WorldWideScience

Sample records for global biological materials

  1. IAEA biological reference materials

    Parr, R.M.; Schelenz, R.; Ballestra, S.

    1988-01-01

    The Analytical Quality Control Services programme of the IAEA encompasses a wide variety of intercomparisons and reference materials. This paper reviews only those aspects of the subject having to do with biological reference materials. The 1988 programme foresees 13 new intercomparison exercises, one for major, minor and trace elements, five for radionuclides, and seven for stable isotopes. Twenty-two natural matrix biological reference materials are available: twelve for major, minor and trace elements, six for radionuclides, and four for chlorinated hydrocarbons. Seven new intercomparisons and reference materials are in preparation or under active consideration. Guidelines on the correct use of reference materials are being prepared for publication in 1989 in consultation with other major international producers and users of biological reference materials. The IAEA database on available reference materials is being updated and expanded in scope, and a new publication is planned for 1989. (orig.)

  2. Multiscale Biological Materials

    Frølich, Simon

    of multiscale biological systems have been investigated and new research methods for automated Rietveld refinement and diffraction scattering computed tomography developed. The composite nature of biological materials was investigated at the atomic scale by looking at the consequences of interactions between...

  3. Flotation of Biological Materials

    George Z. Kyzas

    2014-03-01

    Full Text Available Flotation constitutes a gravity separation process, which originated from the minerals processing field. However, it has, nowadays, found several other applications, as for example in the wastewater treatment field. Concerning the necessary bubble generation method, typically dispersed-air or dissolved-air flotation was mainly used. Various types of biological materials were tested and floated efficiently, such as bacteria, fungi, yeasts, activated sludge, grape stalks, etc. Innovative processes have been studied in our Laboratory, particularly for metal ions removal, involving the initial abstraction of heavy metal ions onto a sorbent (including a biosorbent: in the first, the application of a flotation stage followed for the efficient downstream separation of metal-laden particles. The ability of microorganisms to remove metal ions from dilute aqueous solutions (as most wastewaters are is a well-known property. The second separation process, also applied effectively, was a new hybrid cell of microfiltration combined with flotation. Sustainability in this field and its significance for the chemical and process industry is commented.

  4. Global nuclear material control model

    Dreicer, J.S.; Rutherford, D.A.

    1996-01-01

    The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material

  5. Biological Responses to Materials

    Anderson, James M.

    2001-08-01

    All materials intended for application in humans as biomaterials, medical devices, or prostheses undergo tissue responses when implanted into living tissue. This review first describes fundamental aspects of tissue responses to materials, which are commonly described as the tissue response continuum. These actions involve fundamental aspects of tissue responses including injury, inflammatory and wound healing responses, foreign body reactions, and fibrous encapsulation of the biomaterial, medical device, or prosthesis. The second part of this review describes the in vivo evaluation of tissue responses to biomaterials, medical devices, and prostheses to determine intended performance characteristics and safety or biocompatibility considerations. While fundamental aspects of tissue responses to materials are important from research and development perspectives, the in vivo evaluation of tissue responses to these materials is important for performance, safety, and regulatory reasons.

  6. Biological materials: a materials science approach.

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. 37 CFR 1.801 - Biological material.

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Biological material. 1.801... Biological Material § 1.801 Biological material. For the purposes of these regulations pertaining to the deposit of biological material for purposes of patents for inventions under 35 U.S.C. 101, the term...

  8. Biological diversity, ecology and global climate change

    Jutro, P.R.

    1991-01-01

    Worldwide climate change and loss of biodiversity are issues of global scope and importance that have recently become subjects of considerable public concern. Their perceived threat lies in their potential to disrupt ecological functioning and stability rather than from any direct threat they may pose to human health. Over the last 5 years, the international scientific community and the general public have become aware of the implications that atmospheric warming might have for world climate patterns and the resulting changes in the persistence, location, and composition of ecosystems worldwide. Human activities are currently responsible for a species loss rate that is the most extreme in millions of years, and an alarmingly increasing rate of transformation and fragmentation of natural landscapes. In the case of both global warming and reduction of biological diversity, man is affecting nature in an unprecedented fashion, on a global scale, and with unpredictable and frequently irreversible results

  9. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials

    Rosalind A. Le Feuvre

    2018-06-01

    Full Text Available Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials, where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal. Keywords: Synthetic biology, Materials, Biological materials, Biomaterials, Advanced materials

  10. [Applications of synthetic biology in materials science].

    Zhao, Tianxin; Zhong, Chao

    2017-03-25

    Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.

  11. Biotic prognostications: Global warming and biological diversity

    Peters, R.L.; Lovejoy, T.E. [eds.

    1992-12-31

    This book focuses on the impacts of the greenhouse effect on biological diversity and on natural ecosystems. Included are chapters which include the following topics: government attitudes to climate change problems; general conclusions and deficiencies of general circulation models; impacts of past climate changes on global biota; effects of climate on vegetation, soils, wildlife diversity, animal physiology, ecology, behavior, migration, and parasites and diseases; arctic mariene ecosystems and coasta marine zones; tropical forests; arctic tundra; western North American forests, etc.; indirect linkages and snyergisms among climate change, biodiversity, geosphere, and anthropogenic stresses.

  12. Biological effects of nanoparticulate materials

    Soto, K.F.; Carrasco, A.; Powell, T.G.; Murr, L.E.; Garza, K.M.

    2006-01-01

    A range of morphologically nanoparticulate materials including Ag, NiO, TiO 2 , multiwall carbon nanotubes, and chrysotile asbestos have been characterized by transmission electron microscopy. All but the TiO 2 (anatase and rutile) were observed to exhibit some cytotoxicity at concentrations of 5 μg/ml for a murine macrophage cell line as a respiratory response model. Silver exhibits interesting systemic differences for animal and human toxicity, especially in light of its nanoparticulate materials, and should be avoided even if there is no detectable in vitro cytotoxic response, as a prudent approach to their technological applications

  13. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials.

    Le Feuvre, Rosalind A; Scrutton, Nigel S

    2018-06-01

    Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials , where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal.

  14. Magnetically responsive biological materials and their applications

    Šafařík, Ivo; Pospíšková, K.; Baldíková, E.; Šafaříková, Miroslava

    2016-01-01

    Roč. 7, č. 4 (2016), s. 254-261 ISSN 0976-3961 Institutional support: RVO:60077344 Keywords : adsorbents * biological materials * carriers * magnetic modification * whole-cell biocatalyst Subject RIV: EI - Biotechnology ; Bionics

  15. 75 FR 6348 - Deposit of Biological Materials

    2010-02-09

    ... either directly or indirectly. When the invention involves a biological material, sometimes words alone... charge about the same rates for their services. For example, the American Type Culture Collection (ATCC...

  16. Anal Sphincter Augmentation Using Biological Material.

    Alam, Nasra N; Narang, Sunil K; Köckerling, Ferdinand; Daniels, Ian R; Smart, Neil J

    2015-01-01

    The aim of this review is to provide an overview of the use of biological materials in the augmentation of the anal sphincter either as part of an overlapping sphincter repair (OSR) or anal bulking procedure. A systematic search of PubMed was conducted using the search terms "anal bulking agents," "anal sphincter repair," or "overlapping sphincter repair." Five studies using biological material as part of an overlapping sphincter repair (OSR) or as an anal bulking agent were identified. 122 patients underwent anal bulking with a biological material. Anorectal physiology was conducted in 27 patients and demonstrated deterioration in maximum resting pressure, and no significant change in maximum squeeze increment. Quality of life scores (QoLs) demonstrated improvements at 6 weeks and 6 months, but this had deteriorated at 12 months of follow up. Biological material was used in 23 patients to carry out an anal encirclement procedure. Improvements in QoLs were observed in patients undergoing OSR as well as anal encirclement using biological material. Incontinence episodes decreased to an average of one per week from 8 to 10 preoperatively. Sphincter encirclement with biological material has demonstrated improvements in continence and QoLs in the short term compared to traditional repair alone. Long-term studies are necessary to determine if this effect is sustained. As an anal bulking agent the benefits are short-term.

  17. Applying evolutionary biology to address global challenges

    Carroll, Scott P.; Jørgensen, Peter Søgaard; Kinnison, Michael T.; Bergstrom, Carl T.; Denison, R. Ford; Gluckman, Peter; Smith, Thomas B.; Strauss, Sharon Y.; Tabashnik, Bruce E.

    2014-01-01

    Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens and pests that evolve too quickly, and the second from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This review highlights both progress and gaps in genetic, developmental and environmental manipulations across the life sciences that either target the rate and direction of evolution, or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development. PMID:25213376

  18. Conduit for regeneration of biological material

    2016-01-01

    The present invention relates to a conduit comprising a first material, having 1) a through-going hole, 2) fibers aligned along the long-axis in the through-going hole, each fiber having a diameter in the range 200-2000 nm. The conduit is preferably for regeneration of biological material, even...

  19. Study of biocompatible and biological materials

    Pecheva, Emilia

    2017-01-01

    The book gives an overview on biomineralization, biological, biocompatible and biomimetic materials. It reveals the use of biomaterials alone or in composites, how their performance can be improved by tailoring their surface properties by external factors and how standard surface modification techniques can be applied in the area of biomaterials to beneficially influence their growth on surfaces.

  20. Global nuclear material flow/control model

    Dreicer, J.S.; Rutherford, D.S.; Fasel, P.K.; Riese, J.M.

    1997-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of an international regime for nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool which treats the nuclear fuel cycle as a complete system. The prototype model developed visually represents the fundamental data, information, and capabilities related to the nuclear fuel cycle in a framework supportive of national or an international perspective. This includes an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, facility specific geographic identification, and the capability to estimate resource requirements for the management and control of nuclear material. The model establishes the foundation for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material and supports the development of other pertinent algorithmic capabilities necessary to undertake further global nuclear material related studies

  1. Globalization determinants of raw materials markets development

    Olga Yatsenko

    2013-02-01

    Full Text Available The determinants of development of raw materials markets and the peculiarities of their formation in the terms of world economy globalization have been researched. The empirical base of research is the agricultural food market as one of the most important bases in the sphere of material production and provision of food security of the country. The important social and economic mission of the agricultural sector has been highlighted, along with the export competitiveness and import dependence of agricultural food products in the international trade. The imperative norms have been substantiated and conclusions have been drawn regarding the establishment of respective conditions for the operation of globally integrated markets in Ukraine.

  2. NBS activities in biological reference materials

    Rasberry, S.D.

    1988-12-01

    NBS activities in biological reference materials during 1986-1988 are described with a preview of plans for future certifications of reference materials. During the period, work has been completed or partially completed on about 40 reference materials of importance to health, nutrition, and environmental quality. Some of the reference materials that have been completed during the period and are described include: creatinine (SRM 914a), bovine serum albumin (SRM 927a), cholesterol in human serum (SRM's 1951-1952), aspartate aminotransferase (RM 8430), cholesterol and fat-soluble vitamins in coconut oil (SRM 1563), wheat flour (SRM 1567a), rice flour (SRM 1568a), mixed diet (RM 8431a), dinitropyrene isomers and 1-nitropyrene (SRM 1596), and complex PAH's from coal tar (SRM 1597). Oyster tissue (SRM 1566a) is being analyzed and should be available in 1988.

  3. Neutron activation analysis of biological material

    Kucera, J.; Simkova, M.; Obrusnik, I.

    1985-01-01

    The possibilities are briefly summed up of usino. NAA (neutron activation analysis) for determining element traces in foodstuffs and their intake by organisms, for monitoring changes in the content of important trace elements in tissues and body fluids owing to environmental pollution, for verifying the results of other analytical techniques and for certifying the content of element traces in reference materials. Examples are given of the use of NAA, and the results are summed up of the determination of Cd, Mn and Zn in biological reference materials NBS SRM-1577, Bovine Liver, Bowen's Kale, IAEA Milk Powder A-11 and IAEA Animal Muscle H-4. (E.S.)

  4. A routine chromium determination in biological materials; application to various reference materials and standard reference materials

    Tjioe, P.S.; Goeij, J.J.M. de; Volkers, K.J.

    1979-01-01

    The determination limit under standard working conditions of chromium in biological materials is discussed. Neutron activation analysis and atomic spectrometry have been described for some analytical experiences with NBS SRM 1577 reference material. The chromium determination is a part of a larger multi-element scheme for the determination of 12 elements in biological materials

  5. Integrated Global Nuclear Materials Management Preliminary Concepts

    Jones, E; Dreicer, M.

    2006-01-01

    The world is at a turning point, moving away from the Cold War nuclear legacy towards a future global nuclear enterprise; and this presents a transformational challenge for nuclear materials management. Achieving safety and security during this transition is complicated by the diversified spectrum of threat 'players' that has greatly impacted nonproliferation, counterterrorism, and homeland security requirements. Rogue states and non-state actors no longer need self-contained national nuclear expertise, materials, and equipment due to availability from various sources in the nuclear market, thereby reducing the time, effort and cost for acquiring a nuclear weapon (i.e., manifestations of latency). The terrorist threat has changed the nature of military and national security requirements to protect these materials. An Integrated Global Nuclear Materials Management (IGNMM) approach would address the existing legacy nuclear materials and the evolution towards a nuclear energy future, while strengthening a regime to prevent nuclear weapon proliferation. In this paper, some preliminary concepts and studies of IGNMM will be presented. A systematic analysis of nuclear materials, activities, and controls can lead to a tractable, integrated global nuclear materials management architecture that can help remediate the past and manage the future. A systems approach is best suited to achieve multi-dimensional and interdependent solutions, including comprehensive, end-to-end capabilities; coordinated diverse elements for enhanced functionality with economy; and translation of goals/objectives or standards into locally optimized solutions. A risk-informed basis is excellent for evaluating system alternatives and performances, and it is especially appropriate for the security arena. Risk management strategies--such as defense-in-depth, diversity, and control quality--help to weave together various technologies and practices into a strong and robust security fabric. Effective

  6. Biological Diversity. Global Issues Education Packet.

    Holm, Amy E.

    Biological diversity, also commonly called genetic diversity, refers to the variety of organisms on Earth. Scientists are concerned that many species will become extinct because of extensive development in the tropical regions. This packet is designed to increase student's awareness about direct and indirect causes of extinction, endangered…

  7. Mechanical properties of nanostructure of biological materials

    Ji, Baohua; Gao, Huajian

    2004-09-01

    Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.

  8. Viscoelastic characterization of soft biological materials

    Nayar, Vinod Timothy

    Progressive and irreversible retinal diseases are among the primary causes of blindness in the United States, attacking the cells in the eye that transform environmental light into neural signals for the optic pathway. Medical implants designed to restore visual function to afflicted patients can cause mechanical stress and ultimately damage to the host tissues. Research shows that an accurate understanding of the mechanical properties of the biological tissues can reduce damage and lead to designs with improved safety and efficacy. Prior studies on the mechanical properties of biological tissues show characterization of these materials can be affected by environmental, length-scale, time, mounting, stiffness, size, viscoelastic, and methodological conditions. Using porcine sclera tissue, the effects of environmental, time, and mounting conditions are evaluated when using nanoindentation. Quasi-static tests are used to measure reduced modulus during extended exposure to phosphate-buffered saline (PBS), as well as the chemical and mechanical analysis of mounting the sample to a solid substrate using cyanoacrylate. The less destructive nature of nanoindentation tests allows for variance of tests within a single sample to be compared to the variance between samples. The results indicate that the environmental, time, and mounting conditions can be controlled for using modified nanoindentation procedures for biological samples and are in line with averages modulus values from previous studies but with increased precision. By using the quasi-static and dynamic characterization capabilities of the nanoindentation setup, the additional stiffness and viscoelastic variables are measured. Different quasi-static control methods were evaluated along with maximum load parameters and produced no significant difference in reported reduced modulus values. Dynamic characterization tests varied frequency and quasi-static load, showing that the agar could be modeled as a linearly

  9. Rapid homogenisation and drying of biological materials

    Donev, I.Y.

    1977-01-01

    In connection with the implementation for detection of trace elements in the pathogenesis of Ischaemic Heart Diseases and for the work of the laboratory a small apparatus for homogenisation and drying biological materials at liquid nitrogen temperature was constructed. For a complete drying 4 to 6 hours are necessary. A laboratory assistant of average qualification can do the work for 13 homogenisates in about 8-9 hours. The capacity of the homogeniser is about 1.5x10 -5 m 3 . Preliminary investigations were carried out for the determination of differences at drying. (T.G.)

  10. Biological Terrorism: US Policies to Reduce Global Biothreats

    2008-09-01

    program for pro- jects that advance BEP objectives. Global Cooperation to develop bio- safety and pathogen security stan- dards that are consistent with...security. The Organization for Economic Cooperation and Development ( OECD ) has recently developed voluntary biosecurity guidelines for implementation...Abbreviations AG Australia Group BEP Biosecurity Engagement Program BSL Biosafety level BWC Biological Weapons Convention BWC-ISU Biological Weapons

  11. Biological and environmental reference materials in CENAM.

    Arvizu-Torres, R; Perez-Castorena, A; Salas-Tellez, J A; Mitani-Nakanishi, Y

    2001-06-01

    Since 1994, when the NIST/NOAA Quality Assurance Program in Chemical Measurements was discussed in Queretaro, CENAM, the National Measurement Institute (NMI) of Mexico, has become involved in the development of reference materials. In the field of biological and environmental reference materials, in particular, the NORAMET collaboration program with NIST and NRC, and the North-American Environmental Cooperation signed among three free-trade treaty organizations, have greatly helped the development of the materials metrology program in the newly established CENAM. This paper describes some particularly significant efforts of CENAM in the development of biological and environmental reference materials, on the basis of inter-comparison studies organized with local and governmental environmental agencies of Mexico. In the field of water pollution CENAM has developed a practical proficiency testing (PT) scheme for field laboratories, as a part of registration by local government in the metropolitan area, according to the Mexican Ecological Regulation. The results from these eight PTs in the last 5 years have demonstrated that this scheme has helped ensure the reliability of analytical capability of more than 50 field laboratories in three states, Mexico, D.F., and the States of Mexico and Queretaro. Similar experience has been obtained for more than 70 service units of stack emission measurements in the three states in 1998 and 1999, as a result of the design of a PT scheme for reference gas mixtures. This PT scheme has been accomplished successfully by 30 analytical laboratories who provide monitoring services and perform research on toxic substances (Hg, methylmercury, PCB, etc.) in Mexico. To support these activities, reference samples have been produced through the NIST SRMs, and efforts have been made to increase CENAM's capability in the preparation of primary reference materials in spectrometric solutions and gas mixtures. Collaboration among NMIs has also

  12. Micro-buckling in the nanocomposite structure of biological materials

    Su, Yewang; Ji, Baohua; Hwang, Keh-Chih; Huang, Yonggang

    2012-10-01

    Nanocomposite structure, consisting of hard mineral and soft protein, is the elementary building block of biological materials, where the mineral crystals are arranged in a staggered manner in protein matrix. This special alignment of mineral is supposed to be crucial to the structural stability of the biological materials under compressive load, but the underlying mechanism is not yet clear. In this study, we performed analytical analysis on the buckling strength of the nanocomposite structure by explicitly considering the staggered alignment of the mineral crystals, as well as the coordination among the minerals during the buckling deformation. Two local buckling modes of the nanostructure were identified, i.e., the symmetric mode and anti-symmetric mode. We showed that the symmetric mode often happens at large aspect ratio and large volume fraction of mineral, while the anti-symmetric happens at small aspect ratio and small volume fraction. In addition, we showed that because of the coordination of minerals with the help of their staggered alignment, the buckling strength of these two modes approached to that of the ideally continuous fiber reinforced composites at large aspect ratio given by Rosen's model, insensitive to the existing "gap"-like flaws between mineral tips. Furthermore, we identified a mechanism of buckling mode transition from local to global buckling with increase of aspect ratio, which was attributed to the biphasic dependence of the buckling strength on the aspect ratio. That is, for small aspect ratio, the local buckling strength is smaller than that of global buckling so that it dominates the buckling behavior of the nanocomposite; for comparatively larger aspect ratio, the local buckling strength is higher than that of global buckling so that the global buckling dominates the buckling behavior. We also found that the hierarchical structure can effectively enhance the buckling strength, particularly, this structural design enables

  13. Biological consequences of global change for birds.

    Møller, Anders Pape

    2013-06-01

    Climate is currently changing at an unprecedented rate; so also human exploitation is rapidly changing the Earth for agriculture, forestry, fisheries and urbanization. In addition, pollution has affected even the most remote ecosystems, as has the omnipresence of humans, with consequences in particular for animals that keep a safe distance from potential predators, including human beings. Importantly, all of these changes are occurring simultaneously, with increasing intensity, and further deterioration in both the short and the long-term is predicted. While the consequences of these components of global change are relatively well studied on their own, the effects of their interactions, such as the combined effects of climate change and agriculture, or the combined effects of agriculture through nutrient leakage to freshwater and marine ecosystems and fisheries, and the effects of climate change and urbanization, are poorly understood. Here, I provide a brief overview of the effects of climate change on phenology, diversity, abundance, interspecific interactions and population dynamics of birds. I address whether these effects of changing temperatures are direct, or indirect through effects of climate change on the phenology, distribution or abundance of food, parasites and predators. Finally, I review interactions between different components of global change. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  14. Solid freeform fabrication of biological materials

    Wang, Jiwen

    This thesis investigates solid freeform fabrication of biological materials for dental restoration and orthopedic implant applications. The basic approach in this study for solid freeform fabrication of biological materials is micro-extrusion of single or multiple slurries for 3D components and inkjet color printing of multiple suspensions for functionally graded materials (FGMs). Common issues associated with micro-extrusion and inkjet color printing are investigated. These common issues include (i) formulation of stable slurries with a pseudoplastic property, (ii) cross-sectional geometry of the extrudate as a function of the extrusion parameters, (iii) fabrication path optimization for extrusion process, (iv) extrusion optimization for multi-layer components, (v) composition control in functionally graded materials, and (vi) sintering optimization to convert the freeform fabricated powder compact to a dense body for biological applications. The present study clearly shows that the rheological and extrusion behavior of dental porcelain slurries depend strongly on the pH value of the slurry and extrusion conditions. A slurry with pseudoplastic properties is a basic requirement for obtaining extruded lines with rectangular cross-sections. The cross-sectional geometry of the extrudate is also strongly affected by extrusion parameters including the extrusion nozzle height, nozzle moving speed, extrusion rate, and critical nozzle height. Proper combinations of these extrusion parameters are necessary in order to obtain single line extrudates with near rectangular cross-sections and 3D objects with dimensional accuracy, uniform wall thickness, good wall uprightness, and no wall slumping. Based on these understandings, single-wall, multi-wall, and solid teeth have been fabricated via micro-extrusion of the dental slurry directly from a CAD digital model in 30 min. Inkjet color printing using stable Al2O3 and ZrO 2 aqueous suspensions has been developed to fabricate

  15. Facing Global Challenges with Materials Innovation

    Rizzo, Fernando

    2017-10-01

    The path of society evolution has long been associated with a growing demand for natural resources and continuous environmental degradation. During the last decades, this pace has accelerated considerably, despite the general concern with the legacy being left for the next generations. Looking ahead, the predicted growth of the world population, and the improvement of life conditions in most regions, point to an increasing demand for energy generation, resulting in additional pressure on the Earth's sustainability. Materials have had a key role in decreasing the use of natural resources, by either improving efficiency of existing technologies or enabling the development of radical new ones. The greenhouse effect (CO2 emissions) and the energy crisis are global challenges that can benefit from the development of new materials for the successful implementation of promising technologies and for the imperative replacement of fossil fuels by renewable sources.

  16. Biological reference materials and analysis of toxic elements

    Subramanian, R; Sukumar, A

    1988-12-01

    Biological monitoring of toxic metal pollution in the environment requires quality control analysis with use of standard reference materials. A variety of biological tissues are increasingly used for analysis of element bioaccumulation, but the available Certified Reference Materials (CRMs) are insufficient. An attempt is made to review the studies made using biological reference materials for animal and human tissues. The need to have inter-laboratory studies and CRM in the field of biological monitoring of toxic metals is also discussed.

  17. Bioseguridad in Mexico: Pursuing Security between Local and Global Biologies.

    Wanderer, Emily Mannix

    2017-09-01

    In the aftermath of the 2009 outbreak of H1N1 influenza, scientists in Mexico sought to develop bioseguridad, that is, to protect biological life in Mexico by safely conducting research on infectious disease. Drawing on ethnographic research in laboratories and with scientists in Mexico, I look at how scientists make claims about local differences in regulations, infrastructure, bodies, and culture. The scientists working with infectious microbes sought to establish how different microbial ecologies, human immune systems, and political and regulatory systems made the risks of research different in Mexico from other countries. In developing bioseguridad, the idea of globalized biology that animates many public health projects was undermined as scientists attended to the elements of place that affected human health and safety. Scientists argued for the importance of local biologies, generating tension with global public health projects and regulations premised on the universality of biology. © 2016 by the American Anthropological Association.

  18. A model of engineering materials inspired by biological tissues

    Holeček M.

    2009-12-01

    Full Text Available The perfect ability of living tissues to control and adapt their mechanical properties to varying external conditions may be an inspiration for designing engineering materials. An interesting example is the smooth muscle tissue since this "material" is able to change its global mechanical properties considerably by a subtle mechanism within individual muscle cells. Multi-scale continuum models may be useful in designing essentially simpler engineering materials having similar properties. As an illustration we present the model of an incompressible material whose microscopic structure is formed by flexible, soft but incompressible balls connected mutually by linear springs. This simple model, however, shows a nontrivial nonlinear behavior caused by the incompressibility of balls and is very sensitive on some microscopic parameters. It may elucidate the way by which "small" changes in biopolymer networks within individual muscular cells may control the stiffness of the biological tissue, which outlines a way of designing similar engineering materials. The 'balls and springs' material presents also prestress-induced stiffening and allows elucidating a contribution of extracellular fluids into the tissue’s viscous properties.

