WorldWideScience

Sample records for global coupled climate

  1. On coupling global biome models with climate models

    OpenAIRE

    Claussen, M.

    1994-01-01

    The BIOME model of Prentice et al. (1992; J. Biogeogr. 19: 117-134), which predicts global vegetation patterns in equilibrium with climate, was coupled with the ECHAM climate model of the Max-Planck-Institut fiir Meteorologie, Hamburg, Germany. It was found that incorporation of the BIOME model into ECHAM, regardless at which frequency, does not enhance the simulated climate variability, expressed in terms of differences between global vegetation patterns. Strongest changes are seen only betw...

  2. On coupling global biome models with climate models

    International Nuclear Information System (INIS)

    Claussen, M.

    1994-01-01

    The BIOME model of Prentice et al. (1992), which predicts global vegetation patterns in equilibrium with climate, is coupled with the ECHAM climate model of the Max-Planck-Institut fuer Meteorologie, Hamburg. It is found that incorporation of the BIOME model into ECHAM, regardless at which frequency, does not enhance the simulated climate variability, expressed in terms of differences between global vegetation patterns. Strongest changes are seen only between the initial biome distribution and the biome distribution computed after the first simulation period, provided that the climate-biome model is started from a biome distribution that resembles the present-day distribution. After the first simulation period, there is no significant shrinking, expanding, or shifting of biomes. Likewise, no trend is seen in global averages of land-surface parameters and climate variables. (orig.)

  3. Tropical interannual variability in a global coupled GCM: Sensitivity to mean climate state

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A.M. [Bureau of Meterology Research Centre, Melbourne, Victoria (Australia)

    1995-04-01

    A global coupled ocean-atmosphere-sea ice general circulation model is used to study interannual variability in the Tropics. Flux correction is used to control the mean climate of the coupled system, and in one configuration of the coupled model, interannual variability in the tropical Pacific is dominated by westward moving anomalies. Through a series of experiments in which the equatorial ocean wave speeds and ocean-atmosphere coupling strength are varied, it is demonstrated that these westward moving disturbances are probably some manifestation of what Neelin describes as an {open_quotes}SST mode.{close_quotes} By modifying the flux correction procedure, the mean climate of the coupled model can be changed. A fairly modest change in the mean climate is all that is required to excite eastward moving anomalies in place of the westward moving SST modes found previously. The apparent sensitivity of the nature of tropical interannual variability to the mean climate state in a coupled general circulation model such as that used here suggests that caution is advisable if we try to use such models to answer questions relating to changes in ENSO-like variability associated with global climate change. 41 refs., 23 figs., 1 tab.

  4. The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate

    Energy Technology Data Exchange (ETDEWEB)

    Flato, G.M.; Boer, G.J.; Lee, W.G.; McFarlane, N.A.; Ramsden, D.; Reader, M.C. [Canadian Centre for Climate Modelling and Analysis, Victoria, BC (Canada); Weaver, A.J. [School of Earth and Ocean Sciences, University of Victoria, BC (Canada)

    2000-06-01

    A global, three-dimensional climate model, developed by coupling the CCCma second-generation atmospheric general circulation model (GCM2) to a version of the GFDL modular ocean model (MOM1), forms the basis for extended simulations of past, current and projected future climate. The spin-up and coupling procedures are described, as is the resulting climate based on a 200 year model simulation with constant atmospheric composition and external forcing. The simulated climate is systematically compared to available observations in terms of mean climate quantities and their spatial patterns, temporal variability, and regional behavior. Such comparison demonstrates a generally successful reproduction of the broad features of mean climate quantities, albeit with local discrepancies. Variability is generally well-simulated over land, but somewhat underestimated in the tropical ocean and the extratropical storm-track regions. The modelled climate state shows only small trends, indicating a reasonable level of balance at the surface, which is achieved in part by the use of heat and freshwater flux adjustments. The control simulation provides a basis against which to compare simulated climate change due to historical and projected greenhouse gas and aerosol forcing as described in companion publications. (orig.)

  5. Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models

    Directory of Open Access Journals (Sweden)

    B. Schneider

    2008-04-01

    Full Text Available Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP and export production (EP of particulate organic carbon (POC. Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation. Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006 with stronger stratification (higher sea surface temperature; SST being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL also reproduces the inverse relationship between stratification (SST and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.

  6. Monte Carlo climate change forecasts with a global coupled ocean-atmosphere model

    International Nuclear Information System (INIS)

    Cubasch, U.; Santer, B.D.; Hegerl, G.; Hoeck, H.; Maier-Reimer, E.; Mikolajwicz, U.; Stoessel, A.; Voss, R.

    1992-01-01

    The Monte Carlo approach, which has increasingly been used during the last decade in the field of extended range weather forecasting, has been applied for climate change experiments. Four integrations with a global coupled ocean-atmosphere model have been started from different initial conditions, but with the same greenhouse gas forcing according to the IPCC scenario A. All experiments have been run for a period of 50 years. The results indicate that the time evolution of the global mean warming depends strongly on the initial state of the climate system. It can vary between 6 and 31 years. The Monte Carlo approach delivers information about both the mean response and the statistical significance of the response. While the individual members of the ensemble show a considerable variation in the climate change pattern of temperature after 50 years, the ensemble mean climate change pattern closely resembles the pattern obtained in a 100 year integration and is, at least over most of the land areas, statistically significant. The ensemble averaged sea-level change due to thermal expansion is significant in the global mean and locally over wide regions of the Pacific. The hydrological cycle is also significantly enhanced in the global mean, but locally the changes in precipitation and soil moisture are masked by the variability of the experiments. (orig.)

  7. Global response to solar radiation absorbed by phytoplankton in a coupled climate model

    Energy Technology Data Exchange (ETDEWEB)

    Patara, Lavinia [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel (Germany); Vichi, Marcello; Masina, Simona [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia (INGV), Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Fogli, Pier Giuseppe [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Manzini, Elisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    2012-10-15

    The global climate response to solar radiation absorbed by phytoplankton is investigated by performing multi-century simulations with a coupled ocean-atmosphere-biogeochemistry model. The absorption of solar radiation by phytoplankton increases radiative heating in the near-surface ocean and raises sea surface temperature (SST) by overall {approx}0.5 C. The resulting increase in evaporation enhances specific atmospheric humidity by 2-5%, thereby increasing the Earth's greenhouse effect and the atmospheric temperatures. The Hadley Cell exhibits a weakening and poleward expansion, therefore reducing cloudiness at subtropical-middle latitudes and increasing it at tropical latitudes except near the Equator. Higher SST at polar latitudes reduces sea ice cover and albedo, thereby increasing the high-latitude ocean absorption of solar radiation. Changes in the atmospheric baroclinicity cause a poleward intensification of mid-latitude westerly winds in both hemispheres. As a result, the North Atlantic Ocean meridional overturning circulation extends more northward, and the equatorward Ekman transport is enhanced in the Southern Ocean. The combination of local and dynamical processes decreases upper-ocean heat content in the Tropics and in the subpolar Southern Ocean, and increases it at middle latitudes. This study highlights the relevance of coupled ocean-atmosphere processes in the global climate response to phytoplankton solar absorption. Given that simulated impacts of phytoplankton on physical climate are within the range of natural climate variability, this study suggests the importance of phytoplankton as an internal constituent of the Earth's climate and its potential role in participating in its long-term climate adjustments. (orig.)

  8. Global response to solar radiation absorbed by phytoplankton in a coupled climate model

    International Nuclear Information System (INIS)

    Patara, Lavinia; Vichi, Marcello; Masina, Simona; Fogli, Pier Giuseppe; Manzini, Elisa

    2012-01-01

    The global climate response to solar radiation absorbed by phytoplankton is investigated by performing multi-century simulations with a coupled ocean-atmosphere-biogeochemistry model. The absorption of solar radiation by phytoplankton increases radiative heating in the near-surface ocean and raises sea surface temperature (SST) by overall ∼0.5 C. The resulting increase in evaporation enhances specific atmospheric humidity by 2-5%, thereby increasing the Earth's greenhouse effect and the atmospheric temperatures. The Hadley Cell exhibits a weakening and poleward expansion, therefore reducing cloudiness at subtropical-middle latitudes and increasing it at tropical latitudes except near the Equator. Higher SST at polar latitudes reduces sea ice cover and albedo, thereby increasing the high-latitude ocean absorption of solar radiation. Changes in the atmospheric baroclinicity cause a poleward intensification of mid-latitude westerly winds in both hemispheres. As a result, the North Atlantic Ocean meridional overturning circulation extends more northward, and the equatorward Ekman transport is enhanced in the Southern Ocean. The combination of local and dynamical processes decreases upper-ocean heat content in the Tropics and in the subpolar Southern Ocean, and increases it at middle latitudes. This study highlights the relevance of coupled ocean-atmosphere processes in the global climate response to phytoplankton solar absorption. Given that simulated impacts of phytoplankton on physical climate are within the range of natural climate variability, this study suggests the importance of phytoplankton as an internal constituent of the Earth's climate and its potential role in participating in its long-term climate adjustments. (orig.)

  9. The Southern Oscillation in a coupled GCM: Implications for climate sensitivity and climate change

    International Nuclear Information System (INIS)

    Meehl, G.A.

    1990-01-01

    Results are presented from a global coupled ocean-atmosphere general circulation climate model developed at the National Center for Atmospheric Research. The atmospheric part of the coupled model is a global spectral (R15, 4.5 degree latitude by 7.5 degree longitude, 9 layers in the vertical) general circulation model. The ocean is coarse-grid (5 degree latitude by 5 degree longitude, 4 layers in the vertical) global general circulation model. The coupled model includes a simple thermodynamic sea-ice model. Due mainly to inherent limitations in the ocean model, the coupled model simulates sea surface temperatures that are too low in the tropics and too high in the extratropics in the mean. In spite of these limitations, the coupled model simulates active interannual variability of the global climate system involving signals in the tropical Pacific that resemble, in some respects, the observed Southern Oscillation. These signals in the tropics are associated with teleconnections to the extratropics of both hemispheres. The implications of this model-simulated interannual variability of the coupled system relating to climate sensitivity and climate change due to an increase of atmospheric carbon dioxide are discussed

  10. The Southern Oscillation in a coupled GCM: Implications for climate sensitivity and climate change

    International Nuclear Information System (INIS)

    Meehl, G.A.

    1991-01-01

    Results are presented from a global coupled ocean-atmosphere general circulation climate model developed at the National Center for Atmospheric Research. The atmospheric part of the coupled model is a global spectral (R15, 4.5 degree latitude by 7.5 degree longitude, 9 layers in the vertical) general circulation model. The ocean is coarse-grid (5 degree latitude by 5 degree longitude, 4 layers in the vertical) global general circulation model. The coupled model includes a simple thermodynamic sea-ice model. Due mainly to inherent limitations in the ocean model, the coupled model simulates sea surface temperatures that are too low in the tropics and too high in the extratropics in the mean. In spite of these limitations, the coupled model simulates active interannual variability of the global climate system involving signals in the tropical Pacific that resemble, in some respects, the observed Southern Oscillation. These signals in the tropics are associated with teleconnections to the extratropics of both hemispheres. The implications of this model-simulated interannual variability of the coupled system relating to climate sensitivity and climate change due to an increase of atmospheric carbon dioxide are discussed. 25 refs.; 9 figs

  11. GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics

    Science.gov (United States)

    Delworth, T.L.; Broccoli, A.J.; Rosati, A.; Stouffer, R.J.; Balaji, V.; Beesley, J.A.; Cooke, W.F.; Dixon, K.W.; Dunne, J.; Dunne, K.A.; Durachta, J.W.; Findell, K.L.; Ginoux, P.; Gnanadesikan, A.; Gordon, C.T.; Griffies, S.M.; Gudgel, R.; Harrison, M.J.; Held, I.M.; Hemler, R.S.; Horowitz, L.W.; Klein, S.A.; Knutson, T.R.; Kushner, P.J.; Langenhorst, A.R.; Lee, H.-C.; Lin, S.-J.; Lu, J.; Malyshev, S.L.; Milly, P.C.D.; Ramaswamy, V.; Russell, J.; Schwarzkopf, M.D.; Shevliakova, E.; Sirutis, J.J.; Spelman, M.J.; Stern, W.F.; Winton, M.; Wittenberg, A.T.; Wyman, B.; Zeng, F.; Zhang, R.

    2006-01-01

    The formulation and simulation characteristics of two new global coupled climate models developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) are described. The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved. Tw o versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2?? latitude ?? 2.5?? longitude; the atmospheric model has 24 vertical levels. The ocean resolution is 1?? in latitude and longitude, with meridional resolution equatorward of 30?? becoming progressively finer, such that the meridional resolution is 1/3?? at the equator. There are 50 vertical levels in the ocean, with 22 evenly spaced levels within the top 220 m. The ocean component has poles over North America and Eurasia to avoid polar filtering. Neither coupled model employs flux adjustments. The co ntrol simulations have stable, realistic climates when integrated over multiple centuries. Both models have simulations of ENSO that are substantially improved relative to previous GFDL coupled models. The CM2.0 model has been further evaluated as an ENSO forecast model and has good skill (CM2.1 has not been evaluated as an ENSO forecast model). Generally reduced temperature and salinity biases exist in CM2.1 relative to CM2.0. These reductions are associated with 1) improved simulations of surface wind stress in CM2.1 and associated changes in oceanic gyre circulations; 2) changes in cloud tuning and

  12. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model

    International Nuclear Information System (INIS)

    Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J.

    2000-01-01

    The continued increase in the atmospheric concentration of carbon dioxide due to anthropogenic emissions is predicted to lead to significant changes in climate. About half of the current emissions are being absorbed by the ocean and by land ecosystems, but this absorption is sensitive to climate as well as to atmospheric carbon dioxide concentrations, creating a feedback loop. General circulation models have generally excluded the feedback between climate and the biosphere, using static vegetation distributions and CO 2 concentrations from simple carbon-cycle models that do not include climate change. Here we present results from a fully coupled, three-dimensional carbon-climate model, indicating that carbon-cycle feedbacks could significantly accelerate climate change over the twenty-first century. We find that under a 'business as usual' scenario, the terrestrial biosphere acts as an overall carbon sink until about 2050, but turns into a source thereafter. By 2100, the ocean uptake rate of 5 Gt C yr -1 is balanced by the terrestrial carbon source, and atmospheric CO 2 concentrations are 250 p.p.m.v. higher in our fully coupled simulation than in uncoupled carbon models, resulting in a global-mean warming of 5.5 K, as compared to 4 K without the carbon-cycle feedback. (author)

  13. Increase of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle model

    International Nuclear Information System (INIS)

    Govindasamy, B.; Thompson, S.; Mirin, A.; Wickett, M.; Caldeira, K.; Delire, C.

    2005-01-01

    Coupled climate and carbon cycle modelling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in greater warming. In this paper we investigate the sensitivity of this feedback for year 2100 global warming in the range of 0 to 8 K. Differing climate sensitivities to increased CO 2 content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 scenario are used. We use a fully coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA), the NCAR/DOE Parallel Climate Model coupled to the IBIS terrestrial biosphere model and a modified OCMIP ocean biogeochemistry model. In our integrated model, for scenarios with year 2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO 2 emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO 2 concentration increases are 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO 2 content; the carbon cycle feedback factor increases from 1.13 to 1.48 when global warming increases from 3.2 to 8 K

  14. A global hybrid coupled model based on atmosphere-SST feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Cimatoribus, Andrea A.; Drijfhout, Sybren S. [Royal Netherlands Meteorological Institute, De Bilt (Netherlands); Dijkstra, Henk A. [Utrecht University, Institute for Marine and Atmospheric Research Utrecht, Utrecht (Netherlands)

    2012-02-15

    A global hybrid coupled model is developed, with the aim of studying the effects of ocean-atmosphere feedbacks on the stability of the Atlantic meridional overturning circulation. The model includes a global ocean general circulation model and a statistical atmosphere model. The statistical atmosphere model is based on linear regressions of data from a fully coupled climate model on sea surface temperature both locally and hemispherically averaged, being the footprint of Atlantic meridional overturning variability. It provides dynamic boundary conditions to the ocean model for heat, freshwater and wind-stress. A basic but consistent representation of ocean-atmosphere feedbacks is captured in the hybrid coupled model and it is more than 10 times faster than the fully coupled climate model. The hybrid coupled model reaches a steady state with a climate close to the one of the fully coupled climate model, and the two models also have a similar response (collapse) of the Atlantic meridional overturning circulation to a freshwater hosing applied in the northern North Atlantic. (orig.)

  15. Inter-model variability and biases of the global water cycle in CMIP3 coupled climate models

    International Nuclear Information System (INIS)

    Liepert, Beate G; Previdi, Michael

    2012-01-01

    Observed changes such as increasing global temperatures and the intensification of the global water cycle in the 20th century are robust results of coupled general circulation models (CGCMs). In spite of these successes, model-to-model variability and biases that are small in first order climate responses, however, have considerable implications for climate predictability especially when multi-model means are used. We show that most climate simulations of the 20th and 21st century A2 scenario performed with CMIP3 (Coupled Model Inter-comparison Project Phase 3) models have deficiencies in simulating the global atmospheric moisture balance. Large biases of only a few models (some biases reach the simulated global precipitation changes in the 20th and 21st centuries) affect the multi-model mean global moisture budget. An imbalanced flux of −0.14 Sv exists while the multi-model median imbalance is only −0.02 Sv. Moreover, for most models the detected imbalance changes over time. As a consequence, in 13 of the 18 CMIP3 models examined, global annual mean precipitation exceeds global evaporation, indicating that there should be a ‘leaking’ of moisture from the atmosphere whereas for the remaining five models a ‘flooding’ is implied. Nonetheless, in all models, the actual atmospheric moisture content and its variability correctly increases during the course of the 20th and 21st centuries. These discrepancies therefore imply an unphysical and hence ‘ghost’ sink/source of atmospheric moisture in the models whose atmospheres flood/leak. The ghost source/sink of moisture can also be regarded as atmospheric latent heating/cooling and hence as positive/negative perturbation of the atmospheric energy budget or non-radiative forcing in the range of −1 to +6 W m −2 (median +0.1 W m −2 ). The inter-model variability of the global atmospheric moisture transport from oceans to land areas, which impacts the terrestrial water cycle, is also quite high and ranges

  16. Effects of cloudy/clear air mixing and droplet pH on sulfate aerosol formation in a coupled chemistry/climate global model

    Energy Technology Data Exchange (ETDEWEB)

    Molenkamp, C.R.; Atherton, C.A. [Lawrence Livermore National Lab., CA (United States); Penner, J.E.; Walton, J.J. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Atmospheric, Oceanic and Space Sciences

    1996-10-01

    In this paper we will briefly describe our coupled ECHAM/GRANTOUR model, provide a detailed description of our atmospheric chemistry parameterizations, and discuss a couple of numerical experiments in which we explore the influence of assumed pH and rate of mixing between cloudy and clear air on aqueous sulfate formation and concentration. We have used our tropospheric chemistry and transport model, GRANTOUR, to estimate the life cycle and global distributions of many trace species. Recently, we have coupled GRANTOUR with the ECHAM global climate model, which provides several enhanced capabilities in the representation of aerosol interactions.

  17. Global land-atmosphere coupling associated with cold climate processes

    OpenAIRE

    Dutra, Emanuel, 1983-

    2011-01-01

    Tese de doutoramento, Ciências Geofísicas e da Geoinformação (Meteorologia), Universidade de Lisboa, Faculdade de Ciências, 2011 This dissertation constitutes an assessment of the role of cold processes, associated with snow cover, in controlling the land-atmosphere coupling. The work was based on model simulations, including offline simulations with the land surface model HTESSEL, and coupled atmosphere simulations with the EC-EARTH climate model. A revised snow scheme was developed and t...

  18. Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales?

    Science.gov (United States)

    Hewitt, Helene T.; Bell, Michael J.; Chassignet, Eric P.; Czaja, Arnaud; Ferreira, David; Griffies, Stephen M.; Hyder, Pat; McClean, Julie L.; New, Adrian L.; Roberts, Malcolm J.

    2017-12-01

    As the importance of the ocean in the weather and climate system is increasingly recognised, operational systems are now moving towards coupled prediction not only for seasonal to climate timescales but also for short-range forecasts. A three-way tension exists between the allocation of computing resources to refine model resolution, the expansion of model complexity/capability, and the increase of ensemble size. Here we review evidence for the benefits of increased ocean resolution in global coupled models, where the ocean component explicitly represents transient mesoscale eddies and narrow boundary currents. We consider lessons learned from forced ocean/sea-ice simulations; from studies concerning the SST resolution required to impact atmospheric simulations; and from coupled predictions. Impacts of the mesoscale ocean in western boundary current regions on the large-scale atmospheric state have been identified. Understanding of air-sea feedback in western boundary currents is modifying our view of the dynamics in these key regions. It remains unclear whether variability associated with open ocean mesoscale eddies is equally important to the large-scale atmospheric state. We include a discussion of what processes can presently be parameterised in coupled models with coarse resolution non-eddying ocean models, and where parameterizations may fall short. We discuss the benefits of resolution and identify gaps in the current literature that leave important questions unanswered.

  19. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    Directory of Open Access Journals (Sweden)

    N. Mahowald

    2011-02-01

    Full Text Available Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climate feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.

  20. Sensitivity of simulated regional Arctic climate to the choice of coupled model domain

    Directory of Open Access Journals (Sweden)

    Dmitry V. Sein

    2014-07-01

    Full Text Available The climate over the Arctic has undergone changes in recent decades. In order to evaluate the coupled response of the Arctic system to external and internal forcing, our study focuses on the estimation of regional climate variability and its dependence on large-scale atmospheric and regional ocean circulations. A global ocean–sea ice model with regionally high horizontal resolution is coupled to an atmospheric regional model and global terrestrial hydrology model. This way of coupling divides the global ocean model setup into two different domains: one coupled, where the ocean and the atmosphere are interacting, and one uncoupled, where the ocean model is driven by prescribed atmospheric forcing and runs in a so-called stand-alone mode. Therefore, selecting a specific area for the regional atmosphere implies that the ocean–atmosphere system can develop ‘freely’ in that area, whereas for the rest of the global ocean, the circulation is driven by prescribed atmospheric forcing without any feedbacks. Five different coupled setups are chosen for ensemble simulations. The choice of the coupled domains was done to estimate the influences of the Subtropical Atlantic, Eurasian and North Pacific regions on northern North Atlantic and Arctic climate. Our simulations show that the regional coupled ocean–atmosphere model is sensitive to the choice of the modelled area. The different model configurations reproduce differently both the mean climate and its variability. Only two out of five model setups were able to reproduce the Arctic climate as observed under recent climate conditions (ERA-40 Reanalysis. Evidence is found that the main source of uncertainty for Arctic climate variability and its predictability is the North Pacific. The prescription of North Pacific conditions in the regional model leads to significant correlation with observations, even if the whole North Atlantic is within the coupled model domain. However, the inclusion of the

  1. How do persistent organic pollutants be coupled with biogeochemical cycles of carbon and nutrients in terrestrial ecosystems under global climate change?

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Ying [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation; Griffith Univ., Nathan, QLD (Australia). Environmetnal Futures Centre and School of Biomolecular and Physical Sciences; Xu, Zhihong; Reverchon, Frederique [Griffith Univ., Nathan, QLD (Australia). Environmetnal Futures Centre and School of Biomolecular and Physical Sciences; Luo, Yongming [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation

    2012-03-15

    Global climate change (GCC), especially global warming, has affected the material cycling (e.g., carbon, nutrients, and organic chemicals) and the energy flows of terrestrial ecosystems. Persistent organic pollutants (POPs) were regarded as anthropogenic organic carbon (OC) source, and be coupled with the natural carbon (C) and nutrient biogeochemical cycling in ecosystems. The objective of this work was to review the current literature and explore potential coupling processes and mechanisms between POPs and biogeochemical cycles of C and nutrients in terrestrial ecosystems induced by global warming. Global warming has caused many physical, chemical, and biological changes in terrestrial ecosystems. POPs environmental fate in these ecosystems is controlled mainly by temperature and biogeochemical processes. Global warming may accelerate the re-emissions and redistribution of POPs among environmental compartments via soil-air exchange. Soil-air exchange is a key process controlling the fate and transportation of POPs and terrestrial ecosystem C at regional and global scales. Soil respiration is one of the largest terrestrial C flux induced by microbe and plant metabolism, which can affect POPs biotransformation in terrestrial ecosystems. Carbon flow through food web structure also may have important consequences for the biomagnification of POPs in the ecosystems and further lead to biodiversity loss induced by climate change and POPs pollution stress. Moreover, the integrated techniques and biological adaptation strategy help to fully explore the coupling mechanisms, functioning and trends of POPs and C and nutrient biogeochemical cycling processes in terrestrial ecosystems. There is increasing evidence that the environmental fate of POPs has been linked with biogeochemical cycles of C and nutrients in terrestrial ecosystems under GCC. However, the relationships between POPs and the biogeochemical cycles of C and nutrients are still not well understood. Further

  2. GFDL's ESM2 global coupled climate-carbon Earth System Models. Part I: physical formulation and baseline simulation characteristics

    Science.gov (United States)

    Dunne, John P.; John, Jasmin G.; Adcroft, Alistair J.; Griffies, Stephen M.; Hallberg, Robert W.; Shevalikova, Elena; Stouffer, Ronald J.; Cooke, William; Dunne, Krista A.; Harrison, Matthew J.; Krasting, John P.; Malyshev, Sergey L.; Milly, P.C.D.; Phillipps, Peter J.; Sentman, Lori A.; Samuels, Bonita L.; Spelman, Michael J.; Winton, Michael; Wittenberg, Andrew T.; Zadeh, Niki

    2012-01-01

    We describe the physical climate formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models, ESM2M and ESM2G. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory's previous CM2.1 climate model while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4.1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in the El Niño-Southern Oscillation being overly strong in ESM2M and overly weak ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to: total heat content variability given its lack of long term drift, gyre circulation and ventilation in the North Pacific, tropical Atlantic and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to: surface circulation given its superior surface temperature, salinity and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. Our overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords us the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon-climate models.

  3. Climate effects of anthropogenic sulfate: Simulations from a coupled chemistry/climate model

    International Nuclear Information System (INIS)

    Chuang, C.C.; Penner, J.E.; Taylor, K.E.; Walton, J.J.

    1993-09-01

    In this paper, we use a more comprehensive approach by coupling a climate model with a 3-D global chemistry model to investigate the forcing by anthropogenic aerosol sulfate. The chemistry model treats the global-scale transport, transformation, and removal of SO 2 , DMS and H 2 SO 4 species in the atmosphere. The mass concentration of anthropogenic sulfate from fossil fuel combustion and biomass burning is calculated in the chemistry model and provided to the climate model where it affects the shortwave radiation. We also investigate the effect, with cloud nucleation parameterized in terms of local aerosol number, sulfate mass concentration and updraft velocity. Our simulations indicate that anthropogenic sulfate may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. Uncertainties in these results will be discussed

  4. Estimation of the global climate effect of brown carbon

    Science.gov (United States)

    Zhang, A.; Wang, Y.; Zhang, Y.; Weber, R. J.; Song, Y.

    2017-12-01

    Carbonaceous aerosols significantly affect global radiative forcing and climate through absorption and scattering of sunlight. Black carbon (BC) and brown carbon (BrC) are light-absorbing carbonaceous aerosols. The global distribution and climate effect of BrC is uncertain. A recent study suggests that BrC absorption is comparable to BC in the upper troposphere over biomass burning region and that the resulting heating tends to stabilize the atmosphere. Yet current climate models do not include proper treatments of BrC. In this study, we derived a BrC global biomass burning emission inventory from Global Fire Emissions Database 4 (GFED4) and developed a BrC module in the Community Atmosphere Model version 5 (CAM5) of Community Earth System Model (CESM) model. The model simulations compared well to BrC observations of the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and Deep Convective Clouds and Chemistry Project (DC-3) campaigns and includes BrC bleaching. Model results suggested that BrC in the upper troposphere due to convective transport is as important an absorber as BC globally. Upper tropospheric BrC radiative forcing is particularly significant over the tropics, affecting the atmosphere stability and Hadley circulation.

  5. Dynamics of the larch taiga-permafrost coupled system in Siberia under climate change

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ningning [Graduate School of Environmental Studies, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Yasunari, Tetsuzo [Hydrospheric Atmospheric Research Center, Nagoya University, Nagoya 464-8601 (Japan); Ohta, Takeshi, E-mail: zhangningning@lasg.iap.ac.cn [Study Consortium for Earth-Life Interactive Systems (SELIS) of Nagoya University, Nagoya (Japan)

    2011-04-15

    Larch taiga, also known as Siberian boreal forest, plays an important role in global and regional water-energy-carbon (WEC) cycles and in the climate system. Recent in situ observations have suggested that larch-dominated taiga and permafrost behave as a coupled eco-climate system across a broad boreal zone of Siberia. However, neither field-based observations nor modeling experiments have clarified the synthesized dynamics of this system. Here, using a new dynamic vegetation model coupled with a permafrost model, we reveal the processes of interaction between the taiga and permafrost. The model demonstrates that under the present climate conditions in eastern Siberia, larch trees maintain permafrost by controlling the seasonal thawing of permafrost, which in turn maintains the taiga by providing sufficient water to the larch trees. The experiment without permafrost processes showed that larch would decrease in biomass and be replaced by a dominance of pine and other species that suffer drier hydroclimatic conditions. In the coupled system, fire not only plays a destructive role in the forest, but also, in some cases, preserves larch domination in forests. Climate warming sensitivity experiments show that this coupled system cannot be maintained under warming of about 2 deg. C or more. Under such conditions, a forest with typical boreal tree species (dark conifer and deciduous species) would become dominant, decoupled from the permafrost processes. This study thus suggests that future global warming could drastically alter the larch-dominated taiga-permafrost coupled system in Siberia, with associated changes of WEC processes and feedback to climate.

  6. Dynamics of the larch taiga-permafrost coupled system in Siberia under climate change

    International Nuclear Information System (INIS)

    Zhang Ningning; Yasunari, Tetsuzo; Ohta, Takeshi

    2011-01-01

    Larch taiga, also known as Siberian boreal forest, plays an important role in global and regional water-energy-carbon (WEC) cycles and in the climate system. Recent in situ observations have suggested that larch-dominated taiga and permafrost behave as a coupled eco-climate system across a broad boreal zone of Siberia. However, neither field-based observations nor modeling experiments have clarified the synthesized dynamics of this system. Here, using a new dynamic vegetation model coupled with a permafrost model, we reveal the processes of interaction between the taiga and permafrost. The model demonstrates that under the present climate conditions in eastern Siberia, larch trees maintain permafrost by controlling the seasonal thawing of permafrost, which in turn maintains the taiga by providing sufficient water to the larch trees. The experiment without permafrost processes showed that larch would decrease in biomass and be replaced by a dominance of pine and other species that suffer drier hydroclimatic conditions. In the coupled system, fire not only plays a destructive role in the forest, but also, in some cases, preserves larch domination in forests. Climate warming sensitivity experiments show that this coupled system cannot be maintained under warming of about 2 deg. C or more. Under such conditions, a forest with typical boreal tree species (dark conifer and deciduous species) would become dominant, decoupled from the permafrost processes. This study thus suggests that future global warming could drastically alter the larch-dominated taiga-permafrost coupled system in Siberia, with associated changes of WEC processes and feedback to climate.

  7. Snowball Earth: Asynchronous coupling of sea-glacier flow with a global climate model

    Science.gov (United States)

    Pollard, D.; Kasting, J. F.; Zugger, M. E.

    2017-05-01

    During Snowball Earth episodes of the Neoproterozoic and Paleoproterozoic, limited amounts of tropical open ocean (Jormungand), or tropical ocean with thin ice cover, would help to explain (1) vigorous glacial activity in low latitudes, (2) survival of photosynthetic life, and (3) deglacial recovery without excessive buildup of atmospheric CO2. Some previous models have suggested that tropical open ocean or thin-ice cover is possible; however, its viability in the presence of kilometer-thick sea glaciers flowing from higher latitudes has not been demonstrated conclusively. Here we describe a new method of asynchronously coupling a zonal sea-glacier model with a 3-D global climate model and apply it to Snowball Earth. Equilibrium curves of ice line versus CO2 are mapped out, as well as their dependence on ocean heat transport efficiency, sea-glacier flow, and other model parameters. No climate states with limited tropical open ocean or thin ice are found in any of our model runs, including those with sea glaciers. If this result is correct, then other refugia such as cryoconite pans would have been required for life to survive. However, the reasons for the differences between our results and others should first be resolved. It is suggested that small-scale convective dynamics, affecting fractional snow cover in low latitudes, may be a critical factor accounting for these differences.

  8. Climatic irregular staircases: generalized acceleration of global warming.

    Science.gov (United States)

    De Saedeleer, Bernard

    2016-01-27

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr - not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth's climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates - except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature.

  9. Emergence of global scaling behaviour in the coupled Earth-atmosphere interaction

    OpenAIRE

    Fallah, Bijan; Saberi, Abbas Ali; Sodoudi, Sahar

    2016-01-01

    Scale invariance property in the global geometry of Earth may lead to a coupled interactive behaviour between various components of the climate system. One of the most interesting correlations exists between spatial statistics of the global topography and the temperature on Earth. Here we show that the power-law behaviour observed in the Earth topography via different approaches, resembles a scaling law in the global spatial distribution of independent atmospheric parameters. We report on obs...

  10. An effective drift correction for dynamical downscaling of decadal global climate predictions

    Science.gov (United States)

    Paeth, Heiko; Li, Jingmin; Pollinger, Felix; Müller, Wolfgang A.; Pohlmann, Holger; Feldmann, Hendrik; Panitz, Hans-Jürgen

    2018-04-01

    Initialized decadal climate predictions with coupled climate models are often marked by substantial climate drifts that emanate from a mismatch between the climatology of the coupled model system and the data set used for initialization. While such drifts may be easily removed from the prediction system when analyzing individual variables, a major problem prevails for multivariate issues and, especially, when the output of the global prediction system shall be used for dynamical downscaling. In this study, we present a statistical approach to remove climate drifts in a multivariate context and demonstrate the effect of this drift correction on regional climate model simulations over the Euro-Atlantic sector. The statistical approach is based on an empirical orthogonal function (EOF) analysis adapted to a very large data matrix. The climate drift emerges as a dramatic cooling trend in North Atlantic sea surface temperatures (SSTs) and is captured by the leading EOF of the multivariate output from the global prediction system, accounting for 7.7% of total variability. The SST cooling pattern also imposes drifts in various atmospheric variables and levels. The removal of the first EOF effectuates the drift correction while retaining other components of intra-annual, inter-annual and decadal variability. In the regional climate model, the multivariate drift correction of the input data removes the cooling trends in most western European land regions and systematically reduces the discrepancy between the output of the regional climate model and observational data. In contrast, removing the drift only in the SST field from the global model has hardly any positive effect on the regional climate model.

  11. Coupled model simulations of climate changes in the 20th century and beyond

    Science.gov (United States)

    Yu, Yongqiang; Zhi, Hai; Wang, Bin; Wan, Hui; Li, Chao; Liu, Hailong; Li, Wei; Zheng, Weipeng; Zhou, Tianjun

    2008-07-01

    Several scenario experiments of the IPCC 4th Assessment Report (AR4) are performed by version g1.0 of a Flexible coupled Ocean-Atmosphere-Land System Model (FGOALS) developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP/CAS), including the “Climate of the 20th century experiment”, “CO2 1% increase per year to doubling experiment” and two separate IPCC greenhouse gases emission scenarios A1B and B1 experiments. To distinguish between the different impacts of natural variations and human activities on the climate change, three-member ensemble runs are performed for each scenario experiment. The coupled model simulations show: (1) from 1900 to 2000, the global mean temperature increases about 0.5°C and the major increase occurs during the later half of the 20th century, which is in consistent with the observations that highlights the coupled model’s ability to reproduce the climate changes since the industrial revolution; (2) the global mean surface air temperature increases about 1.6°C in the CO2 doubling experiment and 1.5°C and 2.4°C in the A1B and B1 scenarios, respectively. The global warming is indicated by not only the changes of the surface temperature and precipitation but also the temperature increase in the deep ocean. The thermal expansion of the sea water would induce the rise of the global mean sea level. Both the control run and the 20th century climate change run are carried out again with version g1.1 of FGOALS, in which the cold biases in the high latitudes were removed. They are then compared with those from version g1.0 of FGOALS in order to distinguish the effect of the model biases on the simulation of global warming.

  12. Determining the effect of key climate drivers on global hydropower production

    Science.gov (United States)

    Galelli, S.; Ng, J. Y.; Lee, D.; Block, P. J.

    2017-12-01

    Accounting for about 17% of total global electrical power production, hydropower is arguably the world's main renewable energy source and a key asset to meet Paris climate agreements. A key component of hydropower production is water availability, which depends on both precipitation and multiple drivers of climate variability acting at different spatial and temporal scales. To understand how these drivers impact global hydropower production, we study the relation between four patterns of ocean-atmosphere climate variability (i.e., El Niño Southern Oscillation, Pacific Decadal Oscillation, North Atlantic Oscillation, and Atlantic Multidecadal Oscillation) and monthly time series of electrical power production for over 1,500 hydropower reservoirs—obtained via simulation with a high-fidelity dam model forced with 20th century climate conditions. Notably significant relationships between electrical power productions and climate variability are found in many climate sensitive regions globally, including North and South America, East Asia, West Africa, and Europe. Coupled interactions from multiple, simultaneous climate drivers are also evaluated. Finally, we highlight the importance of using these climate drivers as an additional source of information within reservoir operating rules where the skillful predictability of inflow exists.

  13. Climate Science's Globally Distributed Infrastructure

    Science.gov (United States)

    Williams, D. N.

    2016-12-01

    The Earth System Grid Federation (ESGF) is primarily funded by the Department of Energy's (DOE's) Office of Science (the Office of Biological and Environmental Research [BER] Climate Data Informatics Program and the Office of Advanced Scientific Computing Research Next Generation Network for Science Program), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF), the European Infrastructure for the European Network for Earth System Modeling (IS-ENES), and the Australian National University (ANU). Support also comes from other U.S. federal and international agencies. The federation works across multiple worldwide data centers and spans seven international network organizations to provide users with the ability to access, analyze, and visualize data using a globally federated collection of networks, computers, and software. Its architecture employs a series of geographically distributed peer nodes that are independently administered and united by common federation protocols and application programming interfaces (APIs). The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP; output used by the Intergovernmental Panel on Climate Change assessment reports), multiple model intercomparison projects (MIPs; endorsed by the World Climate Research Programme [WCRP]), and the Accelerated Climate Modeling for Energy (ACME; ESGF is included in the overarching ACME workflow process to store model output). ESGF is a successful example of integration of disparate open-source technologies into a cohesive functional system that serves the needs the global climate science community. Data served by ESGF includes not only model output but also observational data from satellites and instruments, reanalysis, and generated images.

  14. Global climate convention

    International Nuclear Information System (INIS)

    Simonis, U.E.

    1991-01-01

    The effort of negotiate a global convention on climate change is one of mankind's great endeavours - and a challenge to economists and development planners. The inherent linkages between climate and the habitability of the earth are increasingly well recognized, and a convention could help to ensure that conserving the environment and developing the economy in the future must go hand in hand. Due to growing environmental concern the United Nations General Assembly has set into motion an international negotiating process for a framework convention on climate change. One the major tasks in these negotiations is how to share the duties in reducing climate relevant gases, particularly carbon dioxide (CO 2 ), between the industrial and the developing countries. The results and proposals could be among the most far-reaching ever for socio-economic development, indeed for global security and survival itself. While the negotiations will be about climate and protection of the atmosphere, they will be on fundamental global changes in energy policies, forestry, transport, technology, and on development pathways with low greenhouse gas emissions. Some of these aspects of a climate convention, particularly the distributional options and consequences for the North-South relations, are addressed in this chapter. (orig.)

  15. Russia and Global Climate Politics

    International Nuclear Information System (INIS)

    Tynkkynen, Nina

    2014-09-01

    Russia, as the fourth largest greenhouse-gas emitter in the world, and a major supplier of fossil fuels causing these emissions, played a decisive role in the enforcement of the Kyoto Protocol, the main instrument of global climate policy so far. Domestically, serious political measures to combat climate change have yet to be taken. Thus, Russia's performance in global climate politics indicates that goals other than genuinely environmental ones, such as political or economic benefits, are the main motivation of Russia's participation. Also, Russia's national pride and its status as a great power are at stake here. This paper scrutinizes Russia's stance in global climate politics, offering an overview of Russia's engagement in international climate politics and its domestic climate policy. In the second part of the paper, Russia's engagement in global environmental politics is discussed in the context of Russia's world status and the great-power concept. Accordingly, the paper aims to shed light on how and why Russia behaves in global climate politics in the way it does. This may be of interest to actors in international environmental politics in general, and relevant to future climate negotiations in particular. (author)

  16. Secular trends and climate drift in coupled ocean-atmosphere general circulation models

    Science.gov (United States)

    Covey, Curt; Gleckler, Peter J.; Phillips, Thomas J.; Bader, David C.

    2006-02-01

    Coupled ocean-atmosphere general circulation models (coupled GCMs) with interactive sea ice are the primary tool for investigating possible future global warming and numerous other issues in climate science. A long-standing problem with such models is that when different components of the physical climate system are linked together, the simulated climate can drift away from observation unless constrained by ad hoc adjustments to interface fluxes. However, 11 modern coupled GCMs, including three that do not employ flux adjustments, behave much better in this respect than the older generation of models. Surface temperature trends in control run simulations (with external climate forcing such as solar brightness and atmospheric carbon dioxide held constant) are small compared with observed trends, which include 20th century climate change due to both anthropogenic and natural factors. Sea ice changes in the models are dominated by interannual variations. Deep ocean temperature and salinity trends are small enough for model control runs to extend over 1000 simulated years or more, but trends in some regions, most notably the Arctic, differ substantially among the models and may be problematic. Methods used to initialize coupled GCMs can mitigate climate drift but cannot eliminate it. Lengthy "spin-ups" of models, made possible by increasing computer power, are one reason for the improvements this paper documents.

  17. Detailed Urban Heat Island Projections for Cities Worldwide: Dynamical Downscaling CMIP5 Global Climate Models

    Directory of Open Access Journals (Sweden)

    Dirk Lauwaet

    2015-06-01

    Full Text Available A new dynamical downscaling methodology to analyze the impact of global climate change on the local climate of cities worldwide is presented. The urban boundary layer climate model UrbClim is coupled to 11 global climate models contained in the Coupled Model Intercomparison Project 5 archive, conducting 20-year simulations for present (1986–2005 and future (2081–2100 climate conditions, considering the Representative Concentration Pathway 8.5 climate scenario. The evolution of the urban heat island of eight different cities, located on three continents, is quantified and assessed, with an unprecedented horizontal resolution of a few hundred meters. For all cities, urban and rural air temperatures are found to increase strongly, up to 7 °C. However, the urban heat island intensity in most cases increases only slightly, often even below the range of uncertainty. A potential explanation, focusing on the role of increased incoming longwave radiation, is put forth. Finally, an alternative method for generating urban climate projections is proposed, combining the ensemble temperature change statistics and the results of the present-day urban climate.

  18. Climate and Global Change

    International Nuclear Information System (INIS)

    Duplessy, J.C.; Pons, A.; Fantechi, R.

    1991-01-01

    The present volume contains the lessons delivered at the course held in Arles, France, on the subject Climate and Global Change: natural variability of the geosphere and biosphere systems, biogeochemical cycles and their perturbation by human activities, monitoring and forecasting global changes (satellite observations, modelling,...). Short presentations of students' own research activities are also proposed (climatic fluctuation in the Mediterranean area, climate/vegetation relations, etc.)

  19. The role of natural climatic variation in perturbing the observed global mean temperature trend

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, B.G. [CSIRO Marine and Atmospheric Research, Aspendale, VIC (Australia)

    2011-02-15

    Controversy continues to prevail concerning the reality of anthropogenically-induced climatic warming. One of the principal issues is the cause of the hiatus in the current global warming trend. There appears to be a widely held view that climatic change warming should exhibit an inexorable upwards trend, a view that implies there is no longer any input by climatic variability in the existing climatic system. The relative roles of climatic change and climatic variability are examined here using the same coupled global climatic model. For the former, the model is run using a specified CO{sub 2} growth scenario, while the latter consisted of a multi-millennial simulation where any climatic variability was attributable solely to internal processes within the climatic system. It is shown that internal climatic variability can produce global mean surface temperature anomalies of {+-}0.25 K and sustained positive and negative anomalies sufficient to account for the anomalous warming of the 1940s as well as the present hiatus in the observed global warming. The characteristics of the internally-induced negative temperature anomalies are such that if this internal natural variability is the cause of the observed hiatus, then a resumption of the observed global warming trend is to be expected within the next few years. (orig.)

  20. Climate change 101 : understanding and responding to global climate change

    Science.gov (United States)

    2009-01-01

    To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...

  1. Global Effects of Superparameterization on Hydrothermal Land-Atmosphere Coupling on Multiple Timescales

    Science.gov (United States)

    Qin, Hongchen; Pritchard, Michael S.; Kooperman, Gabriel J.; Parishani, Hossein

    2018-02-01

    Many conventional General Circulation Models (GCMs) in the Global Land-Atmosphere Coupling Experiment (GLACE) tend to produce what is now recognized as overly strong land-atmosphere (L-A) coupling. We investigate the effects of cloud Superparameterization (SP) on L-A coupling on timescales beyond diurnal where it has been recently shown to have a favorable muting effect hydrologically. Using the Community Atmosphere Model v3.5 (CAM3.5) and its Superparameterized counterpart SPCAM3.5, we conducted soil moisture interference experiments following the GLACE and Atmospheric Model Intercomparison Project (AMIP) protocols. The results show that, on weekly-to-subseasonal timescales, SP also mutes hydrologic L-A coupling. This is detectable globally, and happens through the evapotranspiration-precipitation segment. But on seasonal timescales, SP does not exhibit detectable effects on hydrologic L-A coupling. Two robust regional effects of SP on thermal L-A coupling have also been explored. Over the Arabian Peninsula, SP reduces thermal L-A coupling through a straightforward control by mean rainfall reduction. More counterintuitively, over the Southwestern US and Northern Mexico, SP enhances the thermal L-A coupling in a way that is independent of rainfall and soil moisture. This signal is associated with a systematic and previously unrecognized effect of SP that produces an amplified Bowen ratio, and is detectable in multiple SP model versions and experiment designs. In addition to amplifying the present-day Bowen ratio, SP is found to amplify the climate sensitivity of Bowen ratio as well, which likely plays a role in influencing climate change predictions at the L-A interface.

  2. Climate change - global warming

    International Nuclear Information System (INIS)

    Ciconkov, Risto

    2001-01-01

    An explanation about climate, weather, climate changes. What is a greenhouse effect, i.e. global warming and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warming Potential) as a factor for estimating their influence on the greenhouse effect. Indicators of the climate changes in the previous period by known international institutions, higher concentrations of global average temperature. Projecting of likely scenarios for the future climate changes and consequences of them on the environment and human activities: industry, energy, agriculture, water resources. The main points of the Kyoto Protocol and problems in its realization. The need of preparing a country strategy concerning the acts of the Kyoto Protocol, suggestions which could contribute in the preparation of the strategy. A special attention is pointed to the energy, its resources, the structure of energy consumption and the energy efficiency. (Author)

  3. Economic implications of climate-driven trends in global hydropower generation

    Science.gov (United States)

    Turner, S. W. D.; Galelli, S.; Hejazi, M. I.; Clarke, L.; Edmonds, J.; Kim, S. H.

    2017-12-01

    Recent progress in global scale hydrological and dam modeling has allowed for the study of climate change impacts on global hydropower production. Here we explore how these impacts could affect the composition of global electricity supply, and what those changes could mean for power sector emissions and investment needs in the 21st century. Regional hydropower projections are developed for two emissions scenarios by forcing a coupled global hydrological and dam model (1593 major hydropower dams; 54% global installed capacity) with downscaled, bias-corrected climate realizations derived from sixteen General Circulation Models (GCMs). To incorporate possible non-linearity in hydropower response to climate change, dam simulations incorporate plant specifications (e.g., maximum turbine flow), reservoir storage dynamics, reservoir bathymetry, evaporation losses and bespoke, site specific operations. Consequent impacts on regional and global-level electricity generation and associated emissions and investment costs are examined using the Global Change Assessment Model (GCAM). We show that changes in hydropower generation resulting from climate change can shift power demands onto and away from carbon intensive technologies, resulting in significant impacts on CO2 emissions for several regions. Many of these countries are also highly vulnerable to investment impacts (costs of new electricity generating facilities to make up for shortfalls in hydro), which in some cases amount to tens of billions of dollars by 2100. The Balkans region—typified by weak economies in a drying region that relies heavily on hydropower—emerges as the most vulnerable. Reduced impacts of climate change on hydropower production under a low emissions scenario coincide with increased costs of marginal power generating capacity (low emissions requires greater uptake of clean generating technologies, which are more expensive). This means impacts on power sector investment costs are similar for high

  4. Coupling Climate Models and Forward-Looking Economic Models

    Science.gov (United States)

    Judd, K.; Brock, W. A.

    2010-12-01

    Authors: Dr. Kenneth L. Judd, Hoover Institution, and Prof. William A. Brock, University of Wisconsin Current climate models range from General Circulation Models (GCM’s) with millions of degrees of freedom to models with few degrees of freedom. Simple Energy Balance Climate Models (EBCM’s) help us understand the dynamics of GCM’s. The same is true in economics with Computable General Equilibrium Models (CGE’s) where some models are infinite-dimensional multidimensional differential equations but some are simple models. Nordhaus (2007, 2010) couples a simple EBCM with a simple economic model. One- and two- dimensional ECBM’s do better at approximating damages across the globe and positive and negative feedbacks from anthroprogenic forcing (North etal. (1981), Wu and North (2007)). A proper coupling of climate and economic systems is crucial for arriving at effective policies. Brock and Xepapadeas (2010) have used Fourier/Legendre based expansions to study the shape of socially optimal carbon taxes over time at the planetary level in the face of damages caused by polar ice cap melt (as discussed by Oppenheimer, 2005) but in only a “one dimensional” EBCM. Economists have used orthogonal polynomial expansions to solve dynamic, forward-looking economic models (Judd, 1992, 1998). This presentation will couple EBCM climate models with basic forward-looking economic models, and examine the effectiveness and scaling properties of alternative solution methods. We will use a two dimensional EBCM model on the sphere (Wu and North, 2007) and a multicountry, multisector regional model of the economic system. Our aim will be to gain insights into intertemporal shape of the optimal carbon tax schedule, and its impact on global food production, as modeled by Golub and Hertel (2009). We will initially have limited computing resources and will need to focus on highly aggregated models. However, this will be more complex than existing models with forward

  5. Global climate change

    International Nuclear Information System (INIS)

    Levine, J.S.

    1991-01-01

    Present processes of global climate change are reviewed. The processes determining global temperature are briefly described and the concept of effective temperature is elucidated. The greenhouse effect is examined, including the sources and sinks of greenhouse gases. 18 refs

  6. Quantifying PM2.5-Meteorology Sensitivities in a Global Climate Model

    Science.gov (United States)

    Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Tai, A. P. K.; Fiore, A. M.; Mauzerall, D. L.

    2016-01-01

    Climate change can influence fine particulate matter concentrations (PM2.5) through changes in air pollution meteorology. Knowledge of the extent to which climate change can exacerbate or alleviate air pollution in the future is needed for robust climate and air pollution policy decision-making. To examine the influence of climate on PM2.5, we use the Geophysical Fluid Dynamics Laboratory Coupled Model version 3 (GFDL CM3), a fully-coupled chemistry-climate model, combined with future emissions and concentrations provided by the four Representative Concentration Pathways (RCPs). For each of the RCPs, we conduct future simulations in which emissions of aerosols and their precursors are held at 2005 levels while other climate forcing agents evolve in time, such that only climate (and thus meteorology) can influence PM2.5 surface concentrations. We find a small increase in global, annual mean PM2.5 of about 0.21 micro-g/cu m3 (5%) for RCP8.5, a scenario with maximum warming. Changes in global mean PM2.5 are at a maximum in the fall and are mainly controlled by sulfate followed by organic aerosol with minimal influence of black carbon. RCP2.6 is the only scenario that projects a decrease in global PM2.5 with future climate changes, albeit only by -0.06 micro-g/cu m (1.5%) by the end of the 21st century. Regional and local changes in PM2.5 are larger, reaching upwards of 2 micro-g/cu m for polluted (eastern China) and dusty (western Africa) locations on an annually averaged basis in RCP8.5. Using multiple linear regression, we find that future PM2.5 concentrations are most sensitive to local temperature, followed by surface wind and precipitation. PM2.5 concentrations are robustly positively associated with temperature, while negatively related with precipitation and wind speed. Present-day (2006-2015) modeled sensitivities of PM2.5 to meteorological variables are evaluated against observations and found to agree reasonably well with observed sensitivities (within 10e50

  7. Climate impacts on hydropower and consequences for global electricity supply investment needs

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Sean W. D.; Hejazi, Mohamad; Kim, Son H.; Clarke, Leon; Edmonds, Jae

    2017-12-01

    Recent progress in global scale hydrological and dam modeling has allowed for the study of climate change impacts on global hydropower production. Here we explore the possible consequences of these impacts for the electricity supply sector. Regional hydropower projections are developed for two emissions scenarios by forcing a coupled global hydrological and dam model with downscaled, bias-corrected climate realizations derived from sixteen general circulation models. Consequent impacts on power sector composition and associated emissions and investment costs are explored using the Global Change Assessment Model (GCAM). Changes in hydropower generation resulting from climate change can shift power demands onto and away from carbon intensive technologies, resulting in significant impacts on power sector CO2 emissions for certain world regions—primarily those located in Latin America, as well as Canada and parts of Europe. Reduced impacts of climate change on hydropower production under a low emissions scenario coincide with increased costs of marginal power generating capacity—meaning impacts on power sector investment costs are similar for high and low emissions scenarios. Individual countries where impacts on investment costs imply significant risks or opportunities are identified.

  8. Global land-atmosphere coupling associated with cold climate processes

    Science.gov (United States)

    Dutra, Emanuel

    This dissertation constitutes an assessment of the role of cold processes, associated with snow cover, in controlling the land-atmosphere coupling. The work was based on model simulations, including offline simulations with the land surface model HTESSEL, and coupled atmosphere simulations with the EC-EARTH climate model. A revised snow scheme was developed and tested in HTESSEL and EC-EARTH. The snow scheme is currently operational at the European Centre for Medium-Range Weather Forecasts integrated forecast system, and in the default configuration of EC-EARTH. The improved representation of the snowpack dynamics in HTESSEL resulted in improvements in the near surface temperature simulations of EC-EARTH. The new snow scheme development was complemented with the option of multi-layer version that showed its potential in modeling thick snowpacks. A key process was the snow thermal insulation that led to significant improvements of the surface water and energy balance components. Similar findings were observed when coupling the snow scheme to lake ice, where lake ice duration was significantly improved. An assessment on the snow cover sensitivity to horizontal resolution, parameterizations and atmospheric forcing within HTESSEL highlighted the role of the atmospheric forcing accuracy and snowpack parameterizations in detriment of horizontal resolution over flat regions. A set of experiments with and without free snow evolution was carried out with EC-EARTH to assess the impact of the interannual variability of snow cover on near surface and soil temperatures. It was found that snow cover interannual variability explained up to 60% of the total interannual variability of near surface temperature over snow covered regions. Although these findings are model dependent, the results showed consistency with previously published work. Furthermore, the detailed validation of the snow dynamics simulations in HTESSEL and EC-EARTH guarantees consistency of the results.

  9. Global climate model performance over Alaska and Greenland

    DEFF Research Database (Denmark)

    Walsh, John E.; Chapman, William L.; Romanovsky, Vladimir

    2008-01-01

    The performance of a set of 15 global climate models used in the Coupled Model Intercomparison Project is evaluated for Alaska and Greenland, and compared with the performance over broader pan-Arctic and Northern Hemisphere extratropical domains. Root-mean-square errors relative to the 1958...... to narrowing the uncertainty and obtaining more robust estimates of future climate change in regions such as Alaska, Greenland, and the broader Arctic....... of the models are generally much larger than the biases of the composite output, indicating that the systematic errors differ considerably among the models. There is a tendency for the models with smaller errors to simulate a larger greenhouse warming over the Arctic, as well as larger increases of Arctic...

  10. On the comparison between seasonal predictive skill of global circulation models: Coupled versus uncoupled

    CSIR Research Space (South Africa)

    Beraki, AF

    2015-11-01

    Full Text Available The study compares one- and two-tiered forecasting systems as represented by the South African Weather Service Coupled Model and its atmosphere-only version. In this comparative framework, the main difference between these global climate models...

  11. Regionalizing global climate models

    NARCIS (Netherlands)

    Pitman, A.J.; Arneth, A.; Ganzeveld, L.N.

    2012-01-01

    Global climate models simulate the Earth's climate impressively at scales of continents and greater. At these scales, large-scale dynamics and physics largely define the climate. At spatial scales relevant to policy makers, and to impacts and adaptation, many other processes may affect regional and

  12. Climate Change, Globalization and Geopolitics in the New Maritime Arctic

    Science.gov (United States)

    Brigham, L. W.

    2011-12-01

    Early in the 21st century a confluence of climate change, globalization and geopolitics is shaping the future of the maritime Arctic. This nexus is also fostering greater linkage of the Arctic to the rest of the planet. Arctic sea ice is undergoing a historic transformation of thinning, extent reduction in all seasons, and reduction in the area of multiyear ice in the central Arctic Ocean. Global Climate Model simulations of Arctic sea ice indicate multiyear ice could disappear by 2030 for a short period of time each summer. These physical changes invite greater marine access, longer seasons of navigation, and potential, summer trans-Arctic voyages. As a result, enhanced marine safety, environmental protection, and maritime security measures are under development. Coupled with climate change as a key driver of regional change is the current and future integration of the Arctic's natural wealth with global markets (oil, gas and hard minerals). Abundant freshwater in the Arctic could also be a future commodity of value. Recent events such as drilling for hydrocarbons off Greenland's west coast and the summer marine transport of natural resources from the Russian Arctic to China across the top of Eurasia are indicators of greater global economic ties to the Arctic. Plausible Arctic futures indicate continued integration with global issues and increased complexity of a range of regional economic, security and environmental challenges.

  13. Preliminary assessment of the performance of a global coupled atmosphere-ocean model

    International Nuclear Information System (INIS)

    Cubasch, U.

    1990-01-01

    A low-resolution version of the ECMWF global atmosphere model has been coupled to a global ocean model developed at the Max Planck Institute in Hamburg. The atmosphere model is driven by the sea surface temperature and the ice thickness calculated by the ocean model, which, in return, is driven by the wind stress, the heat flux and the freshwater flux diagnosed by the atmosphere model. Even though each model reaches stationarity when integrated on its own, the coupling of both creates problems, since the fields calculated by each model are not consistent with the ones the other model has to have in order to stay stationary, because some of the fluxes are not balanced. In the coupled experiment the combined ocean-atmosphere system drifts toward a colder state. To counteract this problem, a flux correction has been applied which balances the mean biases of each model. This method almost eliminates the climate drift of the coupled model. Problems still arise over ice covered regions

  14. Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, M.; Rasmussen, S.H.; Ridler, M.

    2013-01-01

    Motivated by the need to develop better tools to understand the impact of future management and climate change on water resources, we present a set of studies with the overall aim of developing a fully dynamic coupling between a comprehensive hydrological model, MIKE SHE, and a regional climate...... distributed parameters using satellite remote sensing. Secondly, field data are used to investigate the effects of model resolution and parameter scales for use in a coupled model. Finally, the development of the fully coupled climate-hydrology model is described and some of the challenges associated...... with coupling models for hydrological processes on sub-grid scales of the regional climate model are presented....

  15. Detection of the Coupling between Vegetation Leaf Area and Climate in a Multifunctional Watershed, Northwestern China

    Science.gov (United States)

    Lu Hao; Cen Pan; Peilong Liu; Decheng Zhou; Liangxia Zhang; Zhe Xiong; Yongqiang Liu; Ge Sun

    2016-01-01

    Accurate detection and quantification of vegetation dynamics and drivers of observed climatic and anthropogenic change in space and time is fundamental for our understanding of the atmosphere–biosphere interactions at local and global scales. This case study examined the coupled spatial patterns of vegetation dynamics and climatic variabilities during the past...

  16. Global warming and climate change

    International Nuclear Information System (INIS)

    1992-10-01

    A panel discussion was held to discuss climate change. Six panelists made presentations that summarized ozone depletion and climate change, discussed global responses, argued against the conventional scientific and policy dogmas concerning climate change, examined the effects of ultraviolet radiation on phytoplankton, examined the effects of carbon taxes on Canadian industry and its emissions, and examined the political and strategic aspects of global warming. A question session followed the presentations. Separate abstracts have been prepared for the six presentations

  17. Global change of the climate

    International Nuclear Information System (INIS)

    Moharam-nejad, Naser.

    1995-01-01

    Greenhouse effect is defined. greenhouse gases which are capable to produce greenhouse effect is mentioned. The production of greenhouse effects depends on the following factors; The amount of discharge to the atmosphere, Concentration, Life span, stability, Absorption and Emission. The effect of global change of climate on agriculture and living organisms is discussed. Global actions related to climate change and national procedures are described. The aim of climate change convention is given and the important points of convention is also mentioned

  18. Adapting Indian Agriculture to Global Climate Change

    Indian Academy of Sciences (India)

    Adapting Indian Agriculture to Global Climate Change · Climate Change: Generic Implications for Agriculture · Controlled environment facilities at IARI used for evaluating model performance in future climate change scenarios · Slide 4 · Slide 5 · Global studies indicate considerable impact of climate change in tropics.

  19. Constraining Transient Climate Sensitivity Using Coupled Climate Model Simulations of Volcanic Eruptions

    KAUST Repository

    Merlis, Timothy M.; Held, Isaac M.; Stenchikov, Georgiy L.; Zeng, Fanrong; Horowitz, Larry W.

    2014-01-01

    Coupled climate model simulations of volcanic eruptions and abrupt changes in CO2 concentration are compared in multiple realizations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). The change in global-mean surface temperature (GMST) is analyzed to determine whether a fast component of the climate sensitivity of relevance to the transient climate response (TCR; defined with the 1%yr-1 CO2-increase scenario) can be estimated from shorter-time-scale climate changes. The fast component of the climate sensitivity estimated from the response of the climate model to volcanic forcing is similar to that of the simulations forced by abrupt CO2 changes but is 5%-15% smaller than the TCR. In addition, the partition between the top-of-atmosphere radiative restoring and ocean heat uptake is similar across radiative forcing agents. The possible asymmetry between warming and cooling climate perturbations, which may affect the utility of volcanic eruptions for estimating the TCR, is assessed by comparing simulations of abrupt CO2 doubling to abrupt CO2 halving. There is slightly less (~5%) GMST change in 0.5 × CO2 simulations than in 2 × CO2 simulations on the short (~10 yr) time scales relevant to the fast component of the volcanic signal. However, inferring the TCR from volcanic eruptions is more sensitive to uncertainties from internal climate variability and the estimation procedure. The response of the GMST to volcanic eruptions is similar in GFDL CM2.1 and GFDL Climate Model, version 3 (CM3), even though the latter has a higher TCR associated with a multidecadal time scale in its response. This is consistent with the expectation that the fast component of the climate sensitivity inferred from volcanic eruptions is a lower bound for the TCR.

  20. Constraining Transient Climate Sensitivity Using Coupled Climate Model Simulations of Volcanic Eruptions

    KAUST Repository

    Merlis, Timothy M.

    2014-10-01

    Coupled climate model simulations of volcanic eruptions and abrupt changes in CO2 concentration are compared in multiple realizations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). The change in global-mean surface temperature (GMST) is analyzed to determine whether a fast component of the climate sensitivity of relevance to the transient climate response (TCR; defined with the 1%yr-1 CO2-increase scenario) can be estimated from shorter-time-scale climate changes. The fast component of the climate sensitivity estimated from the response of the climate model to volcanic forcing is similar to that of the simulations forced by abrupt CO2 changes but is 5%-15% smaller than the TCR. In addition, the partition between the top-of-atmosphere radiative restoring and ocean heat uptake is similar across radiative forcing agents. The possible asymmetry between warming and cooling climate perturbations, which may affect the utility of volcanic eruptions for estimating the TCR, is assessed by comparing simulations of abrupt CO2 doubling to abrupt CO2 halving. There is slightly less (~5%) GMST change in 0.5 × CO2 simulations than in 2 × CO2 simulations on the short (~10 yr) time scales relevant to the fast component of the volcanic signal. However, inferring the TCR from volcanic eruptions is more sensitive to uncertainties from internal climate variability and the estimation procedure. The response of the GMST to volcanic eruptions is similar in GFDL CM2.1 and GFDL Climate Model, version 3 (CM3), even though the latter has a higher TCR associated with a multidecadal time scale in its response. This is consistent with the expectation that the fast component of the climate sensitivity inferred from volcanic eruptions is a lower bound for the TCR.

