to financial waste and adverse health consequences. Yet, forms of corruption impacting global health are endemic worldwide in public and private sectors, and in developed and resource-poor settings alike. Allegations of misuse of funds and fraud in global health initiatives also threaten future investment. Current domestic and sectorial-level responses are fragmented and have been criticized as ineffective. In order to address this issue, we propose a global health governance framework calling for international recognition of “global health corruption” and development of a treaty protocol to combat this crucial issue. PMID:23088820

  14. Combating healthcare corruption and fraud with improved global health governance.

    Mackey, Tim K; Liang, Bryan A

    2012-10-22

    Corruption is a serious threat to global health outcomes, leading to financial waste and adverse health consequences. Yet, forms of corruption impacting global health are endemic worldwide in public and private sectors, and in developed and resource-poor settings alike. Allegations of misuse of funds and fraud in global health initiatives also threaten future investment. Current domestic and sectorial-level responses are fragmented and have been criticized as ineffective. In order to address this issue, we propose a global health governance framework calling for international recognition of "global health corruption" and development of a treaty protocol to combat this crucial issue.

  15. Grand challenges for crop science

    Crop science is a highly integrative science using the disciplines of conventional plant breeding, transgenic crop improvement, plant physiology, and cropping system sciences to develop improved varieties of agronomic, turf, and forage crops to produce feed, food, fuel, and fiber for our world's gro...

  16. Improving the mapping of crop types in the Midwestern U.S. by fusing Landsat and MODIS satellite data

    Zhu, Likai; Radeloff, Volker C.; Ives, Anthony R.

    2017-06-01

    Mapping crop types is of great importance for assessing agricultural production, land-use patterns, and the environmental effects of agriculture. Indeed, both radiometric and spatial resolution of Landsat's sensors images are optimized for cropland monitoring. However, accurate mapping of crop types requires frequent cloud-free images during the growing season, which are often not available, and this raises the question of whether Landsat data can be combined with data from other satellites. Here, our goal is to evaluate to what degree fusing Landsat with MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) data can improve crop-type classification. Choosing either one or two images from all cloud-free Landsat observations available for the Arlington Agricultural Research Station area in Wisconsin from 2010 to 2014, we generated 87 combinations of images, and used each combination as input into the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm to predict Landsat-like images at the nominal dates of each 8-day MODIS NBAR product. Both the original Landsat and STARFM-predicted images were then classified with a support vector machine (SVM), and we compared the classification errors of three scenarios: 1) classifying the one or two original Landsat images of each combination only, 2) classifying the one or two original Landsat images plus all STARFM-predicted images, and 3) classifying the one or two original Landsat images together with STARFM-predicted images for key dates. Our results indicated that using two Landsat images as the input of STARFM did not significantly improve the STARFM predictions compared to using only one, and predictions using Landsat images between July and August as input were most accurate. Including all STARFM-predicted images together with the Landsat images significantly increased average classification error by 4% points (from 21% to 25%) compared to using only Landsat

  17. RiceMetaSys for salt and drought stress responsive genes in rice: a web interface for crop improvement.

    Sandhu, Maninder; Sureshkumar, V; Prakash, Chandra; Dixit, Rekha; Solanke, Amolkumar U; Sharma, Tilak Raj; Mohapatra, Trilochan; S V, Amitha Mithra

    2017-09-30

    Genome-wide microarray has enabled development of robust databases for functional genomics studies in rice. However, such databases do not directly cater to the needs of breeders. Here, we have attempted to develop a web interface which combines the information from functional genomic studies across different genetic backgrounds with DNA markers so that they can be readily deployed in crop improvement. In the current version of the database, we have included drought and salinity stress studies since these two are the major abiotic stresses in rice. RiceMetaSys, a user-friendly and freely available web interface provides comprehensive information on salt responsive genes (SRGs) and drought responsive genes (DRGs) across genotypes, crop development stages and tissues, identified from multiple microarray datasets. 'Physical position search' is an attractive tool for those using QTL based approach for dissecting tolerance to salt and drought stress since it can provide the list of SRGs and DRGs in any physical interval. To identify robust candidate genes for use in crop improvement, the 'common genes across varieties' search tool is useful. Graphical visualization of expression profiles across genes and rice genotypes has been enabled to facilitate the user and to make the comparisons more impactful. Simple Sequence Repeat (SSR) search in the SRGs and DRGs is a valuable tool for fine mapping and marker assisted selection since it provides primers for survey of polymorphism. An external link to intron specific markers is also provided for this purpose. Bulk retrieval of data without any limit has been enabled in case of locus and SSR search. The aim of this database is to facilitate users with a simple and straight-forward search options for identification of robust candidate genes from among thousands of SRGs and DRGs so as to facilitate linking variation in expression profiles to variation in phenotype. Database URL: http://14.139.229.201.

  18. Marker-assisted selection for improving quantitative traits of forage crops

    Dolstra, O.; Denneboom, C.; Vos, Ab L.F. de; Loo, E.N. van

    2007-01-01

    This chapter provides an example of using marker-assisted selection (MAS) for breeding perennial ryegrass (Lolium perenne), a pasture species. A mapping study had shown the presence of quantitative trait loci (QTL) for seven component traits of nitrogen use efficiency (NUE). The NUE-related QTL clustered in five chromosomal regions. These QTL were validated through divergent marker selection in an F 2 population. The criterion used for plant selection was a summation index based on the number of positive QTL alleles. The evaluation studies showed a strong indirect response of marker selection on NUE. Marker selection using a summation index such as applied here proved to be very effective for difficult and complex quantitative traits such as NUE. The strategy is easily applicable in outbreeding crops to raise the frequency of several desirable alleles simultaneously. (author)

  19. Transcriptomics-guided development of RNA interference strategies to manage whiteflies: a globally distributed vector of crop viruses

    Over 300 viruses are transmitted by the whitefly, Bemisia tabaci, with 90% of them belonging to the genus, Begomovirus. Begomoviruses are exclusively transmitted by whiteflies to a range of agriculture crops, resulting in billions of dollars lost annually, while jeopardizing food security worldwide....

  20. Field-based estimates of global warming potential in bioenergy systems of Hawaii: Crop choice and deficit irrigation

    Replacing fossil fuel with biofuel is environmentally viable only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level bal...

  1. Modulation of phytochrome signaling networks for improved biomass accumulation using a bioenergy crop model

    Mockler, Todd C. [Donald Danforth Plant Science Center, Saint Louis, MO (United States)

    2016-11-07

    Plant growth and development, including stem elongation, flowering time, and shade-avoidance habits, are affected by wavelength composition (i.e., light quality) of the light environment. the molecular mechanisms underlying light perception and signaling pathways in plants have been best characterized in Arabidopsis thaliana where dozens of genes have been implicated in converging, complementary, and antagonistic pathways communicating light quality cues perceived by the phytochrome (red/far-red) cryptochrome (blue) and phototropin (blue) photorecptors. Light perception and signaling have been studied in grasses, including rice and sorghum but in much less detail than in Arabidopsis. During the course of the Mocker lab's DOE-funded wrok generating a gene expression atlas in Brachypodium distachyon we observed that Brachypodium plants grown in continuous monochromatic red light or continuous white light enriched in far-red light accumulated significantly more biomass and exhibited significantly greater seed yield than plants grown in monochromatic blue light or white light. This phenomenon was also observed in two other grasses, switchgrass and rice. We will systematically manipulate the expression of genes predicted to function in Brachypodium phytochrome signaling and assess the phenotypic consequences in transgenic Brachypodium plants in terms of morphology, stature, biomass accumulation, and cell wall composition. We will also interrogate direct interactions between candidate phytochrome signaling transcription factors and target promoters using a high-throughput yeast one-hybrid system. Brachypodium distachyon has emerged as a model grass species and is closely related to candidate feedstock crops for bioethanol production. Identification of genes capable of modifying growth characteristics of Brachypodium, when misexpressed, in particular increasing biomass accumulation, by modulating photoreceptor signaling will provide valuable candidates for

  2. Improving Seasonal Crop Monitoring and Forecasting for Soybean and Corn in Iowa

    Togliatti, K.; Archontoulis, S.; Dietzel, R.; VanLoocke, A.