  19. Laser interaction with biological material mathematical modeling

    Kulikov, Kirill

    2014-01-01

    This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.

  20. CeDAMar global database of abyssal biological sampling

    Stuart, Carol T.; Arbizu, Pedro Martinez; Smith, Craig R.; Molodtsova, Tina; Brandt, Angelika; Etter, Ron J.; Escobar-briones, Elva; Fabri, Marie-claire; Rex, Michael A.

    2008-01-01

    The Census of the Diversity of Abyssal Marine Life (CeDAMar), a division of the Census of Marine Life, has compiled the first comprehensive global database of biological samples taken in the abyssal plains of the world ocean. It is an essential resource for planning future exploration of the abyss, for synthesizing patterns of biogeography and biodiversity, and for environmentally safe exploitation of natural resources. The database is described in this article, and made available to investig...

  1. [Synthetic biology and rearrangements of microbial genetic material].

    Liang, Quan-Feng; Wang, Qian; Qi, Qing-Sheng

    2011-10-01

    As an emerging discipline, synthetic biology has shown great scientific values and application prospects. Although there have been many reviews of various aspects on synthetic biology over the last years, this article, for the first time, attempted to discuss the relationship and difference between microbial genetics and synthetic biology. We summarized the recent development of synthetic biology in rearranging microbial genetic materials, including synthesis, design and reduction of genetic materials, standardization of genetic parts and modularization of genetic circuits. The relationship between synthetic biology and microbial genetic engineering was also discussed in the paper.

  2. e-Biologics: Fabrication of Sustainable Electronics with "Green" Biological Materials.

    Lovley, Derek R

    2017-06-27

    The growing ubiquity of electronic devices is increasingly consuming substantial energy and rare resources for materials fabrication, as well as creating expansive volumes of toxic waste. This is not sustainable. Electronic biological materials (e-biologics) that are produced with microbes, or designed with microbial components as the guide for synthesis, are a potential green solution. Some e-biologics can be fabricated from renewable feedstocks with relatively low energy inputs, often while avoiding the harsh chemicals used for synthesizing more traditional electronic materials. Several are completely free of toxic components, can be readily recycled, and offer unique features not found in traditional electronic materials in terms of size, performance, and opportunities for diverse functionalization. An appropriate investment in the concerted multidisciplinary collaborative research required to identify and characterize e-biologics and to engineer materials and devices based on e-biologics could be rewarded with a new "green age" of sustainable electronic materials and devices. Copyright © 2017 Lovley.

  3. Materiomics: biological protein materials, from nano to macro

    Cranford, Steven; Buehler, Markus J

    2010-01-01

    Materiomics is an emerging field of science that provides a basis for multiscale material system characterization, inspired in part by natural, for example, protein-based materials. Here we outline the scope and explain the motivation of the field of materiomics, as well as demonstrate the benefits of a materiomic approach in the understanding of biological and natural materials as well as in the design of de novo materials. We discuss recent studies that exemplify the impact of materiomics – discovering Nature’s complexity through a materials science approach that merges concepts of material and structure throughout all scales and incorporates feedback loops that facilitate sensing and resulting structural changes at multiple scales. The development and application of materiomics is illustrated for the specific case of protein-based materials, which constitute the building blocks of a variety of biological systems such as tendon, bone, skin, spider silk, cells, and tissue, as well as natural composite material systems (a combination of protein-based and inorganic constituents) such as nacre and mollusk shells, and other natural multiscale systems such as cellulose-based plant and wood materials. An important trait of these materials is that they display distinctive hierarchical structures across multiple scales, where molecular details are exhibited in macroscale mechanical responses. Protein materials are intriguing examples of materials that balance multiple tasks, representing some of the most sustainable material solutions that integrate structure and function despite severe limitations in the quality and quantity of material building blocks. However, up until now, our attempts to analyze and replicate Nature’s materials have been hindered by our lack of fundamental understanding of these materials’ intricate hierarchical structures, scale-bridging mechanisms, and complex material components that bestow protein-based materials their unique properties

  4. Material science lesson from the biological photosystem.

    Kim, Younghye; Lee, Jun Ho; Ha, Heonjin; Im, Sang Won; Nam, Ki Tae

    2016-01-01

    Inspired by photosynthesis, artificial systems for a sustainable energy supply are being designed. Each sequential energy conversion process from light to biomass in natural photosynthesis is a valuable model for an energy collection, transport and conversion system. Notwithstanding the numerous lessons of nature that provide inspiration for new developments, the features of natural photosynthesis need to be reengineered to meet man's demands. This review describes recent strategies toward adapting key lessons from natural photosynthesis to artificial systems. We focus on the underlying material science in photosynthesis that combines photosystems as pivotal functional materials and a range of materials into an integrated system. Finally, a perspective on the future development of photosynthesis mimetic energy systems is proposed.

  5. Modeling Cancer Metastasis using Global, Quantitative and Integrative Network Biology

    Schoof, Erwin; Erler, Janine

    understanding of molecular processes which are fundamental to tumorigenesis. In Article 1, we propose a novel framework for how cancer mutations can be studied by taking into account their effect at the protein network level. In Article 2, we demonstrate how global, quantitative data on phosphorylation dynamics...... can be generated using MS, and how this can be modeled using a computational framework for deciphering kinase-substrate dynamics. This framework is described in depth in Article 3, and covers the design of KinomeXplorer, which allows the prediction of kinases responsible for modulating observed...... phosphorylation dynamics in a given biological sample. In Chapter III, we move into Integrative Network Biology, where, by combining two fundamental technologies (MS & NGS), we can obtain more in-depth insights into the links between cellular phenotype and genotype. Article 4 describes the proof...

  6. Efficient algorithms for extracting biological key pathways with global constraints

    Baumbach, Jan; Friedrich, T.; Kötzing, T.

    2012-01-01

    The integrated analysis of data of different types and with various interdependencies is one of the major challenges in computational biology. Recently, we developed KeyPathwayMiner, a method that combines biological networks modeled as graphs with disease-specific genetic expression data gained....... Here we present an alternative approach that avoids a certain bias towards hub nodes: We now aim for extracting all maximal connected sub-networks where all but at most K nodes are expressed in all cases but in total (!) at most L, i.e. accumulated over all cases and all nodes in a solution. We call...... this strategy GLONE (global node exceptions); the previous problem we call INES (individual node exceptions). Since finding GLONE-components is computationally hard, we developed an Ant Colony Optimization algorithm and implemented it with the KeyPathwayMiner Cytoscape framework as an alternative to the INES...

  7. From globally coupled maps to complex-systems biology

    Kaneko, Kunihiko, E-mail: kaneko@complex.c.u-tokyo.ac.jp [Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2015-09-15

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  8. Delayed Luminescence and Biophotons from Biological Materials

    Knoesel, Ernst; Hann, Patrick; Garzon, Maria; Pfeiffer, Erik; Lofland, Samuel

    2008-03-01

    There has recently been increased interest in the field of biophotonics, since it is a non-invasive technique. Many biological systems, such as yeast, bacteria, leaves, seeds, and algae display the unusual phenomenon of a weak, delayed luminescence on the timescale of seconds to minutes after transient illumination. It is also observed that the time decay of the biophotonic emission is not exponential, even after the delay, and that there can be oscillations in intensity with time, which depend on the duration of the illumination. Results from two types of yeast, i.e. bread yeast, and saccharomyces, as well as those from several types of algae are presented. Possible mechanisms for the source of the ultraweak photon emission are discussed.

  9. Validation of tritium measurements in biological materials

    Kim, M.A.; Baumgartner, F.

    1988-01-01

    The maximum deviation of experimental R value from its real value, which is defined as the ratio of tissue bound to tissue water tritium, has been calculated and verified experimentally by taking consideration of isotopic fractionation arised in the course of water separation. Experimental procedures examined for the purpose are the azeotropic distillation and lyophilization for the removal of tissue water and the oxidative combustion of organic residue either by thermal process or by low temperature plasma generation. Each procedure optimalized by obviating or correcting isotope effects as well as other sources of error has been tested with mixed standards and biological samples. By washing out the exchangeable tritium and also physically bound tritium, the precision and accuracy of R values are further improved

  10. Analytical Chemistry at the Interface Between Materials Science and Biology

    O' Brien, Janese C. [Iowa State Univ., Ames, IA (United States)

    2000-09-21

    Likedlessentid sciences, anal~cd chetis~continues toreinvent itself. Moving beyond its traditional roles of identification and quantification, analytical chemistry is now expanding its frontiers into areas previously reserved to other disciplines. This work describes several research efforts that lie at the new interfaces between analytical chemistry and two of these disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry’s newest forays into these disciplines. The introduction section to this dissertation provides a literature review on several of the key aspects of this work. In advance of the materials science discussion, a brief introduction into electrochemically-modulated liquid chromatography (EMLC) and sol-gel chemistry is provided. In advance of the biological discussions, brief overviews of scanning force microscopy (SFM) and the oxidative chemistry used to construct our biological arrays are provided. This section is followed by four chapters, each of which is presented as a separate manuscript, and focuses on work that describes some of our cross-disciplinary efforts within materials science and biology. This dissertation concludes with a general summary and future prospectus.

  11. AC Calorimetric Design for Dynamic of Biological Materials

    Shigeo Imaizumi

    2006-01-01

    We developed a new AC calorimeter for the measurement of dynamic specific heat capacity in liquids, including aqueous suspensions of biological materials. This method has several advantages. The first is that a high-resolution measurement of heat capacity, inmillidegrees, can be performed as a function of temperature, even with a very small sample. Therefore, AC calorimeter is a powerful tool to study critical behavior a tphase transition in biological materials. The second advantage is that ...

  12. Global patterns in threats to vertebrates by biological invasions

    Bellard, C.; Genovesi, P.; Jeschke, J. M.

    2016-01-01

    Biological invasions as drivers of biodiversity loss have recently been challenged. Fundamentally, we must know where species that are threatened by invasive alien species (IAS) live, and the degree to which they are threatened. We report the first study linking 1372 vertebrates threatened by more than 200 IAS from the completely revised Global Invasive Species Database. New maps of the vulnerability of threatened vertebrates to IAS permit assessments of whether IAS have a major influence on biodiversity, and if so, which taxonomic groups are threatened and where they are threatened. We found that centres of IAS-threatened vertebrates are concentrated in the Americas, India, Indonesia, Australia and New Zealand. The areas in which IAS-threatened species are located do not fully match the current hotspots of invasions, or the current hotspots of threatened species. The relative importance of biological invasions as drivers of biodiversity loss clearly varies across regions and taxa, and changes over time, with mammals from India, Indonesia, Australia and Europe are increasingly being threatened by IAS. The chytrid fungus primarily threatens amphibians, whereas invasive mammals primarily threaten other vertebrates. The differences in IAS threats between regions and taxa can help efficiently target IAS, which is essential for achieving the Strategic Plan 2020 of the Convention on Biological Diversity. PMID:26817767

  13. THE DEVELOPMENT OF BIOLOGY MATERIAL RESOURCES BY METACOGNITIVE STRATEGY

    Endang Susantini

    2016-02-01

    Full Text Available The Development of Biology Material Resources by Metacognitive Strategy The study was aimed at finding out the suitability of Biology Materials using the metacognitive strategy. The materials were textbooks, self-understanding Evaluation Sheet and the key, lesson plan, and tests including the answer key. The criteria of appropriateness included the relevance of the resources with the content validity, face va­lidity and the language. This research and development study was carried out employing a 3D model, namely define, design and develop. At the define stage, three topics were selected for analysis, they were virus, Endocrine System, and Genetic material. During the design phase, the physical appearance of the materials was suited with the Metacognitive Strategy. At the develop phase, the material resources were examined and validated by two Biology experts and senior teachers of Biology. The results showed that the Biology material Resources using Metacognitive Strategy developed in the study has fell into the category of very good ( score > 3.31 and was therefore considered suitable.

  14. Materiomics: biological protein materials, from nano to macro

    Steven Cranford

    2010-11-01

    Full Text Available Steven Cranford, Markus J BuehlerCenter for Materials Science and Engineering, Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USAAbstract: Materiomics is an emerging field of science that provides a basis for multiscale material system characterization, inspired in part by natural, for example, protein-based materials. Here we outline the scope and explain the motivation of the field of materiomics, as well as demonstrate the benefits of a materiomic approach in the understanding of biological and natural materials as well as in the design of de novo materials. We discuss recent studies that exemplify the impact of materiomics – discovering Nature’s complexity through a materials science approach that merges concepts of material and structure throughout all scales and incorporates feedback loops that facilitate sensing and resulting structural changes at multiple scales. The development and application of materiomics is illustrated for the specific case of protein-based materials, which constitute the building blocks of a variety of biological systems such as tendon, bone, skin, spider silk, cells, and tissue, as well as natural composite material systems (a combination of protein-based and inorganic constituents such as nacre and mollusk shells, and other natural multiscale systems such as cellulose-based plant and wood materials. An important trait of these materials is that they display distinctive hierarchical structures across multiple scales, where molecular details are exhibited in macroscale mechanical responses. Protein materials are intriguing examples of materials that balance multiple tasks, representing some of the most sustainable material solutions that integrate structure and function despite severe limitations in the quality and quantity of material building blocks. However, up until now, our attempts to analyze and

  15. Moessbauer spectroscopic studies of magnetically ordered biological materials

    Dickson, D.P.E.

    1987-01-01

    This paper discusses recent work showing the application of Moessbauer spectroscopy to the study of the properties of the magnetically ordered materials which occur in a variety of biological systems. These materials display a diversity of behaviour which provides good examples of the various possibilities which can arise with iron-containing particles of different compositions and sizes. (orig.)

  16. Global patterns of materials use. A socioeconomic and geophysical analysis

    Steinberger, Julia K.; Krausmann, Fridolin; Eisenmenger, Nina [Institute of Social Ecology Vienna, IFF, University of Klagenfurt, Schottenfeldgasse 29, A-1070 Wien (Austria)

    2010-03-15

    Human use of materials is a major driver of global environmental change. The links between materials use and economic development are central to the challenge of decoupling of materials use and economic growth (dematerialization). This article presents a new global material flow dataset compiled for the year 2000, covering 175 countries, including both extraction and trade flows, and comprising four major material categories: biomass, construction minerals, fossil energy carriers and ores/industrial minerals. First, we quantify the variability and distributional inequality (Gini coefficients) in international material consumption. We then measure the influence of the drivers population, GDP, land area and climate. This analysis yields international income elasticities of material use. Finally, we examine the coupling between material flows, and between income and material productivity, measured in economic production per tonne material consumed. Material productivity is strongly coupled to income, and may thus not be suitable as an international indicator of environmental progress - a finding which we relate to the economic inelasticity of material consumption. The results demonstrate striking differences between the material groups. Biomass is the most equitably distributed resource, economically the most inelastic, and is not correlated to any of the mineral materials. The three mineral material groups are closely coupled to each other and economic activity, indicating that the challenge of dematerializing industrial economies may require fundamental structural transformation. Our analysis provides a first systematic investigation of international differences in material use and their drivers, and thus serves as the basis for more detailed future work. (author)

  17. Nanomechanical strength mechanisms of hierarchical biological materials and tissues.

    Buehler, Markus J; Ackbarow, Theodor

    2008-12-01

    Biological protein materials (BPMs), intriguing hierarchical structures formed by assembly of chemical building blocks, are crucial for critical functions of life. The structural details of BPMs are fascinating: They represent a combination of universally found motifs such as alpha-helices or beta-sheets with highly adapted protein structures such as cytoskeletal networks or spider silk nanocomposites. BPMs combine properties like strength and robustness, self-healing ability, adaptability, changeability, evolvability and others into multi-functional materials at a level unmatched in synthetic materials. The ability to achieve these properties depends critically on the particular traits of these materials, first and foremost their hierarchical architecture and seamless integration of material and structure, from nano to macro. Here, we provide a brief review of this field and outline new research directions, along with a review of recent research results in the development of structure-property relationships of biological protein materials exemplified in a study of vimentin intermediate filaments.

  18. Occupational accidents involving biological material among public health workers.

    Chiodi, Mônica Bonagamba; Marziale, Maria Helena Palucci; Robazzi, Maria Lúcia do Carmo Cruz

    2007-01-01

    This descriptive research aimed to recognize the occurrence of work accidents (WA) involving exposure to biological material among health workers at Public Health Units in Ribeirão Preto-SP, Brazil. A quantitative approach was adopted. In 2004, 155 accidents were notified by means of the Work Accident Communication (WAC). Sixty-two accidents (40%) involved exposure to biological material that could cause infections like Hepatitis and Aids. The highest number of victims (42 accidents) came from the category of nursing aids and technicians. Needles were responsible for 80.6% of accidents and blood was the biological material involved in a majority of occupational exposure cases. This subject needs greater attention, so that prevention measures can be implemented, which consider the peculiarities of the activities carried out by the different professional categories.

  19. Materials Manufactured from 3D Printed Synthetic Biology Arrays

    Gentry, Diana; Micks, Ashley

    2013-01-01

    Many complex, biologically-derived materials have extremely useful properties (think wood or silk), but are unsuitable for space-related applications due to production, manufacturing, or processing limitations. Large-scale ecosystem-based production, such as raising and harvesting trees for wood, is impractical in a self-contained habitat such as a space station or potential Mars colony. Manufacturing requirements, such as the specialized equipment needed to harvest and process cotton, add too much upmass for current launch technology. Cells in nature are already highly specialized for making complex biological materials on a micro scale. We envision combining these strengths with the recently emergent technologies of synthetic biology and 3D printing to create 3D-structured arrays of cells that are bioengineered to secrete different materials in a specified three-dimensional pattern.

  20. Certification of biological reference materials by instrumental neutron activation analysis

    Lanjewar, Mamata R.; Lanjewar, R.B.

    2014-01-01

    A multielemental instrumental neutron activation analysis (INAA) method by short and long irradiation has been employed for the determination of 21 minor and trace elements in two standard Reference Materials P-RBF and P-WBF from Institute of Radioecology and Applied Nuclear Techniques ,Czechoslovakia. Also some biological standards such as Bowen's kale, cabbage leaves (Poland) including wheat and rice flour samples of local origin were analysed. It is suggested that INAA is an ideal method for the certification of Reference Materials of Biological Matrices. (author)

  1. NBS SRM 1569 Brewer's Yeast: Is it an adequate standard reference material for testing a chromium determination in biological materials tion in biological materials

    Goeij, J.J.M. de; Volkers, K.J.; Tjioe, P.S.; Kroon, J.J.

    1978-01-01

    Some analytical experiences with NBS SRM 1569 Brewer's Yeast are presented. Against this background the adequacy of this standard reference material for the determination of chromium in biological materials is discussed. Authors have three main objections. Due to its high content of insoluble chromium-containing particles, SRM 1569 is not typical for biological materials, possibly not even for Brewer's Yeast. The chromium level of SRM 1569 is not typical for the chromium levels normally encountered in pure biological materials. The major fraction (69 +- 3 percent) of the chromium is present in a form which is insoluble under the conditions used in Author's analysis. (T.I.)

  2. Biological evaluation of dental materials, in vitro and in vivo

    Kawahara, H.

    1982-01-01

    In this paper, the correlation between the user of tissue culture for in vitro tests and the tissue irritability and pupal response observed in in vitro tests, will be discussed. It would produce confusion if dental materials were standardised with the unreliable parameter of the living system in dynamic balance. Biological tests, both in vitro and in vivo, should be used for pre-standards testing, without any political control to establish physicochemical standards. As a first step, corrosion tests and the dissolution dosje of toxic components from the material in the tissue culture medium and/or artificial salvia should be standardised under conditions simulating the oral environment. The CNC method and photo-pattern analysis are used for the interpretation of cytotoxicity. The need for biological testing, both in vitro and in vivo, definitely exists in order to obtain physicochemical standards, with a biological simulation depending upon the feedback obtained from the results of in vitro and in vivo tests

  3. The preparation of four biological reference materials for QUASIMEME

    Leeuwen, van S.P.J.; Pieters, H.; Boer, de J.

    2004-01-01

    Four biological materials have been prepared for use in QUASIMEME interlaboratory studies including a shrimp sample for metal analysis (QM01-1) and two mussel (QO01-3 and QO02-2) and one mackerel sample (QO02-1) for organic contaminant analysis.

  4. The determination of copper in biological materials by flame spectrophotometry

    Newman, G. E.; Ryan, M.

    1962-01-01

    A method for the determination of the copper content of biological materials by flame spectrophotometry is described. The effects of interference by ions such as sodium and phosphate were eliminated by isolating copper as the dithizonate in CCl4. Results obtained for the urinary excretion of copper by a patient with Wilson's disease before and after treatment with penicillamine are reported. PMID:14479334

  5. Application of radiochemical separation procedures to environmental and biological materials

    Eakins, J D [UKAEA Atomic Energy Research Establishment, Harwell. Environmental and Medical Sciences Div.

    1984-06-15

    The measurement of low levels of radionuclides in environmental and biological materials often depends on separation of the nuclide of interest from a bulky matrix containing interfering radioelements. In such case, however sophisticated and elegant the counting technique, the quality of the final data will

  6. Social justice and research using human biological material: A ...

    Social justice and research using human biological material: A response to Mahomed, Nöthling-Slabbert and Pepper. ... South African Medical Journal ... In a recent article, Mahomed, Nöthling-Slabbert and Pepper proposed that research participants should be entitled to share in the profits emanating from such research ...

  7. Theory of light transfer in food and biological materials

    In this chapter, we first define the basic radiometric quantities that are needed for describing light propagation in food and biological materials. Radiative transfer theory is then derived, according to the principle of the conservation of energy. Because the radiative transfer theory equation is ...

  8. Management of Global Nuclear Materials for International Security

    Isaacs, T; Choi, J-S

    2003-01-01

    Nuclear materials were first used to end the World War II. They were produced and maintained during the cold war for global security reasons. In the succeeding 50 years since the Atoms for Peace Initiative, nuclear materials were produced and used in global civilian reactors and fuel cycles intended for peaceful purposes. The Nonproliferation Treaty (NPT) of 1970 established a framework for appropriate applications of both defense and civilian nuclear activities by nuclear weapons states and non-nuclear weapons states. As global inventories of nuclear materials continue to grow, in a diverse and dynamically changing manner, it is time to evaluate current and future trends and needed actions: what are the current circumstances, what has been done to date, what has worked and what hasn't? The aim is to identify mutually reinforcing programmatic directions, leading to global partnerships that measurably enhance international security. Essential elements are material protection, control and accountability (MPC and A) of separated nuclear materials, interim storage, and geologic repositories for all nuclear materials destined for final disposal. Cooperation among key partners, such as the MPC and A program between the U.S. and Russia for nuclear materials from dismantled weapons, is necessary for interim storage and final disposal of nuclear materials. Such cooperative partnerships can lead to a new nuclear regime where a complete fuel cycle service with fuel leasing and spent fuel take-back can be offered to reactor users. The service can effectively minimize or even eliminate the incentive or rationale for the user-countries to develop their indigenous enrichment and reprocessing technologies. International cooperation, supported by governments of key countries can be best to facilitate the forum for formation of such cooperative partnerships

  9. Fuel from biologic wase materials; Kraftstoff aus biologischen Reststoffen

    Braesel, Martina

    2013-06-01

    In Germany, annually about 770,000 tons of biological waste reach rubbish bins or composting plants. In order to recondition this biological waste, the Federal Ministry of Education and Research (Berlin, Federal Republic of Germany) has launched a research project with a funding of 4.3 million Euro limited to a period of time of five years. In cooperation with the Fraunhofer Institute for Interfacial Engineering and Biotechnology (Stuttgart, Federal Republic of Germany) easily fermentable, wet biomass with a low content of lignocellulosic material has to be completely transformed to biogas with maximum energy. Only some of the ash remains.

  10. Transport of biologically active material in laser cutting.

    Frenz, M; Mathezloic, F; Stoffel, M H; Zweig, A D; Romano, V; Weber, H P

    1988-01-01

    The transport of biologically active material during laser cutting with CO2 and Er lasers is demonstrated. This transport mechanism removes particles from the surface of gelatin, agar, and liver samples into the depth of the laser-formed craters. The transport phenomenon is explained by a contraction and condensation of enclosed hot water vapor. We show by cultivating transported bacteria in agar that biological particles can survive the shock of the transport. Determination of the numbers of active cells evidences a more pronounced activity of the cultivated bacteria after impact with an Er laser than with a CO2 laser.

  11. INAA Application for Trace Element Determination in Biological Reference Material

    Atmodjo, D. P. D.; Kurniawati, S.; Lestiani, D. D.; Adventini, N.

    2017-06-01

    Trace element determination in biological samples is often used in the study of health and toxicology. Determination change to its essentiality and toxicity of trace element require an accurate determination method, which implies that a good Quality Control (QC) procedure should be performed. In this study, QC for trace element determination in biological samples was applied by analyzing the Standard Reference Material (SRM) Bovine muscle 8414 NIST using Instrumental Neutron Activation Analysis (INAA). Three selected trace element such as Fe, Zn, and Se were determined. Accuracy of the elements showed as %recovery and precision as %coefficient of variance (%CV). The result showed that %recovery of Fe, Zn, and Se were in the range between 99.4-107%, 92.7-103%, and 91.9-112%, respectively, whereas %CV were 2.92, 3.70, and 5.37%, respectively. These results showed that INAA method is precise and accurate for trace element determination in biological matrices.