  1. Coupling Satellite and Ground-Based Instruments to Map Climate Forcing by Anthropogenic Aerosols

    Science.gov (United States)

    Charlson, Robert J.; Anderson, Theodore L.; Hostetler, Chris (Technical Monitor)

    2000-01-01

    Climate forcing by anthropogenic aerosols is a significant but highly uncertain factor in global climate change. Only satellites can offer the global coverage essential to reducing this uncertainty; however, satellite measurements must be coupled with correlative, in situ measurements both to constrain the aerosol optical properties required in satellite retrieval algorithms and to provide chemical identification of aerosol sources. This grant funded the first two years of a three-year project which seeks to develop methodologies for combining spaceborne lidar with in-situ aerosol data sets to improve estimates of direct aerosol climate forcing. Progress under this two-year grant consisted in the development and deployment of a new in-situ capability for measuring aerosol 180' backscatter and the extinction-to-backscatter ratio. This new measurement capacity allows definitive lidar/in-situ comparisons and improves our ability to interpret lidar data in terms of climatically relevant quantities such as the extinction coefficient and optical depth. Measurements were made along the coast of Washington State, in Central Illinois, over the Indian Ocean, and in the Central Pacific. Thus, this research, combined with previous measurements by others, is rapidly building toward a global data set of extinction-to-backscatter ratio for key aerosol types. Such information will be critical to interpreting lidar data from the upcoming PICASSO-CENA, or P-C, satellite mission. Another aspect of this project is to investigate innovative ways to couple the lidar-satellite signal with targeted in-situ measurements toward a direct determination of aerosol forcing. This aspect is progressing in collaboration with NASA Langley's P-C lidar simulator and radiative transfer modeling by the University of Lille, France.

  2. Global Climate Summaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Hourly Summaries are simple indicators of observational normals which include climatic data summarizations and frequency distributions. These typically...

  3. Implications of global warming for the climate of African rainforests.

    Science.gov (United States)

    James, Rachel; Washington, Richard; Rowell, David P

    2013-01-01

    African rainforests are likely to be vulnerable to changes in temperature and precipitation, yet there has been relatively little research to suggest how the regional climate might respond to global warming. This study presents projections of temperature and precipitation indices of relevance to African rainforests, using global climate model experiments to identify local change as a function of global temperature increase. A multi-model ensemble and two perturbed physics ensembles are used, one with over 100 members. In the east of the Congo Basin, most models (92%) show a wet signal, whereas in west equatorial Africa, the majority (73%) project an increase in dry season water deficits. This drying is amplified as global temperature increases, and in over half of coupled models by greater than 3% per °C of global warming. Analysis of atmospheric dynamics in a subset of models suggests that this could be partly because of a rearrangement of zonal circulation, with enhanced convection in the Indian Ocean and anomalous subsidence over west equatorial Africa, the Atlantic Ocean and, in some seasons, the Amazon Basin. Further research to assess the plausibility of this and other mechanisms is important, given the potential implications of drying in these rainforest regions.

  4. International Business and Global Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, A.; Pinkse, J.

    2008-11-15

    Climate change has become an important topic on the business agenda with strong pressure being placed on companies to respond and contribute to finding solutions to this urgent problem. This text provides a comprehensive analysis of international business responses to global climate change and climate change policy. Embedded in relevant management literature, this book gives a concise treatment of developments in policy and business activity on global, regional and national levels, using examples and systematic data from a large number of international companies. The first part outlines the international climate policy landscape and voluntary initiatives taken by companies, both alone and together with others. The second part examines companies' strategies, covering innovation for climate change, as well as compensation via emissions trading and carbon offsetting. Written by well-known experts in the field, International Business and Global Climate Change illustrates how an environmental topic becomes strategically important in a mainstream sense, affecting corporate decision-making, business processes, products, reputation, advertising, communication, accounting and finance.

  5. International Business and Global Climate Change

    International Nuclear Information System (INIS)

    Kolk, A.; Pinkse, J.

    2008-11-01

    Climate change has become an important topic on the business agenda with strong pressure being placed on companies to respond and contribute to finding solutions to this urgent problem. This text provides a comprehensive analysis of international business responses to global climate change and climate change policy. Embedded in relevant management literature, this book gives a concise treatment of developments in policy and business activity on global, regional and national levels, using examples and systematic data from a large number of international companies. The first part outlines the international climate policy landscape and voluntary initiatives taken by companies, both alone and together with others. The second part examines companies' strategies, covering innovation for climate change, as well as compensation via emissions trading and carbon offsetting. Written by well-known experts in the field, International Business and Global Climate Change illustrates how an environmental topic becomes strategically important in a mainstream sense, affecting corporate decision-making, business processes, products, reputation, advertising, communication, accounting and finance

  6. Future aridity under conditions of global climate change

    Science.gov (United States)

    Asadi Zarch, Mohammad Amin; Sivakumar, Bellie; Malekinezhad, Hossein; Sharma, Ashish

    2017-11-01

    Global climate change is anticipated to cause some major changes in hydroclimatic conditions around the world. As aridity is a reliable indicator of potential available water, assessment of its changes under future climatic conditions is important for proper management of water. This study employs the UNESCO aridity/humidity index, which is a derivative of precipitation (P) and potential evapotranspiration (PET), for assessment of aridity. Historical (1901-2005) simulations and future (2006-2100) projections of 22 global climate models (GCMs) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) are studied. The Nested Bias Correction (NBC) approach is used to correct possible biases of precipitation (simulated directly by the GCMs) and PET (estimated by applying FAO56-Penman-Monteith model on simulated parameters of the GCMs). To detect future aridity changes, the areal extents of the aridity zones in the past and future periods as well as through four sub-periods (2006-2025, 2026-2050, 2051-2075, and 2076-2100) of the future are compared. The results indicate that changes in climate will alter the areal extents of aridity zones in the future. In general, from the first sub-period towards the last one, the area covered by hyper-arid, arid, semi-arid, and sub-humid zones will increase (by 7.46%, 7.01%, 5.80%, and 2.78%, respectively), while the area of the humid regions will decrease (by 4.76%), suggesting that there will be less water over the global land area in the future. To understand the cause of these changes, precipitation and PET are also separately assumed to be stationary throughout the four future sub-periods and the resulting aridity changes are then analyzed. The results reveal that the aridity changes are mostly caused by the positive PET trends, even though the slight precipitation increase lessens the magnitude of the changes.

  7. Climate of Tajikistan in connection with global climate change

    International Nuclear Information System (INIS)

    Khakimov, F.Kh.; Mirzokhonova, S.O.; Mirzokhonava, N.A.

    2006-01-01

    The analysis of global climate change for different periods and its consequences on regional climate is given. The chronology of climate change in Tajikistan in various regions and the reasons leading or resulted to these changes are changes are shown as well

  8. Global climate change and international security

    Energy Technology Data Exchange (ETDEWEB)

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  9. Characterizing and Addressing the Need for Statistical Adjustment of Global Climate Model Data

    Science.gov (United States)

    White, K. D.; Baker, B.; Mueller, C.; Villarini, G.; Foley, P.; Friedman, D.

    2017-12-01

    As part of its mission to research and measure the effects of the changing climate, the U. S. Army Corps of Engineers (USACE) regularly uses the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model dataset. However, these data are generated at a global level and are not fine-tuned for specific watersheds. This often causes CMIP5 output to vary from locally observed patterns in the climate. Several downscaling methods have been developed to increase the resolution of the CMIP5 data and decrease systemic differences to support decision-makers as they evaluate results at the watershed scale. Evaluating preliminary comparisons of observed and projected flow frequency curves over the US revealed a simple framework for water resources decision makers to plan and design water resources management measures under changing conditions using standard tools. Using this framework as a basis, USACE has begun to explore to use of statistical adjustment to alter global climate model data to better match the locally observed patterns while preserving the general structure and behavior of the model data. When paired with careful measurement and hypothesis testing, statistical adjustment can be particularly effective at navigating the compromise between the locally observed patterns and the global climate model structures for decision makers.

  10. Spatial patterns and temporal dynamics of global scale climate-groundwater interactions

    Science.gov (United States)

    Cuthbert, M. O.; Gleeson, T. P.; Moosdorf, N.; Schneider, A. C.; Hartmann, J.; Befus, K. M.; Lehner, B.

    2017-12-01

    The interactions between groundwater and climate are important to resolve in both space and time as they influence mass and energy transfers at Earth's land surface. Despite the significance of these processes, little is known about the spatio-temporal distribution of such interactions globally, and many large-scale climate, hydrological and land surface models oversimplify groundwater or exclude it completely. In this study we bring together diverse global geomatic data sets to map spatial patterns in the sensitivity and degree of connectedness between the water table and the land surface, and use the output from a global groundwater model to assess the locations where the lateral import or export of groundwater is significant. We also quantify the groundwater response time, the characteristic time for groundwater systems to respond to a change in boundary conditions, and map its distribution globally to assess the likely dynamics of groundwater's interaction with climate. We find that more than half of the global land surface significantly exports or imports groundwater laterally. Nearly 40% of Earth's landmass has water tables that are strongly coupled to topography with water tables shallow enough to enable a bi-directional exchange of moisture with the climate system. However, only a small proportion (around 12%) of such regions have groundwater response times of 100 years or less and have groundwater fluxes that would significantly respond to rapid environmental changes over this timescale. We last explore fundamental relationships between aridity, groundwater response times and groundwater turnover times. Our results have wide ranging implications for understanding and modelling changes in Earth's water and energy balance and for informing robust future water management and security decisions.

  11. Challenges of coordinating global climate observations - Role of satellites in climate monitoring

    Science.gov (United States)

    Richter, C.

    2017-12-01

    Global observation of the Earth's atmosphere, ocean and land is essential for identifying climate variability and change, and for understanding their causes. Observation also provides data that are fundamental for evaluating, refining and initializing the models that predict how the climate system will vary over the months and seasons ahead, and that project how climate will change in the longer term under different assumptions concerning greenhouse gas emissions and other human influences. Long-term observational records have enabled the Intergovernmental Panel on Climate Change to deliver the message that warming of the global climate system is unequivocal. As the Earth's climate enters a new era, in which it is forced by human activities, as well as natural processes, it is critically important to sustain an observing system capable of detecting and documenting global climate variability and change over long periods of time. High-quality climate observations are required to assess the present state of the ocean, cryosphere, atmosphere and land and place them in context with the past. The global observing system for climate is not a single, centrally managed observing system. Rather, it is a composite "system of systems" comprising a set of climate-relevant observing, data-management, product-generation and data-distribution systems. Data from satellites underpin many of the Essential Climate Variables(ECVs), and their historic and contemporary archives are a key part of the global climate observing system. In general, the ECVs will be provided in the form of climate data records that are created by processing and archiving time series of satellite and in situ measurements. Early satellite data records are very valuable because they provide unique observations in many regions which were not otherwise observed during the 1970s and which can be assimilated in atmospheric reanalyses and so extend the satellite climate data records back in time.

  12. Assessment of the Impact of Climate Change on the Water Balances and Flooding Conditions of Peninsular Malaysia watersheds by a Coupled Numerical Climate Model - Watershed Hydrology Model

    Science.gov (United States)

    Ercan, A.; Kavvas, M. L.; Ishida, K.; Chen, Z. Q.; Amin, M. Z. M.; Shaaban, A. J.

    2017-12-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over various watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model that utilized an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century were dynamically downscaled to 6 km resolution over Peninsular Malaysia by a regional numerical climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over the selected watersheds of Peninsular Malaysia. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions at the selected watersheds during the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90 years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant at the selected watersheds. Furthermore, the flood frequency analyses for the selected watersheds indicate an overall increasing trend in the second half of the 21st century.

  13. Global Climate Change Pilot Course Project

    Science.gov (United States)

    Schuenemann, K. C.; Wagner, R.

    2011-12-01

    In fall 2011 a pilot course on "Global Climate Change" is being offered, which has been proposed to educate urban, diverse, undergraduate students about climate change at the introductory level. The course has been approved to fulfill two general college requirements, a natural sciences requirement that focuses on the scientific method, as well as a global diversity requirement. This course presents the science behind global climate change from an Earth systems and atmospheric science perspective. These concepts then provide the basis to explore the effect of global warming on regions throughout the world. Climate change has been taught as a sub-topic in other courses in the past solely using scientific concepts, with little success in altering the climate change misconceptions of the students. This pilot course will see if new, innovative projects described below can make more of an impact on the students' views of climate change. Results of the successes or failures of these projects will be reported, as well as results of a pre- and post-course questionnaire on climate change given to students taking the course. Students in the class will pair off and choose a global region or country that they will research, write papers on, and then represent in four class discussions spaced throughout the semester. The first report will include details on the current climate of their region and how the climate shapes that region's society and culture. The second report will discuss how that region is contributing to climate change and/or sequestering greenhouse gases. Thirdly, students will discuss observed and predicted changes in that region's climate and what impact it has had, and could have, on their society. Lastly, students will report on what role their region has played in mitigating climate change, any policies their region may have implemented, and how their region can or cannot adapt to future climate changes. They will also try to get a feel for the region

  14. Integrated risk analysis of global climate change

    International Nuclear Information System (INIS)

    Shlyakhter, Alexander; Wilson, Richard; Valverde A, L.J. Jr.

    1995-01-01

    This paper discusses several factors that should be considered in integrated risk analyses of global climate change. We begin by describing how the problem of global climate change can be subdivided into largely independent parts that can be linked together in an analytically tractable fashion. Uncertainty plays a central role in integrated risk analyses of global climate change. Accordingly, we consider various aspects of uncertainty as they relate to the climate change problem. We also consider the impacts of these uncertainties on various risk management issues, such as sequential decision strategies, value of information, and problems of interregional and intergenerational equity. (author)

  15. The contribution of China's emissions to global climate forcing.

    Science.gov (United States)

    Li, Bengang; Gasser, Thomas; Ciais, Philippe; Piao, Shilong; Tao, Shu; Balkanski, Yves; Hauglustaine, Didier; Boisier, Juan-Pablo; Chen, Zhuo; Huang, Mengtian; Li, Laurent Zhaoxin; Li, Yue; Liu, Hongyan; Liu, Junfeng; Peng, Shushi; Shen, Zehao; Sun, Zhenzhong; Wang, Rong; Wang, Tao; Yin, Guodong; Yin, Yi; Zeng, Hui; Zeng, Zhenzhong; Zhou, Feng

    2016-03-17

    Knowledge of the contribution that individual countries have made to global radiative forcing is important to the implementation of the agreement on "common but differentiated responsibilities" reached by the United Nations Framework Convention on Climate Change. Over the past three decades, China has experienced rapid economic development, accompanied by increased emission of greenhouse gases, ozone precursors and aerosols, but the magnitude of the associated radiative forcing has remained unclear. Here we use a global coupled biogeochemistry-climate model and a chemistry and transport model to quantify China's present-day contribution to global radiative forcing due to well-mixed greenhouse gases, short-lived atmospheric climate forcers and land-use-induced regional surface albedo changes. We find that China contributes 10% ± 4% of the current global radiative forcing. China's relative contribution to the positive (warming) component of global radiative forcing, mainly induced by well-mixed greenhouse gases and black carbon aerosols, is 12% ± 2%. Its relative contribution to the negative (cooling) component is 15% ± 6%, dominated by the effect of sulfate and nitrate aerosols. China's strongest contributions are 0.16 ± 0.02 watts per square metre for CO2 from fossil fuel burning, 0.13 ± 0.05 watts per square metre for CH4, -0.11 ± 0.05 watts per square metre for sulfate aerosols, and 0.09 ± 0.06 watts per square metre for black carbon aerosols. China's eventual goal of improving air quality will result in changes in radiative forcing in the coming years: a reduction of sulfur dioxide emissions would drive a faster future warming, unless offset by larger reductions of radiative forcing from well-mixed greenhouse gases and black carbon.

  16. Climate change hotspots in the CMIP5 global climate model ensemble.

    Science.gov (United States)

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-10

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21 st century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2°C of global warming (relative to the late-20 th -century baseline), but not at the higher levels of global warming that occur in the late-21 st -century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world.

  17. Global Climate Change as Environmental Megacrisis

    OpenAIRE

    Endter-Wada, Joanna; Ingram, Helen

    2012-01-01

    The authors analyze global climate change utilizing insights from the governance and crisis management literatures that seek to understand the prospects, nature, characteristics and the effects of cataclysmic events. They argue that global climate change is a mega-crisis hiding in plain sight yet there has been no proportionate mega-crisis response. People are still grappling with how to make sense of climate change, how to bridge multiple ways of knowing it, and how to negotiate collective c...

  18. Multiple climate and sea ice states on a coupled Aquaplanet

    Science.gov (United States)

    Rose, B.; Ferreira, D.; Marshall, J.

    2010-12-01

    A fully coupled atmosphere-ocean-sea ice GCM is used to explore the climates of Earth-like planets with no continents and idealized ocean basin geometries. We find three qualitatively different stable equilibria under identical external forcing: an equable ice-free climate, a cold climate with ice caps extending into mid-latitudes, and a completely ice-covered "Snowball" state. These multiple states persist for millennia with no drift despite a full seasonal cycle and vigorous internal variability of the system on all time scales. The behavior of the coupled system is rationalized through an extension of the Budyko-Sellers model to include explicit ocean heat transport (OHT), and the insulation of the ice-covered sea surface. Sensitivity tests are also conducted with a slab ocean GCM with prescribed OHT. From these we conclude that albedo feedback and ocean circulation both play essential roles in the maintenance of the multiple states. OHT in the coupled system is dominated by a wind-driven subtropical cell carrying between 2 and 3 PW of thermal energy out of the deep tropics, most of which converges in the subtropics to lower mid-latitudes. This convergence pattern (similar to modern Earth) is robust to changes in the ocean basin geometry, and is directly responsible for the stabilization of the large ice cap. OHT also plays an essential but indirect role in the maintenance of the ice-free pole in the warm states, by driving an enhanced poleward atmospheric latent heat flux. The hysteresis loop for transitions between the warm and large ice cap states spans a much smaller range of parameter space (e.g. ±1.8% variations in solar constant) than the transitions in and out of the Snowball. Three qualitatively different climate states for the same external forcing in a coupled GCM: ice-free, large ice cap, and Snowball. SST and sea ice thickness are plotted. Similar results are found in a pure Aquaplanet (lower) and a "RidgeWorld" with a global-scale ocean basin

  19. Globally Coupled Chaotic Maps with Constant Force

    International Nuclear Information System (INIS)

    Li Jinghui

    2008-01-01

    We investigate the motion of the globally coupled maps (logistic map) with a constant force. It is shown that the constant force can cause multi-synchronization for the globally coupled chaotic maps studied by us.

  20. State of the Climate - Global Hazards

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate...

  1. State of the Climate - Global Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate...

  2. [The global climate: a sick patient

    DEFF Research Database (Denmark)

    Lidegaard, O.; Lidegaard, M.

    2008-01-01

    , and major climatic disasters, including health threats to millions of people, are probable if the CO2 emission increases further. Therefore, serious global initiatives should be taken now in order to prevent global over heating. Denmark should be at the forefront of these initiatives Udgivelsesdato: 2008/8/25......Over the last 100 years the human use of fossil fuel has increased the atmospheric CO2 content from 280 parts per million (ppm) to 380 ppm. This increase is expected to increase the global average temperature by a few degrees. The global climate is very sensitive to an increase in temperature...

  3. Impact of global warming on tropical cyclone genesis in coupled and forced simulations: role of SST spatial anomalies

    Science.gov (United States)

    Royer, Jean-François; Chauvin, Fabrice; Daloz, Anne-Sophie

    2010-05-01

    The response of tropical cyclones (TC) activity to global warming has not yet reached a clear consensus in the Fourth Assessment Report (AR4) published by the Intergovernmental Panel on Climate Change (IPCC, 2007) or in the recent scientific literature. Observed series are neither long nor reliable enough for a statistically significant detection and attribution of past TC trends, and coupled climate models give widely divergent results for the future evolution of TC activity in the different ocean basins. The potential importance of the spatial structure of the future SST warming has been pointed out by Chauvin et al. (2006) in simulations performed at CNRM with the ARPEGE-Climat GCM. The current presentation describes a new set of simulations that have been performed with the ARPEGE-Climat model to try to understand the possible role of SST patterns in the TC cyclogenesis response in 15 CMIP3 coupled simulations analysed by Royer et al (2009). The new simulations have been performed with the atmospheric component of the ARPEGE-Climat GCM forced in 10 year simulations by the SST patterns from each of 15 CMIP3 simulations with different climate model at the end of the 21st century according to scenario A2. The TC analysis is based on the computation of a Convective Yearly Genesis Parameter (CYGP) and the Genesis Potential Index (GPI). The computed genesis indices for each of the ARPEGE-Climat forced simulations is compared with the indices computed directly from the initial coupled simulation. The influence of SST patterns can then be more easily assessed since all the ARPEGE-Climat simulations are performed with the same atmospheric model, whereas the original simulations used models with different parameterization and resolutions. The analysis shows that CYGP or GPI anomalies obtained with ARPEGE are as variable between each other as those obtained originally by the different IPCC models. The variety of SST patterns used to force ARPEGE explains a large part of

  4. Simulation skill of APCC set of global climate models for Asian summer monsoon rainfall variability

    Science.gov (United States)

    Singh, U. K.; Singh, G. P.; Singh, Vikas

    2015-04-01

    The performance of 11 Asia-Pacific Economic Cooperation Climate Center (APCC) global climate models (coupled and uncoupled both) in simulating the seasonal summer (June-August) monsoon rainfall variability over Asia (especially over India and East Asia) has been evaluated in detail using hind-cast data (3 months advance) generated from APCC which provides the regional climate information product services based on multi-model ensemble dynamical seasonal prediction systems. The skill of each global climate model over Asia was tested separately in detail for the period of 21 years (1983-2003), and simulated Asian summer monsoon rainfall (ASMR) has been verified using various statistical measures for Indian and East Asian land masses separately. The analysis found a large variation in spatial ASMR simulated with uncoupled model compared to coupled models (like Predictive Ocean Atmosphere Model for Australia, National Centers for Environmental Prediction and Japan Meteorological Agency). The simulated ASMR in coupled model was closer to Climate Prediction Centre Merged Analysis of Precipitation (CMAP) compared to uncoupled models although the amount of ASMR was underestimated in both models. Analysis also found a high spread in simulated ASMR among the ensemble members (suggesting that the model's performance is highly dependent on its initial conditions). The correlation analysis between sea surface temperature (SST) and ASMR shows that that the coupled models are strongly associated with ASMR compared to the uncoupled models (suggesting that air-sea interaction is well cared in coupled models). The analysis of rainfall using various statistical measures suggests that the multi-model ensemble (MME) performed better compared to individual model and also separate study indicate that Indian and East Asian land masses are more useful compared to Asia monsoon rainfall as a whole. The results of various statistical measures like skill of multi-model ensemble, large spread

  5. Isolating the atmospheric circulation response to Arctic sea-ice loss in the coupled climate system

    Science.gov (United States)

    Kushner, Paul; Blackport, Russell

    2017-04-01

    In the coupled climate system, projected global warming drives extensive sea-ice loss, but sea-ice loss drives warming that amplifies and can be confounded with the global warming process. This makes it challenging to cleanly attribute the atmospheric circulation response to sea-ice loss within coupled earth-system model (ESM) simulations of greenhouse warming. In this study, many centuries of output from coupled ocean/atmosphere/land/sea-ice ESM simulations driven separately by sea-ice albedo reduction and by projected greenhouse-dominated radiative forcing are combined to cleanly isolate the hemispheric scale response of the circulation to sea-ice loss. To isolate the sea-ice loss signal, a pattern scaling approach is proposed in which the local multidecadal mean atmospheric response is assumed to be separately proportional to the total sea-ice loss and to the total low latitude ocean surface warming. The proposed approach estimates the response to Arctic sea-ice loss with low latitude ocean temperatures fixed and vice versa. The sea-ice response includes a high northern latitude easterly zonal wind response, an equatorward shift of the eddy driven jet, a weakening of the stratospheric polar vortex, an anticyclonic sea level pressure anomaly over coastal Eurasia, a cyclonic sea level pressure anomaly over the North Pacific, and increased wintertime precipitation over the west coast of North America. Many of these responses are opposed by the response to low-latitude surface warming with sea ice fixed. However, both sea-ice loss and low latitude surface warming act in concert to reduce storm track strength throughout the mid and high latitudes. The responses are similar in two related versions of the National Center for Atmospheric Research earth system models, apart from the stratospheric polar vortex response. Evidence is presented that internal variability can easily contaminate the estimates if not enough independent climate states are used to construct them

  6. Does climate directly influence NPP globally?

    Science.gov (United States)

    Chu, Chengjin; Bartlett, Megan; Wang, Youshi; He, Fangliang; Weiner, Jacob; Chave, Jérôme; Sack, Lawren

    2016-01-01

    The need for rigorous analyses of climate impacts has never been more crucial. Current textbooks state that climate directly influences ecosystem annual net primary productivity (NPP), emphasizing the urgent need to monitor the impacts of climate change. A recent paper challenged this consensus, arguing, based on an analysis of NPP for 1247 woody plant communities across global climate gradients, that temperature and precipitation have negligible direct effects on NPP and only perhaps have indirect effects by constraining total stand biomass (Mtot ) and stand age (a). The authors of that study concluded that the length of the growing season (lgs ) might have a minor influence on NPP, an effect they considered not to be directly related to climate. In this article, we describe flaws that affected that study's conclusions and present novel analyses to disentangle the effects of stand variables and climate in determining NPP. We re-analyzed the same database to partition the direct and indirect effects of climate on NPP, using three approaches: maximum-likelihood model selection, independent-effects analysis, and structural equation modeling. These new analyses showed that about half of the global variation in NPP could be explained by Mtot combined with climate variables and supported strong and direct influences of climate independently of Mtot , both for NPP and for net biomass change averaged across the known lifetime of the stands (ABC = average biomass change). We show that lgs is an important climate variable, intrinsically correlated with, and contributing to mean annual temperature and precipitation (Tann and Pann ), all important climatic drivers of NPP. Our analyses provide guidance for statistical and mechanistic analyses of climate drivers of ecosystem processes for predictive modeling and provide novel evidence supporting the strong, direct role of climate in determining vegetation productivity at the global scale. © 2015 John Wiley & Sons Ltd.

  7. Geophysical Global Modeling for Extreme Crop Production Using Photosynthesis Models Coupled to Ocean SST Dipoles

    Science.gov (United States)

    Kaneko, D.

    2016-12-01

    Climate change appears to have manifested itself along with abnormal meteorological disasters. Instability caused by drought and flood disasters is producing poor harvests because of poor photosynthesis and pollination. Fluctuations of extreme phenomena are increasing rapidly because amplitudes of change are much greater than average trends. A fundamental cause of these phenomena derives from increased stored energy inside ocean waters. Geophysical and biochemical modeling of crop production can elucidate complex mechanisms under seasonal climate anomalies. The models have progressed through their combination with global climate reanalysis, environmental satellite data, and harvest data on the ground. This study examined adaptation of crop production to advancing abnormal phenomena related to global climate change. Global environmental surface conditions, i.e., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. Basic streams of the concepts of modeling rely upon continental energy flow and carbon circulation among crop vegetation, land surface atmosphere combining energy advection from ocean surface anomalies. Global environmental surface conditions, e.g., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. The method of validating the modeling relies upon carbon partitioning in biomass and grains through carbon flow by photosynthesis using carbon dioxide unit in photosynthesis. Results of computations done for this study show global distributions of actual evaporation, stomata opening, and photosynthesis, presenting mechanisms related to advection effects from SST anomalies in the Pacific, Atlantic, and Indian oceans on global and continental croplands. For North America, climate effects appear clearly in severe atmospheric phenomena, which have caused drought and forest fires

  8. Peak globalization. Climate change, oil depletion and global trade

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Fred [Department of Economics, Drew University, Madison, NJ 07940 (United States)

    2009-12-15

    The global trade in goods depends upon reliable, inexpensive transportation of freight along complex and long-distance supply chains. Global warming and peak oil undermine globalization by their effects on both transportation costs and the reliable movement of freight. Countering the current geographic pattern of comparative advantage with higher transportation costs, climate change and peak oil will thus result in peak globalization, after which the volume of exports will decline as measured by ton-miles of freight. Policies designed to mitigate climate change and peak oil are very unlikely to change this result due to their late implementation, contradictory effects and insufficient magnitude. The implication is that supply chains will become shorter for most products and that production of goods will be located closer to where they are consumed. (author)

  9. Peak globalization. Climate change, oil depletion and global trade

    International Nuclear Information System (INIS)

    Curtis, Fred

    2009-01-01

    The global trade in goods depends upon reliable, inexpensive transportation of freight along complex and long-distance supply chains. Global warming and peak oil undermine globalization by their effects on both transportation costs and the reliable movement of freight. Countering the current geographic pattern of comparative advantage with higher transportation costs, climate change and peak oil will thus result in peak globalization, after which the volume of exports will decline as measured by ton-miles of freight. Policies designed to mitigate climate change and peak oil are very unlikely to change this result due to their late implementation, contradictory effects and insufficient magnitude. The implication is that supply chains will become shorter for most products and that production of goods will be located closer to where they are consumed. (author)

  10. Soil carbon model alternatives for ECHAM5/JSBACH climate model: Evaluation and impacts on global carbon cycle estimates

    DEFF Research Database (Denmark)

    Thum, T.; Raisanen, P.; Sevanto, S.

    2011-01-01

    The response of soil organic carbon to climate change might lead to significant feedbacks affecting global warming. This response can be studied by coupled climate-carbon cycle models but so far the description of soil organic carbon cycle in these models has been quite simple. In this work we used...... the coupled climate-carbon cycle model ECHAM5/JSBACH (European Center/Hamburg Model 5/Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg) with two different soil carbon modules, namely (1) the original soil carbon model of JSBACH called CBALANCE and (2) a new soil carbon model Yasso07, to study...... the interaction between climate variability and soil organic carbon. Equivalent ECHAM5/JSBACH simulations were conducted using both soil carbon models, with freely varying atmospheric CO2 for the last 30 years (1977-2006). In this study, anthropogenic CO2 emissions and ocean carbon cycle were excluded. The new...

  11. Uncertainty and global climate change research

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, B.E. [Oak Ridge National Lab., TN (United States); Weiher, R. [National Oceanic and Atmospheric Administration, Boulder, CO (United States)

    1994-06-01

    The Workshop on Uncertainty and Global Climate Change Research March 22--23, 1994, in Knoxville, Tennessee. This report summarizes the results and recommendations of the workshop. The purpose of the workshop was to examine in-depth the concept of uncertainty. From an analytical point of view, uncertainty is a central feature of global climate science, economics and decision making. The magnitude and complexity of uncertainty surrounding global climate change has made it quite difficult to answer even the most simple and important of questions-whether potentially costly action is required now to ameliorate adverse consequences of global climate change or whether delay is warranted to gain better information to reduce uncertainties. A major conclusion of the workshop is that multidisciplinary integrated assessments using decision analytic techniques as a foundation is key to addressing global change policy concerns. First, uncertainty must be dealt with explicitly and rigorously since it is and will continue to be a key feature of analysis and recommendations on policy questions for years to come. Second, key policy questions and variables need to be explicitly identified, prioritized, and their uncertainty characterized to guide the entire scientific, modeling, and policy analysis process. Multidisciplinary integrated assessment techniques and value of information methodologies are best suited for this task. In terms of timeliness and relevance of developing and applying decision analytic techniques, the global change research and policy communities are moving rapidly toward integrated approaches to research design and policy analysis.

  12. Global soil-climate-biome diagram: linking soil properties to climate and biota

    Science.gov (United States)

    Zhao, X.; Yang, Y.; Fang, J.

    2017-12-01

    As a critical component of the Earth system, soils interact strongly with both climate and biota and provide fundamental ecosystem services that maintain food, climate, and human security. Despite significant progress in digital soil mapping techniques and the rapidly growing quantity of observed soil information, quantitative linkages between soil properties, climate and biota at the global scale remain unclear. By compiling a large global soil database, we mapped seven major soil properties (bulk density [BD]; sand, silt and clay fractions; soil pH; soil organic carbon [SOC] density [SOCD]; and soil total nitrogen [STN] density [STND]) based on machine learning algorithms (regional random forest [RF] model) and quantitatively assessed the linkage between soil properties, climate and biota at the global scale. Our results demonstrated a global soil-climate-biome diagram, which improves our understanding of the strong correspondence between soils, climate and biomes. Soil pH decreased with greater mean annual precipitation (MAP) and lower mean annual temperature (MAT), and the critical MAP for the transition from alkaline to acidic soil pH decreased with decreasing MAT. Specifically, the critical MAP ranged from 400-500 mm when the MAT exceeded 10 °C but could decrease to 50-100 mm when the MAT was approximately 0 °C. SOCD and STND were tightly linked; both increased in accordance with lower MAT and higher MAP across terrestrial biomes. Global stocks of SOC and STN were estimated to be 788 ± 39.4 Pg (1015 g, or billion tons) and 63 ± 3.3 Pg in the upper 30-cm soil layer, respectively, but these values increased to 1654 ± 94.5 Pg and 133 ± 7.8 Pg in the upper 100-cm soil layer, respectively. These results reveal quantitative linkages between soil properties, climate and biota at the global scale, suggesting co-evolution of the soil, climate and biota under conditions of global environmental change.

  13. Climate extremes in Europe at 1.5 and 2 degrees of global warming

    Science.gov (United States)

    King, Andrew D.; Karoly, David J.

    2017-11-01

    There is an international effort to attempt to limit global warming to 1.5 °C above pre-industrial levels, however, there is a lack of quantitative analysis on the benefits of holding global warming to such a level. In this study, coupled climate model simulations are used to form large ensembles of simulated years at 1.5 °C and 2 °C of global warming. These ensembles are used to assess projected changes in the frequency and magnitude of European climate extremes at these warming levels. For example, we find that events similar to the European record hot summer of 2003, which caused tens of thousands of excess deaths, would be very likely at least 24% less frequent in a world at 1.5 °C global warming compared to 2 °C global warming. Under 2 °C of global warming, we could expect such extreme summer temperatures in the historical record to become commonplace, occurring in at least one-in-every-two years. We find that there are very clear benefits to limiting global warming for the European continent, including fewer and less intense heat and rainfall extremes when compared with higher levels of global warming.

  14. Common species link global ecosystems to climate change: dynamical evidence in the planktonic fossil record.

    Science.gov (United States)

    Hannisdal, Bjarte; Haaga, Kristian Agasøster; Reitan, Trond; Diego, David; Liow, Lee Hsiang

    2017-07-12

    Common species shape the world around us, and changes in their commonness signify large-scale shifts in ecosystem structure and function. However, our understanding of long-term ecosystem response to environmental forcing in the deep past is centred on species richness, neglecting the disproportional impact of common species. Here, we use common and widespread species of planktonic foraminifera in deep-sea sediments to track changes in observed global occupancy (proportion of sampled sites at which a species is present and observed) through the turbulent climatic history of the last 65 Myr. Our approach is sensitive to relative changes in global abundance of the species set and robust to factors that bias richness estimators. Using three independent methods for detecting causality, we show that the observed global occupancy of planktonic foraminifera has been dynamically coupled to past oceanographic changes captured in deep-ocean temperature reconstructions. The causal inference does not imply a direct mechanism, but is consistent with an indirect, time-delayed causal linkage. Given the strong quantitative evidence that a dynamical coupling exists, we hypothesize that mixotrophy (symbiont hosting) may be an ecological factor linking the global abundance of planktonic foraminifera to long-term climate changes via the relative extent of oligotrophic oceans. © 2017 The Authors.

  15. How Will Climate Change Affect Globalization?

    DEFF Research Database (Denmark)

    Dilyard, John Raymond; Bals, Lydia; Zhuplev, Anatoly

    2011-01-01

    , it will effect globalization. Businesses, if they want to be sustained, will have to adjust to climate change. This panel will examine two topics within which the relationship between climate change and globalization can be assessed - the sourcing of resources and services when the location of those resources...... is subject to change and the nature of competition in agriculture-based business, focusing on wine....

  16. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    International Nuclear Information System (INIS)

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin

    2014-01-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  17. The contribution of China’s emissions to global climate forcing

    Science.gov (United States)

    Li, Bengang; Gasser, Thomas; Ciais, Philippe; Piao, Shilong; Tao, Shu; Balkanski, Yves; Hauglustaine, Didier; Boisier, Juan-Pablo; Chen, Zhuo; Huang, Mengtian; Li, Laurent Zhaoxin; Li, Yue; Liu, Hongyan; Liu, Junfeng; Peng, Shushi; Shen, Zehao; Sun, Zhenzhong; Wang, Rong; Wang, Tao; Yin, Guodong; Yin, Yi; Zeng, Hui; Zeng, Zhenzhong; Zhou, Feng

    2016-03-01

    Knowledge of the contribution that individual countries have made to global radiative forcing is important to the implementation of the agreement on “common but differentiated responsibilities” reached by the United Nations Framework Convention on Climate Change. Over the past three decades, China has experienced rapid economic development, accompanied by increased emission of greenhouse gases, ozone precursors and aerosols, but the magnitude of the associated radiative forcing has remained unclear. Here we use a global coupled biogeochemistry-climate model and a chemistry and transport model to quantify China’s present-day contribution to global radiative forcing due to well-mixed greenhouse gases, short-lived atmospheric climate forcers and land-use-induced regional surface albedo changes. We find that China contributes 10% ± 4% of the current global radiative forcing. China’s relative contribution to the positive (warming) component of global radiative forcing, mainly induced by well-mixed greenhouse gases and black carbon aerosols, is 12% ± 2%. Its relative contribution to the negative (cooling) component is 15% ± 6%, dominated by the effect of sulfate and nitrate aerosols. China’s strongest contributions are 0.16 ± 0.02 watts per square metre for CO2 from fossil fuel burning, 0.13 ± 0.05 watts per square metre for CH4, -0.11 ± 0.05 watts per square metre for sulfate aerosols, and 0.09 ± 0.06 watts per square metre for black carbon aerosols. China’s eventual goal of improving air quality will result in changes in radiative forcing in the coming years: a reduction of sulfur dioxide emissions would drive a faster future warming, unless offset by larger reductions of radiative forcing from well-mixed greenhouse gases and black carbon.

  18. A globally integrated climate policy for Canada

    International Nuclear Information System (INIS)

    Bernstein, S.; Brunnee, J.; Duff, D.G.; Green, A.J.

    2008-01-01

    This book explored policy ideas and options from various perspectives, including science, law, political science, economics and sociology. The costs, opportunities and imperatives to participate in international diplomatic initiatives were considered along with the opportunities of regional global carbon markets. Canada's current policy on climate change negotiations have been focused on domestic regulation and incentives for technological responses and the setting of a domestic carbon price. The sense of urgency about global warming was discussed and the need for action to respond to the threat of global climate change was emphasized. The book also reviewed Canada's role in international climate policies and presented parameters and imperatives for global regime building in Canada. Domestic policy tools were also reviewed along with policy obstacles and opportunities. refs., tabs., figs.

  19. Inadvertent weather modification urban areas - lessons for global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Changnon, S A [Illinois State Water Survey, Champaign, IL (USA)

    1992-05-01

    Large metropolitan areas in North America, home to 65% of the USA's population, have created major changes in their climates over the past 150 years. The rate and amount of the urban climate change approximate those being predicted globally using climate models. Knowledge of urban weather and climate modification holds lessons for the global climate change issue. First, adjustments to urban climate changes can provide guidance for adjusting to global change. A second lesson relates to the difficulty but underscores the necessity of providing scientifically credible proof of change within the noise of natural climatic variability. The evolution of understanding about how urban conditions influence weather reveals several unexpected outcomes, particularly relating to precipitation changes. These suggest that similar future surprises can be expected in a changed global climate, a third lesson. In-depth studies of how urban climate changes affected the hydrologic cycle, the regional economy, and human activities were difficult because of data problems, lack of impact methodology, and necessity for multidisciplinary investigations. Similar impact studies for global climate change will require diverse scientific talents and funding commitments adequate to measure the complexity of impacts and human adjustments. Understanding the processes whereby urban areas and other human activities have altered the atmosphere and changed clouds and precipitation regionally appears highly relevant to the global climate-change issue. Scientific and governmental policy development needs to recognize an old axiom that became evident in the studies of inadvertent urban and regional climate change and their behavioural implications: Think globally but act locally. Global climate change is an international issue, and the atmosphere must be treated globally. But the impacts and the will to act and adjust will occur regionally.

  20. Inadvertent weather modification urban areas - lessons for global climate change

    International Nuclear Information System (INIS)

    Changnon, S.A.

    1992-01-01

    Large metropolitan areas in North America, home to 65% of the USA's population, have created major changes in their climates over the past 150 years. The rate and amount of the urban climate change approximate those being predicted globally using climate models. Knowledge of urban weather and climate modification holds lessons for the global climate change issue. First, adjustments to urban climate changes can provide guidance for adjusting to global change. A second lesson relates to the difficulty but underscores the necessity of providing scientifically credible proof of change within the noise of natural climatic variability. The evolution of understanding about how urban conditions influence weather reveals several unexpected outcomes, particularly relating to precipitation changes. These suggest that similar future surprises can be expected in a changed global climate, a third lesson. In-depth studies of how urban climate changes affected the hydrologic cycle, the regional economy, and human activities were difficult because of data problems, lack of impact methodology, and necessity for multidisciplinary investigations. Similar impact studies for global climate change will require diverse scientific talents and funding commitments adequate to measure the complexity of impacts and human adjustments. Understanding the processes whereby urban areas and other human activities have altered the atmosphere and changed clouds and precipitation regionally appears highly relevant to the global climate-change issue. Scientific and governmental policy development needs to recognize an old axiom that became evident in the studies of inadvertent urban and regional climate change and their behavioural implications: Think globally but act locally. Global climate change is an international issue, and the atmosphere must be treated globally. But the impacts and the will to act and adjust will occur regionally

  1. The Ecological consequences of global climate change

    National Research Council Canada - National Science Library

    Woodward, F. I

    1992-01-01

    ... & land use - modeling potential responses of vegetation to global climate change - effects of climatic change on population dynamics of crop pests - responses of soils to climate change - predicting...

  2. The tundra - a threat to global climate?

    International Nuclear Information System (INIS)

    Roejle Christensen, T.

    1997-01-01

    The tundra biome has an important direct influence on the global climate through its exchange of radiatively active 'greenhouse gases', carbon dioxide and methane. A number of suggestions have been raised as to how a changing climate may alter the natural state of this exchange causing significant feedback effects in a changing climate. This paper provides a brief discussion of three different issues relating to the interaction between tundra and climate. It is concluded that release of methane hydrates, permafrost degradation and major biome changes are processes which in the long term may have important effects on further development of the global climate. (au) 32 refs

  3. GLOBAL CLIMATE MODEL:A COMPREHENSIVE TOOL IN CLIMATE CHANGE IMPACT STUDIES

    Directory of Open Access Journals (Sweden)

    Dharmaveer Singh

    2015-01-01

    Full Text Available There is growing concern, how and to what extent future changes in climate will affect human society and natural environments. Continuous emissions of Green House Gasses (GHGs at or above current rates will cause further warming. This, in turn, may modify global climate system during 21st century that very likely would have larger impacts than those observed during 20th century. At present, Global Climate Models (GCMs are only the most reliable tools available for studying behaviour of the climate system. This paper presents a comprehensive review of GCMs including their development and applications in climate change impacts studies. Following a discussion of the limitations of GCMs at regional and local scales, different approaches of downscaling are discussed in detail.

  4. Global Climate Exchange: Peer collaboration in a “Global classroom”

    OpenAIRE

    Korsager, Majken; Jorde, Doris; Slotta, Jim

    2014-01-01

    This paper reports on student peer collaboration in an online environment in an international shared curriculum, the Global Climate Exchange. Four cohorts of students (age 16 -19) from Canada, China, Norway and Sweden (n=157) were engaged in four wiki-based activities where they collaborated with peers locally and internationally. Previously, impact from Global Climate Exchange on students’ conceptual understanding was analysed, indicating a positive impact which might be explained by the amo...

  5. Scenario Analysis With Economic-Energy Systems Models Coupled to Simple Climate Models

    Science.gov (United States)

    Hanson, D. A.; Kotamarthi, V. R.; Foster, I. T.; Franklin, M.; Zhu, E.; Patel, D. M.

    2008-12-01

    Here, we compare two scenarios based on Stanford University's Energy Modeling Forum Study 22 on global cooperative and non-cooperative climate policies. In the former, efficient transition paths are implemented including technology Research and Development effort, energy conservation programs, and price signals for greenhouse gas (GHG) emissions. In the non-cooperative case, some countries try to relax their regulations and be free riders. Total emissions and costs are higher in the non-cooperative scenario. The simulations, including climate impacts, run to the year 2100. We use the Argonne AMIGA-MARS economic-energy systems model, the Texas AM University's Forest and Agricultural Sector Optimization Model (FASOM), and the University of Illinois's Integrated Science Assessment Model (ISAM), with offline coupling between the FASOM and AMIGA-MARS and an online coupling between AMIGA-MARS and ISAM. This set of models captures the interaction of terrestrial systems, land use, crops and forests, climate change, human activity, and energy systems. Our scenario simulations represent dynamic paths over which all the climate, terrestrial, economic, and energy technology equations are solved simultaneously Special attention is paid to biofuels and how they interact with conventional gasoline/diesel fuel markets. Possible low-carbon penetration paths are based on estimated costs for new technologies, including cellulosic biomass, coal-to-liquids, plug-in electric vehicles, solar and nuclear energy. We explicitly explore key uncertainties that affect mitigation and adaptation scenarios.

  6. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    Science.gov (United States)

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  7. Scientist's Perceptions of Uncertainty During Discussions of Global Climate

    Science.gov (United States)

    Romanello, S.; Fortner, R.; Dervin, B.

    2003-04-01

    This research examines the nature of disagreements between natural and social scientists during discussions of global climate change. In particular, it explores whether the disagreements between natural and social scientists are related to the ontological, epistemological, or methodological nature of the uncertainty of global climate change during these discussions. A purposeful sample of 30 natural and social scientists recognized as experts in global climate change by the United States Global Change Research Program (USGCRP) and National Academies Committee on Global Change were interviewed to elicit their perceptions of disagreements during their three most troublesome discussions on global climate change. A mixed-method (qualitative plus quantitative research) approach with three independent variables was used to explore nature of uncertainty as a mediating variable in the relationships between academic training, level of sureness, level of knowledge, and position on global climate change, and the nature of disagreements and bridging strategies of natural and social scientists (Patton, 1997; Frechtling et al., 1997). This dissertation posits that it is the differences in the nature of uncertainty communicated by natural and social scientists and not sureness, knowledge, and position on global climate change that causes disagreements between the groups. By describing the nature of disagreements between natural and social scientists and illuminating bridging techniques scientists use during these disagreements, it is hoped that information collected from this research will create a better dialogue between the scientists studying global climate change by providing communication strategies which will allow those versed in one particular area to speak to non-experts whether they be other scientists, media officials, or the public. These tangible strategies can then be used by government agencies to create better communications and education plans, which can

  8. Using a Global Climate Model in an On-line Climate Change Course

    Science.gov (United States)

    Randle, D. E.; Chandler, M. A.; Sohl, L. E.

    2012-12-01

    Seminars on Science: Climate Change is an on-line, graduate-level teacher professional development course offered by the American Museum of Natural History. It is an intensive 6-week course covering a broad range of global climate topics, from the fundamentals of the climate system, to the causes of climate change, the role of paleoclimate investigations, and a discussion of potential consequences and risks. The instructional method blends essays, videos, textbooks, and linked websites, with required participation in electronic discussion forums that are moderated by an experienced educator and a course scientist. Most weeks include additional assignments. Three of these assignments employ computer models, including two weeks spent working with a full-fledged 3D global climate model (GCM). The global climate modeling environment is supplied through a partnership with Columbia University's Educational Global Climate Modeling Project (EdGCM). The objective is to have participants gain hands-on experience with one of the most important, yet misunderstood, aspects of climate change research. Participants in the course are supplied with a USB drive that includes installers for the software and sample data. The EdGCM software includes a version of NASA's global climate model fitted with a graphical user interface and pre-loaded with several climate change simulations. Step-by-step assignments and video tutorials help walk people through these challenging exercises and the course incorporates a special assignment discussion forum to help with technical problems and questions about the NASA GCM. There are several takeaways from our first year and a half of offering this course, which has become one of the most popular out of the twelve courses offered by the Museum. Participants report a high level of satisfaction in using EdGCM. Some report frustration at the initial steps, but overwhelmingly claim that the assignments are worth the effort. Many of the difficulties that

  9. Strategic Global Climate Command?

    Science.gov (United States)

    Long, J. C. S.

    2016-12-01

    Researchers have been exploring geoengineering because Anthropogenic GHG emissions could drive the globe towards unihabitability for people, wildlife and vegetation. Potential global deployment of these technologies is inherently strategic. For example, solar radiation management to reflect more sunlight might be strategically useful during a period of time where the population completes an effort to cease emissions and carbon removal technologies might then be strategically deployed to move the atmospheric concentrations back to a safer level. Consequently, deployment of these global technologies requires the ability to think and act strategically on the part of the planet's governments. Such capacity most definitely does not exist today but it behooves scientists and engineers to be involved in thinking through how global command might develop because the way they do the research could support the development of a capacity to deploy intervention rationally -- or irrationally. Internationalizing research would get countries used to working together. Organizing the research in a step-wise manner where at each step scientists become skilled at explaining what they have learned, the quality of the information they have, what they don't know and what more they can do to reduce or handle uncertainty, etc. Such a process can increase societal confidence in being able to make wise decisions about deployment. Global capacity will also be enhanced if the sceintific establishment reinvents misssion driven research so that the programs will identify the systemic issues invovled in any proposed technology and systematically address them with research while still encouraging individual creativity. Geoengineering will diverge from climate science in that geoengineering research needs to design interventions for some publically desirable goal and investigates whether a proposed intervention will acheive desired outcomes. The effort must be a systems-engineering design problem

  10. A statistical-dynamical downscaling procedure for global climate simulations

    International Nuclear Information System (INIS)

    Frey-Buness, A.; Heimann, D.; Sausen, R.; Schumann, U.

    1994-01-01

    A statistical-dynamical downscaling procedure for global climate simulations is described. The procedure is based on the assumption that any regional climate is associated with a specific frequency distribution of classified large-scale weather situations. The frequency distributions are derived from multi-year episodes of low resolution global climate simulations. Highly resolved regional distributions of wind and temperature are calculated with a regional model for each class of large-scale weather situation. They are statistically evaluated by weighting them with the according climate-specific frequency. The procedure is exemplarily applied to the Alpine region for a global climate simulation of the present climate. (orig.)

  11. Global climate change impacts on forests and markets

    Science.gov (United States)

    Xiaohui Tian; Brent Sohngen; John B Kim; Sara Ohrel; Jefferson Cole

    2016-01-01

    This paper develops an economic analysis of climate change impacts in the global forest sector. It illustrates how potential future climate change impacts can be integrated into a dynamic forestry economics model using data from a global dynamic vegetation model, theMC2model. The results suggest that climate change will cause forest outputs (such as timber) to increase...

  12. Conceptual understanding of climate change with a globally resolved energy balance model

    Energy Technology Data Exchange (ETDEWEB)

    Dommenget, Dietmar [Monash University, School of Mathematical Sciences, Melbourne, VIC (Australia); Floeter, Janine [Leibniz Institute for Marine Sciences, Kiel (Germany)

    2011-12-15

    The future climate change projections are essentially based on coupled general circulation model (CGCM) simulations, which give a distinct global warming pattern with arctic winter amplification, an equilibrium land-sea warming contrast and an inter-hemispheric warming gradient. While these simulations are the most important tool of the Intergovernmental Panel on Climate Change (IPCC) predictions, the conceptual understanding of these predicted structures of climate change and the causes of their uncertainties is very difficult to reach if only based on these highly complex CGCM simulations. In the study presented here we will introduce a very simple, globally resolved energy balance (GREB) model, which is capable of simulating the main characteristics of global warming. The model shall give a bridge between the strongly simplified energy balance models and the fully coupled 4-dimensional complex CGCMs. It provides a fast tool for the conceptual understanding and development of hypotheses for climate change studies, which shall build a basis or starting point for more detailed studies of observations and CGCM simulations. It is based on the surface energy balance by very simple representations of solar and thermal radiation, the atmospheric hydrological cycle, sensible turbulent heat flux, transport by the mean atmospheric circulation and heat exchange with the deeper ocean. Despite some limitations in the representations of the basic processes, the models climate sensitivity and the spatial structure of the warming pattern are within the uncertainties of the IPCC models simulations. It is capable of simulating aspects of the arctic winter amplification, the equilibrium land-sea warming contrast and the inter-hemispheric warming gradient with good agreement to the IPCC models in amplitude and structure. The results give some insight into the understanding of the land-sea contrast and the polar amplification. The GREB model suggests that the regional inhomogeneous

  13. Forest succession and climate change: Coupling land-surface processes and ecological dynamics

    International Nuclear Information System (INIS)

    Martin, P.

    1990-01-01

    Growing evidence supports the hypothesis that humans are in the process of inadvertently modifying the Earth's climate by increasing the atmospheric concentrations of carbon dioxide and other radiatively active trace gas. The present man-induced climate change, often referred to as the greenhouse effect, is different from natural changes because of its unprecedented pace and the incomplete knowledge of its consequences. As some scientists put it, humanity is performing on itself a 'global experiment' which may entail a number of surprises. The potential changes in the behavior of atmosphere/biosphere interactions are of particular importance. Such changes could affect atmospheric dynamics, the local and regional hydrology, the global bio-geochemistry, and therefore, human societies. Five distinct aspects of climate/vegetation interactions are examined. First, the climatically and physiologically mediated impacts of increases in the concentration of carbon dioxide on the evaporation from agricultural crops, grassland, and forests are investigated using the Penman-Monteith combination equation. Second, the degree of coupling between the vegetation and the atmosphere, as defined by Jarvis and McNaughton, is reexamined taking radiative losses from the vegetation to the atmosphere into account. Third, the effects of changes in the mean vs. the variance of climatic variables are investigated using a modified version of the forest dynamics model developed by Pastor and Post, LINK-AGES. Fourth, using the same model, changes in the production of non-methane hydrocarbons are estimated as climate and/or vegetation change. Finally, the main focus is on the response of forests to climatic changes using a model treating the physics of energy and water exchange in detail

  14. Global climate change: Implications, challenges, and mitigation measures

    International Nuclear Information System (INIS)

    Majumdar, S.K.

    1992-01-01

    This book presents a perspective of the potential problem of global climate change induced by human activity. The editors have presented viewpoints of experts (advocates and skeptics) representing the issues of climate change. Possible results from long-term global change discussed in this book include mass migrations of plants and animals; changes in crop yields; flood and drought; and economic, political, and cultural changes. The text contains 20 chapters on the impact of global climate change and 10 chapters on the mitigation of effects and policy development

  15. Global climate change and California's water resources

    International Nuclear Information System (INIS)

    Vaux, H.J. Jr.

    1991-01-01

    This chapter records the deliberations of a group of California water experts about answers to these and other questions related to the impact of global warming on California's water resources. For the most part, those participating in the deliberations believe that the current state of scientific knowledge about global warming and its impacts on water resources is insufficient to permit hard distinctions to be made between short- and long-term changes. consequently, the ideas discussed here are based on a number of assumptions about specific climatic manifestations of global warming in California, as described earlier in this volume. Ultimately, however, effective public responses to forestall the potentially costly impacts of global climate change will probably depend upon the credible validation of the prospects of global climate warming. This chapter contains several sections. First, the likely effects of global warming on California's water resources and water-supply systems are identified and analyzed. Second, possible responses to mitigate these effects are enumerated and discussed. Third, the major policy issues are identified. A final section lists recommendations for action and major needs for information

  16. Maize production in terms of global climate changes

    Directory of Open Access Journals (Sweden)

    Bekavac Goran

    2010-01-01

    Full Text Available Climate changes and expected variability of climatic parameters represent a serious concern of the 21st century agriculture. At the global level, the further rise in temperature, changed quantity and distribution of precipitation, increased variability of climate parameters and the occurrence of extreme climate events are expected. In order to avoid, or at least reduce the negative effects of global climate change, several adaptation strategies are proposed. Adjustment of production technology and breeding for tolerance to changed environment are proposed as two most important adaptation measures.

  17. Abrupt millennial variability and interdecadal-interstadial oscillations in a global coupled model: sensitivity to the background climate state

    Energy Technology Data Exchange (ETDEWEB)

    Arzel, Olivier [The University of New South Wales, Climate Change Research Centre (CCRC), Sydney (Australia); Universite de Bretagne Occidentale, Laboratoire de Physique des Oceans (LPO), Brest (France); England, Matthew H. [The University of New South Wales, Climate Change Research Centre (CCRC), Sydney (Australia); Verdiere, Alain Colin de; Huck, Thierry [Universite de Bretagne Occidentale, Laboratoire de Physique des Oceans (LPO), Brest (France)

    2012-07-15

    The origin and bifurcation structure of abrupt millennial-scale climate transitions under steady external solar forcing and in the absence of atmospheric synoptic variability is studied by means of a global coupled model of intermediate complexity. We show that the origin of Dansgaard-Oeschger type oscillations in the model is caused by the weaker northward oceanic heat transport in the Atlantic basin. This is in agreement with previous studies realized with much simpler models, based on highly idealized geometries and simplified physics. The existence of abrupt millennial-scale climate transitions during glacial times can therefore be interpreted as a consequence of the weakening of the negative temperature-advection feedback. This is confirmed through a series of numerical experiments designed to explore the sensitivity of the bifurcation structure of the Atlantic meridional overturning circulation to increased atmospheric CO{sub 2} levels under glacial boundary conditions. Contrasting with the cold, stadial, phases of millennial oscillations, we also show the emergence of strong interdecadal variability in the North Atlantic sector during warm interstadials. The instability driving these interdecadal-interstadial oscillations is shown to be identical to that found in ocean-only models forced by fixed surface buoyancy fluxes, that is, a large-scale baroclinic instability developing in the vicinity of the western boundary current in the North Atlantic. Comparisons with modern observations further suggest a physical mechanism similar to that driving the 30-40 years time scale associated with the Atlantic multidecadal oscillation. (orig.)

  18. Biodiversity Hotspots, Climate Change, and Agricultural Development: Global Limits of Adaptation

    Science.gov (United States)

    Schneider, U. A.; Rasche, L.; Schmid, E.; Habel, J. C.

    2017-12-01

    Terrestrial ecosystems are threatened by climate and land management change. These changes result from complex and heterogeneous interactions of human activities and natural processes. Here, we study the potential change in pristine area in 33 global biodiversity hotspots within this century under four climate projections (representative concentration pathways) and associated population and income developments (shared socio-economic pathways). A coupled modelling framework computes the regional net expansion of crop and pasture lands as result of changes in food production and consumption. We use a biophysical crop simulation model to quantify climate change impacts on agricultural productivity, water, and nutrient emissions for alternative crop management systems in more than 100 thousand agricultural land polygons (homogeneous response units) and for each climate projection. The crop simulation model depicts detailed soil, weather, and management information and operates with a daily time step. We use time series of livestock statistics to link livestock production to feed and pasture requirements. On the food consumption side, we estimate national demand shifts in all countries by processing population and income growth projections through econometrically estimated Engel curves. Finally, we use a global agricultural sector optimization model to quantify the net change in pristine area in all biodiversity hotspots under different adaptation options. These options include full-scale global implementation of i) crop yield maximizing management without additional irrigation, ii) crop yield maximizing management with additional irrigation, iii) food yield maximizing crop mix adjustments, iv) food supply maximizing trade flow adjustments, v) healthy diets, and vi) combinations of the individual options above. Results quantify the regional potentials and limits of major agricultural producer and consumer adaptation options for the preservation of pristine areas in

  19. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin (eds.) [Chinese Academy of Sciences, Beijing, (China). Inst. of Atmospheric Physics

    2014-04-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  20. Governing Global Climate Change: Past Achievements, Future Prospects

    Directory of Open Access Journals (Sweden)

    Ella Kokotsis

    2014-11-01

    Full Text Available The cumulative effects of a significantly changing climate are projected to have disastrous implications on the world’s natural habitats, and along with that, are projected to drastically increase the rate and likelihood of violent conflict globally, particularly in high-density, urban, poverty hotspots. Limiting the effects of a changing climate is thus critical in influencing multiple societal goals including equitable sustainable development, human health, biodiversity, food security and access to reliable energy sources. This paper argues that the G7/8 has led global climate governance in ways other international environmental institu­tions have largely failed to do. It has done so largely by placing climate protection at the forefront of its policy objectives, alongside economic, health, energy and security goals, and reaching consensus repeatedly amongst its leaders on the impor­tance of stabilizing emissions through energy efficiency, conservation, investment and technological innovation. Moreover, this chapter argues that the summit’s predominant capability, its constricted participation, democratic convergence and political cohesion – as well as the combined effects of global shocks – have all had positive impacts on the G7/8’s success in mitigating climate change. Following a detailed process-tracing exercise over the summit’s 40-year history in which clear surges and retreats on global climate governance are outlined, this paper concludes by assessing the G7/8’s accountability record on climate mitigation and outlines a set of prescriptive recommendations, allowing for the delivery of a more tangible, coherent, results-driven accountability process for global climate governance.

  1. Global climate evolution during the last deglaciation

    OpenAIRE

    Clark, Peter U.; Shakun, Jeremy D.; Baker, Paul A.; Bartlein, Patrick J.; Brewer, Simon; Brook, Ed; Carlson, Anders E.; Cheng, Hai; Kaufman, Darrell S.; Liu, Zhengyu; Marchitto, Thomas M.; Mix, Alan C.; Morrill, Carrie; Otto-Bliesner, Bette L.; Pahnke, Katharina

    2012-01-01

    Deciphering the evolution of global climate from the end of the Last Glacial Maximum approximately 19 ka to the early Holocene 11 ka presents an outstanding opportunity for understanding the transient response of Earth’s climate system to external and internal forcings. During this interval of global warming, the decay of ice sheets caused global mean sea level to rise by approximately 80 m; terrestrial and marine ecosystems experienced large disturbances and range shifts; perturbations to th...

  2. Clean coal technologies and global climate change

    International Nuclear Information System (INIS)

    Long, R.S.

    1993-01-01

    The role for Clean Coal Technologies is discussed in the context of the global climate change debate. Global climate change is, of course as the name implies, a global issue. This clearly distinguishes this issue from acid rain or ozone non-attainment, which are regional in nature. Therefore, the issue requires a global perspective, one that looks at the issue not just from a US policy standpoint but from an international policy view. This includes the positions of other individual nations, trading blocks, common interest groups, and the evolving United Nations bureaucracy. It is assumed that as the global economy continues to grow, energy demand will also grow. With growth in economic activity and energy use, will come growth in worldwide greenhouse gas emissions, including growth in carbon dioxide (CO 2 ) emissions. Much of this growth will occur in developing economies which intend to fuel their growth with coal-fired power, especially China and India. Two basic premises which set out the boundaries of this topic are presented. First, there is the premise that global climate change is occurring, or is about to occur, and that governments must do something to mitigate the causes of climate change. Although this premise is highly rebuttable, and not based on scientific certainty, political science has driven it to the forefront of the debate. Second is the premise that advanced combustion CCTs, with their higher efficiencies, will result in lower CO 2 emissions, and hence lessen any contribution of greater coal use to potential global climate change. This promise is demonstrably true. This discussion focuses on recent and emerging public sector policy actions, which may in large part establish a new framework in which the private sector will find new challenges and new opportunities

  3. Impacts of climate change on the global forest sector

    Science.gov (United States)

    Perez-Garcia, J.; Joyce, L.A.; McGuire, A.D.; Xiao, X.