    2016-12-01

    Accurately forecasting crop yield in advance of harvest could greatly benefit farmers, however few evaluations have been conducted to determine the effectiveness of forecasting methods. We tested one such method that used a combination of short-term weather forecasting from the Weather Research and Forecasting Model (WRF) to predict in season weather variables, such as, maximum and minimum temperature, precipitation and radiation at 4 different forecast lengths (2 weeks, 1 week, 3 days, and 0 days). This forecasted weather data along with the current and historic (previous 35 years) data from the Iowa Environmental Mesonet was combined to drive Agricultural Production Systems sIMulator (APSIM) simulations to forecast soybean and corn yields in 2015 and 2016. The goal of this study is to find the forecast length that reduces the variability of simulated yield predictions while also increasing the accuracy of those predictions. APSIM simulations of crop variables were evaluated against bi-weekly field measurements of phenology, biomass, and leaf area index from early and late planted soybean plots located at the Agricultural Engineering and Agronomy Research Farm in central Iowa as well as the Northwest Research Farm in northwestern Iowa. WRF model predictions were evaluated against observed weather data collected at the experimental fields. Maximum temperature was the most accurately predicted variable, followed by minimum temperature and radiation, and precipitation was least accurate according to RMSE values and the number of days that were forecasted within a 20% error of the observed weather. Our analysis indicated that for the majority of months in the growing season the 3 day forecast performed the best. The 1 week forecast came in second and the 2 week forecast was the least accurate for the majority of months. Preliminary results for yield indicate that the 2 week forecast is the least variable of the forecast lengths, however it also is the least accurate

  3. Improving barley culm robustness for secured crop yield in a changing climate.

    Dockter, Christoph; Hansson, Mats

    2015-06-01

    The Green Revolution combined advancements in breeding and agricultural practice, and provided food security to millions of people. Daily food supply is still a major issue in many parts of the world and is further challenged by future climate change. Fortunately, life science research is currently making huge progress, and the development of future crop plants will be explored. Today, plant breeding typically follows one gene per trait. However, new scientific achievements have revealed that many of these traits depend on different genes and complex interactions of proteins reacting to various external stimuli. These findings open up new possibilities for breeding where variations in several genes can be combined to enhance productivity and quality. In this review we present an overview of genes determining plant architecture in barley, with a special focus on culm length. Many genes are currently known only through their mutant phenotypes, but emerging genomic sequence information will accelerate their identification. More than 1000 different short-culm barley mutants have been isolated and classified in different phenotypic groups according to culm length and additional pleiotropic characters. Some mutants have been connected to deficiencies in biosynthesis and reception of brassinosteroids and gibberellic acids. Still other mutants are unlikely to be connected to these hormones. The genes and corresponding mutations are of potential interest for development of stiff-straw crop plants tolerant to lodging, which occurs in extreme weather conditions with strong winds and heavy precipitation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Improving molecular tools for global surveillance of measles virus⋆

    Bankamp, Bettina; Byrd-Leotis, Lauren A.; Lopareva, Elena N.; Woo, Gibson K.S.; Liu, Chunyu; Jee, Youngmee; Ahmed, Hinda; Lim, Wilina W.; Ramamurty, Nalini; Mulders, Mick N.; Featherstone, David; Bellini, William J.; Rota, Paul A.

    2017-01-01

    Background The genetic characterization of wild-type measles viruses plays an important role in the description of viral transmission pathways and the verification of measles elimination. The 450 nucleotides that encode the carboxyl-terminus of the nucleoprotein (N-450) are routinely sequenced for genotype analysis. Objectives The objectives of this study were to develop improved primers and controls for RT-PCR reactions used for genotyping of measles samples and to develop a method to provide a convenient, safe, and inexpensive means to distribute measles RNA for RT-PCR assays and practice panels. Study design A newly designed, genetically defined synthetic RNA and RNA isolated from cells infected with currently circulating genotypes were used to compare the sensitivity of primer pairs in RT-PCR and nested PCR. FTA® cards loaded with lysates of measles infected cells were tested for their ability to preserve viral RNA and destroy virus infectivity. Results A new primer pair, MeV216/MeV214, was able to amplify N-450 from viruses representing 10 currently circulating genotypes and a genotype A vaccine strain and demonstrated 100-fold increased sensitivity compared to the previously used primer set. A nested PCR assay further increased the sensitivity of detection from patient samples. A synthetic positive control RNA was developed that produced PCR products that are distinguishable by size from PCR products amplified from clinical samples. FTA® cards completely inactivated measles virus and stabilized RNA for at least six months. Conclusions These improved molecular tools will advance molecular characterization of circulating measles viruses globally and provide enhanced quality control measures. PMID:23806666

  5. Improving molecular tools for global surveillance of measles virus.

    Bankamp, Bettina; Byrd-Leotis, Lauren A; Lopareva, Elena N; Woo, Gibson K S; Liu, Chunyu; Jee, Youngmee; Ahmed, Hinda; Lim, Wilina W; Ramamurty, Nalini; Mulders, Mick N; Featherstone, David; Bellini, William J; Rota, Paul A

    2013-09-01

    The genetic characterization of wild-type measles viruses plays an important role in the description of viral transmission pathways and the verification of measles elimination. The 450 nucleotides that encode the carboxyl-terminus of the nucleoprotein (N-450) are routinely sequenced for genotype analysis. The objectives of this study were to develop improved primers and controls for RT-PCR reactions used for genotyping of measles samples and to develop a method to provide a convenient, safe, and inexpensive means to distribute measles RNA for RT-PCR assays and practice panels. A newly designed, genetically defined synthetic RNA and RNA isolated from cells infected with currently circulating genotypes were used to compare the sensitivity of primer pairs in RT-PCR and nested PCR. FTA® cards loaded with lysates of measles infected cells were tested for their ability to preserve viral RNA and destroy virus infectivity. A new primer pair, MeV216/MeV214, was able to amplify N-450 from viruses representing 10 currently circulating genotypes and a genotype A vaccine strain and demonstrated 100-fold increased sensitivity compared to the previously used primer set. A nested PCR assay further increased the sensitivity of detection from patient samples. A synthetic positive control RNA was developed that produced PCR products that are distinguishable by size from PCR products amplified from clinical samples. FTA® cards completely inactivated measles virus and stabilized RNA for at least six months. These improved molecular tools will advance molecular characterization of circulating measles viruses globally and provide enhanced quality control measures. Published by Elsevier B.V.

  6. EU Failing FAO Challenge to Improve Global Food Security.

    Smyth, Stuart J; Phillips, Peter W B; Kerr, William A

    2016-07-01

    The announcement that the European Union (EU) had reached an agreement allowing Member States (MS) to ban genetically modified (GM) crops confirms that the EU has chosen to ignore the food security challenge issued to the world by the Food and Agriculture Organization of the United Nations (FAO) in 2009. The FAO suggests that agricultural biotechnology has a central role in meeting the food security challenge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Improving models to predict phenological responses to global change

    Richardson, Andrew D. [Harvard College, Cambridge, MA (United States)

    2015-11-25

    The term phenology describes both the seasonal rhythms of plants and animals, and the study of these rhythms. Plant phenological processes, including, for example, when leaves emerge in the spring and change color in the autumn, are highly responsive to variation in weather (e.g. a warm vs. cold spring) as well as longer-term changes in climate (e.g. warming trends and changes in the timing and amount of rainfall). We conducted a study to investigate the phenological response of northern peatland communities to global change. Field work was conducted at the SPRUCE experiment in northern Minnesota, where we installed 10 digital cameras. Imagery from the cameras is being used to track shifts in plant phenology driven by elevated carbon dioxide and elevated temperature in the different SPRUCE experimental treatments. Camera imagery and derived products (“greenness”) is being posted in near-real time on a publicly available web page (http://phenocam.sr.unh.edu/webcam/gallery/). The images will provide a permanent visual record of the progression of the experiment over the next 10 years. Integrated with other measurements collected as part of the SPRUCE program, this study is providing insight into the degree to which phenology may mediate future shifts in carbon uptake and storage by peatland ecosystems. In the future, these data will be used to develop improved models of vegetation phenology, which will be tested against ground observations collected by a local collaborator.