  12. FDTD simulation of exposure of biological material to electromagnetic nanopulses

    Simicevic, Neven [Center for Applied Physics Studies, Louisiana Tech University, Ruston, LA 71272 (United States); Haynie, Donald T [Center for Applied Physics Studies and Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272 (United States)

    2005-01-21

    Ultra-wideband (UWB) electromagnetic pulses of nanosecond duration, or nanopulses, are of considerable interest to the communications industry and are being explored for various applications in biotechnology and medicine. The propagation of a nanopulse through biological matter has been computed using the finite difference-time domain (FDTD) method. The approach required the reparametrization of existing Cole-Cole model-based descriptions of dielectric properties of biological matter in terms of the Debye model without loss of accuracy. Several tissue types have been considered. Results show that the electromagnetic field inside biological tissue depends on incident pulse rise time and width. Rise time dominates pulse behaviour inside tissue as conductivity increases. It has also been found that the amount of energy deposited by 20 kV m{sup -1} nanopulses is insufficient to change the temperature of the exposed material for pulse repetition rates of 1 MHz or less, consistent with recent experimental results.

  13. [The meaning of accidents with biological material to nursing professionals].

    Magagnini, Maristela Aparecida Magri; Rocha, Suelen Alves; Ayres, Jairo Aparecido

    2011-06-01

    The aim of this study is to understand what meaning work accidents with exposure to biological material has to nurses. This is an exploratory study with a qualitative approach, and it used Bardin's content analysis. 87 accidents with biological material occurred in the period between 2001 and 2006; among them, eight were seropositive for Hepatitis B and C and HIV/AIDS. An interview with guiding questions was used to collect data. When inquiring these professionals about the meaning of these accidents, four categories emerged: risk situation, danger perception, fatality, and feelings. Although it is not a strategy of clarification, it is a fact that work organization and educative actions have considerable impact in reducing this type of accident, also reducing damage to the life of nurses involved in these accidents.

  14. Charged particle activation analysis of phosphorus in biological materials

    Masumoto, K.; Yagi, M.

    1983-01-01

    Charged particle activation analysis of phosphorus in biological materials using the 31 P(α,n) sup(34m)Cl reaction has been studied. Since sup(34m)Cl is also produced by the 32 S(α,pn) and the 35 Cl(α,α'n) reactions, the thick-target yield curves on phosphorus, sulfur and chlorine were determined in order to choose the optimum irradiation conditions. As a result, it was found that the activation analysis for phosphorus without interferences from sulfur and chlorine is possible by bombarding with less than 17 MeV alphas. The applicability of this method to biological samples was then examined by irradiating several standard reference materials. It was confirmed that phosphorus can readily be determined at the detection limit of 1μg free from interferences due to the matrix elements. (author)

  15. Estimating current and future global urban domestic material consumption

    Baynes, Timothy Malcolm; Kaviti Musango, Josephine

    2018-06-01

    Urban material resource requirements are significant at the global level and these are expected to expand with future urban population growth. However, there are no global scale studies on the future material consumption of urban areas. This paper provides estimates of global urban domestic material consumption (DMC) in 2050 using three approaches based on: current gross statistics; a regression model; and a transition theoretic logistic model. All methods use UN urban population projections and assume a simple ‘business-as-usual’ scenario wherein historical aggregate trends in income and material flow continue into the future. A collation of data for 152 cities provided a year 2000 world average DMC/capita estimate, 12 tons/person/year (±22%), which we combined with UN population projections to produce a first-order estimation of urban DMC at 2050 of ~73 billion tons/year (±22%). Urban DMC/capita was found to be significantly correlated (R 2 > 0.9) to urban GDP/capita and area per person through a power law relation used to obtain a second estimate of 106 billion tons (±33%) in 2050. The inelastic exponent of the power law indicates a global tendency for relative decoupling of direct urban material consumption with increasing income. These estimates are global and influenced by the current proportion of developed-world cities in the global population of cities (and in our sample data). A third method employed a logistic model of transitions in urban DMC/capita with regional resolution. This method estimated global urban DMC to rise from approximately 40 billion tons/year in 2010 to ~90 billion tons/year in 2050 (modelled range: 66–111 billion tons/year). DMC/capita across different regions was estimated to converge from a range of 5–27 tons/person/year in the year 2000 to around 8–17 tons/person/year in 2050. The urban population does not increase proportionally during this period and thus the global average DMC/capita increases from ~12 to ~14 tons

  16. Biological and chemical sensors based on graphene materials.

    Liu, Yuxin; Dong, Xiaochen; Chen, Peng

    2012-03-21

    Owing to their extraordinary electrical, chemical, optical, mechanical and structural properties, graphene and its derivatives have stimulated exploding interests in their sensor applications ever since the first isolation of free-standing graphene sheets in year 2004. This article critically and comprehensively reviews the emerging graphene-based electrochemical sensors, electronic sensors, optical sensors, and nanopore sensors for biological or chemical detection. We emphasize on the underlying detection (or signal transduction) mechanisms, the unique roles and advantages of the used graphene materials. Properties and preparations of different graphene materials, their functionalizations are also comparatively discussed in view of sensor development. Finally, the perspective and current challenges of graphene sensors are outlined (312 references).

  17. Prompt gamma cold neutron activation analysis applied to biological materials

    Rossbach, M.; Hiep, N.T.

    1992-01-01

    Cold neutrons at the external neutron guide laboratory (ELLA) of the KFA Juelich are used to demonstrate their profitable application for multielement characterization of biological materials. The set-up and experimental conditions of the Prompt Gamma Cold Neutron Activation Analysis (PGCNAA) device is described in detail. Results for C, H, N, S, K, B, and Cd using synthetic standards and the 'ratio' technique for calculation are reported for several reference materials and prove the method to be reliable and complementary with respect to the elements being determined by INAA. (orig.)

  18. Routine Determination of Arsenic in Biological Materials. RCN Report

    Kroon, J.J.; Das, H.A.

    1970-08-01

    This text describes a routine procedure for the determination of arsenic in biological materials by neutron activation analysis. Unlike most methods published in literature the present analysis is not based on chemical separation by destination. After a first purification by anion-exchange the 76 As-activity (T1/2 = 26,4 h) is isolated by precipitation as the metal. The method was tested by analysis of the standard kale powder. This material was prepared and issued by Bowen in 1966, to provide a reliable standard for the intercomparison of various methods. (author)

  19. Scanning probe microscopy in material science and biology

    Cricenti, A; Colonna, S; Girasole, M; Gori, P; Ronci, F; Longo, G; Dinarelli, S; Luce, M; Rinaldi, M; Ortenzi, M

    2011-01-01

    A review of the activity of scanning probe microscopy at our Institute is presented, going from instrumentation to software development of scanning tunnelling microscopy, atomic force microscopy and scanning near-field optical microscopy (SNOM). Some of the most important experiments in material science and biology performed by our group through the years with these SPM techniques will be presented. Finally, infrared applications by coupling a SNOM with a free electron laser will also be presented.

  20. Biologically inspired autonomous structural materials with controlled toughening and healing

    Garcia, Michael E.; Sodano, Henry A.

    2010-04-01

    The field of structural health monitoring (SHM) has made significant contributions in the field of prognosis and damage detection in the past decade. The advantageous use of this technology has not been integrated into operational structures to prevent damage from propagating or to heal injured regions under real time loading conditions. Rather, current systems relay this information to a central processor or human operator, who then determines a course of action such as altering the mission or scheduling repair maintenance. Biological systems exhibit advanced sensory and healing traits that can be applied to the design of material systems. For instance, bone is the major structural component in vertebrates; however, unlike modern structural materials, bone has many properties that make it effective for arresting the propagation of cracks and subsequent healing of the fractured area. The foremost goal for the development of future adaptive structures is to mimic biological systems, similar to bone, such that the material system can detect damage and deploy defensive traits to impede damage from propagating, thus preventing catastrophic failure while in operation. After sensing and stalling the propagation of damage, the structure must then be repaired autonomously using self healing mechanisms motivated by biological systems. Here a novel autonomous system is developed using shape memory polymers (SMPs), that employs an optical fiber network as both a damage detection sensor and a network to deliver stimulus to the damage site initiating adaptation and healing. In the presence of damage the fiber optic fractures allowing a high power laser diode to deposit a controlled level of thermal energy at the fractured sight locally reducing the modulus and blunting the crack tip, which significantly slows the crack growth rate. By applying a pre-induced strain field and utilizing the shape memory recovery effect, thermal energy can be deployed to close the crack and return

  1. Diffusion theory in biology: a relic of mechanistic materialism.

    Agutter, P S; Malone, P C; Wheatley, D N

    2000-01-01

    Diffusion theory explains in physical terms how materials move through a medium, e.g. water or a biological fluid. There are strong and widely acknowledged grounds for doubting the applicability of this theory in biology, although it continues to be accepted almost uncritically and taught as a basis of both biology and medicine. Our principal aim is to explore how this situation arose and has been allowed to continue seemingly unchallenged for more than 150 years. The main shortcomings of diffusion theory will be briefly reviewed to show that the entrenchment of this theory in the corpus of biological knowledge needs to be explained, especially as there are equally valid historical grounds for presuming that bulk fluid movement powered by the energy of cell metabolism plays a prominent note in the transport of molecules in the living body. First, the theory's evolution, notably from its origins in connection with the mechanistic materialist philosophy of mid nineteenth century physiology, is discussed. Following this, the entrenchment of the theory in twentieth century biology is analyzed in relation to three situations: the mechanism of oxygen transport between air and mammalian tissues; the structure and function of cell membranes; and the nature of the intermediary metalbolism, with its implicit presumptions about the intracellular organization and the movement of molecules within it. In our final section, we consider several historically based alternatives to diffusion theory, all of which have their precursors in nineteenth and twentieth century philosophy of science.

  2. Flexible Organic Electronics in Biology: Materials and Devices.

    Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng

    2015-12-09

    At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A Uniform Framework of Global Nuclear Materials Management

    Dupree, S.A.; Mangan, D.L.; Sanders, T.L; Sellers, T.A.

    1999-01-01

    Global Nuclear Materials Management (GNMM) anticipates and supports a growing international recognition of the importance of uniform, effective management of civilian, excess defense, and nuclear weapons materials. We expect thereto be a continuing increase in both the number of international agreements and conventions on safety, security, and transparency of nuclear materials, and the number of U.S.-Russian agreements for the safety, protection, and transparency of weapons and excess defense materials. This inventory of agreements and conventions may soon expand into broad, mandatory, international programs that will include provisions for inspection, verification, and transparency, To meet such demand the community must build on the resources we have, including State agencies, the IAEA and regional organizations. By these measures we will meet the future expectations for monitoring and inspection of materials, maintenance of safety and security, and implementation of transparency measures

  4. A Uniform Framework of Global Nuclear Materials Management

    Dupree, S.A.; Mangan, D.L.; Sanders, T.L; Sellers, T.A.

    1999-04-20

    Global Nuclear Materials Management (GNMM) anticipates and supports a growing international recognition of the importance of uniform, effective management of civilian, excess defense, and nuclear weapons materials. We expect thereto be a continuing increase in both the number of international agreements and conventions on safety, security, and transparency of nuclear materials, and the number of U.S.-Russian agreements for the safety, protection, and transparency of weapons and excess defense materials. This inventory of agreements and conventions may soon expand into broad, mandatory, international programs that will include provisions for inspection, verification, and transparency, To meet such demand the community must build on the resources we have, including State agencies, the IAEA and regional organizations. By these measures we will meet the future expectations for monitoring and inspection of materials, maintenance of safety and security, and implementation of transparency measures.

  5. A global renewable mix with proven technologies and common materials

    García-Olivares, Antonio; Ballabrera-Poy, Joaquim; García-Ladona, Emili; Turiel, Antonio

    2012-01-01

    A global alternative mix to fossil fuels is proposed, based on proven renewable energy technologies that do not use scarce materials. The mix consists of a combination of onshore and offshore wind turbines, concentrating solar power stations, hydroelectricity and wave power devices attached to the offshore turbines. Solar photovoltaic power could contribute to the mix if its dependence on scarce materials is solved. The most adequate deployment areas for the power stations are studied, as well as the required space. Material requirements are studied for the generation, power transport and for some future transport systems. The order of magnitude of copper, aluminium, neodymium, lithium, nickel, zinc and platinum that may be required for the proposed solution is obtained and compared with available reserves. Overall, the proposed global alternative to fossil fuels seems technically feasible. However, lithium, nickel and platinum could become limiting materials for future vehicles fleet if no global recycling systems were implemented and rechargeable zinc–air batteries would not be developed; 60% of the current copper reserves would have to be employed in the implementation of the proposed solution. Altogether, they may become a long-term physical constraint, preventing the continuation of the usual exponential growth of energy consumption. - Highlights: ▶ A global renewable mix with proven energy technologies and common materials. ▶ Wind turbines, concentrating solar power, hydroelectricity and wave attenuators. ▶ Mix technically feasible. Lithium, nickel and platinum may limit vehicles fleet. ▶ Sixty per cent of copper reserves used in the mix and in societal electrification. ▶ Power cannot growth exponentially. Future “spaceship economy” scenario expected.

  6. Certification of biological candidates reference materials by neutron activation analysis

    Kabanov, Denis V.; Nesterova, Yulia V.; Merkulov, Viktor G.

    2018-03-01

    The paper gives the results of interlaboratory certification of new biological candidate reference materials by neutron activation analysis recommended by the Institute of Nuclear Chemistry and Technology (Warsaw, Poland). The correctness and accuracy of the applied method was statistically estimated for the determination of trace elements in candidate reference materials. The procedure of irradiation in the reactor thermal fuel assembly without formation of fast neutrons was carried out. It excluded formation of interfering isotopes leading to false results. The concentration of more than 20 elements (e.g., Ba, Br, Ca, Co, Ce, Cr, Cs, Eu, Fe, Hf, La, Lu, Rb, Sb, Sc, Ta, Th, Tb, Yb, U, Zn) in candidate references of tobacco leaves and bottom sediment compared to certified reference materials were determined. It was shown that the average error of the applied method did not exceed 10%.

  7. OECD Policy Recommendations on Security for Biological Materials

    Radisch, J.

    2007-01-01

    Biomedical innovations derived from research on pathogenic micro-organisms promise astounding health and economic benefits. Some such biological resources employed in the RandD for diagnostic kits, vaccines and therapeutics, however, possess capacity for dual-use; they may be misused to develop biological weapons. Research facilities entrusted with possession of such dual-use materials have a responsibility to comply with biosecurity measures that are designed to prevent loss or theft and thereby reduce the probability of a bioterrorist attack. The OECD has provided a forum for its Member countries to engage in a dialogue of international co-operation with a view to produce policies that achieve a research environment fortified by biosecurity measures and capable of producing health innovations. In 2007, the OECD developed a risk assessment framework and risk management principles for Biological Resource Centres. Ongoing policy work at the OECD will look to design biosecurity guidelines appropriate to a broader range of facilities in possession of dual-use materials, such as university and industrial laboratories.(author)

  8. Ultrafast electron microscopy in materials science, biology, and chemistry

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-01-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  9. Activation analysis of biological materials at the Activation Analysis Centre

    Kukula, F.; Obrusnik, I.; Simkova, M.; Kucera, J.; Krivanek, M.

    1976-01-01

    A review is presented of the work of the Activation Analysis Centre of the Nuclear Research Institute for different fields of the Czechoslovak economy, aimed primarily at analyzing biological materials with the purpose of determining the contents of the so-called vital trace elements and of elements which already have a toxic effect on the organism in trace concentrations. Another important field of research is the path of trace elements from the environment to the human organism. A destructive method for the simultaneous determination of 12 trace elements in 11 kinds of human tissue has been studied. (Z.M.)

  10. Japanese tea leaves: a possible biological standard reference material

    Fuwa, Keiichiro; Notsu, Kenji; Tsunoda, Kin-ichi; Kato, Hideaki; Yamamoto, Yuko.

    1978-01-01

    Japanese Tea Leaves, prepared by pulverizing with an agate ball mill and sieving with a Saran fiber sieve (50 mesh) were assessed as a possible biological standard reference material for elemental analysis. The metal content of the tea leaves was determined independently at two laboratories using atomic absorption and flame emission spectrometry. Neutron activation analysis was also performed to determine the content (21 elements) of Tea Leaves. For some elements the result from the various methods were compared. The characteristics of Tea Leaves are discussed and the elemental composition is compared to that of Orchard Leaves (NBS SRM, 1571). The most significant characteristic of Tea Leaves was the high manganese content. (auth.)

  11. Fissile material ban: global and non-discriminatory?

    Datt, Savita

    1995-01-01

    With the indefinite and unconditional extension of the nuclear Non-Proliferation Treaty (NPT) now out of the way, the next issue on the non-proliferation agenda is that of the existing stocks and further production of plutonium and weapons grade uranium. More than the existing stocks and the surplus fissile materials made available through arms control and disarmament measures, it is the further production of such materials which is sought to be tackled urgently. Of prime concern are the nuclear programmes of threshold countries like India, Pakistan and Israel (countries out of the NPT fold) which need to be capped at all costs. The best method of achieving this, it is believed can be through a global ban on the production of fissile materials. 15 refs

  12. Nuclear, biological and chemical contamination survivability of Army material

    Feeney, J.J.

    1987-01-01

    Army Regulation (AR) 70-71, Nuclear, Biological and Chemical (NBC) Contamination Survivability of Army Material, published during 1984, establishes Army policy and procedures for the development and acquisition of material to ensure its survivablility and sustainability on the NBC-contaminated battlefield. This regulation defines NBC contamination as a term that includes both the individual and collective effects of residual radiological, biological, and chemical contamination. AR 70-71 applies to all mission-essential equipment within the Army. NBC contamination survivability is the capability of a system and its crew to withstand an NBC-contaminated environment, including decontamination, without losing the ability to accomplish the assigned mission. Characteristics of NBC contamination survivability are decontaminability, hardness, and compatability. These characteristics are engineering design criteria which are intended for use only in a developmental setting. To comply with AR 70-71, each mission-essential item must address all three criteria. The Department of Defense (DOD) has published a draft instruction addressing acquisition of NBC contamination survivable systems. This instruction will apply throughout DOD to those programs, systems and subsystems designated by the Secretary of Defense as major systems acquisition programs and to those non-major systems that have potential impact on critical functions

  13. Laser-matter structuration of optical and biological materials

    Hallo, L., E-mail: hallo@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Mezel, C., E-mail: candice.mezel@cea.fr [CELIA, Universite Bordeaux 1 (France); CEA Le Ripault, 37260 Monts (France); Guillemot, F., E-mail: fabien.guillemot@inserm.fr [UMR 577 INSERM, Universite Bordeaux 2 (France); Chimier, B., E-mail: chimier@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Bourgeade, A., E-mail: antoine.bourgeade@cea.fr [CEA-CESTA, Le Barp (France); Regan, C., E-mail: regan@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Duchateau, G., E-mail: duchateau@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Souquet, A., E-mail: agnes.souquet@inserm.fr [UMR 577 INSERM, Universite Bordeaux 2 (France); Hebert, D., E-mail: david.hebert@cea.fr [CEA-CESTA, Le Barp (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer In this study we model nanomaterial structuring. Black-Right-Pointing-Pointer The laser energy deposition is discussed first. Black-Right-Pointing-Pointer Full and approximate models are discussed. Black-Right-Pointing-Pointer Dynamic material response is addressed via hydrodynamics. Black-Right-Pointing-Pointer Sild effects are accounted for - Abstract: Interaction of ultrafast laser, i.e. from the femtosecond (fs) to the nanosecond (ns) regime, with initially transparent matter may produce very high energy density hot spots in the bulk as well as at the material surface, depending on focusing conditions. In the fs regime, absorption is due to ionisation of the dielectric, which enables absorption process to begin, and then hydrodynamic to take place. In the ns regime both absorption and hydrodynamic are coupled to each other, which complexifies considerably the comprehension but matter structuration looks similar. A numerical tool including solution of 3D Maxwell equations and a rate equation for free electrons is first compared to some available simple models of laser energy absorption. Then, subsequent material deformation, i.e. structuration, is determined by solving hydrodynamic equations, including or not solid behaviour. We show that nature of the final structures strongly depends on the amount of deposited energy and on the shape of the absorption zone. Then we address some problems related to laser-matter structuration of optical and biological materials in the fs, ps and ns regimes.

  14. Fluorine determinations in biological materials by instrumental neutron activation analysis

    Demiralp, R.; Guinn, V.P.; Becker, D.A.

    1992-01-01

    Exploratory studies were carried out at the University of California, Irvine on several freeze-dried human diet materials and on two freeze-dried vegetation materials - all prospective reference materials. The University of California, Irvine equipment includes a 250-kW TRIGA Mark 1 reactor, 2.5 x 10 12 n/cm 2 ·s thermal flux, 3-s sample transfer time, and a typical 18% Ge(Li)/4,096-channel gamma-ray spectrometer with a detector resolution of 3.3 keV at 1,332 keV. In these exploratory studies, it was found that it was not feasible to measure fluorine with adequate precision or accuracy at fluorine concentrations much less than ∼100 ppm. These initial studies, however, defined the magnitudes of the various difficulties. One good outcome of these studies was the demonstration that the otherwise excellent Teflon-mill brittle-fracture method for homogenizing freeze-dried biological samples was not suitable if fluorine was to be determined. Abrasion of the Teflon increased the fluorine content of a human diet sample about sevenfold (compared with similar treatment of the same material in an all-titanium mill)

  15. Interactive learning and action: realizing the promise of synthetic biology for global health

    Betten, A.W.; Roelofsen, A.; Broerse, J.E.W.

    2013-01-01

    The emerging field of synthetic biology has the potential to improve global health. For example, synthetic biology could contribute to efforts at vaccine development in a context in which vaccines and immunization have been identified by the international community as being crucial to international

  16. A vision for global monitoring of biological invasions

    Latombe, G.; Pyšek, Petr; Jeschke, J.M.; Blackburn, T. M.; Bacher, S.; Capinha, C.; Costello, M. J.; Fernández, M.; Gregory, R. D.; Hobern, D.; Hui, C.; Jetz, W.; Kumschick, S.; McGrannachan, C.; Pergl, Jan; Roy, H. E.; Scalera, R.; Squires, Z. E.; Wilson, J. R. U.; Winter, M.; Genovesi, P.; McGeoch, M. A.

    2017-01-01

    Roč. 213, part B (2017), s. 295-308 ISSN 0006-3207 R&D Projects: GA ČR GB14-36079G Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : biological invasions * monitoring * management Subject RIV: EH - Ecology, Behaviour OBOR OECD: Biodiversity conservation Impact factor: 4.022, year: 2016

  17. Local and global control of ecological and biological networks

    Alessandro Ferrarini

    2014-01-01

    Recently, I introduced a methodological framework so that ecological and biological networks can be controlled both from inside and outside by coupling network dynamics and evolutionary modelling. The endogenous control requires the network to be optimized at the beginning of its dynamics (by acting upon nodes, edges or both) so that it will then go inertially to the desired state. Instead, the exogenous control requires that exogenous controllers act upon the network at each time step. By th...

  18. [Multi-causality in nursing work accidents with biological material].

    Soares, Leticia Gramazio; Sarquis, Leila Maria Mansano; Kirchhof, Ana Lúcia Cardoso; Felli, Vanda Elisa Andres

    2013-12-01

    In order to analyze the multiple causes of occupational accidents with biological exposure among nursing staff was carried out a descriptive and exploratory research in a medium-sized hospital in the State of Paraná, in the period between January 2008 and January 2009. The population was 26 nursing staff of the medical clinic. Data collection was performed by semi-structured interviews with five of the eight injured in the period and its contents were analyzed by Causes and Effects Diagram. The categories of causes material, organizational, institutional and worker's behavior, showed the inappropriate disposal of sharps, work overload, no use of bio-security standards and poor supervision and training of workers, as factors for the occurrence of these accidents. The adoption of the tool of Causes and Effects Diagram provided an analysis of accidents in its multiple causes, showing the interaction between them.

  19. Problems in the determination of chromium in biological materials

    Behne, D.; Braetter, P.; Gessner, H.; Hube, G.; Mertz, W.; Roesick, U.

    1976-01-01

    The effects of sample preparation on the analysis of chromium in biological matter have been investigated using brewer's yeast as a test material. The apparent chromium content of the yeast as determined by flameless atomic absorption spectrometry was significantly higher after destruction of the organic matter with HNO 3 in a closed pressure vessel than after wet-ashing in open vessels and after direct introduction of the sample into the graphite furnace. The results obtained by neutron activation analysis without any sample preparation, which corresponded to the atomic absorption values after digestion in the pressure vessel, showed that considerable errors arise in the other methods of sample treatment. Chromium analysis of dried and ashed yeast suggest that losses of volatile chromium compounds may occur during heating. (orig.) [de

  20. The High-Strain Rate Loading of Structural Biological Materials

    Proud, W. G.; Nguyen, T.-T. N.; Bo, C.; Butler, B. J.; Boddy, R. L.; Williams, A.; Masouros, S.; Brown, K. A.

    2015-10-01

    The human body can be subjected to violent acceleration as a result of explosion caused by military ordinance or accident. Blast waves cause injury and blunt trauma can be produced by violent impact of objects against the human body. The long-term clinical manifestations of blast injury can be significantly different in nature and extent to those suffering less aggressive insult. Similarly, the damage seen in lower limbs from those injured in explosion incidents is in general more severe than those falling from height. These phenomena increase the need for knowledge of the short- and long-term effect of transient mechanical loading to the biological structures of the human body. This paper gives an overview of some of the results of collaborative investigation into blast injury. The requirement for time-resolved data, appropriate mechanical modeling, materials characterization and biological effects is presented. The use of a range of loading platforms, universal testing machines, drop weights, Hopkinson bars, and bespoke traumatic injury simulators are given.

  1. Ion beam modification of biological materials in nanoscale

    Yu, L. D.; Anuntalabhochai, S.