    2002-01-01

    The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors

  4. Global vs climate change

    International Nuclear Information System (INIS)

    Watson, H.L.; Bach, M.C.; Goklany, I.M.

    1991-01-01

    The various agents of global change that will affect the state of natural resources 50-100 years from now are discussed. These include economic and population growth, technological progress, and climatic change. The importance of climatic change lies in its effects on natural resources and on human activities that depend on those resources. Other factors affecting those resources include the demand on those resources from an increasing population and from a growing economy, and a more efficient use of those resources that comes from technological changes and from the consequences of economic growth itself. It is shown that there is a considerable ability to adapt to climatic change, since humans already have an intrinsic ability to adapt to the wide variations in climates that already exist and since technological developments can make it easier to cope with climatic variability. It appears that agents other than climatic change are more significant to the future state of natural resources than climatic change. Criteria for selecting options for addressing climatic change are outlined. Technological change and economic growth are seen to be key response options, since the vulnerability to climatic change depends on economic resources and technological progress. Specific options to stimulate sustainable economic growth and technological progress are listed. 16 refs., 1 fig., 2 tabs

  5. Long-term climate monitoring by the global climate observing system

    International Nuclear Information System (INIS)

    Karl, T.R.

    1995-12-01

    Is the climate warming? Is the hydrologic cycle changing? Is the atmospheric/oceanic circulation changing? Is the climate becoming more variable or extreme? Is radiative forcing of the climate changing? are complex questions not only from the standpoint of a multi-variate problem, but because of the various aspects of spatial and temporal sampling that must be considered on a global scale. The development of a Global Climate Observing System (GCOS) offers the opportunity for scientists to do something about existing observing deficiencies in light of the importance of documenting long-term climate changes that may already be affected by anthropogenic changes of atmospheric composition and land use as well as other naturally occurring changes. As an important step toward improving the present inadequacies, a workshop was held to help define the long-term monitoring requirements minimally needed to address the five questions posed above, with special emphasis on detecting anthropogenic climate change and its potential impact on managed and unmanaged systems The workshop focussed on three broad areas related to long-term climate monitoring: (a) the scientific rationale for the long-term climate products (including their accuracy, resolution, and homogeneity) required from our observing systems as related to climate monitoring and climate change detection and attribution; (b) the status of long-term climate products and the observing systems from which these data are derived; and (c) implementation strategies necessary to fulfill item (a) in light of existing systems. Item (c) was treated more in terms of feasibility rather than as a specific implementation plan. figs., tabs., refs

  6. Global but fair. Controvert the climatic change, allow development; Global aber gerecht. Klimawandel bekaempfen, Entwicklung ermoeglichen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The book includes the following chapters: global but fair: climate compatible development for everybody; climatic change consequences und vulnerabilities; ethic dimension: fairness in the context of climatic change and poverty; options and challenges for emissions abatement; options for the adaptation to the climatic change; global deal for climate and development policy; convert the climatic change, allow development: ten political messages.

  7. Synchronization of three electrochemical oscillators: From local to global coupling

    Science.gov (United States)

    Liu, Yifan; Sebek, Michael; Mori, Fumito; Kiss, István Z.

    2018-04-01

    We investigate the formation of synchronization patterns in an oscillatory nickel electrodissolution system in a network obtained by superimposing local and global coupling with three electrodes. We explored the behavior through numerical simulations using kinetic ordinary differential equations, Kuramoto type phase models, and experiments, in which the local to global coupling could be tuned by cross resistances between the three nickel wires. At intermediate coupling strength with predominant global coupling, two of the three oscillators, whose natural frequencies are closer, can synchronize. By adding even a relatively small amount of local coupling (about 9%-25%), a spatially organized partially synchronized state can occur where one of the two synchronized elements is in the center. A formula was derived for predicting the critical coupling strength at which full synchronization will occur independent of the permutation of the natural frequencies of the oscillators over the network. The formula correctly predicts the variation of the critical coupling strength as a function of the global coupling fraction, e.g., with local coupling the critical coupling strength is about twice than that required with global coupling. The results show the importance of the topology of the network on the synchronization properties in a simple three-oscillator setup and could provide guidelines for decrypting coupling topology from identification of synchronization patterns.

  8. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system

    Science.gov (United States)

    McGuire, A.D.; Chapin, F. S.; Walsh, J.E.; Wirth, C.; ,

    2006-01-01

    The Arctic is a key part of the global climate system because the net positive energy input to the tropics must ultimately be resolved through substantial energy losses in high-latitude regions. The Arctic influences the global climate system through both positive and negative feedbacks that involve physical, ecological, and human systems of the Arctic. The balance of evidence suggests that positive feedbacks to global warming will likely dominate in the Arctic during the next 50 to 100 years. However, the negative feedbacks associated with changing the freshwater balance of the Arctic Ocean might abruptly launch the planet into another glacial period on longer timescales. In light of uncertainties and the vulnerabilities of the climate system to responses in the Arctic, it is important that we improve our understanding of how integrated regional changes in the Arctic will likely influence the evolution of the global climate system. Copyright ?? 2006 by Annual Reviews. All rights reserved.

  9. Coupling Strength and System Size Induce Firing Activity of Globally Coupled Neural Network

    International Nuclear Information System (INIS)

    Wei Duqu; Luo Xiaoshu; Zou Yanli

    2008-01-01

    We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh-Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network

  10. International business and global climate change

    NARCIS (Netherlands)

    Pinkse, J.; Kolk, A.

    2008-01-01

    Climate change has become an important topic on the business agenda with strong pressure being placed on companies to respond and contribute to finding solutions to this urgent problem. This text provides a comprehensive analysis of international business responses to global climate change and

  11. A global conservation system for climate-change adaptation.

    Science.gov (United States)

    Hannah, Lee

    2010-02-01

    Climate change has created the need for a new strategic framework for conservation. This framework needs to include new protected areas that account for species range shifts and management that addresses large-scale change across international borders. Actions within the framework must be effective in international waters and across political frontiers and have the ability to accommodate large income and ability-to-pay discrepancies between countries. A global protected-area system responds to these needs. A fully implemented global system of protected areas will help in the transition to a new conservation paradigm robust to climate change and will ensure the integrity of the climate services provided by carbon sequestration from the world's natural habitats. The internationally coordinated response to climate change afforded by such a system could have significant cost savings relative to a system of climate adaptation that unfolds solely at a country level. Implementation of a global system is needed very soon because the effects of climate change on species and ecosystems are already well underway.

  12. Assessment of climate change scenarios for Saudi Arabia using data from global climate models

    International Nuclear Information System (INIS)

    Husain, T.; Chowdhury, S.

    2009-01-01

    This study assesses available scientific information and data to predict changes in the climatic parameters in Saudi Arabia for understanding the impacts for mitigation and/or adaptation. Meteorological data from 26 synoptic stations were analyzed in this study. Various climatic change scenarios were reviewed and A 2 and B 2 climatic scenario families were selected. In order to assess long-term global impact, global climatic models were used to simulate changes in temperature, precipitation, relative humidity, solar radiation, and wind circulation. Using global climate model (GCM), monthly time series data was retrieved for Longitude 15 o N to 35 o N and 32.5 o E to 60 o E covering the Kingdom of Saudi Arabia from 1970 to 2100 for all grids. Taking averages of 1970 to 2003 as baseline, change in temperature, relative humidity and precipitation were estimated for the base period. A comparative evaluation was performed for predictive capabilities of these models for temperature, precipitation and relative humidity. Available meteorological data from 1970 to 2003 was used to determine trends. This paper discusses the inconsistency in these parameters for decision-making and recommends future studies by linking global climate models with a suitable regional climate modeling tool. (author)

  13. Global Climate Change: Threat Multiplier for AFRICOM?

    National Research Council Canada - National Science Library

    Yackle, Terri A

    2007-01-01

    .... Whatever the catalyst for this abrupt climate change, stability for Africa hinges upon mitigating the effects of global climate change to prevent future conflicts such as Darfur, and the instability...

  14. Global Framework for Climate Services (GFCS)

    Science.gov (United States)

    Lúcio, F.

    2012-04-01

    Climate information at global, regional and national levels and in timeframes ranging from the past, present and future climate is fundamental for planning, sustainable development and to help organizations, countries and individuals adopt appropriate strategies to adapt to climate variability and change. Based on this recognition, in 2009, the Heads of States and Governments, Ministers and Heads of Delegation representing more than 150 countries, 34 United Nations Organizations and 36 Governmental and non-Governmental international organizations, and more than 2500 experts present at the Third World Climate Conference (WCC - 3) unanimously agreed to develop the Global Framework for Climate Services (GFCS) to strengthen the production, availability, delivery and application of science-based climate prediction and services. They requested that a taskforce of high-level independent advisors be appointed to prepare a report, including recommendations on the proposed elements of the Framework and the next steps for its implementation. The high-level taskforce produced a report which was endorsed by the Sixteeth World Meteorological Congress XVI in May 2011. A process for the development of the implementation plan and the governance structure of the Global Framework for Climate Services (GFCS) is well under way being led by the World Meteorological Organization within the UN system. This process involves consultations that engage a broad range of stakeholders including governments, UN and international agencies, regional organizations and specific communities of practitioners. These consultations are being conducted to facilitate discussions of key issues related to the production, availability, delivery and application of climate services in the four priority sectors of the framework (agriculture, water, health and disaster risk reduction) so that the implementation plan of the Framework is a true reflection of the aspirations of stakeholders. The GFCS is envisaged as

  15. Global Responses to Potential Climate Change: A Simulation.

    Science.gov (United States)

    Williams, Mary Louise; Mowry, George

    This interdisciplinary five-day unit provides students with an understanding of the issues in the debate on global climate change. Introductory lessons enhance understanding of the "greenhouse gases" and their sources with possible global effects of climate change. Students then roleplay negotiators from 10 nations in a simulation of the…

  16. Climate Cases: Learning about Student Conceptualizations of Global Climate Change

    Science.gov (United States)

    Tierney, Benjamin P.

    2013-01-01

    The complex topic of global climate change continues to be a challenging yet important topic among science educators and researchers. This mixed methods study adds to the growing research by investigating student conceptions of climate change from a system theory perspective (Von Bertalanffy, 1968) by asking the question, "How do differences…

  17. Detection of the Coupling between Vegetation Leaf Area and Climate in a Multifunctional Watershed, Northwestern China

    Directory of Open Access Journals (Sweden)

    Lu Hao

    2016-12-01

    Full Text Available Accurate detection and quantification of vegetation dynamics and drivers of observed climatic and anthropogenic change in space and time is fundamental for our understanding of the atmosphere–biosphere interactions at local and global scales. This case study examined the coupled spatial patterns of vegetation dynamics and climatic variabilities during the past three decades in the Upper Heihe River Basin (UHRB, a complex multiple use watershed in arid northwestern China. We apply empirical orthogonal function (EOF and singular value decomposition (SVD analysis to isolate and identify the spatial patterns of satellite-derived leaf area index (LAI and their close relationship with the variability of an aridity index (AI = Precipitation/Potential Evapotranspiration. Results show that UHRB has become increasingly warm and wet during the past three decades. In general, the rise of air temperature and precipitation had a positive impact on mean LAI at the annual scale. At the monthly scale, LAI variations had a lagged response to climate. Two major coupled spatial change patterns explained 29% and 41% of the LAI dynamics during 1983–2000 and 2001–2010, respectively. The strongest connections between climate and LAI were found in the southwest part of the basin prior to 2000, but they shifted towards the north central area afterwards, suggesting that the sensitivity of LAI to climate varied over time, and that human disturbances might play an important role in altering LAI patterns. At the basin level, the positive effects of regional climate warming and precipitation increase as well as local ecological restoration efforts overwhelmed the negative effects of overgrazing. The study results offer insights about the coupled effects of climatic variability and grazing on ecosystem structure and functions at a watershed scale. Findings from this study are useful for land managers and policy makers to make better decisions in response to climate

  18. Climate. Meeting the challenge of global warming

    International Nuclear Information System (INIS)

    Masson-Delmotte, Valerie; Mann, Michael; Greene, Charles; Salas y Melia, David; Dufresne, Jean-Louis; Journe, Venance; Guegan, Jean-Francois; ); Bopp, Laurent; Magnan, Alexandre; Gattuso, Jean-Pierre; Bally, Rene; Duponnois, Robin; Giodda, Alain; MOATTI, JEAN-PAUL; Recio, Carlos; Santana, Luis; Hulot, Nicolas; Criqui, Patrick; Meritet, Sophie; Jacobson, Mark; Delucchi, Mark; Julliard, Romain; Balibar, Sebastien; Prevot, Anne-Caroline; Colleony, Agathe; Mangin, Loic

    2015-01-01

    The contributions of this publication first discuss and comment the cost of inaction in front of global warming. The authors deny the existence of a climate pause, explain the existence of harsh winters in Europe in the context of global warming, outline that models developed and used in the 1960 already predicted the present trend, discuss the complex relationships between climate change and health, outline the threats on the oceans (acidification, impact on marine species, level rise) and consequently on mankind. A second set of contributions addresses opportunities to be implemented now: to plant trees along the Sahara, the example of an ecologic island (El Hierro, Canaries Islands), the commitment of communities, associations and citizens, the necessary energy transition, innovation at the service of climate, the role of finances and investments. The third set of contributions addresses perspectives: to do without fossil energies, how to reduce the impact of global warming in cities (by planting trees and closing shutters), the emergence of participative science, arguments against climate sceptics, a difficult change of behaviours

  19. Phase synchronization in inhomogeneous globally coupled map lattices

    International Nuclear Information System (INIS)

    Ho Mingchung; Hung Yaochen; Jiang, I-M.

    2004-01-01

    The study of inhomogeneous-coupled chaotic systems has attracted a lot of attention recently. With simple definition of phase, we present the phase-locking behavior in ensembles of globally coupled non-identical maps. The inhomogeneous globally coupled maps consist of logistic map and tent map simultaneously. Average phase synchronization ratios, which are used to characterize the phase coherent phenomena, depend on different coupling coefficients and chaotic parameters. By using interdependence, the relationship between a single unit and the mean field is illustrated. Moreover, we take the effect of external noise and parameter mismatch into consideration and present the results by numerical simulation

  20. Coupled downscaled climate models and ecophysiological metrics forecast habitat compression for an endangered estuarine fish

    Science.gov (United States)

    Brown, Larry R.; Komoroske, Lisa M; Wagner, R Wayne; Morgan-King, Tara; May, Jason T.; Connon, Richard E; Fangue, Nann A.

    2016-01-01

    Climate change is driving rapid changes in environmental conditions and affecting population and species’ persistence across spatial and temporal scales. Integrating climate change assessments into biological resource management, such as conserving endangered species, is a substantial challenge, partly due to a mismatch between global climate forecasts and local or regional conservation planning. Here, we demonstrate how outputs of global climate change models can be downscaled to the watershed scale, and then coupled with ecophysiological metrics to assess climate change effects on organisms of conservation concern. We employed models to estimate future water temperatures (2010–2099) under several climate change scenarios within the large heterogeneous San Francisco Estuary. We then assessed the warming effects on the endangered, endemic Delta Smelt, Hypomesus transpacificus, by integrating localized projected water temperatures with thermal sensitivity metrics (tolerance, spawning and maturation windows, and sublethal stress thresholds) across life stages. Lethal temperatures occurred under several scenarios, but sublethal effects resulting from chronic stressful temperatures were more common across the estuary (median >60 days above threshold for >50% locations by the end of the century). Behavioral avoidance of such stressful temperatures would make a large portion of the potential range of Delta Smelt unavailable during the summer and fall. Since Delta Smelt are not likely to migrate to other estuaries, these changes are likely to result in substantial habitat compression. Additionally, the Delta Smelt maturation window was shortened by 18–85 days, revealing cumulative effects of stressful summer and fall temperatures with early initiation of spring spawning that may negatively impact fitness. Our findings highlight the value of integrating sublethal thresholds, life history, and in situ thermal heterogeneity into global change impact assessments. As

  1. Coupled Downscaled Climate Models and Ecophysiological Metrics Forecast Habitat Compression for an Endangered Estuarine Fish.

    Directory of Open Access Journals (Sweden)

    Larry R Brown

    Full Text Available Climate change is driving rapid changes in environmental conditions and affecting population and species' persistence across spatial and temporal scales. Integrating climate change assessments into biological resource management, such as conserving endangered species, is a substantial challenge, partly due to a mismatch between global climate forecasts and local or regional conservation planning. Here, we demonstrate how outputs of global climate change models can be downscaled to the watershed scale, and then coupled with ecophysiological metrics to assess climate change effects on organisms of conservation concern. We employed models to estimate future water temperatures (2010-2099 under several climate change scenarios within the large heterogeneous San Francisco Estuary. We then assessed the warming effects on the endangered, endemic Delta Smelt, Hypomesus transpacificus, by integrating localized projected water temperatures with thermal sensitivity metrics (tolerance, spawning and maturation windows, and sublethal stress thresholds across life stages. Lethal temperatures occurred under several scenarios, but sublethal effects resulting from chronic stressful temperatures were more common across the estuary (median >60 days above threshold for >50% locations by the end of the century. Behavioral avoidance of such stressful temperatures would make a large portion of the potential range of Delta Smelt unavailable during the summer and fall. Since Delta Smelt are not likely to migrate to other estuaries, these changes are likely to result in substantial habitat compression. Additionally, the Delta Smelt maturation window was shortened by 18-85 days, revealing cumulative effects of stressful summer and fall temperatures with early initiation of spring spawning that may negatively impact fitness. Our findings highlight the value of integrating sublethal thresholds, life history, and in situ thermal heterogeneity into global change impact

  2. Communicating global climate change using simple indices: an update

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Frank; Karoly, David [University of Melbourne, School of Earth Sciences, Melbourne, VIC (Australia); Braganza, Karl [National Climate Centre, Bureau of Meteorology, Melbourne, VIC (Australia)

    2012-08-15

    Previous studies have shown that there are several indices of global-scale temperature variations, in addition to global-mean surface air temperature, that are useful for distinguishing natural internal climate variations from anthropogenic climate change. Appropriately defined, such indices have the ability to capture spatio-temporal information in a similar manner to optimal fingerprints of climate change. These indices include the contrast between the average temperatures over land and over oceans, the Northern Hemisphere meridional temperature gradient, the temperature contrast between the Northern and Southern Hemisphere and the magnitude of the annual cycle of average temperatures over land. They contain information independent of the global-mean temperature for internal climate variations at decadal time scales and represent different aspects of the climate system, yet they show common responses to anthropogenic climate change. In addition, the ratio of average temperature changes over land to those over the oceans should be nearly constant for transient climate change. Hence, supplementing analysis of global-mean surface temperature with analyses of these indices can strengthen results of attribution studies of causes of observed climate variations. In this study, we extend the previous work by including the last 10 years of observational data and the CMIP3 climate model simulations analysed for the IPCC AR4. We show that observed changes in these indices over the last 10 years provide increased evidence of an anthropogenic influence on climate. We also show the usefulness of these indices for evaluating the performance of climate models in simulating large-scale variability of surface temperature. (orig.)

  3. Global climate change: an unequivocal reality; Cambio climatico global: una realidad inequivoca

    Energy Technology Data Exchange (ETDEWEB)

    Raynal-Villasenor, J.A. [Universidad de las Americas, Puebla, Puebla (Mexico)]. E-mail: josea.raynal@udlap.mx

    2011-10-15

    During several years, a long discussion has taken place over the reality of global climate change phenomenon and, if there is one, what could be its cause. Once the 4th Assessment Report of the Intergovernmental Panel on Climatic Change (IPCC, 2007) - IPCC is part the United Nations Organization (UN) - was published, it was stated that there is a developing global climatic change and that the cause is unequivocally related with the human activity in the planet Earth. In this paper, relevant information is given about the development of global climatic change issues and some actions are mentioned that each human being of this planet can implement to mitigate it, since it has been accepted that it's impossible to stop it. [Spanish] Durante varios anos se ha discutido si existe un cambio climatico global y, si lo hay, cual es su causa. Una vez publicado el 4o. Reporte de Valoracion del Panel Intergubernamental sobre Cambio Climatico (IPCC, 2007) - el IPCC es parte de la Organizacion de las Naciones Unidas (ONU) - se preciso que hay un cambio climatico global en desarrollo y la causa inequivoca que lo esta produciendo es la actividad humana en el planeta Tierra, tambien se hablo en el IPCC de las causas naturales por las cuales el planeta se esta calentando. En el presente articulo, se da informacion relevante al cambio climatico global en desarrollo y se mencionan algunas acciones que cada ser humano de este planeta puede implementar para mitigarlo, ya que es imposible detenerlo.

  4. The role of aerosols in cloud drop parameterizations and its applications in global climate models

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, C.C.; Penner, J.E. [Lawrence Livermore National Lab., CA (United States)

    1996-04-01

    The characteristics of the cloud drop size distribution near cloud base are initially determined by aerosols that serve as cloud condensation nuclei and the updraft velocity. We have developed parameterizations relating cloud drop number concentration to aerosol number and sulfate mass concentrations and used them in a coupled global aerosol/general circulation model (GCM) to estimate the indirect aerosol forcing. The global aerosol model made use of our detailed emissions inventories for the amount of particulate matter from biomass burning sources and from fossil fuel sources as well as emissions inventories of the gas-phase anthropogenic SO{sub 2}. This work is aimed at validating the coupled model with the Atmospheric Radiation Measurement (ARM) Program measurements and assessing the possible magnitude of the aerosol-induced cloud effects on climate.

  5. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015

    Science.gov (United States)

    Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

  6. Principle of Global Decoupling with Coupling Angle Modulation

    CERN Document Server

    Luo, Yun; Pilat, Fulvia Caterina; Roser, Thomas; Trbojevic, Dejan

    2005-01-01

    The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy Ion Collider (RHIC). A new scheme coupling phase modulation is found. It introduces a rotating extra coupling into the coupled machine to detect the residual coupling. The eigentune responses are measured with a high resolution phase lock loop (PLL) system. From the minimum and maximum tune splits, the correction strengths are given. The time period occupied by one coupling phase modulation is less than 10 seconds. So it is a very promising solution for the global decoupling on the ramp. In this article the principle of the coupling phase modulation is given. The simulation with the smooth accelerator model is also done. The practical issues concerning its applications are discussed.

  7. Simulation of global sulfate distribution and the influence of effective cloud drop radii with a coupled photochemistry-sulfur cycle model

    NARCIS (Netherlands)

    Roelofs, G.J.; Lelieveld, J.; Ganzeveld, L.N.

    1998-01-01

    A sulfur cycle model is coupled to a global chemistry-climate model. The simulated surface sulfate concentrations are generally within a factor of 2 of observed concentrations, and display a realistic seasonality for most background locations. However, the model tends to underestimate sulfate and

  8. Acidic deposition and global climate change

    International Nuclear Information System (INIS)

    Nikolaidis, N.P.; Ecsedy, C.; Olem, H.; Nikolaidis, V.S.

    1990-01-01

    A literature is presented which examines the research published on understanding ecosystem acidification and the effects of acidic deposition on freshwaters. Topics of discussion include the following: acidic deposition; regional assessments; atmospheric deposition and transport; aquatic effects; mathematical modeling; liming acidic waters; global climate change; atmospheric changes; climate feedbacks; and aquatic effects

  9. Global Deliberative Democracy and Climate Change: Insights from World Wide Views on Global Warming in Australia

    Directory of Open Access Journals (Sweden)

    Chris Riedy

    2011-12-01

    Full Text Available On 26 September 2009, approximately 4,000 citizens in 38 countries participated in World Wide Views on Global Warming (WWViews. WWViews was an ambitious first attempt to convene a deliberative mini-public at a global scale, giving people from around the world an opportunity to deliberate on international climate policy and to make recommendations to the decision-makers meeting at the United Nations Climate Change Conference in Copenhagen (COP-15 in December 2009. In this paper, we examine the role that deliberative mini-publics can play in facilitating the emergence of a global deliberative system for climate change response. We pursue this intent through a reflective evaluation of the Australian component of the World Wide Views on Global Warming project (WWViews. Our evaluation of WWViews is mixed. The Australian event was delivered with integrity and feedback from Australian participants was almost universally positive. Globally, WWViews demonstrated that it is feasible to convene a global mini-public to deliberate on issues of global relevance, such as climate change. On the other hand, the contribution of WWViews towards the emergence of a global deliberative system for climate change response was limited and it achieved little influence on global climate change policy. We identify lessons for future global mini-publics, including the need to prioritise the quality of deliberation and provide flexibility to respond to cultural and political contexts in different parts of the world. Future global mini-publics may be more influential if they seek to represent discourse diversity in addition to demographic profiles, use designs that maximise the potential for transmission from public to empowered space, run over longer time periods to build momentum for change and experiment with ways of bringing global citizens together in a single process instead of discrete national events.

  10. A Caveat Note on Tuning in the Development of Coupled Climate Models

    Science.gov (United States)

    Dommenget, Dietmar; Rezny, Michael

    2018-01-01

    State-of-the-art coupled general circulation models (CGCMs) have substantial errors in their simulations of climate. In particular, these errors can lead to large uncertainties in the simulated climate response (both globally and regionally) to a doubling of CO2. Currently, tuning of the parameterization schemes in CGCMs is a significant part of the developed. It is not clear whether such tuning actually improves models. The tuning process is (in general) neither documented, nor reproducible. Alternative methods such as flux correcting are not used nor is it clear if such methods would perform better. In this study, ensembles of perturbed physics experiments are performed with the Globally Resolved Energy Balance (GREB) model to test the impact of tuning. The work illustrates that tuning has, in average, limited skill given the complexity of the system, the limited computing resources, and the limited observations to optimize parameters. While tuning may improve model performance (such as reproducing observed past climate), it will not get closer to the "true" physics nor will it significantly improve future climate change projections. Tuning will introduce artificial compensating error interactions between submodels that will hamper further model development. In turn, flux corrections do perform well in most, but not all aspects. A main advantage of flux correction is that it is much cheaper, simpler, more transparent, and it does not introduce artificial error interactions between submodels. These GREB model experiments should be considered as a pilot study to motivate further CGCM studies that address the issues of model tuning.

  11. Can warming particles enter global climate discussions?

    International Nuclear Information System (INIS)

    Bond, Tami C

    2007-01-01

    'Soot' or 'black carbon', which comes from incomplete combustion, absorbs light and warms the atmosphere. Although there have been repeated suggestions that reduction of black carbon could be a viable part of decreasing global warming, it has not yet been considered when choosing actions to reduce climatic impact. In this paper, I examine four conceptual barriers to the consideration of aerosols in global agreements. I conclude that some of the major objections to considering aerosols under hemispheric or global agreements are illusory because: (1) a few major sources will be addressed by local regulations, but the remainder may not be addressed by traditional air quality management; (2) climate forcing by carbon particles is not limited to 'hot spots'-about 90% of it occurs at relatively low concentrations; (3) while aerosol science is complex, the most salient characteristics of aerosol behavior can be condensed into tractable metrics including, but not limited to, the global warming potential; (4) despite scientific uncertainties, reducing all aerosols from major sources of black carbon will reduce direct climate warming with a very high probability. This change in climate forcing accounts for at least 25% of the accompanying CO 2 forcing with significant probability (25% for modern diesel engines, 90% for superemitting diesels, and 55% for cooking with biofuels). Thus, this fraction of radiative forcing should not be ignored

  12. Automated parameter tuning applied to sea ice in a global climate model

    Science.gov (United States)

    Roach, Lettie A.; Tett, Simon F. B.; Mineter, Michael J.; Yamazaki, Kuniko; Rae, Cameron D.

    2018-01-01

    This study investigates the hypothesis that a significant portion of spread in climate model projections of sea ice is due to poorly-constrained model parameters. New automated methods for optimization are applied to historical sea ice in a global coupled climate model (HadCM3) in order to calculate the combination of parameters required to reduce the difference between simulation and observations to within the range of model noise. The optimized parameters result in a simulated sea-ice time series which is more consistent with Arctic observations throughout the satellite record (1980-present), particularly in the September minimum, than the standard configuration of HadCM3. Divergence from observed Antarctic trends and mean regional sea ice distribution reflects broader structural uncertainty in the climate model. We also find that the optimized parameters do not cause adverse effects on the model climatology. This simple approach provides evidence for the contribution of parameter uncertainty to spread in sea ice extent trends and could be customized to investigate uncertainties in other climate variables.

  13. Climate change and global crop yield: impacts, uncertainties and adaptation

    OpenAIRE

    Deryng, Delphine

    2014-01-01

    As global mean temperature continues to rise steadily, agricultural systems are projected to face unprecedented challenges to cope with climate change. However, understanding of climate change impacts on global crop yield, and of farmers’ adaptive capacity, remains incomplete as previous global assessments: (1) inadequately evaluated the role of extreme weather events; (2) focused on a small subset of the full range of climate change predictions; (3) overlooked uncertainties related to the ch...

  14. Antarctica and Global Environmental Change - Lessons from the Past Inform Climate Change Policy Today

    Science.gov (United States)

    Dunbar, R. B.; Scientific Team Of Odp Drilling Leg 318; Andrill Science Team

    2011-12-01

    Antarctic's continental ice, sea ice, and the broader Southern Ocean form a coupled and complex climate system that interacts in important yet poorly understood ways with the low and mid-latitudes. Because of its unusual sovereignty status and the fact that there is no indigenous human population, information about climate change in Antarctica penetrates the policy world less readily than findings from other regions. Yet, Antarctica's potential to impact climate change globally is disproportionately large. Vulnerable portions of the ice sheet may contribute up to 3 to 5 meters of sea level rise in the coming centuries, including significant amounts within the next 50 years. Loss of sea ice and other changes in the Southern Ocean may reduce oceanic uptake of excess atmospheric carbon dioxide, exacerbating global warming worldwide. Antarctica's impact on the Southern Hemisphere wind field is now well-established, contributing to ongoing decadal-scale perturbations in continental precipitation as well as major reorganizations of Southern Ocean food chains. Recent scientific drilling programs in the Ross Sea and off Wilkes Land, Antarctica, provide valuable insights into past climatic and biogeochemical change in Antarctica, insights of great relevance to international and national climate change policy. In this paper, we discuss polar amplification, sea level variability coupled to Antarctic ice volume, and response timescales as seen through the lens of past climate change. One key result emerging from multiple drilling programs is recognition of unanticipated dynamism in the Antarctic ice sheet during portions of the Pliocene (at a time with pCO2 levels equivalent to those anticipated late this century) as well as during "super-interglacials" of the Pleistocene. Evidence for substantially warmer ocean temperatures and reduced sea ice cover at these times suggests that polar amplification of natural climate variability, even under scenarios of relative small amounts

  15. Climate forcings and climate sensitivities diagnosed from atmospheric global circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce T. [Boston University, Department of Geography and Environment, Boston, MA (United States); Knight, Jeff R.; Ringer, Mark A. [Met Office Hadley Centre, Exeter (United Kingdom); Deser, Clara; Phillips, Adam S. [National Center for Atmospheric Research, Boulder, CO (United States); Yoon, Jin-Ho [University of Maryland, Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, College Park, MD (United States); Cherchi, Annalisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2010-12-15

    Understanding the historical and future response of the global climate system to anthropogenic emissions of radiatively active atmospheric constituents has become a timely and compelling concern. At present, however, there are uncertainties in: the total radiative forcing associated with changes in the chemical composition of the atmosphere; the effective forcing applied to the climate system resulting from a (temporary) reduction via ocean-heat uptake; and the strength of the climate feedbacks that subsequently modify this forcing. Here a set of analyses derived from atmospheric general circulation model simulations are used to estimate the effective and total radiative forcing of the observed climate system due to anthropogenic emissions over the last 50 years of the twentieth century. They are also used to estimate the sensitivity of the observed climate system to these emissions, as well as the expected change in global surface temperatures once the climate system returns to radiative equilibrium. Results indicate that estimates of the effective radiative forcing and total radiative forcing associated with historical anthropogenic emissions differ across models. In addition estimates of the historical sensitivity of the climate to these emissions differ across models. However, results suggest that the variations in climate sensitivity and total climate forcing are not independent, and that the two vary inversely with respect to one another. As such, expected equilibrium temperature changes, which are given by the product of the total radiative forcing and the climate sensitivity, are relatively constant between models, particularly in comparison to results in which the total radiative forcing is assumed constant. Implications of these results for projected future climate forcings and subsequent responses are also discussed. (orig.)

  16. Global climate change has already begun

    International Nuclear Information System (INIS)

    Sinclair, J.

    1991-01-01

    Global warning and climate change is now evident around the planet. Six of the eight warmest years on record occurred in the 1980s, while 1990 was the hottest year on record. The global imbalances seem set to worsen unless greenhouse gas emissions are reduced and restoration of the earth's forests is begun

  17. Global climate change model natural climate variation: Paleoclimate data base, probabilities and astronomic predictors

    Energy Technology Data Exchange (ETDEWEB)

    Kukla, G.; Gavin, J. [Columbia Univ., Palisades, NY (United States). Lamont-Doherty Geological Observatory

    1994-05-01

    This report was prepared at the Lamont-Doherty Geological Observatory of Columbia University at Palisades, New York, under subcontract to Pacific Northwest Laboratory it is a part of a larger project of global climate studies which supports site characterization work required for the selection of a potential high-level nuclear waste repository and forms part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work under the PASS Program is currently focusing on the proposed site at Yucca Mountain, Nevada, and is under the overall direction of the Yucca Mountain Project Office US Department of Energy, Las Vegas, Nevada. The final results of the PNL project will provide input to global atmospheric models designed to test specific climate scenarios which will be used in the site specific modeling work of others. The primary purpose of the data bases compiled and of the astronomic predictive models is to aid in the estimation of the probabilities of future climate states. The results will be used by two other teams working on the global climate study under contract to PNL. They are located at and the University of Maine in Orono, Maine, and the Applied Research Corporation in College Station, Texas. This report presents the results of the third year`s work on the global climate change models and the data bases describing past climates.

  18. Asia's changing role in global climate change.

    Science.gov (United States)

    Siddiqi, Toufiq A

    2008-10-01

    Asia's role in global climate change has evolved significantly from the time when the Kyoto Protocol was being negotiated. Emissions of carbon dioxide, the principal greenhouse gas, from energy use in Asian countries now exceed those from the European Union or North America. Three of the top five emitters-China, India, and Japan, are Asian countries. Any meaningful global effort to address global climate change requires the active cooperation of these and other large Asian countries, if it is to succeed. Issues of equity between countries, within countries, and between generations, need to be tackled. Some quantitative current and historic data to illustrate the difficulties involved are provided, and one approach to making progress is suggested.

  19. Targets for Global Climate Policy: An Overview

    OpenAIRE

    Richard S.J. Tol

    2012-01-01

    A survey of the economic impact of climate change and the marginal damage costs shows that carbon dioxide emissions are a negative externality. The estimated Pigou tax and its growth rate are too low to justify the climate policy targets set by political leaders. A lower discount rate or greater concern for the global distribution of income would justify more stringent climate policy, but would imply an overhaul of other public policy. Catastrophic risk justifies more stringent climate policy...

  20. The European climate under a 2 °C global warming

    International Nuclear Information System (INIS)

    Vautard, Robert; Stegehuis, Annemiek; Gobiet, Andreas; Mendlik, Thomas; Sobolowski, Stefan; Kjellström, Erik; Nikulin, Grigory; Watkiss, Paul; Landgren, Oskar; Teichmann, Claas; Jacob, Daniela

    2014-01-01

    A global warming of 2 °C relative to pre-industrial climate has been considered as a threshold which society should endeavor to remain below, in order to limit the dangerous effects of anthropogenic climate change. The possible changes in regional climate under this target level of global warming have so far not been investigated in detail. Using an ensemble of 15 regional climate simulations downscaling six transient global climate simulations, we identify the respective time periods corresponding to 2 °C global warming, describe the range of projected changes for the European climate for this level of global warming, and investigate the uncertainty across the multi-model ensemble. Robust changes in mean and extreme temperature, precipitation, winds and surface energy budgets are found based on the ensemble of simulations. The results indicate that most of Europe will experience higher warming than the global average. They also reveal strong distributional patterns across Europe, which will be important in subsequent impact assessments and adaptation responses in different countries and regions. For instance, a North–South (West–East) warming gradient is found for summer (winter) along with a general increase in heavy precipitation and summer extreme temperatures. Tying the ensemble analysis to time periods with a prescribed global temperature change rather than fixed time periods allows for the identification of more robust regional patterns of temperature changes due to removal of some of the uncertainty related to the global models’ climate sensitivity. (paper)

  1. Sources of global climate data and visualization portals

    Science.gov (United States)

    Douglas, David C.

    2014-01-01

    Climate is integral to the geophysical foundation upon which ecosystems are structured. Knowledge about mechanistic linkages between the geophysical and biological environments is essential for understanding how global warming may reshape contemporary ecosystems and ecosystem services. Numerous global data sources spanning several decades are available that document key geophysical metrics such as temperature and precipitation, and metrics of primary biological production such as vegetation phenology and ocean phytoplankton. This paper provides an internet directory to portals for visualizing or servers for downloading many of the more commonly used global datasets, as well as a description of how to write simple computer code to efficiently retrieve these data. The data are broadly useful for quantifying relationships between climate, habitat availability, and lower-trophic-level habitat quality - especially in Arctic regions where strong seasonality is accompanied by intrinsically high year-to-year variability. If defensible linkages between the geophysical (climate) and the biological environment can be established, general circulation model (GCM) projections of future climate conditions can be used to infer future biological responses. Robustness of this approach is, however, complicated by the number of direct, indirect, or interacting linkages involved. For example, response of a predator species to climate change will be influenced by the responses of its prey and competitors, and so forth throughout a trophic web. The complexities of ecological systems warrant sensible and parsimonious approaches for assessing and establishing the role of natural climate variability in order to substantiate inferences about the potential effects of global warming.

  2. Business responses to global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Pinkse, J.M.

    2006-04-27

    This research project studies the evolution and determinants of corporate climate strategies of multinationals. Since most companies are affected by global climate change in a direct or indirect way, a range of strategies are emerging to mitigate climate change. These strategies are not only of a political nature (e.g. influencing government institutions), but also of a competitive nature. The aim is to introduce a typology of corporate climate strategies, paying specific attention to the market components related to climate change. More and more, multinationals' actions in reducing greenhouse gas emissions are aimed at achieving a sustained competitive advantage in addition to compliance with government regulation. What factors determine these market strategies for climate change will be explored in a theoretical framework based on institutional theory and the resource-based view of the firm.

  3. Sensitivity of regional climate to global temperature and forcing

    International Nuclear Information System (INIS)

    Tebaldi, Claudia; O’Neill, Brian; Lamarque, Jean-François

    2015-01-01

    The sensitivity of regional climate to global average radiative forcing and temperature change is important for setting global climate policy targets and designing scenarios. Setting effective policy targets requires an understanding of the consequences exceeding them, even by small amounts, and the effective design of sets of scenarios requires the knowledge of how different emissions, concentrations, or forcing need to be in order to produce substantial differences in climate outcomes. Using an extensive database of climate model simulations, we quantify how differences in global average quantities relate to differences in both the spatial extent and magnitude of climate outcomes at regional (250–1250 km) scales. We show that differences of about 0.3 °C in global average temperature are required to generate statistically significant changes in regional annual average temperature over more than half of the Earth’s land surface. A global difference of 0.8 °C is necessary to produce regional warming over half the land surface that is not only significant but reaches at least 1 °C. As much as 2.5 to 3 °C is required for a statistically significant change in regional annual average precipitation that is equally pervasive. Global average temperature change provides a better metric than radiative forcing for indicating differences in regional climate outcomes due to the path dependency of the effects of radiative forcing. For example, a difference in radiative forcing of 0.5 W m −2 can produce statistically significant differences in regional temperature over an area that ranges between 30% and 85% of the land surface, depending on the forcing pathway. (letter)

  4. Salt Marshes as Potential Indicatore of Global Climate Change

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairens, David; Jung, S.H.

    2011-01-01

    Coastal scientists postulate that salt marshes are significantly affected by dynamics of global climate. However, few studies have explicitly proposed a perspective that regards salt marshes as potential indicators of climate change. This review article evaluates the possibility of salt marshes...... as indicators of global climate change, focusing upon three major aspects: sedimentary, vegetation, and biogeochemical dynamics. The previous literature concerned with these aspects commonly argues that the primary impact of climate change on salt marshes occurs via sea-level variations, because hydrologic...... fluctuations regulate the frequency, duration, and depth of over-marsh flooding events. Sedimentary, floristic, and biogeochemical dynamics prove to be significantly influenced by sealevel changes regardless of climate zones, and hence, undoubtedly possess a potential for indicating climate signatures. However...

  5. Risk-analysis of global climate tipping points

    Energy Technology Data Exchange (ETDEWEB)

    Frieler, Katja; Meinshausen, Malte; Braun, N [Potsdam Institute for Climate Impact Research e.V., Potsdam (Germany). PRIMAP Research Group; and others

    2012-09-15

    There are many elements of the Earth system that are expected to change gradually with increasing global warming. Changes might prove to be reversible after global warming returns to lower levels. But there are others that have the potential of showing a threshold behavior. This means that these changes would imply a transition between qualitatively disparate states which can be triggered by only small shifts in background climate (2). These changes are often expected not to be reversible by returning to the current level of warming. The reason for that is, that many of them are characterized by self-amplifying processes that could lead to a new internally stable state which is qualitatively different from before. There are different elements of the climate system that are already identified as potential tipping elements. This group contains the mass losses of the Greenland and the West-Antarctic Ice Sheet, the decline of the Arctic summer sea ice, different monsoon systems, the degradation of coral reefs, the dieback of the Amazon rainforest, the thawing of the permafrost regions as well as the release of methane hydrates (3). Crucially, these tipping elements have regional to global scale effects on human society, biodiversity and/or ecosystem services. Several examples may have a discernable effect on global climate through a large-scale positive feedback. This means they would further amplify the human induced climate change. These tipping elements pose risks comparable to risks found in other fields of human activity: high-impact events that have at least a few percent chance to occur classify as high-risk events. In many of these examples adaptation options are limited and prevention of occurrence may be a more viable strategy. Therefore, a better understanding of the processes driving tipping points is essential. There might be other tipping elements even more critical but not yet identified. These may also lie within our socio-economic systems that are

  6. Global climate-friendly trade : Canada's chance to clean up

    International Nuclear Information System (INIS)

    Goldfarb, D.

    2010-03-01

    This paper discussed the global trade and investment in climate-friendly technologies, Canada's current position in this market, and the policy changes that are necessary for Canadian businesses to gain a stronger foothold in this sector. The global market for climate-friendly technologies is growing rapidly, but Canadian businesses have generally failed to exploit opportunities to export climate-friendly technologies and have generally lagged other countries in adopting such technologies developed elsewhere. Although Canadian businesses generally underperform in this sector, Canada does have notable strengths in 13 identified areas, including waste management technologies, energy technologies, and in parts of the value chains associated with wind and solar power. Targeting these areas of relative strength for further development could position Canada as a global leader in some climate-friendly technologies. For this to happen, Canadian governments need to establish clear policies, invest in research and development, and remove domestic and international barriers to the development and trade in climate-friendly technologies. 30 refs., 5 tabs., 5 figs.

  7. Policy options for stabilizing global climate

    International Nuclear Information System (INIS)

    Lashof, D.A.; Tirpak, D.A.

    1990-12-01

    This report to congress by the US EPA explains the greenhouse effect and its influence on global climate. It outlines the trends in the greenhouse gases - their concentration history, distribution, sources and sinks and chemical and radiative properties. Climate change processes are discussed including climate feedbacks. Human activities affecting trace gases and climate are explained, followed by a chapter on the technical options for reducing greenhouse gas emissions which looks at energy services, energy supply, industry, forestry and agriculture. The future is considered, and the final chapters are concerned with policy options and international cooperation to reduce greenhouse gas emissions. 934 refs., 102 figs., 84 tabs

  8. Wintertime urban heat island modified by global climate change over Japan

    Science.gov (United States)

    Hara, M.

    2015-12-01

    Urban thermal environment change, especially, surface air temperature (SAT) rise in metropolitan areas, is one of the major recent issues in urban areas. The urban thermal environmental change affects not only human health such as heat stroke, but also increasing infectious disease due to spreading out virus vectors habitat and increase of industry and house energy consumption. The SAT rise is mostly caused by global climate change and urban heat island (hereafter UHI) by urbanization. The population in Tokyo metropolitan area is over 30 millions and the Tokyo metropolitan area is one of the biggest megacities in the world. The temperature rise due to urbanization seems comparable to the global climate change in the major megacities. It is important to project how the urbanization and the global climate change affect to the future change of urban thermal environment to plan the adaptation and mitigation policy. To predict future SAT change in urban scale, we should estimate future UHI modified by the global climate change. This study investigates change in UHI intensity (UHII) of major metropolitan areas in Japan by effects of the global climate change. We performed a series of climate simulations. Present climate simulations with and without urban process are conducted for ten seasons using a high-resolution numerical climate model, the Weather Research and Forecasting (WRF) model. Future climate projections with and without urban process are also conducted. The future projections are performed using the pseudo global warming method, assuming 2050s' initial and boundary conditions estimated by a GCM under the RCP scenario. Simulation results indicated that UHII would be enhanced more than 30% in Tokyo during the night due to the global climate change. The enhancement of urban heat island is mostly caused by change of lower atmospheric stability.

  9. U.S. Global Climate Change Impacts Overview

    Science.gov (United States)

    Karl, T. R.

    2009-12-01

    This past year the US Global Change Research Program released a report that summarized the science of climate change and the impacts of climate change on the United States, now and in the future. The report underscores the importance of measures to reduce climate change. In the context of impacts, the report identifies examples of actions currently being pursued in various sectors and regions to address climate change as well as other environmental problems that could be exacerbated by climate change. This state-of-knowledge report also identifies areas in which scientific uncertainty limits our ability to estimate future climate changes and its impacts. Key findings of the report include: (1) Global warming is unequivocal and primarily human induced. - This statement is stronger than the IPCC (2007) statement because new attribution studies since that report continue to implicate human caused changes over the past 50 years. (2) Climate Changes are underway in the Unites States and are projected to grow. - These include increases in heavy downpours, rising temperature and sea level, rapidly retreating glaciers, thawing permafrost, lengthening growing seasons lengthening ice-free seasons in the oceans and on lakes and rivers, earlier snowmelt and alteration in river flows. (3) Widespread climate-related impacts are occurring now and are expected to increase. - The impacts vary from region to region, but are already affecting many sectors e.g., water, energy, transportation, agriculture, ecosystems, etc. (4) Climate change will stress water resources. - Water is an issue in every region of the US, but the nature of the impacts vary (5) Crop and livestock production will be increasingly challenged. - Warming related to high emission scenarios often negatively affect crop growth and yields levels. Increased pests, water stress, diseases, and weather extremes will pose adaptation challenges for crops and livestock production. (6) Coastal areas are at increased risk from

  10. Global and Arctic climate engineering: numerical model studies.

    Science.gov (United States)

    Caldeira, Ken; Wood, Lowell

    2008-11-13

    We perform numerical simulations of the atmosphere, sea ice and upper ocean to examine possible effects of diminishing incoming solar radiation, insolation, on the climate system. We simulate both global and Arctic climate engineering in idealized scenarios in which insolation is diminished above the top of the atmosphere. We consider the Arctic scenarios because climate change is manifesting most strongly there. Our results indicate that, while such simple insolation modulation is unlikely to perfectly reverse the effects of greenhouse gas warming, over a broad range of measures considering both temperature and water, an engineered high CO2 climate can be made much more similar to the low CO2 climate than would be a high CO2 climate in the absence of such engineering. At high latitudes, there is less sunlight deflected per unit albedo change but climate system feedbacks operate more powerfully there. These two effects largely cancel each other, making the global mean temperature response per unit top-of-atmosphere albedo change relatively insensitive to latitude. Implementing insolation modulation appears to be feasible.

  11. A dynamical link between the Arctic and the global climate system

    DEFF Research Database (Denmark)

    Dethloff, K.; Rinke, A.; Benkel, A.

    2006-01-01

    and snow albedo treatment changes the ice-albedo feedback and the radiative exchange between the atmosphere and the ocean-sea-ice system. The planetary wave energy fluxes in the middle troposphere of mid-latitudes between 30 and 50°N are redistributed, which induces perturbations in the zonal...... and meridional planetary wave trains from the tropics over the mid-latitudes into the Arctic. It is shown, that the improved parameterization of Arctic sea-ice and snow albedo can trigger changes in the Arctic and North Atlantic Oscillation pattern with strong implications for the European climate.......By means of simulations with a global coupled AOGCM it is shown that changes in the polar energy sink region can exert a strong influence on the mid- and high-latitude climate by modulating the strength of the mid-latitude westerlies and storm tracks. It is found, that a more realistic sea-ice...

  12. Process-Oriented Diagnostics of Tropical Cyclones in Global Climate Models

    Science.gov (United States)

    Moon, Y.; Kim, D.; Camargo, S. J.; Wing, A. A.; Sobel, A. H.; Bosilovich, M. G.; Murakami, H.; Reed, K. A.; Vecchi, G. A.; Wehner, M. F.; Zarzycki, C. M.; Zhao, M.

    2017-12-01

    Simulating tropical cyclone (TC) activity with global climate models (GCMs) remains a challenging problem. While some GCMs are able to simulate TC activity that is in good agreement with the observations, many other models exhibit strong biases. Decreasing horizontal grid spacing of the GCM simulations tends to improve the characteristics of simulated TCs, but this enhancement alone does not necessarily lead to greater skill in simulating TC activity. This study uses process-based diagnostics to identify model characteristics that could explain why some GCM simulations are able to produce more realistic TC activity than others. The diagnostics examine how convection, moisture, clouds and related processes are coupled at individual grid points, which yields useful information into how convective parameterizations interact with resolved model dynamics. These diagnostics share similarities with those originally developed to examine the Madden-Julian Oscillations in climate models. This study will examine TCs in eight different GCM simulations performed at NOAA/GFDL, NCAR and NASA that have different horizontal resolutions and ocean coupling. Preliminary results suggest that stronger TCs are closely associated with greater rainfall - thus greater diabatic heating - in the inner-core regions of the storms, which is consistent with previous theoretical studies. Other storm characteristics that can be used to infer why GCM simulations with comparable horizontal grid spacings produce different TC activity will be examined.

  13. Integrated climate and hydrology modelling - Coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model

    Energy Technology Data Exchange (ETDEWEB)

    Dahl Larsen, M.A. [Technical Univ. of Denmark. DTU Management Engineering, DTU Risoe Campus, Roskilde (Denmark)

    2013-10-15

    To ensure optimal management and sustainable strategies for water resources, infrastructures, food production and ecosystems there is a need for an improved understanding of feedback and interaction mechanisms between the atmosphere and the land surface. This is especially true in light of expected global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate and hydrology have used each model component in an offline mode where the models are run in sequential steps and one model serves as a boundary condition or data input source to the other. Within recent years a new field of research has emerged where efforts have been made to dynamically couple existing climate and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and the land surface. The modelling tool consists of a fully dynamic two-way coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model. The expected gain is twofold. Firstly, HIRHAM utilizes the land surface component of the combined MIKE SHE/SWET hydrology and land surface model (LSM), which is superior to the LSM in HIRHAM. A wider range of processes are included at the land surface, subsurface flow is distributed in three dimensions and the temporal and spatial resolution is higher. Secondly, the feedback mechanisms of e.g. soil moisture and precipitation between the two models are included. The preparation of the HIRHAM and MIKE SHE models for the coupled study revealed several findings. The performance of HIRHAM was highly affected by the domain size, domain

  14. Global change and marine communities: Alien species and climate change

    International Nuclear Information System (INIS)

    Occhipinti-Ambrogi, Anna

    2007-01-01

    Anthropogenic influences on the biosphere since the advent of the industrial age are increasingly causing global changes. Climatic change and the rising concentration of greenhouse gases in the atmosphere are ranking high in scientific and public agendas, and other components of global change are also frequently addressed, among which are the introductions of non indigenous species (NIS) in biogeographic regions well separated from the donor region, often followed by spectacular invasions. In the marine environment, both climatic change and spread of alien species have been studied extensively; this review is aimed at examining the main responses of ecosystems to climatic change, taking into account the increasing importance of biological invasions. Some general principles on NIS introductions in the marine environment are recalled, such as the importance of propagule pressure and of development stages during the time course of an invasion. Climatic change is known to affect many ecological properties; it interacts also with NIS in many possible ways. Direct (proximate) effects on individuals and populations of altered physical-chemical conditions are distinguished from indirect effects on emergent properties (species distribution, diversity, and production). Climatically driven changes may affect both local dispersal mechanisms, due to the alteration of current patterns, and competitive interactions between NIS and native species, due to the onset of new thermal optima and/or different carbonate chemistry. As well as latitudinal range expansions of species correlated with changing temperature conditions, and effects on species richness and the correlated extinction of native species, some invasions may provoke multiple effects which involve overall ecosystem functioning (material flow between trophic groups, primary production, relative extent of organic material decomposition, extent of benthic-pelagic coupling). Some examples are given, including a special

  15. Edge states in the climate system: exploring global instabilities and critical transitions

    Science.gov (United States)

    Lucarini, Valerio; Bódai, Tamás

    2017-07-01

    Multistability is a ubiquitous feature in systems of geophysical relevance and provides key challenges for our ability to predict a system’s response to perturbations. Near critical transitions small causes can lead to large effects and—for all practical purposes—irreversible changes in the properties of the system. As is well known, the Earth climate is multistable: present astronomical and astrophysical conditions support two stable regimes, the warm climate we live in, and a snowball climate characterized by global glaciation. We first provide an overview of methods and ideas relevant for studying the climate response to forcings and focus on the properties of critical transitions in the context of both stochastic and deterministic dynamics, and assess strengths and weaknesses of simplified approaches to the problem. Following an idea developed by Eckhardt and collaborators for the investigation of multistable turbulent fluid dynamical systems, we study the global instability giving rise to the snowball/warm multistability in the climate system by identifying the climatic edge state, a saddle embedded in the boundary between the two basins of attraction of the stable climates. The edge state attracts initial conditions belonging to such a boundary and, while being defined by the deterministic dynamics, is the gate facilitating noise-induced transitions between competing attractors. We use a simplified yet Earth-like intermediate complexity climate model constructed by coupling a primitive equations model of the atmosphere with a simple diffusive ocean. We refer to the climatic edge states as Melancholia states and provide an extensive analysis of their features. We study their dynamics, their symmetry properties, and we follow a complex set of bifurcations. We find situations where the Melancholia state has chaotic dynamics. In these cases, we have that the basin boundary between the two basins of attraction is a strange geometric set with a nearly zero

  16. Global climate feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B.

    1990-10-01

    The important physical, chemical, and biological events that affect global climate change occur on a mesoscale -- requiring high spatial resolution for their analysis. The Department of Energy has formulated two major initiatives under the US Global Change Program: ARM (Atmospheric Radiation Measurements), and CHAMMP (Computer Hardware Advanced Mathematics and Model Physics). ARM is designed to use ground and air-craft based observations to document profiles of atmospheric composition, clouds, and radiative fluxes. With research and models of important physical processes, ARM will delineate the relationships between trace gases, aerosol and cloud structure, and radiative transfer in the atmosphere, and will improve the parameterization of global circulation models. The present GCMs do not model important feedbacks, including those from clouds, oceans, and land processes. The purpose of this workshop is to identify such potential feedbacks, to evaluate the uncertainties in the feedback processes (and, if possible, to parameterize the feedback processes so that they can be treated in a GCM), and to recommend research programs that will reduce the uncertainties in important feedback processes. Individual reports are processed separately for the data bases.

  17. Effects of climate variability on global scale flood risk

    Science.gov (United States)

    Ward, P.; Dettinger, M. D.; Kummu, M.; Jongman, B.; Sperna Weiland, F.; Winsemius, H.

    2013-12-01

    In this contribution we demonstrate the influence of climate variability on flood risk. Globally, flooding is one of the worst natural hazards in terms of economic damages; Munich Re estimates global losses in the last decade to be in excess of $240 billion. As a result, scientifically sound estimates of flood risk at the largest scales are increasingly needed by industry (including multinational companies and the insurance industry) and policy communities. Several assessments of global scale flood risk under current and conditions have recently become available, and this year has seen the first studies assessing how flood risk may change in the future due to global change. However, the influence of climate variability on flood risk has as yet hardly been studied, despite the fact that: (a) in other fields (drought, hurricane damage, food production) this variability is as important for policy and practice as long term change; and (b) climate variability has a strong influence in peak riverflows around the world. To address this issue, this contribution illustrates the influence of ENSO-driven climate variability on flood risk, at both the globally aggregated scale and the scale of countries and large river basins. Although it exerts significant and widespread influences on flood peak discharges in many parts of the world, we show that ENSO does not have a statistically significant influence on flood risk once aggregated to global totals. At the scale of individual countries, though, strong relationships exist over large parts of the Earth's surface. For example, we find particularly strong anomalies of flood risk in El Niño or La Niña years (compared to all years) in southern Africa, parts of western Africa, Australia, parts of Central Eurasia (especially for El Niño), the western USA (especially for La Niña), and parts of South America. These findings have large implications for both decadal climate-risk projections and long-term future climate change

  18. National ownership in the implementation of global climate policy in Uganda

    DEFF Research Database (Denmark)

    Olsen, K.H.

    2006-01-01

    This article explores the history, from a developing country perspective, of how external interventions to implement global policies on the Climate Convention and the Clean Development Mechanism (CDM) have been integrated into national development policy frameworks in the period 1990-2005. The main...... question asked is to what extent external interventions have formed part of a country-driven approach in Uganda. The conflicting national and global priorities concerning the need for adaptation to the impacts of climate change versus the need for global mitigation of greenhouse gases (GHGs) are explored...... first. Against this background, Uganda's policy response to climate change is reviewed. National climate policies are found not to exist, and the implementation of global policies is not integrated into national policy frameworks, partly due to conflicting national and global priorities. Given limited...

  19. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    Science.gov (United States)

    Visintainer, Tammie; Linn, Marcia

    2015-01-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in…

  20. State of the Climate Monthly Overview - Global Snow & Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate...

  1. Reconstruction of the Eemian climate using a fully coupled Earth system model

    Science.gov (United States)

    Rybak, Oleg; Volodin, Evgeny; Morozova, Polina; Huybrechts, Philippe

    2017-04-01

    temperatures and precipitation fields generated by the INMCM. To provide interactive coupling of the INMCM and the GrISM, we employ a special energy- and water balance model (EWBM-G), which serves as a buffer providing effective data exchange between sub-models. EWBM-G operates in a rectangle domain including Greenland and calculates annual surface mass balance (further transferred as an external forcing to the GrISM) and fresh water flux (transferred to the oceanic block of the INMCM). Orbital parameters of the LIG were set with 1 kyr step with further interpolation to 100 years. Assuming concentrations of greenhouse gases during the LIG were not very much different from the preindustrial values, this potential forcing was neglected. Climatic block of the ESM was called every 100 model years to follow changes in orbital forcing. AISM and GrISM were asynchronously coupled to sub-models of the atmosphere and the ocean with the ratio of model years as 100 to 1. Obtained fields of deviations of air surface temperature from preindustrial values correspond in general to the estimates made in earlier studies. Evaluated contribution of the Greenland ice sheet to the global sea level rise (approximately 2 m) supports the newest estimates based on model results and proxy data analysis.

  2. Northward shift of the agricultural climate zone under 21st-century global climate change.

    Science.gov (United States)

    King, Myron; Altdorff, Daniel; Li, Pengfei; Galagedara, Lakshman; Holden, Joseph; Unc, Adrian

    2018-05-21

    As agricultural regions are threatened by climate change, warming of high latitude regions and increasing food demands may lead to northward expansion of global agriculture. While socio-economic demands and edaphic conditions may govern the expansion, climate is a key limiting factor. Extant literature on future crop projections considers established agricultural regions and is mainly temperature based. We employed growing degree days (GDD), as the physiological link between temperature and crop growth, to assess the global northward shift of agricultural climate zones under 21 st -century climate change. Using ClimGen scenarios for seven global climate models (GCMs), based on greenhouse gas (GHG) emissions and transient GHGs, we delineated the future extent of GDD areas, feasible for small cereals, and assessed the projected changes in rainfall and potential evapotranspiration. By 2099, roughly 76% (55% to 89%) of the boreal region might reach crop feasible GDD conditions, compared to the current 32%. The leading edge of the feasible GDD will shift northwards up to 1200 km by 2099 while the altitudinal shift remains marginal. However, most of the newly gained areas are associated with highly seasonal and monthly variations in climatic water balances, a critical component of any future land-use and management decisions.

  3. Global biomass burning. Atmospheric, climatic, and biospheric implications

    International Nuclear Information System (INIS)

    Levine, J.S.

    1991-01-01

    Biomass burning is a significant source of atmospheric gases and, as such, may contribute to global climate changes. Biomass burning includes burning forests and savanna grasslands for land clearing, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The chapters in this volume include the following topics: remote sensing of biomass burning from space;geographical distribution of burning; combustion products of burning in tropical, temperate and boreal ecosystems; burning as a global source of atmospheric gases and particulates; impacts of biomass burning gases and particulates on global climate; and the role of biomass burning on biodiversity and past global extinctions. A total of 1428 references are cited for the 63 chapters. Individual chapters are indexed separately for the data bases

  4. Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

    Science.gov (United States)

    Unger, N.; Harper, K.; Zheng, Y.; Kiang, N. Y.; Aleinov, I.; Arneth, A.; Schurgers, G.; Amelynck, C.; Goldstein, A.; Guenther, A.; Heinesch, B.; Hewitt, C. N.; Karl, T.; Laffineur, Q.; Langford, B.; McKinney, K. A.; Misztal, P.; Potosnak, M.; Rinne, J.; Pressley, S.; Schoon, N.; Serça, D.

    2013-10-01

    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar-Ball-Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular and atmospheric carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present-day climatic state that uses 8 plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50% of the variability across different ecosystems and seasons in a global database of 28 measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at 9 select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 = 64-96%) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr-1 that increases by 30% in the artificial absence of plant water stress and by 55% for potential natural vegetation.

  5. Photosynthesis-dependent Isoprene Emission from Leaf to Planet in a Global Carbon-chemistry-climate Model

    Science.gov (United States)

    Unger, N.; Harper, K.; Zeng, Y.; Kiang, N. Y.; Alienov, I.; Arneth, A.; Schurgers, G.; Amelynck, C.; Goldstein, A.; Guenther, A.; hide

    2013-01-01

    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the FarquharBallBerry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular and atmospheric carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present-day climatic state that uses 8 plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50 of the variability across different ecosystems and seasons in a global database of 28 measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at 9 select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 6496) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr1 that increases by 30 in the artificial absence of plant water stress and by 55 for potential natural vegetation.

  6. Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

    Energy Technology Data Exchange (ETDEWEB)

    Unger, N.; Harper, K.; Zheng, Y.; Kiang, N. Y.; Aleinov, I.; Arneth, Almut; Schurgers, G.; Amelynck, C.; Goldstein, Allen H.; Guenther, Alex B.; Heinesch, B.; Hewitt, C. N.; Karl, T.; Laffineur, Q.; Langford, B.; McKinney, Karena A.; Misztal, P.; Potosnak, M.; Rinne, J.; Pressley, S.; Schoon, N.; Serca, D.

    2013-10-22

    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar/Ball- Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present day climatic state that uses plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50% of the variability across different ecosystems and seasons in a global database of measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 = 64-96 %) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr-1 that increases by 30% in the artificial absence of plant water stress and by 55% for potential natural vegetation.

  7. Response of the mean global vegetation distribution to interannual climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Notaro, Michael [University of Wisconsin-Madison, Center for Climatic Research, Madison, WI (United States)

    2008-06-15

    The impact of interannual variability in temperature and precipitation on global terrestrial ecosystems is investigated using a dynamic global vegetation model driven by gridded climate observations for the twentieth century. Contrasting simulations are driven either by repeated mean climatology or raw climate data with interannual variability included. Interannual climate variability reduces net global vegetation cover, particularly over semi-arid regions, and favors the expansion of grass cover at the expense of tree cover, due to differences in growth rates, fire impacts, and interception. The area burnt by global fires is substantially enhanced by interannual precipitation variability. The current position of the central United States' ecotone, with forests to the east and grasslands to the west, is largely attributed to climate variability. Among woody vegetation, climate variability supports expanded deciduous forest growth and diminished evergreen forest growth, due to difference in bioclimatic limits, leaf longevity, interception rates, and rooting depth. These results offer insight into future ecosystem distributions since climate models generally predict an increase in climate variability and extremes. (orig.)