  8. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses

    Bender, S.F.; van der Heijden, M.G.A.|info:eu-repo/dai/nl/240923901

    2015-01-01

    Efficient resource use is a key factor for sustainable production and a necessity for meeting future global food demands. However, the factors that control resource use efficiency in agro-ecosystems are only partly understood. We investigated the influence of soil biota on nutrient leaching,

  9. A distribution benefits model for improved information on worldwide crop production. Volume 1: Model structure and application to wheat

    Andrews, J.

    1976-01-01

    The improved model is suitable for the study of benefits of worldwide information on a variety of crops. Application to the previously studied case of worldwide wheat production shows that about $108 million per year of distribution benefits to the United States would be achieved by a satellite-based wheat information system meeting the goals of LACIE. The model also indicates that improved information alone will not change world stock levels unless production itself is stabilized. The United States benefits mentioned above are associated with the reduction of price fluctuations within the year and the more effective use of international trade to balance supply and demand. Price fluctuations from year to year would be reduced only if production variability were itself reduced.

  10. Improving Global Multi-target Tracking with Local Updates

    Milan, Anton; Gade, Rikke; Dick, Anthony

    2014-01-01

    -target tracker, if they result in a reduction in the global cost function. Since tracking failures typically arise when targets become occluded, we propose a local data association scheme to maintain the target identities in these situations. We demonstrate a reduction of up to 50% in the global cost function...

  11. Global Goal Setting for Improving National Governance and Policy

    Biermann, F.; Stevens, C.; Bernstein, S.; Gupta, A.; Kanie, N.; Nilsson, M.; Scobie, M.

    2017-01-01

    Can better governance, in itself, be a subject for global goal setting? This question stands at the center of this chapter, which focuses on the inclusion of “governance goals” in global goal-setting mechanisms, especially the Sustainable Development Goals agreed upon by the UN General Assembly in

  12. Global Monitoring RSEM System for Crop Production by Incorporating Satellite-based Photosynthesis Rates and Anomaly Data of Sea Surface Temperature

    Kaneko, D.; Sakuma, H.

    2014-12-01

    The first author has been developing RSEM crop-monitoring system using satellite-based assessment of photosynthesis, incorporating meteorological conditions. Crop production comprises of several stages and plural mechanisms based on leaf photosynthesis, surface energy balance, and the maturing of grains after fixation of CO2, along with water exchange through soil vegetation-atmosphere transfer. Grain production in prime countries appears to be randomly perturbed regionally and globally. Weather for crop plants reflects turbulent phenomena of convective and advection flows in atmosphere and surface boundary layer. It has been difficult for scientists to simulate and forecast weather correctly for sufficiently long terms to crop harvesting. However, severely poor harvests related to continental events must originate from a consistent mechanism of abnormal energetic flow in the atmosphere through both land and oceans. It should be remembered that oceans have more than 100 times of energy storage compared to atmosphere and ocean currents represent gigantic energy flows, strongly affecting climate. Anomalies of Sea Surface Temperature (SST), globally known as El Niño, Indian Ocean dipole, and Atlantic Niño etc., affect the seasonal climate on a continental scale. The authors aim to combine monitoring and seasonal forecasting, considering such mechanisms through land-ocean biosphere transfer. The present system produces assessments for all continents, specifically monitoring agricultural fields of main crops. Historical regions of poor and good harvests are compared with distributions of SST anomalies, which are provided by NASA GSFC. Those comparisons fairly suggest that the Worst harvest in 1993 and the Best in 1994 relate to the offshore distribution of low temperature anomalies and high gaps in ocean surface temperatures. However, high-temperature anomalies supported good harvests because of sufficient solar radiation for photosynthesis, and poor harvests because

  13. Identify: Improving industrial energy efficiency and mitigating global climate change

    Lazarus, M.; Hill, D.; Cornland, D.W.; Heaps, C.; Hippel, D. von; Williams, R.

    1997-07-01

    The use of energy in the industrial sectors of nations with both industrialized and developing economies will continue to be, a major source of greenhouse gas (GHG) emissions, particularly carbon dioxide. The patterns of industrial-sector energy use--energy provided primarily by the combustion of fossil fuels-have shifted both within the between countries in recent decades. Projections of future energy use and carbon-dioxide (CO{sub 2}) emissions suggest continued shifts in these patterns, as industrial production in developed countries stabilizes and declines, while industrial output in the developing world continues to expand. This expansion of industrial-sector activity and CO{sub 2} emissions in developing countries presents both a challenge and an opportunity. To seize this opportunity and contribute to international efforts to mitigate global climate change, the United National Industrial Development Organization (UNIDO) recently initiated a two-phase effort to help improve the efficiency of energy-intensive industries (iron and steel, chemicals, refining, paper and pulp, and cement) in developing countries. As part of the Phase I, the authors reviewed industrial sector scenarios and to initiated development of a software-based toolkit for identifying and assessing GHG mitigating technologies. This toolkit, called IDENTIFY, is comprised of a technology inventory and a companion economic analysis tool. In addition, UNIDO commissioned institutions in India, South Africa, and Argentina to review energy use patterns and savings opportunities in selected industries across nine developing countries, and contribute to the development of the IDENTIFY toolkit. UNIDO is now preparing to launch Phase 2, which will focus on full development and dissemination of the IDENTIFY toolkit through seminars and case studies around the world. This paper describes Phase 1 of the UNIDO project.

  14. Identify: Improving industrial energy efficiency and mitigating global climate change

    Lazarus, M.; Hill, D.; Cornland, D.W.; Heaps, C.; Hippel, D. von; Williams, R.

    1997-01-01

    The use of energy in the industrial sectors of nations with both industrialized and developing economies will continue to be, a major source of greenhouse gas (GHG) emissions, particularly carbon dioxide. The patterns of industrial-sector energy use--energy provided primarily by the combustion of fossil fuels-have shifted both within the between countries in recent decades. Projections of future energy use and carbon-dioxide (CO 2 ) emissions suggest continued shifts in these patterns, as industrial production in developed countries stabilizes and declines, while industrial output in the developing world continues to expand. This expansion of industrial-sector activity and CO 2 emissions in developing countries presents both a challenge and an opportunity. To seize this opportunity and contribute to international efforts to mitigate global climate change, the United National Industrial Development Organization (UNIDO) recently initiated a two-phase effort to help improve the efficiency of energy-intensive industries (iron and steel, chemicals, refining, paper and pulp, and cement) in developing countries. As part of the Phase I, the authors reviewed industrial sector scenarios and to initiated development of a software-based toolkit for identifying and assessing GHG mitigating technologies. This toolkit, called IDENTIFY, is comprised of a technology inventory and a companion economic analysis tool. In addition, UNIDO commissioned institutions in India, South Africa, and Argentina to review energy use patterns and savings opportunities in selected industries across nine developing countries, and contribute to the development of the IDENTIFY toolkit. UNIDO is now preparing to launch Phase 2, which will focus on full development and dissemination of the IDENTIFY toolkit through seminars and case studies around the world. This paper describes Phase 1 of the UNIDO project

  15. Gain-of-function mutagenesis approaches in rice for functional genomics and improvement of crop productivity.

    Moin, Mazahar; Bakshi, Achala; Saha, Anusree; Dutta, Mouboni; Kirti, P B

    2017-07-01

    The epitome of any genome research is to identify all the existing genes in a genome and investigate their roles. Various techniques have been applied to unveil the functions either by silencing or over-expressing the genes by targeted expression or random mutagenesis. Rice is the most appropriate model crop for generating a mutant resource for functional genomic studies because of the availability of high-quality genome sequence and relatively smaller genome size. Rice has syntenic relationships with members of other cereals. Hence, characterization of functionally unknown genes in rice will possibly provide key genetic insights and can lead to comparative genomics involving other cereals. The current review attempts to discuss the available gain-of-function mutagenesis techniques for functional genomics, emphasizing the contemporary approach, activation tagging and alterations to this method for the enhancement of yield and productivity of rice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Inorganic phosphorus along with biofertilizers improves profitability and sustainability in soybean (Glycine max–potato (Solanum tuberosum cropping system