    2012-07-01

    Ion interaction with biological objects in nanoscale is a novel research area stemming from applications of low-energy ion beams in biotechnology and biomedicine. Although the ion beam applications in biotechnology and biomedicine have achieved great successes, many mechanisms remain unclear and many new applications are to be explored. We have carried out some research on exploring the mechanisms and new applications besides attaining ion beam induction of mutation breeding and gene transformation. In the studies on the mechanisms, we focused our investigations on the direct interaction in nanoscale between ions and biological living materials. Our research topics have included the low-energy ion range in DNA, low-energy ion or neutral beam bombardment effect on DNA topological form change and mutation, low-energy ion or neutral beam bombardment effect on the cell envelope and gene transformation, and molecular dynamics simulation of ultra-low-energy ion irradiation of DNA. In the exploration of new applications, we have started experiments on ion irradiation or bombardment, in the nanoscaled depth or area, of human cells for biomedical research. This paper introduces our experiments and reports interesting results.

  2. Ion beam modification of biological materials in nanoscale

    Yu, L.D.; Anuntalabhochai, S.

    2012-01-01

    Ion interaction with biological objects in nanoscale is a novel research area stemming from applications of low-energy ion beams in biotechnology and biomedicine. Although the ion beam applications in biotechnology and biomedicine have achieved great successes, many mechanisms remain unclear and many new applications are to be explored. We have carried out some research on exploring the mechanisms and new applications besides attaining ion beam induction of mutation breeding and gene transformation. In the studies on the mechanisms, we focused our investigations on the direct interaction in nanoscale between ions and biological living materials. Our research topics have included the low-energy ion range in DNA, low-energy ion or neutral beam bombardment effect on DNA topological form change and mutation, low-energy ion or neutral beam bombardment effect on the cell envelope and gene transformation, and molecular dynamics simulation of ultra-low-energy ion irradiation of DNA. In the exploration of new applications, we have started experiments on ion irradiation or bombardment, in the nanoscaled depth or area, of human cells for biomedical research. This paper introduces our experiments and reports interesting results.

  3. Millimeter wave and terahertz dielectric properties of biological materials

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  4. Globalization

    Tulio Rosembuj

    2006-12-01

    Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  5. Globalization

    Tulio Rosembuj

    2006-01-01

    There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  6. 2014 Global Conference on Polymer and Composite Materials (PCM 2014)

    2014-08-01

    The 2014 Global Conference on Polymer and Composite Materials (PCM 2014) sponsored by Ningbo Adhesives and Products Industry Association, Shanghai Bonding Technology Association, Zhejiang Bonding Technology Association, Wuhan Bonding Technology Association, Hebei Bonding and Coatings Association and Polyurethane Industry Association was held from May 27 to May 29 2014 in Ningbo, China. The technical program consisted of 8 international keynote speakers, oral presentations, and a poster session. The conference also included an industrial exhibition where more than 50 companies displayed in their booths their most recent advanced products and services. The present issue of IOP Conference Series: Materials Science and Engineering (MSE) records the proceedings of PCM 2014 and contains 37 specially selected manuscripts submitted to PCM2014 conference. The electronic submission and handling of manuscripts via the conference website, including the selection of reviewers and evaluation of manuscripts, were identical to the procedures applied to manuscripts submitted as regular contributions for publication. The organization of this conference and the preparation of proceedings volumes would have been impossible without the tremendous efforts and dedication of many individuals, especially from Ms. Yin Pan, who oversaw the organization of the conference and the program; and a large team of reviewers with their timely submission of quality reports. We express our sincere thanks to all authors and presenters for their contributions. We also thank very much our sponsors for their generous support. The 2015 Global Conference on Polymer and Composite Materials (PCM2015) will be held in Beijing, China on May 16-18, 2015. Beijing, the capital of the People's Republic of China and one of the most populous cities in the world, will welcome to all participants for a renewed and vibrant conference. Prof. Dr. Esteban Broitman Linköping University, Sweden Editor in Chief — PCM2014

  7. 2014 Global Conference on Polymer and Composite Materials (PCM 2014)

    2014-01-01

    The 2014 Global Conference on Polymer and Composite Materials (PCM 2014) sponsored by Ningbo Adhesives and Products Industry Association, Shanghai Bonding Technology Association, Zhejiang Bonding Technology Association, Wuhan Bonding Technology Association, Hebei Bonding and Coatings Association and Polyurethane Industry Association was held from May 27 to May 29 2014 in Ningbo, China. The technical program consisted of 8 international keynote speakers, oral presentations, and a poster session. The conference also included an industrial exhibition where more than 50 companies displayed in their booths their most recent advanced products and services. The present issue of IOP Conference Series: Materials Science and Engineering (MSE) records the proceedings of PCM 2014 and contains 37 specially selected manuscripts submitted to PCM2014 conference. The electronic submission and handling of manuscripts via the conference website, including the selection of reviewers and evaluation of manuscripts, were identical to the procedures applied to manuscripts submitted as regular contributions for publication. The organization of this conference and the preparation of proceedings volumes would have been impossible without the tremendous efforts and dedication of many individuals, especially from Ms. Yin Pan, who oversaw the organization of the conference and the program; and a large team of reviewers with their timely submission of quality reports. We express our sincere thanks to all authors and presenters for their contributions. We also thank very much our sponsors for their generous support. The 2015 Global Conference on Polymer and Composite Materials (PCM2015) will be held in Beijing, China on May 16–18, 2015. Beijing, the capital of the People's Republic of China and one of the most populous cities in the world, will welcome to all participants for a renewed and vibrant conference. Prof. Dr. Esteban Broitman Linköping University, Sweden Editor in Chief — PCM

  8. Consensus values for NIST biological and environmental Standard Reference Materials

    Roelandts, I.; Gladney, E.S.

    1998-01-01

    The National Institute of Standards and Technology (NIST, formerly the National Bureau of Standards or NBS) has produced numerous Standard Reference Materials (SRM) for use in biological and environmental analytical chemistry. The value listed on the ''NIST Certificate of Analysis'' is the present best estimate of the ''true'' concentration of that element and is not expected to deviate from that concentration by more than the stated uncertainty. However, NIST does not certify the elemental concentration of every constituent and the number of elements reported in the NIST programs tends to be limited.Numerous analysts have published concentration data on these reference materials. Major journals in analytical chemistry, books, proceedings and ''technical reports'' have been surveyed to collect these available literature values. A standard statistical approach has been employed to evaluate the compiled data. Our methodology has been developed in a series of previous papers. Some subjective criteria are first used to reject aberrant data. Following these eliminations, an initial arithmetic mean and standard deviation (S.D.) are computed from remaining data for each element. All data now outside two S.D. from the initial mean are dropped and a second mean and S.D. recalculated. These final means and associated S.D. are reported as ''consensus values'' in our tables. (orig.)

  9. Survey of currently available reference materials for use in connection with the determination of trace elements in biological materials

    Parr, R.M.

    1983-09-01

    Elemental analysis of biological materials is at present the subject of intensive study by many different research groups throughout the world, in view of the importance of these trace elements in health and medical diagnosis. IAEA and other organizations are now making a variety of suitable reference materials available for use in connection with the determination of trace elements in biological materials. To help analysts in making a selection from among these various materials, the present report provides a brief survey of data for all such biological reference materials known to the author. These data are compiled by the author from January 1982 to June 1983

  10. Global sensitivity analysis of multiscale properties of porous materials

    Um, Kimoon; Zhang, Xuan; Katsoulakis, Markos; Plechac, Petr; Tartakovsky, Daniel M.

    2018-02-01

    Ubiquitous uncertainty about pore geometry inevitably undermines the veracity of pore- and multi-scale simulations of transport phenomena in porous media. It raises two fundamental issues: sensitivity of effective material properties to pore-scale parameters and statistical parameterization of Darcy-scale models that accounts for pore-scale uncertainty. Homogenization-based maps of pore-scale parameters onto their Darcy-scale counterparts facilitate both sensitivity analysis (SA) and uncertainty quantification. We treat uncertain geometric characteristics of a hierarchical porous medium as random variables to conduct global SA and to derive probabilistic descriptors of effective diffusion coefficients and effective sorption rate. Our analysis is formulated in terms of solute transport diffusing through a fluid-filled pore space, while sorbing to the solid matrix. Yet it is sufficiently general to be applied to other multiscale porous media phenomena that are amenable to homogenization.

  11. How important is biological ice nucleation in clouds on a global scale?

    Hoose, C; Kristjansson, J E; Burrows, S M

    2010-01-01

    The high ice nucleating ability of some biological particles has led to speculations about living and dead organisms being involved in cloud ice and precipitation formation, exerting a possibly significant influence on weather and climate. In the present study, the role of primary biological aerosol particles (PBAPs) as heterogeneous ice nuclei is investigated with a global model. Emission parametrizations for bacteria, fungal spores and pollen based on recent literature are introduced, as well as an immersion freezing parametrization based on classical nucleation theory and laboratory measurements. The simulated contribution of PBAPs to the global average ice nucleation rate is only 10 -5 %, with an uppermost estimate of 0.6%. At the same time, observed PBAP concentrations in air and biological ice nucleus concentrations in snow are reasonably well captured by the model. This implies that 'bioprecipitation' processes (snow and rain initiated by PBAPs) are of minor importance on the global scale.

  12. Biological soil crusts: a fundamental organizing agent in global drylands

    Belnap, J.; Zhang, Y.

    2013-12-01

    Ecosystem function is profoundly affected by plant community composition, which is ultimately determined by factors that govern seed retention. Dryland ecosystems constitute ~35% of terrestrial surfaces, with most soils in these regions covered by biological soil crusts (biocrusts), a community whose autotrophs are dominated by cyanobacteria, lichens, and mosses. Studies at 550 sites revealed that plant community composition was controlled by the interaction among biocrust type, disturbance regime, and external morphology of seeds. In bare soils (due to disturbance), all seed types were present in the seedbank and plant community. As biocrusts became better developed (i.e., the cover of lichens and mosses increased), they more strongly filtered out seeds with appendages. Thus, soils under late successional biocrusts contained seedbanks dominated by smooth seeds and vascular plants growing in late successional biocrusts were dominated by those with smooth seeds. Therefore, the tension between the removal of biocrusts by soil surface disturbance and their recovery creates a shifting mosaic of plant patch types in both space and time. Because changes in vascular plant communities reverberate throughout both below ground and above ground food webs and thus affect multiple trophic levels, we propose that biocrusts are a fundamental organizing agent in drylands worldwide. Future increased demand for resources will intensify land use both temporally and spatially, resulting in an increased rate of biocrust loss across larger areas. As a result, we can expect shifts in the composition and distribution of plant communities, accompanied by concomitant changes in many aspects of dryland ecosystems. Conceptual model of shifting dryland plant mosaics through space and time. Within the large circles, soil surface type changes with time in the same space, going from bare uncrusted soil (B) to cyanobacterial biocrust (C) to lichen/moss (L/M) biocrust. Disturbance (D) drives the

  13. Understanding Global Change (UGC) as a Unifying Conceptual Framework for Teaching Ecology: Using UGC in a High School Biology Program to Integrate Earth Science and Biology, and to Demonstrate the Value of Modeling Global Systems in Promoting Conceptual Learning

    Levine, J.; Bean, J. R.

    2017-12-01

    Global change science is ideal for NGSS-informed teaching, but presents a serious challenge to K-12 educators because it is complex and interdisciplinary- combining earth science, biology, chemistry, and physics. Global systems are themselves complex. Adding anthropogenic influences on those systems creates a formidable list of topics - greenhouse effect, climate change, nitrogen enrichment, introduced species, land-use change among them - which are often presented as a disconnected "laundry list" of "facts." This complexity, combined with public and mass-media scientific illiteracy, leaves global change science vulnerable to misrepresentation and politicization, creating additional challenges to teachers in public schools. Ample stand-alone, one-off, online resources, many of them excellent, are (to date) underutilized by teachers in the high school science course taken by most students: biology. The Understanding Global Change project (UGC) from the UC Berkeley Museum of Paleontology has created a conceptual framework that organizes, connects, and explains global systems, human and non-human drivers of change in those systems, and measurable changes in those systems. This organization and framework employ core ideas, crosscutting concepts, structure/function relationships, and system models in a unique format that facilitates authentic understanding, rather than memorization. This system serves as an organizing framework for the entire ecology unit of a forthcoming mainstream high school biology program. The UGC system model is introduced up front with its core informational graphic. The model is elaborated, step by step, by adding concepts and processes as they are introduced and explained in each chapter. The informational graphic is thus used in several ways: to organize material as it is presented, to summarize topics in each chapter and put them in perspective, and for review and critical thinking exercises that supplement the usual end-of-chapter lists of

  14. Profile of accidents with biological material at a dental school

    Sandra Aragão de Almeida Sasamoto

    2014-09-01

    Full Text Available http://dx.doi.org/10.4025/actascihealthsci.v36i1.14976 Current research characterizes the epidemiological profile of accidents with biological material (BM that occurred in a government-run dental school and identifies the post-exposure behavior taken by the injured subjects. The cross-sectional retrospective study comprises professors, students and technical-administration personnel who worked in the laboratory from 2001 to 2008 (n = 566. An electronic questionnaire, prepared by software developed for this purpose, was sent to subjects between May and August 2008 for data collection. Ninety-one (34.2% out of 266 participants reported some type of exposure to BM. There was no difference between the occurrence of accidents according to the subjects’ category (p = 0.496 and sex (p = 0.261. Most of the subjects reported cutaneous exposure (76.9% comprising saliva (68.1% and blood (48.3%. The fingers were the body members most affected. Accidents occurred mostly during clinical (34.1% and surgical (30.8% procedures. Although the use of protection equipments was high (82.9%, only 26.4% of subjects reported the accident and only 28.6% sought immediate help. Most of the injured subjects failed to report the accidents and did not comply with the guidelines. Others trivialized basic behavior such as the interruption of the procedure to seek medical assistance.

  15. Non-contact tensile viscoelastic characterization of microscale biological materials

    Li, Yuhui; Hong, Yuan; Xu, Guang-Kui; Liu, Shaobao; Shi, Qiang; Tang, Deding; Yang, Hui; Genin, Guy M.; Lu, Tian Jian; Xu, Feng

    2018-06-01

    Many structures and materials in nature and physiology have important "meso-scale" structures at the micron length-scale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.

  16. Heavy metal ion removal by adsorption on to biological materials

    Jansson-Charrier, M.; Guibal, E.; Le Cloirec, P.; Surjous, R.

    1994-01-01

    The development of regulations constraints in the industrial waste-waters management leads to the study of new treatment processes, using raw or functionalized biological materials. These processes show competitive performances in metal ion sorption efficiency for the low metal content effluents. Uptake capacities of Uranium as high as 400 mg.g -1 chitosan, equivalent to the double of the uptake capacity of fungal origin biomass, can be reached. The application of these processes to real mine wastewaters gives efficiency coefficient upper to 90%, the residual concentrations are compatible to a direct injection into the environment. The grafting of functional groups onto the chitosan scales up the sorption performances to uptake capacity upper than 600 mg.g -1 polymer. pH, metal concentration are cited as major parameters, particle size influences both uptake kinetics and sorption equilibrium, in the case of the uranium accumulation by chitosan. The desorption of uranium from the sorbent allows the valorization of uranium and the re-use of the sorbent. (authors). 21 refs., 10 figs

  17. Flame Spectrophotometric Determination of Strontium in Water and Biological Material

    Joensson, G

    1964-10-15

    A flame spectrophotometric method has been developed for the determination of strontium in biological material and water samples. Strontium is determined in the presence of calcium at a wavelength of 4607 A. The intensity of the strontium emission from the sample is increased if n-butanol is added to a solution of the sample in water. With a 6 vol% solution of n-butanol in water, an optimum intensity of 3.5 times that obtained with pure water solution is obtained. Anions and alkali metals which might interfere with the flame spectrophotometric determination are separated from the sample by a simple ion exchange operation. The method allows determination of strontium in solutions down to 0.1{mu}g/ml. In this case the standard deviation is 3.1 % and with a strontium concentration of 1 {mu}g/ml the deviation is 0.9 %. This method has been used for the determination of strontium in samples of varying composition such as bone, meat and skin from fishes, samples of human bones, shell-fish, milk, and water, in which case Sr quantities of 5{mu}g were determined with an analytical error of less than 5 % and Sr{sub q}uantities greater than 10 {mu}g with an error of less than 3 %.

  18. Flame Spectrophotometric Determination of Strontium in Water and Biological Material

    Joensson, G.

    1964-10-01

    A flame spectrophotometric method has been developed for the determination of strontium in biological material and water samples. Strontium is determined in the presence of calcium at a wavelength of 4607 A. The intensity of the strontium emission from the sample is increased if n-butanol is added to a solution of the sample in water. With a 6 vol% solution of n-butanol in water, an optimum intensity of 3.5 times that obtained with pure water solution is obtained. Anions and alkali metals which might interfere with the flame spectrophotometric determination are separated from the sample by a simple ion exchange operation. The method allows determination of strontium in solutions down to 0.1μg/ml. In this case the standard deviation is 3.1 % and with a strontium concentration of 1 μg/ml the deviation is 0.9 %. This method has been used for the determination of strontium in samples of varying composition such as bone, meat and skin from fishes, samples of human bones, shell-fish, milk, and water, in which case Sr quantities of 5μg were determined with an analytical error of less than 5 % and Sr q uantities greater than 10 μg with an error of less than 3 %

  19. Giant and universal magnetoelectric coupling in soft materials and concomitant ramifications for materials science and biology

    Liu, Liping; Sharma, Pradeep

    2013-10-01

    Magnetoelectric coupling—the ability of a material to magnetize upon application of an electric field and, conversely, to polarize under the action of a magnetic field—is rare and restricted to a rather small set of exotic hard crystalline materials. Intense research activity has recently ensued on materials development, fundamental scientific issues, and applications related to this phenomenon. This tantalizing property, if present in adequate strength at room temperature, can be used to pave the way for next-generation memory devices such as miniature magnetic random access memories and multiple state memory bits, sensors, energy harvesting, spintronics, among others. In this Rapid Communication, we prove the existence of an overlooked strain mediated nonlinear mechanism that can be used to universally induce the giant magnetoelectric effect in all (sufficiently) soft dielectric materials. For soft polymer foams—which, for instance, may be used in stretchable electronics—we predict room-temperature magnetoelectric coefficients that are comparable to the best known (hard) composite materials created. We also argue, based on a simple quantitative model, that magnetoreception in some biological contexts (e.g., birds) most likely utilizes this very mechanism.

  20. Structural and functional biological materials: Abalone nacre, sharp materials, and abalone foot adhesion

    Lin, Albert Yu-Min

    A three-part study of lessons from nature is presented through the examination of various biological materials, with an emphasis on materials from the mollusk Haliotis rufescens, commonly referred to as the red abalone. The three categories presented are: structural hierarchy, self-assembly, and functionality. Ocean mollusk shells are composed of aragonite/calcite crystals interleaved with layers of a visco-elastic protein, having dense, tailored structures with excellent mechanical properties. The complex nano-laminate structure of this bio-composite material is characterized and related to its mechanical properties. Three levels of structural hierarchy are identified: macroscale mesolayers separating larger regions of tiled aragonite, microscale organization of 0.5 mum by 10 mum aragonite bricks; nanoscale mineral bridges passing through 30 nm layers of organic matrix separating individual aragonite tiles. Composition and growth mechanisms of this nanostructure were observed through close examination of laboratory-grown samples using scanning electron microscopy (SEM), Raman spectroscopy, and transmission electron microscopy (TEM). Glass slides and nacre pucks were implanted onto the growth surface of living abalone and removed periodically to observe trends in nacre deposition. Various deproteinization and demineralization experiments are used to explore the inorganic and organic components of the nacre's structure. The organic component of the shell is characterized by atomic force microscopy (AFM). The functionality of various biological materials is described and investigated. Two specific types of functionality are characterized, the ability of some materials to cut and puncture through sharp designs, and the ability for some materials to be used as attachment devices. Aspects of cutting materials employed by a broad range of animals were characterized and compared. In respect to the attachment mechanisms the foot of the abalone and the tree frog were

  1. Synthesis and biology of cyclic imine toxins, an emerging class of potent, globally distributed marine toxins.

    Stivala, Craig E; Benoit, Evelyne; Aráoz, Rómulo; Servent, Denis; Novikov, Alexei; Molgó, Jordi; Zakarian, Armen

    2015-03-01

    From a small group of exotic compounds isolated only two decades ago, Cyclic Imine (CI) toxins have become a major class of marine toxins with global distribution. Their distinct chemical structure, biological mechanism of action, and intricate chemistry ensures that CI toxins will continue to be the subject of fascinating fundamental studies in the broad fields of chemistry, chemical biology, and toxicology. The worldwide occurrence of potent CI toxins in marine environments, their accumulation in shellfish, and chemical stability are important considerations in assessing risk factors for human health. This review article aims to provide an account of chemistry, biology, and toxicology of CI toxins from their discovery to the present day.

  2. Organization and diffusion in biological and material fabrication problems

    Mangan, Niall Mari

    This thesis is composed of two problems. The first is a systems level analysis of the carbon concentrating mechanism in cyanobacteria. The second presents a theoretical analysis of femtosecond laser melting for the purpose of hyperdoping silicon with sulfur. While these systems are very distant, they are both relevant to the development of alternative energy (production of biofuels and methods for fabricating photovoltaics respectively). Both problems are approached through analysis of the underlying diffusion equations. Cyanobacteria are photosynthetic bacteria with a unique carbon concentrating mechanism (CCM) which enhances carbon fixation. A greater understanding of this mechanism would offer new insights into the basic biology and methods for bioengineering more efficient biochemical reactions. The molecular components of the CCM have been well characterized in the last decade, with genetic analysis uncovering both variation and commonalities in CCMs across cyanobacteria strains. Analysis of CCMs on a systems level, however, is based on models formulated prior to the molecular characterization. We present an updated model of the cyanobacteria CCM, and analytic solutions in terms of the various molecular components. The solutions allow us to find the parameter regime (expression levels, catalytic rates, permeability of carboxysome shell) where carbon fixation is maximized and oxygenation is minimized. Saturation of RuBisCO, maximization of the ratio of CO2 to O2, and staying below or at the saturation level for carbonic anhydrase are all needed for maximum efficacy. These constraints limit the parameter regime where the most effective carbon fixation can occur. There is an optimal non-specific carboxysome shell permeability, where trapping of CO2 is maximized, but HCO3 - is not detrimentally restricted. The shell also shields carbonic anhydrase activity and CO2 → HCO3- conversion at the thylakoid and cell membrane from one another. Co-localization of carbonic

  3. Global environmental change and the biology of arbuscular mycorrhizas: gaps and challenges

    Fitter, A.H.; Heinemeyer, A.; Husband, R.

    2004-01-01

    Our ability to make predictions about the impact of global environmental change on arbuscular mycorrhizal (AM) fungi and on their role in regulating biotic response to such change is seriously hampered by our lack of knowledge of the basic biology of these ubiquitous organisms. Current information...

  4. Deciphering the language between biological and synthetic materials

    Paolo A. Netti

    2014-06-01

    Full Text Available Chemical signals propagating through aqueous environment are at the basis of the language utilized by living systems to exchange information. In the last years, molecular biology has partly disclosed the grammar and the syntax of this complex language revealing the fascinating world of molecular communication that is the foundation of biological development.

  5. Hybrid materials engineering in biology, chemistry and physics

    Leroux, F; Rabu, P; Sommerdijk, N.A.J.M.; Taubert, A.

    The Guest Editors emphasize the rapidly growing research in advanced materials. "Telecommunication, health and environment, energy and transportation, and sustainability are just a few examples where new materials have been key for technological advancement."

  6. A 2018 Horizon Scan of Emerging Issues for Global Conservation and Biological Diversity.

    Sutherland, William J; Butchart, Stuart H M; Connor, Ben; Culshaw, Caroline; Dicks, Lynn V; Dinsdale, Jason; Doran, Helen; Entwistle, Abigail C; Fleishman, Erica; Gibbons, David W; Jiang, Zhigang; Keim, Brandon; Roux, Xavier Le; Lickorish, Fiona A; Markillie, Paul; Monk, Kathryn A; Mortimer, Diana; Pearce-Higgins, James W; Peck, Lloyd S; Pretty, Jules; Seymour, Colleen L; Spalding, Mark D; Tonneijck, Femke H; Gleave, Rosalind A

    2018-01-01

    This is our ninth annual horizon scan to identify emerging issues that we believe could affect global biological diversity, natural capital and ecosystem services, and conservation efforts. Our diverse and international team, with expertise in horizon scanning, science communication, as well as conservation science, practice, and policy, reviewed 117 potential issues. We identified the 15 that may have the greatest positive or negative effects but are not yet well recognised by the global conservation community. Themes among these topics include new mechanisms driving the emergence and geographic expansion of diseases, innovative biotechnologies, reassessments of global change, and the development of strategic infrastructure to facilitate global economic priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Multiscale modeling of emergent materials: biological and soft matter

    Murtola, Teemu; Bunker, Alex; Vattulainen, Ilpo

    2009-01-01

    In this review, we focus on four current related issues in multiscale modeling of soft and biological matter. First, we discuss how to use structural information from detailed models (or experiments) to construct coarse-grained ones in a hierarchical and systematic way. This is discussed in the c......In this review, we focus on four current related issues in multiscale modeling of soft and biological matter. First, we discuss how to use structural information from detailed models (or experiments) to construct coarse-grained ones in a hierarchical and systematic way. This is discussed...

  8. Strategy on biological evaluation for biodegradable/absorbable materials and medical devices.

    Liu, Chenghu; Luo, Hongyu; Wan, Min; Hou, Li; Wang, Xin; Shi, Yanping

    2018-01-01

    During the last two decades, biodegradable/absorbable materials which have many benefits over conventional implants are being sought in clinical practices. However, to date, it still remains obscure for us to perform full physic-chemical characterization and biological risk assessment for these materials and related devices due to their complex design and coherent processing. In this review, based on the art of knowledge for biodegradable/absorbable materials and biological risk assessment, we demonstrated some promising strategies to establish and improve the current biological evaluation systems for these biodegradable/absorbable materials and related medical devices.