  8. Assessing Climate Change Impacts on Global Hydropower

    Directory of Open Access Journals (Sweden)

    Aanund Killingtveit

    2012-02-01

    Full Text Available Currently, hydropower accounts for close to 16% of the world’s total power supply and is the world’s most dominant (86% source of renewable electrical energy. The key resource for hydropower generation is runoff, which is dependent on precipitation. The future global climate is uncertain and thus poses some risk for the hydropower generation sector. The crucial question and challenge then is what will be the impact of climate change on global hydropower generation and what are the resulting regional variations in hydropower generation potential? This paper is a study that aims to evaluate the changes in global hydropower generation resulting from predicted changes in climate. The study uses an ensemble of simulations of regional patterns of changes in runoff, computed from global circulation models (GCM simulations with 12 different models. Based on these runoff changes, hydropower generation is estimated by relating the runoff changes to hydropower generation potential through geographical information system (GIS, based on 2005 hydropower generation. Hydropower data obtained from EIA (energy generation, national sites, FAO (water resources and UNEP were used in the analysis. The countries/states were used as computational units to reduce the complexities of the analysis. The results indicate that there are large variations of changes (increases/decreases in hydropower generation across regions and even within regions. Globally, hydropower generation is predicted to change very little by the year 2050 for the hydropower system in operation today. This change amounts to an increase of less than 1% of the current (2005 generation level although it is necessary to carry out basin level detailed assessment for local impacts which may differ from the country based values. There are many regions where runoff and hydropower generation will increase due to increasing precipitation, but also many regions where there will be a decrease. Based on this

  9. Projected Changes on the Global Surface Wave Drift Climate towards the END of the Twenty-First Century

    Science.gov (United States)

    Carrasco, Ana; Semedo, Alvaro; Behrens, Arno; Weisse, Ralf; Breivik, Øyvind; Saetra, Øyvind; Håkon Christensen, Kai

    2016-04-01

    The global wave-induced current (the Stokes Drift - SD) is an important feature of the ocean surface, with mean values close to 10 cm/s along the extra-tropical storm tracks in both hemispheres. Besides the horizontal displacement of large volumes of water the SD also plays an important role in the ocean mix-layer turbulence structure, particularly in stormy or high wind speed areas. The role of the wave-induced currents in the ocean mix-layer and in the sea surface temperature (SST) is currently a hot topic of air-sea interaction research, from forecast to climate ranges. The SD is mostly driven by wind sea waves and highly sensitive to changes in the overlaying wind speed and direction. The impact of climate change in the global wave-induced current climate will be presented. The wave model WAM has been forced by the global climate model (GCM) ECHAM5 wind speed (at 10 m height) and ice, for present-day and potential future climate conditions towards the end of the end of the twenty-first century, represented by the Intergovernmental Panel for Climate Change (IPCC) CMIP3 (Coupled Model Inter-comparison Project phase 3) A1B greenhouse gas emission scenario (usually referred to as a ''medium-high emissions'' scenario). Several wave parameters were stored as output in the WAM model simulations, including the wave spectra. The 6 hourly and 0.5°×0.5°, temporal and space resolution, wave spectra were used to compute the SD global climate of two 32-yr periods, representative of the end of the twentieth (1959-1990) and twenty-first (1969-2100) centuries. Comparisons of the present climate run with the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-40 reanalysis are used to assess the capability of the WAM-ECHAM5 runs to produce realistic SD results. This study is part of the WRCP-JCOMM COWCLIP (Coordinated Ocean Wave Climate Project) effort.

  10. Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-G - I. Near-surface temperature, precipitation and mean sea level pressure.

    Energy Technology Data Exchange (ETDEWEB)

    Min, Seung-Ki; Hense, Andreas [Univ. of Bonn (Germany). Meteorological Inst.; Legutke, Stephanie [Max Planck Inst. for Meteorology, Hamburg (Germany); Kwon, Won-Tae [Meteorological Research Inst., Seoul (Korea, Republic of)

    2005-08-01

    The internal variability in a 1000-yr control simulation with the coupled atmosphere/ocean global climate model ECHO-G is analysed using near-surface temperature, precipitation and mean sea level pressure variables, and is compared with observations and other coupled climate model simulations. ECHO-G requires annual mean flux adjustments for heat and freshwater in order to simulate no significant climate drift for 1000 yr, but no flux adjustments for momentum. The ECHO-G control run captures well most aspects of the observed seasonal and annual climatology and of the interannual to decadal variability of the three variables. Model biases are very close to those in ECHAM4 (atmospheric component of ECHO-G) stand-alone integrations with prescribed observed sea surface temperature. A trend comparison between observed and modelled near-surface temperatures shows that the observed near-surface global warming is larger than internal variability produced by ECHO-G, supporting previous studies. The simulated global mean near-surface temperatures, however, show a 2-yr spectral peak which is linked with a strong biennial bias of energy in the El Nino Southern Oscillation signal. Consequently, the interannual variability (39 yr) is underestimated.

  11. Data Descriptor: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015

    Science.gov (United States)

    John T. Abatzoglou; Solomon Z. Dobrowski; Sean A. Parks; Katherine C. Hegewisch

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958–2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from...

  12. Global multi-decadal ocean climate and small-pelagic fish population

    International Nuclear Information System (INIS)

    Tourre, Yves M; Lluch-Cota, Salvador E; White, Warren B

    2007-01-01

    Ocean climate, environmental and biological conditions vary on several spatio-temporal scales. Besides climate change associated with anthropogenic activity, there is growing evidence of a natural global multi-decadal climate signal in the ocean-atmosphere-biosphere climate system. The spatio-temporal evolution of this signal is thus analyzed during the 20th century and compared to the variability of small-pelagic fish landings. It is argued that the low-frequency global ocean environment and plankton ecosystems must be modified such that small-pelagic populations vary accordingly. A small-pelagic global index or fishing 'regime indicator series' (RIS) (i.e. a small-pelagic abundance indicator) is used. RIS is derived from fish landings data in the four main fishing areas in the Pacific and Atlantic oceans. Global RIS changes phase (from positive to negative values) when SST multi-decadal anomalies are out-of-phase between the eastern Pacific and southern Atlantic. RIS also displays maxima during the mid-30s to early-40s and the late-70s to early-80s when the multi-decadal signal was approximately changing phases (Tourre and White 2006 Geophys. Res. Lett. 33 L06716). It is recognized that other factors may modulate fish stocks, including anthropogenic predation. Nevertheless it is proposed that variable climate and environment, and the low-frequency 'global synchrony' of small-pelagic landings (Schwartzlose et al 1999 S. Afr. J. Mar. Sci. 21 289-347), could be associated with the multi-decadal changes in global ocean climate conditions

  13. Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry.

    Science.gov (United States)

    Evans, David; Sagoo, Navjit; Renema, Willem; Cotton, Laura J; Müller, Wolfgang; Todd, Jonathan A; Saraswati, Pratul Kumar; Stassen, Peter; Ziegler, Martin; Pearson, Paul N; Valdes, Paul J; Affek, Hagit P

    2018-02-06

    Past greenhouse periods with elevated atmospheric CO 2 were characterized by globally warmer sea-surface temperatures (SST). However, the extent to which the high latitudes warmed to a greater degree than the tropics (polar amplification) remains poorly constrained, in particular because there are only a few temperature reconstructions from the tropics. Consequently, the relationship between increased CO 2 , the degree of tropical warming, and the resulting latitudinal SST gradient is not well known. Here, we present coupled clumped isotope (Δ 47 )-Mg/Ca measurements of foraminifera from a set of globally distributed sites in the tropics and midlatitudes. Δ 47 is insensitive to seawater chemistry and therefore provides a robust constraint on tropical SST. Crucially, coupling these data with Mg/Ca measurements allows the precise reconstruction of Mg/Ca sw throughout the Eocene, enabling the reinterpretation of all planktonic foraminifera Mg/Ca data. The combined dataset constrains the range in Eocene tropical SST to 30-36 °C (from sites in all basins). We compare these accurate tropical SST to deep-ocean temperatures, serving as a minimum constraint on high-latitude SST. This results in a robust conservative reconstruction of the early Eocene latitudinal gradient, which was reduced by at least 32 ± 10% compared with present day, demonstrating greater polar amplification than captured by most climate models.

  14. Trump's Doctrine and Climate Change: New Challenges for Global Governance

    OpenAIRE

    Contipelli, Ernani

    2017-01-01

    The present communication aims to discuss the main topics related to Trump’s Doctrine and its effects on the implementation of global governance to fight against Climate Change. To present the argument, first, we will analyze the relation between global governance and climate change, followed by a general view of the climate change by some Republican Party members, and finally, the current policies already put in place by President Trump

  15. Improved simulation of tropospheric ozone by a global-multi-regional two-way coupling model system

    Directory of Open Access Journals (Sweden)

    Y. Yan

    2016-02-01

    Full Text Available Small-scale nonlinear chemical and physical processes over pollution source regions affect the tropospheric ozone (O3, but these processes are not captured by current global chemical transport models (CTMs and chemistry–climate models that are limited by coarse horizontal resolutions (100–500 km, typically 200 km. These models tend to contain large (and mostly positive tropospheric O3 biases in the Northern Hemisphere. Here we use the recently built two-way coupling system of the GEOS-Chem CTM to simulate the regional and global tropospheric O3 in 2009. The system couples the global model (at 2.5° long.  ×  2° lat. and its three nested models (at 0.667° long.  ×  0.5° lat. covering Asia, North America and Europe, respectively. Specifically, the nested models take lateral boundary conditions (LBCs from the global model, better capture small-scale processes and feed back to modify the global model simulation within the nested domains, with a subsequent effect on their LBCs. Compared to the global model alone, the two-way coupled system better simulates the tropospheric O3 both within and outside the nested domains, as found by evaluation against a suite of ground (1420 sites from the World Data Centre for Greenhouse Gases (WDCGG, the United States National Oceanic and Atmospheric Administration (NOAA Earth System Research Laboratory Global Monitoring Division (GMD, the Chemical Coordination Centre of European Monitoring and Evaluation Programme (EMEP, and the United States Environmental Protection Agency Air Quality System (AQS, aircraft (the High-performance Instrumented Airborne Platform for Environmental Research (HIAPER Pole-to-Pole Observations (HIPPO and Measurement of Ozone and Water Vapor by Airbus In- Service Aircraft (MOZAIC and satellite measurements (two Ozone Monitoring Instrument (OMI products. The two-way coupled simulation enhances the correlation in day-to-day variation of afternoon mean surface O3

  16. An integrated framework to address climate change (ESCAPE) and further developments of the global and regional climate modules (MAGICC)

    International Nuclear Information System (INIS)

    Hulme, M.; Raper, S.C.B.

    1995-01-01

    ESCAPE (the Evaluation of Strategies to address Climate change by Adapting to and Preventing Emissions) is an integrated climate change assessment model constructed between 1990 and 1992 for DG XI of the Commission of the European Community by a consortium of research institutes headed by the Climatic Research Unit (CRU). It has been designed to enable the user to generate future scenarios of greenhouse gas emissions (through an energy-economic model), examine their impact on global climate and sea level (through two independent global climate models), and illustrate some of the consequences of this global climate change at a regional scale for the European Community (through a regional climate scenario generator and impact models). We provide a very brief overview of the ESCAPE model which, although innovative, suffers from a number of major limitations. Subsequent work in the CRU has concentrated on improvements to the global climate module and work has also commenced on an improved regional climate scenario generating module. These improvements will lead to a new integrated climate change assessment model, MAGICC (Model for the Assessment of Greenhouse gas Induced Climate Change) which can easily be incorporated into new larger integrated frameworks developed by other institutes. (Author)

  17. A new synoptic scale resolving global climate simulation using the Community Earth System Model

    Science.gov (United States)

    Small, R. Justin; Bacmeister, Julio; Bailey, David; Baker, Allison; Bishop, Stuart; Bryan, Frank; Caron, Julie; Dennis, John; Gent, Peter; Hsu, Hsiao-ming; Jochum, Markus; Lawrence, David; Muñoz, Ernesto; diNezio, Pedro; Scheitlin, Tim; Tomas, Robert; Tribbia, Joseph; Tseng, Yu-heng; Vertenstein, Mariana

    2014-12-01

    High-resolution global climate modeling holds the promise of capturing planetary-scale climate modes and small-scale (regional and sometimes extreme) features simultaneously, including their mutual interaction. This paper discusses a new state-of-the-art high-resolution Community Earth System Model (CESM) simulation that was performed with these goals in mind. The atmospheric component was at 0.25° grid spacing, and ocean component at 0.1°. One hundred years of "present-day" simulation were completed. Major results were that annual mean sea surface temperature (SST) in the equatorial Pacific and El-Niño Southern Oscillation variability were well simulated compared to standard resolution models. Tropical and southern Atlantic SST also had much reduced bias compared to previous versions of the model. In addition, the high resolution of the model enabled small-scale features of the climate system to be represented, such as air-sea interaction over ocean frontal zones, mesoscale systems generated by the Rockies, and Tropical Cyclones. Associated single component runs and standard resolution coupled runs are used to help attribute the strengths and weaknesses of the fully coupled run. The high-resolution run employed 23,404 cores, costing 250 thousand processor-hours per simulated year and made about two simulated years per day on the NCAR-Wyoming supercomputer "Yellowstone."

  18. Comparing Forecasts of the Global Impacts of Climate Change

    International Nuclear Information System (INIS)

    Mendelsohn, R.; Williams, L.

    2004-01-01

    This paper utilizes the predictions of several Atmosphere-Ocean General Circulation Models and the Global Impact Model to create forecasts of the global market impacts from climate change. The forecasts of market impacts in 2100 vary considerably depending on climate scenarios and climate impact sensitivity. The models do concur that tropical nations will be hurt, temperate nations will be barely affected, and high latitude nations will benefit. Although the size of these effects varies a great deal across models, the beneficial and harmful effects are offsetting, so that the net impact on the globe is relatively small in almost all outcomes. Looking only at market impacts, the forecasts suggest that while the global net benefits of abatement are small, the distribution of damages suggests a large equity problem that could be addressed through a compensation program. The large uncertainty surrounding these forecasts further suggests that continued monitoring of both the climate and impacts is worthwhile

  19. Global climate change

    International Nuclear Information System (INIS)

    Gugele, B.; Radunsky, K.; Spangl, W.

    2002-01-01

    In the last decade marked changes of climatic factors have been observed, such as increases in average global earth temperatures, the amount of precipitation and the number of extreme weather events. Green house gases influence the energy flow in the atmosphere by absorbing infra-red radiation. An overview of the Austrian greenhouse gas emissions is given, including statistical data and their major sources. In 1999 the emissions of all six Kyoto greenhouse gases ( CO 2 , CH 4 , N 2 O, HFC s , PFC s and SF 6 ) amounted to 79.2 million tonnes of CO 2 equivalents . A comparison between the EC Members states is also presented. Finally the climate change strategy prepared by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management together with other ministries and the federal provinces is discussed, which main aim is to lead to an annual emission reduction of 16 million tonnes of CO 2 . Figs. 2, Tables 1. (nevyjel)

  20. Impact of a global warming on biospheric sources of methane and its climatic consequences

    Science.gov (United States)

    Hameed, S.; Cess, R. D.

    1980-01-01

    Most of atmospheric methane originates by bacterial processes in anaerobic environments within the soil which are found to become more productive with increases in ambient temperature. A warming of climate, due to increasing levels of industrial gases resulting from fossil fuel burning, is thus likely to increase methane abundance within the atmosphere. This may lead to further heating of the atmosphere, since both methane and ozone (which is generated in the troposphere from reactions of methane) have greenhouse effects. This feedback mechanism has been explored with the use of a coupled climate-chemical model of the troposphere, by the calculation of the impact of the predicted global warming due to increased emissions of carbon dioxide and other industrial gases on the biospheric sources of methane.

  1. Global Climate Change and Children's Health.

    Science.gov (United States)

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. Copyright © 2015 by the American Academy of Pediatrics.

  2. Vulnerability of the global terrestrial ecosystems to climate change.

    Science.gov (United States)

    Li, Delong; Wu, Shuyao; Liu, Laibao; Zhang, Yatong; Li, Shuangcheng

    2018-05-27

    Climate change has far-reaching impacts on ecosystems. Recent attempts to quantify such impacts focus on measuring exposure to climate change but largely ignore ecosystem resistance and resilience, which may also affect the vulnerability outcomes. In this study, the relative vulnerability of global terrestrial ecosystems to short-term climate variability was assessed by simultaneously integrating exposure, sensitivity, and resilience at a high spatial resolution (0.05°). The results show that vulnerable areas are currently distributed primarily in plains. Responses to climate change vary among ecosystems and deserts and xeric shrublands are the most vulnerable biomes. Global vulnerability patterns are determined largely by exposure, while ecosystem sensitivity and resilience may exacerbate or alleviate external climate pressures at local scales; there is a highly significant negative correlation between exposure and sensitivity. Globally, 61.31% of the terrestrial vegetated area is capable of mitigating climate change impacts and those areas are concentrated in polar regions, boreal forests, tropical rainforests, and intact forests. Under current sensitivity and resilience conditions, vulnerable areas are projected to develop in high Northern Hemisphere latitudes in the future. The results suggest that integrating all three aspects of vulnerability (exposure, sensitivity, and resilience) may offer more comprehensive and spatially explicit adaptation strategies to reduce the impacts of climate change on terrestrial ecosystems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Convergence of soil nitrogen isotopes across global climate gradients

    Science.gov (United States)

    Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E. N. J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo L.; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A. G.; Wanek, Wolfgang; Zeller, Bernd

    2015-01-01

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15 N: 14 N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15 N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  4. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015

    OpenAIRE

    Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958–2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and sol...

  5. Climatology and internal variability in a 1000-year control simulation with the coupled climate model ECHO-G

    Energy Technology Data Exchange (ETDEWEB)

    Min, S.K.; Hense, A. [Bonn Univ. (Germany). Meteorologisches Inst.; Legutke, S.; Kwon, W.T. [Korea Meteorological Administration, Seoul (Korea). Meteorological Research Inst.

    2004-03-01

    The climatology and internal variability in a 1000-year control simulation of the coupled atmosphere-ocean global climate model ECHO-G are analyzed and compared with observations and other coupled climate model simulations. ECHO-G requires annual mean flux corrections for heat and freshwater in order to simulate no climate drift for 1000 years, but no flux corrections for momentum. The ECHO-G control run captures well most aspects of the observed seasonal and annual climatology and of the interannual to decadal variability. Model biases are very close to those in ECHAM4 stand-alone integrations with prescribed observed sea surface temperature. A trend comparison between observed and modeled near surface temperatures shows that the observed global warming at near surface level is beyond the range of internal variability produced by ECHO-G. The simulated global mean near surface temperatures, however, show a two-year spectral peak which is linked with a strong biennial bias of energy in the ENSO signal. Consequently, the interannual variability (3-9 years) is underestimated. The overall ENSO structure such as the tropical SST climate and its seasonal cycle, a single ITCZ in the eastern tropical Pacific, and the ENSO phase-locking to the annual cycle are simulated reasonably well by ECHO-G. However, the amplitude of SST variability is overestimated in the eastern equatorial pacific and the observed westward propagation of zonal wind stress over the equatorial pacific is not captured by the model. ENSO-related teleconnection patterns of near surface temperature, precipitation, and mean sea level pressure are reproduced realistically. The station-based NAO index in the model exhibits a 'white' noise spectrum similar to the observed and the NAO-related patterns of near surface temperature, precipitation, and mean sea level pressure are also simulated successfully. However, the model overestimates the additional warming over the north pacific in the high index

  6. Northern peatlands in global climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, R.; Laine, J.; Vasander, H. [eds.] [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    Northern peatlands are important in regulating the global climate. While sequestering carbon dioxide, these peatlands release ca. 24-39 Tg methane annually to the atmosphere. This is 5-20 % of the annual anthropogenic methane emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level draw-down after land-use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Subsequent emissions of methane would decrease, whereas emissions of carbon dioxide and nitrous oxide would increase. Within the Finnish Research Programme on Climate Change (SILMU), the research project `Carbon Balance of Peatlands and Climate Change` (SUOSILMU) has been under progress since 1990. It is a co-operative research project, with research groups from the Universities of Helsinki and Joensuu, the Finnish Forest Research Institute, the National Public Health Institute and the Finnish Environment Agency. The research consortium of this project organised a workshop entitled `Northern Peatlands in Global Climatic Change - Hyytiaelae Revisited` October 8-12, 1995. The main objective of the workshop was to review the state of the art of the carbon cycling research in natural and managed peatlands. The role of peatlands in the greenhouse effect, their response and feedback to the predicted climate change, and the consequences of land-use changes were assessed, and the future research needs were evaluated. The latest information on the role of peatlands in the atmospheric change was given in 50 posters and 4 key lectures. Results of SUOSILMU projects were demonstrated during a 1-day field excursion to one of the intensive study sites, Lakkasuo near Hyytiaelae

  7. The surface energy, water, carbon flux and their intercorrelated seasonality in a global climate-vegetation coupled model

    International Nuclear Information System (INIS)

    Li Dan.; Jinjun Ji

    2007-01-01

    The sensible and latent heat fluxes, representatives of the physical exchange processes of energy and water between land and air, are the two crucial variables controlling the surface energy partitioning related to temperature and humidity. The net primary production (NPP), the major carbon flux exchange between vegetation and atmosphere, is of great importance for the terrestrial ecosystem carbon cycle. The fluxes are simulated by a two-way coupled model, Atmosphere-Vegetation Interaction Model-Global Ocean-Atmosphere-Land System Model (AVIM-GOALS) in which the surface physical and physiological processes are coupled with general circulation model (GCM), and the global spatial and temporal variation of the fluxes is studied. The simulated terrestrial surface physical fluxes are consistent with the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA40) in the global distribution, but the magnitudes are generally 20-40 W/m 2 underestimated. The annual NPP agrees well with the International Geosphere Biosphere Programme (IGBP) NPP data except for the lower value in northern high latitudes. The surface physical fluxes, leaf area index (LAI) and NPP of the global mid-latitudes, especially between 30 deg N-50 deg N, show great variation in annual oscillation amplitudes. And all physical and biological fields in northern mid-latitudes have the largest seasonality with a high statistical significance of 99.9%. The seasonality of surface physical fluxes, LAI and NPP are highly correlated with each other. The meridional three-peak pattern of seasonal change emerges in northern mid-latitudes, which indicates the interaction of topographical gradient variation of surface fluxes and vegetation phenology on these three latitudinal belts

  8. Climate Vulnerability and Human Migration in Global Perspective.

    Science.gov (United States)

    Grecequet, Martina; DeWaard, Jack; Hellmann, Jessica J; Abel, Guy J

    2017-05-01

    The relationship between climate change and human migration is not homogenous and depends critically on the differential vulnerability of population and places. If places and populations are not vulnerable, or susceptible, to climate change, then the climate-migration relationship may not materialize. The key to understanding and, from a policy perspective, planning for whether and how climate change will impact future migration patterns is therefore knowledge of the link between climate vulnerability and migration. However, beyond specific case studies, little is known about this association in global perspective. We therefore provide a descriptive, country-level portrait of this relationship. We show that the negative association between climate vulnerability and international migration holds only for countries least vulnerable to climate change, which suggests the potential for trapped populations in more vulnerable countries. However, when analyzed separately by life supporting sector (food, water, health, ecosystem services, human habitat, and infrastructure) and vulnerability dimension (exposure, sensitivity, and adaptive capacity), we detect evidence of a relationship among more, but not the most, vulnerable countries. The bilateral (i.e., country-to-country) migration show that, on average, people move from countries of higher vulnerability to lower vulnerability, reducing global risk by 15%. This finding is consistent with the idea that migration is a climate adaptation strategy. Still, ~6% of bilateral migration is maladaptive with respect to climate change, with some movement toward countries with greater climate change vulnerability.

  9. Ocean currents modify the coupling between climate change and biogeographical shifts.

    Science.gov (United States)

    García Molinos, J; Burrows, M T; Poloczanska, E S

    2017-05-02

    Biogeographical shifts are a ubiquitous global response to climate change. However, observed shifts across taxa and geographical locations are highly variable and only partially attributable to climatic conditions. Such variable outcomes result from the interaction between local climatic changes and other abiotic and biotic factors operating across species ranges. Among them, external directional forces such as ocean and air currents influence the dispersal of nearly all marine and many terrestrial organisms. Here, using a global meta-dataset of observed range shifts of marine species, we show that incorporating directional agreement between flow and climate significantly increases the proportion of explained variance. We propose a simple metric that measures the degrees of directional agreement of ocean (or air) currents with thermal gradients and considers the effects of directional forces in predictions of climate-driven range shifts. Ocean flows are found to both facilitate and hinder shifts depending on their directional agreement with spatial gradients of temperature. Further, effects are shaped by the locations of shifts in the range (trailing, leading or centroid) and taxonomic identity of species. These results support the global effects of climatic changes on distribution shifts and stress the importance of framing climate expectations in reference to other non-climatic interacting factors.

  10. Characteristics and Future Changes of Great Mississippi Flood Events in a Global Coupled Climate Model

    Science.gov (United States)

    van der Wiel, K.; Kapnick, S. B.; Vecchi, G.; Smith, J. A.

    2017-12-01

    The Mississippi-Missouri river catchment houses millions of people and much of the U.S. national agricultural production. Severe flooding events can therefore have large negative societal, natural and economic impacts. GFDL FLOR, a global coupled climate model (atmosphere, ocean, land, sea ice with integrated river routing module) is used to investigate the characteristics of great Mississippi floods with an average return period of 100 years. Model experiments under pre-industrial greenhouse gas forcing were conducted for 3400 years, such that the most extreme flooding events were explicitly modeled and the land and/or atmospheric causes could be investigated. It is shown that melt of snow pack and frozen sub-surface water in the Missouri and Upper Mississippi basins prime the river system, subsequently sensitizing it to above average precipitation in the Ohio and Tennessee basins. The months preceding the greatest flooding events are above average wet, leading to moist sub-surface conditions. Anomalous melt depends on the availability of frozen water in the catchment, therefore anomalous amounts of sub-surface frozen water and anomalous large snow pack in winter (Nov-Feb) make the river system susceptible for these great flooding events in spring (Feb-Apr). An additional experiment of 1200 years under transient greenhouse gas forcing (RCP4.5, 5 members) was done to investigate potential future change in flood risk. Based on a peak-over-threshold method, it is found that the number of great flooding events decreases in a warmer future. This decrease coincides with decreasing occurrence of large melt events, but is despite increasing numbers of large precipitation events. Though the model results indicate a decreasing risk for the greatest flooding events, the predictability of events might decrease in a warmer future given the changing characters of melt and precipitation.

  11. Global climate change: Social and economic research issues

    International Nuclear Information System (INIS)

    Rice, M.; Snow, J.; Jacobson, H.

    1992-05-01

    This workshop was designed to bring together a group of scholars, primarily from the social sciences, to explore research that might help in dealing with global climate change. To illustrate the state of present understanding, it seemed useful to focus this workshop on three broad questions that are involved in coping with climate change. These are: (1) How can the anticipated economic costs and benefits of climate change be identified; (2) How can the impacts of climate change be adjusted to or avoided; (3) What previously studied models are available for institutional management of the global environment? The resulting discussions may (1) identify worthwhile avenues for further social science research, (2) help develop feedback for natural scientists about research information from this domain needed by social scientists, and (3) provide policymakers with the sort of relevant research information from the social science community that is currently available

  12. The role of soil moisture in land surface-atmosphere coupling: climate model sensitivity experiments over India

    Science.gov (United States)

    Williams, Charles; Turner, Andrew

    2015-04-01

    It is generally acknowledged that anthropogenic land use changes, such as a shift from forested land into irrigated agriculture, may have an impact on regional climate and, in particular, rainfall patterns in both time and space. India provides an excellent example of a country in which widespread land use change has occurred during the last century, as the country tries to meet its growing demand for food. Of primary concern for agriculture is the Indian summer monsoon (ISM), which displays considerable seasonal and subseasonal variability. Although it is evident that changing rainfall variability will have a direct impact on land surface processes (such as soil moisture variability), the reverse impact is less well understood. However, the role of soil moisture in the coupling between the land surface and atmosphere needs to be properly explored before any potential impact of changing soil moisture variability on ISM rainfall can be understood. This paper attempts to address this issue, by conducting a number of sensitivity experiments using a state-of-the-art climate model from the UK Meteorological Office Hadley Centre: HadGEM2. Several experiments are undertaken, with the only difference between them being the extent to which soil moisture is coupled to the atmosphere. Firstly, the land surface is fully coupled to the atmosphere, globally (as in standard model configurations); secondly, the land surface is entirely uncoupled from the atmosphere, again globally, with soil moisture values being prescribed on a daily basis; thirdly, the land surface is uncoupled from the atmosphere over India but fully coupled elsewhere; and lastly, vice versa (i.e. the land surface is coupled to the atmosphere over India but uncoupled elsewhere). Early results from this study suggest certain 'hotspot' regions where the impact of soil moisture coupling/uncoupling may be important, and many of these regions coincide with previous studies. Focusing on the third experiment, i

  13. Global climate change and vector-borne diseases

    Science.gov (United States)

    Ginsberg, H.S.

    2002-01-01

    Global warming will have different effects on different diseases because of the complex and idiosynchratic interactions between vectors, hosts, and pathogens that influence transmission dynamics of each pathogen. Human activities, including urbanization, rapid global travel, and vector management, have profound effects on disease transmission that can operate on more rapid time scales than does global climate change. The general concern about global warming encouraging the spread of tropical diseases is legitimate, but the effects vary among diseases, and the ecological implications are difficult to predict.

  14. Last Interglacial climate and sea-level evolution from a coupled ice sheet-climate model

    Science.gov (United States)

    Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France; Fichefet, Thierry

    2016-12-01

    As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG, ˜ 130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate-ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet-climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.

  15. Tropical-extratropical climate interaction as revealed in idealized coupled climate model experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haijun [Peking University, Department of Atmospheric Science and Laboratory for Severe Storm and Flood Disasters, School of Physics, Beijing (China); Liu, Zhengyu [University of Wisconsin-Madison, Center for Climatic Research and Department of the Atmospheric and Oceanic Sciences, Madison, WI (United States)

    2005-06-01

    Tropical-extratropical climate interactions are studied by idealized experiments with a prescribed 2 C SST anomaly at different latitude bands in a coupled climate model. Instead of focusing on intrinsic climate variability, this work investigates the mean climate adjustment to remote external forcing. The extratropical impact on tropical climate can be as strong as the tropical impact on extratropical climate, with the remote sea surface temperature (SST) response being about half the magnitude of the imposed SST change in the forcing region. The equatorward impact of extratropical climate is accomplished by both the atmospheric bridge and the oceanic tunnel. About two-thirds of the tropical SST change comes from the atmospheric bridge, while the remaining one-third comes from the oceanic tunnel. The equatorial SST increase is first driven by the reduced latent heat flux and the weakened poleward surface Ekman transport, and then enhanced by the decrease in subtropical cells' strength and the equatorward subduction of warm anomalies. In contrast, the poleward impact of tropical climate is accomplished mainly by the atmospheric bridge, which is responsible for extratropical temperature changes in both the surface and subsurface. Sensitivity experiments also show the dominant role of the Southern Hemisphere oceans in the tropical climate change. (orig.)

  16. Drought Duration Biases in Current Global Climate Models

    Science.gov (United States)

    Moon, Heewon; Gudmundsson, Lukas; Seneviratne, Sonia

    2016-04-01

    Several droughts in the recent past are characterized by their increased duration and intensity. In particular, substantially prolonged droughts have brought major societal and economic losses in certain regions, yet climate change projections of such droughts in terms of duration is subject to large uncertainties. This study analyzes the biases of drought duration in state-of-the-art global climate model (GCM) simulations from the 5th phase of Coupled Model Intercomparison Project (CMIP5). Drought durations are defined as negative precipitation anomalies and evaluated with three observation-based datasets in the period of 1901-2010. Large spread in biases of GCMs is commonly found in all regions, with particular strong biases in North East Brazil, Africa, Northern Australia, Central America, Central and Northern Europe, Sahel and Asia. Also in most regions, the interquartile range of bias lies below 0, meaning that the GCMs tend to underestimate drought durations. Meanwhile in some regions such as Western South America, the Amazon, Sahel, West and South Africa, and Asia, considerable inconsistency among the three observation-based datasets were found. These results indicate substantial uncertainties and errors in current GCMs for simulating drought durations as well as a large spread in observation-based datasets, both of which are found to be particularly strong in those regions that are often considered to be hot spots of projected future drying. The underlying sources of these uncertainties need to be identified in further study and will be applied to constrain GCM-based drought projections under climate change.

  17. Global climate change impacts in the United States

    Science.gov (United States)

    2009-06-01

    This report summarizes the science of climate change and the impacts of climate change on the United States, now and in the future. It is largely based on results of the U.S. Global Change Research Program (USGCRP), a and integrates those results wit...

  18. Linking regional stakeholder scenarios and shared socioeconomic pathways: Quantified West African food and climate futures in a global context.

    Science.gov (United States)

    Palazzo, Amanda; Vervoort, Joost M; Mason-D'Croz, Daniel; Rutting, Lucas; Havlík, Petr; Islam, Shahnila; Bayala, Jules; Valin, Hugo; Kadi Kadi, Hamé Abdou; Thornton, Philip; Zougmore, Robert

    2017-07-01

    The climate change research community's shared socioeconomic pathways (SSPs) are a set of alternative global development scenarios focused on mitigation of and adaptation to climate change. To use these scenarios as a global context that is relevant for policy guidance at regional and national levels, they have to be connected to an exploration of drivers and challenges informed by regional expertise. In this paper, we present scenarios for West Africa developed by regional stakeholders and quantified using two global economic models, GLOBIOM and IMPACT, in interaction with stakeholder-generated narratives and scenario trends and SSP assumptions. We present this process as an example of linking comparable scenarios across levels to increase coherence with global contexts, while presenting insights about the future of agriculture and food security under a range of future drivers including climate change. In these scenarios, strong economic development increases food security and agricultural development. The latter increases crop and livestock productivity leading to an expansion of agricultural area within the region while reducing the land expansion burden elsewhere. In the context of a global economy, West Africa remains a large consumer and producer of a selection of commodities. However, the growth in population coupled with rising incomes leads to increases in the region's imports. For West Africa, climate change is projected to have negative effects on both crop yields and grassland productivity, and a lack of investment may exacerbate these effects. Linking multi-stakeholder regional scenarios to the global SSPs ensures scenarios that are regionally appropriate and useful for policy development as evidenced in the case study, while allowing for a critical link to global contexts.

  19. Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

    Directory of Open Access Journals (Sweden)

    N. Unger

    2013-10-01

    Full Text Available We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar–Ball–Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular and atmospheric carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present-day climatic state that uses 8 plant functional types (PFTs, prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis reproduces 50% of the variability across different ecosystems and seasons in a global database of 28 measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at 9 select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 = 64–96% and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr−1 that increases by 30% in the artificial absence of plant water stress and by 55% for potential natural vegetation.

  20. Climate change and global warming potentials

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    Climate change and the global budgets of the two main energy consumption related greenhouse gases, CO 2 and CH 4 , are discussed. The global warming potential (GWP) of the non-CO 2 greenhouse gases is defined and the large range of GWPs of CH 4 in the literature is discussed. GWPs are expected to play an important role in energy policies and negotiations concerning lowering greenhouse gas emissions. (author). 20 refs, 4 figs, 4 tabs

  1. Paladin Enterprises: Monolithic particle physics models global climate.

    CERN Multimedia

    2002-01-01

    Paladin Enterprises presents a monolithic particle model of the universe which will be used by them to build an economical fusion energy system. The model is an extension of the work done by James Clerk Maxwell. Essentially, gravity is unified with electro-magnetic forces and shown to be a product of a closed loop current system, i.e. a particle - monolithic or sub atomic. This discovery explains rapid global climate changes which are evident in the geological record and also provides an explanation for recent changes in the global climate.

  2. Local control on precipitation in a fully coupled climate-hydrology model.

    Science.gov (United States)

    Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C

    2016-03-10

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies.

  3. Development directions of the global climate protection law

    International Nuclear Information System (INIS)

    Richter, Katharina

    2014-01-01

    The contribution on development directions of the global climate protection law covers the origination process of the Kyoto protocol, the precise form of the Kyoto protocol, the climate protection regime afterwards: Montreal 2005 - implementation-improvement-innovation, Nairobi 2006 - climatic change very close, Bali 2007 - roadmap, Posen 2008 - intermediate step, Copenhagen 2009 - stagnancy, Cancun 2010 - comeback, Durban 2011 - gleam of hope, Doha 2012 - minimum compromise, Warsaw 2013 - hope. The last chapter discusses the fundamental problems and perspectives of the climate protection laws.

  4. Biological diversity, ecology and global climate change

    International Nuclear Information System (INIS)

    Jutro, P.R.

    1991-01-01

    Worldwide climate change and loss of biodiversity are issues of global scope and importance that have recently become subjects of considerable public concern. Their perceived threat lies in their potential to disrupt ecological functioning and stability rather than from any direct threat they may pose to human health. Over the last 5 years, the international scientific community and the general public have become aware of the implications that atmospheric warming might have for world climate patterns and the resulting changes in the persistence, location, and composition of ecosystems worldwide. Human activities are currently responsible for a species loss rate that is the most extreme in millions of years, and an alarmingly increasing rate of transformation and fragmentation of natural landscapes. In the case of both global warming and reduction of biological diversity, man is affecting nature in an unprecedented fashion, on a global scale, and with unpredictable and frequently irreversible results

  5. Climate Vulnerability and Human Migration in Global Perspective

    Science.gov (United States)

    Grecequet, Martina; DeWaard, Jack; Hellmann, Jessica J.; Abel, Guy J.

    2018-01-01

    The relationship between climate change and human migration is not homogenous and depends critically on the differential vulnerability of population and places. If places and populations are not vulnerable, or susceptible, to climate change, then the climate–migration relationship may not materialize. The key to understanding and, from a policy perspective, planning for whether and how climate change will impact future migration patterns is therefore knowledge of the link between climate vulnerability and migration. However, beyond specific case studies, little is known about this association in global perspective. We therefore provide a descriptive, country-level portrait of this relationship. We show that the negative association between climate vulnerability and international migration holds only for countries least vulnerable to climate change, which suggests the potential for trapped populations in more vulnerable countries. However, when analyzed separately by life supporting sector (food, water, health, ecosystem services, human habitat, and infrastructure) and vulnerability dimension (exposure, sensitivity, and adaptive capacity), we detect evidence of a relationship among more, but not the most, vulnerable countries. The bilateral (i.e., country-to-country) migration show that, on average, people move from countries of higher vulnerability to lower vulnerability, reducing global risk by 15%. This finding is consistent with the idea that migration is a climate adaptation strategy. Still, ~6% of bilateral migration is maladaptive with respect to climate change, with some movement toward countries with greater climate change vulnerability. PMID:29707262

  6. Joint science academies' statement:Global response to climate change

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Climate change is real There will always be uncertainty in understanding a system as complex as the world's climate. However there is now strong evidence that significant global warming is occurring1.

  7. A new climate dataset for systematic assessments of climate change impacts as a function of global warming

    Directory of Open Access Journals (Sweden)

    J. Heinke

    2013-10-01

    Full Text Available In the ongoing political debate on climate change, global mean temperature change (ΔTglob has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere–Ocean General Circulation Models (AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilise a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  8. Global climate change: US-Japan cooperative leadership for environmental protection

    International Nuclear Information System (INIS)

    Gray, J.E.; Fri, R.W.; Ikuta, Toyoaki; Guertin, D.L.; Tomitate, Takao.

    1991-01-01

    Over the past decade the Atlantic Council of the United States has engaged in continuing dialogue with the Committee for Energy Policy Promotion (Japan), The Institute of Energy Economics (Japan) and the Global Industrial and Social Progress Research Institute (Japan) on a range of energy issues, including environmentally related considerations. Cooperation on environmental issues is the subject of this joint US-Japanese policy paper on global climate change. The Japanese and US participants who prepared this paper agreed on a number of conclusions, principles to guide action, and common recommendations on how best to address global climate change issues. The agreed upon principles include development of strategies in a long-term time frame (50-100 years); aggressive action to increase efficiency or reduce pollution when economically and technologically justified; utilization of market forces to the maximum extent possible; and assistance to developing countries in reducing pollution and increasing energy efficiency. The key recommendations include: The need to strengthen research to better understand global climate change, its implications and appropriate response strategies; The importance of involving as many nations as possible in formulating a framework agreement on global climate change; Recognition that, given economic and technical capabilities, each country should develop its own response strategies; Additional public and private sector efforts to increase the efficient use of resources and the use of alternate, less polluting energy resources when economically justified; Actions to address obstacles to technology cooperation with developing countries; and Increased flow of information to opinion leaders and the general public on global climate change

  9. GLOBAL WARMING, CLIMATE CHANGE AND TOURISM: A REVIEW OF LITERATURE

    OpenAIRE

    Ramasamy, Rajesh; Swamy, Anjaneya

    2015-01-01

    Global warming, climate change and tourism of late, have taken the centre stage of academic research. A raging debate is on apart from the popular writings and research articles published on the theme. According to the Intergovernmental Panel on Climate Change “Warming of the climate system is unequivocal as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice since the mid 20th century”. This conceptual paper discussed...

  10. Cloud Compute for Global Climate Station Summaries

    Science.gov (United States)

    Baldwin, R.; May, B.; Cogbill, P.

    2017-12-01

    Global Climate Station Summaries are simple indicators of observational normals which include climatic data summarizations and frequency distributions. These typically are statistical analyses of station data over 5-, 10-, 20-, 30-year or longer time periods. The summaries are computed from the global surface hourly dataset. This dataset totaling over 500 gigabytes is comprised of 40 different types of weather observations with 20,000 stations worldwide. NCEI and the U.S. Navy developed these value added products in the form of hourly summaries from many of these observations. Enabling this compute functionality in the cloud is the focus of the project. An overview of approach and challenges associated with application transition to the cloud will be presented.

  11. The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations

    Science.gov (United States)

    Williams, K. D.; Copsey, D.; Blockley, E. W.; Bodas-Salcedo, A.; Calvert, D.; Comer, R.; Davis, P.; Graham, T.; Hewitt, H. T.; Hill, R.; Hyder, P.; Ineson, S.; Johns, T. C.; Keen, A. B.; Lee, R. W.; Megann, A.; Milton, S. F.; Rae, J. G. L.; Roberts, M. J.; Scaife, A. A.; Schiemann, R.; Storkey, D.; Thorpe, L.; Watterson, I. G.; Walters, D. N.; West, A.; Wood, R. A.; Woollings, T.; Xavier, P. K.

    2018-02-01

    The Global Coupled 3 (GC3) configuration of the Met Office Unified Model is presented. Among other applications, GC3 is the basis of the United Kingdom's submission to the Coupled Model Intercomparison Project 6 (CMIP6). This paper documents the model components that make up the configuration (although the scientific descriptions of these components are in companion papers) and details the coupling between them. The performance of GC3 is assessed in terms of mean biases and variability in long climate simulations using present-day forcing. The suitability of the configuration for predictability on shorter time scales (weather and seasonal forecasting) is also briefly discussed. The performance of GC3 is compared against GC2, the previous Met Office coupled model configuration, and against an older configuration (HadGEM2-AO) which was the submission to CMIP5. In many respects, the performance of GC3 is comparable with GC2, however, there is a notable improvement in the Southern Ocean warm sea surface temperature bias which has been reduced by 75%, and there are improvements in cloud amount and some aspects of tropical variability. Relative to HadGEM2-AO, many aspects of the present-day climate are improved in GC3 including tropospheric and stratospheric temperature structure, most aspects of tropical and extratropical variability and top-of-atmosphere and surface fluxes. A number of outstanding errors are identified including a residual asymmetric sea surface temperature bias (cool northern hemisphere, warm Southern Ocean), an overly strong global hydrological cycle and insufficient European blocking.

  12. Impact of a global warming on biospheric sources of methane and its climatic consequences

    Energy Technology Data Exchange (ETDEWEB)

    Hameed, S; Cess, R D

    1983-01-01

    Most atmospheric methane originates by bacterial processes in anaerobic environments within the soil, which become more productive with increases in ambient temperature. A warming of the climate, due to increasing levels of industrial gases resulting from fossil fuel burning, is likely to increase methane concentrations within the atmosphere, possibly leading to further heating, since both methane and ozone (which is generated in the troposphere from reactions of methane) have greenhouse effects. Investigators explored this feedback mechanism using a coupled climate-chemical model of the troposphere, by calculating the impact of the predicted global warming due to increased emissions of carbon dioxide and other industrial gases on the biospheric sources of methane. Although they found this climate feedback to be, by itself, relatively minor, it can produce measurable increases in atmospheric CH/sub 4/ concentration, a quantity that should additionally increase as a consequence of increasing anthropogenic emissions of CO and CH/sub 4/.

  13. Global climate change: Social and economic research issues

    Energy Technology Data Exchange (ETDEWEB)

    Rice, M.; Snow, J.; Jacobson, H. [eds.

    1992-05-01

    This workshop was designed to bring together a group of scholars, primarily from the social sciences, to explore research that might help in dealing with global climate change. To illustrate the state of present understanding, it seemed useful to focus this workshop on three broad questions that are involved in coping with climate change. These are: (1) How can the anticipated economic costs and benefits of climate change be identified; (2) How can the impacts of climate change be adjusted to or avoided; (3) What previously studied models are available for institutional management of the global environment? The resulting discussions may (1) identify worthwhile avenues for further social science research, (2) help develop feedback for natural scientists about research information from this domain needed by social scientists, and (3) provide policymakers with the sort of relevant research information from the social science community that is currently available. Individual papers are processed separately for the database.

  14. Coupled Climate-Economy-Biosphere (CoCEB) model - Part 1: Abatement share and investment in low-carbon technologies

    Science.gov (United States)

    Ogutu, K. B. Z.; D'Andrea, F.; Ghil, M.; Nyandwi, C.; Manene, M. M.; Muthama, J. N.

    2015-04-01

    The Coupled Climate-Economy-Biosphere (CoCEB) model described herein takes an integrated assessment approach to simulating global change. By using an endogenous economic growth module with physical and human capital accumulation, this paper considers the sustainability of economic growth, as economic activity intensifies greenhouse gas emissions that in turn cause economic damage due to climate change. Different types of fossil fuels and different technologies produce different volumes of carbon dioxide in combustion. The shares of different fuels and their future evolution are not known. We assume that the dynamics of hydrocarbon-based energy share and their replacement with renewable energy sources in the global energy balance can be modeled into the 21st century by use of logistic functions. Various climate change mitigation policy measures are considered. While many integrated assessment models treat abatement costs merely as an unproductive loss of income, we consider abatement activities also as an investment in overall energy efficiency of the economy and decrease of overall carbon intensity of the energy system. The paper shows that these efforts help to reduce the volume of industrial carbon dioxide emissions, lower temperature deviations, and lead to positive effects in economic growth.

  15. NASA/JPL CLIMATE DAY: Middle and High School Students Get the Facts about Global Climate Change

    Science.gov (United States)

    Richardson, Annie; Callery, Susan; Srinivasan, Margaret

    2013-04-01

    In 2007, NASA Headquarters requested that Earth Science outreach teams brainstorm new education and public outreach activities that would focus on the topic of global climate change. At the Jet Propulsion Laboratory (JPL), Annie Richardson, outreach lead for the Ocean Surface Topography missions came up with the idea of a "Climate Day", capitalizing on the popular Earth Day name and events held annually throughout the world. JPL Climate Day would be an education and public outreach event whose objectives are to provide the latest scientific facts about global climate change - including the role the ocean plays in it, the contributions that NASA/JPL satellites and scientists make to the body of knowledge on the topic, and what we as individuals can do to promote global sustainability. The primary goal is that participants get this information in a fun and exciting environment, and walk away feeling empowered and capable of confidently engaging in the global climate debate. In March 2008, JPL and its partners held the first Climate Day event. 950 students from seven school districts heard from five scientists; visited exhibits, and participated in hands-on-activities. Pleased with the outcome, we organized JPL Climate Day 2010 at the Pasadena Convention Center in Pasadena, California, reaching more than 1700 students, teachers, and members of the general public over two days. Taking note of this successful model, NASA funded a multi-center, NASA Climate Day proposal in 2010 to expand Climate Day nation-wide. The NASA Climate Day proposal is a three-pronged project consisting of a cadre of Earth Ambassadors selected from among NASA-affiliated informal educators; a "Climate Day Kit" consisting of climate-related electronic resources available to the Earth Ambassadors; and NASA Climate Day events to be held in Earth Ambassador communities across the United States. NASA/JPL continues to host the original Climate Day event and in 2012 held its 4th event, at the Pasadena

  16. Emergent constraint on equilibrium climate sensitivity from global temperature variability

    Science.gov (United States)

    Cox, Peter M.; Huntingford, Chris; Williamson, Mark S.

    2018-01-01

    Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO2) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO2. Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the ‘likely’ range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC ‘likely’ range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.

  17. Emergent constraint on equilibrium climate sensitivity from global temperature variability.

    Science.gov (United States)

    Cox, Peter M; Huntingford, Chris; Williamson, Mark S

    2018-01-17

    Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO 2 ) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO 2 . Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the 'likely' range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC 'likely' range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.

  18. Updated Global Analysis of Higgs Couplings

    CERN Document Server

    Ellis, John

    2013-01-01

    There are many indirect and direct experimental indications that the new particle H discovered by the ATLAS and CMS Collaborations has spin zero and (mostly) positive parity, and that its couplings to other particles are correlated with their masses. Beyond any reasonable doubt, it is a Higgs boson, and here we examine the extent to which its couplings resemble those of the single Higgs boson of the Standard Model. Our global analysis of its couplings to fermions and massive bosons determines that they have the same relative sign as in the Standard Model. We also show directly that these couplings are highly consistent with a dependence on particle masses that is linear to within a few %, and scaled by the conventional electroweak symmetry-breaking scale to within 10%. We also give constraints on loop-induced couplings, on the total Higgs decay width, and on possible invisible decays of the Higgs boson under various assumptions.

  19. (Un)certainty in climate change impacts on global energy consumption

    Science.gov (United States)

    van Ruijven, B. J.; De Cian, E.; Sue Wing, I.

    2017-12-01

    Climate change is expected to have an influence on the energy sector, especially on energy demand. For many locations, this change in energy demand is a balance between increase of demand for space cooling and a decrease of space heating demand. We perform a large-scale uncertainty analysis to characterize climate change risk on energy consumption as driven by climate and socioeconomic uncertainty. We combine a dynamic econometric model1 with multiple realizations of temperature projections from all 21 CMIP5 models (from the NASA Earth Exchange Global Daily Downscaled Projections2) under moderate (RCP4.5) and vigorous (RCP8.5) warming. Global spatial population projections for five SSPs are combined with GDP projections to construct scenarios for future energy demand driven by socioeconomic change. Between the climate models, we find a median global increase in climate-related energy demand of around 24% by 2050 under RCP8.5 with an interquartile range of 18-38%. Most climate models agree on increases in energy demand of more than 25% or 50% in tropical regions, the Southern USA and Southern China (see Figure). With respect to socioeconomic scenarios, we find wide variations between the SSPs for the number of people in low-income countries who are exposed to increases in energy demand. Figure attached: Number of models that agree on total climate-related energy consumption to increase or decrease by more than 0, 10, 25 or 50% by 2050 under RCP8.5 and SSP5 as result of the CMIP5 ensemble of temperature projections. References1. De Cian, E. & Sue Wing, I. Global Energy Demand in a Warming Climate. (FEEM, 2016). 2. Thrasher, B., Maurer, E. P., McKellar, C. & Duffy, P. B. Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol Earth Syst Sci 16, 3309-3314 (2012).

  20. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    Science.gov (United States)

    Visintainer, Tammie; Linn, Marcia

    2015-04-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in the Web-based Inquiry Science Environment (WISE), engages sixth-grade students in conducting virtual investigations using NetLogo models to foster an understanding of core mechanisms including the greenhouse effect. Students then test how the greenhouse effect is enhanced by everyday energy use. This study draws on three data sources: (1) pre- and post-unit interviews, (2) analysis of embedded assessments following virtual investigations, and (3) contrasting cases of two students (normative vs. non-normative understanding of the greenhouse effect). Results show the value of using virtual investigations for teaching the mechanisms associated with global climate change. Interviews document that students hold a wide range of ideas about the mechanisms driving global climate change. Investigations with models help students use evidence-based reasoning to distinguish their ideas. Results show that understanding the greenhouse effect offers a foundation for building connections between everyday energy use and increases in global temperature. An impediment to establishing coherent understanding was the persistence of an alternative conception about ozone as an explanation for climate change. These findings illustrate the need for regular revision of curriculum based on classroom trials. We discuss key design features of models and instructional revisions that can transform the teaching and learning of global climate change.

  1. Simulation of whole building coupled hygrothermal-airflow transfer in different climates

    International Nuclear Information System (INIS)

    Qin Menghao; Walton, George; Belarbi, Rafik; Allard, Francis

    2011-01-01

    The coupled heat, air and moisture transfer between building envelopes and indoor air is complicated, and has a significant influence on the indoor environment and the energy performance of buildings. In the paper, a model for predicting coupled multi-zone hygrothermal-airflow transfer is presented. Both heat and moisture transfer in the building envelope and multi-zone indoor airflow are simultaneously considered; their interactions are modeled. The coupled system model is implemented into Matlab-Simulink, and is validated by using a series of testing tools and experiments. The new program is applied to investigate the moisture transfer effect on indoor air humidity and building energy consumption in different climates (hot-humid, temperate and hot-dry climates). The results show that not accounting for hygrothermal effects in modeling will result in overestimation of energy costs for hot and humid climate situations and possible over sizing of plant leading to inefficient operation.

  2. A coupled chemotaxis-fluid model: Global existence

    KAUST Repository

    Liu, Jian-Guo; Lorz, Alexander

    2011-01-01

    We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis-Navier- Stokes system in two space dimensions, we obtain global existence for large data. In three space dimensions, we prove global existence of weak solutions for the chemotaxis-Stokes system with nonlinear diffusion for the cell density.© 2011 Elsevier Masson SAS. All rights reserved.

  3. A coupled chemotaxis-fluid model: Global existence

    KAUST Repository

    Liu, Jian-Guo

    2011-09-01

    We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis-Navier- Stokes system in two space dimensions, we obtain global existence for large data. In three space dimensions, we prove global existence of weak solutions for the chemotaxis-Stokes system with nonlinear diffusion for the cell density.© 2011 Elsevier Masson SAS. All rights reserved.

  4. The emergence of global climate law

    NARCIS (Netherlands)

    Farber, D.A.; Peeters, Marjan; Farber, Daniel A.; Peeters, Marjan

    2016-01-01

    As the chapters in this Encyclopedia demonstrate, climate law is a dynamic and multidisciplinary field, implicating many diverse fields of law at all levels from municipal planning through multinational treaties. The outlines of an emerging global law can be discerned, including shared principles

  5. A dissenting view on global climate change

    International Nuclear Information System (INIS)

    Linden, H.R.

    1993-01-01

    Global warming alarmists are vastly overstating the risks of climate change, often to further other agendas. The science of global warming simply does not support their claims of impending doom - as policy makers would be wise to note. There is scientific consensus on the existence of a benign natural greenhouse effect that keeps the Earth habitable by raising its average surface temperature by about 33 degrees C. Global warming alarmists, however, have falsely claimed that this consensus also extends to the belief that human activity is significantly enhancing this effect. This is simply untrue. Based on a wealth of new information, there is now strong and rapidly growing scientific dissent on the inevitability of catastrophic and even mildly detrimental anthropogenic climate change. This casts serious doubts on the need for binding international agreements to curtail emissions of greenhouse gases from fossil fuel combustion, or to limit conversion of tropical forests to agricultural uses in areas where increased food supply is a critical issue

  6. Climate Controls AM Fungal Distributions from Global to Local Scales

    Science.gov (United States)

    Kivlin, S. N.; Hawkes, C.; Muscarella, R.; Treseder, K. K.; Kazenel, M.; Lynn, J.; Rudgers, J.

    2016-12-01

    Arbuscular mycorrhizal (AM) fungi have key functions in terrestrial biogeochemical processes; thus, determining the relative importance of climate, edaphic factors, and plant community composition on their geographic distributions can improve predictions of their sensitivity to global change. Local adaptation by AM fungi to plant hosts, soil nutrients, and climate suggests that all of these factors may control fungal geographic distributions, but their relative importance is unknown. We created species distribution models for 142 AM fungal taxa at the global scale with data from GenBank. We compared climate variables (BioClim and soil moisture), edaphic variables (phosphorus, carbon, pH, and clay content), and plant variables using model selection on models with (1) all variables, (2) climatic variables only (including soil moisture) and (3) resource-related variables only (all other soil parameters and NPP) using the MaxEnt algorithm evaluated with ENMEval. We also evaluated whether drivers of AM fungal distributions were phylogenetically conserved. To test whether global correlates of AM fungal distributions were reflected at local scales, we then surveyed AM fungi in nine plant hosts along three elevation gradients in the Upper Gunnison Basin, Colorado, USA. At the global scale, the distributions of 55% of AM fungal taxa were affected by both climate and soil resources, whereas 16% were only affected by climate and 29% were only affected by soil resources. Even for AM fungi that were affected by both climate and resources, the effects of climatic variables nearly always outweighed those of resources. Soil moisture and isothermality were the main climatic and NPP and soil carbon the main resource related factors influencing AM fungal distributions. Distributions of closely related AM fungal taxa were similarly affected by climate, but not by resources. Local scale surveys of AM fungi across elevations confirmed that climate was a key driver of AM fungal

  7. Natural climate variability in a coupled model

    International Nuclear Information System (INIS)

    Zebiak, S.E.; Cane, M.A.

    1990-01-01

    Multi-century simulations with a simplified coupled ocean-atmosphere model are described. These simulations reveal an impressive range of variability on decadal and longer time scales, in addition to the dominant interannual el Nino/Southern Oscillation signal that the model originally was designed to simulate. Based on a very large sample of century-long simulations, it is nonetheless possible to identify distinct model parameter sensitivities that are described here in terms of selected indices. Preliminary experiments motivated by general circulation model results for increasing greenhouse gases suggest a definite sensitivity to model global warming. While these results are not definitive, they strongly suggest that coupled air-sea dynamics figure prominently in global change and must be included in models for reliable predictions

  8. Multi-Synchronization Caused by Uniform Disorder for Globally Coupled Maps

    International Nuclear Information System (INIS)

    Jing-Hui, Li

    2008-01-01

    We investigate the motion of the globally coupled maps (logistic map) driven by uniform disorder. It is shown that this disorder can produce multi-synchronization for the globally coupled chaotic maps studied by us. The disorder determines the synchronized dynamics, leading to the emergence of a wide range of new collective behaviour in which the individual units in isolation are incapable of producing in the absence of the disorder. Our results imply that the disorder can tame the collective motion of the coupled chaotic maps

  9. A global view on the Higgs self-coupling

    International Nuclear Information System (INIS)

    Di Vita, S.; Grojean, C.; Humboldt-Universitaet, Berlin; Panico, G.; Riembau, M.; Vantalon, T.; Barcelona Institute of Science and Technology, Bellaterra

    2017-04-01

    The Higgs self-coupling is notoriously intangible at the LHC. It was recently proposed to probe the trilinear Higgs interaction through its radiative corrections to single-Higgs processes. This approach however requires to disentangle these effects from those associated to deviations of other Higgs-couplings to fermions and gauge bosons. We show that a global fit exploiting only single-Higgs inclusive data suffers from degeneracies that prevent one from extracting robust bounds on each individual coupling. We show how the inclusion of double-Higgs production via gluon fusion, and the use of differential measurements in the associated single-Higgs production channels WH, ZH and t anti tH, can help to overcome the deficiencies of a global Higgs-couplings fit. In particular, we bound the variations of the Higgs trilinear self-coupling relative to its SM value to the interval [0.1, 2.3] at 68% confidence level at the high-luminosity LHC, and we discuss the robustness of our results against various assumptions on the experimental uncertainties and the underlying new physics dynamics. We also study how to obtain a parametrically enhanced deviation of the Higgs self-couplings and we estimate how large this deviation can be in a self-consistent effective field theory framework.

  10. A global view on the Higgs self-coupling

    Energy Technology Data Exchange (ETDEWEB)

    Di Vita, S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Grojean, C. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Panico, G. [Barcelona Institute of Science and Technology, Bellaterra (Spain). IFAE; Riembau, M.; Vantalon, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Barcelona Institute of Science and Technology, Bellaterra (Spain). IFAE

    2017-04-15

    The Higgs self-coupling is notoriously intangible at the LHC. It was recently proposed to probe the trilinear Higgs interaction through its radiative corrections to single-Higgs processes. This approach however requires to disentangle these effects from those associated to deviations of other Higgs-couplings to fermions and gauge bosons. We show that a global fit exploiting only single-Higgs inclusive data suffers from degeneracies that prevent one from extracting robust bounds on each individual coupling. We show how the inclusion of double-Higgs production via gluon fusion, and the use of differential measurements in the associated single-Higgs production channels WH, ZH and t anti tH, can help to overcome the deficiencies of a global Higgs-couplings fit. In particular, we bound the variations of the Higgs trilinear self-coupling relative to its SM value to the interval [0.1, 2.3] at 68% confidence level at the high-luminosity LHC, and we discuss the robustness of our results against various assumptions on the experimental uncertainties and the underlying new physics dynamics. We also study how to obtain a parametrically enhanced deviation of the Higgs self-couplings and we estimate how large this deviation can be in a self-consistent effective field theory framework.

  11. Potential global climate change

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Global economic integration and growth contribute much to the construction of energy plants, vehicles and other industrial products that produces carbon emission and in effect cause the destruction of the environment. A coordinated policy and response worldwide to curb emissions and to effect global climate change must be introduced. Improvement in scientific understanding is required to monitor how much emission reduction is necessary. In the near term, especially in the next seven years, sustained research and development for low carbon or carbon-free energy is necessary. Other measures must also be introduced, such as limiting the use of vehicles, closing down inefficient power plants, etc. In the long term, the use of the electric car, use solar energy, etc. is required. Reforestation must also be considered to absorb large amounts of carbon in the atmosphere

  12. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions

    KAUST Repository

    Driscoll, Simon; Bozzo, Alessio; Gray, Lesley J.; Robock, Alan; Stenchikov, Georgiy L.

    2012-01-01

    The ability of the climate models submitted to the Coupled Model Intercomparison Project 5 (CMIP5) database to simulate the Northern Hemisphere winter climate following a large tropical volcanic eruption is assessed. When sulfate aerosols are produced by volcanic injections into the tropical stratosphere and spread by the stratospheric circulation, it not only causes globally averaged tropospheric cooling but also a localized heating in the lower stratosphere, which can cause major dynamical feedbacks. Observations show a lower stratospheric and surface response during the following one or two Northern Hemisphere (NH) winters, that resembles the positive phase of the North Atlantic Oscillation (NAO). Simulations from 13 CMIP5 models that represent tropical eruptions in the 19th and 20th century are examined, focusing on the large-scale regional impacts associated with the large-scale circulation during the NH winter season. The models generally fail to capture the NH dynamical response following eruptions. They do not sufficiently simulate the observed post-volcanic strengthened NH polar vortex, positive NAO, or NH Eurasian warming pattern, and they tend to overestimate the cooling in the tropical troposphere. The findings are confirmed by a superposed epoch analysis of the NAO index for each model. The study confirms previous similar evaluations and raises concern for the ability of current climate models to simulate the response of a major mode of global circulation variability to external forcings. This is also of concern for the accuracy of geoengineering modeling studies that assess the atmospheric response to stratosphere-injected particles.