    Sushmita Munda

    2018-04-01

    Full Text Available Present study was conducted to assess role of phosphorus (P fertilization on economics, energy efficiency, P use indices and soil P balance in soybean [Glycine max (L. Merril]–potato (Solanum tuberosum L. cropping system during 2008–09 and 2009–10. Treatments in soybean as main plots consisted of two sources and two levels of phosphorus with or without biofertilizers [phosphorus solubilizing bacteria, PSB and arbuscular mycorrhizae, AM]. Three levels of P were applied to potato as subplots. System productivity was calculated in terms of soybean equivalent yield and found to be better with biofertilizers treated plots. When applied in combination with biofertilizers, 50% recommended dose of P (RDP as diammonium phosphate (DAP recorded B:C ratio at par with 100% RDP. Direct application of 100% RDP to potato resulted in significantly higher returns, enhancing the net returns. Application of biofertilizers alone increased the energy use efficiency over no biofertilizer application. Irrespective of source (DAP or rock phosphate treatments with biofertilizers had improved P use indices and apparent soil P balance even at 50% RDP. This indicates the role of biofertilizers in P solubilization and making it available to plant. Biofertilizers application can help cutting down the fertilizer P application in soybean–potato cropping system without any considerable reduction in yield and economic returns. Keywords: AM, B:C ratio, P use indices, PSB, Rock phosphate, Agronomic use efficiency

  17. Engineering crop nutrient efficiency for sustainable agriculture.

    Chen, Liyu; Liao, Hong

    2017-10-01

    Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency. © 2017 Institute of Botany, Chinese Academy of Sciences.

  18. High-resolution global grids of revised Priestley-Taylor and Hargreaves-Samani coefficients for assessing ASCE-standardized reference crop evapotranspiration and solar radiation

    Aschonitis, Vassilis G.; Papamichail, Dimitris; Demertzi, Kleoniki; Colombani, Nicolo; Mastrocicco, Micol; Ghirardini, Andrea; Castaldelli, Giuseppe; Fano, Elisa-Anna

    2017-08-01

    The objective of the study is to provide global grids (0.5°) of revised annual coefficients for the Priestley-Taylor (P-T) and Hargreaves-Samani (H-S) evapotranspiration methods after calibration based on the ASCE (American Society of Civil Engineers)-standardized Penman-Monteith method (the ASCE method includes two reference crops: short-clipped grass and tall alfalfa). The analysis also includes the development of a global grid of revised annual coefficients for solar radiation (Rs) estimations using the respective Rs formula of H-S. The analysis was based on global gridded climatic data of the period 1950-2000. The method for deriving annual coefficients of the P-T and H-S methods was based on partial weighted averages (PWAs) of their mean monthly values. This method estimates the annual values considering the amplitude of the parameter under investigation (ETo and Rs) giving more weight to the monthly coefficients of the months with higher ETo values (or Rs values for the case of the H-S radiation formula). The method also eliminates the effect of unreasonably high or low monthly coefficients that may occur during periods where ETo and Rs fall below a specific threshold. The new coefficients were validated based on data from 140 stations located in various climatic zones of the USA and Australia with expanded observations up to 2016. The validation procedure for ETo estimations of the short reference crop showed that the P-T and H-S methods with the new revised coefficients outperformed the standard methods reducing the estimated root mean square error (RMSE) in ETo values by 40 and 25 %, respectively. The estimations of Rs using the H-S formula with revised coefficients reduced the RMSE by 28 % in comparison to the standard H-S formula. Finally, a raster database was built consisting of (a) global maps for the mean monthly ETo values estimated by ASCE-standardized method for both reference crops, (b) global maps for the revised annual coefficients of the P

  19. Alternative U.S. biofuel mandates and global GHG emissions: The role of land use change, crop management and yield growth

    Mosnier, A.; Havlík, P.; Valin, H.; Baker, J.; Murray, B.; Feng, S.; Obersteiner, M.; McCarl, B.A.; Rose, S.K.; Schneider, U.A.

    2013-01-01

    We investigate the impacts of the U.S. renewable fuel standard (RFS2) and several alternative biofuel policy designs on global GHG emissions from land use change and agriculture over the 2010–2030 horizon. Analysis of the scenarios relies on GLOBIOM, a global, multi-sectoral economic model based on a detailed representation of land use. Our results reveal that RFS2 would substantially increase the portion of agricultural land needed for biofuel feedstock production. U.S. exports of most agricultural products would decrease as long as the biofuel target would increase leading to higher land conversion and nitrogen use globally. In fact, higher levels of the mandate mean lower net emissions within the U.S. but when the emissions from the rest of the world are considered, the US biofuel policy results in almost no change on GHG emissions for the RFS2 level and higher global GHG emissions for higher levels of the mandate or higher share of conventional corn-ethanol in the mandate. Finally, we show that if the projected crop productivity would be lower globally, the imbalance between domestic U.S. GHG savings and additional GHG emissions in the rest of the world would increase, thus deteriorating the net global impact of U.S. biofuel policies. - Highlights: ► We model the impact of the U.S. renewable fuel standard (RFS2). ► RFS2 would require more agricultural land and nitrogen globally. ► Increasing the mandates reduce GHG emissions within the U.S. ► Increasing the mandates increase GHG emissions in the rest of the world. ► Total GHG emissions increase with higher levels of mandate; higher share of corn-ethanol; lower productivity growth

  20. COMBINED ANALYSIS OF SENTINEL-1 AND RAPIDEYE DATA FOR IMPROVED CROP TYPE CLASSIFICATION: AN EARLY SEASON APPROACH FOR RAPESEED AND CEREALS

    U. Lussem

    2016-06-01

    Full Text Available Timely availability of crop acreage estimation is crucial for maintaining economic and ecological sustainability or modelling purposes. Remote sensing data has proven to be a reliable source for crop mapping and acreage estimation on parcel-level. However, when relying on a single source of remote sensing data, e.g. multispectral sensors like RapidEye or Landsat, several obstacles can hamper the desired outcome, for example cloud cover or haze. Another limitation may be a similarity in optical reflectance patterns of crops, especially in an early season approach by the end of March, early April. Usually, a reliable crop type map for winter-crops (winter wheat/rye, winter barley and rapeseed in Central Europe can be obtained by using optical remote sensing data from late April to early May, given a full coverage of the study area and cloudless conditions. These prerequisites can often not be met. By integrating dual-polarimetric SAR-sensors with high temporal and spatial resolution, these limitations can be overcome. SAR-sensors are not influenced by clouds or haze and provide an additional source of information due to the signal-interaction with plant-architecture. The overall goal of this study is to investigate the contribution of Sentinel-1 SAR-data to regional crop type mapping for an early season map of disaggregated winter-crops for a subset of the Rur-Catchment in North Rhine-Westphalia (Germany. For this reason, RapidEye data and Sentinel-1 data are combined and the performance of Support Vector Machine and Maximum Likelihood classifiers are compared. Our results show that a combination of Sentinel-1 and RapidEye is a promising approach for most crops, but consideration of phenology for data selection can improve results. Thus the combination of optical and radar remote sensing data indicates advances for crop-type classification, especially when optical data availability is limited.

  1. Combined Analysis of SENTINEL-1 and Rapideye Data for Improved Crop Type Classification: AN Early Season Approach for Rapeseed and Cereals

    Lussem, U.; Hütt, C.; Waldhoff, G.

    2016-06-01

    Timely availability of crop acreage estimation is crucial for maintaining economic and ecological sustainability or modelling purposes. Remote sensing data has proven to be a reliable source for crop mapping and acreage estimation on parcel-level. However, when relying on a single source of remote sensing data, e.g. multispectral sensors like RapidEye or Landsat, several obstacles can hamper the desired outcome, for example cloud cover or haze. Another limitation may be a similarity in optical reflectance patterns of crops, especially in an early season approach by the end of March, early April. Usually, a reliable crop type map for winter-crops (winter wheat/rye, winter barley and rapeseed) in Central Europe can be obtained by using optical remote sensing data from late April to early May, given a full coverage of the study area and cloudless conditions. These prerequisites can often not be met. By integrating dual-polarimetric SAR-sensors with high temporal and spatial resolution, these limitations can be overcome. SAR-sensors are not influenced by clouds or haze and provide an additional source of information due to the signal-interaction with plant-architecture. The overall goal of this study is to investigate the contribution of Sentinel-1 SAR-data to regional crop type mapping for an early season map of disaggregated winter-crops for a subset of the Rur-Catchment in North Rhine-Westphalia (Germany). For this reason, RapidEye data and Sentinel-1 data are combined and the performance of Support Vector Machine and Maximum Likelihood classifiers are compared. Our results show that a combination of Sentinel-1 and RapidEye is a promising approach for most crops, but consideration of phenology for data selection can improve results. Thus the combination of optical and radar remote sensing data indicates advances for crop-type classification, especially when optical data availability is limited.