  9. Impaired global, and compensatory local, biological motion processing in people with high levels of autistic traits.

    van Boxtel, Jeroen J A; Lu, Hongjing

    2013-01-01

    People with Autism Spectrum Disorder (ASD) are hypothesized to have poor high-level processing but superior low-level processing, causing impaired social recognition, and a focus on non-social stimulus contingencies. Biological motion perception provides an ideal domain to investigate exactly how ASD modulates the interaction between low and high-level processing, because it involves multiple processing stages, and carries many important social cues. We investigated individual differences among typically developing observers in biological motion processing, and whether such individual differences associate with the number of autistic traits. In Experiment 1, we found that individuals with fewer autistic traits were automatically and involuntarily attracted to global biological motion information, whereas individuals with more autistic traits did not show this pre-attentional distraction. We employed an action adaptation paradigm in the second study to show that individuals with more autistic traits were able to compensate for deficits in global processing with an increased involvement in local processing. Our findings can be interpreted within a predictive coding framework, which characterizes the functional relationship between local and global processing stages, and explains how these stages contribute to the perceptual difficulties associated with ASD.

  10. Impaired global, and compensatory local, biological motion processing in people with high levels of autistic traits

    Jeroen J A Van Boxtel

    2013-04-01

    Full Text Available People with Autism Spectrum Disorder (ASD are hypothesized to have poor high-level processing but superior low-level processing, causing impaired social recognition, and a focus on non-social stimulus contingencies. Biological motion perception provides an ideal domain to investigate exactly how ASD modulates the interaction between low and high-level processing, because it involves multiple processing stages, and carries many important social cues. We investigated individual differences among typically developing observers in biological motion processing, and whether such individual differences associate with the number of autistic traits. In Experiment 1, we found that individuals with fewer autistic traits were automatically and involuntarily attracted to global biological motion information, whereas individuals with more autistic traits did not show this pre-attentional distraction. We employed an action adaptation paradigm in the second study to show that individuals with more autistic traits were able to compensate for deficits in global processing with an increased involvement in local processing. Our findings can be interpreted within a predictive coding framework, which characterizes the functional relationship between local and global processing stages, and explains how these stages contribute to the perceptual difficulties associated with ASD.

  11. Source Identification of Human Biological Materials and Its Prospect in Forensic Science.

    Zou, K N; Gui, C; Gao, Y; Yang, F; Zhou, H G

    2016-06-01

    Source identification of human biological materials in crime scene plays an important role in reconstructing the crime process. Searching specific genetic markers to identify the source of different human biological materials is the emphasis and difficulty of the research work of legal medical experts in recent years. This paper reviews the genetic markers which are used for identifying the source of human biological materials and studied widely, such as DNA methylation, mRNA, microRNA, microflora and protein, etc. By comparing the principles and methods of source identification of human biological materials using different kinds of genetic markers, different source of human biological material owns suitable marker types and can be identified by detecting single genetic marker or combined multiple genetic markers. Though there is no uniform standard and method for identifying the source of human biological materials in forensic laboratories at present, the research and development of a series of mature and reliable methods for distinguishing different human biological materials play the role as forensic evidence which will be the future development direction. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  12. Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth.

    Manso, Sandra; De Muynck, Willem; Segura, Ignacio; Aguado, Antonio; Steppe, Kathy; Boon, Nico; De Belie, Nele

    2014-05-15

    Ordinary Portland cement (OPC), the most used binder in construction, presents some disadvantages in terms of pollution (CO2 emissions) and visual impact. For this reason, green roofs and façades have gain considerable attention in the last decade as a way to integrate nature in cities. These systems, however, suffer from high initial and maintenance costs. An alternative strategy to obtain green facades is the direct natural colonisation of the cementitious construction materials constituting the wall, a phenomenon governed by the bioreceptivity of such material. This work aims at assessing the suitability of magnesium phosphate cement (MPC) materials to allow a rapid natural colonisation taking carbonated OPC samples as a reference material. For that, the aggregate size, the w/c ratio and the amount of cement paste of mortars made of both binders were modified. The assessment of the different bioreceptivities was conducted by means of an accelerated algal fouling test. MPC samples exhibited a faster fouling compared to OPC samples, which could be mainly attributed to the lower pH of the MPC binder. In addition to the binder, the fouling rate was governed by the roughness and the porosity of the material. MPC mortar with moderate porosity and roughness appears to be the most feasible material to be used for the development of green concrete walls. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A 2017 Horizon Scan of Emerging Issues for Global Conservation and Biological Diversity.

    Sutherland, William J; Barnard, Phoebe; Broad, Steven; Clout, Mick; Connor, Ben; Côté, Isabelle M; Dicks, Lynn V; Doran, Helen; Entwistle, Abigail C; Fleishman, Erica; Fox, Marie; Gaston, Kevin J; Gibbons, David W; Jiang, Zhigang; Keim, Brandon; Lickorish, Fiona A; Markillie, Paul; Monk, Kathryn A; Pearce-Higgins, James W; Peck, Lloyd S; Pretty, Jules; Spalding, Mark D; Tonneijck, Femke H; Wintle, Bonnie C; Ockendon, Nancy

    2017-01-01

    We present the results of our eighth annual horizon scan of emerging issues likely to affect global biological diversity, the environment, and conservation efforts in the future. The potential effects of these novel issues might not yet be fully recognized or understood by the global conservation community, and the issues can be regarded as both opportunities and risks. A diverse international team with collective expertise in horizon scanning, science communication, and conservation research, practice, and policy reviewed 100 potential issues and identified 15 that qualified as emerging, with potential substantial global effects. These issues include new developments in energy storage and fuel production, sand extraction, potential solutions to combat coral bleaching and invasive marine species, and blockchain technology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. New improved method for evaluation of growth by food related fungi on biologically derived materials

    Bergenholtz, Karina P.; Nielsen, Per Væggemose

    2002-01-01

    Biologically derived materials, obtained as commercial and raw materials (Polylactate (PLA), Polyhydroxybutyrate (PHB), potato, wheat and corn starch) were tested for their ability to support fungal growth using a modified ASTM G21-96 (American Society for Testing and Materials) standard as well...

  15. Using Fourier transform IR spectroscopy to analyze biological materials

    Baker, Matthew J; Trevisan, Júlio; Bassan, Paul; Bhargava, Rohit; Butler, Holly J; Dorling, Konrad M; Fielden, Peter R; Fogarty, Simon W; Fullwood, Nigel J; Heys, Kelly A; Hughes, Caryn; Lasch, Peter; Martin-Hirsch, Pierre L; Obinaju, Blessing; Sockalingum, Ganesh D; Sulé-Suso, Josep; Strong, Rebecca J; Walsh, Michael J; Wood, Bayden R; Gardner, Peter; Martin, Francis L

    2015-01-01

    IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms. Because such images are constructed from fingerprint spectra, the notion is that they can be an objective reflection of the underlying health status of the analyzed sample. One of the major difficulties in the field has been determining a consensus on spectral pre-processing and data analysis. This manuscript brings together as coauthors some of the leaders in this field to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis. We describe a protocol for collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, live cells or biofluids) that assesses the instrumental options available, appropriate sample preparation, different sampling modes as well as important advances in spectral data acquisition. After acquisition, data processing consists of a sequence of steps including quality control, spectral pre-processing, feature extraction and classification of the supervised or unsupervised type. A typical experiment can be completed and analyzed within hours. Example results are presented on the use of IR spectra combined with multivariate data processing. PMID:24992094

  16. Biological and environmental reference materials in neutron activation analysis work

    Guinn, V.P.; Gavrilas, M.

    1990-01-01

    The great usefulness of reference materials, especially ones of certified elemental composition, is discussed with particular attention devoted to their use in instrumental neutron activation analysis (INAA) work. Their use, including both certified and uncertified values, in calculations made by the INAA Advance Prediction Computer Program (APCP) is discussed. The main features of the APCP are described, and mention is made of the large number of reference materials run on the APCP (including the new personal computer version of the program), with NBS Oyster Tissue SRM-1566 used as the principal examle. (orig.)

  17. Beyond the 'new cross-cultural psychiatry': cultural biology, discursive psychology and the ironies of globalization.

    Kirmayer, Laurence J

    2006-03-01

    The 'new cross-cultural psychiatry' heralded by Kleinman in 1977 promised a revitalized tradition that gave due respect to cultural difference and did not export psychiatric theories that were themselves culture bound. In the ensuing years, the view of culture within anthropology has continued to change, along with our understanding of the relationship of biological processes to cultural diversity, and the global political economic contexts in which mental health care is delivered. This article considers the implications of these new notions of culture, biology and the context of practice for theory in cultural psychiatry. The future of cultural psychiatry lies in advancing a broad perspective that: (a) is inherently multidisciplinary (involving psychiatric epidemiology, medical anthropology and sociology, cognitive science and social psychology), breaking down the nature/culture dichotomy with an integrative view of culture as a core feature of human biology, while remaining alert to cultural constructions of biological theory; (b) attends to psychological processes but understands these as not exclusively located within the individual but as including discursive processes that are fundamentally social; and (c) critically examines the interaction of both local and global systems of knowledge and power. Globalization has brought with it many ironies for cultural psychiatry: Transnational migrations have resulted in cultural hybridization at the same time as ethnicity has become more salient; the call for evidence-based medicine has been used to limit the impact of cultural research; and cultural psychiatry itself has been co-opted by pharmaceutical companies to inform marketing campaigns to promote conventional treatments for new populations. Cultural psychiatry must address these ironies to develop the self-critical awareness and flexibility needed to deliver humane care in shifting contexts.

  18. Synthetic Self-Assembled Materials in Biological Environments

    Versluis, F.; van Esch, J.H.; Eelkema, R.

    2016-01-01

    Synthetic self-assembly has long been recognized as an excellent approach for the formation of ordered structures on the nanoscale. Although the development of synthetic self-assembling materials has often been inspired by principles observed in nature (e.g., the assembly of lipids, DNA,

  19. On the possibility of multiple utilization of Bowen's Kale for neutron activation analysis of biological materials

    Marinov, V.M.; Lazarova, M.S.; Mihajlov, M.I.; Apostolov, D.

    1977-01-01

    The results of investigations related to the multiple utilization of Bowen's Kale in developing neutron-activation methods for determining microelements in biological materials carried out in recent years are presented. Bowen's Kale might be used as: (1) experimental material in the development of a method and its verification, i.e. as a test for biological materials; (2) a material where experimental conditions might be optimized; (3) a material for investigating the accuracy, reproducibility and the limit of proof at experimental conditions already defined; (4) a monitor; (5) a multielement volume reference standard for a number of microelements during their simultaneous determination and (6) a standard for verifying the authenticity of the results obtained. In this manner, a reliable criterion for comparison of the potentialities, the accuracy, reproducibility, the limits of proof and the authenticity of the neutron-activation methods of determining microelements in biological materials is introduced. (author)

  20. Analysis of biological materials using a nuclear microprobe

    Mulware, Stephen Juma

    The use of nuclear microprobe techniques including: Particle induced x-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) for elemental analysis and quantitative elemental imaging of biological samples is especially useful in biological and biomedical research because of its high sensitivity for physiologically important trace elements or toxic heavy metals. The nuclear microprobe of the Ion Beam Modification and Analysis Laboratory (IBMAL) has been used to study the enhancement in metal uptake of two different plants. The roots of corn (Zea mays) have been analyzed to study the enhancement of iron uptake by adding Fe (II) or Fe(III) of different concentrations to the germinating medium of the seeds. The Fe uptake enhancement effect produced by lacing the germinating medium with carbon nanotubes has also been investigated. The aim of this investigation is to ensure not only high crop yield but also Fe-rich food products especially from calcareous soil which covers 30% of world's agricultural land. The result will help reduce iron deficiency anemia, which has been identified as the leading nutritional disorder especially in developing countries by the World Health Organization. For the second plant, Mexican marigold (Tagetes erecta ), the effect of an arbuscular mycorrhizal fungi (Glomus intraradices ) for the improvement of lead phytoremediation of lead contaminated soil has been investigated. Phytoremediation provides an environmentally safe technique of removing toxic heavy metals (like lead), which can find their way into human food, from lands contaminated by human activities like mining or by natural disasters like earthquakes. The roots of Mexican marigold have been analyzed to study the role of arbuscular mycorrhizal fungi in enhancement of lead uptake from the contaminated rhizosphere.

  1. Factors associated with occupational exposure to biological material among nursing professionals.

    Negrinho, Nádia Bruna da Silva; Malaguti-Toffano, Silmara Elaine; Reis, Renata Karina; Pereira, Fernanda Maria Vieira; Gir, Elucir

    2017-01-01

    to identify factors associated with occupational exposure to biological material among nursing professionals. a cross-sectional study was conducted in a high complexity hospital of a city in the state of São Paulo, Brazil. Nursing professionals were interviewed from March to November 2015. All ethical aspects were observed. among the 226 professionals interviewed, 17.3% suffered occupational exposure to potentially contaminated biological material, with 61.5% being percutaneous. Factors such as age (p=0.003), professional experience in nursing (p=0.015), and experience at the institution (p=0.032) were associated with the accidents with biological material. most accidents with biological material among nursing professionals were percutaneous. Age, professional experience, and experience at the institution were considered factors associated with occupational exposure.

  2. Low cost materials of construction for biological processes: Proceedings

    1993-05-13

    The workshop was held, May 1993 in conjunction with the 15th Symposium on Biotechnology for Fuels and Chemicals. The purpose of this workshop was to present information on the biomass to ethanol process in the context of materials selection and through presentation and discussion, identify promising avenues for future research. Six technical presentations were grouped into two sessions: process assessment and technology assessment. In the process assessment session, the group felt that the pretreatment area would require the most extensive materials research due the complex chemical, physical and thermal environment. Discussion centered around the possibility of metals being leached into the process stream and their effect on the fermentation mechanics. Linings were a strong option for pretreatment assuming the economics were favorable. Fermentation was considered an important area for research also, due to the unique complex of compounds and dual phases present. Erosion in feedstock handling equipment was identified as a minor concern. In the technology assessment session, methodologies in corrosion analysis were presented in addition to an overview of current coatings/linings technology. Widely practiced testing strategies, including ASTM methods, as well as novel procedures for micro-analysis of corrosion were discussed. Various coatings and linings, including polymers and ceramics, were introduced. The prevailing recommendations for testing included keeping the testing simple until the problem warranted a more detailed approach and developing standardized testing procedures to ensure the data was reproducible and applicable. The need to evaluate currently available materials such as coatings/linings, carbon/stainless steels, or fiberglass reinforced plastic was emphasized. It was agreed that economic evaluation of each material candidate must be an integral part of any research plan.

  3. PENGEMBANGAN MEDIA POSTER BERBASIS PENDIDIKAN KARAKTER UNTUK MATERI GLOBAL WARMING

    SRI MAIYENA

    2016-10-01

    Full Text Available This research was done because of the students’ difficulties in understanding the concept of global warming and implementing character values so that it needed to design poster media based character education. This research was aimed to see the effectiveness of poster media based character education that was already developed in Ilmu Alamiah Dasar subject. The design of the research was a research development. The effectiveness of poster media was gotten from testing to the students who had conducted Ilmu Alamiah Dasar subject. The instrument of the research was questionnaire. The result of the rsearch showed that developing poster media based character education was very effective according to the students with percentage 81.9%. Kata kunci: media poster berbasis pendidikan karakter, praktis, global warming

  4. Impacts of Insufficient Instructional Materials on Teaching Biology: Higher Education Systems in Focus

    Edessa, Sutuma

    2017-01-01

    The purpose of this study was to assess and determine impacts of insufficient instructional materials and ineffective lesson delivery methods on teaching in biology higher education. The participants of this study were 60 trainees who graduated in Bachelor of Sciences from eight public universities in majoring biology. Data for the study was…

  5. Analysis of hazardous biological material by MALDI mass spectrometry

    KL Wahl; KH Jarman; NB Valentine; MT Kingsley; CE Petersen; ST Cebula; AJ Saenz

    2000-03-21

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS) has become a valuable tool for analyzing microorganisms. The speed with which data can be obtained from MALDI-MS makes this a potentially important tool for biological health hazard monitoring and forensic applications. The excitement in the mass spectrometry community in this potential field of application is evident by the expanding list of research laboratories pursuing development of MALDI-MS for bacterial identification. Numerous research groups have demonstrated the ability to obtain unique MALDI-MS spectra from intact bacterial cells and bacterial cell extracts. The ability to differentiate strains of the same species has been investigated. Reproducibility of MALDI-MS spectra from bacterial species under carefully controlled experimental conditions has also been demonstrated. Wang et al. have reported on interlaboratory reproducibility of the MALDI-MS analysis of several bacterial species. However, there are still issues that need to be addressed, including the careful control of experimental parameters for reproducible spectra and selection of optimal experimental parameters such as solvent and matrix.

  6. Molecular depth profiling of organic and biological materials

    Fletcher, John S. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom)]. E-mail: John.Fletcher@manchester.ac.uk; Conlan, Xavier A. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom); Lockyer, Nicholas P. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom); Vickerman, John C. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom)

    2006-07-30

    Atomic depth profiling using secondary ion mass spectrometry, SIMS, is common in the field micro-electronics; however, the generation of molecular information as a function of sample depth is difficult due to the accumulation of damage both on and beneath the sample surface. The introduction of polyatomic ion beams such as SF{sub 5} and C{sub 60} have raised the possibility of overcoming this problem as they deposit the majority of their energy in the upper surface of the sample resulting in increased sputter yields but with a complimentary reduction in sub-surface damage accumulation. In this paper we report the depth profile analysis of the bio-polymer polycaprolactone, PCL, using the polyatomic ions Au{sub 3}{sup +} and C{sub 60}{sup +} and the monoatomic Au{sup +}. Results are compared to recent analysis of a similar sample using SF{sub 5}{sup +}. C{sub 60}{sup +} depth profiling of cellulose is also demonstrated, an experiment that has been reported as unsuccessful when attempted with SF{sub 5}{sup +} implications for biological analysis are discussed.

  7. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N; Fang, Zhiqiang; Zhu, J Y; Henriksson, Gunnar; Himmel, Michael E; Hu, Liangbing

    2016-08-24

    With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example, homes, heating, furniture, and aircraft. Wood from trees gives us paper, cardboard, and medical supplies, thus impacting our homes, school, work, and play. All of the above-mentioned applications have been well developed over the past thousands of years. However, trees and wood have much more to offer us as advanced materials, impacting emerging high-tech fields, such as bioengineering, flexible electronics, and clean energy. Wood naturally has a hierarchical structure, composed of well-oriented microfibers and tracheids for water, ion, and oxygen transportation during metabolism. At higher magnification, the walls of fiber cells have an interesting morphology-a distinctly mesoporous structure. Moreover, the walls of fiber cells are composed of thousands of fibers (or macrofibrils) oriented in a similar angle. Nanofibrils and nanocrystals can be further liberated from macrofibrils by mechanical, chemical, and enzymatic methods. The obtained nanocellulose has unique optical, mechanical, and barrier properties and is an excellent candidate for chemical modification and reconfiguration. Wood is naturally a composite material, comprised of cellulose, hemicellulose, and lignin. Wood is sustainable, earth abundant, strong, biodegradable, biocompatible, and chemically accessible for modification; more importantly, multiscale natural fibers from wood have unique optical properties applicable to different kinds of optoelectronics and photonic devices. Today, the materials derived from wood are ready to be explored for applications in new technology areas, such as electronics, biomedical devices, and energy. The

  8. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N.; Fang, Zhiqiang; Zhu, J. Y.; Henriksson, Gunnar; Himmel, Michael E.; Hu, Liangbing

    2016-08-24

    With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example, homes, heating, furniture, and aircraft. Wood from trees gives us paper, cardboard, and medical supplies, thus impacting our homes, school, work, and play. All of the above-mentioned applications have been well developed over the past thousands of years. However, trees and wood have much more to offer us as advanced materials, impacting emerging high-tech fields, such as bioengineering, flexible electronics, and clean energy. Wood naturally has a hierarchical structure, composed of well-oriented microfibers and tracheids for water, ion, and oxygen transportation during metabolism. At higher magnification, the walls of fiber cells have an interesting morphology--a distinctly mesoporous structure. Moreover, the walls of fiber cells are composed of thousands of fibers (or macrofibrils) oriented in a similar angle. Nanofibrils and nanocrystals can be further liberated from macrofibrils by mechanical, chemical, and enzymatic methods. The obtained nanocellulose has unique optical, mechanical, and barrier properties and is an excellent candidate for chemical modification and reconfiguration. Wood is naturally a composite material, comprised of cellulose, hemicellulose, and lignin. Wood is sustainable, earth abundant, strong, biodegradable, biocompatible, and chemically accessible for modification; more importantly, multiscale natural fibers from wood have unique optical properties applicable to different kinds of optoelectronics and photonic devices. Today, the materials derived from wood are ready to be explored for applications in new technology areas, such as electronics, biomedical devices, and energy. The

  9. Material discovery by combining stochastic surface walking global optimization with a neural network.

    Huang, Si-Da; Shang, Cheng; Zhang, Xiao-Jie; Liu, Zhi-Pan

    2017-09-01

    While the underlying potential energy surface (PES) determines the structure and other properties of a material, it has been frustrating to predict new materials from theory even with the advent of supercomputing facilities. The accuracy of the PES and the efficiency of PES sampling are two major bottlenecks, not least because of the great complexity of the material PES. This work introduces a "Global-to-Global" approach for material discovery by combining for the first time a global optimization method with neural network (NN) techniques. The novel global optimization method, named the stochastic surface walking (SSW) method, is carried out massively in parallel for generating a global training data set, the fitting of which by the atom-centered NN produces a multi-dimensional global PES; the subsequent SSW exploration of large systems with the analytical NN PES can provide key information on the thermodynamics and kinetics stability of unknown phases identified from global PESs. We describe in detail the current implementation of the SSW-NN method with particular focuses on the size of the global data set and the simultaneous energy/force/stress NN training procedure. An important functional material, TiO 2 , is utilized as an example to demonstrate the automated global data set generation, the improved NN training procedure and the application in material discovery. Two new TiO 2 porous crystal structures are identified, which have similar thermodynamics stability to the common TiO 2 rutile phase and the kinetics stability for one of them is further proved from SSW pathway sampling. As a general tool for material simulation, the SSW-NN method provides an efficient and predictive platform for large-scale computational material screening.

  10. International forum on nuclear and biological decommissioning: Management of global security threats

    Aslanian, G.; Kouzminov, V.; Martellini, M.; Santesso, R.

    1998-01-01

    The Forum on Nuclear and Biological Decommissioning: Management of Global Security Threats was organized by the Landau Network-Centro Volta (LNCV) with the support of the UNESCO Venice Office, the Italian Ministry of Foreign Affairs, the Italian National Board for Alternative Energy Sources (ENEA), the Lombardy Region and the Municipality of Como. Subjects dealt with at the conference included the reconversion of nuclear and biological military equipment produced in the 50 years of the Cold War period and the effects of radio contamination on the environment and on human life. This conference was the most recent of a number of initiatives on reconversion organized in collaboration with the UNESCO Venice Office. The issues dealt with at the conference will be among the subjects for discussion at the UNESCO International School Science for Peace, which will be set up at the 'A. Volta' Center for Scientific Culture

  11. DAISY: a new software tool to test global identifiability of biological and physiological systems.

    Bellu, Giuseppina; Saccomani, Maria Pia; Audoly, Stefania; D'Angiò, Leontina

    2007-10-01

    A priori global identifiability is a structural property of biological and physiological models. It is considered a prerequisite for well-posed estimation, since it concerns the possibility of recovering uniquely the unknown model parameters from measured input-output data, under ideal conditions (noise-free observations and error-free model structure). Of course, determining if the parameters can be uniquely recovered from observed data is essential before investing resources, time and effort in performing actual biomedical experiments. Many interesting biological models are nonlinear but identifiability analysis for nonlinear system turns out to be a difficult mathematical problem. Different methods have been proposed in the literature to test identifiability of nonlinear models but, to the best of our knowledge, so far no software tools have been proposed for automatically checking identifiability of nonlinear models. In this paper, we describe a software tool implementing a differential algebra algorithm to perform parameter identifiability analysis for (linear and) nonlinear dynamic models described by polynomial or rational equations. Our goal is to provide the biological investigator a completely automatized software, requiring minimum prior knowledge of mathematical modelling and no in-depth understanding of the mathematical tools. The DAISY (Differential Algebra for Identifiability of SYstems) software will potentially be useful in biological modelling studies, especially in physiology and clinical medicine, where research experiments are particularly expensive and/or difficult to perform. Practical examples of use of the software tool DAISY are presented. DAISY is available at the web site http://www.dei.unipd.it/~pia/.

  12. Carbon budgets of biological soil crusts at micro-, meso-, and global scales

    Sancho, Leopoldo G; Belnap, Jayne; Colesie, Claudia; Raggio, Jose; Weber, Bettina

    2016-01-01

    The importance of biocrusts in the ecology of arid lands across all continents is widely recognized. In spite of this broad distribution, contributions of biocrusts to the global biogeochemical cycles have only recently been considered. While these studies opened a new view on the global role of biocrusts, they also clearly revealed the lack of data for many habitats and of overall standards for measurements and analysis. In order to understand carbon cycling in biocrusts and the progress which has been made during the last 15 years, we offer a multi-scale approach covering different climatic regions. We also include a discussion on available measurement techniques at each scale: A micro-scale section focuses on the individual organism level, including modeling based on the combination of field and lab data. The meso-scale section addresses the CO2 exchange of a complete ecosystem or at the community level. Finally, we consider the contribution of biocrusts at a global scale, giving a general perspective of the most relevant findings regarding the role of biological soil crusts in the global terrestrial carbon cycle.

  13. Precision of neutron activation analysis for environmental biological materials

    Hamaguchi, Hiroshi; Iwata, Shiro; Koyama, Mutsuo; Sasajima, Kazuhisa; Numata, Yuichi.