  13. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions

    KAUST Repository

    Driscoll, Simon

    2012-09-16

    The ability of the climate models submitted to the Coupled Model Intercomparison Project 5 (CMIP5) database to simulate the Northern Hemisphere winter climate following a large tropical volcanic eruption is assessed. When sulfate aerosols are produced by volcanic injections into the tropical stratosphere and spread by the stratospheric circulation, it not only causes globally averaged tropospheric cooling but also a localized heating in the lower stratosphere, which can cause major dynamical feedbacks. Observations show a lower stratospheric and surface response during the following one or two Northern Hemisphere (NH) winters, that resembles the positive phase of the North Atlantic Oscillation (NAO). Simulations from 13 CMIP5 models that represent tropical eruptions in the 19th and 20th century are examined, focusing on the large-scale regional impacts associated with the large-scale circulation during the NH winter season. The models generally fail to capture the NH dynamical response following eruptions. They do not sufficiently simulate the observed post-volcanic strengthened NH polar vortex, positive NAO, or NH Eurasian warming pattern, and they tend to overestimate the cooling in the tropical troposphere. The findings are confirmed by a superposed epoch analysis of the NAO index for each model. The study confirms previous similar evaluations and raises concern for the ability of current climate models to simulate the response of a major mode of global circulation variability to external forcings. This is also of concern for the accuracy of geoengineering modeling studies that assess the atmospheric response to stratosphere-injected particles.

  14. Global imprint of climate change on marine life

    DEFF Research Database (Denmark)

    Poloczanska, Elvira S.; Brown, Christopher J.; Sydeman, William J.

    2013-01-01

    Past meta-analyses of the response of marine organisms to climate change have examined a limited range of locations1,2, taxonomic groups2–4 and/or biological responses5,6. This has precluded a robust overview of the effect of climate change in the global ocean. Here, we synthesized all available ...

  15. Teaching about Climate Change: Cool Schools Tackle Global Warming.

    Science.gov (United States)

    Grant, Tim, Ed.; Littlejohn, Gail, Ed.

    Within the last couple of decades, the concentration of greenhouse gases in the atmosphere has increased significantly due to human activities. Today climate change is an important issue for humankind. This book provides a starting point for educators to teach about climate change, although there are obstacles caused by the industrialized…

  16. Implications of regional improvement in global climate models for agricultural impact research

    International Nuclear Information System (INIS)

    Ramirez-Villegas, Julian; Thornton, Philip K; Jarvis, Andy; Challinor, Andrew J

    2013-01-01

    Global climate models (GCMs) have become increasingly important for climate change science and provide the basis for most impact studies. Since impact models are highly sensitive to input climate data, GCM skill is crucial for getting better short-, medium- and long-term outlooks for agricultural production and food security. The Coupled Model Intercomparison Project (CMIP) phase 5 ensemble is likely to underpin the majority of climate impact assessments over the next few years. We assess 24 CMIP3 and 26 CMIP5 simulations of present climate against climate observations for five tropical regions, as well as regional improvements in model skill and, through literature review, the sensitivities of impact estimates to model error. Climatological means of seasonal mean temperatures depict mean errors between 1 and 18 ° C (2–130% with respect to mean), whereas seasonal precipitation and wet-day frequency depict larger errors, often offsetting observed means and variability beyond 100%. Simulated interannual climate variability in GCMs warrants particular attention, given that no single GCM matches observations in more than 30% of the areas for monthly precipitation and wet-day frequency, 50% for diurnal range and 70% for mean temperatures. We report improvements in mean climate skill of 5–15% for climatological mean temperatures, 3–5% for diurnal range and 1–2% in precipitation. At these improvement rates, we estimate that at least 5–30 years of CMIP work is required to improve regional temperature simulations and at least 30–50 years for precipitation simulations, for these to be directly input into impact models. We conclude with some recommendations for the use of CMIP5 in agricultural impact studies. (letter)

  17. Climate change impacts on soil carbon storage in global croplands: 1901-2010

    Science.gov (United States)

    Ren, W.; Tian, H.

    2015-12-01

    New global data finds 12% of earth's surface in cropland at present. Croplands will take on the responsibility to support approximate 60% increase in food production by 2050 as FAO estimates. In addition to nutrient supply to plants, cropland soils also play a major source and sink of greenhouse gases regulating global climate system. It is a big challenge to understand how soils function under global changes, but it is also a great opportunity for agricultural sector to manage soils to assure sustainability of agroecosystems and mitigate climate change. Previous studies have attempted to investigate the impacts of different land uses and climates on cropland soil carbon storage. However, large uncertainty still exists in magnitude and spatiotemporal patterns of global cropland soil organic carbon, due to the lack of reliable environmental databases and relatively poorly understanding of multiple controlling factors involved climate change and land use etc. Here, we use a process-based agroecosystem model (DLEM-Ag) in combination with diverse data sources to quantify magnitude and tempo-spatial patterns of soil carbon storage in global croplands during 1901-2010. We also analyze the relative contributions of major environmental variables (climate change, land use and management etc.). Our results indicate that intensive land use management may hidden the vulnerability of cropland soils to climate change in some regions, which may greatly weaken soil carbon sequestration under future climate change.

  18. Various oscillation patterns in phase models with locally attractive and globally repulsive couplings.

    Science.gov (United States)

    Sato, Katsuhiko; Shima, Shin-ichiro

    2015-10-01

    We investigate a phase model that includes both locally attractive and globally repulsive coupling in one dimension. This model exhibits nontrivial spatiotemporal patterns that have not been observed in systems that contain only local or global coupling. Depending on the relative strengths of the local and global coupling and on the form of global coupling, the system can show a spatially uniform state (in-phase synchronization), a monotonically increasing state (traveling wave), and three types of oscillations of relative phase difference. One of the oscillations of relative phase difference has the characteristic of being locally unstable but globally attractive. That is, any small perturbation to the periodic orbit in phase space destroys its periodic motion, but after a long time the system returns to the original periodic orbit. This behavior is closely related to the emergence of saddle two-cluster states for global coupling only, which are connected to each other by attractive heteroclinic orbits. The mechanism of occurrence of this type of oscillation is discussed.

  19. Order in the turbulent phase of globally coupled maps

    International Nuclear Information System (INIS)

    Perez, G.; Sinha, S.; Cerdeira, H.A.

    1991-04-01

    The very surprising broad peaks seen in the power spectra of the mean field in a globally coupled map system, indicating subtle coherences between the elements even in the ''turbulent'' phase, are investigated in detail with respect to number of elements coupled, nonlinearity and global coupling strength. We find that the peaks are determined by two distinct components: effective renormalization of the nonlinearity parameter in the local mapping and the strength of the mean field iteration term. We also demonstrate the influence of background noise on the peaks - which is quite counterintuitive, as the peaks become sharper with increase in strength of noise, up to a certain critical noise strength. (author). 11 refs, 10 figs

  20. Acidification at the Surface in the East Sea: A Coupled Climate-carbon Cycle Model Study

    Science.gov (United States)

    Park, Young-Gyu; Seol, Kyung-Hee; Boo, Kyung-On; Lee, Johan; Cho, Chunho; Byun, Young-Hwa; Seo, Seongbong

    2018-05-01

    This modeling study investigates the impacts of increasing atmospheric CO2 concentration on acidification in the East Sea. A historical simulation for the past three decades (1980 to 2010) was performed using the Hadley Centre Global Environmental Model (version 2), a coupled climate model with atmospheric, terrestrial and ocean cycles. As the atmospheric CO2 concentration increased, acidification progressed in the surface waters of the marginal sea. The acidification was similar in magnitude to observations and models of acidification in the global ocean. However, in the global ocean, the acidification appears to be due to increased in-situ oceanic CO2 uptake, whereas local processes had stronger effects in the East Sea. pH was lowered by surface warming and by the influx of water with higher dissolved inorganic carbon (DIC) from the northwestern Pacific. Due to the enhanced advection of DIC, the partial pressure of CO2 increased faster than in the overlying air; consequently, the in-situ oceanic uptake of CO2 decreased.

  1. Integrating global energy and climate governance: The changing role of the International Energy Agency

    International Nuclear Information System (INIS)

    Heubaum, Harald; Biermann, Frank

    2015-01-01

    Despite the long-recognized interlinkages between global energy consumption and climate change, there has historically been only limited policy interaction, let alone integration, between the two fields. This compartmentalization is mirrored in scholarship, where much research has focused on the fragmentation of, respectively, global energy and global climate governance, but only little has been said about how these fields might be integrated. Our analysis of the International Energy Agency’s (IEA) changing activities in recent years shows that governance integration – both within global energy governance and between global energy and climate governance – is now happening. The IEA has broadened its portfolio to embrace the full spectrum of energy issues, including renewable energy and climate change; it has built and is expanding key partnerships with both the UN climate convention and the International Renewable Energy Agency (IRENA); and it has become an authoritative advocate for the inter-related goals of a low-carbon transition and climate change mitigation. We show that these developments are not the result of a top-down plan, but have rather emerged through the Agency’s various efforts to pursue its energy-centric mandate in a fast-changing global policy environment. - Highlights: • Assesses integration between global energy and global climate governance. • Analyzes organizational change in the IEA and its impact on governance integration. • Discusses recent activities and advocacy by the IEA in relation to climate change.

  2. Climate Change and Global Wine Quality

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G.V. [Department of Geography, Southern Oregon University, 1250 Siskiyou Blvd, Ashland, Oregon, 97520 (United States); White, M.A. [Department of Aquatic, Watershed, and Earth Resources, Utah State University, Logan, Utah, 84322 (United States); Cooper, O.R. [Cooperative Institute for Research in Environmental Sciences CIRES, University of Colorado/NOAA Aeronomy Laboratory, Boulder, Colorado, 80305 (United States); Storchmann, K. [Department of Economics, Yale University, New Haven, Connecticut, 06520 (United States)

    2005-12-01

    From 1950 to 1999 the majority of the world's highest quality wine-producing regions experienced growing season warming trends. Vintage quality ratings during this same time period increased significantly while year-to-year variation declined. While improved winemaking knowledge and husbandry practices contributed to the better vintages it was shown that climate had, and will likely always have, a significant role in quality variations. This study revealed that the impacts of climate change are not likely to be uniform across all varieties and regions. Currently, many European regions appear to be at or near their optimum growing season temperatures, while the relationships are less defined in the New World viticulture regions. For future climates, model output for global wine producing regions predicts an average warming of 2C in the next 50 yr. For regions producing high-quality grapes at the margins of their climatic limits, these results suggest that future climate change will exceed a climatic threshold such that the ripening of balanced fruit required for existing varieties and wine styles will become progressively more difficult. In other regions, historical and predicted climate changes could push some regions into more optimal climatic regimes for the production of current varietals. In addition, the warmer conditions could lead to more poleward locations potentially becoming more conducive to grape growing and wine production.

  3. Climate change impacts on global food security.

    Science.gov (United States)

    Wheeler, Tim; von Braun, Joachim

    2013-08-02

    Climate change could potentially interrupt progress toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. The stability of whole food systems may be at risk under climate change because of short-term variability in supply. However, the potential impact is less clear at regional scales, but it is likely that climate variability and change will exacerbate food insecurity in areas currently vulnerable to hunger and undernutrition. Likewise, it can be anticipated that food access and utilization will be affected indirectly via collateral effects on household and individual incomes, and food utilization could be impaired by loss of access to drinking water and damage to health. The evidence supports the need for considerable investment in adaptation and mitigation actions toward a "climate-smart food system" that is more resilient to climate change influences on food security.

  4. Progress Towards Achieving the Challenge of Indian Summer Monsoon Climate Simulation in a Coupled Ocean-Atmosphere Model

    Science.gov (United States)

    Hazra, Anupam; Chaudhari, Hemantkumar S.; Saha, Subodh Kumar; Pokhrel, Samir; Goswami, B. N.

    2017-10-01

    Simulation of the spatial and temporal structure of the monsoon intraseasonal oscillations (MISOs), which have effects on the seasonal mean and annual cycle of Indian summer monsoon (ISM) rainfall, remains a grand challenge for the state-of-the-art global coupled models. Biases in simulation of the amplitude and northward propagation of MISOs and related dry rainfall bias over ISM region in climate models are limiting the current skill of monsoon prediction. Recent observations indicate that the convective microphysics of clouds may be critical in simulating the observed MISOs. The hypothesis is strongly supported by high fidelity in simulation of the amplitude and space-time spectra of MISO by a coupled climate model, when our physically based modified cloud microphysics scheme is implemented in conjunction with a modified new Simple Arakawa Schubert (nSAS) convective parameterization scheme. Improved simulation of MISOs appears to have been aided by much improved simulation of the observed high cloud fraction and convective to stratiform rain fractions and resulted into a much improved simulation of the ISM rainfall, monsoon onset, and the annual cycle.

  5. Estimated migration rates under scenarios of global climate change.

    Science.gov (United States)

    Jay R. Malcolm; Adam Markham; Ronald P. Neilson; Michael. Oaraci

    2002-01-01

    Greefihouse-induced warming and resulting shifts in climatic zones may exceed the migration capabilities of some species. We used fourteen combinations of General Circulation Models (GCMs) and Global Vegetation Models (GVMs) to investigate possible migration rates required under CO2 doubled climatic forcing.

  6. Icarus's discovery: Acting on global climate change in the face of uncertainty

    International Nuclear Information System (INIS)

    Brooks, D.G.; Maracas, K.B.; Hayslip, R.M.

    1994-01-01

    The mythological character Icarus had the misfortune of learning the consequences of his decision to fly too near the sun at the same time he employed his decision. Although Daedalus tried to reduce the uncertainties of his son's decision by warning Icarus of the possible outcome, Icarus had no empirical knowledge of what would actually happen until his waxen wings melted and he fell to the sea. Like Icarus, man has no empirical knowledge or conclusive evidence today of the possible effects of global climate change. And though the consequences of policy decisions toward global climate change may not be as catastrophic as falling into the sea, the social and economic impacts of those decisions will be substantial. There are broad uncertainties related to the scientific and ecological aspects of global climate change. But clearly the ''politics'' of global climate change issues are moving at a faster rate than the science. There is a public outcry for action now, in the face of uncertainty. This paper profiles a case study of a southwestern utility's use of multi-attribute preference theory to reduce uncertainties and analyze its options for addressing global climate change issues

  7. Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: climate variability

    Science.gov (United States)

    Rackow, T.; Goessling, H. F.; Jung, T.; Sidorenko, D.; Semmler, T.; Barbi, D.; Handorf, D.

    2018-04-01

    This study forms part II of two papers describing ECHAM6-FESOM, a newly established global climate model with a unique multi-resolution sea ice-ocean component. While part I deals with the model description and the mean climate state, here we examine the internal climate variability of the model under constant present-day (1990) conditions. We (1) assess the internal variations in the model in terms of objective variability performance indices, (2) analyze variations in global mean surface temperature and put them in context to variations in the observed record, with particular emphasis on the recent warming slowdown, (3) analyze and validate the most common atmospheric and oceanic variability patterns, (4) diagnose the potential predictability of various climate indices, and (5) put the multi-resolution approach to the test by comparing two setups that differ only in oceanic resolution in the equatorial belt, where one ocean mesh keeps the coarse 1° resolution applied in the adjacent open-ocean regions and the other mesh is gradually refined to 0.25°. Objective variability performance indices show that, in the considered setups, ECHAM6-FESOM performs overall favourably compared to five well-established climate models. Internal variations of the global mean surface temperature in the model are consistent with observed fluctuations and suggest that the recent warming slowdown can be explained as a once-in-one-hundred-years event caused by internal climate variability; periods of strong cooling in the model (`hiatus' analogs) are mainly associated with ENSO-related variability and to a lesser degree also to PDO shifts, with the AMO playing a minor role. Common atmospheric and oceanic variability patterns are simulated largely consistent with their real counterparts. Typical deficits also found in other models at similar resolutions remain, in particular too weak non-seasonal variability of SSTs over large parts of the ocean and episodic periods of almost absent

  8. Global climate changes in the past and future

    International Nuclear Information System (INIS)

    Schoenwiese, C.D.

    1993-01-01

    Is man changing the climate of the Earth, and if so, is this at a global scale? This question with all its reunifications, usually referred to under the heading ''greenhouse effect'', deservedly stands in the focus of public attention. Besides fears and warnings reaching even to disaster scenarios there have recently also been sceptical voices pointing out the imponderabilities of filtering anthropogenic effects out of the climate data. This uncertainty is not surprising to the expert, as natural changes of climate always have, and will, superimpose anthropogenic influences. Therefore, it is not enough to peer into the future with the help of intricate climate models. Diagnostic analysis of the past climate is at least just as important. (orig.) [de

  9. A transient fully coupled climate-ice-sheet simulation of the last glacial inception

    Science.gov (United States)

    Lofverstrom, M.; Otto-Bliesner, B. L.; Lipscomb, W. H.; Fyke, J. G.; Marshall, S.; Sacks, B.; Brady, E. C.

    2017-12-01

    The last glacial inception occurred around 115 ka, following a relative minimum in the Northern Hemisphere summer insolation. It is believed that small and spatially separated ice caps initially formed in the high elevation regions of northern Canada, Scandinavia, and along the Siberian Arctic coast. These ice caps subsequently migrated down in the valleys where they coalesced and formed the initial seeds of the large coherent ice masses that covered the northern parts of the North American and Eurasian continents over most of the last glacial cycle. Sea level records show that the initial growth period lasted for about 10 kyrs, and the resulting ice sheets may have lowered the global sea level by as much as 30 to 50 meters. Here we examine the transient climate system evolution over the period between 118 and 110 ka, using the fully coupled Community Earth System Model, version 2 (CESM2). This model features a two-way coupled high-resolution (4x4 km) ice-sheet component (Community Ice Sheet model, version 2; CISM2) that simulates ice sheets as an interactive component of the climate system. We impose a transient forcing protocol where the greenhouse gas concentrations and the orbital parameters follow the nominal year in the simulation; the model topography is also dynamically evolving in order to reflect changes in ice elevation throughout the simulation. The analysis focuses on how the climate system evolves over this time interval, with a special focus on glacial inception in the high-latitude continents. Results will highlight how the evolving ice sheets compare to data and previous model based reconstructions.

  10. Global Farm Animal Production and Global Warming: Impacting and Mitigating Climate Change

    OpenAIRE

    Koneswaran, Gowri; Nierenberg, Danielle

    2008-01-01

    Background The farm animal sector is the single largest anthropogenic user of land, contributing to many environmental problems, including global warming and climate change. Objectives The aim of this study was to synthesize and expand upon existing data on the contribution of farm animal production to climate change. Methods We analyzed the scientific literature on farm animal production and documented greenhouse gas (GHG) emissions, as well as various mitigation strategies. Discussions An a...

  11. The Impact Of Climate Change On Water Resources: Global And ...

    African Journals Online (AJOL)

    GHGs) is increasing and this has resulted to changing global climate with increasing temperature. The rise in global average temperatures since 1860 now exceeds 0.6OC. The effect of the GHGs concentration on global warming as at 2100 is ...

  12. Climate Services Information System Activities in Support of The Global Framework for Climate Services Implementation

    Science.gov (United States)

    Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Pulwarty, R. S.; Klein-Tank, A.; Kolli, R. K.; Hechler, P.; Dilley, M.; Ceron, J. P.; Goodess, C.

    2017-12-01

    The WMO Commission on Climatology (CCl) supports the implementation of the Global Framework for Climate Services (GFCS) with a particular focus on the Climate Services Information System (CSIS), which is the core operational component of GFCS at the global, regional, and national level. CSIS is designed for producing, packaging and operationally delivering authoritative climate information data and products through appropriate operational systems, practices, data exchange, technical standards, authentication, communication, and product delivery. Its functions include climate analysis and monitoring, assessment and attribution, prediction (monthly, seasonal, decadal), and projection (centennial scale) as well as tailoring the associated products tUEAo suit user requirements. A central, enabling piece of implementation of CSIS is a Climate Services Toolkit (CST). In its development phase, CST exists as a prototype (www.wmo.int/cst) as a compilation of tools for generating tailored data and products for decision-making, with a special focus on national requirements in developing countries. WMO provides a server to house the CST prototype as well as support operations and maintenance. WMO members provide technical expertise and other in-kind support, including leadership of the CSIS development team. Several recent WMO events have helped with the deployment of CST within the eight countries that have been recognized by GFCS as illustrative for developing their climate services at national levels. Currently these countries are developing climate services projects focusing service development and delivery for selected economic sectors, such as for health, agriculture, energy, water resources, and hydrometeorological disaster risk reduction. These countries are working together with their respective WMO Regional Climate Centers (RCCs), which provide technical assistance with implementation of climate services projects at the country level and facilitate development of

  13. Global Squeeze: Assessing Climate-Critical Resource Constraints for Coastal Climate Adaptation

    Science.gov (United States)

    Chase, N. T.; Becker, A.; Schwegler, B.; Fischer, M.

    2014-12-01

    The projected impacts of climate change in the coastal zone will require local planning and local resources to adapt to increasing risks of social, environmental, and economic consequences from extreme events. This means that, for the first time in human history, aggregated local demands could outpace global supply of certain "climate-critical resources." For example, construction materials such as sand and gravel, steel, and cement may be needed to fortify many coastal locations at roughly the same point in time if decision makers begin to construct new storm barriers or elevate coastal lands. Where might adaptation bottlenecks occur? Can the world produce enough cement to armour the world's seaports as flood risks increase due to sea-level rise and more intense storms? Just how many coastal engineers would multiple such projects require? Understanding such global implications of adaptation requires global datasets—such as bathymetry, coastal topography, local sea-level rise and storm surge projections, and construction resource production capacity—that are currently unavailable at a resolution appropriate for a global-scale analysis. Our research group has identified numerous gaps in available data necessary to make such estimates on both the supply and demand sides of this equation. This presentation examines the emerging need and current availability of these types of datasets and argues for new coordinated efforts to develop and share such data.

  14. Advancement of the climate dual strategy. New concepts for a globally effective climate protection; Weiterentwicklung der baden-wuerttembergischen Klimadoppelstrategie. Neue Konzepte fuer einen global wirksamen Klimaschutz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    The Baden-Wuerttemberg Council on Sustainable Development (Stuttgart, Federal Republic of Germany) presents a climate expert report with new concepts for a globally effective climate protection. First of all, the development of the global emissions of carbon dioxide since 1990 is described. The development of the global emissions of carbon dioxide up to 2050 is forecasted. Four general criteria (effectiveness, efficiency, fairness and acceptance) for a comparative evaluation of climate protection concepts are introduced. A proposal for solution on the basis of a globally effective cap-and-trade system as well as an identical scenario as an alternative with respect to the implementation are described. This alternative scenario is based on a cap-and-trade system but it develops on the basis of national self-commitment in accordance with an incentive and sanctionative system. Both implementation proposals are compared. Recommendations of the national government Baden-Wuerttemberg are given.

  15. Impact of an observational time window on coupled data assimilation: simulation with a simple climate model

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2017-11-01

    Full Text Available Climate signals are the results of interactions of multiple timescale media such as the atmosphere and ocean in the coupled earth system. Coupled data assimilation (CDA pursues balanced and coherent climate analysis and prediction initialization by incorporating observations from multiple media into a coupled model. In practice, an observational time window (OTW is usually used to collect measured data for an assimilation cycle to increase observational samples that are sequentially assimilated with their original error scales. Given different timescales of characteristic variability in different media, what are the optimal OTWs for the coupled media so that climate signals can be most accurately recovered by CDA? With a simple coupled model that simulates typical scale interactions in the climate system and twin CDA experiments, we address this issue here. Results show that in each coupled medium, an optimal OTW can provide maximal observational information that best fits the characteristic variability of the medium during the data blending process. Maintaining correct scale interactions, the resulting CDA improves the analysis of climate signals greatly. These simple model results provide a guideline for when the real observations are assimilated into a coupled general circulation model for improving climate analysis and prediction initialization by accurately recovering important characteristic variability such as sub-diurnal in the atmosphere and diurnal in the ocean.

  16. Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison.

    Science.gov (United States)

    Peng, Jing; Dan, Li; Huang, Mei

    2014-01-01

    Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04 PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO) and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet). The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics.

  17. Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison.

    Directory of Open Access Journals (Sweden)

    Jing Peng

    Full Text Available Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5, we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04 PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet. The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics.

  18. Global forest sector modeling: application to some impacts of climate change

    Science.gov (United States)

    Joseph. Buongiorno

    2016-01-01

    This paper explored the potential long-term effects of a warming climate on the global wood sector, based on Way and Oren's synthesis (Tree Physiology 30,669-688) indicating positive responses of tree growth to higher temperature in boreal and temperative climates, and negative responses in the topics. Changes in forest productivity were introduced in the Global...

  19. Impact of a global warming on biospheric sources of methane and its climatic consequences

    Energy Technology Data Exchange (ETDEWEB)

    Hameed, S; Cess, R D [State Univ. of New York at Stony Brook, Stony Brook, NY (USA). Lab. for Planetary Atmospheres Research

    1983-01-01

    Most of atmospheric methane originates by bacterial processes in anaerobic environments within the soil which are found to become more productive with increases in ambient temperature. A warming of climate, due to increasing levels of industrial gases resulting from fossil fuel burning, is thus likely to increase methane abundance within the atmosphere. This may lead to further heating of the atmosphere, since both methane and ozone (which is generated in the troposphere from reactions of methane) have greenhouse effects. We have explored this feedback mechanism using a coupled climate-chemical model of the troposphere, by calculating the impact of the predicted global warming due to increased emissions of carbon dioxide and other industrial gases on the biospheric sources of methane. Although we find this climate feedback to be, by itself, relatively minor, it can produce measurable increases in atmospheric CH/sub 4/ concentration, a quantity which should additionally increase as a consequence of increasing anthropogenic emissions of CO and CH/sub 4/ itself. It would thus seem useful to carefully monitor future atmospheric CH/sub 4/ concentrations.

  20. Impact of a global warming on biospheric sources of methane and its climatic consequences

    Energy Technology Data Exchange (ETDEWEB)

    Hameed, S; Cess, R D

    1983-02-01

    Most of atmospheric methane originates by bacterial processes in anaerobic environments within the soil which are found to become more productive with increases in ambient temperature. A warming of climate, due to increasing levels of industrial gases resulting from fossil fuel burning, is thus likely to increase methane abundance within the atmosphere. This may lead to further heating of the atmosphere, since both methane and ozone (which is generated in the troposphere from reactions of methane) have greenhouse effects. We have explored this feedback mechanism using a coupled climate-chemical model of the troposphere, by calculating the impact of the predicted global warming due to increased emissions of carbon dioxide and other industrial gases on the biospheric sources of methane. Although we find this climate feedback to be, by itself, relatively minor, it can produce measurable increases in atmospheric CH/sub 4/ concentration, a quantity which should additionally increase as a consequence of increasing anthropogenic emissions of CO and CH/sub 4/ itself. It would thus seem useful to carefully monitor future atmospheric CH/sub 4/ concentrations.

  1. Influence of various forcings on global climate in historical times using a coupled atmosphere-ocean general circulation model

    DEFF Research Database (Denmark)

    Stendel, Martin; Mogensen, Irene A.; Christensen, Jens H.

    2006-01-01

    The results of a simulation of the climate of the last five centuries with a state-of-the-art coupled atmosphere-ocean general circulation model are presented. The model has been driven with most relevant forcings, both natural (solar variability, volcanic aerosol) and anthropogenic (greenhouse...... gases, sulphate aerosol, land-use changes). In contrast to previous GCM studies, we have taken into account the latitudinal dependence of volcanic aerosol and the changing land cover for a period covering several centuries. We find a clear signature of large volcanic eruptions in the simulated...

  2. Regional decadal predictions of coupled climate-human systems

    Science.gov (United States)

    Curchitser, E. N.; Lawrence, P.; Felder, F.; Large, W.; Bacmeister, J. T.; Andrews, C.; Kopp, R. E.

    2016-12-01

    We present results from a project to develop a framework for investigating the interactions between human activity and the climate system using state-of-the-art multi-scale, climate and economic models. The model is applied to the highly industrialized and urbanized coastal region of the northeast US with an emphasis on New Jersey. The framework is developed around the NCAR Community Earth System Model (CESM). The CESM model capabilities are augmented with enhanced resolution of the atmosphere (25 km), land surface (I km) and ocean models (7 km) in our region of interest. To the climate model, we couple human activity models for the utility sector and a 300-equation econometric model with sectorial details of an input-output model for the New Jersey economy. We will present results to date showing the potential impact of climate change on electricity markets on its consequences on economic activity in the region.

  3. Global River Discharge and Water Temperature under Climate Change

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P.

    2013-01-01

    Climate change will affect hydrologic and thermal regimes of rivers, having a direct impact on freshwater ecosystems and human water use. Here we assess the impact of climate change on global river flows and river water temperatures, and identify regions that might become more critical for

  4. Climate change at the coast: from global to local

    International Nuclear Information System (INIS)

    Watkinson, A.R.

    2009-01-01

    The IPCC has recently documented substantial changes in the global heat content of the oceans, salinity, sea level, thermal expansion and biogeochemistry. Over the 21. century anticipated climate related changes include: a rise in sea level of up to 0.6 m or more; increases in sea surface temperatures up to 3 deg. C; an intensification of tropical and extra tropical cyclones; larger extreme waves and storm surges; altered precipitation/ run-off; and ocean acidification. The Tyndall Centre has been exploring how to down-scale the global analysis to the local level within the framework of a coastal simulator. The simulator provides information on possible future states of the coast through the 21. Century under a range of climate and socio-economic futures and shoreline management options. It links models within a nested framework, recognizing three scales: (1) global, (2) regional, and (3) local. The linked models describe a range of processes, including marine climate (waves, surges and mean sea level), sand bank morpho-dynamics, wave transformation, shoreline morpho-dynamics, built environment scenarios, ecosystem change, and erosion and flood risk. Analyses from the simulator reinforce conclusions from IPCC WG2: coasts will be exposed to increasing risks over coming decades due to many compounding climate-change factors; the impact of climate change on coasts will be exacerbated by increasing human induced pressures; the unavoidability of sea-level rise even in the longer-term frequently conflicts with present day human development patterns and trends. (author)

  5. Toward 10-km mesh global climate simulations

    Science.gov (United States)

    Ohfuchi, W.; Enomoto, T.; Takaya, K.; Yoshioka, M. K.

    2002-12-01

    An atmospheric general circulation model (AGCM) that runs very efficiently on the Earth Simulator (ES) was developed. The ES is a gigantic vector-parallel computer with the peak performance of 40 Tflops. The AGCM, named AFES (AGCM for ES), was based on the version 5.4.02 of an AGCM developed jointly by the Center for Climate System Research, the University of Tokyo and the Japanese National Institute for Environmental Sciences. The AFES was, however, totally rewritten in FORTRAN90 and MPI while the original AGCM was written in FORTRAN77 and not capable of parallel computing. The AFES achieved 26 Tflops (about 65 % of the peak performance of the ES) at resolution of T1279L96 (10-km horizontal resolution and 500-m vertical resolution in middle troposphere to lower stratosphere). Some results of 10- to 20-day global simulations will be presented. At this moment, only short-term simulations are possible due to data storage limitation. As ten tera flops computing is achieved, peta byte data storage are necessary to conduct climate-type simulations at this super-high resolution global simulations. Some possibilities for future research topics in global super-high resolution climate simulations will be discussed. Some target topics are mesoscale structures and self-organization of the Baiu-Meiyu front over Japan, cyclogenecsis over the North Pacific and typhoons around the Japan area. Also improvement in local precipitation with increasing horizontal resolution will be demonstrated.

  6. NASA NDATC Global Climate Change Education Initiative

    Science.gov (United States)

    Bennett, B.; Wood, E.; Meyer, D.; Maynard, N.; Pandya, R. E.

    2009-12-01

    This project aligns with NASA’s Strategic Goal 3A - “Study Earth from space to advance scientific understanding and meet societal needs and focuses on funding from the GCCE Funding Category 2: Strengthen the Teaching and Learning About Global Climate Change Within Formal Education Systems. According to the Intergovernmental Panel on Climate Change Report (2007) those communities with the least amount of resources will be most vulnerable, and least likely to adapt to the impacts brought on by a changing climate. Further, the level of vulnerability of these communities is directly correlated with their ability to implement short, medium and long range mitigation measures. The North Dakota Association of Tribal Colleges (NDATC) has established a climate change education initiative among its six member Tribal Colleges and Universities (TCUs). The goal of this project is to enhance the TCUs capacity to educate their constituents on the science of climate change and mitigation strategies specifically as they apply to Indian Country. NDATC is comprised of six American Indian tribally chartered colleges (TCUs) which include: Cankdeska Cikana Community College, serving the Spirit Lake Dakota Nation; Fort Berthold Community College, serving the Mandan, Hidatsa, and Arikara Nation; Sitting Bull College, serving the Hunkpapa Lakota and Dakota Nation; Turtle Mountain Community College, serving the Turtle Mountain Band of Chippewa; Sisseton Wahpeton College serving the Sisseton and Wahpeton Dakota Nation, and United Tribes Technical College, serving over 70 Tribal groups from across the United States. The purpose of this project is to (1) increase awareness of climate change and its potential impacts in Indian Country through education for students, faculty and presidents of the TCUs as well as Tribal leadership; (2) increase the capacity of TCUs to respond to this global threat on behalf of tribal people; (3) develop climate change mitigation strategies relevant to Indian

  7. At a global scale, do climate change threatened species also face a greater number of non-climatic threats?

    Science.gov (United States)

    Fortini, Lucas B.; Dye, Kaipo

    2017-01-01

    For many species the threats of climate change occur in a context of multiple existing threats. Given the current focus of global change ecology in identifying and understanding species vulnerable to climate change, we performed a global analysis to characterize the multi-threat context for species threatened by climate change. Utilizing 30,053 species from the International Union for Conservation of Nature’s (IUCN) Red List of Threatened Species, we sought to evaluate if species threatened by climate change are more likely threatened by a greater number of non-climatic threats than species not threatened by climate change. Our results show that species threatened by climate change are generally impacted by 21% more non-climatic threats than species not threatened by climate change. Across all species, this pattern is related to IUCN risk status, where endangered species threatened by climate change face 33% more non-climatic threats than endangered species not threatened by climate change. With the clear challenges of assessing current and projected impacts of climate change on species and ecosystems, research often requires reductionist approaches that result in downplaying this multi-threat context. This cautionary note bears relevance beyond climate change threatened species as we also

  8. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model.

    Science.gov (United States)

    Turner, Sean W D; Ng, Jia Yi; Galelli, Stefano

    2017-07-15

    An important and plausible impact of a changing global climate is altered power generation from hydroelectric dams. Here we project 21st century global hydropower production by forcing a coupled, global hydrological and dam model with three General Circulation Model (GCM) projections run under two emissions scenarios. Dams are simulated using a detailed model that accounts for plant specifications, storage dynamics, reservoir bathymetry and realistic, optimized operations. We show that the inclusion of these features can have a non-trivial effect on the simulated response of hydropower production to changes in climate. Simulation results highlight substantial uncertainty in the direction of change in globally aggregated hydropower production (~-5 to +5% change in mean global production by the 2080s under a high emissions scenario, depending on GCM). Several clearly impacted hotspots are identified, the most prominent of which encompasses the Mediterranean countries in southern Europe, northern Africa and the Middle East. In this region, hydropower production is projected to be reduced by approximately 40% on average by the end of the century under a high emissions scenario. After accounting for each country's dependence on hydropower for meeting its current electricity demands, the Balkans countries emerge as the most vulnerable (~5-20% loss in total national electricity generation depending on country). On the flipside, a handful of countries in Scandinavia and central Asia are projected to reap a significant increase in total electrical production (~5-15%) without investing in new power generation facilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The impact of possible climate catastrophes on global warming policy

    International Nuclear Information System (INIS)

    Baranzini, Andrea; Chesney, Marc; Morisset, Jacques

    2003-01-01

    Recent studies on global warming have introduced the inherent uncertainties associated with the costs and benefits of climate policies and have often shown that abatement policies are likely to be less aggressive or postponed in comparison to those resulting from traditional cost-benefit analyses (CBA). Yet, those studies have failed to include the possibility of sudden climate catastrophes. The aim of this paper is to account simultaneously for possible continuous and discrete damages resulting from global warming, and to analyse their implications on the optimal path of abatement policies. Our approach is related to the new literature on investment under uncertainty, and relies on some recent developments of the real option in which we incorporated negative jumps (climate catastrophes) in the stochastic process corresponding to the net benefits associated with the abatement policies. The impacts of continuous and discrete climatic risks can therefore be considered separately. Our numerical applications lead to two main conclusions: (i) gradual, continuous uncertainty in the global warming process is likely to delay the adoption of abatement policies as found in previous studies, with respect to the standard CBA; however (ii) the possibility of climate catastrophes accelerates the implementation of these policies as their net discounted benefits increase significantly

  10. Couples' cultural values, shared parenting, and family emotional climate within Mexican American families.

    Science.gov (United States)

    Sotomayor-Peterson, Marcela; Figueredo, Aurelio J; Christensen, Donna H; Taylor, Angela R

    2012-06-01

    This study tested a model of shared parenting as its centerpiece that incorporates cultural values as predictors and family emotional climate as the outcome variable of interest. We aimed to assess the predictive power of the Mexican cultural values of familismo and simpatia over couples' shared parenting practices. We anticipated that higher levels of shared parenting would predict family emotional climate. The participants were 61 Mexican American, low income couples, with at least one child between 3 and 4 years of age, recruited from a home-based Head Start program. The predictive model demonstrated excellent goodness of fit, supporting the hypothesis that a positive emotional climate within the family is fostered when Mexican American couples practice a sufficient level of shared parenting. Empirical evidence was previously scarce on this proposition. The findings also provide evidence for the role of cultural values, highlighting the importance of family solidarity and avoidance of confrontation as a pathway to shared parenting within Mexican American couples. © FPI, Inc.

  11. Future Global Mortality from Changes in Air Pollution Attributable to Climate Change

    Science.gov (United States)

    Silva, Raquel A.; West, J. Jason; Lamarque, Jean-Francois; Shindell, Drew T.; Collins, William J.; Faluvegi, Greg; Folberth, Gerd A.; Horowitz, Larry W.; Nagashima, Tatsuya; Naik, Vaishali; hide

    2017-01-01

    Ground-level ozone and fine particulate matter (PM (sub 2.5)) are associated with premature human mortality; their future concentrations depend on changes in emissions, which dominate the near-term, and on climate change. Previous global studies of the air-quality-related health effects of future climate change used single atmospheric models. However, in related studies, mortality results differ among models. Here we use an ensemble of global chemistry-climate models to show that premature mortality from changes in air pollution attributable to climate change, under the high greenhouse gas scenario RCP (Representative Concentration Pathway) 8.5, is probably positive. We estimate 3,340 (30,300 to 47,100) ozone-related deaths in 2030, relative to 2000 climate, and 43,600 (195,000 to 237,000) in 2100 (14 percent of the increase in global ozone-related mortality). For PM (sub 2.5), we estimate 55,600 (34,300 to 164,000) deaths in 2030 and 215,000 (76,100 to 595,000) in 2100 (countering by 16 percent the global decrease in PM (sub 2.5)-related mortality). Premature mortality attributable to climate change is estimated to be positive in all regions except Africa, and is greatest in India and East Asia. Most individual models yield increased mortality from climate change, but some yield decreases, suggesting caution in interpreting results from a single model. Climate change mitigation is likely to reduce air-pollution-related mortality.

  12. Life on a warmer earth: possible climatic consequences of man made global warming

    Energy Technology Data Exchange (ETDEWEB)

    Flohn, H

    1981-01-01

    The interaction between energy and climate is explored, including the impact on global climate of three main energy sources: solar, nuclear and fossil fuels. The global warming problem is introduced. Comprehensive analogies with warmer times are made. From the best models available, the future global average surface temperature is found and modified, describing the global warming effects caused by greenhouse effect caused by gases other than carbon dioxide, released into the atmosphere by man, i.e. nitrous oxide, methane, ammonia, and the chlorofluoromethanes. Paleoclimatic scenarios are reviewed, showing possible effects of global warming. An 800 to 1100 ppm CO/sub 2/ concentration causes irreversible Arctic melting, leading to displacement of present climatic zones by 400 to 800 km.

  13. Impacts of Atmosphere-Ocean Coupling on Southern Hemisphere Climate Change

    Science.gov (United States)

    Li, Feng; Newman, Paul; Pawson, Steven

    2013-01-01

    Climate in the Southern Hemisphere (SH) has undergone significant changes in recent decades. These changes are closely linked to the shift of the Southern Annular Mode (SAM) towards its positive polarity, which is driven primarily by Antarctic ozone depletion. There is growing evidence that Antarctic ozone depletion has significant impacts on Southern Ocean circulation change. However, it is poorly understood whether and how ocean feedback might impact the SAM and climate change in the SH atmosphere. This outstanding science question is investigated using the Goddard Earth Observing System Coupled Atmosphere-Ocean-Chemistry Climate Model(GEOS-AOCCM).We perform ensemble simulations of the recent past (1960-2010) with and without the interactive ocean. For simulations without the interactive ocean, we use sea surface temperatures and sea ice concentrations produced by the interactive ocean simulations. The differences between these two ensemble simulations quantify the effects of atmosphere-ocean coupling. We will investigate the impacts of atmosphere-ocean coupling on stratospheric processes such as Antarctic ozone depletion and Antarctic polar vortex breakup. We will address whether ocean feedback affects Rossby wave generation in the troposphere and wave propagation into the stratosphere. Another focuson this study is to assess how ocean feedback might affect the tropospheric SAM response to Antarctic ozone depletion

  14. Global and Local Discourses on Climate Change: A Perspective from the Concept of Embeddedness

    Directory of Open Access Journals (Sweden)

    Jailab Kumar Rai

    2011-04-01

    Full Text Available Climate change has been becoming a major order of business of all including researchers and academics. This is known that global, national and local organizations, institutions and even the individuals are partaking into the issues with their own perspectives and skills of negotiations. Despite the series of international efforts and attempts, there are also a series of national concerns, efforts and attempts in combating against the effects of global climate change. This paper is an attempt to draw on the overview of contexts and concerns of international communities for combating global climate change and its discursive influence in national policy discourses. Moreover, the paper attempts to assess the local socio-cultural discourses and dynamics of climate change in relation to global and national discourses. Finally the paper highlights on how global and local climate change knowledge networks and epistemic communities either from political processes or the socio-economic fabrics are interrelated and determinant to each other. Keywords: climate change; discourses; embeddeness; dynamics; global; local DOI: 10.3126/dsaj.v4i0.4518 Dhaulagiri Journal of Sociology and Anthropology Vol.4 2010 pp.143-180

  15. Climate Change Impact Assessment of Hydro-Climate in Southern Peninsular Malaysia

    Science.gov (United States)

    Ercan, A.; Ishida, K.; Kavvas, M. L.; Chen, Z. R.; Jang, S.; Amin, M. Z. M.; Shaaban, A. J.

    2017-12-01

    Impacts of climate change on the hydroclimate of the coastal region in the south of Peninsular Malaysia in the 21st century was assessed by means of a regional climate model utilizing an ensemble of 15 different future climate realizations. Coarse resolution Global Climate Models' future projections covering four emission scenarios based on Coupled Model Intercomparison Project phase 3 (CMIP3) datasets were dynamically downscaled to 6 km resolution over the study area. The analyses were made in terms of rainfall, air temperature, evapotranporation, and soil water storage.

  16. Session B4 Management for sustainable use — Global climate ...

    African Journals Online (AJOL)

    The IPCC Third Assessment Report confirms that the evidence for global climate change is now stronger than ever. While efforts to minimise climate change are vital, some degree of change is already inevitable. The key questions for rangelands are no longer whether climate change will occur, but how to adapt to it, and if ...

  17. Characteristics of Extreme Extratropical Cyclones in a High-Resolution Global Climate Model

    Science.gov (United States)

    Catalano, A. J.; Broccoli, A. J.; Kapnick, S. B.; Janoski, T. P.

    2017-12-01

    In the northeastern United States, many of the strongest impacts from extratropical cyclones (ETCs) are associated with storms that exhibit slow movement, unusual tracks, or exceptional intensity. Examples of extreme ETCs include the Appalachian storm of November 1950, the Perfect Storm of October 1991, and the Superstorm of March 1993. Owing to the rare nature of these events, it is difficult to quantify the associated risks (e.g. high winds, storm surge) given the limited duration of high-quality observational datasets. Furthermore, storms with even greater impacts than those observed may be possible, particularly in a warming climate. In the context of tropical cyclones, Lin and Emanuel (2016) have used the metaphor "grey swans" to refer to high-impact events that have not been observed but may be physically possible. One method for analyzing "grey swans" is to generate a larger sample of ETCs using a coupled climate model. Therefore, we use long simulations (over 1,000 years with atmospheric constituents fixed at 1990 levels) from a global climate model (GFDL FLOR) with 50km atmospheric resolution. FLOR has been shown to realistically simulate the spatial distribution and climatology of ETCs during the reanalysis era. We will discuss the climatological features of these extreme ETC events.

  18. Why Closely Coupled Work Matters in Global Software Development

    DEFF Research Database (Denmark)

    Jensen, Rasmus Eskild

    2014-01-01

    We report on an ethnographic study of an offshore global software development project between Danish and Philippine developers in a Danish company called GlobalSoft. We investigate why the IT- developers chose to engage in more closely coupled work as the project progressed and argue that closely...

  19. Radiative forcing estimates of sulfate aerosol in coupled climate-chemistry models with emphasis on the role of the temporal variability

    Directory of Open Access Journals (Sweden)

    C. Déandreis

    2012-06-01

    Full Text Available This paper describes the impact on the sulfate aerosol radiative effects of coupling the radiative code of a global circulation model with a chemistry-aerosol module. With this coupling, temporal variations of sulfate aerosol concentrations influence the estimate of aerosol radiative impacts. Effects of this coupling have been assessed on net fluxes, radiative forcing and temperature for the direct and first indirect effects of sulfate.

    The direct effect respond almost linearly to rapid changes in concentrations whereas the first indirect effect shows a strong non-linearity. In particular, sulfate temporal variability causes a modification of the short wave net fluxes at the top of the atmosphere of +0.24 and +0.22 W m−2 for the present and preindustrial periods, respectively. This change is small compared to the value of the net flux at the top of the atmosphere (about 240 W m−2. The effect is more important in regions with low-level clouds and intermediate sulfate aerosol concentrations (from 0.1 to 0.8 μg (SO4 m−3 in our model.

    The computation of the aerosol direct radiative forcing is quite straightforward and the temporal variability has little effect on its mean value. In contrast, quantifying the first indirect radiative forcing requires tackling technical issues first. We show that the preindustrial sulfate concentrations have to be calculated with the same meteorological trajectory used for computing the present ones. If this condition is not satisfied, it introduces an error on the estimation of the first indirect radiative forcing. Solutions are proposed to assess radiative forcing properly. In the reference method, the coupling between chemistry and climate results in a global average increase of 8% in the first indirect radiative forcing. This change reaches 50% in the most sensitive regions. However, the reference method is not suited to run long climate

  20. The petroleum industry's response to climate change: The role of the IPIECA Global Climate Change Working Group

    International Nuclear Information System (INIS)

    Lemlin, J.S.; Graham Bryce, I.

    1994-01-01

    IPIECA formed the Global Climate Change Working Group in 1988 to coordinate members' efforts to understand the global climate change issue, to promote support for education and research, and to serve as the focus for engaging with international activities. The working group has sponsored a number of activities, including seminars and workshops. The Lisbon Experts Workshop on Socio-Economic Assessment of Climate Change in 1993 represents the most recent IPIECA forum for interaction between industry experts and those involved in the production of the IPCC 1995 Second Assessment Report. This workshop is described in the article. (author)

  1. An integrated assessment modeling framework for uncertainty studies in global and regional climate change: the MIT IGSM-CAM (version 1.0)

    Science.gov (United States)

    Monier, E.; Scott, J. R.; Sokolov, A. P.; Forest, C. E.; Schlosser, C. A.

    2013-12-01

    This paper describes a computationally efficient framework for uncertainty studies in global and regional climate change. In this framework, the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity to a human activity model, is linked to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). Since the MIT IGSM-CAM framework (version 1.0) incorporates a human activity model, it is possible to analyze uncertainties in emissions resulting from both uncertainties in the underlying socio-economic characteristics of the economic model and in the choice of climate-related policies. Another major feature is the flexibility to vary key climate parameters controlling the climate system response to changes in greenhouse gases and aerosols concentrations, e.g., climate sensitivity, ocean heat uptake rate, and strength of the aerosol forcing. The IGSM-CAM is not only able to realistically simulate the present-day mean climate and the observed trends at the global and continental scale, but it also simulates ENSO variability with realistic time scales, seasonality and patterns of SST anomalies, albeit with stronger magnitudes than observed. The IGSM-CAM shares the same general strengths and limitations as the Coupled Model Intercomparison Project Phase 3 (CMIP3) models in simulating present-day annual mean surface temperature and precipitation. Over land, the IGSM-CAM shows similar biases to the NCAR Community Climate System Model (CCSM) version 3, which shares the same atmospheric model. This study also presents 21st century simulations based on two emissions scenarios (unconstrained scenario and stabilization scenario at 660 ppm CO2-equivalent) similar to, respectively, the Representative Concentration Pathways RCP8.5 and RCP4.5 scenarios, and three sets of climate parameters. Results of the simulations with the chosen

  2. FAST COMPENSATION OF GLOBAL LINEAR COUPLING IN RHIC USING AC DIPOLES

    International Nuclear Information System (INIS)

    CALAGA, R.; FRANCHI, A., TOMAS, R.; CERN)

    2006-01-01

    Global linear coupling has been extensively studied in accelerators and several methods have been developed to compensate the coupling coefficient C using skew quadrupole families scans. However, scanning techniques can become very time consuming especially during the commissioning of an energy ramp. In this paper they illustrate a new technique to measure and compensate, in a single machine cycle, global linear coupling from turn-by-turn BPM data without the need of a skew quadrupole scan. The algorithm is applied to RHIC BPM data using AC dipoles and compared with traditional methods

  3. Climate change, global risks, challenges and decisions. Synthesis report

    International Nuclear Information System (INIS)

    Richardson, K.; Steffen, W.; Schellnhuber, H.J.

    2009-03-01

    The United Nations Framework Convention on Climate Change (UNFCCC) meeting to be held in Copenhagen in December 2009 (the 15th Conference of the Parties, COP-15) will be a critical step in developing a global response to the threat of climate change caused by human activities. The primary scientific input to those negotiations is the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), published in 2007. The IPCC report has already been instrumental in increasing both public and political awareness of the societal risks associated with unchecked emission of greenhouse gases. Since the production of the IPCC report, new knowledge has emerged that furthers understanding of the impacts of human influence on the climate and the response options and approaches that are available to tackle this complex issue. To bring this new knowledge together, the International Alliance of Research Universities organised an international scientific congress on climate change, Climate Change: Global Risks, Challenges and Decisions, which was held in Copenhagen from 10-12 March 2009. Participants came from nearly 80 different countries and contributed with more than 1400 scientific presentations. Abstracts for all of the scientific presentations made can be found at www.iop.org/EJ/volume/1755-1315/6, and a transcript of the closing plenary session can be found at environmentalresearchweb.org/cws/article/opinion/39126. This synthesis report presents an up-to-date overview of a broad range of research relevant to climate change - including fundamental climate science, the impacts of a changing climate on society and environment, and the many tools and approaches available to deal effectively with the challenge of climate change. (LN)

  4. Global climate change--The technology challenge: China

    Science.gov (United States)

    Population growth and developmental pressures, spawned by an increasing demand for resource intensive goods, foods and services, are altering the planet in ways that threaten the long-term well-being of humans and other species. Global climate change and its associated impacts is...

  5. Global Air Quality and Climate

    Science.gov (United States)

    Fiore, Arlene M.; Naik, Vaishali; Steiner, Allison; Unger, Nadine; Bergmann, Dan; Prather, Michael; Righi, Mattia; Rumbold, Steven T.; Shindell, Drew T.; Skeie, Ragnhild B.; hide

    2012-01-01

    Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH4), ozone precursors (O3), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O3 precursor CH4 would slow near-term warming by decreasing both CH4 and tropospheric O3. Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NOx) emissions, which increase tropospheric O3 (warming) but also increase aerosols and decrease CH4 (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH4 volatile organic compounds (NMVOC) warm by increasing both O3 and CH4. Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O3 and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative

  6. Impacts of ozone-vegetation coupling and feedbacks on global air quality, ecosystems and food security

    Science.gov (United States)

    Tai, A. P. K.

    2016-12-01

    Surface ozone is an air pollutant of significant concerns due to its harmful effects on human health, vegetation and crop productivity. Chronic ozone exposure is shown to reduce photosynthesis and interfere with gas exchange in plants, thereby influencing surface energy balance and biogeochemical fluxes with important ramifications for climate and atmospheric composition, including possible feedbacks onto ozone itself that are not well understood. Ozone damage on crops has been well documented, but a mechanistic understanding is not well established. Here we present several results pertaining to the effects of ozone-vegetation coupling on air quality, ecosystems and agriculture. Using the Community Earth System Model (CESM), we find that inclusion of ozone damage on plants reduces the global land carbon sink by up to 5%, while simulated ozone is enhanced by up to 6 ppbv North America, Europe and East Asia. This strong positive feedback on ozone air quality via ozone-vegetation coupling arises mainly from reduced stomatal conductance, which induces two feedback pathways: 1) reduced dry deposition and ozone uptake; and 2) reduced evapotranspiration that enhances vegetation temperature and thus isoprene emission. Using the same ozone-vegetation scheme in a crop model within CESM, we further examine the impacts of historical ozone exposure on global crop production. We contrast our model results with a separate statistical analysis designed to characterize the spatial variability of crop-ozone-temperature relationships and account for the confounding effect of ozone-temperature covariation, using multidecadal global datasets of crop yields, agroclimatic variables and ozone exposures. We find that several crops (especially C4 crops such as maize) exhibit stronger sensitivities to ozone than found by field studies or in CESM simulations. We also find a strong anticorrelation between crop sensitivities and average ozone levels, reflecting biological adaptive ozone

  7. Global climate change adaptation: examples from Russian boreal forests

    International Nuclear Information System (INIS)

    Krankina, O.N.; Dixon, R.K.; Kirilenko, A.P.; Kobak, K.I.

    1997-01-01

    The Russian Federation contains approximately 20% of the world's timber resources and more than half of all boreal forests. These forests play a prominent role in environmental protection and economic development at global, national, and local levels, as well as, provide commodities for indigenous people and habitat for a variety of plant and animal species. The response and feedbacks of Russian boreal forests to projected global climate change are expected to be profound. Current understanding of the vulnerability of Russian forest resources to projected climate change is discussed and examples of possible adaptation measures for Russian forests are presented including: (1) artificial forestation techniques that can be applied with the advent of failed natural regeneration and to facilitate forest migration northward; (2) silvicultural measures that can influence the species mix to maintain productivity under future climates; (3) identifying forests at risk and developing special management adaption measures for them: (4) alternative processing and uses of wood and non-wood products from future forests; and (5) potential future infrastructure and transport systems that can be employed as boreal forests shift northward into melting permafrost zones. Current infrastructure and technology can be employed to help Russian boreal forests adapt to projected global environmental change, however many current forest management practices may have to be modified. Application of this technical knowledge can help policymakers identify priorities for climate change adaptation

  8. Experts' workshop on critical issues in the science of global climate change. Proceedings

    International Nuclear Information System (INIS)

    1994-01-01

    A summary is given of the International Petroleum Industry Environmental Conservation Association's Workshop on 'Critical issues in the science of global climate change' held in 1994. The topics of the panel sessions were (1) modelling global climate change: capabilities and limitations; (2)the physics and chemistry of greenhouse gas concentrations; (3) other factors in predicting climate change; and (4) ecosystem response. (UK)

  9. Global climate change and California

    International Nuclear Information System (INIS)

    Knox, J.B.; Scheuring, A.F.

    1991-01-01

    In the fall of 1988 the University of California organized a new public-service initiative on global climate change in response to inquiries and requests from members of Congress and the Department of Energy (DOE). This new systemwide initiative involved all of the University of California campuses and the University's three national laboratories at Berkeley, Los Alamos, and Livermore. The goal of this Greenhouse Initiative was to focus the multidisciplinary resources of the UC campuses and the team-oriented research capabilities of the laboratories on the prospect of global warming and its associated effects on the planet and its nations. In consultation with the DOE, the organizers proposed a series of workshops to focus University of California research resources on the issue of global warming, to contribute to the congressionally mandated DOE studies on options for the US to reduce carbon dioxide emissions by 20% by the year 2000, and to begin building a long-term research base contributing to an improved understanding of global change in all of its complexity and diverse discipline implications. This volume contains papers from the first of these workshops. Individual papers are processed separately for inclusion in the appropriate data bases

  10. The Global Climate Dashboard: a Software Interface to Stream Comprehensive Climate Data

    Science.gov (United States)

    Gardiner, N.; Phillips, M.; NOAA Climate Portal Dashboard

    2011-12-01

    The Global Climate Dashboard is an integral component of NOAA's web portal to climate data, services, and value-added content for decision-makers, teachers, and the science-attentive public (www.clmate.gov). The dashboard provides a rapid view of observational data that demonstrate climate change and variability, as well as outputs from the Climate Model Intercomparison Project version 3, which was built to support the Intergovernmental Panel on Climate Change fourth assessment. The data shown in the dashboard therefore span a range of climate science disciplines with applications that serve audiences with diverse needs. The dashboard is designed with reusable software components that allow it to be implemented incrementally on a wide range of platforms including desktops, tablet devices, and mobile phones. The underlying software components support live streaming of data and provide a way of encapsulating graph sytles and other presentation details into a device-independent standard format that results in a common visual look and feel across all platforms. Here we describe the pedagogical objectives, technical implementation, and the deployment of the dashboard through climate.gov and partner web sites and describe plans to develop a mobile application using the same framework.

  11. Global chaos synchronization of coupled parametrically excited ...

    Indian Academy of Sciences (India)

    In this paper, we study the synchronization behaviour of two linearly coupled parametrically excited chaotic pendula. The stability of the synchronized state is examined using Lyapunov stability theory and linear matrix inequality (LMI); and some sufficient criteria for global asymptotic synchronization are derived from which ...

  12. Detection and Attribution of Climate Change : From global mean temperature change to climate extremes and high impact weather.

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    This talk will describe how evidence has grown in recent years for a human influence on climate and explain how the Fifth Assessment Report of the Intergovernmental Panel on Climate Change concluded that it is extremely likely (>95% probability) that human influence on climate has been the dominant cause of the observed global-mean warming since the mid-20th century. The fingerprint of human activities has also been detected in warming of the ocean, in changes in the global water cycle, in reductions in snow and ice, and in changes in some climate extremes. The strengthening of evidence for the effects of human influence on climate extremes is in line with long-held basic understanding of the consequences of mean warming for temperature extremes and for atmospheric moisture. Despite such compelling evidence this does not mean that every instance of high impact weather can be attributed to anthropogenic climate change, because climate variability is often a major factor in many locations, especially for rain...

  13. The Role of Volcanic Activity in Climate and Global Change

    KAUST Repository

    Stenchikov, Georgiy L.

    2015-09-23

    Explosive volcanic eruptions are magnificent events that in many ways affect the Earth\\'s natural processes and climate. They cause sporadic perturbations of the planet\\'s energy balance, activating complex climate feedbacks and providing unique opportunities to better quantify those processes. We know that explosive eruptions cause cooling in the atmosphere for a few years, but we have just recently realized that volcanic signals can be seen in the subsurface ocean for decades. The volcanic forcing of the previous two centuries offsets the ocean heat uptake and diminishes global warming by about 30%. The explosive volcanism of the twenty-first century is unlikely to either cause any significant climate signal or to delay the pace of global warming. The recent interest in dynamic, microphysical, chemical, and climate impacts of volcanic eruptions is also excited by the fact that these impacts provide a natural analogue for climate geoengineering schemes involving deliberate development of an artificial aerosol layer in the lower stratosphere to counteract global warming. In this chapter we aim to discuss these recently discovered volcanic effects and specifically pay attention to how we can learn about the hidden Earth-system mechanisms activated by explosive volcanic eruptions. To demonstrate these effects we use our own model results when possible along with available observations, as well as review closely related recent publications.

  14. Global situational awareness and early warning of high-consequence climate change.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Carr, Martin J.; Boslough, Mark Bruce Elrick

    2009-08-01

    Global monitoring systems that have high spatial and temporal resolution, with long observational baselines, are needed to provide situational awareness of the Earth's climate system. Continuous monitoring is required for early warning of high-consequence climate change and to help anticipate and minimize the threat. Global climate has changed abruptly in the past and will almost certainly do so again, even in the absence of anthropogenic interference. It is possible that the Earth's climate could change dramatically and suddenly within a few years. An unexpected loss of climate stability would be equivalent to the failure of an engineered system on a grand scale, and would affect billions of people by causing agricultural, economic, and environmental collapses that would cascade throughout the world. The probability of such an abrupt change happening in the near future may be small, but it is nonzero. Because the consequences would be catastrophic, we argue that the problem should be treated with science-informed engineering conservatism, which focuses on various ways a system can fail and emphasizes inspection and early detection. Such an approach will require high-fidelity continuous global monitoring, informed by scientific modeling.

  15. Global Framework for Climate Services (GFCS): status of implementation

    Science.gov (United States)

    Lucio, Filipe

    2015-04-01

    The World Climate Conference-3 (Geneva 2009) unanimously decided to establish the Global Framework for Climate Services (GFCS), a UN-led initiative spearheaded by WMO to guide the development and application of science-based climate information and services in support of decision-making in climate sensitive sectors. By promoting science-based decision-making, the GFCS is empowering governments, communities and companies to build climate resilience, reduce vulnerabilities and adapt to impacts. The initial priority areas of GFCS are Agriculture and Food Security; Disaster Risk Reduction; Health; and Water Resources. The implementation of GFCS is well underway with a governance structure now fully established. The governance structure of GFCS includes the Partner Advisory Committee (PAC), which is GFCS's stakeholder engagement mechanism. The membership of the PAC allows for a broad participation of stakeholders. The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the European Commission (EC), the Food and Agriculture Organization of the UN (FAO), the Global Water Partnership (GWP), the International Federation of Red Cross and Red Crescent Societies (IFRC), the International Union of Geodesy and Geophysics (IUGG), United Nations Environment Programme (UNEP), the United Nations Institute for Training and Research (UNITAR), the World Business Council for Sustainable Development (WBCSD), the World Food Programme (WFP) and WMO have already joined the PAC. Activities are being implemented in various countries in Africa, the Caribbean, Asia and Pacific Small Islands Developing States through flagship projects and activities in the four priority areas of GFCS to enable the development of a Proof of Concept. The focus at national level is on strengthening institutional capacities needed for development of capacities for co-design and co-production of climate services and their application in support of decision-making in climate sensitive

  16. The rise and fall of the global climate polity

    DEFF Research Database (Denmark)

    Corry, Olaf

    2013-01-01

    Introduction Not so long ago the idea that a global climate polity could exist would have seemed bizarre or simply nonsensical. ‘The climate’ was effectively just patterns of weather over time. Though there is a long history of attempts at affecting weather, these were generally limited to engine......Introduction Not so long ago the idea that a global climate polity could exist would have seemed bizarre or simply nonsensical. ‘The climate’ was effectively just patterns of weather over time. Though there is a long history of attempts at affecting weather, these were generally limited...... to engineering local and temporary effects on rainfall, and historically many schemes ended in failure or even ridicule (Fleming 2012). Few if any people seriously entertained the idea that people, states, corporations and international organizations would mobilize and operate giant monitoring and regulatory...... systems in concerted attempts to change (or preserve) the chemical composition of the global atmosphere. This raises not only the question of how the idea of governing something like the climate so rapidly became a matter of course but also how sure we can be that it will remain so in, for example...

  17. Environmental Progression: The Psychological Justification for Reframing Climate Change and Global Warming

    Science.gov (United States)

    Veldey, S. H.

    2016-12-01

    On-going research in climate science communication through environmental media has uncovered critical barriers to reducing denial and increasing agency in addressing the threat of climate change. Similar to framing of our changing environment as "global warming", the term "climate change" also fails to properly frame the most critical challenge our species has faced. In a set of preliminary studies, significant changes in climate crisis denial, both positive and negative, have resulted from different media messaging. Continuation of this research utilizes social judgement theory (SJT) to classify a broader spectrum of effective avenues for environmental communication. The specificity of the terms global warming and climate change limit inclusion of issues critical to understanding their impacts. Now that the masses know what climate change is, it's time to teach them what it means.