  2. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.

    Khan, Muhammad Hafeez Ullah; Khan, Shahid U; Muhammad, Ali; Hu, Limin; Yang, Yang; Fan, Chuchuan

    2018-06-01

    Clustered regularly interspaced palindromic repeats associated protein Cas9 (CRISPR-Cas9), originally an adaptive immunity system of prokaryotes, is revolutionizing genome editing technologies with minimal off-targets in the present era. The CRISPR/Cas9 is now highly emergent, advanced, and highly specific tool for genome engineering. The technology is widely used to animal and plant genomes to achieve desirable results. The present review will encompass how CRISPR-Cas9 is revealing its beneficial role in characterizing plant genetic functions, genomic rearrangement, how it advances the site-specific mutagenesis, and epigenetics modification in plants to improve the yield of field crops with minimal side-effects. The possible pitfalls of using and designing CRISPR-Cas9 for plant genome editing are also discussed for its more appropriate applications in plant biology. Therefore, CRISPR/Cas9 system has multiple benefits that mostly scientists select for genome editing in several biological systems. © 2017 Wiley Periodicals, Inc.

  3. Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity.

    Sharwood, Robert E; Ghannoum, Oula; Whitney, Spencer M

    2016-06-01

    By operating a CO2 concentrating mechanism, C4-photosynthesis offers highly successful solutions to remedy the inefficiency of the CO2-fixing enzyme Rubisco. C4-plant Rubisco has characteristically evolved faster carboxylation rates with low CO2 affinity. Owing to high CO2 concentrations in bundle sheath chloroplasts, faster Rubisco enhances resource use efficiency in C4 plants by reducing the energy and carbon costs associated with photorespiration and lowering the nitrogen investment in Rubisco. Here, we show that C4-Rubisco from some NADP-ME species, such as maize, are also of potential benefit to C3-photosynthesis under current and future atmospheric CO2 pressures. Realizing this bioengineering endeavour necessitates improved understanding of the biogenesis requirements and catalytic variability of C4-Rubisco, as well as the development of transformation capabilities to engineer Rubisco in a wider variety of food and fibre crops. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Field-Based Estimates of Global Warming Potential in Bioenergy Systems of Hawaii: Crop Choice and Deficit Irrigation.

    Meghan N Pawlowski

    Full Text Available Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHG emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO2, as methane was oxidized and nitrous oxide (N2O emission was very low even following fertilization. High N2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO2 flux. Deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated belowground. In the first two years of cultivation napiergrass did not increase net greenhouse warming potential (GWP compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield.

  5. Field-Based Estimates of Global Warming Potential in Bioenergy Systems of Hawaii: Crop Choice and Deficit Irrigation.

    Pawlowski, Meghan N; Crow, Susan E; Meki, Manyowa N; Kiniry, James R; Taylor, Andrew D; Ogoshi, Richard; Youkhana, Adel; Nakahata, Mae

    2017-01-01

    Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHG emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO2), as methane was oxidized and nitrous oxide (N2O) emission was very low even following fertilization. High N2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO2 flux. Deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated belowground. In the first two years of cultivation napiergrass did not increase net greenhouse warming potential (GWP) compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield.

  6. Improved oilfield GHG accounting using a global oilfield database

    Roberts, S.; Brandt, A. R.; Masnadi, M.

    2016-12-01

    The definition of oil is shifting in considerable ways. Conventional oil resources are declining as oil sands, heavy oils, and others emerge. Technological advances mean that these unconventional hydrocarbons are now viable resources. Meanwhile, scientific evidence is mounting that climate change is occurring. The oil sector is responsible for 35% of global greenhouse gas (GHG) emissions, but the climate impacts of these new unconventional oils are not well understood. As such, the Oil Climate Index (OCI) project has been an international effort to evaluate the total life-cycle environmental GHG emissions of different oil fields globally. Over the course of the first and second phases of the project, 30 and 75 global oil fields have been investigated, respectively. The 75 fields account for about 25% of global oil production. For the third phase of the project, it is aimed to expand the OCI to contain closing to 100% of global oil production; leading to the analysis of 8000 fields. To accomplish this, a robust database system is required to handle and manipulate the data. Therefore, the integration of the data into the computer science language SQL (Structured Query Language) was performed. The implementation of SQL allows users to process the data more efficiently than would be possible by using the previously established program (Microsoft Excel). Next, a graphic user interface (gui) was implemented, in the computer science language of C#, in order to make the data interactive; enabling people to update the database without prior knowledge of SQL being necessary.

  7. Effects of nitrogen application rates on net annual global warming potential and greenhouse gas intensity in double-rice cropping systems of the Southern China.

    Chen, Zhongdu; Chen, Fu; Zhang, Hailin; Liu, Shengli

    2016-12-01

    The net global warming potential (NGWP) and net greenhouse gas intensity (NGHGI) of double-rice cropping systems are not well documented. We measured the NGWP and NGHGI including soil organic carbon (SOC) change and indirect emissions (IE) from double-crop rice fields with fertilizing systems in Southern China. These experiments with three different nitrogen (N) application rates since 2012 are as follows: 165 kgN ha -1 for early rice and 225 kgN ha -1 for late rice (N1), which was the local N application rates as the control; 135 kgN ha -1 for early rice and 180 kgN ha -1 for late rice (N2, 20 % reduction); and 105 kgN ha -1 for early rice and 135 kgN ha -1 for late rice (N3, 40 % reduction). Results showed that yields increased with the increase of N application rate, but without significant difference between N1 and N2 plots. Annual SOC sequestration rate under N1 was estimated to be 1.15 MgC ha -1  year -1 , which was higher than those under other fertilizing systems. Higher N application tended to increase CH 4 emissions during the flooded rice season and significantly increased N 2 O emissions from drained soils during the nonrice season, ranking as N1 > N2 > N3 with significant difference (P < 0.05). Two-year average IE has a huge contribution to GHG emissions mainly coming from the higher N inputs in the double-rice cropping system. Reducing N fertilizer usage can effectively decrease the NGWP and NGHGI in the double-rice cropping system, with the lowest NGHGI obtained in the N2 plot (0.99 kg CO 2 -eq kg -1 yield year -1 ). The results suggested that agricultural economic viability and GHG mitigation can be simultaneously achieved by properly reducing N fertilizer application in double-rice cropping systems.

  8. Non-communicable diseases and global health governance: enhancing global processes to improve health development.

    Magnusson, Roger S

    2007-05-22

    This paper assesses progress in the development of a global framework for responding to non-communicable diseases, as reflected in the policies and initiatives of the World Health Organization (WHO), World Bank and the UN: the institutions most capable of shaping a coherent global policy. Responding to the global burden of chronic disease requires a strategic assessment of the global processes that are likely to be most effective in generating commitment to policy change at country level, and in influencing industry behaviour. WHO has adopted a legal process with tobacco (the WHO Framework Convention on Tobacco Control), but a non-legal, advocacy-based approach with diet and physical activity (the Global Strategy on Diet, Physical Activity and Health). The paper assesses the merits of the Millennium Development Goals (MDGs) and the FCTC as distinct global processes for advancing health development, before considering what lessons might be learned for enhancing the implementation of the Global Strategy on Diet. While global partnerships, economic incentives, and international legal instruments could each contribute to a more effective global response to chronic diseases, the paper makes a special case for the development of international legal standards in select areas of diet and nutrition, as a strategy for ensuring that the health of future generations does not become dependent on corporate charity and voluntary commitments. A broader frame of reference for lifestyle-related chronic diseases is needed: one that draws together WHO's work in tobacco, nutrition and physical activity, and that envisages selective use of international legal obligations, non-binding recommendations, advocacy and policy advice as tools of choice for promoting different elements of the strategy.