    1977-01-01

    Between 1973 and 1974 a special committee ''Research on the application of neutron activation analysis to the environmental samples'' had been organized at the Research Reactor Institute, Kyoto University. Eleven research groups composed mainly of the committee members cooperated in the intercomparison programme of the reactor neutron activation analysis of NBS standard reference material, 1571 Orchard Leaves and 1577 Bovine Liver. Five different type of reactors were used for the neutron irradiation; i.e. KUR reactor of the Research Reactor Institute, Kyoto University, TRIGA MARK II reactor of the Institute for Atomic Energy, Rikkyo University, and JRR-2, JRR-3, JRR-4 reactor of Japan Atomic Energy Research Institute. Analyses were performed mainly by instrumental method. Precision of the analysis of 23 elements in Orchard Leaves and 13 elements in Bovine Liver presented by the different research groups was shown in table 4 and 5, respectively. The coefficient of variation for these elements was from several to -- 30 percent. Averages given to these elements agreed well with the NBS certified or reference values. Thus, from the practical point of view for the routine multielement analysis of environmental samples, the validity of the instrumental neutron activation technique for this purpose has been proved. (auth.)

  14. Is analysis of biological materials with nm spatial resolution possible?

    Warley, Alice

    2006-01-01

    Cells are bounded by a membrane, the plasma membrane, subcompartments within cells are also delineated by membranes, these membranes contain transporters that regulate the flow of ions across them. Fluxes of ions across the membranes underlie many of the basic properties of living material such as excitability and movement. Breakdown of membrane function ultimately leads to cell death. EM microanalysis has been instrumental in gaining understanding of how changes in element distribution affect cell behaviour and cell survival. The main problem that biologists face in undertaking such studies is that of specimen preparation. Cells consist mainly of water that needs to be either removed or stabilised before analysis can take place. Cryotechniques, fixation by rapid freezing followed by sectioning at low temperatures and freeze-drying of the sections have proved to be a reliable method for the study of intracellular element concentrations. These techniques have been used to show that elements are confined in different compartments within cells and produced results to support a new theory on the mechanism by which neutrophils kill bacteria. They have also shown that disturbance of the ionic content of mitochondria is one of the first signs in the pathway to cell death

  15. Sample preparation techniques of biological material for isotope analysis

    Axmann, H.; Sebastianelli, A.; Arrillaga, J.L.

    1990-01-01

    Sample preparation is an essential step in all isotope-aided experiments but often it is not given enough attention. The methods of sample preparation are very important to obtain reliable and precise analytical data and for further interpretation of results. The size of a sample required for chemical analysis is usually very small (10mg-1500mg). On the other hand the amount of harvested plant material from plots in a field experiment is often bulky (several kilograms) and the entire sample is too large for processing. In addition, while approaching maturity many crops show not only differences in physical consistency but also a non-uniformity in 15 N content among plant parts, requiring a plant fractionation or separation into parts (vegetative and reproductive) e.g. shoots and spikes, in case of small grain cereals, shoots and pods in case of grain legumes and tops and roots or beets (including crown) in case of sugar beet, etc. In any case the ultimate goal of these procedures is to obtain representative subsample harvested from greenhouse or field experiments for chemical analysis. Before harvesting an isotopic-aided experiment the method of sampling has to be selected. It should be based on the type of information required in relation to the objectives of the research and the availability of resources (staff, sample preparation equipment, analytical facilities, chemicals and supplies, etc.). 10 refs, 3 figs, 3 tabs

  16. Global Seabed Materials and Habitats Mapped: The Computational Methods

    Jenkins, C. J.

    2016-02-01

    What the seabed is made of has proven difficult to map on the scale of whole ocean-basins. Direct sampling and observation can be augmented with proxy-parameter methods such as acoustics. Both avenues are essential to obtain enough detail and coverage, and also to validate the mapping methods. We focus on the direct observations such as samplings, photo and video, probes, diver and sub reports, and surveyed features. These are often in word-descriptive form: over 85% of the records for site materials are in this form, whether as sample/view descriptions or classifications, or described parameters such as consolidation, color, odor, structures and components. Descriptions are absolutely necessary for unusual materials and for processes - in other words, for research. This project dbSEABED not only has the largest collection of seafloor materials data worldwide, but it uses advanced computing math to obtain the best possible coverages and detail. Included in those techniques are linguistic text analysis (e.g., Natural Language Processing, NLP), fuzzy set theory (FST), and machine learning (ML, e.g., Random Forest). These techniques allow efficient and accurate import of huge datasets, thereby optimizing the data that exists. They merge quantitative and qualitative types of data for rich parameter sets, and extrapolate where the data are sparse for best map production. The dbSEABED data resources are now very widely used worldwide in oceanographic research, environmental management, the geosciences, engineering and survey.

  17. Magnetomechanical local-global effects in magnetostrictive composite materials

    Elhajjar, Rani F.; Law, Chiu T.

    2015-10-01

    A constitutive model for magnetostrictive composite materials (MCMs) that describes the relations among stress, strain, magnetic field, and magnetization Liu and Zheng (2005 Acta Mech. Sin. 21 278-85) is implemented for multiphysics simulation for analysis of non-periodic or non-uniform microstructure effects. The multiphysics models that capture designed and actual microstructural details are used for predicting the responses of magnetostrictive composite materials under various mechanical and magnetic loading conditions. The approach overcomes the limitation with strain gages in the investigation of magnetostrictive strain due to stress localization around magnetostrictive phases. Three-dimensional digital image correlation (3D-DIC) is used to measure the displacements and strain in the composites under fluctuating magnetic fields. The specimens are prepared using epoxy and particulate magnetostrictive materials with the particles in the range of approximately 20 to 300 microns range. We examine the displacement and strain fields obtained and compare the results to those obtained from fiber Bragg grating (FBG) measurements. The coupling coefficients obtained from this method were in agreement with those measured using other techniques. The validated model allows us to predict the effect of curing, preload, microstructure alignment and particle shape on the magnetostrictive strains.

  18. Magnetomechanical local-global effects in magnetostrictive composite materials

    Elhajjar, Rani F; Law, Chiu T

    2015-01-01

    A constitutive model for magnetostrictive composite materials (MCMs) that describes the relations among stress, strain, magnetic field, and magnetization Liu and Zheng (2005 Acta Mech. Sin. 21 278–85) is implemented for multiphysics simulation for analysis of non-periodic or non-uniform microstructure effects. The multiphysics models that capture designed and actual microstructural details are used for predicting the responses of magnetostrictive composite materials under various mechanical and magnetic loading conditions. The approach overcomes the limitation with strain gages in the investigation of magnetostrictive strain due to stress localization around magnetostrictive phases. Three-dimensional digital image correlation (3D-DIC) is used to measure the displacements and strain in the composites under fluctuating magnetic fields. The specimens are prepared using epoxy and particulate magnetostrictive materials with the particles in the range of approximately 20 to 300 microns range. We examine the displacement and strain fields obtained and compare the results to those obtained from fiber Bragg grating (FBG) measurements. The coupling coefficients obtained from this method were in agreement with those measured using other techniques. The validated model allows us to predict the effect of curing, preload, microstructure alignment and particle shape on the magnetostrictive strains. (paper)

  19. Maximum concentrations at work and maximum biologically tolerable concentration for working materials 1991

    1991-01-01

    The meaning of the term 'maximum concentration at work' in regard of various pollutants is discussed. Specifically, a number of dusts and smokes are dealt with. The valuation criteria for maximum biologically tolerable concentrations for working materials are indicated. The working materials in question are corcinogeneous substances or substances liable to cause allergies or mutate the genome. (VT) [de

  20. Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation

    Brugmans, M. J.; Kemper, J.; Gijsbers, G. H.; van der Meulen, F. W.; van Gemert, M. J.

    1991-01-01

    This paper presents surface temperature responses of various tissue phantoms and in vitro and in vivo biological materials in air to non-ablative pulsed CO2 laser irradiation, measured with a thermocamera. We studied cooling off behavior of the materials after a laser pulse, to come to an

  1. Determination of trace elements in biological material by neutron activation analysis

    Tran Van, L.; Teherani, D.K.

    1989-01-01

    Eighteen trace elements in biological materials [grass (Imperata cylindrica), mimosa plant (Mimosa pudica), rice] by neutron activation method were determined. In the comparative analysis the content of the same element was different in each material, although they were collected at the same place and the same sampling method was applied. (author) 4 refs.; 1 fig.; 1 tab

  2. Analysis of biological materials by RBS and PIXE methods

    Latuszynski, A.; Maczka, D.; Kobzev, A. P.

    2002-01-01

    A problem of the exact determination of the element concentration in different substances is of essential significance, especially in medical, biological, as well as environment protection investigations. For this purpose some chemical and physical methods are used such as very sensitive and precise techniques: PIXE and RBS. The main advantage of those methods is the sensitivity of ppm level and very small sample amount necessary for carrying out the investigations. In this article the investigation results obtained by PIXE and RBS methods for the metal contents in cow milk (18 various samples were studied) as well as the heavy metal admixtures in the brain of the living domestic animals (6 cows, 6 dogs and 17 rats) are presented. The samples were prepared for the analysis in a liofilization process, then they were mixed with spectral pure graphite. The PIXE and RBS investigations were performed using a proton beam of about 2 mm diameter, intensity of about 10 nA and energy of 2.5 MeV from the Van-de-Graaff generator, FLNP, JINR, Dubna. The measurements of the characteristic spectrum were carried out by means of a Si (Li) detector with the resolution of 200 eV at the energy of 6,4 keV. Generally, in all samples of milk and brain we could identify 20 elements, among them 13 (C, N, O, P, Cl, K, Ca, Fe, Cu, Zn. Br, Rb, Sr) appeared in all of the studied samples. The difference in the concentration of the most of those elements between samples was in the range of 15 - 20 %. This indicates a good accuracy of the used methods of measurement. Especially our attention was paid to the presence of Sr, Rb and Br, practically in all the milk samples. This fact requires further investigations. Such elements as Pb, As, Ni, Co, Mn, V and Ti were found in some samples, including all samples coming from regions of a high urbanization. It is characteristic that the milk samples coming from villages located considerably far-away from cities and from communication tracks, practically

  3. Wood-derived materials for green electronics, biological Devices, and energy applications

    Hongli Zhu; Wei Luo; Peter N. Ciesielski; Zhiqiang Fang; Junyong Zhu; Gunnar Henriksson; Michael E. Himmel; Liangbing Hu

    2016-01-01

    With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example,...

  4. Sampling and sample preparation methods for the analysis of trace elements in biological material

    Sansoni, B.; Iyengar, V.

    1978-05-01

    The authors attempt to give a most systamtic possible treatment of the sample taking and sample preparation of biological material (particularly in human medicine) for trace analysis (e.g. neutron activation analysis, atomic absorption spectrometry). Contamination and loss problems are discussed as well as the manifold problems of the different consistency of solid and liquid biological materials, as well as the stabilization of the sample material. The process of dry and wet ashing is particularly dealt with, where new methods are also described. (RB) [de

  5. Elemental analysis of biological materials. Current problems and techniques with special reference to trace elements

    1980-01-01

    Selected techniques were reviewed for the assay of trace and minor elements in biological materials. Other relevant information is also presented on the need for such analyses, sampling, sample preparation and analytical quality control. In order to evaluate and compare the applicability of the various analytical techniques on a meaningful and objective basis, the materials chosen for consideration were intended to be typical of a wide range of biological matrics of different elemental compositions, namely Bowen's kale, representing a plant material, and NBS bovine liver, IAEA animal muscle, and blood serum, representing animal tissues. The subject is reviewed under the following headings: on the need for trace element analyses in the life sciences (4 papers); sampling and sample preparation for trace element analysis (2 papers); analytical techniques for trace and minor elements in biological materials (7 papers); analytical quality control (2 papers)

  6. Impacts of insufficient instructional materials on teaching biology: Higher education systems in focus

    Sutuma Edessa

    2017-01-01

    Full Text Available Abstract The purpose of this study was to assess and determine impacts of insufficient instructional materials and ineffective lesson delivery methods on teaching in biology higher education. The participants of this study were 60 trainees who graduated in Bachelor of Sciences from eight public universities in majoring biology. Data for the study was collected while these trainees were attending the course of Biology Teaching Methods in the Post Graduate Diploma in Teaching, both in the regular and summer 2015/2016 training programs at Addis Ababa University. The study employs a mixed method design of both qualitative and quantitative data evaluations. Data was collected through classroom observations and interviews with the trainees. The findings indicated that insufficient instructional materials and ineffective teaching methods in higher education had negative impacts; that have affected the skills of performing biological tasks of graduates 71%. In the course of the Post Graduate Diploma in Teaching training, trainees were unsuccessful to conduct essential biological tasks expected from graduates of biology upon the completion of their undergraduate study program. The study was concluded with emphasis on the need to integrate theory and practice through using adequate instructional materials and proper teaching methods in the higher education biology teaching.

  7. Examples of testing global identifiability of biological and biomedical models with the DAISY software.

    Saccomani, Maria Pia; Audoly, Stefania; Bellu, Giuseppina; D'Angiò, Leontina

    2010-04-01

    DAISY (Differential Algebra for Identifiability of SYstems) is a recently developed computer algebra software tool which can be used to automatically check global identifiability of (linear and) nonlinear dynamic models described by differential equations involving polynomial or rational functions. Global identifiability is a fundamental prerequisite for model identification which is important not only for biological or medical systems but also for many physical and engineering systems derived from first principles. Lack of identifiability implies that the parameter estimation techniques may not fail but any obtained numerical estimates will be meaningless. The software does not require understanding of the underlying mathematical principles and can be used by researchers in applied fields with a minimum of mathematical background. We illustrate the DAISY software by checking the a priori global identifiability of two benchmark nonlinear models taken from the literature. The analysis of these two examples includes comparison with other methods and demonstrates how identifiability analysis is simplified by this tool. Thus we illustrate the identifiability analysis of other two examples, by including discussion of some specific aspects related to the role of observability and knowledge of initial conditions in testing identifiability and to the computational complexity of the software. The main focus of this paper is not on the description of the mathematical background of the algorithm, which has been presented elsewhere, but on illustrating its use and on some of its more interesting features. DAISY is available on the web site http://www.dei.unipd.it/ approximately pia/. 2010 Elsevier Ltd. All rights reserved.

  8. The global warming potential of building materials : An application of life cycle analysis in Nepal

    Bhochhibhoya, Silu; Zanetti, Michela; Pierobon, Francesca; Gatto, Paola; Maskey, Ramesh Kumar; Cavalli, Raffaele

    2017-01-01

    This paper analyzes the global-warming potential of materials used to construct the walls of 3 building types - traditional, semimodern, and modern - in Sagarmatha National Park and Buffer Zone in Nepal, using the life-cycle assessment approach. Traditional buildings use local materials, mainly wood

  9. Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites

    Hakonson, T.E.

    1986-02-01

    This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user

  10. [Clinical treatment adherence of health care workers and students exposed to potentially infectious biological material].

    Almeida, Maria Cristina Mendes de; Canini, Silvia Rita Marin da Silva; Reis, Renata Karina; Toffano, Silmara Elaine Malaguti; Pereira, Fernanda Maria Vieira; Gir, Elucir

    2015-04-01

    To assess adherence to clinical appointments by health care workers (HCW) and students who suffered accidents with potentially infectious biological material. A retrospective cross-sectional study that assessed clinical records of accidents involving biological material between 2005 and 2010 in a specialized unit. A total of 461 individuals exposed to biological material were treated, of which 389 (84.4%) were HCWs and 72 (15.6%) students. Of the 461 exposed individuals, 307 (66.6%) attended a follow-up appointment. Individuals who had suffered an accident with a known source patient were 29 times more likely to show up to their scheduled follow-up appointments (OR: 29.98; CI95%: 16.09-55.83). The predictor in both univariate and multivariate analyses for adherence to clinical follow-up appointment was having a known source patient with nonreactive serology for the human immunodeficiency virus and/or hepatitis B and C.

  11. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials.

    Carmel McDougall

    Full Text Available In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the

  12. OCCUPATIONAL ACCIDENTS WITH BIOLOGICAL MATERIALS IN CLINICAL ANALYSIS LABORATORY: CAUSES AND CONSEQUENCES

    T. M. Azevedo

    2014-07-01

    Full Text Available Accidents involving biological material can cause diseases to the professional healthcare and also bring psychosocial effects. The aim of this study was to characterize the accidents occurring with biological material with professional of clinical laboratories of Sinop-MT. Data were collected by a questionnaire consisting of sociodemographic and health variables. 21 (87.5% of respondents stated that they never suffered any kind of accident. One of the injured workers reported that there was involvement in your emotional life. It is observed underreporting of occupational accidents by employees affected, making it difficult to increase research on the subject and actions about the problem.

  13. ATTENDING PROFESSIONALS VICTIMS OF ACCIDENT WITH BIOLOGICAL MATERIAL IN A TROPICAL DISEASES HOSPITAL

    Lillian Kelly de Oliveira Lopes; Anaclara Ferreira Veiga Tipple; Sirlene Neves Damando; Cássia Silva Miranda; Ivete Vieira Gomes

    2006-01-01

    ABSTRACT: The occupational risk for the health´s workers is a subject discussed in the last decades. However, the professional accident involving biological material´s records in the health´s units don´t describe the real situation. The purpose of this article is to identify the number of attending of professional accident involving biological material and the source of the leading. The data were obtained by the professional accident´s handbooks in 2003. The hospital had 5768 appointments. Am...

  14. Determination of mercury concentration in biological materials by neutron activation analysis

    Munoz, L.; Gras, N.; Cortes, E.; Cassorla, V.

    1983-01-01

    The objective of this work was to obtain a confident analytical method for measuring the mercury concentration in biological materials. Destructive neutron activation analysis was used for this purpose and a radiochemical separation method was studied to isolate the mercury from its main interferences: sodium and phosphorus, because these elements in biological materials are in high concentrations. The method developed was based on the copper amalgamation under controlled conditions. Yield and reproductibility studies were performed using 203 Hg as radioactive tracer. Finally, food samples of regular consumption were analyzed and the results were compared with those recommended by FAO/WHO. (Author)

  15. Instrumental neutron activation analysis for the certification of biological reference materials

    Ambulkar, M.N.; Chutke, N.L.; Garg, A.N.

    1992-01-01

    A multielemental instrumental neutron activation analysis (INAA) method by short and long irradiation has been employed for the determination of 22 minor and trace constituents in two proposed Standard Reference Materials P-RBF and P-WBF from Institute of Radioecology and Applied Nuclear Techniques, Czechoslovakia. Also some biological standards such as Bowen's Kale, Cabbage leaves (Poland) including wheat and rice flour samples of local origin were analysed. It is suggested that INAA is an ideal method for the certification of reference materials of biological matrices. (author). 7 refs., 1 tab

  16. Fresh biological reference materials. Use in inter laboratory studies and as CRMs

    De Boer, J.

    1999-01-01

    Biological reference materials were prepared and packed in tins and glass jars to be used in inter laboratory studies on chlorobiphenyls and organochlorine pesticides, and trace metals, respectively. The materials were homogenised, sterilised and packed as wet tissue, which is unique for the purpose of inter laboratory studies and offers the advantage of studying the extraction and destruction steps of the analytical methods. In addition to their use in inter laboratory studies, some materials have been prepared or are being prepared as certified reference material for chlorobiphenyl analysis. (author)

  17. Evaluation of Botanical Reference Materials for the Determination of Vanadium in Biological Samples

    Heydorn, Kaj; Damsgaard, Else

    1982-01-01

    Three botanical reference materials prepared by the National Bureau of Standards have been studied by neutron activation analysis to evaluate their suitability with respect to the determination of vanadium in biological samples. Various decomposition methods were applied in connection with chemic....... A reference value of 1.15 mg/kg of this material is recommended, based on results from 3 different methods. All three materials are preferable to SRM 1571 Orchard Leaves, while Bowen's Kale remains the material of choice because of its lower concentration....

  18. Biological and environmental reference materials for trace elements, nuclides and organic microcontaminants

    Cortes Toro, E.; Parr, R.M.; Clements, S.A.

    1990-01-01

    This report has been produced from a database on analytical reference materials of biological and environmental origin, which is maintained at the International Atomic Energy Agency. It is an updated version of an earlier report, published in 1985, which focussed mainly on reference materials for trace elements. In the present version of the report, reference materials for trace elements still constitute the major part of the data; however, information is also now included on a number of other selected analytes of relevance to IAEA programmes, i.e. radionuclides, stable isotopes and organic microcontaminants. The database presently contains 2,694 analyte values for 117 analytes in 116 biological and 77 environmental (non-biological) reference materials produced by 20 different suppliers. Additional information on the cost of the material, the unit size supplied, (weight or volume), and the minimum weight of material recommended for analysis is also provided (if available to the authors). It is expected that this report will help analysts to select the reference material that matches as closely as possible, with respect to matrix type and concentrations of the analytes of interest, the ''real'' samples that are to be analysed. Refs, 12 tabs

  19. Membrane materials for storing biological samples intended for comparative nanotoxicological testing

    Metelkin, A.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems.

  20. Membrane materials for storing biological samples intended for comparative nanotoxicological testing

    Metelkin, A; Kuznetsov, D; Kolesnikov, E; Chuprunov, K; Kondakov, S; Osipov, A; Samsonova, J

    2015-01-01

    The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems. (paper)

  1. Instrumental neutron activation analysis of phosphorus in biological materials by Bremsstrahlung measurement

    Bajo, S.; Wyttenbach, A.

    1986-12-01

    The determination of phosphorus in biological materials by instrumental neutron activation via the reaction 31 P (n,γ) 32 P is described. The Bremsstrahlung produced by 32 P is measured in a well-type NaI(Tl) detector. The samples are measured within the polyethylene irradiation container with no changes between irradiation and measurement. The sources of error were studied and the proposed method was applied to the determination of phosphorus in ten internationally certified materials. (author)

  2. Current studies of biological materials using instrumental and radiochemical neutron activation analysis

    Fardy, J.J.; McOrist, G.D.; Farrar, Y.J.

    1985-01-01

    Instrumental neutron activation analysis still remains the preferred option when analysing the trace element distribution in a wide rage of materials by neutron activation analysis. However, when lower limits of detection are required or major interferences reduce the effectiveness of this technique, radiochemical neutron activation analysis is applied. This paper examines the current use of both methods and the development of rapid radiochemical techniques for analysis of the biological materials, hair, cow's milk, human's milk, milk powder, blood and blood serum

  3. Invited review liquid crystal models of biological materials and silk spinning.

    Rey, Alejandro D; Herrera-Valencia, Edtson E

    2012-06-01

    A review of thermodynamic, materials science, and rheological liquid crystal models is presented and applied to a wide range of biological liquid crystals, including helicoidal plywoods, biopolymer solutions, and in vivo liquid crystals. The distinguishing characteristics of liquid crystals (self-assembly, packing, defects, functionalities, processability) are discussed in relation to biological materials and the strong correspondence between different synthetic and biological materials is established. Biological polymer processing based on liquid crystalline precursors includes viscoelastic flow to form and shape fibers. Viscoelastic models for nematic and chiral nematics are reviewed and discussed in terms of key parameters that facilitate understanding and quantitative information from optical textures and rheometers. It is shown that viscoelastic modeling the silk spinning process using liquid crystal theories sheds light on textural transitions in the duct of spiders and silk worms as well as on tactoidal drops and interfacial structures. The range and consistency of the predictions demonstrates that the use of mesoscopic liquid crystal models is another tool to develop the science and biomimetic applications of mesogenic biological soft matter. Copyright © 2011 Wiley Periodicals, Inc.

  4. Risk assessment, eradication, and biological control: global efforts to limit Australian acacia invasions

    Wilson, John R.U.; Gairifo, Carla; Gibson, Michelle R.; Arianoutsou, Margarita; Bakar, Baki B.; Baret, Stephane; Celesti-Grapow, Laura; DiTomaso, Joseph M.; Dufour-Dror, Jean-Marc; Kueffer, Christoph; Kull, Christian A.; Hoffman, John H.; Impson, Fiona A.C.; Loope, Lloyd L.; Marchante, Elizabete; Harchante, Helia; Moore, Joslin L.; Murphy, Daniel J.; Tassin, Jacques; Witt, Arne; Zenni, Rafael D.; Richardson, David M.

    2011-01-01

    Aim Many Australian Acacia species have been planted around the world, some are highly valued, some are invasive, and some are both highly valued and invasive. We review global efforts to minimize the risk and limit the impact of invasions in this widely used plant group. Location Global. Methods Using information from literature sources, knowledge and experience of the authors, and the responses from a questionnaire sent to experts around the world, we reviewed: (1) a generalized life cycle of Australian acacias and how to control each life stage, (2) different management approaches and (3) what is required to help limit or prevent invasions. Results Relatively few Australian acacias have been introduced in large numbers, but all species with a long and extensive history of planting have become invasive somewhere. Australian acacias, as a group, have a high risk of becoming invasive and causing significant impacts as determined by existing assessment schemes. Moreover, in most situations, long-lived seed banks mean it is very difficult to control established infestations. Control has focused almost exclusively on widespread invaders, and eradication has rarely been attempted. Classical biological control is being used in South Africa with increasing success. Main conclusions A greater emphasis on pro-active rather than reactive management is required given the difficulties managing established invasions of Australian acacias. Adverse effects of proposed new introductions can be minimized by conducting detailed risk assessments in advance, planning for on-going monitoring and management, and ensuring resources are in place for long-term mitigation. Benign alternatives (e.g. sterile hybrids) could be developed to replace existing utilized taxa. Eradication should be set as a management goal more often to reduce the invasion debt. Introducing classical biological control agents that have a successful track-record in South Africa to other regions and identifying new

  5. Analysis of 10 years of accidents with biological material among the nursing staff

    Dayane Xavier de Barros

    2016-06-01

    Full Text Available The objectives of the present study were: to identify the profile of accidents with biological material among nursing professionals treated in a reference service; to characterize pre-exposure conducts and to analyze factors associated with percutaneous exposure. An epidemiological, retrospective and analytical study was conducted in records of accidents involving biological material from 2000 to 2010. The number of accidents with the nursing staff was 2,569, representing 44.6% of the total records. There was a prevalence of percutaneous exposure cases involving needles with lumen and blood in upper limbs among female nursing technicians. Being female and working outside the city where the service is located increased about twice the chances of suffering percutaneous accidents. The data found strengthen the importance of biological risk in the nursing practice and point to the fact that workers have to move between cities to be treated when the accident is considered serious, such as the case of percutaneous accidents.