  18. Global Wildfire Forecasts Using Large Scale Climate Indices

    Science.gov (United States)

    Shen, Huizhong; Tao, Shu

    2016-04-01

    Using weather readings, fire early warning can provided forecast 4-6 hour in advance to minimize fire loss. The benefit would be dramatically enhanced if relatively accurate long-term projection can be also provided. Here we present a novel method for predicting global fire season severity (FSS) at least three months in advance using multiple large-scale climate indices (CIs). The predictive ability is proven effective for various geographic locations and resolution. Globally, as well as in most continents, the El Niño Southern Oscillation (ENSO) is the dominant driving force controlling interannual FSS variability, whereas other CIs also play indispensable roles. We found that a moderate El Niño event is responsible for 465 (272-658 as interquartile range) Tg carbon release and an annual increase of 29,500 (24,500-34,800) deaths from inhalation exposure to air pollutants. Southeast Asia accounts for half of the deaths. Both intercorrelation and interaction of WPs and CIs are revealed, suggesting possible climate-induced modification of fire responses to weather conditions. Our models can benefit fire management in response to climate change.

  19. Coherent regimes of globally coupled dynamical systems

    DEFF Research Database (Denmark)

    de Monte, Silvia; D'ovidio, Francesco; Mosekilde, Erik

    2003-01-01

    This Letter presents a method by which the mean field dynamics of a population of dynamical systems with parameter diversity and global coupling can be described in terms of a few macroscopic degrees of freedom. The method applies to populations of any size and functional form in the region...

  20. Global scale climate-crop yield relationships and the impacts of recent warming

    International Nuclear Information System (INIS)

    Lobell, David B; Field, Christopher B

    2007-01-01

    Changes in the global production of major crops are important drivers of food prices, food security and land use decisions. Average global yields for these commodities are determined by the performance of crops in millions of fields distributed across a range of management, soil and climate regimes. Despite the complexity of global food supply, here we show that simple measures of growing season temperatures and precipitation-spatial averages based on the locations of each crop-explain ∼30% or more of year-to-year variations in global average yields for the world's six most widely grown crops. For wheat, maize and barley, there is a clearly negative response of global yields to increased temperatures. Based on these sensitivities and observed climate trends, we estimate that warming since 1981 has resulted in annual combined losses of these three crops representing roughly 40 Mt or $5 billion per year, as of 2002. While these impacts are small relative to the technological yield gains over the same period, the results demonstrate already occurring negative impacts of climate trends on crop yields at the global scale

  1. Climate Change, Global Food Markets, and Urban Unrest

    Science.gov (United States)

    2013-02-01

    Francis Gavin 512-471-6267 3. DATES COVERED (From - To) Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - Climate Change, Global Food...Russia led then-President Dmitry Medvedev to impose export restrictions on wheat, barley, and rye . Food security is fundamental to human security. Prior...how much food is grown and where it is grown. Second, climate change will increase the frequency of localized crop failures due to more frequent

  2. Multi-scale climate modelling over Southern Africa using a variable-resolution global model

    CSIR Research Space (South Africa)

    Engelbrecht, FA

    2011-12-01

    Full Text Available -mail: fengelbrecht@csir.co.za Multi-scale climate modelling over Southern Africa using a variable-resolution global model FA Engelbrecht1, 2*, WA Landman1, 3, CJ Engelbrecht4, S Landman5, MM Bopape1, B Roux6, JL McGregor7 and M Thatcher7 1 CSIR Natural... improvement. Keywords: multi-scale climate modelling, variable-resolution atmospheric model Introduction Dynamic climate models have become the primary tools for the projection of future climate change, at both the global and regional scales. Dynamic...

  3. Sulfur dioxide initiates global climate change in four ways

    International Nuclear Information System (INIS)

    Ward, Peter L.

    2009-01-01

    Global climate change, prior to the 20th century, appears to have been initiated primarily by major changes in volcanic activity. Sulfur dioxide (SO 2 ) is the most voluminous chemically active gas emitted by volcanoes and is readily oxidized to sulfuric acid normally within weeks. But trace amounts of SO 2 exert significant influence on climate. All major historic volcanic eruptions have formed sulfuric acid aerosols in the lower stratosphere that cooled the earth's surface ∼ 0.5 o C for typically three years. While such events are currently happening once every 80 years, there are times in geologic history when they occurred every few to a dozen years. These were times when the earth was cooled incrementally into major ice ages. There have also been two dozen times during the past 46,000 years when major volcanic eruptions occurred every year or two or even several times per year for decades. Each of these times was contemporaneous with very rapid global warming. Large volumes of SO 2 erupted frequently appear to overdrive the oxidizing capacity of the atmosphere resulting in very rapid warming. Such warming and associated acid rain becomes extreme when millions of cubic kilometers of basalt are erupted in much less than one million years. These are the times of the greatest mass extinctions. When major volcanic eruptions do not occur for decades to hundreds of years, the atmosphere can oxidize all pollutants, leading to a very thin atmosphere, global cooling and decadal drought. Prior to the 20th century, increases in atmospheric carbon dioxide (CO 2 ) followed increases in temperature initiated by changes in SO 2 . By 1962, man burning fossil fuels was adding SO 2 to the atmosphere at a rate equivalent to one 'large' volcanic eruption each 1.7 years. Global temperatures increased slowly from 1890 to 1950 as anthropogenic sulfur increased slowly. Global temperatures increased more rapidly after 1950 as the rate of anthropogenic sulfur emissions increased. By

  4. WMO statement on the status of the global climate in 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The brochure gives a summary of global climate during 1996, from information provided by the Climate Prediction Center in the United States with inputs from other climate centres around the world. The 1997 global mean surface temperature anomaly, 0.43{degree}C above the 1961-90 base-period mean temperature, was the highest since records began in 1860. One major contributing factor was the El Nino Southern Oscillation (ENSO) episode with temperatures in the tropical belt being the second highest in the historical record. ENSO resulted in increased rainfall in the central and eastern aquatorical pacific. In Indonesia, low rainfall from March to December and drought conditions by July and August contributed to uncontrolled wildfires in rainforests of Sumatra and Borneo resulting in widespread smoke pollution. The booklet is provided through the Climate Change Detection Project of the World Climate Data and Monitoring Programme (WCDMP). 10 figs.

  5. Detection and Attribution of Regional Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G; Mirin, A

    2007-01-19

    We developed a high resolution global coupled modeling capability to perform breakthrough studies of the regional climate change. The atmospheric component in our simulation uses a 1{sup o} latitude x 1.25{sup o} longitude grid which is the finest resolution ever used for the NCAR coupled climate model CCSM3. Substantial testing and slight retuning was required to get an acceptable control simulation. The major accomplishment is the validation of this new high resolution configuration of CCSM3. There are major improvements in our simulation of the surface wind stress and sea ice thickness distribution in the Arctic. Surface wind stress and ocean circulation in the Antarctic Circumpolar Current are also improved. Our results demonstrate that the FV version of the CCSM coupled model is a state of the art climate model whose simulation capabilities are in the class of those used for IPCC assessments. We have also provided 1000 years of model data to Scripps Institution of Oceanography to estimate the natural variability of stream flow in California. In the future, our global model simulations will provide boundary data to high-resolution mesoscale model that will be used at LLNL. The mesoscale model would dynamically downscale the GCM climate to regional scale on climate time scales.

  6. A review of Thailand's strategies for global climate change

    International Nuclear Information System (INIS)

    Boonchalermkit, S.

    1994-01-01

    Thailand is greatly concerned about global climate change, which is caused primarily by the burning of fossil fuels, deforestation and the release of chlorofluorocarbons. The country itself is not currently a major contributor to global climate change. However, as Thailand's economy expands and its burning of fossil fuels increases, the country's contribution to global climate change could increase. Thailand's use of primary energy supplies grew at an average rate of 13.4 percent per year in the period 1985 to 1990. The rapid, sustained growth was due to the overall pace of growth in the economy and the expansion of industrial, construction, and transportation activities. The primary energy demand was approximately 31,600 kilotons of oil equivalent (KTOE) in 1990. The transportation sector accounted for the largest proportion of energy demand at 30 percent. Within the next 15 years, the power sector is expected to overtake the transportation sector as the largest consumer of energy. Petroleum is currently the predominant source of energy in Thailand, accounting for 56 percent of the primary energy demand. Thailand recognizes that it has an important part to play in finding solutions to minimizing emissions of greenhouse gases and identifying viable response strategies. Thus, in this paper the authors will present several policy strategies relevant to climate change in Thailand and discuss how they have been implemented and enforced. Policies concerning forestry, energy, and environment are reviewed in detail in this paper

  7. Human-experienced temperature changes exceed global average climate changes for all income groups

    Science.gov (United States)

    Hsiang, S. M.; Parshall, L.

    2009-12-01

    Global climate change alters local climates everywhere. Many climate change impacts, such as those affecting health, agriculture and labor productivity, depend on these local climatic changes, not global mean change. Traditional, spatially averaged climate change estimates are strongly influenced by the response of icecaps and oceans, providing limited information on human-experienced climatic changes. If used improperly by decision-makers, these estimates distort estimated costs of climate change. We overlay the IPCC’s 20 GCM simulations on the global population distribution to estimate local climatic changes experienced by the world population in the 21st century. The A1B scenario leads to a well-known rise in global average surface temperature of +2.0°C between the periods 2011-2030 and 2080-2099. Projected on the global population distribution in 2000, the median human will experience an annual average rise of +2.3°C (4.1°F) and the average human will experience a rise of +2.4°C (4.3°F). Less than 1% of the population will experience changes smaller than +1.0°C (1.8°F), while 25% and 10% of the population will experience changes greater than +2.9°C (5.2°F) and +3.5°C (6.2°F) respectively. 67% of the world population experiences temperature changes greater than the area-weighted average change of +2.0°C (3.6°F). Using two approaches to characterize the spatial distribution of income, we show that the wealthiest, middle and poorest thirds of the global population experience similar changes, with no group dominating the global average. Calculations for precipitation indicate that there is little change in average precipitation, but redistributions of precipitation occur in all income groups. These results suggest that economists and policy-makers using spatially averaged estimates of climate change to approximate local changes will systematically and significantly underestimate the impacts of climate change on the 21st century population. Top: The

  8. The Antarctic - the wild card in the global climate

    International Nuclear Information System (INIS)

    Oesterhus, Svein; Gammelsroed, Tor; Foldvik, Arne; Noest, Ole Anders

    1999-01-01

    The overview gives an account of studies of snowfall, ice melting and formation and water flow patterns in the Antarctic during the present global warming period. It also gives a survey of the ice area in the region. The sea water warming is dramatic and a large floating glacier seems to be decomposing which is disrupting the oceanographic and ecological relations in the region and globally and is significantly influencing the global climate

  9. Bringing a Realistic Global Climate Modeling Experience to a Broader Audience

    Science.gov (United States)

    Sohl, L. E.; Chandler, M. A.; Zhou, J.

    2010-12-01

    EdGCM, the Educational Global Climate Model, was developed with the goal of helping students learn about climate change and climate modeling by giving them the ability to run a genuine NASA global climate model (GCM) on a desktop computer. Since EdGCM was first publicly released in January 2005, tens of thousands of users on seven continents have downloaded the software. EdGCM has been utilized by climate science educators from middle school through graduate school levels, and on occasion even by researchers who otherwise do not have ready access to climate model at national labs in the U.S. and elsewhere. The EdGCM software is designed to walk users through the same process a climate scientist would use in designing and running simulations, and analyzing and visualizing GCM output. Although the current interface design gives users a clear view of some of the complexities involved in using a climate model, it can be daunting for users whose main focus is on climate science rather than modeling per se. As part of the work funded by NASA’s Global Climate Change Education (GCCE) program, we will begin modifications to the user interface that will improve the accessibility of EdGCM to a wider array of users, especially at the middle school and high school levels, by: 1) Developing an automated approach (a “wizard”) to simplify the user experience in setting up new climate simulations; 2) Produce a catalog of “rediscovery experiments” that allow users to reproduce published climate model results, and in some cases compare model projections to real world data; and 3) Enhance distance learning and online learning opportunities through the development of a web-based interface. The prototypes for these modifications will then be presented to educators belonging to an EdGCM Users Group for feedback, so that we can further refine the EdGCM software, and thus deliver the tools and materials educators want and need across a wider range of learning environments.

  10. Mapping vulnerability to multiple stressors: climate change and globalization in India

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Karen; Aandahl, Guro; Tompkins, Heather [CICERO, Oslo (NO)] (and others)

    2004-12-01

    There is growing recognition in the human dimensions research community that climate change impact studies must take into account the effects of other ongoing global changes. Yet there has been no systematic methodology to study climate change vulnerability in the context of multiple stressors. Using the example of Indian agriculture, this paper presents a methodology for investigating regional vulnerability to climate change in combination with other global stressors. This method, which relies on both vulnerability mapping and local- level case studies, may be used to assess differential vulnerability for any particular sector within a nation or region, and it can serve as a basis for targeting policy interventions. (Author)

  11. Health effects of global climate change

    International Nuclear Information System (INIS)

    Ghauri, B.; Salam, M.; Mirza I.

    1992-01-01

    This paper identifies potential health problems that may arise from global climates changes caused by increasing green house gases and depletion in the ozone layer. The mankind is responsible for saving or destroying the environment. There are many forms which can pollute the environment like greenhouse activities. The greenhouse gases like carbon dioxide, methane and ozone etc. cause pollutants in the environment. (A.B.)

  12. Developing country finance in a post-2020 global climate agreement

    Science.gov (United States)

    Hannam, Phillip M.; Liao, Zhenliang; Davis, Steven J.; Oppenheimer, Michael

    2015-11-01

    A central task for negotiators of the post-2020 global climate agreement is to construct a finance regime that supports low-carbon development in developing economies. As power sector investments between developing countries grow, the climate finance regime should incentivize the decarbonization of these major sources of finance by integrating them as a complement to the commitments of developed nations. The emergence of the Asian Infrastructure Investment Bank, South-South Cooperation Fund and other nascent institutions reveal the fissures that exist in rules and norms surrounding international finance in the power sector. Structuring the climate agreement in Paris to credit qualified finance from the developing world could have several advantages, including: (1) encouraging low-carbon cooperation between developing countries; (2) incentivizing emerging investors to prefer low-carbon investments; and (3) enabling more cost-effective attainment of national and global climate objectives. Failure to coordinate on standards now could hinder low-carbon development in the decades to come.

  13. Implications of climate change (global warming) for the healthcare system.

    Science.gov (United States)

    Raffa, R B; Eltoukhy, N S; Raffa, K F

    2012-10-01

    Temperature-sensitive pathogenic species and their vectors and hosts are emerging in previously colder regions as a consequence of several factors, including global warming. As a result, an increasing number of people will be exposed to pathogens against which they have not previously needed defences. We illustrate this with a specific example of recent emergence of Cryptococcus gattii infections in more temperate climates. The outbreaks in more temperate climates of the highly virulent--but usually tropically restricted--C. gattii is illustrative of an anticipated growing challenge for the healthcare system. There is a need for preparedness by healthcare professionals in anticipation and for management of such outbreaks, including other infections whose recent increased prevalence in temperate climates can be at least partly associated with global warming. (Re)emergence of temperature-sensitive pathogenic species in more temperate climates will present new challenges for healthcare systems. Preparation for outbreaks should precede their occurrence. © 2012 Blackwell Publishing Ltd.

  14. Improved Regional Climate Model Simulation of Precipitation by a Dynamical Coupling to a Hydrology Model

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Drews, Martin; Hesselbjerg Christensen, Jens

    convective precipitation systems. As a result climate model simulations let alone future projections of precipitation often exhibit substantial biases. Here we show that the dynamical coupling of a regional climate model to a detailed fully distributed hydrological model - including groundwater-, overland...... of local precipitation dynamics are seen for time scales of app. Seasonal duration and longer. We show that these results can be attributed to a more complete treatment of land surface feedbacks. The local scale effect on the atmosphere suggests that coupled high-resolution climate-hydrology models...... including a detailed 3D redistribution of sub- and land surface water have a significant potential for improving climate projections even diminishing the need for bias correction in climate-hydrology studies....

  15. Tropical forest policies for the global climate

    International Nuclear Information System (INIS)

    De Groot, W.T.; Kamminga, E.M.

    1995-01-01

    A summary is given of the approach and findings of the NRP project 'Local Actors and Global Tree Cover Policies'. The aim of this project was to identify the most effective and efficient options for global climate policies focusing on the tropical forest. Tropical deforestation is a process with very complex and variable causes. In the project's conclusions, therefore, much care has been given to arrive at a coherent image of what really counts most in the myriad of factors, actors, policy levels and policy options. 5 refs

  16. Future Urban Climate Projection in A Tropical Megacity Based on Global and Regional Scenarios

    Science.gov (United States)

    Darmanto, N. S.; Varquez, A. C. G.; Kanda, M.

    2017-12-01

    Cities in Asian developing countries experience rapid transformation in urban morphology and energy consumption, which correspondingly affects urban climate. Weather Research and Forecasting (WRF) Model coupled with improved single-layer urban canopy model incorporating realistic distribution of urban parameters and anthropogenic heat emission (AHE) in the tropic Jakarta Greater Area was conducted. Simulation was conducted during the dry months from 2006 to 2015 and agreed well with point and satellite observation. The same technology coupled with pseudo global warming (PGW) method based on representative concentration pathways (RCP) scenario 2.6 and 8.5 was conducted to produce futuristic climate condition in 2050. Projected urban morphology and AHE in 2050s were constructed using regional urban growing model with shared socioeconomic pathways (SSP) among its inputs. Compact future urban configuration, based on SSP1, was coupled to RCP2.6. Unrestrained future urban configuration, based on SSP3, was coupled to RCP8.5. Results show that background warming from RCP 2.6 and 8.5 will increase background temperature by 0.55°C and 1.2°C throughout the region, respectively. Future projection of urban sprawl results to an additional 0.3°C and 0.5°C increase on average, with maximum increase of 1.1°C and 1.3°C due to urban effect for RCP2.6/compact and RCP8.5/unrestrained, respectively. Higher moisture content in urban area is indicated in the future due to higher evaporation. Change in urban roughness is likely affect slower wind velocity in urban area and sea breeze front inland penetration the future compare with current condition. Acknowledgement: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.

  17. Global off-line evaluation of the ISBA-TRIP continental hydrological system used in the CNRM-CM6 climate model for the next CMIP6 exercise

    Science.gov (United States)

    Decharme, Bertrand; Vergnes, Jean-Pierre; Minvielle, Marie; Colin, Jeanne; Delire, Christine

    2016-04-01

    The land surface hydrology represents an active component of the climate system. It is likely to influence the water and energy exchanges at the land surface, the ocean salinity and temperature at the mouth of the largest rivers, and the climate at least at the regional scale. In climate models, the continental hydrology is simulated via Land Surface Models (LSM), which compute water and energy budgets at the surface, coupled to River Routing Model (RRM), which convert the runoff simulated by the LSMs into river discharge in order to transfer the continental fresh water into the oceans and then to close the global hydrological cycle. Validating these Continental Hydrological Systems (CHS) at the global scale is therefore a crucial task, which requires off-line simulations driven by realistic atmospheric fluxes to avoid the systematic biases commonly found in the atmospheric models. In the CNRM-CM6 climate model of Météo-France, that will be used for the next Coupled Climate Intercomparison Project phase 6 (CMIP6) exercise, the land surface hydrology is simulated using the ISBA-TRIP CHS coupled via the OASIS-MCT coupler. The ISBA LSM solves explicitly the one dimensional Fourier law for soil temperature and the mixed form of the Richards equation for soil moisture using a 14-layers discretization over 12m depths. For the snowpack, a discretization using 12 layers allows the explicit representation of some snow key processes as its viscosity, its compaction due to wind, its age and its albedo on the visible and near infrared spectra. The TRIP RRM uses a global river channel network at 0.5° resolution. It is based on a three prognostic equations for the surface stream water, the seasonal floodplains, and the groundwater. The streamflow velocity is computed using the Maning's formula. The floodplain reservoir fills when the river height exceeds the river bankfull height and vice-versa. The flood interacts with the ISBA soil hydrology through infiltration and with

  18. Evaluation of global climate models for Indian monsoon climatology

    International Nuclear Information System (INIS)

    Kodra, Evan; Ganguly, Auroop R; Ghosh, Subimal

    2012-01-01

    The viability of global climate models for forecasting the Indian monsoon is explored. Evaluation and intercomparison of model skills are employed to assess the reliability of individual models and to guide model selection strategies. Two dominant and unique patterns of Indian monsoon climatology are trends in maximum temperature and periodicity in total rainfall observed after 30 yr averaging over India. An examination of seven models and their ensembles reveals that no single model or model selection strategy outperforms the rest. The single-best model for the periodicity of Indian monsoon rainfall is the only model that captures a low-frequency natural climate oscillator thought to dictate the periodicity. The trend in maximum temperature, which most models are thought to handle relatively better, is best captured through a multimodel average compared to individual models. The results suggest a need to carefully evaluate individual models and model combinations, in addition to physical drivers where possible, for regional projections from global climate models. (letter)

  19. Regional Climate Impacts of Stabilizing Global Warming at 1.5 K Using Solar Geoengineering

    Science.gov (United States)

    Jones, Anthony C.; Hawcroft, Matthew K.; Haywood, James M.; Jones, Andy; Guo, Xiaoran; Moore, John C.

    2018-02-01

    The 2015 Paris Agreement aims to limit global warming to well below 2 K above preindustrial levels, and to pursue efforts to limit global warming to 1.5 K, in order to avert dangerous climate change. However, current greenhouse gas emissions targets are more compatible with scenarios exhibiting end-of-century global warming of 2.6-3.1 K, in clear contradiction to the 1.5 K target. In this study, we use a global climate model to investigate the climatic impacts of using solar geoengineering by stratospheric aerosol injection to stabilize global-mean temperature at 1.5 K for the duration of the 21st century against three scenarios spanning the range of plausible greenhouse gas mitigation pathways (RCP2.6, RCP4.5, and RCP8.5). In addition to stabilizing global mean temperature and offsetting both Arctic sea-ice loss and thermosteric sea-level rise, we find that solar geoengineering could effectively counteract enhancements to the frequency of extreme storms in the North Atlantic and heatwaves in Europe, but would be less effective at counteracting hydrological changes in the Amazon basin and North Atlantic storm track displacement. In summary, solar geoengineering may reduce global mean impacts but is an imperfect solution at the regional level, where the effects of climate change are experienced. Our results should galvanize research into the regionality of climate responses to solar geoengineering.

  20. At a global scale, do climate change threatened species also face a greater number of non-climatic threats?

    Directory of Open Access Journals (Sweden)

    Lucas B. Fortini

    2017-07-01

    Full Text Available For many species the threats of climate change occur in a context of multiple existing threats. Given the current focus of global change ecology in identifying and understanding species vulnerable to climate change, we performed a global analysis to characterize the multi-threat context for species threatened by climate change. Utilizing 30,053 species from the International Union for Conservation of Nature’s (IUCN Red List of Threatened Species, we sought to evaluate if species threatened by climate change are more likely threatened by a greater number of non-climatic threats than species not threatened by climate change. Our results show that species threatened by climate change are generally impacted by 21% more non-climatic threats than species not threatened by climate change. Across all species, this pattern is related to IUCN risk status, where endangered species threatened by climate change face 33% more non-climatic threats than endangered species not threatened by climate change. With the clear challenges of assessing current and projected impacts of climate change on species and ecosystems, research often requires reductionist approaches that result in downplaying this multi-threat context. This cautionary note bears relevance beyond climate change threatened species as we also found other (but not all anthropogenic threats are also similarly associated with more threats. Our findings serve as a reminder that ecological research should seriously consider these potential threat interactions, especially for species under elevated conservation concern.

  1. Climate change adaptation: where does global health fit in the agenda?

    Science.gov (United States)

    Bowen, Kathryn J; Friel, Sharon

    2012-05-27

    Human-induced climate change will affect the lives of most populations in the next decade and beyond. It will have greatest, and generally earliest, impact on the poorest and most disadvantaged populations on the planet. Changes in climatic conditions and increases in weather variability affect human wellbeing, safety, health and survival in many ways. Some impacts are direct-acting and immediate, such as impaired food yields and storm surges. Other health effects are less immediate and typically occur via more complex causal pathways that involve a range of underlying social conditions and sectors such as water and sanitation, agriculture and urban planning. Climate change adaptation is receiving much attention given the inevitability of climate change and its effects, particularly in developing contexts, where the effects of climate change will be experienced most strongly and the response mechanisms are weakest. Financial support towards adaptation activities from various actors including the World Bank, the European Union and the United Nations is increasing substantially. With this new global impetus and funding for adaptation action come challenges such as the importance of developing adaptation activities on a sound understanding of baseline community needs and vulnerabilities, and how these may alter with changes in climate. The global health community is paying heed to the strengthening focus on adaptation, albeit in a slow and unstructured manner. The aim of this paper is to provide an overview of adaptation and its relevance to global health, and highlight the opportunities to improve health and reduce health inequities via the new and additional funding that is available for climate change adaptation activities.

  2. Greenhouse gas policy influences climate via direct effects of land-use change

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Andrew D.; Collins, William D.; Edmonds, James A.; Torn, Margaret S.; Janetos, Anthony C.; Calvin, Katherine V.; Thomson, Allison M.; Chini, Louise M.; Mao, Jiafu; Shi, Xiaoying; Thornton, Peter; Hurtt, George; Wise, Marshall A.

    2013-06-01

    Proposed climate mitigation measures do not account for direct biophysical climate impacts of land-use change (LUC), nor do the stabilization targets modeled for the 5th Climate Model Intercomparison Project (CMIP5) Representative Concentration Pathways (RCPs). To examine the significance of such effects on global and regional patterns of climate change, a baseline and alternative scenario of future anthropogenic activity are simulated within the Integrated Earth System Model, which couples the Global Change Assessment Model, Global Land-use Model, and Community Earth System Model. The alternative scenario has high biofuel utilization and approximately 50% less global forest cover compared to the baseline, standard RCP4.5 scenario. Both scenarios stabilize radiative forcing from atmospheric constituents at 4.5 W/m2 by 2100. Thus, differences between their climate predictions quantify the biophysical effects of LUC. Offline radiative transfer and land model simulations are also utilized to identify forcing and feedback mechanisms driving the coupled response. Boreal deforestation is found to strongly influence climate due to increased albedo coupled with a regional-scale water vapor feedback. Globally, the alternative scenario yields a 21st century warming trend that is 0.5 °C cooler than baseline, driven by a 1 W/m2 mean decrease in radiative forcing that is distributed unevenly around the globe. Some regions are cooler in the alternative scenario than in 2005. These results demonstrate that neither climate change nor actual radiative forcing are uniquely related to atmospheric forcing targets such as those found in the RCP’s, but rather depend on particulars of the socioeconomic pathways followed to meet each target.

  3. Global Governance of Climate Change The Paris Agreement as a New Component of the UN Climate Regime

    Directory of Open Access Journals (Sweden)

    David A. Wirth

    2017-12-01

    Full Text Available The Paris Agreement, which was adopted in December 2015 and entered into force less than a year later, is the newest instrument to be adopted in the United Nations-sponsored global climate regime. The Paris Agreement takes its place under the 1992 Framework Convention on Climate Change and next to the 1997 Kyoto Protocol and 2012 Doha Amendment. After describing the historical evolution of the UN climate regime employing the tools of international law, this Article explores the structural, institutional, and legal relationships between the new Paris Agreement and the prior development and content of UN-sponsored efforts on climate protection under the auspices of the 1992 Framework Convention. The need for such an analysis is particularly urgent because the new instrument was purposely not identified as a “protocol,” and its relationship to the prior Kyoto Protocol is unclear. This Article consequently traces the development of the universal, UN-anchored climate regime from its origins in the 1990s to the present moment, with particular attention to the structural relationship among its various components and historical junctures. The Article then examines the text and structure of the Paris Agreement, along with its context, against this background. The significance of the Agreement’s status as an instrument other than a “protocol,” and its uncertain textual and institutional relationship to the prior Kyoto Protocol, receive particular scrutiny. The Article concludes that the Paris Agreement, from a structural and institutional point of view, represents both a break with the past designed to initiate a new, globally-inclusive multilateral approach to climate protection, but also contains indications of continuity with prior questions of global climate policy.

  4. IIASA's climate-vegetation-biogeochemical cycle module as a part of an integrated model for climate change

    International Nuclear Information System (INIS)

    Ganopolski, A.V.; Jonas, M.; Krabec, J.; Olendrzynski, K.; Petoukhov, V.K.; Venevsky, S.V.

    1994-01-01

    The main objective of this study is the development of a hierarchy of coupled climate biosphere models with a full description of the global biogeochemical cycles. These models are planned for use as the core of a set of integrated models of climate change and they will incorporate the main elements of the Earth system (atmosphere, hydrosphere, pedosphere and biosphere) linked with each other (and eventually with the antroposphere) through the fluxes of heat, momentum, water and through the global biogeochemical cycles of carbon and nitrogen. This set of integrated models can be considered to fill the gap between highly simplified integrated models of climate change and very sophisticated and computationally expensive coupled models, developed on the basis of general circulation models (GCMs). It is anticipated that this range of integrated models will be an effective tool for investigating the broad spectrum of problems connected with the coexistence of human society and biosphere

  5. Global climate change and human health: Information needs, research priorities, and strategic considerations

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, M.P.; Kanciruk, P. (Oak Ridge National Lab., TN (USA)); O' Hara, F.M. Jr. (O' Hara (Fred M., Jr.), Oak Ridge, TN (USA))

    1989-01-01

    The US Global Research Plan and the International Geosphere-Biosphere Programme were created to assess the effects of global climate change but have not been able to devote much attention to the consequences climate change will have on human health and welfare. Although researchers and policy makers recognize that climate change will have complex effects on resources, in general, the social and medical sciences have not received appropriate international attention under the banner of global change. To address this imbalance, the public health research community needs to launch a international coordinated effort so that the social and medical sciences are as fully represented as other scientific disciplines. This document discusses the information needs, research priorities and strategic considerations of the global change and its impact on human health.

  6. Global warming and ocean acidification through halted weathering feedback during the Middle Eocene Climatic Optimum

    Science.gov (United States)

    van der Ploeg, R.; Selby, D. S.; Cramwinckel, M.; Bohaty, S. M.; Sluijs, A.; Middelburg, J. J.

    2016-12-01

    The Middle Eocene Climatic Optimum (MECO) represents a 500 kyr period of global warming 40 million years ago associated with a rise in atmospheric CO2 concentrations, but its cause remains enigmatic. Moreover, on the timescale of the MECO, an increase in silicate weathering rates on the continents is expected to balance carbon input and restore the alkalinity of the oceans, but this is in sharp disagreement with observations of extensive carbonate dissolution. Here we show, based on osmium isotope ratios of marine sediments from three different sites, that CO2 rise and warming did not lead to enhanced continental weathering during the MECO, in contrast to expectations from carbon cycle theory. Remarkably, a minor shift to lower, more unradiogenic osmium isotope ratios rather indicates an episode of increased volcanism or reduced continental weathering. This disproves silicate weathering as a geologically constant feedback to CO2 variations. Rather, we suggest that global Early and Middle Eocene warmth diminished the weatherability of continental rocks, ultimately leading to CO2 accumulation during the MECO, and show the plausibility of this scenario using carbon cycle modeling simulations. We surmise a dynamic weathering feedback might explain multiple enigmatic phases of coupled climate and carbon cycle change in the Cretaceous and Cenozoic.

  7. Climatic evolution during the last century

    International Nuclear Information System (INIS)

    Schuurmans, C.J.E.; Rijksuniversiteit Utrecht

    1991-01-01

    An attempt is made to list the most important changes of the coupled climate system over the last 100 years. The most obvious of these is a small, global, though non-uniform, warming. Other concepts are discussed briefly: climate change under constant external forcing and due to external forcing, short term climate changes (less than 10 years), decadal variations, changes of the atmospheric circulation, changes in variability, recent climate in longer perspective, climatic jumps as a mode of variation, detection of the greenhouse warming

  8. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    Directory of Open Access Journals (Sweden)

    S. Hagemann

    2013-05-01

    Full Text Available Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three and hydrological models (eight were used to systematically assess the hydrological response to climate change and project the future state of global water resources. This multi-model ensemble allows us to investigate how the hydrology models contribute to the uncertainty in projected hydrological changes compared to the climate models. Due to their systematic biases, GCM outputs cannot be used directly in hydrological impact studies, so a statistical bias correction has been applied. The results show a large spread in projected changes in water resources within the climate–hydrology modelling chain for some regions. They clearly demonstrate that climate models are not the only source of uncertainty for hydrological change, and that the spread resulting from the choice of the hydrology model is larger than the spread originating from the climate models over many areas. But there are also areas showing a robust change signal, such as at high latitudes and in some midlatitude regions, where the models agree on the sign of projected hydrological changes, indicative of higher confidence in this ensemble mean signal. In many catchments an increase of available water resources is expected but there are some severe decreases in Central and Southern Europe, the Middle East, the Mississippi River basin, southern Africa, southern China and south-eastern Australia.

  9. PERSPECTIVE: Climate change, biofuels, and global food security

    Science.gov (United States)

    Cassman, Kenneth G.

    2007-03-01

    There is a new urgency to improve the accuracy of predicting climate change impact on crop yields because the balance between food supply and demand is shifting abruptly from surplus to deficit. This reversal is being driven by a rapid rise in petroleum prices and, in response, a massive global expansion of biofuel production from maize, oilseed, and sugar crops. Soon the price of these commodities will be determined by their value as feedstock for biofuel rather than their importance as human food or livestock feed [1]. The expectation that petroleum prices will remain high and supportive government policies in several major crop producing countries are providing strong momentum for continued expansion of biofuel production capacity and the associated pressures on global food supply. Farmers in countries that account for a majority of the world's biofuel crop production will enjoy the promise of markedly higher commodity prices and incomesNote1. In contrast, urban and rural poor in food-importing countries will pay much higher prices for basic food staples and there will be less grain available for humanitarian aid. For example, the developing countries of Africa import about 10 MMt of maize each year; another 3 5 MMt of cereal grains are provided as humanitarian aid (figure 1). In a world where more than 800 million are already undernourished and the demand for crop commodities may soon exceed supply, alleviating hunger will no longer be solely a matter of poverty alleviation and more equitable food distribution, which has been the situation for the past thirty years. Instead, food security will also depend on accelerating the rate of gain in crop yields and food production capacity at both local and global scales. Maize imports and cereal donations as humanitarian aid to the developing countries of Africa Figure 1. Maize imports (yellow bar) and cereal donations as humanitarian aid to the developing countries of Africa, 2001 2003. MMT = million metric tons. Data

  10. The global atmospheric environment for the next generation

    NARCIS (Netherlands)

    Dentener, F.; Stevenson, D.; Ellingsen, K.; Noije, van T.; Schultz, M.; Amann, M.; Atherton, C.; Bell, N.; Bergmann, D.; Bey, I.; Bouwman, L.; Butler, T.; Cofala, J.; Collins, B.; Drevet, J.; Doherty, R.; Eickhout, B.; Eskes, H.; Fiore, A.; Gauss, M.; Hauglustaine, D.; Horowitz, L.; Isaksen, I.S.A.; Josse, B.; Lawrence, M.; Krol, M.C.; Lamarque, J.F.; Montanaro, V.; Müller, J.F.; Peuch, V.H.; Pitari, G.; Pyle, J.; Rast, S.; Rodriguez, J.; Sanderson, M.; Savage, N.H.; Shindell, D.; Strahan, S.; Szopa, S.; Sudo, K.; Dingenen, van R.; Wild, O.; Zeng, G.

    2006-01-01

    Air quality, ecosystem exposure to nitrogen deposition, and climate change are intimately coupled problems: we assess changes in the global atmospheric environment between 2000 and 2030 using 26 state-of-the-art global atmospheric chemistry models and three different emissions scenarios. The first

  11. A global view on the Higgs self-coupling at lepton colliders

    Energy Technology Data Exchange (ETDEWEB)

    Di Vita, Stefano [INFN Sezione di Milano (Italy); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Durieux, Gauthier [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Grojean, Christophe [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Gu, Jiayin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Chinese Academy of Sciences, Beijing (China). Center for Future High Energy Physics; Liu, Zhen [Fermi National Accelerator Laboratory, Batavia, IL (United States). Theoretical Physics Dept.; Panico, Giuliano [Univ. Autonoma de Barcelona (Spain). IFAE; Univ. Autonoma de Barcelona (Spain). BIST; Riembau, Marc; Vantalon, Thibaud [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Univ. Autonoma de Barcelona (Spain). IFAE; Univ. Autonoma de Barcelona (Spain). BIST

    2017-11-15

    We perform a global effective-field-theory analysis to assess the precision on the determination of the Higgs trilinear self-coupling at future lepton colliders. Two main scenarios are considered, depending on whether the center-of-mass energy of the colliders is sufficient or not to access Higgs pair production processes. Low-energy machines allow for ∝40% precision on the extraction of the Higgs trilinear coupling through the exploitation of next-to-leading-order effects in single Higgs measurements, provided that runs at both 240/250 GeV and 350 GeV are available with luminosities in the few attobarns range. A global fit, including possible deviations in other SM couplings, is essential in this case to obtain a robust determination of the Higgs self-coupling. High-energy machines can easily achieve a ∝20% precision through Higgs pair production processes. In this case, the impact of additional coupling modifications is milder, although not completely negligible.

  12. A global view on the Higgs self-coupling at lepton colliders

    International Nuclear Information System (INIS)

    Di Vita, Stefano; Durieux, Gauthier; Grojean, Christophe; Humboldt-Universitaet, Berlin; Gu, Jiayin; Chinese Academy of Sciences, Beijing; Liu, Zhen; Panico, Giuliano; Univ. Autonoma de Barcelona; Riembau, Marc; Vantalon, Thibaud; Univ. Autonoma de Barcelona; Univ. Autonoma de Barcelona

    2017-11-01

    We perform a global effective-field-theory analysis to assess the precision on the determination of the Higgs trilinear self-coupling at future lepton colliders. Two main scenarios are considered, depending on whether the center-of-mass energy of the colliders is sufficient or not to access Higgs pair production processes. Low-energy machines allow for ∝40% precision on the extraction of the Higgs trilinear coupling through the exploitation of next-to-leading-order effects in single Higgs measurements, provided that runs at both 240/250 GeV and 350 GeV are available with luminosities in the few attobarns range. A global fit, including possible deviations in other SM couplings, is essential in this case to obtain a robust determination of the Higgs self-coupling. High-energy machines can easily achieve a ∝20% precision through Higgs pair production processes. In this case, the impact of additional coupling modifications is milder, although not completely negligible.

  13. Global mortality consequences of climate change accounting for adaptation costs and benefits

    Science.gov (United States)

    Rising, J. A.; Jina, A.; Carleton, T.; Hsiang, S. M.; Greenstone, M.

    2017-12-01

    Empirically-based and plausibly causal estimates of the damages of climate change are greatly needed to inform rapidly developing global and local climate policies. To accurately reflect the costs of climate change, it is essential to estimate how much populations will adapt to a changing climate, yet adaptation remains one of the least understood aspects of social responses to climate. In this paper, we develop and implement a novel methodology to estimate climate impacts on mortality rates. We assemble comprehensive sub-national panel data in 41 countries that account for 56% of the world's population, and combine them with high resolution daily climate data to flexibly estimate the causal effect of temperature on mortality. We find the impacts of temperature on mortality have a U-shaped response; both hot days and cold days cause excess mortality. However, this average response obscures substantial heterogeneity, as populations are differentially adapted to extreme temperatures. Our empirical model allows us to extrapolate response functions across the entire globe, as well as across time, using a range of economic, population, and climate change scenarios. We also develop a methodology to capture not only the benefits of adaptation, but also its costs. We combine these innovations to produce the first causal, micro-founded, global, empirically-derived climate damage function for human health. We project that by 2100, business-as-usual climate change is likely to incur mortality-only costs that amount to approximately 5% of global GDP for 5°C degrees of warming above pre-industrial levels. On average across model runs, we estimate that the upper bound on adaptation costs amounts to 55% of the total damages.

  14. A Look at Global Climate Change Through Papal Encyclicals

    Science.gov (United States)

    Gutry-Korycka, Małgorzata

    2017-12-01

    The aim of this article is a comprehensive review of Papal Encyclicals in the context of global environmental and climatic change, against the backdrop of the activity of multinational institutions. The Encyclicals look to the future in teaching the faithful, in a manner which indicates that they are part of a goal-oriented policy, both in terms of scientific research, and concrete economic, social, and geopolitical activity. Attention has also been paid to the relationship between the activity of humankind, and global environmental change, particularly of the biotic and climatic variety. If this aggressive anthropogenic activity cannot be deemed responsible for initiating global warming, it may certainly be seen to have "encouraged" it. The impulses behind sustainable development, as well as the instruments of its implementation, and the inspiration behind the idea, have also been discussed. The achievement of this goal, necessitating the balancing of anthropological aspirations and the long-term security of the environment are also referenced in the Encyclicals.

  15. High-resolution global climate modelling: the UPSCALE project, a large-simulation campaign

    Directory of Open Access Journals (Sweden)

    M. S. Mizielinski

    2014-08-01

    Full Text Available The UPSCALE (UK on PRACE: weather-resolving Simulations of Climate for globAL Environmental risk project constructed and ran an ensemble of HadGEM3 (Hadley Centre Global Environment Model 3 atmosphere-only global climate simulations over the period 1985–2011, at resolutions of N512 (25 km, N216 (60 km and N96 (130 km as used in current global weather forecasting, seasonal prediction and climate modelling respectively. Alongside these present climate simulations a parallel ensemble looking at extremes of future climate was run, using a time-slice methodology to consider conditions at the end of this century. These simulations were primarily performed using a 144 million core hour, single year grant of computing time from PRACE (the Partnership for Advanced Computing in Europe in 2012, with additional resources supplied by the Natural Environment Research Council (NERC and the Met Office. Almost 400 terabytes of simulation data were generated on the HERMIT supercomputer at the High Performance Computing Center Stuttgart (HLRS, and transferred to the JASMIN super-data cluster provided by the Science and Technology Facilities Council Centre for Data Archival (STFC CEDA for analysis and storage. In this paper we describe the implementation of the project, present the technical challenges in terms of optimisation, data output, transfer and storage that such a project involves and include details of the model configuration and the composition of the UPSCALE data set. This data set is available for scientific analysis to allow assessment of the value of model resolution in both present and potential future climate conditions.

  16. Global Analysis of Empirical Relationships Between Annual Climate and Seasonality of NDVI

    Science.gov (United States)

    Potter, C. S.

    1997-01-01

    This study describes the use of satellite data to calibrate a new climate-vegetation greenness function for global change studies. We examined statistical relationships between annual climate indexes (temperature, precipitation, and surface radiation) and seasonal attributes of the AVHRR Normalized Difference Vegetation Index (NDVI) time series for the mid-1980s in order to refine our empirical understanding of intraannual patterns and global abiotic controls on natural vegetation dynamics. Multiple linear regression results using global l(sup o) gridded data sets suggest that three climate indexes: growing degree days, annual precipitation total, and an annual moisture index together can account to 70-80 percent of the variation in the NDVI seasonal extremes (maximum and minimum values) for the calibration year 1984. Inclusion of the same climate index values from the previous year explained no significant additional portion of the global scale variation in NDVI seasonal extremes. The monthly timing of NDVI extremes was closely associated with seasonal patterns in maximum and minimum temperature and rainfall, with lag times of 1 to 2 months. We separated well-drained areas from l(sup o) grid cells mapped as greater than 25 percent inundated coverage for estimation of both the magnitude and timing of seasonal NDVI maximum values. Predicted monthly NDVI, derived from our climate-based regression equations and Fourier smoothing algorithms, shows good agreement with observed NDVI at a series of ecosystem test locations from around the globe. Regions in which NDVI seasonal extremes were not accurately predicted are mainly high latitude ecosystems and other remote locations where climate station data are sparse.

  17. Climate change denial, freedom of speech and global justice

    Directory of Open Access Journals (Sweden)

    Trygve Lavik

    2016-10-01

    Full Text Available In this paper I claim that there are moral reasons for making climate denialism illegal . First I define climate denialism, and then I discuss its impact on society and its reception in the media.  I build my philosophical arguments mainly on John Stuart Mill and Thomas M. Scanlon.  According to Mill’s utilitarian justification of free speech, even untrue opinions are valuable in society’s pursuit of more truth. Consequently one might think that Mill’s philosophy would justify climate denialists’ right to free speech.  A major section of the paper argues against that view. The main arguments are: Climate denialism is not beneficial because its main goal is to produce doubt, and not truth. Climate denialism is not sincerely meant, which is a necessary condition for Mill to accept utterances. Climate denialists bring harm, by blocking necessary action on climate change.  Primarily they harm future generations and people in developing countries. Hence the case can be made in terms of global justice: Would future generations and people in developing countries support my claim? I think so, or so I argue. My argument from global justice is built on Scanlon’s distinction between the interests of participants, the interests of audiences, and the interests of bystanders.  The climate denialists have participant interests ‘in being able to call something to the attention of a wide audience’. Audience interests consist in ‘having access to expressions that we wish to hear or read, and even in being exposed to some degree to expressions we have not chosen’. Future generations and people in poor countries are bystanders to the climate debate. If the debate postpones necessary actions, it is the bystanders who must pay the price. I argue that bystanders’ costs outweigh participants’ and audiences’ interests, and that this is an argument for a statutory ban on climate denialism.Article first published online: 21 DEC 2015 

  18. Global alteration of climate - hopes and fears

    International Nuclear Information System (INIS)

    Viktorov, V.V.

    1992-01-01

    Problems concerning gaseous emission affecting the global climate alteration connected with hotbed effect are considered. Economical and social-political ways of solution of the problem of minimization of gaseous wastes are described. Role of nuclear power plants and alternative power plants in the hotbed effect are analyzed. International cooperation in environmental protection policy is discussed

  19. Projecting optimal land-use and -management strategies under population growth and climate change using a coupled ecosystem & land use model framework

    Science.gov (United States)

    Rabin, Sam; Alexander, Peter; Anthoni, Peter; Henry, Roslyn; Huntingford, Chris; Pugh, Thomas; Rounsevell, Mark; Arneth, Almut

    2017-04-01

    A major question facing humanity is how well agricultural production systems will be able to feed the world in a future of rapid climate change, population growth, and demand shifts—all while minimizing our impact on the natural world. Global modeling has frequently been used to investigate certain aspects of this question, but in order to properly address the challenge, no one part of the human-environmental system can be assessed in isolation. It is especially critical that the effect on agricultural yields of changing temperature and precipitation regimes (including seasonal timing and frequency and intensity of extreme events), as well as rising atmospheric carbon dioxide levels, be taken into account when planning for future food security. Coupled modeling efforts, where changes in various parts of the Earth system are allowed to feed back onto one another, represent a powerful strategy in this regard. This presentation describes the structure and initial results of an effort to couple a biologically-representative vegetation and crop production simulator, LPJ-GUESS, with the climate emulator IMOGEN and the land-use model PLUMv2. With IMOGEN providing detailed future weather simulations, LPJ-GUESS simulates natural vegetation as well as cropland and pasture/rangeland; the simulated exchange of greenhouse gases between the land and atmosphere feeds back into IMOGEN's predictions. LPJ-GUESS also produces potential vegetation yields for irrigated vs. rainfed crops under three levels of nitrogen fertilizer addition. PLUMv2 combines these potential yields with endogenous demand and agricultural commodity price to calculate an optimal set of land use distributions and management strategies across the world for the next five years of simulation, based on socio-economic scenario data. These land uses are then fed back into LPJ-GUESS, and the cycle of climate, greenhouse gas emissions, crop yields, and land-use change continues. The globally gridded nature of the

  20. Modeling the global society-biosphere-climate system : Part 2: Computed scenarios

    NARCIS (Netherlands)

    Alcamo, J.; Van Den Born, G.J.; Bouwman, A.F.; De Haan, B.J.; Klein Goldewijk, K.; Klepper, O.; Krabec, J.; Leemans, R.; Olivier, J.G.J.; Toet, A.M.C.; De Vries, H.J.M.; Van Der Woerd, H.J.

    1994-01-01

    This paper presents scenarios computed with IMAGE 2.0, an integrated model of the global environment and climate change. Results are presented for selected aspects of the society-biosphere-climate system including primary energy consumption, emissions of various greenhouse gases, atmospheric

  1. A fully coupled Mediterranean regional climate system model: design and evaluation of the ocean component for the 1980–2012 period

    Directory of Open Access Journals (Sweden)

    Florence Sevault

    2014-11-01

    Full Text Available A fully coupled regional climate system model (CNRM-RCSM4 dedicated to the Mediterranean region is described and evaluated using a multidecadal hindcast simulation (1980–2012 driven by global atmosphere and ocean reanalysis. CNRM-RCSM4 includes the regional representation of the atmosphere (ALADIN-Climate model, land surface (ISBA model, rivers (TRIP model and the ocean (NEMOMED8 model, with a daily coupling by the OASIS coupler. This model aims to reproduce the regional climate system with as few constraints as possible: there is no surface salinity, temperature relaxation, or flux correction; the Black Sea budget is parameterised and river runoffs (except for the Nile are fully coupled. The atmospheric component of CNRM-RCSM4 is evaluated in a companion paper; here, we focus on the air–sea fluxes, river discharges, surface ocean characteristics, deep water formation phenomena and the Mediterranean thermohaline circulation. Long-term stability, mean seasonal cycle, interannual variability and decadal trends are evaluated using basin-scale climatologies and in-situ measurements when available. We demonstrate that the simulation shows overall good behaviour in agreement with state-of-the-art Mediterranean RCSMs. An overestimation of the shortwave radiation and latent heat loss as well as a cold Sea Surface Temperature (SST bias and a slight trend in the bottom layers are the primary current deficiencies. Further, CNRM-RCSM4 shows high skill in reproducing the interannual to decadal variability for air–sea fluxes, river runoffs, sea surface temperature and salinity as well as open-sea deep convection, including a realistic simulation of the Eastern Mediterranean Transient. We conclude that CNRM-RCSM4 is a mature modelling tool allowing the climate variability of the Mediterranean regional climate system to be studied and understood. It is used in hindcast and scenario modes in the HyMeX and Med-CORDEX programs.

  2. Global non-linear effect of temperature on economic production.

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M; Miguel, Edward

    2015-11-12

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  3. Global non-linear effect of temperature on economic production

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward

    2015-11-01

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  4. Isolating Tracers of Phytoplankton with Allometric Zooplankton (TOPAZ) from Modular Ocean Model (MOM5) to Couple it with a Global Ocean Model

    Science.gov (United States)

    Jung, H. C.; Moon, B. K.; Wie, J.; Park, H. S.; Kim, K. Y.; Lee, J.; Byun, Y. H.

    2017-12-01

    This research is motivated by a need to develop a new coupled ocean-biogeochemistry model, a key tool for climate projections. The Modular Ocean Model (MOM5) is a global ocean/ice model developed by the Geophysical Fluid Dynamics Laboratory (GFDL) in the US, and it incorporates Tracers of Phytoplankton with Allometric Zooplankton (TOPAZ), which simulates the marine biota associated with carbon cycles. We isolated TOPAZ from MOM5 into a stand-alone version (TOPAZ-SA), and had it receive initial data and ocean physical fields required. Then, its reliability was verified by comparing the simulation results from the TOPAZ-SA with the MOM5/TOPAZ. This stand-alone version of TOPAZ is to be coupled to the Nucleus for European Modelling of the Ocean (NEMO). Here we present the preliminary results. Acknowledgements This research was supported by the project "Research and Development for KMA Weather, Climate, and Earth system Services" (NIMS-2016-3100) of the National Institute of Meteorological Sciences/Korea Meteorological Administration.

  5. State of Climate 2011 - Global Ocean Phytoplankton

    Science.gov (United States)

    Siegel, D. A.; Antoine, D.; Behrenfeld, M. J.; d'Andon, O. H. Fanton; Fields, E.; Franz, B. A.; Goryl, P.; Maritorena, S.; McClain, C. R.; Wang, M.; hide

    2012-01-01

    Phytoplankton photosynthesis in the sun lit upper layer of the global ocean is the overwhelmingly dominant source of organic matter that fuels marine ecosystems. Phytoplankton contribute roughly half of the global (land and ocean) net primary production (NPP; gross photosynthesis minus plant respiration) and phytoplankton carbon fixation is the primary conduit through which atmospheric CO2 concentrations interact with the ocean s carbon cycle. Phytoplankton productivity depends on the availability of sunlight, macronutrients (e.g., nitrogen, phosphorous), and micronutrients (e.g., iron), and thus is sensitive to climate-driven changes in the delivery of these resources to the euphotic zone

  6. Climate change adaptation: Where does global health fit in the agenda?

    Directory of Open Access Journals (Sweden)

    Bowen Kathryn J

    2012-05-01

    Full Text Available Abstract Human-induced climate change will affect the lives of most populations in the next decade and beyond. It will have greatest, and generally earliest, impact on the poorest and most disadvantaged populations on the planet. Changes in climatic conditions and increases in weather variability affect human wellbeing, safety, health and survival in many ways. Some impacts are direct-acting and immediate, such as impaired food yields and storm surges. Other health effects are less immediate and typically occur via more complex causal pathways that involve a range of underlying social conditions and sectors such as water and sanitation, agriculture and urban planning. Climate change adaptation is receiving much attention given the inevitability of climate change and its effects, particularly in developing contexts, where the effects of climate change will be experienced most strongly and the response mechanisms are weakest. Financial support towards adaptation activities from various actors including the World Bank, the European Union and the United Nations is increasing substantially. With this new global impetus and funding for adaptation action come challenges such as the importance of developing adaptation activities on a sound understanding of baseline community needs and vulnerabilities, and how these may alter with changes in climate. The global health community is paying heed to the strengthening focus on adaptation, albeit in a slow and unstructured manner. The aim of this paper is to provide an overview of adaptation and its relevance to global health, and highlight the opportunities to improve health and reduce health inequities via the new and additional funding that is available for climate change adaptation activities.

  7. Kyoto PLUS: Efficient global emission trade for an effective future climate policy; Kyoto PLUS: Effizienter globaler Emissionshandel fuer eine zukuenftig wirksame Weltklimapolitik

    Energy Technology Data Exchange (ETDEWEB)

    Wicke, L. [Inst. fuer Umwelt-Management (IfUM) an der ESCP-EAP, Technische Univ. Berlin (Germany)

    2007-08-15

    The majority of climate protection experts believe that the Kyoto Protocol in its present version provides a basis for preventing the climate change from taking on disastrous dimensions. In the meantime however a mainstream of opinion has developed which advocates the establishment of a functioning global climate protection system for the post-Kyoto phase. Kyoto Plus, a global climate certification system, is a concept developed by the author of three expert opinions for the state of Baden-Wuerttemberg which takes the principles of the Kyoto Protocol a step forward while striving to eliminate its weaknesses and which has matured sufficiently to be put into practice. Systems of this or a similar kind could enable Germany to make a decisive additional contribution to global climate protection, as the author stated at the BT Hearing on 23 May 2007.

  8. Global climate and infectious disease: the cholera paradigm.

    Science.gov (United States)

    Colwell, R R

    1996-12-20

    The origin of cholera has been elusive, even though scientific evidence clearly shows it is a waterborne disease. However, standard bacteriological procedures for isolation of the cholera vibrio from environmental samples, including water, between epidemics generally were unsuccessful. Vibrio cholerae, a marine vibrio, requiring salt for growth, enters into a dormant, viable but nonculturable stage when conditions are unfavorable for growth and reproduction. The association of Vibrio cholerae with plankton, notably copepods, provides further evidence for the environmental origin of cholera, as well as an explanation for the sporadic and erratic occurrence of cholera epidemics. On a global scale, cholera epidemics can now be related to climate and climatic events, such as El Niño, as well as the global distribution of the plankton host. Remote sensing, with the use of satellite imagery, offers the potential for predicting conditions conducive to cholera outbreaks or epidemics.

  9. Comparison and Evaluation of Global Scale Studies of Vulnerability and Risks to Climate Change

    Science.gov (United States)

    Muccione, Veruska; Allen, Simon K.; Huggel, Christian; Birkmann, Joern

    2015-04-01

    Understanding the present and future distribution of different climate change impacts and vulnerability to climate change is a central subject in the context of climate justice and international climate policy. Commonly, it is claimed that poor countries that contributed little to anthropogenic climate change are those most affected and most vulnerable to climate change. Such statements are backed by a number of global-scale vulnerability studies, which identified poor countries as most vulnerable. However, some studies have challenged this view, likewise highlighting the high vulnerability of richer countries. Overall, no consensus has been reached so far about which concept of vulnerability should be applied and what type of indicators should be considered. Furthermore, there is little agreement which specific countries are most vulnerable. This is a major concern in view of the need to inform international climate policy, all the more if such assessments should contribute to allocate climate adaptation funds as was invoked at some instances. We argue that next to the analysis of who is most vulnerable, it is also important to better understand and compare different vulnerability profiles assessed in present global studies. We perform a systematic literature review of global vulnerability assessments with the scope to highlight vulnerability distribution patterns. We then compare these distributions with global risk distributions in line with revised and adopted concepts by most recent IPCC reports. It emerges that improved differentiation of key drivers of risk and the understanding of different vulnerability profiles are important contributions, which can inform future adaptation policies at the regional and national level. This can change the perspective on, and basis for distributional issues in view of climate burden share, and therefore can have implications for UNFCCC financing instruments (e.g. Green Climate Fund). However, in order to better compare

  10. Public health impact of global heating due to climate change: potential effects on chronic non-communicable diseases.

    Science.gov (United States)

    Kjellstrom, Tord; Butler, Ainslie J; Lucas, Robyn M; Bonita, Ruth

    2010-04-01

    Several categories of ill health important at the global level are likely to be affected by climate change. To date the focus of this association has been on communicable diseases and injuries. This paper briefly analyzes potential impacts of global climate change on chronic non-communicable diseases (NCDs). We reviewed the limited available evidence of the relationships between climate exposure and chronic and NCDs. We further reviewed likely mechanisms and pathways for climatic influences on chronic disease occurrence and impacts on pre-existing chronic diseases. There are negative impacts of climatic factors and climate change on some physiological functions and on cardio-vascular and kidney diseases. Chronic disease risks are likely to increase with climate change and related increase in air pollution, malnutrition, and extreme weather events. There are substantial research gaps in this arena. The health sector has a major role in facilitating further research and monitoring the health impacts of global climate change. Such work will also contribute to global efforts for the prevention and control of chronic NCDs in our ageing and urbanizing global population.

  11. Global priority conservation areas in the face of 21st century climate change.

    Directory of Open Access Journals (Sweden)

    Junsheng Li

    Full Text Available In an era when global biodiversity is increasingly impacted by rapidly changing climate, efforts to conserve global biodiversity may be compromised if we do not consider the uneven distribution of climate-induced threats. Here, via a novel application of an aggregate Regional Climate Change Index (RCCI that combines changes in mean annual temperature and precipitation with changes in their interannual variability, we assess multi-dimensional climate changes across the "Global 200" ecoregions - a set of priority ecoregions designed to "achieve the goal of saving a broad diversity of the Earth's ecosystems" - over the 21(st century. Using an ensemble of 62 climate scenarios, our analyses show that, between 1991-2010 and 2081-2100, 96% of the ecoregions considered will be likely (more than 66% probability to face moderate-to-pronounced climate changes, when compared to the magnitudes of change during the past five decades. Ecoregions at high northern latitudes are projected to experience most pronounced climate change, followed by those in the Mediterranean Basin, Amazon Basin, East Africa, and South Asia. Relatively modest RCCI signals are expected over ecoregions in Northwest South America, West Africa, and Southeast Asia, yet with considerable uncertainties. Although not indicative of climate-change impacts per se, the RCCI-based assessment can help policy-makers gain a quantitative and comprehensive overview of the unevenly distributed climate risks across the G200 ecoregions. Whether due to significant climate change signals or large uncertainties, the ecoregions highlighted in the assessment deserve special attention in more detailed impact assessments to inform effective conservation strategies under future climate change.

  12. Decarbonizing the Global Economy - An Integrated Assessment of Low Carbon Emission Scenarios proposed in Climate Policy

    Science.gov (United States)

    Hokamp, Sascha; Khabbazan, Mohammad Mohammadi

    2017-04-01

    In 2015, the Conference of the Parties (COP 21) reaffirmed to targeting the global mean temperature rise below 2 °C in 2100 while finding no consent on decarbonizing the global economy, and instead, the final agreement called for enhanced scientific investigation of low carbon emission scenarios (UNFCC, 2015). In addition, the Climate Action Network International (CAN) proposes Special Reports to address decarbonization and low carbon development including 1.5 °C scenarios (IPCC, 2016). In response to these developments, we investigate whether the carbon emission cuts, in accordance with the recent climate policy proposals, may reach the climate target. To tackle this research question, we employ the coupled climate-energy-economy integrated assessment Model of INvestment and endogenous technological Development (MIND, cf. Edenhofer et al., 2005, Neubersch et al. 2014). Extending MIND's climate module to the two-box version used in the Dynamic Integrated model of Climate and the Economy (DICE, cf. Nordhaus and Sztorc, 2013, Nordhaus 2014), we perform a cost-effectiveness analysis with constraints on anthropogenic carbon emissions. We show that a climate policy scenario with early decarbonization complies with the 2° C climate target, even without Carbon Capturing and Storage (CCS) or negative emissions (see van Vuuren et al., 2013, for negative emissions). However, using emission inertia of 3.7 percent annually, reflecting the inflexibility on transforming the energy sector, we find a climate policy with moderately low emissions from 2100 onwards at a cost in terms of Balanced Growth Equivalents (BGE, cf. Anthoff and Tol, 2009) of 0.764 % that requires an early (2035 vs. 2120) peak of investments in renewable energy production compared to a business-as-usual scenario. Hence, decarbonizing the global economy and achieving the 2 °C target might still be possible before 2100, but the window of opportunity is beginning to close. References: Anthoff, D., and Tol, R

  13. 1.2 million years of climate change, globally and in the Mediterranean

    NARCIS (Netherlands)

    Konijnendijk, T.Y.M.

    2015-01-01

    In this thesis we make a detailed reconstruction of climate changes based on materials from the Mediterranean Sea. Not only does this provide new insights in climate changes in the Mediterranean region, the aim is to improve our understanding of global climate changes as well. We created a single

  14. Global Analysis, Interpretation and Modelling: An Earth Systems Modelling Program

    Science.gov (United States)

    Moore, Berrien, III; Sahagian, Dork

    1997-01-01

    The Goal of the GAIM is: To advance the study of the coupled dynamics of the Earth system using as tools both data and models; to develop a strategy for the rapid development, evaluation, and application of comprehensive prognostic models of the Global Biogeochemical Subsystem which could eventually be linked with models of the Physical-Climate Subsystem; to propose, promote, and facilitate experiments with existing models or by linking subcomponent models, especially those associated with IGBP Core Projects and with WCRP efforts. Such experiments would be focused upon resolving interface issues and questions associated with developing an understanding of the prognostic behavior of key processes; to clarify key scientific issues facing the development of Global Biogeochemical Models and the coupling of these models to General Circulation Models; to assist the Intergovernmental Panel on Climate Change (IPCC) process by conducting timely studies that focus upon elucidating important unresolved scientific issues associated with the changing biogeochemical cycles of the planet and upon the role of the biosphere in the physical-climate subsystem, particularly its role in the global hydrological cycle; and to advise the SC-IGBP on progress in developing comprehensive Global Biogeochemical Models and to maintain scientific liaison with the WCRP Steering Group on Global Climate Modelling.

  15. The Vulnerability of Forest Ecosystems of Armenia to the Global Climate Change

    Science.gov (United States)

    Khachatryan, S.

    2009-05-01

    Climate changes characterized as global warming can lead to irreversible effects on regional and global scales, such as drought, pest attacks, diseases, excessive forest fires, and climate driven extinction of numerous animal and plant species. We assess the issues that the development of forestry in Armenia faces, where the climate change is causing the landscape zone borders in the territory to shift. This will have a significant impact on the most vulnerable tree species in Armenia. An increase in climate aridity and intensification of desertification can be expected under the projected escalated temperatures and reduced precipitation. For example, we can consider average annual temperature of the Ijevan meteorological station (located in forestry region) for the period of 1936-2008. We analyze the vulnerability of forest ecosystems in Armenia to climatic and anthropogenic factors for the period of 1936-2008. Temperature and precipitation data from 25 meteorological stations in the territory of Armenia is studied for the period of 1936-2008. The dynamic of average temperature annual anomalies are revealed. The deviations of temperature and precipitation from the norms (average for 1961-1990) are evaluated for the period of study. We discuss the reasons for the abrupt increase in temperature and decrease in precipitation. Based on the dataset, the possible near future impact of global climate change on the Armenian forest ecosystems is discussed, and measures on the adaptation to the adverse consequences that climate change has on forests are offered.