  9. Non-communicable diseases and global health governance: enhancing global processes to improve health development

    Magnusson Roger S

    2007-05-01

    Full Text Available Abstract This paper assesses progress in the development of a global framework for responding to non-communicable diseases, as reflected in the policies and initiatives of the World Health Organization (WHO, World Bank and the UN: the institutions most capable of shaping a coherent global policy. Responding to the global burden of chronic disease requires a strategic assessment of the global processes that are likely to be most effective in generating commitment to policy change at country level, and in influencing industry behaviour. WHO has adopted a legal process with tobacco (the WHO Framework Convention on Tobacco Control, but a non-legal, advocacy-based approach with diet and physical activity (the Global Strategy on Diet, Physical Activity and Health. The paper assesses the merits of the Millennium Development Goals (MDGs and the FCTC as distinct global processes for advancing health development, before considering what lessons might be learned for enhancing the implementation of the Global Strategy on Diet. While global partnerships, economic incentives, and international legal instruments could each contribute to a more effective global response to chronic diseases, the paper makes a special case for the development of international legal standards in select areas of diet and nutrition, as a strategy for ensuring that the health of future generations does not become dependent on corporate charity and voluntary commitments. A broader frame of reference for lifestyle-related chronic diseases is needed: one that draws together WHO's work in tobacco, nutrition and physical activity, and that envisages selective use of international legal obligations, non-binding recommendations, advocacy and policy advice as tools of choice for promoting different elements of the strategy.

  10. Farmers' preferences and the factors affecting their decision to improve maize crops in Mexico

    Sánchez Toledano, Blanca Isabel

    2017-01-01

    Mexico is one of the countries with the highest corn production in the world (24.6 million tons) (FAOSTAT, 2016). However, in some regions, the yields are very low (2.0 Tn.ha-1) compared to the national average (9.39 Tn.ha-1). Among the different strategies to improve productivity, the adoption of improved maize seeds can play an important role. However, the adoption of this type of seed in Mexico is still limited. The development of a seed sector that meets the needs of farmers is an opportu...

  11. Improved crop residue cover estimates by coupling spectral indices for residue and moisture

    Remote sensing assessment of soil residue cover (fR) and tillage intensity will improve our predictions of the impact of agricultural practices and promote sustainable management. Spectral indices for estimating fR are sensitive to soil and residue water content, therefore, the uncertainty of estima...

  12. Global surgery: current evidence for improving surgical care.

    Fuller, Jennifer C; Shaye, David A

    2017-08-01

    The field of global surgery is undergoing rapid transformation, owing to several recent prominent reports positioning it as a cost-effective means of relieving global disease burden. The purpose of this article is to review the recent advances in the field of global surgery. Efforts to grow the global surgical workforce and procedural capacity have focused on innovative methods to increase surgeon training, enhance international collaboration, leverage technology, optimize existing health systems, and safely implement task-sharing. Computer modeling offers a novel means of informing policy to optimize timely access to care, equitably promote health and financial protection, and efficiently grow infrastructure. Tools and checklists have recently been developed to enhance data collection and ensure methodologically rigorous publications to inform planning, benchmark surgical systems, promote accurate modeling, track key health indicators, and promote safety. Creation of institutional partnerships and trainee exchanges can enrich training, stimulate commitment to humanitarian work, and promote the equal exchange of ideas and expertise. The recent body of work creates a strong foundation upon which work toward the goal of universal access to safe, affordable surgical care can be built; however, further collection and analysis of country-specific data is necessary for accurate modeling and outcomes research into the efficacy of policies such as task-sharing is greatly needed.

  13. Improving Internet Governance: Support to the Global Commission ...

    This project provides continued support to the Global Commission on Internet Governance (GCIG) to engage the developing world in important Internet governance discussions. The funds will allow the GCIG to conduct research on the Internet-related dimensions of public policy to inform recommendations for the future of ...

  14. Improving Global Flood Forecasting using Satellite Detected Flood Extent

    Revilla Romero, B.

    2016-01-01

    Flooding is a natural global phenomenon but in many cases is exacerbated by human activity. Although flooding generally affects humans in a negative way, bringing death, suffering, and economic impacts, it also has potentially beneficial effects. Early flood warning and forecasting systems, as well

  15. Tanzanian farmers' knowledge and attitudes to GM biotechnology and the potential use of GM crops to provide improved levels of food security. A Qualitative Study

    Herron Caroline M

    2010-07-01

    Full Text Available Abstract Background Genetically Modified (GM crops have been championed as one possible method to improve food security and individual nutritional status in sub Saharan Africa. Understanding and acceptability of GM crop technology to farmers and consumers have not been assessed. We developed a qualitative research study involving farmers as both producers and consumers to gauge the understanding of GM crop technology, its acceptability, and identifying issues of concern. Methods Nineteen individual interviews (10 male and 9 female and five mixed gender focus group discussions with local farmers were conducted in 3 regions in Tanzania. Analysis took place concurrently with data collection. Following initial interviews, subsequent questions were adjusted based on emerging themes. Results Understanding, awareness and knowledge of GM crop technology and terminology and its potential risks and benefits was very poor in all regions. Receptivity to the potential use of GM crops was, however, high. Respondents focused on the potential benefits of GM crops rather than any potential longer term health risks. A number of factors, most significantly field trial data, would influence farmers' decisions regarding the introduction of GM crop varieties into their farming practice. Understanding of the potential improved health provision possible by changes in agricultural practice and food-related decision making, and the health benefits of a diet containing essential vitamins, minerals and micronutrients is also poor in these communities. Conclusion This study forms a basis from which further research work can be undertaken. It is important to continue to assess opinions and attitudes of farmers and consumers in sub Saharan Africa towards potential use of GM technologies whilst highlighting the importance of the relationship between agriculture, health and development. This will allow people in the region to make accurate, informed decisions about whether they

  16. Tanzanian farmers' knowledge and attitudes to GM biotechnology and the potential use of GM crops to provide improved levels of food security. A Qualitative Study.

    Lewis, Christopher P; Newell, James N; Herron, Caroline M; Nawabu, Haidari

    2010-07-12

    Genetically Modified (GM) crops have been championed as one possible method to improve food security and individual nutritional status in sub Saharan Africa. Understanding and acceptability of GM crop technology to farmers and consumers have not been assessed. We developed a qualitative research study involving farmers as both producers and consumers to gauge the understanding of GM crop technology, its acceptability, and identifying issues of concern. Nineteen individual interviews (10 male and 9 female) and five mixed gender focus group discussions with local farmers were conducted in 3 regions in Tanzania. Analysis took place concurrently with data collection. Following initial interviews, subsequent questions were adjusted based on emerging themes. Understanding, awareness and knowledge of GM crop technology and terminology and its potential risks and benefits was very poor in all regions. Receptivity to the potential use of GM crops was, however, high. Respondents focused on the potential benefits of GM crops rather than any potential longer term health risks. A number of factors, most significantly field trial data, would influence farmers' decisions regarding the introduction of GM crop varieties into their farming practice. Understanding of the potential improved health provision possible by changes in agricultural practice and food-related decision making, and the health benefits of a diet containing essential vitamins, minerals and micronutrients is also poor in these communities. This study forms a basis from which further research work can be undertaken. It is important to continue to assess opinions and attitudes of farmers and consumers in sub Saharan Africa towards potential use of GM technologies whilst highlighting the importance of the relationship between agriculture, health and development. This will allow people in the region to make accurate, informed decisions about whether they believe use of GM biotechnology is an appropriate way in which

  17. Effectiveness of Biodiesel from Various Tropical Oil Crops on Lubricity Improvement of Ultra Low Sulfur Diesel (ULSD)

    Chollacoop, Nuwong; Topaiboul, Subongkoj; Goodwin, Vituruch (Bioenergy Group, National Metal and Materials Technology Center (MTEC), Thailand Science Park, Pathumthani, 12120 (Thailand)). e-mail: nuwongc@mtec.or.th