  6. Determination of the dynamical behaviour of biological materials during impact using a pendulum device

    Van Zeebroeck, M.; Tijskens, E.; Van Liedekerke, P.; Deli, V.; De Baerdemaeker, J.; Ramon, H.

    2003-09-01

    A pendulum device has been developed to measure contact force, displacement and displacement rate of an impactor during its impact on the sample. Displacement, classically measured by double integration of an accelerometer, was determined in an alternative way using a more accurate incremental optical encoder. The parameters of the Kuwabara-Kono contact force model for impact of spheres have been estimated using an optimization method, taking the experimentally measured displacement, displacement rate and contact force into account. The accuracy of the method was verified using a rubber ball. Contact force parameters for the Kuwabara-Kono model have been estimated with success for three biological materials, i.e., apples, tomatoes and potatoes. The variability in the parameter estimations for the biological materials was quite high and can be explained by geometric differences (radius of curvature) and by biological variation of mechanical tissue properties.

  7. Measuring the complex permittivity tensor of uniaxial biological materials with coplanar waveguide transmission line

    A simple and accurate technique is described for measuring the uniaxial permittivity tensor of biological materials with a coplanar waveguide transmission-line configuration. Permittivity tensor results are presented for several chicken and beef fresh meat samples at 2.45 GHz....

  8. Simultaneous Determination of Arsenic, Manganese, and Selenium in Biological Materials by Neutron-Activation Analysis

    Heydorn, Kaj; Damsgaard, Else

    1973-01-01

    A new method was developed for the simultaneous determination of arsenic, manganese, and selenium in biological material by thermal-neutron activation analysis. The use of 81 mSe as indicator for selenium permitted a reduction of activation time to 1 hr for a 1 g sample, and the possibility of loss...

  9. Raman imaging from microscopy to macroscopy: Quality and safety control of biological materials

    Raman imaging can analyze biological materials by generating detailed chemical images. Over the last decade, tremendous advancements in Raman imaging and data analysis techniques have overcome problems such as long data acquisition and analysis times and poor sensitivity. This review article introdu...

  10. Potential interferences inherent in neutron-activation analysis of trace elements in biological materials

    Cornells, R.; Hoste, J.; Versieck, J.

    1982-01-01

    A comprehensive review is given of how neutron-activation analysis for trace elements in biological matrices can be jeopardized by radiation damage, by the impurities present in the packing material or by nuclear interferences of major elements. Systematic errors during the counting process and the quantitative interpretation of the γ-ray spectra should not be disregarded. (author)

  11. Neutron-Activation Analysis of Biological Material with High Radiation Levels

    Samsahl, K

    1966-09-15

    A method has been developed for the chemical separation and subsequent gamma-spectrometric analysis of the alkali metals, the alkaline earths, the rare earths, chromium, hafnium, lanthanum, manganese, phosphorus, scandium and silver in neutron-activated biological material. The separation steps, being fully automatic, are based on a combination of ion-exchange and partition chromatography and require 40 min.

  12. An independent accurate reference method for the determination of chromium in biological materials

    Lagerwaard, A.; Woittiez, J.R.W.; de Goeij, J.J.M.

    1994-01-01

    A method for the determination of Cr in biological materials with high accuracy is reported for use as an independent reference method. It is based on radiochemical neutron activation analysis (RNAA) in combination with an individual yield determination based on the online yield principle. A

  13. Selenium determination in biological material by atomic absorption spectrophotometry in graphite furnace and using vapor generation

    Carvalho Vidal, M. de F. de.

    1984-01-01

    The applicability of the atomic absorption spectrophotometry to the determination of selenium in biological material using vapor generation and electrothermal atomization in the graphite furnace was investigated. Instrumental parameters and the analytical conditions of the methods were studied. Decomposition methods for the samples were tested, and the combustion in the Wickbold apparatus was chosen. (author) [pt

  14. Neutron-Activation Analysis of Biological Material with High Radiation Levels

    Samsahl, K.

    1966-09-01

    A method has been developed for the chemical separation and subsequent gamma-spectrometric analysis of the alkali metals, the alkaline earths, the rare earths, chromium, hafnium, lanthanum, manganese, phosphorus, scandium and silver in neutron-activated biological material. The separation steps, being fully automatic, are based on a combination of ion-exchange and partition chromatography and require 40 min

  15. Materiality, Symbolicity, and the Rhetoric of Order: "Dialectical Biologism" as Motive in Burke.

    Engnell, Richard A.

    1998-01-01

    Considers how the work of Kenneth Burke has recently been critiqued for its lack of attention to the role of non-symbolic motivation in rhetoric. Describes Burke's contributions as a "dialectical biologism" that sets forth a system of five symbolic/material dialectics that undergird all rhetorical appeal. Suggests that the most effective…

  16. The use of reference materials in the elemental analysis of biological samples

    Bowen, H.J.M.

    1975-01-01

    Reference materials (RMs) are useful to compare the accuracy and precision of laboratories and techniques. The desirable properties of biological reference materials are listed, and the problems of production, homogenization and storage described. At present there are only 10 biological RMs available compared with 213 geological and 520 metallurgical RMs. There is a need for more biological RMs including special materials for microprobe analysis and for in vivo activation analysis. A study of 650 mean values for elements in RM Kale, analysed by many laboratories, leads to the following conclusions. 61% of the values lie within +-10% of the best mean, and 80% lie within +-20% of the best mean. Atomic absorption spectrometry gives results that are 5-30% high for seven elements, while intrumental neutron activation analysis gives low and imprecise results for K. Other techniques with poor interlaboratory precision include neutron activation for Mg, polarography for Zn and arc-spectrometry for many elements. More than half the values for elements in Kale were obtained by neutron activation, confirming the importance of this technique and the need for RMs. As a rough estimate, 6 x 10 9 elemental analyses of biological materials are carried out each year, mostly by medical, agricultural and food scientists. It seems likely that a substantial percentage of these are inaccurate, a situation that might be improved by quality control using standard RMs. (author)

  17. Quantifying biological integrity by taxonomic completeness: its utility in regional and global assessments.

    Hawkins, Charles P

    2006-08-01

    Water resources managers and conservation biologists need reliable, quantitative, and directly comparable methods for assessing the biological integrity of the world's aquatic ecosystems. Large-scale assessments are constrained by the lack of consistency in the indicators used to assess biological integrity and our current inability to translate between indicators. In theory, assessments based on estimates of taxonomic completeness, i.e., the proportion of expected taxa that were observed (observed/expected, O/E) are directly comparable to one another and should therefore allow regionally and globally consistent summaries of the biological integrity of freshwater ecosystems. However, we know little about the true comparability of O/E assessments derived from different data sets or how well O/E assessments perform relative to other indicators in use. I compared the performance (precision, bias, and sensitivity to stressors) of O/E assessments based on five different data sets with the performance of the indicators previously applied to these data (three multimetric indices, a biotic index, and a hybrid method used by the state of Maine). Analyses were based on data collected from U.S. stream ecosystems in North Carolina, the Mid-Atlantic Highlands, Maine, and Ohio. O/E assessments resulted in very similar estimates of mean regional conditions compared with most other indicators once these indicators' values were standardized relative to reference-site means. However, other indicators tended to be biased estimators of O/E, a consequence of differences in their response to natural environmental gradients and sensitivity to stressors. These results imply that, in some cases, it may be possible to compare assessments derived from different indicators by standardizing their values (a statistical approach to data harmonization). In situations where it is difficult to standardize or otherwise harmonize two or more indicators, O/E values can easily be derived from existing

  18. How accelerated biological aging can affect solar reflective polymeric based building materials

    Ferrari, C.; Santunione, G.; Libbra, A.; Muscio, A.; Sgarbi, E.

    2017-11-01

    Among the main issues concerning building materials, in particular outdoor ones, one can identify the colonization by microorganisms referred to as biological aggression. This can affect not only the aesthetical aspect but also the thermal performance of solar reflective materials. In order to improve the reliability of tests aimed to assess the resistance to biological aggression and contextually reduce the test duration, an accelerated test method has been developed. It is based on a lab reproducible setup where specific and controlled environmental and boundary conditions are imposed to accelerate as much as possible biological growth on building materials. Due to their widespread use, polymeric materials have been selected for the present analysis, in the aim of reaching an advanced bio-aged level in a relatively short time (8 weeks or less) and at the same time comparatively evaluate different materials under a given set of ageing conditions. Surface properties before, during and after ageing have been investigated by surface, microstructural and chemical analyses, as well as by examination of time progressive images to assess bacterial and algal growth rate.

  19. Creative Industries and New Materials : Challenges for Fashion and Material Industries in Global Value Chains

    Scheffer, M. (Michiel)

    2006-01-01

    Op 27 januari 2006 is dr. Michiel Scheffer geïnstalleerd als lector Fashion Materials Design bij Saxion in Enschede. Het lectoraat en de bijbehorende kenniskring is gericht op het versterken van de wisselwerking tussen creativiteit, technologie en economie op het gebied van mode en textiel.

  20. Chemical preparation of biological materials for accurate chromium determination by isotope dilution mass spectrometry

    Dunstan, L.P.; Garner, E.L.

    1977-01-01

    The current interest in trace elements in biological materials has created a need for accurate methods of analysis. The source of discrepancies and variations in chromium concentration determinations is often traceable to inadequate methods of sample preparation. Any method of Cr analysis that requires acid digestion of a biological matrix must take into consideration the existence or formation of a volatile Cr component. In addition, because Cr is often present at concentrations less than 1 μg/g, the analytical blank becomes a potential source of error. Chemical procedures have been developed for the digestion of the biological matrix and the separation of Cr without either large analytical blanks or significant losses by volatilization. These procedures have been used for the analysis of NBS Standard Reference Material (SRM) 1569 Brewers Yeast; SRM 1577 Bovine Liver; SRM 1570 Spinach and other biological materials including human hair and nails. At this time, samples containing 1 μg of Cr can be determined with an estimated accuracy of 2 percent

  1. Evaluation of a fungal collection as certified reference material producer and as a biological resource center

    Tatiana Forti

    2016-06-01

    Full Text Available Abstract Considering the absence of standards for culture collections and more specifically for biological resource centers in the world, in addition to the absence of certified biological material in Brazil, this study aimed to evaluate a Fungal Collection from Fiocruz, as a producer of certified reference material and as Biological Resource Center (BRC. For this evaluation, a checklist based on the requirements of ABNT ISO GUIA34:2012 correlated with the ABNT NBR ISO/IEC17025:2005, was designed and applied. Complementing the implementation of the checklist, an internal audit was performed. An evaluation of this Collection as a BRC was also conducted following the requirements of the NIT-DICLA-061, the Brazilian internal standard from Inmetro, based on ABNT NBR ISO/IEC 17025:2005, ABNT ISO GUIA 34:2012 and OECD Best Practice Guidelines for BRCs. This was the first time that the NIT DICLA-061 was applied in a culture collection during an internal audit. The assessments enabled the proposal for the adequacy of this Collection to assure the implementation of the management system for their future accreditation by Inmetro as a certified reference material producer as well as its future accreditation as a Biological Resource Center according to the NIT-DICLA-061.

  2. Evaluation of a fungal collection as certified reference material producer and as a biological resource center.

    Forti, Tatiana; Souto, Aline da S S; do Nascimento, Carlos Roberto S; Nishikawa, Marilia M; Hubner, Marise T W; Sabagh, Fernanda P; Temporal, Rosane Maria; Rodrigues, Janaína M; da Silva, Manuela

    2016-01-01

    Considering the absence of standards for culture collections and more specifically for biological resource centers in the world, in addition to the absence of certified biological material in Brazil, this study aimed to evaluate a Fungal Collection from Fiocruz, as a producer of certified reference material and as Biological Resource Center (BRC). For this evaluation, a checklist based on the requirements of ABNT ISO GUIA34:2012 correlated with the ABNT NBR ISO/IEC17025:2005, was designed and applied. Complementing the implementation of the checklist, an internal audit was performed. An evaluation of this Collection as a BRC was also conducted following the requirements of the NIT-DICLA-061, the Brazilian internal standard from Inmetro, based on ABNT NBR ISO/IEC 17025:2005, ABNT ISO GUIA 34:2012 and OECD Best Practice Guidelines for BRCs. This was the first time that the NIT DICLA-061 was applied in a culture collection during an internal audit. The assessments enabled the proposal for the adequacy of this Collection to assure the implementation of the management system for their future accreditation by Inmetro as a certified reference material producer as well as its future accreditation as a Biological Resource Center according to the NIT-DICLA-061. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  3. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  4. Searching for biological traces on different materials using a forensic light source and infrared photography.

    Sterzik, V; Panzer, S; Apfelbacher, M; Bohnert, M

    2016-05-01

    Because biological traces often play an important role in the investigation process of criminal acts, their detection is essential. As they are not always visible to the human eye, tools like a forensic light source or infrared photography can be used. The intention of the study presented was to give advice how to visualize biological traces best. Which wavelengths and/or filters give the best results for different traces on different fabrics of different colors? Therefore, blood (undiluted and diluted), semen, urine, saliva, and perspiration have been examined on 29 different materials.

  5. Determination of silicon in biological and botanical reference materials by epithermal INAA and Compton suppression

    Landsberger, S.; Peshev, S.; Becker, D.A.

    1994-01-01

    Silicon determination in sixteen botanical and biological standard reference materials is described using the 29 Si(n, p) 29 Al reaction through instrumental epithermal neutron activation analysis and Compton suppression gamma-ray spectroscopy. By simultaneous utilization of both cadmium and boron epithermal filters along with anticoincidence gamma-counting, detection limits as low as 12 ppm were obtained for certain matrices, much lower than previously reported values for this type of analysis. The method is applicable to many botanical and biological matrices and is attractive with its interference free, purely instrumental nature, compared with methods using the 28 Si(n, p) 28 Al reaction or chemical separation techniques. ((orig.))

  6. Global blending optimization of laminated composites with discrete material candidate selection and thickness variation

    Sørensen, Søren N.; Stolpe, Mathias

    2015-01-01

    rate. The capabilities of the method and the effect of active versus inactive manufacturing constraints are demonstrated on several numerical examples of limited size, involving at most 320 binary variables. Most examples are solved to guaranteed global optimality and may constitute benchmark examples...... but is, however, convex in the original mixed binary nested form. Convexity is the foremost important property of optimization problems, and the proposed method can guarantee the global or near-global optimal solution; unlike most topology optimization methods. The material selection is limited...... for popular topology optimization methods and heuristics based on solving sequences of non-convex problems. The results will among others demonstrate that the difficulty of the posed problem is highly dependent upon the composition of the constitutive properties of the material candidates....

  7. Creative Industries and New Materials: Challenges for Fashion and Material Industries in Global Value Chains

    Scheffer, M. (Michiel)

    2006-01-01

    Op 27 januari 2006 is dr. Michiel Scheffer geïnstalleerd als lector Fashion Materials Design bij Saxion in Enschede. Het lectoraat en de bijbehorende kenniskring is gericht op het versterken van de wisselwerking tussen creativiteit, technologie en economie op het gebied van mode en textiel. Deze wisselwerking moet sterker tot uiting komen in het onderwijs en dient ook in samenwerking met het bedrijfsleven tot uiting te komen in een onderzoeksprogramma. Het lectoraat is ondergebracht bij ...

  8. Inalienably Yours? The new case for an inalienable property right in human biological material: Empowerment of sample donors or a recipe for a tragic Anti-Commons?

    Jasper A. Bovenberg

    2004-12-01

    Full Text Available Modern biomedical research into the genetic component of common diseases calls for broad access to existing and novel collections of samples of human biological material, aka Biobanks. Groups of donors of these samples, however, increasingly claim a property right in their samples. They perceive the recognition of a personal property right in their biological material as the best means to serve two goals: to secure ongoing control over their samples after donation and to underpin their claim for a share in the proceeds that the research on their samples may yield. Given the objective of ensuring ongoing control, this property right is claimed to be inalienable. Recognition of a personal property right in one’s biological material is problematic, especially where the requirement of inalienability seems at odds with the claim for a share of the profits. Yet, property rights in human biological material may be justified in a certain context, e.g. to enable subsets of patients to negotiate the terms and conditions of the research into their specific disorders. Biobanks, however, contain so many samples, which can be used for so many research purposes, that the unrestricted exercise of personal property rights by the sample donors will lead to a proliferation of rights. This proliferation is likely to deter or slow down both the creation of de novo Biobanks and the use of existing sample collections. Thus, recognising inalienable property rights in human biological material may lead to suboptimal use of these resources and create a classic ‘anticommons property’ scenario. It would also undermine the current trend to simplify existing informed consent requirements which aims to facilitate broad and previously unanticipated research on de novo and existing Biobanks. In addition, the tradition of altruistic participation in research and the notion that large-scale collections of human biological material are global public goods are arguments against

  9. Organizational influence on the occurrence of work accidents involving exposure to biological material.

    Marziale, Maria Helena Palucci; Rocha, Fernanda Ludmilla Rossi; Robazzi, Maria Lúcia do Carmo Cruz; Cenzi, Camila Maria; dos Santos, Heloisa Ehmke Cardoso; Trovó, Marli Elisa Mendes

    2013-01-01

    to analyze work accidents involving exposure to biological materials which took place among personnel working in nursing and to evaluate the influence of the organizational culture on the occurrence of these accidents. a retrospective, analytical study, carried out in two stages in a hospital that was part of the Network for the Prevention of Work Accidents. The first stage involved the analysis of the characteristics of the work accidents involving exposure to biological materials as recorded over a seven-year period by the nursing staff in the hospital studied, and registered in the Network databank. The second stage involved the analysis of 122 nursing staff members' perception of the institutional culture, who were allocated to the control group (workers who had not had an accident) and the case group (workers who had had an accident). 386 accidents had been recorded: percutaneous lesions occurred in 79% of the cases, needles were the materials involved in 69.7% of the accidents, and in 81.9% of the accident there was contact with blood. Regarding the influence of the organizational culture on the occurrence of accidents, the results obtained through the analysis of the two groups did not demonstrate significant differences between the average scores attributed by the workers in each organizational value or practice category. It is concluded that accidents involving exposure to biological material need to be avoided, however, it was not possible to confirm the influence of organizational values or practices on workers' behavior concerning the occurrence of these accidents.

  10. Globalization and its influence to the availability of the Raw material sources

    Vodzinský Vladimír

    2002-12-01

    Full Text Available Process of globalization does not lead only to concentration of physical and financial capital, and to centralization of its managing, what can be considered as its main signs, but at same time it gives whole raw of new claims to realization of technologies and their material basis.One of very important claims is also change in structure and volume of raw materials, that is gradually viewing in increased change from consumption of so-called classical raw materials, without which it is not possible to create basic components of information technologies.Information technologies are then creating important basis for quickly developed new branches of economy.

  11. Applications of mass spectrometry in the trace element analysis of biological materials

    Moens, L.

    1997-01-01

    The importance of mass spectrometry for the analysis of biological material is illustrated by reviewing the different mass spectrometric methods applied and describing some typical applications published recently. Though atomic absorption spectrometry is used in the majority of analyses of biological material, most mass spectrometric methods have been used to some extent for trace element determination in biomedical research. The relative importance of the different methods is estimated by reviewing recent research papers. It is striking that especially inductively coupled plasma mass spectrometry is increasingly being applied, partly because the method can be used on-line after chromatographic separation, in speciation studies. Mass spectrometric methods prove to offer unique possibilities in stable isotope tracer studies and for this purpose also experimentally demanding methods such as thermal ionization mass spectrometry and accelerator mass spectrometry are frequently used. (orig.)

  12. Evaluation of botanical reference materials for the determination of vanadium in biological samples

    Heydorn, K.; Damsgaard, E.

    1982-01-01

    Three botanical reference materials prepared by the National Bureau of Standards have been studied by neutron activation analysis to evaluate their suitability with respect to the determination of vanadium in biological samples. Various decomposition methods were applied in connection with chemical or radiochemical separations, and results for vanadium were compared with those found by purely instrumental neutron activation analysis. Significantly lower results indicate losses or incomplete dissolution, which makes SRM 1575 Pine Needles and SRM 1573 Tomato Leaves less satisfactory than SRM 1570 Spinach. A reference value of 1.15 mg/kg of this material is recommended, based on results from 3 different methods. All three materials are preferable to SRM 1571 Orchard Leaves, while Bowen's Kale remains the material of choice because of its lower concentration. (author)

  13. Escalation of terrorism? On the risk of attacks with chemical, biological, radiological and nuclear weapons or materials

    Nass, Jens

    2010-01-01

    The report on the risk of attacks with chemical, biological, radiological and nuclear weapons or materials covers the following topics: the variety of terrorism: ethnic-nationalistic, politically motivated, social revolutionary, political extremism, religious fanaticism, governmental terrorism; CBRN (chemical, biological, radiological, nuclear) weapons and materials: their availability and effectiveness in case of use; potential actor groups; prevention and counter measures, emergency and mitigating measures.

  14. A method to determine site-specific, anisotropic fracture toughness in biological materials

    Bechtle, Sabine; Özcoban, Hüseyin; Yilmaz, Ezgi D.; Fett, Theo; Rizzi, Gabriele; Lilleodden, Erica T.; Huber, Norbert; Schreyer, Andreas; Swain, Michael V.; Schneider, Gerold A.

    2012-01-01

    Many biological materials are hierarchically structured, with highly anisotropic structures and properties on several length scales. To characterize the mechanical properties of such materials, detailed testing methods are required that allow precise and site-specific measurements on several length scales. We propose a fracture toughness measurement technique based on notched focused ion beam prepared cantilevers of lower and medium micron size scales. Using this approach, site-specific fracture toughness values in dental enamel were determined. The usefulness and challenges of the method are discussed.

  15. Laws and regulations associated with ownership of human biological material in South Africa

    Kishen Mahesh

    2015-05-01

    Full Text Available Ownership with regard to human biological material (HBM is addressed to some extent within South African law, specifically in chapter eight of the National Health Act (NHA and its associated regulations. However, members of the legal fraternity struggle to conceptualise ownership of such materials without objectifying a person or people and risking reducing such individuals to a state of property. This then infers a reduction in human dignity by rendering one-self or parts of that same self as a commodity. The complexity of the issue raises much debate both legally as well as ethically. 

  16. Analysis of occupational accidents with biological material among professionals in pre-hospital services

    Oliveira,Adriana Cristina de; Paiva,Maria Henriqueta Rocha Siqueira

    2013-01-01

    OBJECTIVE: To estimate the prevalence of accidents due to biological material exposure, the characteristics and post-accident conduct among professionals of pre-hospital services of the four municipalities of Minas Gerais, Brazil. METHOD: A cross-sectional study, using a structured questionnaire that was developed to enable the calculation of prevalence, descriptive analysis and analytical analysis using logistic regression. The study included 228 professionals; the prevalence of accidents du...

  17. Determination of element concentrations in biological reference materials by solid sampling and other analytical methods

    Schauenburg, H.; Weigert, P.

    1992-01-01

    Using solid sampling with graphite furnace atomic absorption spectrometry (GFAAS), values for cadmium, copper, lead and zinc in six biological reference materials were obtained from up to four laboratories participating in three collaborative studies. These results are compared with those obtained with other methods used in routine analysis from laboratories of official food control. Under certain conditions solid sampling with GFAAS seems to be suitable for routine analysis as well as conventional methods. (orig.)

  18. Standard operating procedure for combustion of 14C - samples with OX-500 biological material oxidizer

    Nashriyah Mat.

    1995-01-01

    This procedure is for the purpose of safe operation of OX-500 biological material oxidizer. For ease of operation, the operation flow chart (including testing the system and sample combustion) and end of day maintenance flow chart were simplified. The front view, diagrams and switches are duly copied from operating manual. Steps on sample preparation are also included for biotic and a biotic samples. This operating procedure is subjected to future reviews

  19. Determination of arsenic in biological materials using ammonium molybdate labelled with 99Mo

    Maruyama, Y.; Nagaoka, Y.

    1983-01-01

    A new radiometric method for the determination of arsenic in biological materials has been developed. An excess of ammonium molybdate labelled with 99 Mo was added to the sample solution and the arsenomolybdic acid formed was extracted into n-butyl alcohol and ethyl acetate mixture. The activity of the organic phase was directly proportional to the amount of arsenic. The method was applied for the determination of arsenic in Orchard Leaves obtained from the National Bureau of Standards. (author)

  20. Under-reporting of accidents involving biological material by nursing professionals at a Brazilian emergency hospital.

    Facchin, Luiza Tayar; Gir, Elucir; Pazin-Filho, Antonio; Hayashida, Miyeko; da Silva Canini, Silvia Rita Marin

    2013-01-01

    Pathogens can be transmitted to health professionals after contact with biological material. The exact number of infections deriving from these events is still unknown, due to the lack of systematic surveillance data and under-reporting. A cross-sectional study was carried out, involving 451 nursing professionals from a Brazilian tertiary emergency hospital between April and July 2009. Through an active search, cases of under-reporting of occupational accidents with biological material by the nursing team were identified by means of individual interviews. The Institutional Review Board approved the research project. Over half of the professionals (237) had been victims of one or more accidents (425 in total) involving biological material, and 23.76% of the accidents had not been officially reported using an occupational accident report. Among the underreported accidents, 53.47% were percutaneous and 67.33% were bloodborne. The main reason for nonreporting was that the accident had been considered low risk. The under-reporting rate (23.76%) was low in comparison with other studies, but most cases of exposure were high risk.