  16. Instabilities and nonstatistical behavior in globally coupled systems

    International Nuclear Information System (INIS)

    Perez, G.; Cerdeira, H.A.

    1992-01-01

    The mean field in a globally coupled system of chaotic logistic maps does not obey the standard rules of statistics, even for systems of very large sizes. This indicates the existence of intrinsic instabilities in its evolution. Here these instabilities are related to the very nonsmooth behavior of mean values in a single logistic map, as a function of its parameter. Problems of this kind do not affect a similar system of coupled tent maps, where good statistical behavior has been found. We also explore the transition between these two regimes

  17. Braking effect of climate and topography on global change-induced upslope forest expansion.

    Science.gov (United States)

    Alatalo, Juha M; Ferrarini, Alessandro

    2017-03-01

    Forests are expected to expand into alpine areas due to global climate change. It has recently been shown that temperature alone cannot realistically explain this process and that upslope tree advance in a warmer scenario may depend on the availability of sites with adequate geomorphic/topographic characteristics. Here, we show that, besides topography (slope and aspect), climate itself can produce a braking effect on the upslope advance of subalpine forests and that tree limit is influenced by non-linear and non-monotonic contributions of the climate variables which act upon treeline upslope advance with varying relative strengths. Our results suggest that global climate change impact on the upslope advance of subalpine forests should be interpreted in a more complex way where climate can both speed up and slow down the process depending on complex patterns of contribution from each climate and non-climate variable.

  18. CMIP5-based global wave climate projections including the entire Arctic Ocean

    Science.gov (United States)

    Casas-Prat, M.; Wang, X. L.; Swart, N.

    2018-03-01

    This study presents simulations of the global ocean wave climate corresponding to the surface winds and sea ice concentrations as simulated by five CMIP5 (Coupled Model Intercomparison Project Phase 5) climate models for the historical (1979-2005) and RCP8.5 scenario future (2081-2100) periods. To tackle the numerical complexities associated with the inclusion of the North Pole, the WAVEWATCH III (WW3) wave model was used with a customized unstructured Spherical Multi-Cell grid of ∼100 km offshore and ∼50 km along coastlines. The climate model simulated wind and sea ice data, and the corresponding WW3 simulated wave data, were evaluated against reanalysis and hindcast data. The results show that all the five sets of wave simulations projected lower waves in the North Atlantic, corresponding to decreased surface wind speeds there in the warmer climate. The selected CMIP5 models also consistently projected an increase in the surface wind speed in the Southern Hemisphere (SH) mid-high latitudes, which translates in an increase in the WW3 simulated significant wave height (Hs) there. The higher waves are accompanied with increased peak wave period and increased wave age in the East Pacific and Indian Oceans, and a significant counterclockwise rotation in the mean wave direction in the Southern Oceans. The latter is caused by more intense waves from the SH traveling equatorward and developing into swells. Future wave climate in the Arctic Ocean in summer is projected to be predominantly of mixed sea states, with the climatological mean of September maximum Hs ranging mostly 3-4 m. The new waves approaching Arctic coasts will be less fetch-limited as ice retreats since a predominantly southwards mean wave direction is projected in the surrounding seas.

  19. Ocean-Atmosphere Coupling Processes Affecting Predictability in the Climate System

    Science.gov (United States)

    Miller, A. J.; Subramanian, A. C.; Seo, H.; Eliashiv, J. D.

    2017-12-01

    Predictions of the ocean and atmosphere are often sensitive to coupling at the air-sea interface in ways that depend on the temporal and spatial scales of the target fields. We will discuss several aspects of these types of coupled interactions including oceanic and atmospheric forecast applications. For oceanic mesoscale eddies, the coupling can influence the energetics of the oceanic flow itself. For Madden-Julian Oscillation onset, the coupling timestep should resolve the diurnal cycle to properly raise time-mean SST and latent heat flux prior to deep convection. For Atmospheric River events, the evolving SST field can alter the trajectory and intensity of precipitation anomalies along the California coast. Improvements in predictions will also rely on identifying and alleviating sources of biases in the climate states of the coupled system. Surprisingly, forecast skill can also be improved by enhancing stochastic variability in the atmospheric component of coupled models as found in a multiscale ensemble modeling approach.

  20. Spatiotemporal Exploration of Impacts of Coupled Climate and Socioeconomic Changes on Grassland Ecosystems (Invited)

    Science.gov (United States)

    Xie, Y.

    2013-12-01

    Although the coupled impacts of climate change and human adaptation on land cover change has been a prime research topic in recent years, a majority of reported efforts are examining the coupled effects of climate and socioeconomic factors qualitatively. Even though some are applying statistical methods, they often look into the impacts of coupled climate variations and socioeconomic transformations on land cover changes in a detached or sequential manner, or they handle socioeconomic influences indirectly through land use changes. Very few of them deal with the coupled effects concurrently through times and cross regions. We assimilate a big dataset of climate change, plant community growth condition, and socioeconomic transformation in Inner Mongolia of China. The study area consists of twelve types of plant communities, reflecting an east-to-west water-temperature gradient from moist meadow-type, to typical steppe-type and then to arid desert-type communities. The enhanced vegetation index (EVI), derived from MODIS at a 250 m resolution and 16-day intervals from May 8 to September 28 during 2000-2010, is adopted as a proxy for vegetation growth. The inter-annual and intra-annual changes of seven climate factors (barometric pressure, humidity, precipitation, sunlight hours, temperature, vapor pressure and wind speed) during the same period are synchronized with the EVI observations. Ten socioeconomic variables (urban population, urban GDP, rural GDP, grain output, livestock, fixed assets investment, local government revenue, per capita net income of farmers and pastoralists, the total length of highways, and rural population) are collected over 34 counties in the study area and during the same period. The GIS-based spatial database approach is adopted to integrate all of the above data into a big spatiotemporal dataset. We develop a multi-controlled panel-data regression model to investigate spatiotemporal changes of vegetation growth and their underlying causes

  1. Global warming precipitation accumulation increases above the current-climate cutoff scale.

    Science.gov (United States)

    Neelin, J David; Sahany, Sandeep; Stechmann, Samuel N; Bernstein, Diana N

    2017-02-07

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.

  2. Global warming precipitation accumulation increases above the current-climate cutoff scale

    Science.gov (United States)

    Sahany, Sandeep; Stechmann, Samuel N.; Bernstein, Diana N.

    2017-01-01

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff. PMID:28115693

  3. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach

    Science.gov (United States)

    Taylor, Lyla L.; Banwart, Steve A.; Valdes, Paul J.; Leake, Jonathan R.; Beerling, David J.

    2012-01-01

    Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO2) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean–atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal–geosphere interactions at the global scale, which constitutes a first step towards developing ‘next-generation’ geochemical models. PMID:22232768

  4. Multinationals and global climate change. Issues for the automotive and oil industries

    International Nuclear Information System (INIS)

    Kolk, A.; Levy, D.

    2003-01-01

    This chapter analyzes the strategic responses by U.S. and European multinational enterprises (MNEs) in the oil and automobile industries to the global climate change issue. We examine and attempt to explain the differences across regions, across industries, and the changes over time. Traditional economic drivers of strategy do not provide a satisfactory account for these differences, and the chapter focuses instead on the conflicting institutional pressures on MNEs and the implications for their climate strategy. The home-country institutional context and individual corporate histories can create divergent pressures on strategy for MNEs based in different countries. At the same time, the location of MNEs in global industries and their participation in 'global issues arenas' such as climate change generate institutional forces for strategic convergence. It appears that local context influenced initial corporate reactions, but that convergent pressures predominate as the issue matures

  5. Investigations of the Climate System Response to Climate Engineering in a Hierarchy of Models

    Science.gov (United States)

    McCusker, Kelly E.

    Global warming due to anthropogenic emissions of greenhouse gases is causing negative impacts on diverse ecological and human systems around the globe, and these impacts are projected to worsen as climate continues to warm. In the absence of meaningful greenhouse gas emissions reductions, new strategies have been proposed to engineer the climate, with the aim of preventing further warming and avoiding associated climate impacts. We investigate one such strategy here, falling under the umbrella of `solar radiation management', in which sulfate aerosols are injected into the stratosphere. We use a global climate model with a coupled mixed-layer depth ocean and with a fully-coupled ocean general circulation model to simulate the stabilization of climate by balancing increasing carbon dioxide with increasing stratospheric sulfate concentrations. We evaluate whether or not severe climate impacts, such as melting Arctic sea ice, tropical crop failure, or destabilization of the West Antarctic ice sheet, could be avoided. We find that while tropical climate emergencies might be avoided by use of stratospheric aerosol injections, avoiding polar emergencies cannot be guaranteed due to large residual climate changes in those regions, which are in part due to residual atmospheric circulation anomalies. We also find that the inclusion of a fully-coupled ocean is important for determining the regional climate response because of its dynamical feedbacks. The efficacy of stratospheric sulfate aerosol injections, and solar radiation management more generally, depends on its ability to be maintained indefinitely, without interruption from a variety of possible sources, such as technological failure, a breakdown in global cooperation, lack of funding, or negative unintended consequences. We next consider the scenario in which stratospheric sulfate injections are abruptly terminated after a multi- decadal period of implementation while greenhouse gas emissions have continued unabated

  6. Global Energy Transitions and the Challenge of Climate Change

    International Nuclear Information System (INIS)

    Riahi, K.

    2008-01-01

    Global emissions of greenhouse-gases have increased markedly as a result of human activities since pre-industrial times. This increase in emissions has lead to unequivocal global warming, which is evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea level. Reducing the risk of irreversible climate impacts requires thus the mitigation of global GHG emissions aiming at the long-term stabilization of atmospheric GHG concentrations. Achieving this goal translates into the need of reducing emissions to virtually zero over long time-frames. Yet international agreement on a long-term climate policy target remains a distant prospect, due to both scientific uncertainty and political disagreement on the appropriate balance between mitigation costs and reduced risks of dangerous impacts. At the same time, growing emissions of greenhouse gases continue to increase the amount of climate change we are committed to over the long term. Over the next few decades, these growing emissions may make some potentially desirable long term goals unattainable. Recent analysis conducted at IIASA indicates the need of major energy transitions over the next few decades. For example, staying below the target suggested by the European Union of 2 C warming (with just a 50% likelihood) will require the massive deployment of zero-carbon energy by 2050, and a tippling of the contribution of zero-carbon energy globally to more than 60% by that time. Although there are large uncertainties with respect to the deployment of individual future technologies, there is strong evidence that no single mitigation measure alone would be sufficient for achieving the stabilization of GHG concentrations at low levels. A wide portfolio of technologies across all GHG-intensive sectors is needed for cost-effective emissions reductions. The bulk of these emissions reductions would need to come from the energy sector, with

  7. Perspectives on global climate change: A review of the adaptation and mitigation approaches

    International Nuclear Information System (INIS)

    Morrisette, P.M.

    1992-01-01

    This paper was prepared for the conference on Global Climate Change and International Security sponsored by the Midwest Consortium for International Security Studies of the American Academy of Arts and Sciences and held in Chicago, Illinois on February 11-13, 1992. The purpose of the paper is to provide some background on the different perceptions and perspectives that are presently shaping the policy debate on how to respond to the problem of global warming. For better or worse, this debate has focused primarily on whether to adapt to climate change in the future or to mitigate climate change in the present, and as the issue has become increasingly political this debate has become polarized. The two approaches, as this paper notes, are not mutually exclusive; in fact, they share much in common. Differences, however, can be found in how proponents of each view the risks of global climate change. This paper provides a brief outline of the progression of global warming from an obscure scientific concern into a leading international political issue, reviews previous efforts by social scientists to assess attitudes and positions on global warming, and examines in detail the adaptation and mitigation perspectives and assesses how they differ on the basis of different conceptions of uncertainty and risk, equity, and technology

  8. Isotopes as validation tools for global climate models

    International Nuclear Information System (INIS)

    Henderson-Sellers, A.

    2001-01-01

    Global Climate Models (GCMs) are the predominant tool with which we predict the future climate. In order that people can have confidence in such predictions, GCMs require validation. As almost every available item of meteorological data has been exploited in the construction and tuning of GCMs to date, independent validation is very difficult. This paper explores the use of isotopes as a novel and fully independent means of evaluating GCMs. The focus is the Amazon Basin which has a long history of isotope collection and analysis and also of climate modelling: both having been reported for over thirty years. Careful consideration of the results of GCM simulations of Amazonian deforestation and climate change suggests that the recent stable isotope record is more consistent with the predicted effects of greenhouse warming, possibly combined with forest removal, than with GCM predictions of the effects of deforestation alone

  9. Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5°C and 2°C global warming with a higher-resolution global climate model

    Science.gov (United States)

    Alfieri, Lorenzo; Bradshaw, Catherine; Caesar, John; Feyen, Luc; Friedlingstein, Pierre; Gohar, Laila; Koutroulis, Aristeidis; Lewis, Kirsty; Morfopoulos, Catherine; Papadimitriou, Lamprini; Richardson, Katy J.; Tsanis, Ioannis; Wyser, Klaus

    2018-01-01

    We projected changes in weather extremes, hydrological impacts and vulnerability to food insecurity at global warming of 1.5°C and 2°C relative to pre-industrial, using a new global atmospheric general circulation model HadGEM3A-GA3.0 driven by patterns of sea-surface temperatures and sea ice from selected members of the 5th Coupled Model Intercomparison Project (CMIP5) ensemble, forced with the RCP8.5 concentration scenario. To provide more detailed representations of climate processes and impacts, the spatial resolution was N216 (approx. 60 km grid length in mid-latitudes), a higher resolution than the CMIP5 models. We used a set of impacts-relevant indices and a global land surface model to examine the projected changes in weather extremes and their implications for freshwater availability and vulnerability to food insecurity. Uncertainties in regional climate responses are assessed, examining ranges of outcomes in impacts to inform risk assessments. Despite some degree of inconsistency between components of the study due to the need to correct for systematic biases in some aspects, the outcomes from different ensemble members could be compared for several different indicators. The projections for weather extremes indices and biophysical impacts quantities support expectations that the magnitude of change is generally larger for 2°C global warming than 1.5°C. Hot extremes become even hotter, with increases being more intense than seen in CMIP5 projections. Precipitation-related extremes show more geographical variation with some increases and some decreases in both heavy precipitation and drought. There are substantial regional uncertainties in hydrological impacts at local scales due to different climate models producing different outcomes. Nevertheless, hydrological impacts generally point towards wetter conditions on average, with increased mean river flows, longer heavy rainfall events, particularly in South and East Asia with the most extreme

  10. Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5°C and 2°C global warming with a higher-resolution global climate model.

    Science.gov (United States)

    Betts, Richard A; Alfieri, Lorenzo; Bradshaw, Catherine; Caesar, John; Feyen, Luc; Friedlingstein, Pierre; Gohar, Laila; Koutroulis, Aristeidis; Lewis, Kirsty; Morfopoulos, Catherine; Papadimitriou, Lamprini; Richardson, Katy J; Tsanis, Ioannis; Wyser, Klaus

    2018-05-13

    We projected changes in weather extremes, hydrological impacts and vulnerability to food insecurity at global warming of 1.5°C and 2°C relative to pre-industrial, using a new global atmospheric general circulation model HadGEM3A-GA3.0 driven by patterns of sea-surface temperatures and sea ice from selected members of the 5th Coupled Model Intercomparison Project (CMIP5) ensemble, forced with the RCP8.5 concentration scenario. To provide more detailed representations of climate processes and impacts, the spatial resolution was N216 (approx. 60 km grid length in mid-latitudes), a higher resolution than the CMIP5 models. We used a set of impacts-relevant indices and a global land surface model to examine the projected changes in weather extremes and their implications for freshwater availability and vulnerability to food insecurity. Uncertainties in regional climate responses are assessed, examining ranges of outcomes in impacts to inform risk assessments. Despite some degree of inconsistency between components of the study due to the need to correct for systematic biases in some aspects, the outcomes from different ensemble members could be compared for several different indicators. The projections for weather extremes indices and biophysical impacts quantities support expectations that the magnitude of change is generally larger for 2°C global warming than 1.5°C. Hot extremes become even hotter, with increases being more intense than seen in CMIP5 projections. Precipitation-related extremes show more geographical variation with some increases and some decreases in both heavy precipitation and drought. There are substantial regional uncertainties in hydrological impacts at local scales due to different climate models producing different outcomes. Nevertheless, hydrological impacts generally point towards wetter conditions on average, with increased mean river flows, longer heavy rainfall events, particularly in South and East Asia with the most extreme

  11. Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5°C and 2°C global warming with a higher-resolution global climate model

    Science.gov (United States)

    Betts, Richard A.; Alfieri, Lorenzo; Bradshaw, Catherine; Caesar, John; Feyen, Luc; Friedlingstein, Pierre; Gohar, Laila; Koutroulis, Aristeidis; Lewis, Kirsty; Morfopoulos, Catherine; Papadimitriou, Lamprini; Richardson, Katy J.; Tsanis, Ioannis; Wyser, Klaus

    2018-05-01

    We projected changes in weather extremes, hydrological impacts and vulnerability to food insecurity at global warming of 1.5°C and 2°C relative to pre-industrial, using a new global atmospheric general circulation model HadGEM3A-GA3.0 driven by patterns of sea-surface temperatures and sea ice from selected members of the 5th Coupled Model Intercomparison Project (CMIP5) ensemble, forced with the RCP8.5 concentration scenario. To provide more detailed representations of climate processes and impacts, the spatial resolution was N216 (approx. 60 km grid length in mid-latitudes), a higher resolution than the CMIP5 models. We used a set of impacts-relevant indices and a global land surface model to examine the projected changes in weather extremes and their implications for freshwater availability and vulnerability to food insecurity. Uncertainties in regional climate responses are assessed, examining ranges of outcomes in impacts to inform risk assessments. Despite some degree of inconsistency between components of the study due to the need to correct for systematic biases in some aspects, the outcomes from different ensemble members could be compared for several different indicators. The projections for weather extremes indices and biophysical impacts quantities support expectations that the magnitude of change is generally larger for 2°C global warming than 1.5°C. Hot extremes become even hotter, with increases being more intense than seen in CMIP5 projections. Precipitation-related extremes show more geographical variation with some increases and some decreases in both heavy precipitation and drought. There are substantial regional uncertainties in hydrological impacts at local scales due to different climate models producing different outcomes. Nevertheless, hydrological impacts generally point towards wetter conditions on average, with increased mean river flows, longer heavy rainfall events, particularly in South and East Asia with the most extreme

  12. Impacts of climate extremes on gross primary production under global warming

    International Nuclear Information System (INIS)

    Williams, I N; Torn, M S; Riley, W J; Wehner, M F

    2014-01-01

    The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at the warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate projections

  13. Global Climate Change for Kids: Making Difficult Ideas Accessible and Exciting

    Science.gov (United States)

    Fisher, D. K.; Leon, N.; Greene, M. P.

    2009-12-01

    NASA has recently launched its Global Climate Change web site (http://climate.nasa.gov), and it has been very well received. It has now also launched in preliminary form an associated site for children and educators, with a plan for completion in the near future. The goals of the NASA Global Climate Change Education site are: To increase awareness and understanding of climate change science in upper-elementary and middle-school students, reinforcing and building upon basic concepts introduced in the formal science education curriculum for these grades; To present, insofar as possible, a holistic picture of climate change science and current evidence of climate change, describing Earth as a system of interconnected processes; To be entertaining and motivating; To be clear and easy to understand; To be easy to navigate; To address multiple learning styles; To describe and promote "green" careers; To increase awareness of NASA's contributions to climate change science; To provide valuable resources for educators; To be compliant with Section 508 of the Americans with Disabilities Act. The site incorporates research findings not only on climate change, but also on effective web design for children. It is envisioned that most of the content of the site will ultimately be presented in multimedia forms. These will include illustrated and narrated "slide shows," animated expositions, interactive concept-rich games and demonstrations, videos, animated fictionalized stories, and printable picture galleries. In recognition of the attention span of the audience, content is presented in short, modular form, with a suggested, but not mandatory order of access. Empathetic animal and human cartoon personalities are used to explain concepts and tell stories. Expository, fiction, game, video, text, and image modules are interlinked for reinforcement of similar ideas. NASA's Global Climate Change Education web site addresses the vital need to impart and emphasize Earth system science

  14. Acting locally, developing knowledge globally: a transitions perspective on designing climate change adaptation strategies

    NARCIS (Netherlands)

    Grin, J.; Driessen, J.; Leroy, P.; van Vierssen, W.

    2010-01-01

    Climate change, from many perspectives and for many reasons, is a complex issue: scientifically, politically, and in terms of global justice. As such, climate change might be the global societal and political challenge of the 21st century. Dealing with it, either via mitigation or via adaptation,

  15. Global Climate Change Impacts in the Sinaloa State, México

    Directory of Open Access Journals (Sweden)

    Luis Miguel Flores Campaña

    2012-01-01

    Full Text Available The variation of environmental conditions deriving from global climate change in the state of Sinaloa and its impact on the region's main productive activities have not been sufficiently studied. The article describes various phenomena associated with climate change and its consequences for Sinaloa, analyzes the scarce climate scenarios that include the region, and discusses the modifications caused by tropical cyclones and interannual changes. It also discusses the repercussions of climate change on agricultural activity and aspects related to sea level rise. Finally, the text empathizes on the lack of local estimations and studies that could serve as base for improved planning strategies and initiatives to facilitate adaptation to climate change in the region.

  16. Climate variability in a coupled GCM. Pt. 2

    International Nuclear Information System (INIS)

    Latif, M.; Sterl, A.; Assenbaum, M.; Junge, M.M.; Maier-Reimer, E.

    1993-01-01

    The seasonal cycle and the interannual variability of the tropical Indian Ocean circulation are investigated and the Indian Summer Monsoon is simulated by a coupled ocean-atmosphere general circulation model in a 26 year integration. Although the model exhibits significant climate drift, it simulates realistically the seasonal changes in the tropical Indian Ocean and the onset and evolution of the Indian Summer Monsoon. The amplitudes of the seasonal changes, however, are somewhat underestimated. The coupled GCM also simulates considerable interannual variability in the tropical Indian Ocean circulation which is partly related to the El Nino/Southern Oscillation (ENSO) phenomenon and the associated changes in the Walker Circulation. Changes in the surface wind stress appear to be crucial in forcing interannual variations in the Indian Ocean SST. As in the Pacific Ocean, the net surface heat flux acts as a negative feedback on the SST anomalies. The interannual variability in Monsoon rainfall is simulated by the coupled GCM only about half as strongly as observed. (orig.)

  17. Interactive effects of global climate change and pollution on marine microbes: the way ahead.

    Science.gov (United States)

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Angela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-06-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future.

  18. Resolving the Aerosol Piece of the Global Climate Picture

    Science.gov (United States)

    Kahn, R. A.

    2017-12-01

    Factors affecting our ability to calculate climate forcing and estimate model predictive skill include direct radiative effects of aerosols and their indirect effects on clouds. Several decades of Earth-observing satellite observations have produced a global aerosol column-amount (AOD) record, but an aerosol microphysical property record required for climate and many air quality applications is lacking. Surface-based photometers offer qualitative aerosol-type classification, and several space-based instruments map aerosol air-mass types under favorable conditions. However, aerosol hygroscopicity, mass extinction efficiency (MEE), and quantitative light absorption, must be obtained from in situ measurements. Completing the aerosol piece of the climate picture requires three elements: (1) continuing global AOD and qualitative type mapping from space-based, multi-angle imagers and aerosol vertical distribution from near-source stereo imaging and downwind lidar, (2) systematic, quantitative in situ observations of particle properties unobtainable from space, and (3) continuing transport modeling to connect observations to sources, and extrapolate limited sampling in space and time. At present, the biggest challenges to producing the needed aerosol data record are: filling gaps in particle property observations, maintaining global observing capabilities, and putting the pieces together. Obtaining the PDFs of key particle properties, adequately sampled, is now the leading observational deficiency. One simplifying factor is that, for a given aerosol source and season, aerosol amounts often vary, but particle properties tend to be repeatable. SAM-CAAM (Systematic Aircraft Measurements to Characterize Aerosol Air Masses), a modest aircraft payload deployed frequently could fill this gap, adding value to the entire satellite data record, improving aerosol property assumptions in retrieval algorithms, and providing MEEs to translate between remote-sensing optical constraints

  19. Iron control on global productivity: an efficient inverse model of the ocean's coupled phosphate and iron cycles.

    Science.gov (United States)

    Pasquier, B.; Holzer, M.; Frants, M.

    2016-02-01

    We construct a data-constrained mechanistic inverse model of the ocean's coupled phosphorus and iron cycles. The nutrient cycling is embedded in a data-assimilated steady global circulation. Biological nutrient uptake is parameterized in terms of nutrient, light, and temperature limitations on growth for two classes of phytoplankton that are not transported explicitly. A matrix formulation of the discretized nutrient tracer equations allows for efficient numerical solutions, which facilitates the objective optimization of the key biogeochemical parameters. The optimization minimizes the misfit between the modelled and observed nutrient fields of the current climate. We systematically assess the nonlinear response of the biological pump to changes in the aeolian iron supply for a variety of scenarios. Specifically, Green-function techniques are employed to quantify in detail the pathways and timescales with which those perturbations are propagated throughout the world oceans, determining the global teleconnections that mediate the response of the global ocean ecosystem. We confirm previous findings from idealized studies that increased iron fertilization decreases biological production in the subtropical gyres and we quantify the counterintuitive and asymmetric response of global productivity to increases and decreases in the aeolian iron supply.

  20. Climatic driving forces in inter-annual variation of global FPAR

    Science.gov (United States)

    Peng, Dailiang; Liu, Liangyun; Yang, Xiaohua; Zhou, Bin

    2012-09-01

    Fraction of Absorbed Photosynthetically Active Radiation (FPAR) characterizes vegetation canopy functioning and its energy absorption capacity. In this paper, we focus on climatic driving forces in inter-annual variation of global FPAR from 1982 to 2006 by Global Historical Climatology Network (GHCN-Monthly) data. Using FPAR-Simple Ratio Vegetation Index (SR) relationship, Advanced Very High Resolution Radiometer (AVHRR) Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) was used to estimate FPAR at the global scale. The correlation between inter-annual variation of FPAR and temperature, precipitation derived from GHCN-Monthly was examined, during the periods of March-May (MAM), June-August (JJA), September-November (SON), and December-February (DJF) over from 1982 to 2006. The analysis of climatic influence on global FPAR revealed the significant correlation with temperature and precipitation in some meteorological stations area, and a more significant correlation with precipitation was found than which with temperature. Some stations in the regions between 30° N and 60° N and around 30° S in South America, where the annual FPAR variation showed a significant positive correlation with temperature (P forest of Africa and Amazon during the dry season of JJA and SON.

  1. Ideas from the global climate change hotspot research | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2017-05-09

    May 9, 2017 ... Ideas from the global climate change hotspot research ... The Collaborative Adaptation Research Initiative in Africa and Asia (CARIAA) ... the decisions they need to make about investment choices and development options, ...

  2. Toward Improving the Representation of Convection and Cloud-Radiation Interaction for Global Climate Simulations

    Science.gov (United States)

    Wu, X.; Song, X.; Deng, L.; Park, S.; Liang, X.; Zhang, G. J.

    2006-05-01

    Despite the significant progress made in developing general circulation models (GCMs), major uncertainties related to the parameterization of convection, cloud and radiation processes still remain. The current GCM credibility of seasonal-interannual climate predictions or climate change projections is limited. In particular, the following long-standing biases, common to most GCMs, need to be reduced: 1) over-prediction of high-level cloud amounts although GCMs realistically simulating the global radiation budget; 2) general failure to reproduce the seasonal variation and migration of the ITCZ precipitation; 3) incomplete representation of the Madden-Julian Oscillation (MJO); and 4) false production of an excessive cold tone of sea surface temperature across the Pacific basin and a double ITCZ structure in precipitation when the atmosphere and ocean are fully coupled. The development of cloud-resolving models (CRMs) provides a unique opportunity to address issues aimed to reduce these biases. The statistical analysis of CRM simulations together with the theoretical consideration of subgrid-scale processes will enable us to develop physically-based parameterization of convection, clouds, radiation and their interactions.

  3. Personal efficacy, the information environment, and attitudes toward global warming and climate change in the United States.

    Science.gov (United States)

    Kellstedt, Paul M; Zahran, Sammy; Vedlitz, Arnold

    2008-02-01

    Despite the growing scientific consensus about the risks of global warming and climate change, the mass media frequently portray the subject as one of great scientific controversy and debate. And yet previous studies of the mass public's subjective assessments of the risks of global warming and climate change have not sufficiently examined public informedness, public confidence in climate scientists, and the role of personal efficacy in affecting global warming outcomes. By examining the results of a survey on an original and representative sample of Americans, we find that these three forces-informedness, confidence in scientists, and personal efficacy-are related in interesting and unexpected ways, and exert significant influence on risk assessments of global warming and climate change. In particular, more informed respondents both feel less personally responsible for global warming, and also show less concern for global warming. We also find that confidence in scientists has unexpected effects: respondents with high confidence in scientists feel less responsible for global warming, and also show less concern for global warming. These results have substantial implications for the interaction between scientists and the public in general, and for the public discussion of global warming and climate change in particular.

  4. Seasonal Climate Predictability in a Coupled OAGCM Using a Different Approach for Ensemble Forecasts.

    Science.gov (United States)

    Luo, Jing-Jia; Masson, Sebastien; Behera, Swadhin; Shingu, Satoru; Yamagata, Toshio

    2005-11-01

    Predictabilities of tropical climate signals are investigated using a relatively high resolution Scale Interaction Experiment Frontier Research Center for Global Change (FRCGC) coupled GCM (SINTEX-F). Five ensemble forecast members are generated by perturbing the model’s coupling physics, which accounts for the uncertainties of both initial conditions and model physics. Because of the model’s good performance in simulating the climatology and ENSO in the tropical Pacific, a simple coupled SST-nudging scheme generates realistic thermocline and surface wind variations in the equatorial Pacific. Several westerly and easterly wind bursts in the western Pacific are also captured.Hindcast results for the period 1982 2001 show a high predictability of ENSO. All past El Niño and La Niña events, including the strongest 1997/98 warm episode, are successfully predicted with the anomaly correlation coefficient (ACC) skill scores above 0.7 at the 12-month lead time. The predicted signals of some particular events, however, become weak with a delay in the phase at mid and long lead times. This is found to be related to the intraseasonal wind bursts that are unpredicted beyond a few months of lead time. The model forecasts also show a “spring prediction barrier” similar to that in observations. Spatial SST anomalies, teleconnection, and global drought/flood during three different phases of ENSO are successfully predicted at 9 12-month lead times.In the tropical North Atlantic and southwestern Indian Ocean, where ENSO has predominant influences, the model shows skillful predictions at the 7 12-month lead times. The distinct signal of the Indian Ocean dipole (IOD) event in 1994 is predicted at the 6-month lead time. SST anomalies near the western coast of Australia are also predicted beyond the 12-month lead time because of pronounced decadal signals there.

  5. Public Health Adaptation to Climate Change in Large Cities: A Global Baseline.

    Science.gov (United States)

    Araos, Malcolm; Austin, Stephanie E; Berrang-Ford, Lea; Ford, James D

    2016-01-01

    Climate change will have significant impacts on human health, and urban populations are expected to be highly sensitive. The health risks from climate change in cities are compounded by rapid urbanization, high population density, and climate-sensitive built environments. Local governments are positioned to protect populations from climate health risks, but it is unclear whether municipalities are producing climate-adaptive policies. In this article, we develop and apply systematic methods to assess the state of public health adaptation in 401 urban areas globally with more than 1 million people, creating the first global baseline for urban public health adaptation. We find that only 10% of the sampled urban areas report any public health adaptation initiatives. The initiatives identified most frequently address risks posed by extreme weather events and involve direct changes in management or behavior rather than capacity building, research, or long-term investments in infrastructure. Based on our characterization of the current urban health adaptation landscape, we identify several gaps: limited evidence of reporting of institutional adaptation at the municipal level in urban areas in the Global South; lack of information-based adaptation initiatives; limited focus on initiatives addressing infectious disease risks; and absence of monitoring, reporting, and evaluation. © The Author(s) 2015.

  6. Sensitivity of Water Scarcity Events to ENSO-Driven Climate Variability at the Global Scale

    Science.gov (United States)

    Veldkamp, T. I. E.; Eisner, S.; Wada, Y.; Aerts, J. C. J. H.; Ward, P. J.

    2015-01-01

    Globally, freshwater shortage is one of the most dangerous risks for society. Changing hydro-climatic and socioeconomic conditions have aggravated water scarcity over the past decades. A wide range of studies show that water scarcity will intensify in the future, as a result of both increased consumptive water use and, in some regions, climate change. Although it is well-known that El Niño- Southern Oscillation (ENSO) affects patterns of precipitation and drought at global and regional scales, little attention has yet been paid to the impacts of climate variability on water scarcity conditions, despite its importance for adaptation planning. Therefore, we present the first global-scale sensitivity assessment of water scarcity to ENSO, the most dominant signal of climate variability. We show that over the time period 1961-2010, both water availability and water scarcity conditions are significantly correlated with ENSO-driven climate variability over a large proportion of the global land area (> 28.1 %); an area inhabited by more than 31.4% of the global population. We also found, however, that climate variability alone is often not enough to trigger the actual incidence of water scarcity events. The sensitivity of a region to water scarcity events, expressed in terms of land area or population exposed, is determined by both hydro-climatic and socioeconomic conditions. Currently, the population actually impacted by water scarcity events consists of 39.6% (CTA: consumption-to-availability ratio) and 41.1% (WCI: water crowding index) of the global population, whilst only 11.4% (CTA) and 15.9% (WCI) of the global population is at the same time living in areas sensitive to ENSO-driven climate variability. These results are contrasted, however, by differences in growth rates found under changing socioeconomic conditions, which are relatively high in regions exposed to water scarcity events. Given the correlations found between ENSO and water availability and scarcity

  7. Global synchronization in arrays of delayed neural networks with constant and delayed coupling

    International Nuclear Information System (INIS)

    Cao Jinde; Li Ping; Wang Weiwei

    2006-01-01

    This Letter investigates the global exponential synchronization in arrays of coupled identical delayed neural networks (DNNs) with constant and delayed coupling. By referring to Lyapunov functional method and Kronecker product technique, some sufficient conditions are derived for global synchronization of such systems. These new synchronization criteria offer some adjustable matrix parameters, which is of important significance in the design and applications of such coupled DNNs, and the results improve and extend the earlier works. Finally, an example is given to illustrate the theoretical results

  8. Thermodynamic contributions of deforestation to global climate change

    International Nuclear Information System (INIS)

    Bell, A.

    2009-01-01

    This paper examines a portion of the thermodynamics of global warming. The calculations use the endothermic photosynthesis reaction and yearly measures of CO 2 uptake to determine the amount of energy that is absorbed by forest cover each year. The energy absorption value of forest coverage determines the yearly cost of deforestation. The calculations reveal that 3.92 * 10 15 kJ less solar energy is absorbed by global forest coverage because of deforestation each year. The energy is enough to warm the atmosphere by 0.00008 °C / year. By comparison the same amount of energy represents 0.001 % of the atmospheric energy gains between 1995 and 2003. The results of this paper raise questions about the nature of global warming and the possibility that thermodynamic contributions to global climate change are significant. (author)

  9. The LGM surface climate and atmospheric circulation over East Asia and the North Pacific in the PMIP2 coupled model simulations

    Directory of Open Access Journals (Sweden)

    W. Yanase

    2007-07-01

    Full Text Available The surface conditions and atmospheric circulation over East Asia and the North Pacific during the last glacial maximum have been investigated using outputs from several coupled atmosphere-ocean general circulation model in the PMIP2 database. During the boreal summer, the weakening of the high pressure system over the North Pacific and less precipitation over East Asia are found in most models. The latter can be attributed to reduced moisture transport. During the boreal winter, an intensification of the Aleutian low and southward shift of the westerly jet stream in the upper troposphere are found in most models.

    Some of the results in the present study seem to be consistent with the paleoclimatic reconstructions in the previous studies: pollen and lake-status records suggest dry climate over East Asia during the last glacial maximum, and part of the dust record has a signal that the East Asian winter monsoon was more strong and the westerly jet stream in the upper troposphere was further south during the last glacial maximum than at the present day. This result confirms that a coupled atmosphere-ocean general circulation model is a promising tool to understand not only the global climate but also the regional climate in the past.

  10. Climate-model induced differences in the 21st century global and regional glacier contributions to sea-level rise

    NARCIS (Netherlands)

    Giesen, R.H.|info:eu-repo/dai/nl/304831603; Oerlemans, J.|info:eu-repo/dai/nl/06833656X

    2013-01-01

    The large uncertainty in future global glacier volume projections partly results from a substantial range in future climate conditions projected by global climate models. This study addresses the effect of global and regional differences in climate input data on the projected twenty-first century

  11. Simulating the effects of climate and agricultural management practices on global crop yield

    Science.gov (United States)

    Deryng, D.; Sacks, W. J.; Barford, C. C.; Ramankutty, N.

    2011-06-01

    Climate change is expected to significantly impact global food production, and it is important to understand the potential geographic distribution of yield losses and the means to alleviate them. This study presents a new global crop model, PEGASUS 1.0 (Predicting Ecosystem Goods And Services Using Scenarios) that integrates, in addition to climate, the effect of planting dates and cultivar choices, irrigation, and fertilizer application on crop yield for maize, soybean, and spring wheat. PEGASUS combines carbon dynamics for crops with a surface energy and soil water balance model. It also benefits from the recent development of a suite of global data sets and analyses that serve as model inputs or as calibration data. These include data on crop planting and harvesting dates, crop-specific irrigated areas, a global analysis of yield gaps, and harvested area and yield of major crops. Model results for present-day climate and farm management compare reasonably well with global data. Simulated planting and harvesting dates are within the range of crop calendar observations in more than 75% of the total crop-harvested areas. Correlation of simulated and observed crop yields indicates a weighted coefficient of determination, with the weighting based on crop-harvested area, of 0.81 for maize, 0.66 for soybean, and 0.45 for spring wheat. We found that changes in temperature and precipitation as predicted by global climate models for the 2050s lead to a global yield reduction if planting and harvesting dates remain unchanged. However, adapting planting dates and cultivar choices increases yield in temperate regions and avoids 7-18% of global losses.

  12. The impact of climate change on the global wine industry: Challenges & solutions

    Directory of Open Access Journals (Sweden)

    Michelle Renée Mozell

    2014-12-01

    Full Text Available This paper explores the impact of climate change upon the global production of winegrapes and wine. It includes a review of the literature on the cause and effects of climate change, as well as illustrations of the specific challenges global warming may bring to the production of winegrapes and wine. More importantly, this paper provides some practical solutions that industry professionals can take to mitigate and adapt to the coming change in both vineyards and wineries.

  13. Is the global rise of asthma an early impact of anthropogenic climate change?

    Directory of Open Access Journals (Sweden)

    Paul John Beggs

    Full Text Available The increase in asthma incidence, prevalence, and morbidity over recent decades presents a significant challenge to public health. Pollen is an important trigger of some types of asthma, and both pollen quantity and season depend on climatic and meteorological variables. Over the same period as the global rise in asthma, there have been considerable increases in atmospheric carbon dioxide concentration and global average surface temperature. We hypothesize anthropogenic climate change as a plausible contributor to the rise in asthma. Greater concentrations of carbon dioxide and higher temperatures may increase pollen quantity and induce longer pollen seasons. Pollen allergenicity can also increase as a result of these changes in climate. Exposure in early life to a more allergenic environment may also provoke the development of other atopic conditions, such as eczema and allergic rhinitis. Although the etiology of asthma is complex, the recent global rise in asthma could be an early health effect of anthropogenic climate change.

  14. Multinationals and global climate change. Issues for the automotive and oil industries

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, A.; Levy, D.

    2003-07-01

    This chapter analyzes the strategic responses by U.S. and European multinational enterprises (MNEs) in the oil and automobile industries to the global climate change issue. We examine and attempt to explain the differences across regions, across industries, and the changes over time. Traditional economic drivers of strategy do not provide a satisfactory account for these differences, and the chapter focuses instead on the conflicting institutional pressures on MNEs and the implications for their climate strategy. The home-country institutional context and individual corporate histories can create divergent pressures on strategy for MNEs based in different countries. At the same time, the location of MNEs in global industries and their participation in 'global issues arenas' such as climate change generate institutional forces for strategic convergence. It appears that local context influenced initial corporate reactions, but that convergent pressures predominate as the issue matures.

  15. Simulation of climate variability and anthropogenic climate change

    International Nuclear Information System (INIS)

    Bengtsson, Lennart

    1999-01-01

    The climatic changes in the last century were discussed and focus was on the questions: 1) What are the causes of the rapid climate fluctuations and 2) Is the global warming, which is observed during the last century, caused by natural or anthropogenic effects. It is concluded that an understanding of climate based on the interpretation of observational data only is not feasible, unless supported by an adequate theoretical interpretation. The capabilities of climatic models were discussed and the importance of incorporating 1) calculations of the internal variability of the atmosphere when forced from an ocean with prescribed sea surface temperature as well as for a system consisting of an atmosphere and a mixed ocean of limited depth, 2) a fully coupled atmospheric and ocean model and finally, 3) a fully coupled system including transiently changing greenhouse gases and aerosols. A short summation of the results is presented. The pronounced warming during the last century is not reproduced under the assumption of constant forcing and pollution emissions have to be incorporated into the models in order to bring the simulated data in agreement with observations

  16. Paradigms of global climate change and sustainable development: Issues and related policies

    OpenAIRE

    Prabhat Kumar Rai; Prashant Kumar Rai

    2013-01-01

    Combating climate change is intimately linked with peace and resource equity. Therefore, critical link establishment between climate change and sustainable development is extremely relevant in global scenario. Following the 1992 Earth Summit in Rio, the international sustainable development agenda was taken up by the UN Commission on Sustainable Development (CSD); the climate change agenda was carried forward by the UN Framework Convention on Climate Change (UNFCCC). International and local c...

  17. The global climate Policy Evaluation Framework

    International Nuclear Information System (INIS)

    Cohan, D.; Stafford, R.K.; Scheraga, J.D.; Herrod, S.

    1994-01-01

    The Policy Evaluation Framework (PEF) is a decision analysis tool that enables decision makers to continuously formulate policies that take into account the existing uncertainties, and to refine policies as new scientific information is developed. PEF integrates deterministic parametric models of physical, biological, and economic systems with a flexible decision tree system. The deterministic models represent greenhouse gas emissions, atmospheric accumulation of these gases, global and regional climate changes, ecosystem impacts, economic impacts, and mitigation and adaptation options, The decision tree system captures the key scientific and economic uncertainties, and reflects the wide range of possible outcomes of alternative policy actions. The framework contains considerable flexibility to allow a wide range of scientific and economic assumptions or scenarios to be represented and explored. A key feature of PEF is its capability to address both mitigation policies and investments in anticipatory adaptation to protect ecological and economic systems, as well as interactions among such options. PEF's time structure allows issues related to the timing and flexibility of alternatives to be evaluated, while the decision tree structure facilitates examining questions involving the value of information, contingent actions, and probabilistic representations. This paper is intended to introduce PEF to the global climate policy community. The paper provides an overview of the structure, modules, and capabilities of PEF, and discusses selected results from an initial set of illustrative applications

  18. Towards a regional climate model coupled to a comprehensive hydrological model

    Science.gov (United States)

    Rasmussen, S. H.; Drews, M.; Christensen, J. H.; Butts, M. B.; Jensen, K. H.; Refsgaard, J.; Hydrological ModellingAssessing Climate Change Impacts At Different Scales (Hyacints)

    2010-12-01

    When planing new ground water abstractions wells, building areas, roads or other land use activities information about expected future groundwater table location for the lifetime of the construction may be critical. The life time of an abstraction well can be expected to be more than 50 years, while if for buildings may be up to 100 years or more. The construction of an abstraction well is expensive and it is important to know if clean groundwater is available for its expected life time. The future groundwater table is depending on the future climate. With climate change the hydrology is expected to change as well. Traditionally, this assessment has been done by driving hydrological models with output from a climate model. In this way feedback between the groundwater hydrology and the climate is neglected. Neglecting this feedback can lead to imprecise or wrong results. The goal of this work is to couple the regional climate model HIRHAM (Christensen et al. 2006) to the hydrological model MIKE SHE (Graham and Butts, 2006). The coupling exploits the new OpenMI technology that provides a standardized interface to define, describe and transfer data on a time step basis between software components that run simultaneously (Gregersen et al., 2007). HIRHAM runs on a UNIX platform whereas MIKE SHE and OpenMI are under WINDOWS. Therefore the first critical task has been to develop an effective communication link between the platforms. The first step towards assessing the coupled models performance are addressed by looking at simulated land-surface atmosphere feedback through variables such as evapotranspiration, sensible heat flux and soil moisture content. Christensen, O.B., Drews, M., Christensen, J.H., Dethloff, K., Ketelsen, K., Hebestadt, I. and Rinke, A. (2006) The HIRHAM Regional Climate Model. Version 5; DMI Scientific Report 0617. Danish Meteorological Institute. Graham, D.N. and Butts, M.B. (2005) Flexible, integrated watershed modelling with MIKE SHE, In

  19. Transient chaos in a globally coupled system of nearly conservative Hamiltonian Duffing oscillators

    International Nuclear Information System (INIS)

    Sabarathinam, S.; Thamilmaran, K.

    2015-01-01

    Highlights: •We have examined transient chaos in globally coupled oscillators. •We analyze transient chaos using new techniques. •We give experimental confirmation of transient chaos. -- Abstract: In this work, transient chaos in a ring and globally coupled system of nearly conservative Hamiltonian Duffing oscillators is reported. The networks are formed by coupling of three, four and six Duffing oscillators. The nearly conservative Hamiltonian nature of the coupled system is proved by stability analysis. The transient phenomenon is confirmed through various numerical investigations such as recurrence analysis, 0–1 test and Finite Time Lyapunov Exponents. Further, the effect of damping and the average transient lifetime of three, four and six coupled schemes for randomly generated initial conditions have been analyzed. The experimental confirmation of transient chaos in an illustrative system of three ringly coupled Duffing oscillators is also presented

  20. Global climate change -- taking action

    International Nuclear Information System (INIS)

    2000-01-01

    Commitment of the Canadian Mining Association (MAC), on behalf of its member companies, to play a global leadership role in eco-efficiency and environmental stewardship and participate fully in Canada's efforts to reduce emissions that contribute to climate change, are outlined. The principles underlying the MAC's commitment include: prudent action to reduce GHG emissions; the greatest possible efficiency in using energy; use of best practices and technologies; support for the development of balanced climate change policies; cooperation with all stakeholders in achieving the maximum feasible reduction in GHG emissions; support for research and analysis of the social, economic and environmental implications of GHG reduction strategies; and active support for a balanced and effective public outreach and education program. A brief review of how the mining sector has already made giant strides in cutting energy consumption and in reducing carbon dioxide equivalent emissions per unit of output during the past decade is supplemented by summaries of GHG reduction success stories from member companies such as Cominco, Teck Corporation, Falconbridge and Syncrude Canada Limited

  1. Building a global federation system for climate change research: the earth system grid center for enabling technologies (ESG-CET)

    International Nuclear Information System (INIS)

    Ananthakrishnan, R; Bernholdt, D E; Bharathi, S; Brown, D; Chen, M; Chervenak, A L; Cinquini, L; Drach, R; Foster, I T; Fox, P; Fraser, D; Halliday, K; Hankin, S; Jones, P; Kesselman, C; Middleton, D E; Schwidder, J; Schweitzer, R; Schuler, R; Shoshani, A; Siebenlist, F; Sim, A; Strand, W G; Wilhelmi, N; Su, M; Williams, D N

    2007-01-01

    The recent release of the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report (AR4) has generated significant media attention. Much has been said about the US role in this report, which included significant support from the Department of Energy through the Scientific Discovery through Advanced Computing (SciDAC) and other Department of Energy (DOE) programs for climate model development and the production execution of simulations. The SciDAC-supported Earth System Grid Center for Enabling Technologies (ESG-CET) also played a major role in the IPCC AR4: all of the simulation data that went into the report was made available to climate scientists worldwide exclusively via the ESG-CET At the same time as the IPCC AR4 database was being developed, the National Center for Atmospheric Research (NCAR), a leading US climate science laboratory and a ESG participant, began publishing model runs from the Community Climate System Model (CCSM), and its predecessor the Parallel Coupled Model (PCM) through ESG In aggregate, ESG-CET provides seamless access to over 180 terabytes of distributed climate simulation data to over 6,000 registered users worldwide, who have taken delivery of more than 250 terabytes from the archive. Not only does this represent a substantial advance in scientific knowledge, it is also a major step forward in how we conduct the research process on a global scale. Moving forward, the next IPCC assessment report, AR5, will demand multi-site metadata federation for data discovery and cross-domain identity management for single sign-on of users in a more diverse federation enterprise environment. Towards this aim, ESG is leading the effort in the climate community towards standardization of material for the global federation of metadata, security, and data services required to standardize, analyze, and access data worldwide

  2. Reversible and irreversible impacts of greenhouse gas emissions in multi-century projections with the NCAR global coupled carbon cycle-climate model

    Energy Technology Data Exchange (ETDEWEB)

    Froelicher, Thomas L.; Joos, Fortunat [University of Bern, Climate and Environmental Physics, Physics Institute, Bern (Switzerland); University of Bern, Oeschger Centre for Climate Change Research, Bern (Switzerland)

    2010-12-15

    The legacy of historical and the long-term impacts of 21st century greenhouse gas emissions on climate, ocean acidification, and carbon-climate feedbacks are investigated with a coupled carbon cycle-climate model. Emission commitment scenarios with zero emissions after year 2100 and 21st century emissions of 1,800, 900, and 0 gigatons of carbon are run up to year 2500. The reversibility and irreversibility of impacts is quantified by comparing anthropogenically-forced regional changes with internal, unforced climate variability. We show that the influence of historical emissions and of non-CO{sub 2} agents is largely reversible on the regional scale. Forced changes in surface temperature and precipitation become smaller than internal variability for most land and ocean grid cells in the absence of future carbon emissions. In contrast, continued carbon emissions over the 21st century cause irreversible climate change on centennial to millennial timescales in most regions and impacts related to ocean acidification and sea level rise continue to aggravate for centuries even if emissions are stopped in year 2100. Undersaturation of the Arctic surface ocean with respect to aragonite, a mineral form of calcium carbonate secreted by marine organisms, is imminent and remains widespread. The volume of supersaturated water providing habitat to calcifying organisms is reduced from preindustrial 40 to 25% in 2100 and to 10% in 2300 for the high emission case. We conclude that emission trading schemes, related to the Kyoto Process, should not permit trading between emissions of relatively short-lived agents and CO{sub 2} given the irreversible impacts of anthropogenic carbon emissions. (orig.)

  3. Remote sensing for global change, climate change and atmosphere and ocean forecasting. Volume 1

    International Nuclear Information System (INIS)

    1992-01-01

    This volume is separated in three sessions. First part is on remote sensing for global change (with global modelling, land cover change on global scale, ocean colour studies of marine biosphere, biological and hydrological interactions and large scale experiments). Second part is on remote sensing for climate change (with earth radiation and clouds, sea ice, global climate research programme). Third part is on remote sensing for atmosphere and ocean forecasting (with temperatures and humidity, winds, data assimilation, cloud imagery, sea surface temperature, ocean waves and topography). (A.B.). refs., figs., tabs

  4. Climate resilient crops for improving global food security and safety.

    Science.gov (United States)

    Dhankher, Om Parkash; Foyer, Christine H

    2018-05-01

    Food security and the protection of the environment are urgent issues for global society, particularly with the uncertainties of climate change. Changing climate is predicted to have a wide range of negative impacts on plant physiology metabolism, soil fertility and carbon sequestration, microbial activity and diversity that will limit plant growth and productivity, and ultimately food production. Ensuring global food security and food safety will require an intensive research effort across the food chain, starting with crop production and the nutritional quality of the food products. Much uncertainty remains concerning the resilience of plants, soils, and associated microbes to climate change. Intensive efforts are currently underway to improve crop yields with lower input requirements and enhance the sustainability of yield through improved biotic and abiotic stress tolerance traits. In addition, significant efforts are focused on gaining a better understanding of the root/soil interface and associated microbiomes, as well as enhancing soil properties. © 2018 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  5. Instabilities and nonstatistical behavior in globally coupled systems

    International Nuclear Information System (INIS)

    Perez, G.; Cerdeira, H.A.

    1992-08-01

    The mean field in a globally coupled system of chaotic logistic maps does not obey the standard rules of statistics, even for systems of very large sizes. This indicates the existence of intrinsic instabilities in its evolution. Here these instabilities are related to the very non-smooth behavior of mean values in a single logistic map, as a function of its parameter. Problems of this kind do not affect a similar system of coupled tent maps, where good statistical behavior has been found. We also explore the transition between these two regimes. (author). 15 refs, 9 figs

  6. Global Solutions to the Coupled Chemotaxis-Fluid Equations

    KAUST Repository

    Duan, Renjun

    2010-08-10

    In this paper, we are concerned with a model arising from biology, which is a coupled system of the chemotaxis equations and the viscous incompressible fluid equations through transport and external forcing. The global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the Chemotaxis-Navier-Stokes system over three space dimensions, we obtain global existence and rates of convergence on classical solutions near constant states. When the fluid motion is described by the simpler Stokes equations, we prove global existence of weak solutions in two space dimensions for cell density with finite mass, first-order spatial moment and entropy provided that the external forcing is weak or the substrate concentration is small. © Taylor & Francis Group, LLC.

  7. Variations in tropical convection as an amplifier of global climate change at the millennial scale

    NARCIS (Netherlands)

    Ivanochkoa, T.S.; Ganeshram, R.S.; Brummer, G.J.A.; Ganssen, G.M.; Jung, S.J.A.; Moreton, S.G.; Kroon, D.

    2005-01-01

    The global expression of millennial-scale climatic change during the glacial period and the persistence of this signal in Holocene records point to atmospheric teleconnections as the mechanism propagating rapid climate variations. We suggest rearrangements in the tropical convection system globally

  8. The value of international cooperation for abating global climate change

    International Nuclear Information System (INIS)

    Hammitt, James K.; Adams, John L.

    1996-01-01

    Because abatement of global climate change is a public good, independent national actions may not produce the efficient quantity. Using a numerical integrated-assessment model, abatement costs and damages induced by climate change are compared at the cooperative and noncooperative solutions to a set of two-party dynamic games between the industrialized and developing countries. Games with perfect and imperfect information about climate and economic factors are considered. Across 144 games with perfect information, incorporating different values of climate and economic parameters, the noncooperative solution usually yields global benefits comparable to those of the cooperative solution. In about one-fifth of these games, however, a second noncooperative solution exists which yields none of the benefits of the cooperative solution. In a game with imperfect information, where the state of nature is uncertain in the first but known in the second of two periods, the expected benefits of the noncooperative solution are 98% of the expected benefits of the cooperative solution. In contrast to single-agent studies which show little cost to delaying abatement, the benefits of cooperation are usually lost if cooperation is delayed 20 years

  9. The increased atmospheric greenhouse effect and regional climate change

    Energy Technology Data Exchange (ETDEWEB)

    Groenaas, S. [Bergen Univ. (Norway)

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. The main information for predicting future climate changes comes from integrating coupled climate models of the atmosphere, ocean and cryosphere. Regional climate change may be studied from the global integrations, however, resolution is coarse because of insufficient computer power. Attempts are being made to get more regional details out of the global integrations by ``downscaling`` the latter. This can be done in two ways. Firstly, limited area models with high resolution are applied, driven by the global results as boundary values. Secondly, statistical relationships have been found between observed meteorological parameters, like temperature and precipitation, and analyzed large scale gridded fields. The derived relations are then used on similar data from climate runs to give local interpretations. A review is given of literature on recent observations of climate variations and on predicted regional climate change. 18 refs., 4 figs.

  10. Life on a warmer earth: Possible climatic consequences of man-made global warming. Executive report 3

    Energy Technology Data Exchange (ETDEWEB)

    Flohn, H

    1981-01-01

    This Executive Report derives from IIASA Research Report RR-80-30, Possible Climatic Consequences of a Man-Made Global Warming, by H. Flohn and published separately. It is based on research undertaken to explore the interaction between energy and climate, including the impact on the global climate of three main energy sources: solar, nuclear, and fossil fuels. Its findings describe the global warming effects caused by carbon dioxide released by burning fossil fuels and by other trace gases released into the atmosphere. The approach is paleoclimatic; it provides insight into what global warming will produce by considering what is known about past periods of the earth's history when the global average surface temperature was higher than it is now. The purpose of this report is to put the research findings into layman's language and add related information to provide a general introduction to the global warming problem. Information is presented under the following chapter titles: the scenario in brief; the climatic system; changes in ice cover; changes in atmosphere and oceans; man's effect on climate; taking the earth's temperature; what a hotter earth might mean; beyond immediate prospects; and, today's mixed signals. (JGB)

  11. Global Energy Development and Climate-Induced Water Scarcity—Physical Limits, Sectoral Constraints, and Policy Imperatives

    Directory of Open Access Journals (Sweden)

    Christopher A. Scott

    2015-08-01

    Full Text Available The current accelerated growth in demand for energy globally is confronted by water-resource limitations and hydrologic variability linked to climate change. The global spatial and temporal trends in water requirements for energy development and policy alternatives to address these constraints are poorly understood. This article analyzes national-level energy demand trends from U.S. Energy Information Administration data in relation to newly available assessments of water consumption and life-cycle impacts of thermoelectric generation and biofuel production, and freshwater availability and sectoral allocations from the U.N. Food and Agriculture Organization and the World Bank. Emerging, energy-related water scarcity flashpoints include the world’s largest, most diversified economies (Brazil, India, China, and USA among others, while physical water scarcity continues to pose limits to energy development in the Middle East and small-island states. Findings include the following: (a technological obstacles to alleviate water scarcity driven by energy demand are surmountable; (b resource conservation is inevitable, driven by financial limitations and efficiency gains; and (c institutional arrangements play a pivotal role in the virtuous water-energy-climate cycle. We conclude by making reference to coupled energy-water policy alternatives including water-conserving energy portfolios, intersectoral water transfers, virtual water for energy, hydropower tradeoffs, and use of impaired waters for energy development.

  12. Global climate change and cryospheric evolution in China

    Directory of Open Access Journals (Sweden)

    Qin D.

    2009-02-01

    Full Text Available Major outcomes of Working Group I, IPCC AR4 (2007, as well as the recent understandings from our regional climatic assessments in China were summarized. Changes of cryosphere in China, one of the major components in regional climate system, is specifically reviewed. Under the global/regional warming, all components of cryosphere in China (Tibetan Plateau and surroundings including glaciers, frozen ground (including permafrost and snow cover show rapid decay in the last decades. These changes have big socioeconomic impacts in west China, thus encourages both government and scientists pay more and more attention to this field.

  13. ASM Lecture Series: Global Warming and Climate Change

    International Nuclear Information System (INIS)

    Rowland, F. S.

    2010-01-01

    The melting of ice and permafrost in the north polar region and the shrinking of the tropical glaciers are signals that global warming is no longer solely a warning about the future, but changes which have already arrived. The initial effects of this warming are noticeably present, and the concerns are now of substantial climate change in the near future. Modeling of the consequences on the future atmosphere from increased release of greenhouse gases and some of the possible consequences of climate change, such as rising sea levels and melting of the north polar ice, are discussed. (author)

  14. The potential of Indonesian mangrove forests for global climate change mitigation

    Science.gov (United States)

    Murdiyarso, Daniel; Purbopuspito, Joko; Kauffman, J. Boone; Warren, Matthew W.; Sasmito, Sigit D.; Donato, Daniel C.; Manuri, Solichin; Krisnawati, Haruni; Taberima, Sartji; Kurnianto, Sofyan

    2015-12-01

    Mangroves provide a wide range of ecosystem services, including nutrient cycling, soil formation, wood production, fish spawning grounds, ecotourism and carbon (C) storage. High rates of tree and plant growth, coupled with anaerobic, water-logged soils that slow decomposition, result in large long-term C storage. Given their global significance as large sinks of C, preventing mangrove loss would be an effective climate change adaptation and mitigation strategy. It has been reported that C stocks in the Indo-Pacific region contain on average 1,023 MgC ha-1 (ref. ). Here, we estimate that Indonesian mangrove C stocks are 1,083 +/- 378 MgC ha-1. Scaled up to the country-level mangrove extent of 2.9 Mha (ref. ), Indonesia’s mangroves contained on average 3.14 PgC. In three decades Indonesia has lost 40% of its mangroves, mainly as a result of aquaculture development. This has resulted in annual emissions of 0.07-0.21 Pg CO2e. Annual mangrove deforestation in Indonesia is only 6% of its total forest loss; however, if this were halted, total emissions would be reduced by an amount equal to 10-31% of estimated annual emissions from land-use sectors at present. Conservation of carbon-rich mangroves in the Indonesian archipelago should be a high-priority component of strategies to mitigate climate change.

  15. Climate change due to greenhouse effects in China as simulated by a regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Gao, X.J.; Zhao, Z.C.; Ding, Y.H.; Huang, R.H.; Giorgi, F. [National Climate Centre, Beijing (China)

    2001-07-01

    Impacts of greenhouse effects (2 x CO{sub 2}) upon climate change over China as simulated by a regional climate model over China (RegCM / China) have been investigated. The model was based on RegCM2 and was nested to a global coupled ocean-atmosphere model (CSIRO R21L9 AOGCM model). Results of the control run (1 x CO{sub 2}) indicated that simulations of surface air temperature and precipitation in China by RegCM are much better than that by the global coupled model because of a higher resolution. Results of sensitive experiment by RegCM with 2 x CO{sub 2} showed that the surface air temperature over China might increase remarkably due to greenhouse effect, especially in winter season and in North China. Precipitation might also increase in most parts of China due to the CO{sub 2} doubling.

  16. The Global and Local Climatic Response to the Collapse of the West Antarctic Ice Sheet

    Science.gov (United States)

    Huybers, K. M.; Singh, H.; Steiger, N. J.; Frierson, D. M.; Steig, E. J.; Bitz, C. M.

    2014-12-01

    Glaciologists have suggested that a relatively small external forcing may compromise the stability of the West Antarctic Ice Sheet (WAIS). Further, there is compelling physical evidence that the WAIS has collapsed in the past, at times when the mean global temperature was only a few degrees warmer than it is today. In addition to a rapid increase in global sea level, the collapse of the WAIS could also affect the global circulation of the atmosphere. Ice sheets are some of the largest topographic features on Earth, causing large regional anomalies in albedo and radiative balance. Our work uses idealized aquaplanet models in tandem with a fully coupled ocean/atmosphere/sea-ice model (CCSM4) to compare the atmospheric, radiative, and oceanic response to a complete loss of the WAIS. Initial findings indicate that the loss of the WAIS leads to a weakening and equator-ward shift of the zonal winds, a development of strong zonal asymmetries in the meridional wind, and a northward migration of the Intertropical Convergence Zone. We aim to characterize how the local and global climate is affected by the presence of the WAIS, and how changes in the distribution of Southern Hemisphere ice may be represented in the proxy record.

  17. Structural Design Feasibility Study for the Global Climate Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lewin,K.F.; Nagy, J.

    2008-12-01

    Neon, Inc. is proposing to establish a Global Change Experiment (GCE) Facility to increase our understanding of how ecological systems differ in their vulnerability to changes in climate and other relevant global change drivers, as well as provide the mechanistic basis for forecasting ecological change in the future. The experimental design was initially envisioned to consist of two complementary components; (A) a multi-factor experiment manipulating CO{sub 2}, temperature and water availability and (B) a water balance experiment. As the design analysis and cost estimates progressed, it became clear that (1) the technical difficulties of obtaining tight temperature control and maintaining elevated atmospheric carbon dioxide levels within an enclosure were greater than had been expected and (2) the envisioned study would not fit into the expected budget envelope if this was done in a partially or completely enclosed structure. After discussions between NEON management, the GCE science team, and Keith Lewin, NEON, Inc. requested Keith Lewin to expand the scope of this design study to include open-field exposure systems. In order to develop the GCE design to the point where it can be presented within a proposal for funding, a feasibility study of climate manipulation structures must be conducted to determine design approaches and rough cost estimates, and to identify advantages and disadvantages of these approaches including the associated experimental artifacts. NEON, Inc requested this design study in order to develop concepts for the climate manipulation structures to support the NEON Global Climate Experiment. This study summarizes the design concepts considered for constructing and operating the GCE Facility and their associated construction, maintenance and operations costs. Comparisons and comments about experimental artifacts, construction challenges and operational uncertainties are provided to assist in selecting the final facility design. The overall goal

  18. Act locally, trade globally. Emissions trading for climate policy

    Energy Technology Data Exchange (ETDEWEB)

    none

    2005-07-01

    Climate policy raises a number of challenges for the energy sector, the most significant being the transition from a high to a low-CO2 energy path in a few decades. Emissions trading has become the instrument of choice to help manage the cost of this transition, whether used at international or at domestic level. Act Locally, Trade Globally, offers an overview of existing trading systems, their mechanisms, and looks into the future of the instrument for limiting greenhouse gas emissions. Are current markets likely to be as efficient as the theory predicts? What is, if any, the role of governments in these markets? Can domestic emissions trading systems be broadened to activities other than large stationary energy uses? Can international emissions trading accommodate potentially diverse types of emissions targets and widely different energy realities across countries? Are there hurdles to linking emissions trading systems based on various design features? Can emissions trading carry the entire burden of climate policy, or will other policy instruments remain necessary? In answering these questions, Act Locally, Trade Globally seeks to provide a complete picture of the future role of emissions trading in climate policy and the energy sector.