    2008-10-15

    Ultra low sulfur diesel (ULSD) has been introduced worldwide with an aim to reduce emission. Since the desulfurization process for ULSD inadvertently reduces its lubricity, lubricity additive is needed. Biodiesel emerges as a potential candidate due to its excellent lubricity property and little sulfur content. In the present study, biodiesel from various energy crops available in Thailand was added at various amounts to ULSD to test the lubricity according to the CEC-F-06-A-96 standard (using High-Frequency Reciprocating Rig: HFRR [1]). It was found that when biodiesel from crude palm, jatropha, soybean, coconut, sunflower, rice, corn and sesame oils of less than 1% (by volume) is additized to ULSD, the lubricity is improved to meet the diesel standard. Further addition beyond 2% (by volume) does not improve lubricity remarkably, where the lubrication seems to saturate. Biodiesel improves lubricity property by film formation preventing mechanical contact between the rubbing surfaces, and the effectiveness varies among different feedstock oils. Biodiesel from crude palm oil, jatropha oil and coconut oil seemingly are superior lubricity additives in ULSD than that from soybean oil, sunflower oil, rice oil, corn oil and sesame oil. Keywords: biodiesel, bio-lubricants, palm oil, sunflower oil

  18. Introgression of wild alleles into the tetraploid peanut crop to improve water use efficiency, earliness and yield.

    Wellison F Dutra

    Full Text Available The introduction of genes from wild species is a practice little adopted by breeders for the improvement of commercial crops, although it represents an excellent opportunity to enrich the genetic basis and create new cultivars. In peanut, this practice is being increasingly adopted. In this study we present results of introgression of wild alleles from the wild species Arachis duranensis and A. batizocoi improving photosynthetic traits and yield in a set of lines derived from the cross of an induced allotetraploid and cultivated peanut with selection under water stress. The assays were carried out in greenhouse and field focusing on physiological and agronomic traits. A multivariate model (UPGMA was adopted in order to classify drought tolerant lines. Several lines showed improved levels of tolerance, with values similar to or greater than the tolerant control. Two BC1F6 lines (53 P4 and 96 P9 were highlighted for good drought-related traits, earliness and pod yield, having better phenotypic profile to the drought tolerant elite commercial cultivar BR1. These lines are good candidates for the creation of peanut cultivars suitable for production in semiarid environments.

  19. International Collaboration in Crop Improvement Research: Current Status and Future Prospects

    Traxler, Greg; Pingali, Prabhu L.

    1999-01-01

    Investments over the past 35 years have created a system of national and international research centers that has revolutionized the supply of improved cereal varieties to developing country farmers. The newly created scientific ability to exploit genetic resources has been the engine of productivity growth in much of world agriculture. But the success that has been attained in building research institutions has not touched all countries or farmers, nor can it be considered permanent. The fina...

  20. Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance

    Neeru Kaushal; Kalpna Bhandari; Kadambot H.M. Siddique; Harsh Nayyar

    2016-01-01

    The rising temperatures are resulting in heat stress for various agricultural crops to limit their growth, metabolism, and leading to significant loss of yield potential worldwide. Heat stress adversely affects normal plant growth and development depending on the sensitivity of each crop species. Each crop species has its own range of temperature maxima and minima at different developmental stages beyond which all these processes get inhibited. The reproductive stage is on the whole more sens...

  1. Cover Crops for Managing Stream Water Quantity and Improving Stream Water Quality of Non-Tile Drained Paired Watersheds

    Gurbir Singh; Jon E. Schoonover; Karl W. J. Williard

    2018-01-01

    In the Midwestern United States, cover crops are being promoted as a best management practice for managing nutrient and sediment losses from agricultural fields through surface and subsurface water movement. To date, the water quality benefits of cover crops have been inferred primarily from plot scale studies. This project is one of the first to analyze the impacts of cover crops on stream water quality at the watershed scale. The objective of this research was to evaluate nitrogen, phosphor...

  2. Inoculation with arbuscular mycorrhizae does not improve 137Cs uptake in crops grown in the Chernobyl region

    Vinichuk, M.; Mårtensson, A.; Rosén, K.

    2013-01-01

    Methods for cleaning up radioactive contaminated soils are urgently needed. In this study we investigated whether the use of arbuscular mycorrhizal (AM) fungi can improve 137 Cs uptake by crops. Barley, cucumber, perennial ryegrass, and sunflower were inoculated with AM fungi and grown in low-level radionuclide contaminated soils in a field experiment 70 km southwest of Chernobyl, Ukraine, during two successive years (2009–2010). Roots of barley, cucumber and sunflower plants were slightly or moderately infected with AM fungus and root infection frequency was negatively or non-correlated with 137 Cs uptake by plants. Roots of ryegrass were moderately infected with AM fungus and infection frequency was moderately correlated with 137 Cs uptake by ryegrass. The application of AM fungi to soil in situ did not enhance radionuclide plant uptake or biomass. The responsiveness of host plants and AM fungus combination to 137 Cs uptake varied depending on the soil, although mycorrhization of soil in the field was conditional and did not facilitate the uptake of radiocesium. The total amount of 137 Cs uptake by plants growing on inoculated soil was equal to amounts in plant cultivated on non-inoculated soil. Thus, the use of AM fungi in situ for bioremediation of soil contaminated with a low concentration of 137 Cs could not be recommended. -- Highlights: • Effect of mycorrhization on 137 Cs uptake by crops was studied in a field experiment. • AM fungi did not enhance radionuclide plant uptake or biomass. • Plants growing on inoculated and non-inoculated soil accumulate 137 Cs equally

  3. The green, blue and grey water footprint of crops and derived crop products

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-05-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network. Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1

  4. Analysis of the characteristics of the global virtual water trade network using degree and eigenvector centrality, with a focus on food and feed crops

    S.-H. Lee

    2016-10-01

    Full Text Available This study aims to analyze the characteristics of global virtual water trade (GVWT, such as the connectivity of each trader, vulnerable importers, and influential countries, using degree and eigenvector centrality during the period 2006–2010. The degree centrality was used to measure the connectivity, and eigenvector centrality was used to measure the influence on the entire GVWT network. Mexico, Egypt, China, the Republic of Korea, and Japan were classified as vulnerable importers, because they imported large quantities of virtual water with low connectivity. In particular, Egypt had a 15.3 Gm3 year−1 blue water saving effect through GVWT: the vulnerable structure could cause a water shortage problem for the importer. The entire GVWT network could be changed by a few countries, termed "influential traders". We used eigenvector centrality to identify those influential traders. In GVWT for food crops, the USA, Russian Federation, Thailand, and Canada had high eigenvector centrality with large volumes of green water trade. In the case of blue water trade, western Asia, Pakistan, and India had high eigenvector centrality. For feed crops, the green water trade in the USA, Brazil, and Argentina was the most influential. However, Argentina and Pakistan used high proportions of internal water resources for virtual water export (32.9 and 25.1 %; thus other traders should carefully consider water resource management in these exporters.

  5. Analysis of the characteristics of the global virtual water trade network using degree and eigenvector centrality, with a focus on food and feed crops

    Lee, Sang-Hyun; Mohtar, Rabi H.; Choi, Jin-Yong; Yoo, Seung-Hwan

    2016-10-01

    This study aims to analyze the characteristics of global virtual water trade (GVWT), such as the connectivity of each trader, vulnerable importers, and influential countries, using degree and eigenvector centrality during the period 2006-2010. The degree centrality was used to measure the connectivity, and eigenvector centrality was used to measure the influence on the entire GVWT network. Mexico, Egypt, China, the Republic of Korea, and Japan were classified as vulnerable importers, because they imported large quantities of virtual water with low connectivity. In particular, Egypt had a 15.3 Gm3 year-1 blue water saving effect through GVWT: the vulnerable structure could cause a water shortage problem for the importer. The entire GVWT network could be changed by a few countries, termed "influential traders". We used eigenvector centrality to identify those influential traders. In GVWT for food crops, the USA, Russian Federation, Thailand, and Canada had high eigenvector centrality with large volumes of green water trade. In the case of blue water trade, western Asia, Pakistan, and India had high eigenvector centrality. For feed crops, the green water trade in the USA, Brazil, and Argentina was the most influential. However, Argentina and Pakistan used high proportions of internal water resources for virtual water export (32.9 and 25.1 %); thus other traders should carefully consider water resource management in these exporters.