  19. Strong climate coupling of terrestrial and marine environments in the Miocene of northwest Europe

    NARCIS (Netherlands)

    Donders, T.H.; Weijers, J.W.H.; Munsterman, D.K.; Kloosterboer-van Hoeve, M.L.; Buckles, L.K.; Pancost, R.D.; Schouten, S.; Sinninghe Damsté, J.S.; Brinkhuis, H.

    2009-01-01

    A palynological and organic geochemical record from a shallow marine paleoenvironmental setting in SE Netherlands documents the coupled marine and terrestrial climate evolution from the late Burdigalian (∼ 17 Ma) through the early Zanclean (∼ 4.5 Ma). Proxy climate records show several coeval

  20. Coupled Aerosol-Chemistry-Climate Twentieth-Century Transient Model Investigation: Trends in Short-Lived Species and Climate Responses

    Science.gov (United States)

    Koch, Dorothy; Bauer, Susanne E.; Del Genio, Anthony; Faluvegi, Greg; McConnell, Joseph R.; Menon, Surabi; Miller, Ronald L.; Rind, David; Ruedy, Reto; Schmidt, Gavin A.; hide

    2011-01-01

    The authors simulate transient twentieth-century climate in the Goddard Institute for Space Studies (GISS) GCM, with aerosol and ozone chemistry fully coupled to one another and to climate including a full dynamic ocean. Aerosols include sulfate, black carbon (BC), organic carbon, nitrate, sea salt, and dust. Direct and BC snow-albedo radiative effects are included. Model BC and sulfur trends agree fairly well with records from Greenland and European ice cores and with sulfur deposition in North America; however, the model underestimates the sulfur decline at the end of the century in Greenland. Global BC effects peak early in the century (1940s); afterward the BC effects decrease at high latitudes of the Northern Hemisphere but continue to increase at lower latitudes. The largest increase in aerosol optical depth occurs in the middle of the century (1940s-80s) when sulfate forcing peaks and causes global dimming. After this, aerosols decrease in eastern North America and northern Eurasia leading to regional positive forcing changes and brightening. These surface forcing changes have the correct trend but are too weak. Over the century, the net aerosol direct effect is -0.41 Watts per square meter, the BC-albedo effect is -0.02 Watts per square meter, and the net ozone forcing is +0.24 Watts per square meter. The model polar stratospheric ozone depletion develops, beginning in the 1970s. Concurrently, the sea salt load and negative radiative flux increase over the oceans around Antarctica. Net warming over the century is modeled fairly well; however, the model fails to capture the dynamics of the observedmidcentury cooling followed by the late century warming.Over the century, 20% of Arctic warming and snow ice cover loss is attributed to the BC albedo effect. However, the decrease in this effect at the end of the century contributes to Arctic cooling. To test the climate responses to sulfate and BC pollution, two experiments were branched from 1970 that removed

  1. State of the Climate Monthly Overview - Global El Niño/Southern Oscillation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate...

  2. BRICS COUNTRIES’ POLITICAL AND LEGAL PARTICIPATION IN THE GLOBAL CLIMATE CHANGE AGENDA

    Directory of Open Access Journals (Sweden)

    E. Gladun

    2016-01-01

    Full Text Available The article presents an overview and analysis of international legal regulations on climate change. The authors examine how the international regime related to climate change has evolved in multilateral agreements. A special focus is put on the principle of common but differentiated responsibilities which became the basis of discord among states in discussing targets and responsibilities in climate change mitigation. The authors note that in 2015 the international climate change regime entered a new stage where the most important role is determined for developing countries, both in the legal and in the financial infrastructure, and in the formation of an international climate change policy.The importance of the participation of Brazil, Russia, India, China, and South Africa (BRICS in an international climate change regime has been recognized for some time. The article describes the policy and regulations on climate-related issues in BRICS. The authors compare the key actions and measures BRICS have taken for complying with international climate change documents. They highlight that global climate change action cannot be successful without BRICS countries’ involvement. BRICS must therefore make adequate efforts in emissions reduction measures and significant commitments in respect of the international climate change regime. The authors propose three major steps for BRICS to take the lead in dealing with climate change. First, BRICS need to foster further discussion and cooperation on climate issues and work out an obligatory legal framework to fight climate change collectively as well as unified legislation at their domestic levels. Second, Russia and other BRICS countries have the potential to cooperate in the field of renewable energy through the exchange of technology, investment in the sector, and the participation of their energy companies in each other’s domestic market. Assuming Russia will support the development and enhancement of

  3. What about coal? Interactions between climate policies and the global steam coal market until 2030

    International Nuclear Information System (INIS)

    Haftendorn, C.; Kemfert, C.; Holz, F.

    2012-01-01

    Because of economic growth and a strong increase in global energy demand the demand for fossil fuels and therefore also greenhouse gas emissions are increasing, although climate policy should lead to the opposite effect. The coal market is of special relevance as coal is available in many countries and often the first choice to meet energy demand. In this paper we assess possible interactions between climate policies and the global steam coal market. Possible market adjustments between demand regions through market effects are investigated with a numerical model of the global steam coal market: the “COALMOD-World” model. This equilibrium model computes future trade flows, infrastructure investments and prices until 2030. We investigate three specific designs of climate policy: a unilateral European climate policy, an Indonesian export-limiting policy and a fast-roll out of carbon capture and storage (CCS) in the broader context of climate policy and market constraints. We find that market adjustment effects in the coal market can have significant positive and negative impacts on the effectiveness of climate policies. - Highlights: ► Interactions between climate policy and the global coal market until 2030 modeled. ► Analysis with the numerical model: “COALMOD-World”. ► Unilateral European climate policy partly compensated by market adjustment effects. ► A fast roll-out of CCS can lead to positive market adjustment effects. ► An export restricting supply-side policy generates virtuous market adjustments.

  4. Globally exponential synchronization in an array of asymmetric coupled neural networks

    International Nuclear Information System (INIS)

    Lu Jianquan; Ho, Daniel W.C.; Liu Ming

    2007-01-01

    In this Letter, we study the globally exponential synchronization in an array of linearly coupled neural networks with delayed coupling. The coupling configuration matrix is assumed to be asymmetric, which is more coincident with the real-world network. The difficulty arising from the asymmetry of the coupling matrix has been overcame in this work. Some synchronization criteria are given in terms of strict linear matrix inequalities (LMIs), which can be efficiently solved by using interior point algorithm. Some previous synchronization results are generalized. Numerical simulation is also given to verify our theoretical analysis

  5. Droughts in a warming climate: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI)

    Science.gov (United States)

    Asadi Zarch, Mohammad Amin; Sivakumar, Bellie; Sharma, Ashish

    2015-07-01

    Both drought and aridity indicate imbalance in water availability. While drought is a natural temporal hazard, aridity is a constant climatic feature. This paper investigates the changes in drought characteristics across different aridity zones with and without consideration of potential evapotranspiration (PET), as a means to better assess drought in a warming climate. Two drought indexes are employed: (1) Standardized precipitation index (SPI), which is solely based on precipitation; and (2) Reconnaissance drought index (RDI), which, in addition to precipitation, takes PET into account. The two indexes are first employed to observed precipitation and PET data for the period 1960-2009 from the CRU (Climate Research Unit, University of East Anglia) TS 3.1 database. The results indicate that although all the aridity zones experience both downward and upward drought trends, no significant trend is found over large parts of the zones. However, the agreement between SPI and RDI reduces from the hyper-arid zone on one extreme toward the humid zone on the other. In the three more humid zones (i.e. semi-arid, sub-humid, and humid), the indexes exhibit different trends, with RDI showing more decreasing trends (i.e. becoming drier). While SPI generally shows more drought prone areas than RDI for the pre-1998 period, the opposite is observed for the post-1998 period. Given the known changes to PET in observed records, and also expected increases as global warming intensifies, these results suggest that RDI will be consistently different to the SPI as global warming intensifies. This hypothesis is further tested for historic and future climate projections from the CSIRO (Commonwealth Scientific and Industrial Research Organisation, Australia) Mk3.6 global climate model (GCM), with use of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and RCP8.5 (Representative Concentration Pathways). In this case, PET is calculated using FAO56-PM model for assessment of

  6. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U [DKRZ, Hamburg (Germany)

    1996-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  7. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U. [DKRZ, Hamburg (Germany)

    1995-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  8. How positive is the feedback between climate change and the carbon cycle?

    International Nuclear Information System (INIS)

    Friedlingstein, P.; Rayner, P.

    2003-01-01

    Future climate change induced by atmospheric emissions of greenhouse gases is believed to have a large impact on the global carbon cycle. Several offline studies focusing either on the marine or on the terrestrial carbon cycle highlighted such potential effects. Two recent online studies, using ocean-atmosphere general circulation models coupled to land and ocean carbon cycle models, investigated in a consistent way the feedback between the climate change and the carbon cycle. These two studies used observed anthropogenic CO 2 emissions for the 1860-1995 period and IPCC scenarios for the 1995-2100 period to force the climate - carbon cycle models. The study from the Hadley Centre group showed a very large positive feedback, atmospheric CO 2 reaching 980 ppmv by 2100 if future climate impacts on the carbon cycle, but only about 700 ppmv if the carbon cycle is included but assumed to be insensitive to the climate change. The IPSL coupled climate - carbon cycle model simulated a much smaller positive feedback: climate impact on the carbon cycle leads by 2100 to an addition of less than 100 ppmv in the atmosphere. Here we perform a detailed feedback analysis to show that such differences are due to two key processes that are still poorly constrained in these coupled models: first Southern Ocean circulation, which primarily controls the geochemical uptake of CO 2 , and second vegetation and soil carbon response to global warming. Our analytical analysis reproduces remarkably the results obtained by the fully coupled models. Also it allows us to identify that, amongst the two processes mentioned above, the latter (the land response to global warming) is the one that essentially explains the differences between the IPSL and the Hadley results

  9. The prediction of surface temperature in the new seasonal prediction system based on the MPI-ESM coupled climate model

    Science.gov (United States)

    Baehr, J.; Fröhlich, K.; Botzet, M.; Domeisen, D. I. V.; Kornblueh, L.; Notz, D.; Piontek, R.; Pohlmann, H.; Tietsche, S.; Müller, W. A.

    2015-05-01

    A seasonal forecast system is presented, based on the global coupled climate model MPI-ESM as used for CMIP5 simulations. We describe the initialisation of the system and analyse its predictive skill for surface temperature. The presented system is initialised in the atmospheric, oceanic, and sea ice component of the model from reanalysis/observations with full field nudging in all three components. For the initialisation of the ensemble, bred vectors with a vertically varying norm are implemented in the ocean component to generate initial perturbations. In a set of ensemble hindcast simulations, starting each May and November between 1982 and 2010, we analyse the predictive skill. Bias-corrected ensemble forecasts for each start date reproduce the observed surface temperature anomalies at 2-4 months lead time, particularly in the tropics. Niño3.4 sea surface temperature anomalies show a small root-mean-square error and predictive skill up to 6 months. Away from the tropics, predictive skill is mostly limited to the ocean, and to regions which are strongly influenced by ENSO teleconnections. In summary, the presented seasonal prediction system based on a coupled climate model shows predictive skill for surface temperature at seasonal time scales comparable to other seasonal prediction systems using different underlying models and initialisation strategies. As the same model underlying our seasonal prediction system—with a different initialisation—is presently also used for decadal predictions, this is an important step towards seamless seasonal-to-decadal climate predictions.

  10. Climate change and the global pattern of moraine-dammed glacial lake outburst floods

    Science.gov (United States)

    Harrison, Stephan; Kargel, Jeffrey S.; Huggel, Christian; Reynolds, John; Shugar, Dan H.; Betts, Richard A.; Emmer, Adam; Glasser, Neil; Haritashya, Umesh K.; Klimeš, Jan; Reinhardt, Liam; Schaub, Yvonne; Wiltshire, Andy; Regmi, Dhananjay; Vilímek, Vít

    2018-04-01

    Despite recent research identifying a clear anthropogenic impact on glacier recession, the effect of recent climate change on glacier-related hazards is at present unclear. Here we present the first global spatio-temporal assessment of glacial lake outburst floods (GLOFs) focusing explicitly on lake drainage following moraine dam failure. These floods occur as mountain glaciers recede and downwaste. GLOFs can have an enormous impact on downstream communities and infrastructure. Our assessment of GLOFs associated with the rapid drainage of moraine-dammed lakes provides insights into the historical trends of GLOFs and their distributions under current and future global climate change. We observe a clear global increase in GLOF frequency and their regularity around 1930, which likely represents a lagged response to post-Little Ice Age warming. Notably, we also show that GLOF frequency and regularity - rather unexpectedly - have declined in recent decades even during a time of rapid glacier recession. Although previous studies have suggested that GLOFs will increase in response to climate warming and glacier recession, our global results demonstrate that this has not yet clearly happened. From an assessment of the timing of climate forcing, lag times in glacier recession, lake formation and moraine-dam failure, we predict increased GLOF frequencies during the next decades and into the 22nd century.

  11. Response of the North Pacific Oscillation to global warming in the models of the Intergovernmental Panel on Climate Change Fourth Assessment Report

    Science.gov (United States)

    Chen, Zheng; Gan, Bolan; Wu, Lixin

    2017-09-01

    Based on 22 of the climate models from phase 3 of the Coupled Model Intercomparison Project, we investigate the ability of the models to reproduce the spatiotemporal features of the wintertime North Pacific Oscillation (NPO), which is the second most important factor determining the wintertime sea level pressure field in simulations of the pre-industrial control climate, and evaluate the NPO response to the future most reasonable global warming scenario (the A1B scenario). We reveal that while most models simulate the geographic distribution and amplitude of the NPO pattern satisfactorily, only 13 models capture both features well. However, the temporal variability of the simulated NPO could not be significantly correlated with the observations. Further analysis indicates the weakened NPO intensity for a scenario of strong global warming is attributable to the reduced lower-tropospheric baroclinicity at mid-latitudes, which is anticipated to disrupt large-scale and low-frequency atmospheric variability, resulting in the diminished transfer of energy to the NPO, together with its northward shift.

  12. Studying the human dimensions of global climate change

    International Nuclear Information System (INIS)

    Berk, R.A.

    1991-01-01

    With recent scientific interest in climate change has come a need to address substantive issues over very long periods of time and over virtually the entire globe. There is also a growing recognition not only of the links between physical and biological systems but also of the key roles played by human activities and institutions in interaction with the physical and biological world. Hence, the study of climate change presents a host of important questions to social scientists, for which they are not fully prepared. The problems inherent in studying the human dimensions of global climate change do not occur in a scientific vacuum. Rather, they are in part created by, and in part reflect, important gaps in scientific understanding of the physical and biological dimensions. To set the stage, therefore, the general nature of these gaps needs to be briefly reviewed

  13. Risk perception and commitment to reduce global climate change in Spain

    Directory of Open Access Journals (Sweden)

    Rodríguez-Priego, Nuria

    2014-04-01

    Full Text Available An online national survey among the Spanish population (n = 602 was conducted to examine the factors underlying a person’s support for commitments to global climate change reductions. Multiple hierarchical regression analysis was conducted in four steps and a structural equations model was tested. A survey tool designed by the Yale Project on Climate Change Communication was applied in order to build scales for the variables introduced in the study. The results show that perceived consumer effectiveness and risk perception are determinant factors of commitment to mitigating global climate change. However, there are differences in the influence that other factors, such as socio-demographics, view of nature and cultural cognition, have on the last predicted variable.Una encuesta online a la población española (n = 602 examina los factores que predicen el apoyo al compromiso con el medio ambiente por parte de los participantes para reducir el cambio climático global. Se realizó una regresión múltiple jerárquica en cuatro pasos y se testó el modelo de ecuaciones estructurales propuesto. En la encuesta se aplicó una herramienta diseñada por el Yale Project on Climate Change Communication con la finalidad de construir escalas para las variables introducidas en el estudio. Los resultados muestran que la efectividad percibida por el consumidor y el riesgo percibido son factores determinantes del apoyo al compromiso para reducir el cambio climático global. No obstante, se encontraron algunas diferencias en cuanto a la influencia de otros factores tales como las variables socio-demográficas, la visión de la naturaleza y la cognición cultural.

  14. Land-use change and global climate policies

    International Nuclear Information System (INIS)

    Gitz, V.

    2004-03-01

    This PhD thesis assess the role of land-use dynamics and carbon sequestration within climate policies. First, it describes the emergence, from the Rio-1992 to the Marrakech Accords (2001), of diplomatic controversies upon carbon sinks, in the context of the progressive constitution of a scientific basis on terrestrial carbon sinks. It questions the ability of the actual form of international climate regime to generate the appropriate incentives to sequester within the forestry sector in developed countries, or to control tropical deforestation. Second, the contribution of land-use change to atmospheric CO 2 rise is quantified using a newly designed model of the global carbon cycle and regional land-use (OSCAR). We show that carbon emitted via land-use is not equivalent to fossil carbon emission in respect to atmospheric CO 2 rise. This effect, all the more than land-use emissions are increasing, requires a greater mitigation effort to stabilize atmospheric CO 2 . Finally, optimal timing of mixed climate policies involving fossil emissions mitigation and biological sequestration is assessed within an inter temporal cost-benefit framework. We show that the social value of sequestered carbon depends on anticipating future climate damages. Within optimal control models, this links the timing of sequestration to fossil effort and to the evolution of climate damages; if the latter are uncertain, but might be revealed at a later date, then it might be optimal to reserve part of the limited sequestration potential to cut off an eventual future abatement cost peak, were a climate surprise to finally imply stringent concentration ceilings. (author)

  15. Local control on precipitation in a fully coupled climate-hydrology model

    DEFF Research Database (Denmark)

    Larsen, Morten A. D.; Christensen, Jens H.; Drews, Martin

    2016-01-01

    simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface...

  16. Global late Quaternary megafauna extinctions linked to humans, not climate change.

    Science.gov (United States)

    Sandom, Christopher; Faurby, Søren; Sandel, Brody; Svenning, Jens-Christian

    2014-07-22

    The late Quaternary megafauna extinction was a severe global-scale event. Two factors, climate change and modern humans, have received broad support as the primary drivers, but their absolute and relative importance remains controversial. To date, focus has been on the extinction chronology of individual or small groups of species, specific geographical regions or macroscale studies at very coarse geographical and taxonomic resolution, limiting the possibility of adequately testing the proposed hypotheses. We present, to our knowledge, the first global analysis of this extinction based on comprehensive country-level data on the geographical distribution of all large mammal species (more than or equal to 10 kg) that have gone globally or continentally extinct between the beginning of the Last Interglacial at 132,000 years BP and the late Holocene 1000 years BP, testing the relative roles played by glacial-interglacial climate change and humans. We show that the severity of extinction is strongly tied to hominin palaeobiogeography, with at most a weak, Eurasia-specific link to climate change. This first species-level macroscale analysis at relatively high geographical resolution provides strong support for modern humans as the primary driver of the worldwide megafauna losses during the late Quaternary.

  17. Mind the rate. Why rate global climate change matters, and how much

    International Nuclear Information System (INIS)

    Ambrosi, Ph.

    2006-01-01

    To assess climate policies in a cost-efficiency framework with constraints on the magnitude and rate of global climate change we have built RESPONSE, an optimal control integrated assessment model. Our results show that the uncertainty about climate sensitivity leads to significant short-term mitigation efforts all the more as the arrival of information regarding this parameter is belated. There exists thus a high opportunity cost to know before 2030 the true value of this parameter, which is not totally granted so far. Given this uncertainty, a +2 deg C objective could lead to rather stringent policy recommendations for the coming decades and might prove unacceptable. Furthermore, the uncertainty about climate sensitivity magnifies the influence of the rate constraint on short-term decision, leading to rather stringent policy recommendations for the coming decades. This result is particularly robust to the choice of discount rate and to the beliefs of the decision-maker about climate sensitivity. We finally show that the uncertainty about the rate constraint is even more important for short-term decision than the uncertainty about climate sensitivity or magnitude of warming. This means that the critical rate of climate change, i.e. a transient characteristic of climate risks, matters much more than the long-term objective of climate policy, i.e. the critical magnitude of climate change. Therefore, research should be aimed at better characterising climate change risks in view to help decision-makers in agreeing on a safe guardrail to limit the rate of global warming. (author)

  18. On Effective Radiative Forcing of Partial Internally and Externally Mixed Aerosols and Their Effects on Global Climate

    Science.gov (United States)

    Zhou, Chen; Zhang, Hua; Zhao, Shuyun; Li, Jiangnan

    2018-01-01

    The total effective radiative forcing (ERF) due to partial internally mixed (PIM) and externally mixed (EM) anthropogenic aerosols, as well as their climatic effects since the year of 1850, was evaluated and compared using the aerosol-climate online coupled model of BCC_AGCM2.0_CUACE/Aero. The influences of internal mixing (IM) on aerosol hygroscopicity parameter, optical properties, and concentration were considered. Generally, IM could markedly weaken the negative ERF and cooling effects of anthropogenic aerosols. The global annual mean ERF of EM anthropogenic aerosols from 1850 to 2010 was -1.87 W m-2, of which the aerosol-radiation interactive ERF (ERFari) and aerosol-cloud interactive ERF (ERFaci) were -0.49 and -1.38 W m-2, respectively. The global annual mean ERF due to PIM anthropogenic aerosols from 1850 to 2010 was -1.23 W m-2, with ERFari and ERFaci of -0.23 and -1.01 W m-2, respectively. The global annual mean surface temperature and water evaporation and precipitation were reduced by 1.74 K and 0.14 mm d-1 for EM scheme and 1.28 K and 0.11 mm d-1 for PIM scheme, respectively. However, the relative humidity near the surface was slightly increased for both mixing cases. The Intertropical Convergence Zone was southwardly shifted for both EM and PIM cases but was less southwardly shifted in PIM scheme due to the less reduction in atmospheric temperature in the midlatitude and low latitude of the Northern Hemisphere.

  19. Global climate change and the equity-efficiency puzzle

    International Nuclear Information System (INIS)

    Manne, Alan S.; Stephan, Gunter

    2005-01-01

    There is a broad consensus that the costs of abatement of global climate change can be reduced efficiently through the assignment of quota rights and through international trade in these rights. There is, however, no consensus on whether the initial assignment of emissions permits can affect the Pareto-optimal global level of abatement. This paper provides some insight into the equity-efficiency puzzle. Qualitative results are obtained from a small-scale model; then quantitative evidence of separability is obtained from MERGE, a multiregion integrated assessment model. It is shown that if all the costs of climate change can be expressed in terms of GDP losses, Pareto-efficient abatement strategies are independent of the initial allocation of emissions rights. This is the case sometimes described as 'market damages'. If, however, different regions assign different values to nonmarket damages such as species losses, different sharing rules may affect the Pareto-optimal level of greenhouse gas abatement. Separability may then be demonstrated only in specific cases (e.g. identical welfare functions or quasi-linearity of preferences or small shares of wealth devoted to abatement)

  20. Shifting Global Climate Governance: Creating Long-Term Goals Through UNFCCC Article 2

    Directory of Open Access Journals (Sweden)

    P. Brian Fisher

    2011-12-01

    Full Text Available I argue that the long-term risk of global climate change has been mischaracterized as an environmental issue, and therefore, solutions based solely on national emission targets will be ineffective. Thus, this paper argues for establishing long-term goals emphasizing both adaptation and clean energy to generate equitable and effective global climate policy that addresses this fundamental threat. This requires defining and operationalizing the overall objective contained in Article 2 of the United Nations Framework Convention on Climate Change. A second key aspect to operationalizing Article 2 is to understand those ‘particularly vulnerable’ as declared in the Article and in various climate agreements. Once operationalized, these long-term objectives can be achieved through approaches that emphasize the development of clean energy (and concomitant technology, and adaptation within vulnerable communities in their local context. It necessitates dropping formal mechanisms at the current core of the regime designed to regulate national emissions, and instead build the core of the regime around the ‘stabilization’ of both the climate system through clean energy and vulnerable people through effective adaptation.

  1. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease.

    Science.gov (United States)

    Rohr, Jason R; Raffel, Thomas R

    2010-05-04

    The role of global climate change in the decline of biodiversity and the emergence of infectious diseases remains controversial, and the effect of climatic variability, in particular, has largely been ignored. For instance, it was recently revealed that the proposed link between climate change and widespread amphibian declines, putatively caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), was tenuous because it was based on a temporally confounded correlation. Here we provide temporally unconfounded evidence that global El Niño climatic events drive widespread amphibian losses in genus Atelopus via increased regional temperature variability, which can reduce amphibian defenses against pathogens. Of 26 climate variables tested, only factors associated with temperature variability could account for the spatiotemporal patterns of declines thought to be associated with Bd. Climatic predictors of declines became significant only after controlling for a pattern consistent with epidemic spread (by temporally detrending the data). This presumed spread accounted for 59% of the temporal variation in amphibian losses, whereas El Niño accounted for 59% of the remaining variation. Hence, we could account for 83% of the variation in declines with these two variables alone. Given that global climate change seems to increase temperature variability, extreme climatic events, and the strength of Central Pacific El Niño episodes, climate change might exacerbate worldwide enigmatic declines of amphibians, presumably by increasing susceptibility to disease. These results suggest that changes to temperature variability associated with climate change might be as significant to biodiversity losses and disease emergence as changes to mean temperature.

  2. Evaluation of Global Photosynthesis and BVOC Emission Covariance with Climate in NASA ModelE2-Y

    Science.gov (United States)

    Unger, N.

    2012-12-01

    Terrestrial gross primary productivity (GPP), a measure of the total amount of CO2 removed from the atmosphere every year to fuel photosynthesis, is the largest global carbon flux. GPP is vital for human welfare as the basis for food and fiber, and provides the crucial ecosystem service of reducing the accumulation of fossil fuel CO2 in the atmosphere. Land plants emit a significant fraction of the assimilated carbon back to the atmosphere in the form of biogenic volatile organic compounds (BVOCs). Isoprene is the dominant BVOC emission with an estimated global source of 200-660 TgC/yr. Global monoterpene emission estimates range from 30-130 TgC/yr. BVOC photochemical oxidation exerts a profound impact on the distribution and variability of the short-lived climate forcers: ozone, biogenic secondary organic aerosol and methane. Here, we apply multiple observational datasets from a suite of platforms to evaluate an updated global chemistry-climate model that is coupled to a new vegetation biophysics scheme incorporating photosynthesis-dependent BVOC emissions (NASA ModelE2-Y). A fixed vegetation structure dataset based on 8 plant functional types and prescribed phenology including crop planting and harvesting gives GPP of 128 PgC/yr and a global isoprene source of 200TgC/yr. The model GPP captures 85% of the annual average zonal mean variability in a FLUXNET-derived global dataset that was generated by data orientated diagnostic upscaling. We assess model BVOC emission climatology against a comprehensive database of campaign-average above canopy flux measurements and surface concentrations of isoprene and monoterpene collected between 1995-2010 across a wide range of ecosystem types, regions and seasons (> 25 flux estimates; > 22 surface concentration values). We evaluate the diurnal, seasonal and interannual integrity of the model BVOC variability against 9 sites for isoprene and 4 sites for monoterpene. The model captures ~60% of the variability in the time

  3. Attribution of Large-Scale Climate Patterns to Seasonal Peak-Flow and Prospects for Prediction Globally

    Science.gov (United States)

    Lee, Donghoon; Ward, Philip; Block, Paul

    2018-02-01

    Flood-related fatalities and impacts on society surpass those from all other natural disasters globally. While the inclusion of large-scale climate drivers in streamflow (or high-flow) prediction has been widely studied, an explicit link to global-scale long-lead prediction is lacking, which can lead to an improved understanding of potential flood propensity. Here we attribute seasonal peak-flow to large-scale climate patterns, including the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO), using streamflow station observations and simulations from PCR-GLOBWB, a global-scale hydrologic model. Statistically significantly correlated climate patterns and streamflow autocorrelation are subsequently applied as predictors to build a global-scale season-ahead prediction model, with prediction performance evaluated by the mean squared error skill score (MSESS) and the categorical Gerrity skill score (GSS). Globally, fair-to-good prediction skill (20% ≤ MSESS and 0.2 ≤ GSS) is evident for a number of locations (28% of stations and 29% of land area), most notably in data-poor regions (e.g., West and Central Africa). The persistence of such relevant climate patterns can improve understanding of the propensity for floods at the seasonal scale. The prediction approach developed here lays the groundwork for further improving local-scale seasonal peak-flow prediction by identifying relevant global-scale climate patterns. This is especially attractive for regions with limited observations and or little capacity to develop flood early warning systems.

  4. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    Science.gov (United States)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  5. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from $32.7 billion to $54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  6. Life on a warmer earth: possible climatic consequences of man-made global warming. [Monograph

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    A summary of research conducted by the International Institute for Applied Systems Analysis (IIASA) and published by H. Flohn in 1977 updates the original data to March 1980. The work explores the interaction between energy and climate, including the impact on the global climate of three main energy sources: solar, nuclear, and fossil fuels. Its findings describe the global warming effects caused by carbon dioxide released by burning fossil fuels and by other trace gases released into the atmosphere. The approach is paleoclimatic in that it gains insights into what global warming will produce by considering what is known about past periods of the earth's history when the global average surface temperature was higher than it is now. Although paleoclimatic knowledge is limited, no complete model of the climatic system is available. This research uses both approaches, combining the two to some extent. 10 figures.

  7. Climate velocity and the future global redistribution of marine biodiversity

    Science.gov (United States)

    García Molinos, Jorge; Halpern, Benjamin S.; Schoeman, David S.; Brown, Christopher J.; Kiessling, Wolfgang; Moore, Pippa J.; Pandolfi, John M.; Poloczanska, Elvira S.; Richardson, Anthony J.; Burrows, Michael T.

    2016-01-01

    Anticipating the effect of climate change on biodiversity, in particular on changes in community composition, is crucial for adaptive ecosystem management but remains a critical knowledge gap. Here, we use climate velocity trajectories, together with information on thermal tolerances and habitat preferences, to project changes in global patterns of marine species richness and community composition under IPCC Representative Concentration Pathways (RCPs) 4.5 and 8.5. Our simple, intuitive approach emphasizes climate connectivity, and enables us to model over 12 times as many species as previous studies. We find that range expansions prevail over contractions for both RCPs up to 2100, producing a net local increase in richness globally, and temporal changes in composition, driven by the redistribution rather than the loss of diversity. Conversely, widespread invasions homogenize present-day communities across multiple regions. High extirpation rates are expected regionally (for example, Indo-Pacific), particularly under RCP8.5, leading to strong decreases in richness and the anticipated formation of no-analogue communities where invasions are common. The spatial congruence of these patterns with contemporary human impacts highlights potential areas of future conservation concern. These results strongly suggest that the millennial stability of current global marine diversity patterns, against which conservation plans are assessed, will change rapidly over the course of the century in response to ocean warming.

  8. Climate change and the World Bank: opportunity for global governance?

    International Nuclear Information System (INIS)

    Boehmer-Christiansen, S.A.

    1999-01-01

    The direct and indirect efforts of the World Bank and its off-spring, the Global Environment Facility (GEF), to become leading international agents of global environmental 'governance' and 'sustainable development' are described and analysed politically with reference to the development of an implementation regime of the Framework Convention on Climate Change (FCCC). The Bank/GEF are seen as engaging in a potentially dangerous experiment of 'global ecological modernisation', or industrial transformation, in 'emerging economies', an experiment legitimised by reference to the catastrophic threat of man-made 'global warming'. This threat is already being translated into political, commercial and bureaucratic benefits accruing to a small global elite. How was this achieved and what are the likely political implications? (author)

  9. Amazonia: Burning and global climate impacts

    International Nuclear Information System (INIS)

    Molion, L.C.B.

    1991-01-01

    In recent years, humans have been playing a major role in reducing the natural forest cover in the tropics through different forms of slash and burn. The most serious destruction, it is said, is occurring in the Amazon, which is the largest expanse of tropical forest remaining on the planet. This chapter reviews briefly the causes and the extent of Amazonian deforestation and focuses on its global and local climate impacts. In addition, the effects of loss of diversity and need to preserve Indian cultures and societies are briefly discussed

  10. Small island developing states and global climate change: overcoming the constraints

    International Nuclear Information System (INIS)

    Ashe, J.W.

    1999-01-01

    In the context of the debate on climate change, and related impacts such as sea-level rise, one fact that has generally been recognized is that small island developing states (SIDS) and low-lying coastal states are especially at risk. The drafters of the United Nations Framework Convention on Climate Change identified these two categories of countries as 'particularly vulnerable to the adverse effects of climate change'. Thus sea-level rise, as one of the more nefarious manifestations of the so-called 'adverse impacts' of human-induced climate change, presents particular challenges for SIDS. These include increased erosion, flooding, loss of wetlands, and increased salinity of surface and groundwater caused by saltwater intrusion. While precise and exact answers to the questions of impacts are not yet known, climatologists, using various tools such as computer generated global circulation models, have been able to define the causes and the likely impacts of global climate change. For example, using results from the computer models, climatologists have estimated that a doubling of carbon dioxide concentrations from pre-industrial levels will cause global temperatures to rise between 1.0-3.5 deg. C. They have also been able to predict that with such an increase in temperature and consequent sea-level rise, severe impacts are likely to be experienced by coastal and low-lying States. These will lead directly to saltwater intrusion into groundwater aquifers, endangerment of wetlands and inundation of especially low-lying areas. The IPCC report also states (Watson et al., 1996) that coastal zones and small islands contain some of the world's most diverse and productive resources, and their global importance in terms of both ecological and socio-economic values is widely recognized. Their complex and specialized ecosystems such as mangroves, coral reefs and seagrasses, are highly sensitive to human intervention and support a variety of economic activities, including

  11. Hot house global climate change and the human condition

    CERN Document Server

    Strom, Robert G

    2007-01-01

    Global warming is addressed by almost all sciences including many aspects of geosciences, atmospheric, the biological sciences, and even astronomy. It has recently become the concern of other diverse disciplines such as economics, agriculture, demographics and population statistics, medicine, engineering, and political science. This book addresses these complex interactions, integrates them, and derives meaningful conclusions and possible solutions. The text provides an easy-to-read explanation of past and present global climate change, causes and possible solutions to the problem, including t

  12. Zero emission targets as long-term global goals for climate protection

    International Nuclear Information System (INIS)

    Rogelj, Joeri; Riahi, Keywan; Schaeffer, Michiel; Hare, William; Meinshausen, Malte; Knutti, Reto; Alcamo, Joseph

    2015-01-01

    Recently, assessments have robustly linked stabilization of global-mean temperature rise to the necessity of limiting the total amount of emitted carbon-dioxide (CO 2 ). Halting global warming thus requires virtually zero annual CO 2 emissions at some point. Policymakers have now incorporated this concept in the negotiating text for a new global climate agreement, but confusion remains about concepts like carbon neutrality, climate neutrality, full decarbonization, and net zero carbon or net zero greenhouse gas (GHG) emissions. Here we clarify these concepts, discuss their appropriateness to serve as a long-term global benchmark for achieving temperature targets, and provide a detailed quantification. We find that with current pledges and for a likely (>66%) chance of staying below 2 °C, the scenario literature suggests net zero CO 2 emissions between 2060 and 2070, with net negative CO 2 emissions thereafter. Because of residual non-CO 2 emissions, net zero is always reached later for total GHG emissions than for CO 2 . Net zero emissions targets are a useful focal point for policy, linking a global temperature target and socio-economic pathways to a necessary long-term limit on cumulative CO 2 emissions. (letter)

  13. Governing climate : the struggle for a global framework beyond Kyoto

    International Nuclear Information System (INIS)

    Sugiyama, T.; Hasselknippe, H.; Tangen, K.; Michaelowa, A.; Pan, J.; Sinton, J.

    2005-01-01

    This book presented the results of a 2 year research project which developed post-2012 climate regime scenarios. The aim of the project was to contribute to decision-making and dialogue between policy-makers and stakeholders. A range of scenarios for a post-2012 framework were developed which illustrated the many possible futures under which the global climate regime may evolve. Scenarios include the strengthening of a binding-cap approach; a bottom-up evolution of emission markets on a global scale; a regime consisting of multiple treaties among like-minded countries and a binding-cap regime with an emphasis on equity. Papers in this book explored key building blocks of a future climate regime, and presented ideas on how to broaden the current cap-and-trade regime. The roles and importance of technology were explored. Lessons from past successes were reviewed with the aim of developing options for their most effective use in the near future. The issue of financial flows to developing countries was addressed, including the issue of mainstreaming assistance for climate-change response. It was suggested that European countries will be key players in initial negotiations in the post-2012 regime, and that the current framework favours Europe while making it difficult for the United States, Japan and Canada to make ambitious commitments. It was concluded that a careful analysis of all the alternative paths available for international climate policies is needed. refs., tabs., figs

  14. Land Use, Climate, and Water Resources—Global Stages of Interaction

    Directory of Open Access Journals (Sweden)

    Sujay S. Kaushal

    2017-10-01

    Full Text Available Land use and climate change can accelerate the depletion of freshwater resources that support humans and ecosystem services on a global scale. Here, we briefly review studies from around the world, and highlight those in this special issue. We identify stages that characterize increasing interaction between land use and climate change. During the first stage, hydrologic modifications and the built environment amplify overland flow via processes associated with runoff-dominated ecosystems (e.g., soil compaction, impervious surface cover, drainage, and channelization. During the second stage, changes in water storage impact the capacity of ecosystems to buffer extremes in water quantity and quality (e.g., either losses in snowpack, wetlands, and groundwater recharge or gains in water and nutrient storage behind dams in reservoirs. During the third stage, extremes in water quantity and quality contribute to losses in ecosystem services and water security (e.g., clean drinking water, flood mitigation, and habitat availability. During the final stage, management and restoration strategies attempt to regain lost ecosystem structure, function, and services but need to adapt to climate change. By anticipating the increasing interaction between land use and climate change, intervention points can be identified, and management strategies can be adjusted to improve outcomes for realistic expectations. Overall, global water security cannot be adequately restored without considering an increasing interaction between land use and climate change across progressive stages and our ever-increasing human domination of the water cycle from degradation to ecosystem restoration.

  15. Land Use, Climate, and Water Resources-Global Stages of Interaction.

    Science.gov (United States)

    Kaushal, Sujay S; Gold, Arthur J; Mayer, Paul M

    2017-10-24

    Land use and climate change can accelerate the depletion of freshwater resources that support humans and ecosystem services on a global scale. Here, we briefly review studies from around the world, and highlight those in this special issue. We identify stages that characterize increasing interaction between land use and climate change. During the first stage, hydrologic modifications and the built environment amplify overland flow via processes associated with runoff-dominated ecosystems (e.g., soil compaction, impervious surface cover, drainage, and channelization). During the second stage, changes in water storage impact the capacity of ecosystems to buffer extremes in water quantity and quality (e.g., either losses in snowpack, wetlands, and groundwater recharge or gains in water and nutrient storage behind dams in reservoirs). During the third stage, extremes in water quantity and quality contribute to losses in ecosystem services and water security (e.g., clean drinking water, flood mitigation, and habitat availability). During the final stage, management and restoration strategies attempt to regain lost ecosystem structure, function, and services but need to adapt to climate change. By anticipating the increasing interaction between land use and climate change, intervention points can be identified, and management strategies can be adjusted to improve outcomes for realistic expectations. Overall, global water security cannot be adequately restored without considering an increasing interaction between land use and climate change across progressive stages and our ever-increasing human domination of the water cycle from degradation to ecosystem restoration.

  16. GFDL CM2.1 Global Coupled Ocean-Atmosphere Model Water ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. GFDL CM2.1 Global Coupled Ocean-Atmosphere Model Water Hosing Experiment with 1 Sv equivalent of Freshening Control Expt: 100 yrs After Hosing: 300 yrs.

  17. Validation and quantification of uncertainty in coupled climate models using network analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bracco, Annalisa [Georgia Inst. of Technology, Atlanta, GA (United States)

    2015-08-10

    We developed a fast, robust and scalable methodology to examine, quantify, and visualize climate patterns and their relationships. It is based on a set of notions, algorithms and metrics used in the study of graphs, referred to as complex network analysis. This approach can be applied to explain known climate phenomena in terms of an underlying network structure and to uncover regional and global linkages in the climate system, while comparing general circulation models outputs with observations. The proposed method is based on a two-layer network representation, and is substantially new within the available network methodologies developed for climate studies. At the first layer, gridded climate data are used to identify ‘‘areas’’, i.e., geographical regions that are highly homogeneous in terms of the given climate variable. At the second layer, the identified areas are interconnected with links of varying strength, forming a global climate network. The robustness of the method (i.e. the ability to separate between topological distinct fields, while identifying correctly similarities) has been extensively tested. It has been proved that it provides a reliable, fast framework for comparing and ranking the ability of climate models of reproducing observed climate patterns and their connectivity. We further developed the methodology to account for lags in the connectivity between climate patterns and refined our area identification algorithm to account for autocorrelation in the data. The new methodology based on complex network analysis has been applied to state-of-the-art climate model simulations that participated to the last IPCC (International Panel for Climate Change) assessment to verify their performances, quantify uncertainties, and uncover changes in global linkages between past and future projections. Network properties of modeled sea surface temperature and rainfall over 1956–2005 have been constrained towards observations or reanalysis data sets

  18. Global Climate Change (GCC) Issues and Their Impacts on the US Army Corps of Engineers

    Science.gov (United States)

    1991-11-01

    Figure 24: The Great Plains scenario POSSIBLE SCENARIOS FOR FUTURE CLIMATE 70 Agriculture Clmate change could: *decreae. corn and soybean yields In...AD-A247 279 ____________ GLOBAL CLIMATE CHANGE us A (GCC) ISSUES AND THEIRoUS ;T AryL ors IM PACTS ON THE US ARMY Topographic Engineering CenerCORPS...blank) 12. AEPGAT DATE 3. REPORT TYPE AND DATES COVERED 1 29 Nov 91 SPECIAL REPORT 4. TITLE AND SUBTITLE ,. FUNDING NUMBERS Global Climate Change (GCC

  19. Challenges and Opportunities for Integrating Social Science Perspectives into Climate and Global Change Assessments

    Science.gov (United States)

    Larson, E. K.; Li, J.; Zycherman, A.

    2017-12-01

    Integration of social science into climate and global change assessments is fundamental for improving understanding of the drivers, impacts and vulnerability of climate change, and the social, cultural and behavioral challenges related to climate change responses. This requires disciplinary and interdisciplinary knowledge as well as integrational and translational tools for linking this knowledge with the natural and physical sciences. The USGCRP's Social Science Coordinating Committee (SSCC) is tasked with this challenge and is working to integrate relevant social, economic and behavioral knowledge into processes like sustained assessments. This presentation will discuss outcomes from a recent SSCC workshop, "Social Science Perspectives on Climate Change" and their applications to sustained assessments. The workshop brought academic social scientists from four disciplines - anthropology, sociology, geography and archaeology - together with federal scientists and program managers to discuss three major research areas relevant to the USGCRP and climate assessments: (1) innovative tools, methods, and analyses to clarify the interactions of human and natural systems under climate change, (2) understanding of factors contributing to differences in social vulnerability between and within communities under climate change, and (3) social science perspectives on drivers of global climate change. These disciplines, collectively, emphasize the need to consider socio-cultural, political, economic, geographic, and historic factors, and their dynamic interactions, to understand climate change drivers, social vulnerability, and mitigation and adaptation responses. They also highlight the importance of mixed quantitative and qualitative methods to explain impacts, vulnerability, and responses at different time and spatial scales. This presentation will focus on major contributions of the social sciences to climate and global change research. We will discuss future directions for

  20. Developing global climate anomalies suggest potential disease risks for 2006-2007.

    Science.gov (United States)

    Anyamba, Assaf; Chretien, Jean-Paul; Small, Jennifer; Tucker, Compton J; Linthicum, Kenneth J

    2006-12-28

    El Niño/Southern Oscillation (ENSO) related climate anomalies have been shown to have an impact on infectious disease outbreaks. The Climate Prediction Center of the National Oceanic and Atmospheric Administration (NOAA/CPC) has recently issued an unscheduled El Niño advisory, indicating that warmer than normal sea surface temperatures across the equatorial eastern Pacific may have pronounced impacts on global tropical precipitation patterns extending into the northern hemisphere particularly over North America. Building evidence of the links between ENSO driven climate anomalies and infectious diseases, particularly those transmitted by insects, can allow us to provide improved long range forecasts of an epidemic or epizootic. We describe developing climate anomalies that suggest potential disease risks using satellite generated data. Sea surface temperatures (SSTs) in the equatorial east Pacific ocean have anomalously increased significantly during July - October 2006 indicating the typical development of El Niño conditions. The persistence of these conditions will lead to extremes in global-scale climate anomalies as has been observed during similar conditions in the past. Positive Outgoing Longwave Radiation (OLR) anomalies, indicative of severe drought conditions, have been observed across all of Indonesia, Malaysia and most of the Philippines, which are usually the first areas to experience ENSO-related impacts. This dryness can be expected to continue, on average, for the remainder of 2006 continuing into the early part of 2007. During the period November 2006 - January 2007 climate forecasts indicate that there is a high probability for above normal rainfall in the central and eastern equatorial Pacific Islands, the Korean Peninsula, the U.S. Gulf Coast and Florida, northern South America and equatorial east Africa. Taking into consideration current observations and climate forecast information, indications are that the following regions are at increased

  1. Plausible Effect of Weather on Atlantic Meridional Overturning Circulation with a Coupled General Circulation Model

    Science.gov (United States)

    Liu, Zedong; Wan, Xiuquan

    2018-04-01

    The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.

  2. Evidence of Climate Change (Global Warming) and Temperature Increases in Arctic Areas

    OpenAIRE

    Eric Kojo Wu Aikins

    2012-01-01

    This paper contributes to the debate on the proximate causes of climate change. Also, it discusses the impact of the global temperature increases since the beginning of the twentieth century and the effectiveness of climate change models in isolating the primary cause (anthropogenic influences or natural variability in temperature) of the observed temperature increases that occurred within this period. The paper argues that if climate scientist and policymakers ignore the...

  3. Global water resources: vulnerability from climate change and population growth.

    Science.gov (United States)

    Vörösmarty, C J; Green, P; Salisbury, J; Lammers, R B

    2000-07-14

    The future adequacy of freshwater resources is difficult to assess, owing to a complex and rapidly changing geography of water supply and use. Numerical experiments combining climate model outputs, water budgets, and socioeconomic information along digitized river networks demonstrate that (i) a large proportion of the world's population is currently experiencing water stress and (ii) rising water demands greatly outweigh greenhouse warming in defining the state of global water systems to 2025. Consideration of direct human impacts on global water supply remains a poorly articulated but potentially important facet of the larger global change question.

  4. Australian Medical Students' Association Global Health Essay Competition - Global climate change, geo-engineering and human health.

    Science.gov (United States)

    Boyages, Costa S

    2013-10-07

    Rio+20's proposed Sustainable Development Goals have the potential to redefine the course of international action on climate change. They recognise that environmental health is inextricably linked with human health, and that environmental sustainability is of paramount importance in safeguarding global health. Competition entrants were asked to discuss ways of making global health a central component of international sustainable development initiatives and environmental policy, using one or two concrete examples

  5. Global crop yield response to extreme heat stress under multiple climate change futures

    Science.gov (United States)

    Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R.

    2014-12-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (dY = -12.8 ± 6.7% versus -7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (dY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (dY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.

  6. Global crop yield response to extreme heat stress under multiple climate change futures

    International Nuclear Information System (INIS)

    Deryng, Delphine; Warren, Rachel; Conway, Declan; Ramankutty, Navin; Price, Jeff

    2014-01-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO 2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO 2 fertilization effects, could double global losses of maize yield (ΔY = −12.8 ± 6.7% versus − 7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (ΔY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (ΔY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO 2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries. (paper)

  7. CO2 embodied in international trade with implications for global climate policy.

    Science.gov (United States)

    Peters, Glen P; Hertwich, Edgar G

    2008-03-01

    The flow of pollution through international trade flows has the ability to undermine environmental policies, particularly for global pollutants. In this article we determine the CO2 emissions embodied in international trade among 87 countries for the year 2001. We find that globally there are over 5.3 Gt of CO2 embodied in trade and that Annex B countries are net importers of CO2 emissions. Depending on country characteristics--such as size variables and geographic location--there are considerable variations in the embodied emissions. We argue that emissions embodied in trade may have a significant impact on participation in and effectiveness of global climate policies such as the Kyoto Protocol. We discuss several policy options to reduce the impact of trade in global climate policy. If countries take binding commitments as a part of a coalition, instead of as individual countries, then the impacts of trade can be substantially reduced. Adjusting emission inventories for trade gives a more consistent description of a country's environmental pressures and circumvents many trade related issues. It also gives opportunities to exploit trade as a means of mitigating emissions. Not least, a better understanding of the role that trade plays in a country's economic and environmental development will help design more effective and participatory climate policy post-Kyoto.

  8. Stormy weather: 101 solutions to global climate change

    International Nuclear Information System (INIS)

    Dauncey, G.; Mazza, P.

    2001-01-01

    This book provides a comprehensive guide to energy efficiency measures that would rid the world of the threat of global warming caused by the wasteful use of hydrocarbon fuels and the resulting greenhouse gas emissions. The actions to be taken are not directed to governments and industry alone; indeed, the change must involve every segment of society to be effective. Accordingly, the book recommends actions that could be taken by individuals, citizen organizations, municipalities, businesses and organizations, energy companies, automobile companies, states and provinces, national governments, developing nations and global solutions. The recommendations range from choosing energy efficient appliances and buying green power, through increased recycling, reuse and reduced consumption, building solar and other renewable energy capacity, using sustainable fuels in automobiles, introducing tax measures favouring energy efficiency and sustainable development, to launching macro-level plans for a global green deal, establishing a global climate fund, accelerating the phase-out of CHCs, HCFCs and HFCs, forming a global ecological alliance and declaring a century of ecological restoration. Bibliographic notes, illustrations

  9. Prospects of Russian Agriculture development under global climate and technological changes

    Science.gov (United States)

    Valentini, Riccardo; Vasenev, Ivan

    2015-04-01

    Despite the great progresses of the last century in the agricultural sector and food supply, still about 820 million of people in developing countries are facing food scarcity and malnutrition. More than 180 million children are underweight. Except in Africa, 80 percent of the production gains came from increased yields in major cereal crops. The area cultivated has actually begun to decline in some regions. From now on, however, even Africa, which has always relied on cultivation of new land for production increases, will have to count on yield gains or pay high financial and ecological costs for expansion into areas not yet cultivated. The global scenario is changing fast. The technological, climatic and human-induced factors are creating long-lasting effects on the lives of people and on economic activities around the globe. In particular, climate change and/or variability is exacerbating rural increasing heat stress to natural habitats and human settlements, increasing climatic extremes, including drought and impacting food production. Agriculture of any kind is strongly influenced by the availability of water. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage. Changes in total seasonal precipitation or in its pattern of variability are both important. The occurrence of moisture stress during flowering, pollination, and grain-filling is harmful to most crops and particularly so to corn, soybeans, and wheat. Increased evaporation from the soil and accelerated transpiration in the plants themselves will cause moisture stress; as a result there will be a need to develop crop varieties with greater drought tolerance. These climate change effects are particularly harmful in tropical regions of South America, Africa and South East Asia where food production is feeding a large part of world countries and poses serious risks to global food security in the future. Despite global projected climate change will affect a general decline of

  10. Climate change and the global pattern of moraine-dammed glacial lake outburst floods

    Directory of Open Access Journals (Sweden)

    S. Harrison

    2018-04-01

    Full Text Available Despite recent research identifying a clear anthropogenic impact on glacier recession, the effect of recent climate change on glacier-related hazards is at present unclear. Here we present the first global spatio-temporal assessment of glacial lake outburst floods (GLOFs focusing explicitly on lake drainage following moraine dam failure. These floods occur as mountain glaciers recede and downwaste. GLOFs can have an enormous impact on downstream communities and infrastructure. Our assessment of GLOFs associated with the rapid drainage of moraine-dammed lakes provides insights into the historical trends of GLOFs and their distributions under current and future global climate change. We observe a clear global increase in GLOF frequency and their regularity around 1930, which likely represents a lagged response to post-Little Ice Age warming. Notably, we also show that GLOF frequency and regularity – rather unexpectedly – have declined in recent decades even during a time of rapid glacier recession. Although previous studies have suggested that GLOFs will increase in response to climate warming and glacier recession, our global results demonstrate that this has not yet clearly happened. From an assessment of the timing of climate forcing, lag times in glacier recession, lake formation and moraine-dam failure, we predict increased GLOF frequencies during the next decades and into the 22nd century.

  11. Aging transition in systems of oscillators with global distributed-delay coupling.

    Science.gov (United States)

    Rahman, B; Blyuss, K B; Kyrychko, Y N

    2017-09-01

    We consider a globally coupled network of active (oscillatory) and inactive (nonoscillatory) oscillators with distributed-delay coupling. Conditions for aging transition, associated with suppression of oscillations, are derived for uniform and gamma delay distributions in terms of coupling parameters and the proportion of inactive oscillators. The results suggest that for the uniform distribution increasing the width of distribution for the same mean delay allows aging transition to happen for a smaller coupling strength and a smaller proportion of inactive elements. For gamma distribution with sufficiently large mean time delay, it may be possible to achieve aging transition for an arbitrary proportion of inactive oscillators, as long as the coupling strength lies in a certain range.

  12. Global modelling of river water quality under climate change

    Science.gov (United States)

    van Vliet, Michelle T. H.; Franssen, Wietse H. P.; Yearsley, John R.

    2017-04-01

    Climate change will pose challenges on the quality of freshwater resources for human use and ecosystems for instance by changing the dilution capacity and by affecting the rate of chemical processes in rivers. Here we assess the impacts of climate change and induced streamflow changes on a selection of water quality parameters for river basins globally. We used the Variable Infiltration Capacity (VIC) model and a newly developed global water quality module for salinity, temperature, dissolved oxygen and biochemical oxygen demand. The modelling framework was validated using observed records of streamflow, water temperature, chloride, electrical conductivity, dissolved oxygen and biochemical oxygen demand for 1981-2010. VIC and the water quality module were then forced with an ensemble of bias-corrected General Circulation Model (GCM) output for the representative concentration pathways RCP2.6 and RCP8.5 to study water quality trends and identify critical regions (hotspots) of water quality deterioration for the 21st century.

  13. United States policy for mitigating global climate change

    International Nuclear Information System (INIS)

    Bergman, P.; Kane, R.; Kildow, J.

    1998-01-01

    The primary objective of this paper is to explain current US policy on global climate change. US Department of Energy (DOE) efforts to implement this policy are described. A secondary objective of this paper is to discuss from a US perspective the social and political efforts which must be initiated in order for ocean storage of CO 2 to be considered as a viable CO 2 mitigation option. The fact that the Framework Convention on Climate Change (FCCC) has not been successful in reducing greenhouse gas emissions is now recognized. Thus, US policy has shifted towards the development of binding medium-term emissions targets and long-term atmosphere concentration goals. The US believes these goals can be accomplished through the adoption of cost-effective joint implementation agreements and international emissions trading mechanisms. Studies are currently underway to assess specific targets and timetables for emissions reductions. Voluntary efforts on the part of US industry have proven to be extremely successful in reducing US CO 2 -emissions. The US electric utility industry has taken the lead in voluntarily lowering greenhouse gas emissions under the DOE Climate Challenge Program. Areas of research interest to DOE include the development of high efficiency advanced power generation cycles and CO 2 sequestration technology. The US currently spends $1.6 billion on understanding global climate phenomena and only $1.6 million on CO 2 mitigation research. A number of socio-political considerations must be looked at in assessing the feasibility of ocean storage of CO 2 . Developing public trust appears to be a major concern in establishing the acceptability of ocean storage. Uncertainties in the effects of CO 2 on marine life, potential safety hazards associated with pipelining, and ship transport of CO 2 are all issues which must be dealt with as soon as possible. Some hidden costs associated with ocean disposal is also discussed

  14. The response of terrestrial ecosystems to global climate change: Towards an integrated approach

    International Nuclear Information System (INIS)

    Rustad, Lindsey E.

    2008-01-01

    Accumulating evidence points to an anthropogenic 'fingerprint' on the global climate change that has occurred in the last century. Climate change has, and will continue to have, profound effects on the structure and function of terrestrial ecosystems. As such, there is a critical need to continue to develop a sound scientific basis for national and international policies regulating carbon sequestration and greenhouse gas emissions. This paper reflects on the nature of current global change experiments, and provides recommendations for a unified multidisciplinary approach to future research in this dynamic field. These recommendations include: (1) better integration between experiments and models, and amongst experimental, monitoring, and space-for-time studies; (2) stable and increased support for long-term studies and multi-factor experiments; (3) explicit inclusion of biodiversity, disturbance, and extreme events in experiments and models; (4) consideration of timing vs intensity of global change factors in experiments and models; (5) evaluation of potential thresholds or ecosystem 'tipping points'; and (6) increased support for model-model and model-experiment comparisons. These recommendations, which reflect discussions within the TERACC international network of global change scientists, will facilitate the unraveling of the complex direct and indirect effects of global climate change on terrestrial ecosystems and their components

  15. Estonia in the system of global climate change. Publication 4/1996

    International Nuclear Information System (INIS)

    Punning, J.M.

    1996-01-01

    Estonia is among the countries who signed the Framework Convention on Climate Change (FCCC) at the UN Conference in Rio de Janeiro in June 1992. The FCCC calls on its parties to inventory national sources, to reduction in greenhouse gases and to development of projects responding to climate change. In 1994, an Estonian Country Study Project was initiated within the U.S. Country Studies Program. The Estonian Country Study Project is comprehensive, covering all sectors and directions of activity in Estonia that might impact climate change or be influenced by Global Climate Change. This book contains a collection of papers, covering the aims of the Estonian Country Study Project

  16. MECCA coordinated research program: analysis of climate models uncertainties used for climatic changes study

    International Nuclear Information System (INIS)

    Caneill, J.Y.; Hakkarinen, C.

    1992-01-01

    An international consortium, called MECCA, (Model Evaluation Consortium for Climate Assessment) has been created in 1991 by different partners including electric utilities, government and academic groups to make available to the international scientific community, a super-computer facility for climate evolution studies. The first phase of the program consists to assess uncertainties of climate model simulations in the framework of global climate change studies. Fourteen scientific projects have been accepted on an international basis in this first phase. The second phase of the program will consist in the evaluation of a set of long climate simulations realized with coupled ocean/atmosphere models, in order to study the transient aspects of climate changes and the associated uncertainties. A particular attention will be devoted, on the consequences of these assessments on climate impact studies, and on the regional aspects of climate changes

  17. Origin and climatic impact of a thermo-haline changes in next centuries in the IPSL-CM4 coupled model

    International Nuclear Information System (INIS)

    Swingedouw, D.

    2006-11-01

    The thermo-haline circulation (THC) strongly influences the climate of the North Atlantic. The warming caused by the release of anthropic CO 2 risks to affect this oceanic circulation and then the climate. In this thesis we point to evaluate this risk and to understand the climatic impact of the THC in the future thanks to the tri-dimensional ocean-atmosphere-sea-ice-land IPSL-CM4 coupled model. In a first part we have done a survey of the principal theories and knowledge concerning the THC. We have then validated the pertinence of IPSL-CM4 to lead our study. The role of the salt has appeared primordial for the dynamics of the THC. Then, we have evaluated the sensitivity of the THC to the global fresh water forcing of the ocean. Different sensitivities of the convection sites of the North Atlantic, related to salinity transport process, have been revealed in IPSL-CM4. We have then analysed some scenario simulations for next centuries. It has appeared a significant diminution of the THC in those simulations, which is strongly magnified if the melting of Greenland is taken in account. The analysis of several scenarios taking into account or not this glacier melting has permitted to isolate in an original manner the role played by THC feedbacks. Last, the effect of the THC on the climate has been quantified in IPSL-CM4. It appears to be more slight that the global warming, even locally on Europe. The explanation of the mechanisms at the origin of the influence of the THC on climate has also been clarified. The impact of the THC on the oceanic carbon uptake in the ocean has been lastly evaluated, and appears to be very small on 140 years. This study thus gives a clear vision of the role of the THC on the climate and its possible future. (author)

  18. Global Climate Models Intercomparison of Anthropogenic Aerosols Effects on Regional Climate over North Pacific

    Science.gov (United States)

    Hu, J.; Zhang, R.; Wang, Y.; Ming, Y.; Lin, Y.; Pan, B.

    2015-12-01

    Aerosols can alter atmospheric radiation and cloud physics, which further exert impacts on weather and global climate. With the development and industrialization of the developing Asian countries, anthropogenic aerosols have received considerable attentions and remain to be the largest uncertainty in the climate projection. Here we assess the performance of two stat-of-art global climate models (National Center for Atmospheric Research-Community Atmosphere Model 5 (CAM5) and Geophysical Fluid Dynamics Laboratory Atmosphere Model 3 (AM3)) in simulating the impacts of anthropogenic aerosols on North Pacific storm track region. By contrasting two aerosol scenarios, i.e. present day (PD) and pre-industrial (PI), both models show aerosol optical depth (AOD) enhanced by about 22%, with CAM5 AOD 40% lower in magnitude due to the long range transport of anthropogenic aerosols. Aerosol effects on the ice water path (IWP), stratiform precipitation, convergence and convection strengths in the two models are distinctive in patterns and magnitudes. AM3 shows qualitatively good agreement with long-term satellite observations, while CAM5 overestimates convection and liquid water path resulting in an underestimation of large-scale precipitation and IWP. Due to coarse resolution and parameterization in convection schemes, both models' performance on convection needs to be improved. Aerosols performance on large-scale circulation and radiative budget are also examined in this study.

  19. Uncertainty and learning in a strategic environment. Global climate change

    International Nuclear Information System (INIS)

    Baker, Erin

    2005-01-01

    Global climate change is rife with uncertainties. Yet, we can expect to resolve much of this uncertainty in the next 100 years or so. Therefore, current actions should reflect the value of flexibility. Nevertheless, most models of climate change, particularly game-theoretic models, abstract from uncertainty. A model of the impacts of uncertainty and learning in a non-cooperative game shows that the level of correlation of damages across countries is crucial for determining optimal policy

  20. Global coupling and decoupling of the APS storage ring

    International Nuclear Information System (INIS)

    Chae, Yong-Chul; Liu, Jianyang; Teng, L.C.

    1995-01-01

    This Paper describes a study of controlling the coupling between the horizontal and the vertical betatron oscillations in the APS storage ring. First, we investigate the strengthening of coupling using two families of skew quadrupoles. Using smooth approximation, we obtained the formulae to estimate the coupling ratio defined as the ratio of the vertical and horizontal emittances or, for a single particle, the ratio of the maximum values of the Courant Snyder invariants. Since we knew that the coupling is mostly enhanced by the 21st harmonic content of skew quadrupole distribution, we carried out the harmonic analysis in order to find the optimum arrangement of the skew quadrupoles. The numerical results from tracking a single particle are presented for the various configurations of skew quadrupoles. Second, we describe the global decoupling procedure to minimize the unwanted coupling effects. These are mainly due to the random roll errors of normal quadrupoles. It is shown that even with the rather large rms roll error of 2 mrad we can reduce the Coupling from 70 percent to 10 percent with a skew quadrupole strength which is one order of magnitude lower than the typical normal quadrupole strength