  6. Gamma Greenhouse: A chronic facility for crops improvement and agro biotechnology

    Azhar Mohamad; Ahsanulkhaliqin Abdul Wahab

    2013-01-01

    Full-text: Gamma irradiation is one of the most common procedures in plant mutagenesis and agrobiotechnology activities. The procedures consist of chronic and acute gamma radiation. Generally, 60 Co and 137 Cs are gamma radiation sources for radiation processing with relatively high energy (half-life 5.27 years for 60 Co and 30.1 years for 137 Cs). The energy associated with gamma radiation is high enough to break the molecular bonds and ionize atoms without affecting structure of the atomic nucleus (avoiding induction of radioactivity). The Gamma Green House (GGH) is the only chronic irradiation facility in Malaysia, located at Malaysian Nuclear Agency (Nuclear Malaysia). GGH is used for induction of mutation in plants and other biological samples at low dose radiation over period of time depending on the nature and sensitivity of the plant species. The GGH consist of circular green house with 30 meters radius, control room and irradiator with interlock system. The irradiator produces low dose gamma radiation derived from Caesium-137 radioactive source. The biological samples can be exposed to low dose radiation in days, weeks, months or years. The current irradiation rate for GGH is 2.67 Gy/ hr at 1 meter from the source. Chronic gamma irradiation produces a wider mutation spectrum and useful for minimizing radiation damages towards obtaining new improved traits for research and commercial values. The prospect of the gamma greenhouse is its uses in research, educations and services on induced mutation techniques for the improvement of plant varieties and microbes. In generating awareness and attract users to the facility, Nuclear Malaysia provides wide range of irradiation services for plant species and mutagenesis consultancies to academicians, students scientists, and plant breeders, from local universities, other research institutes, and growers. Charges for irradiation and consultancy services are at nominal rates. The utilization activities of the gamma

  7. On Foundation Improvement By Sand Replacement | Abam | Global ...

    This paper describes a simple foundation improvement method involving the replacement of poor foundation bearing soils with sand and the resultant improvement in bearing capacity and the minimization of settlement at the site of a large storage tank. Minimum thickness of sand replacement for various foundation loads ...

  8. How Does Software Process Improvement Address Global Software Engineering?

    Kuhrmann, Marco; Diebold, Philipp; Münch, Jürgen

    2016-01-01

    For decades, Software Process Improvement (SPI) programs have been implemented, inter alia, to improve quality and speed of software development. To set up, guide, and carry out SPI projects, and to measure SPI state, impact, and success, a multitude of different SPI approaches and considerable...

  9. Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0 °C

    Y. Chen

    2018-05-01

    Full Text Available A new temperature goal of holding the increase in global average temperature well below 2 °C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 °C above pre-industrial levels has been established in the Paris Agreement, which calls for an understanding of climate risk under 1.5 and 2.0 °C warming scenarios. Here, we evaluated the effects of climate change on growth and productivity of three major crops (i.e. maize, wheat, rice in China during 2106–2115 in warming scenarios of 1.5 and 2.0 °C using a method of ensemble simulation with well-validated Model to capture the Crop–Weather relationship over a Large Area (MCWLA family crop models, their 10 sets of optimal crop model parameters and 70 climate projections from four global climate models. We presented the spatial patterns of changes in crop growth duration, crop yield, impacts of heat and drought stress, as well as crop yield variability and the probability of crop yield decrease. Results showed that climate change would have major negative impacts on crop production, particularly for wheat in north China, rice in south China and maize across the major cultivation areas, due to a decrease in crop growth duration and an increase in extreme events. By contrast, with moderate increases in temperature, solar radiation, precipitation and atmospheric CO2 concentration, agricultural climate resources such as light and thermal resources could be ameliorated, which would enhance canopy photosynthesis and consequently biomass accumulations and yields. The moderate climate change would slightly worsen the maize growth environment but would result in a much more appropriate growth environment for wheat and rice. As a result, wheat, rice and maize yields would change by +3.9 (+8.6, +4.1 (+9.4 and +0.2 % (−1.7 %, respectively, in a warming scenario of 1.5 °C (2.0 °C. In general, the warming scenarios would bring more opportunities than

  10. Towards domestication of Dimorphotheca pluvialis : studies on the genetic improvement of a potential oilseed crop for industrial applications

    Hof, L.

    2000-01-01

    World-wide, but particularly in Western Europe and the USA, the interest in arable crops for non-food use has increased substantially over the past few decades. Surpluses of the major food crops and the industrial interest for renewable resources have led to research and development

  11. Improving global paleogeography since the late Paleozoic using paleobiology

    W. Cao

    2017-12-01

    Full Text Available Paleogeographic reconstructions are important to understand Earth's tectonic evolution, past eustatic and regional sea level change, paleoclimate and ocean circulation, deep Earth resources and to constrain and interpret the dynamic topography predicted by mantle convection models. Global paleogeographic maps have been compiled and published, but they are generally presented as static maps with varying map projections, different time intervals represented by the maps and different plate motion models that underlie the paleogeographic reconstructions. This makes it difficult to convert the maps into a digital form and link them to alternative digital plate tectonic reconstructions. To address this limitation, we develop a workflow to restore global paleogeographic maps to their present-day coordinates and enable them to be linked to a different tectonic reconstruction. We use marine fossil collections from the Paleobiology Database to identify inconsistencies between their indicative paleoenvironments and published paleogeographic maps, and revise the locations of inferred paleo-coastlines that represent the estimated maximum transgression surfaces by resolving these inconsistencies. As a result, the consistency ratio between the paleogeography and the paleoenvironments indicated by the marine fossil collections is increased from an average of 75 % to nearly full consistency (100 %. The paleogeography in the main regions of North America, South America, Europe and Africa is significantly revised, especially in the Late Carboniferous, Middle Permian, Triassic, Jurassic, Late Cretaceous and most of the Cenozoic. The global flooded continental areas since the Early Devonian calculated from the revised paleogeography in this study are generally consistent with results derived from other paleoenvironment and paleo-lithofacies data and with the strontium isotope record in marine carbonates. We also estimate the terrestrial areal change over time

  12. Global hydrobelts: improved reporting scale for water-related issues?

    Meybeck, M.; Kummu, M.; Dürr, H. H.

    2012-08-01

    Questions related to water such as its availability, water needs or stress, or management, are mapped at various resolutions at the global scale. They are reported at many scales, mostly along political or continental boundaries. As such, they ignore the fundamental heterogeneity of the hydroclimate and the natural boundaries of the river basins. Here, we describe the continental landmasses according to eight global-scale hydrobelts strictly limited by river basins, defined at a 30' (0.5°) resolution. The belts were defined and delineated, based primarily on the annual average temperature (T) and runoff (q), to maximise interbelt differences and minimise intrabelt variability. The belts were further divided into 29 hydroregions based on continental limits. This new global puzzle defines homogeneous and near-contiguous entities with similar hydrological and thermal regimes, glacial and postglacial basin histories, endorheism distribution and sensitivity to climate variations. The Mid-Latitude, Dry and Subtropical belts have northern and southern analogues and a general symmetry can be observed for T and q between them. The Boreal and Equatorial belts are unique. The hydroregions (median size 4.7 Mkm2) contrast strongly, with the average q ranging between 6 and 1393 mm yr-1 and the average T between -9.7 and +26.3 °C. Unlike the hydroclimate, the population density between the North and South belts and between the continents varies greatly, resulting in pronounced differences between the belts with analogues in both hemispheres. The population density ranges from 0.7 to 0.8 p km-2 for the North American Boreal and some Australian hydroregions to 280 p km-2 for the Asian part of the Northern Mid-Latitude belt. The combination of population densities and hydroclimate features results in very specific expressions of water-related characteristics in each of the 29 hydroregions. Our initial tests suggest that hydrobelt and hydroregion divisions are often more

  13. Selenium (Se) improves drought tolerance in crop plants--a myth or fact?