  1. Clinical treatment adherence of health care workers and students exposed to potentially infectious biological material

    Maria Cristina Mendes de Almeida

    2015-04-01

    Full Text Available OBJECTIVE To assess adherence to clinical appointments by health care workers (HCW and students who suffered accidents with potentially infectious biological material. METHOD A retrospective cross-sectional study that assessed clinical records of accidents involving biological material between 2005 and 2010 in a specialized unit. RESULTS A total of 461 individuals exposed to biological material were treated, of which 389 (84.4% were HCWs and 72 (15.6% students. Of the 461 exposed individuals, 307 (66.6% attended a follow-up appointment. Individuals who had suffered an accident with a known source patient were 29 times more likely to show up to their scheduled follow-up appointments (OR: 29.98; CI95%: 16.09-55.83. CONCLUSION The predictor in both univariate and multivariate analyses for adherence to clinical follow-up appointment was having a known source patient with nonreactive serology for the human immunodeficiency virus and/or hepatitis B and C.

  2. Analysis of occupational accidents with biological material among professionals in pre-hospital services.

    de Oliveira, Adriana Cristina; Paiva, Maria Henriqueta Rocha Siqueira

    2013-02-01

    To estimate the prevalence of accidents due to biological material exposure, the characteristics and post-accident conduct among professionals of pre-hospital services of the four municipalities of Minas Gerais, Brazil. A cross-sectional study, using a structured questionnaire that was developed to enable the calculation of prevalence, descriptive analysis and analytical analysis using logistic regression. The study included 228 professionals; the prevalence of accidents due to biological material exposure was 29.4%, with 49.2% percutaneous, 10.4% mucousal, 6.0% non-intact skin, and 34.4% intact skin. Among the professionals injured, those that stood out were nursing technicians (41.9%) and drivers (28.3%). Notification of the occurrence of the accident occurred in 29.8% of the cases. Percutaneous exposure was associated with time of work in the organization (OR=2.51, 95% CI: 1.18 to 5.35, paccidents with biological material should be encouraged, along with professional evaluation/monitoring.

  3. Biological export of radioactive materials from a leaching pond in SE Idaho

    Millard, Jere B.

    1978-01-01

    A radioecological investigation was conducted to quantify biological export of radioactive materials from a test reactor area leaching pond located on the Idaho National Engineering Laboratory site in southeast Idaho. An estimated 42,000 Ci have been discharged to the pond since 1952. Approximately 35 gamma emitting radionuclides are detectable in unfiltered water. Biomass estimates and mean radionuclide concentrations were determined for major pond compartments. A radionuclide inventory of the pond ecosystem was constructed listing totals for radioactivity present in each compartment. Mean concentrations of predominant radionuclides and population census data were used to estimate biologically exported materials. Particular attention was paid to migrant waterfowl, a resident population of barn swallows (Hirundo rustica), and nesting shore birds. Whole body gamma spectra indicated 15 or more detectable fission and activation products associated with swallows and shore birds, and 20 or more for waterfowl. Concentration factors relative to filtered pond water were also calculated. Finally, biologically exported radioactive materials were compared with total amounts present in the pond. (author)

  4. Evaluation of geologic materials to limit biological intrusion of low-level waste site covers

    Hakonson, T.E.; White, G.C.; Karlen, E.M.

    1982-01-01

    The long-term integrity of low-level waste shallow land burial sites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. This paper reports the preliminary results of a screening study to-determine the effectiveness of four biobarrier materials to stop plant root and animal penetration into simulated low-level wastes. Experiments employed 288 lysimeters consisting of 25-cm-diam PVC pipe, with four factors tested: plant species (alfalfa, barley, and sweet clover); top soil thickness (30 and 60 cm); biobarrier material (crushed tuff, bentonite clay, cobble, and cobble-gravel); and biobarrier thickness (clay-15, 30, and 45 cm, others 30, 60, and 90 cm). The crushed tuff, a sandy backfill material, offers little resistance to root and animal intrusion through the cover profile, while bentonite clay, cobble, and cobble-gravel combinations do reduce plant root and animal intrusion thorugh cover profiles. However, dessication of the clay barrier by invading plant roots may limit the usefulness of this material as a moisture and/or biological barrier. The cobble-gravel combination appears to be the best candidate for further testing on a larger scale because the gravel helps impede the imgration of soil into the cobble layer - the probable cause of failure of cobble-only biobarriers

  5. The determination of plutonium alpha activity in urine, faeces and biological materials

    Bains, M.E.D.

    1963-07-01

    Methods have been developed for the determination of plutonium alpha activity in urine, faeces and biological materials. The chemical stages involved give practically complete separation of all extraneous material from the plutonium, which is electrodeposited on to a 0.5 inch stainless steel disc to produce a thin high resolution source. The limit of detection is 0.025 μμc/sample (sixteen-hour count) when the sources are counted in a small scintillator counter, but is lowest when counted in a counter which counts particles of energy 5.05-5.25 MeV only, and which therefore discriminates against small quantities of α-active materials introduced with the reagents in the final electrodeposition stage of the process. (Any such alpha activity may readily be identified by alpha pulse height analysis). (author)

  6. Development and Applications Of Photosensitive Device Systems To Studies Of Biological And Organic Materials

    Gruner, Sol

    2012-01-20

    The primary focus of the grant is the development of new x-ray detectors for biological and materials work at synchrotron sources, especially Pixel Array Detectors (PADs), and the training of students via research applications to problems in biophysics and materials science using novel x-ray methods. This Final Progress Report provides a high-level overview of the most important accomplishments. These major areas of accomplishment include: (1) Development and application of x-ray Pixel Array Detectors; (2) Development and application of methods of high pressure x-ray crystallography as applied to proteins; (3) Studies on the synthesis and structure of novel mesophase materials derived from block co-polymers.

  7. The global resource balance table, an integrated table of energy, materials and the environment

    Tsuchiya, Haruki

    2013-01-01

    This paper introduces the Global Resource Balance Table (GRBT), which is an extension of the energy balance tables that expresses the relationships between energy, materials and the environment. The material division of the GRBT includes steel, cement, paper, wood and grain. In contrast, the environmental division of the GRBT includes oxygen, CO 2 and methane. The transaction division rows in the GRBT include production, conversion, end use and stock. Each cell of the GRBT contains the quantities of the respective resources that were generated or consumed. The relationships between the cells were constructed from the laws of conservation of the materials and energy. We constructed a GRBT for 2007 and discussed the increasing air temperature due to waste heat and the CO 2 equivalent from human breathing. The GRBT is a comprehensive integrated table that represents the resources that are consumed by human activities and is useful for energy and environmental studies. - Highlights: • We extended energy balance table and introduced Global Resource Balance Table. • It shows relationships between energy, materials and the environment. • The material division includes steel, cement, paper, wood and grain. • The environmental division includes oxygen, CO 2 and methane. • We discussed on waste heat and CO 2 emission by human breathing

  8. The Effectiveness of learning materials based on multiple intelligence on the understanding of global warming

    Liliawati, W.; Purwanto; Zulfikar, A.; Kamal, R. N.

    2018-05-01

    This study aims to examine the effectiveness of the use of teaching materials based on multiple intelligences on the understanding of high school students’ material on the theme of global warming. The research method used is static-group pretest-posttest design. Participants of the study were 60 high school students of XI class in one of the high schools in Bandung. Participants were divided into two classes of 30 students each for the experimental class and control class. The experimental class uses compound-based teaching materials while the experimental class does not use a compound intelligence-based teaching material. The instrument used is a test of understanding of the concept of global warming with multiple choices form amounted to 15 questions and 5 essay items. The test is given before and after it is applied to both classes. Data analysis using N-gain and effect size. The results obtained that the N-gain for both classes is in the medium category and the effectiveness of the use of teaching materials based on the results of effect-size test results obtained in the high category.

  9. Deterministic global optimization algorithm based on outer approximation for the parameter estimation of nonlinear dynamic biological systems.

    Miró, Anton; Pozo, Carlos; Guillén-Gosálbez, Gonzalo; Egea, Jose A; Jiménez, Laureano

    2012-05-10

    The estimation of parameter values for mathematical models of biological systems is an optimization problem that is particularly challenging due to the nonlinearities involved. One major difficulty is the existence of multiple minima in which standard optimization methods may fall during the search. Deterministic global optimization methods overcome this limitation, ensuring convergence to the global optimum within a desired tolerance. Global optimization techniques are usually classified into stochastic and deterministic. The former typically lead to lower CPU times but offer no guarantee of convergence to the global minimum in a finite number of iterations. In contrast, deterministic methods provide solutions of a given quality (i.e., optimality gap), but tend to lead to large computational burdens. This work presents a deterministic outer approximation-based algorithm for the global optimization of dynamic problems arising in the parameter estimation of models of biological systems. Our approach, which offers a theoretical guarantee of convergence to global minimum, is based on reformulating the set of ordinary differential equations into an equivalent set of algebraic equations through the use of orthogonal collocation methods, giving rise to a nonconvex nonlinear programming (NLP) problem. This nonconvex NLP is decomposed into two hierarchical levels: a master mixed-integer linear programming problem (MILP) that provides a rigorous lower bound on the optimal solution, and a reduced-space slave NLP that yields an upper bound. The algorithm iterates between these two levels until a termination criterion is satisfied. The capabilities of our approach were tested in two benchmark problems, in which the performance of our algorithm was compared with that of the commercial global optimization package BARON. The proposed strategy produced near optimal solutions (i.e., within a desired tolerance) in a fraction of the CPU time required by BARON.

  10. Possibilities of nondestructive determination of fluorine in coal and biological materials by IPAA

    Randa, Zdenek; Mizera, Jiri; Chvatil, David

    2009-01-01

    The possibilities of nondestructive determination of fluorine in coal and biological materials by instrumental photon activation analysis (IPAA) were studied. The determination was based on counting the non-specific 511 keV annihilation gamma rays of 18 F, a pure positron emitter which is the product of the photonuclear reaction 19 F(γ, n) 18 F. The simultaneous formation of some additional positron emitters, particularly 45 Ti and 34m Cl, is an interfering factor. When using correction standards for Ti and Cl and optimization of the beam energy and irradiation-decay-counting times, fluorine could be determined by IPAA in selected coal and biological samples at the ten ppm level. The feasibility of additional optimization for further improvements of the proposed IPAA procedure are discussed

  11. Exploring matter through photons and neutrons: from biological molecules to designer materials

    Chidambaram, R.; Hosur, M.V.; Ramanadham, M.; Godwal, B.K.

    2000-01-01

    Understanding structure-property relationships of naturally occurring materials has been the aim of scientific research for centuries. The discovery of short wavelength x-rays and neutrons in the 20th century provided a means of studying molecular structure. The methodology of x-ray and neutron diffraction has been successfully applied to determine structures of molecules across disciplines of physics, chemistry, biology, biochemistry and medicine. Typical applications in physics include study of phase transformations, elasticity measurements, magnetic structure, surface scattering etc. In chemistry, the applications have ranged from routine structure determinations of reaction intermediates or natural products to refinement of quantum chemical parameters of atomic and molecular charge densities. The science of crystallography has had a profound effect on the disciplines of biology and medicine. A whole new discipline and industry was created when the structure of DNA was discovered through x-ray diffraction

  12. Damage-free vibrational spectroscopy of biological materials in the electron microscope.

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L; Dellby, Niklas; Lovejoy, Tracy C; Wolf, Sharon G; Cohen, Hagai

    2016-03-10

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an 'aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.

  13. Headspace solid-phase microextraction procedures for gas chromatographic analysis of biological fluids and materials.

    Mills, G A; Walker, V

    2000-12-01

    Solid-phase microextraction (SPME) is a new solventless sample preparation technique that is finding wide usage. This review provides updated information on headspace SPME with gas chromatographic separation for the extraction and measurement of volatile and semivolatile analytes in biological fluids and materials. Firstly the background to the technique is given in terms of apparatus, fibres used, extraction conditions and derivatisation procedures. Then the different matrices, urine, blood, faeces, breast milk, hair, breath and saliva are considered separately. For each, methods appropriate for the analysis of drugs and metabolites, solvents and chemicals, anaesthetics, pesticides, organometallics and endogenous compounds are reviewed and the main experimental conditions outlined with specific examples. Then finally, the future potential of SPME for the analysis of biological samples in terms of the development of new devices and fibre chemistries and its coupling with high-performance liquid chromatography is discussed.

  14. Development of Standards for NanoSIMS Analyses of Biological Materials

    Davission, M L; Weber, P K; Pett-Ridge, J; Singer, S

    2008-07-31

    NanoSIMS is a powerful analytical technique for investigating element distributions at the nanometer scale, but quantifying elemental abundances requires appropriate standards, which are not readily available for biological materials. Standards for trace element analyses have been extensively developed for secondary ion mass spectrometry (SIMS) in the semiconductor industry and in the geological sciences. The three primary approaches for generating standards for SIMS are: (1) ion implantation (2) using previously characterized natural materials, and (3) preparing synthetic substances. Ion implantation is a reliable method for generating trace element standards, but it is expensive, which limits investigation of the analytical issues discussed above. It also requires low background levels of the elements of interest. Finding or making standard materials has the potential to provide more flexibility than ion implantation, but realizing homogeneity at the nano-scale is in itself a significant challenge. In this study, we experiment with all three approaches, but with an emphasis toward synthetic organic polymers in order to reduce costs, increase flexibility, and achieve a wide dynamic concentration range. This emphasis serves to meet the major challenge for biological samples of identifying matrix matched, homogeneous material. Biological samples themselves are typically heterogeneous at the scale of microns to 100s of microns, and therefore they are poor SIMS standards. Therefore, we focused on identifying 'biological-like' materials--either natural or synthetic--that can be used for standards. The primary criterion is that the material be as compositionally similar to biological samples as possible (primarily C, H, O, and N). For natural material we adsorbed organic colloids consisting of peptidoglycan (i.e., amino sugars), activated charcoal, and humic acids. Experiments conducted with Si on peptidoglycan showed low affinity as SiO{sub 2}, yet its

  15. [Occupational accidents due to exposure to biological material in the multidisciplinary team of the emergency service].

    Oliveira, Adriana Cristina; Lopes, Aline Cristine Souza; Paiva, Maria Henriqueta Rocha Siqueira

    2009-09-01

    This transversal, survey-based research was carried out with a multiprofessional emergency care team in Belo Horizonte, between June and December 2006. The study aimed at estimating the incidence of occupational accidents by exposure to biological material, post-accidents conducts and demographic determinant factors. The study applied a structured questionnaire and descriptive analyses, as well as incidence calculations and logistic regression. The incidence of accidents with biological material reached 20.6%, being 40.8% by sharp materials and 49.0% by body fluids; 35.3% of the accidents took place among physicians and 24.0% among nurses. Post-accidents procedures: no medical assessment, 63.3%; under-notification, 81.6%; no conduct, 55.0%; and no serological follow-up, 61.2%. Factors associated with accidents: working time in the institution (Odds Ratio--OR, 2.84; Credible Interval--CI 95%-1.22-6.62); working in advanced support units (OR = 4.18; CI 95%--1.64-10.64); and interaction between working time in the institution and working in Basic Support Unit (OR 0.27; CI 95%--0.07-1.00). In order to reduce accidents, the implementation of post-accident protocols and follow-up, as well as under-notification norms, are suggested.

  16. Biological and Biomimetic Low-Temperature Routes to Materials for Energy Applications

    Morse, Daniel E. [Univ. of California, Santa Barbara, CA (United States). Inst. for Collaborative Biotechnologies

    2016-08-29

    New materials are needed to significantly improve the efficiencies of energy harnessing, transduction and storage, yet the synthesis of advanced composites and multi-metallic semiconductors with nanostructures optimized for these functions remains poorly understood and even less well controlled. To help address this need, we proposed three goals: (1) to further investigate the hierarchical structure of the biologically synthesized silica comprising the skeletal spicules of sponges that we discovered, to better resolve the role and mechanism of templating by the hierarchically assembled silicatein protein filament; (2) to extend our molecular and genetic analyses and engineering of silicatein, the self-assembling, structure-directing, silica-synthesizing enzyme we discovered and characterized, to better understand and manipulate the catalysis and templating of semiconductor synthesis,; and (3) to further investigate, scale up and harness the biologically inspired, low-temperature, kinetically controlled catalytic synthesis method we developed (based on the mechanism we discovered in silicatein) to investigate the kinetic control of the structure-function relationships in magnetic materials, and develop new materials for energy applications. The bio-inspired catalytic synthesis method we have developed is low-cost, low temperature, and operates without the use of polluting chemicals. In addition to direct applications for improvement of batteries and fuel cells, the broader impact of this research includes a deeper fundamental understanding of the factors governing kinetically controlled synthesis and its control of the emergent nanostructure and performance of a wide range of nanomaterials for energy applications.

  17. Use of vitamin B12 radioassay in the analysis of biological materials, mainly of foods

    Kralova, B.; Rauch, P.; Cerna, J.

    1982-01-01

    Vitamin B 12 was determined in biological materials by three basically different methods: microbiological assay with Lactobacillus leichmannii, microbiological assay with Escherichia coli and radioassay. The method with E. coli has a relatively low sensitivity to vitamin B 12 and in some cases of vitamin B 12 determination in microbial materials it can be used only after a separation of the interfering substances by gel chromatography. The procedure is suitable for orientational determinations of vitamin B 12 because it is very little affected by external factors. The assay with L. leichmannii is universal owing to its high specifity and sensitivity to vitamin B 12 . The main disadvantage of the latter procedure depends on the high requirements for a clean atmosphere which can be maintained in laboratories in industrial areas only with difficulties. These limitations do not apply to the quick and sensitive radioassay. The radioassay can be used after a suitable adjustment of the working procedure for large series of analyses of biological materials without any preliminary separational techniques. (author)

  18. "Rinse and trickle": a protocol for TEM preparation and investigation of inorganic fibers from biological material.

    Vigliaturo, Ruggero; Capella, Silvana; Rinaudo, Caterina; Belluso, Elena

    2016-07-01

    The purpose of this work is to define a sample preparation protocol that allows inorganic fibers and particulate matter extracted from different biological samples to be characterized morphologically, crystallographically and chemically by transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS). The method does not damage or create artifacts through chemical attacks of the target material. A fairly rapid specimen preparation is applied with the aim of performing as few steps as possible to transfer the withdrawn inorganic matter onto the TEM grid. The biological sample is previously digested chemically by NaClO. The salt is then removed through a series of centrifugation and rinse cycles in deionized water, thus drastically reducing the digestive power of the NaClO and concentrating the fibers for TEM analysis. The concept of equivalent hydrodynamic diameter is introduced to calculate the settling velocity during the centrifugation cycles. This technique is applicable to lung tissues and can be extended to a wide range of organic materials. The procedure does not appear to cause morphological damage to the fibers or modify their chemistry or degree of crystallinity. The extrapolated data can be used in interdisciplinary studies to understand the pathological effects caused by inorganic materials.

  19. Globalization of Japanese steel industry. Part 2. Welding materials; Tekkogyo no kokusaika. 2. Yozai

    Aida, I. [Kobe Steel, Ltd., Kobe (Japan)

    1995-01-01

    This paper mainly discusses the current status and problems of arc welding materials. The domestic production of welding materials has decreased. The recent trend of demand is characterized by the change of form make-up of welding materials. Various technologies for welding materials and their operation in Japan have developed with the progress of steel materials. The high quality and high-grade welding technologies, highly efficient production processes, laborsaving, and robotization have been promoted in various fields. In response to the rapid strong yen, quality and cost have to be further pursued, and amenity and cleanliness of welding have to be realized. The welding technologies have to be developed for large structures, such as ultra high-rise buildings, energy and chemical plants, ships, marine structures, etc. For the welding materials which are applied to robots and robot systems, obstruction factors for the operation have to be removed, which include the unsteady arc, re-arc badness, spattering, wear of chip, slag formation, etc. These measures promote the globalization of welding materials. 17 refs., 4 figs.

  20. Cell attachment properties of Portland cement-based endodontic materials: biological and methodological considerations.

    Ahmed, Hany Mohamed Aly; Luddin, Norhayati; Kannan, Thirumulu Ponnuraj; Mokhtar, Khairani Idah; Ahmad, Azlina

    2014-10-01

    The attachment and spreading of mammalian cells on endodontic biomaterials are an area of active research. The purpose of this review is to discuss the cell attachment properties of Portland cement (PC)-based materials by using scanning electron microscope (SEM). In addition, methodological aspects and technical challenges are discussed. A PubMed electronic search was conducted by using appropriate key words to identify the available investigations on the cell attachment properties of PC-based endodontic materials. After retrieving the full text of related articles, the cross citations were also identified. A total of 23 articles published between January 1993 and October 2013 were identified. This review summarizes the cell attachment properties of commercial and experimental PC-based materials on different cell cultures by using SEM. Methodological procedures, technical challenges, and relevance of SEM in determining the biological profile of PC-based materials are discussed. SEM observations demonstrate that commercial MTA formulations show favorable cell attachment properties, which is consistent with their successful clinical outcomes. The favorable cell attachment properties of PC and its modified formulations support its potential use as a substitute for mineral trioxide aggregate. However, researchers should carefully select cell types for their SEM investigations that would be in contact with the proposed PC-based combinations in the clinical situation. Despite being a technical challenge, SEM provides useful information on the cell attachment properties of PC-based materials; however, other assays for cell proliferation and viability are essential to come up with an accurate in vitro biological profile of any given PC-based formulation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Strengthening global practices for protecting nuclear material (NUMAT). Book of Abstracts

    Steinhaeusler, F.; Heissl, C.

    2002-08-01

    The International Conference on Physical Protection 'Strengthening Global Practices for Protecting Nuclear Material' was organized by the Institute of Physics and Biophysics, Salzburg University in cooperation with/supported by the European Commission, Lawrence Livermore National Laboratory, European Forum of the Stanford University's Institute for International Studies and Austria Institute for European Security. Its purpose was fostering exchange of information on the policy and technical aspects require to ensure the security of nuclear material around the world. There is a general concern that the international community needs to establish effective measures to counter theft, sabotage, and other illicit uses of nuclear fissile and other radioactive materials. The main subjects addressed by this conference were: a) global and local threat development and 'design basis'; b) standards for physical protection (PP), its adequacy and future needs; c) national practices in PP of nuclear materials (how to strengthen national security culture?); d) current R and D in security and detection technologies (identification of focus points for future R and D); e) programmes to aid in training, design, and implementation of physical protection systems (how to improve efficiency and assure sustainability of assistance programmes?). (nevyjel)

  2. [Accidents with biological material at West Paraná University Hospital].

    Murofuse, Neide Tiemi; Marziale, Maria Helena Palucci; Gemelli, Lorena Moraes Goetem

    2005-08-01

    It is a descriptive and retrospective study with the purpose of investigating labor accidents with biological material involving workers and trainees occurred in 2003 and 2004 in a University Hospital of Parana. For data collection, the electronic form of the Net of Occupational Accidents Prevention - REPAT has been utilized. Out of the 586 hospital workers, there was a register of 20 (3,4%) injured workers in 2003 and 23 (3,8%) in 2004, representing an increase of 15% in the notifications from one year to the other.

  3. Synthesis and Characterization of Rhodamine B-ethylenediamine-hyaluronan Acid as Potential Biological Functional Materials

    Li, Y. L.; Wang, W. X.; Wang, Y.; Zhang, W. B.; Gong, H. M.; Liu, M. X.

    2018-05-01

    The purpose of this study is to synthesize and characterize fluorescent polymers, rhodamine B-ethylenediamine-hyaluronan acid (RhB-EA-HA). RhB-EA-HA was successfully synthesized by ester ammonolysis reaction and amidation reaction. Moreover, the structural properties of RhB-EA-HA were characterized by 1H-NMR spectra, UV-vis spectrometry and Fourier transform infrared spectroscopy (FT-IR). RhB-EA-HA can be grafted on the surface of silica nanomaterials, which may be potential biological functional materials for drug delivery system.

  4. Utilisation of biological and secondary raw materials IX. Recycling - conversion to energy

    Wiemer, Klaus; Kern, Michael; Raussen, Thomas

    2014-01-01

    The book on the utilization of biological and secondary raw materials covers the following issues: Perspectives of the circular flow and resource economy, waste avoidance, closed substance cycle waste management law and biowaste assessment, economic evaluation and usage alternatives for biogas, consequences of the 4th BlmschV, the BioAbfV and the DueV for the biowaste treatment, alternative techniques of the Biowaste collection, alternative models of the recyclable substance assessment, future of the packaging and recyclable substance utilization, ElectroG and E-scrape recycling, innovative concepts for the municipal waste management, future of the MBA, MVA and EBS management.

  5. A complex neutron activation method for the analysis of biological materials

    Ordogh, M.

    1978-01-01

    The aim of the present work was to deal primarily with a few essential trace elements and to obtain reliable results of adequate accuracy and precision for the analysis of biological samples. A few other than trace elements were determined by the nondestructive technique as they can be well evaluated from the gamma-spectra. In the development of the method BOWEN's kale was chosen as model material. To confirm the reliability of the method two samples were analysed proposed by the IAEA in the frame of an international comparative analysis series. The comparative analysis shows the present method to be reliable, the precision and accuracy are good. (author)

  6. Non-proliferation issues in the field of biological technologies and dual-use materials

    Mamadaliev, S.M.; Troitskij, E.N.; Ibraev, R.

    2001-01-01

    In the paper the results of the DTRA 01-00-C-0030 'Strengthening of physical and biological protection' project at the Research Agricultural Institute (Kazakhstan) are discussed. The project was directed on the organization of a reliable physical integrity of dangerous pathogens, on the provision reliable protection around the periphery and outside security of the whole object as well as on the exclusion of possibility of pathogens expansion of dangerous infection material out the controlled working conditions. The central section of the protection is storehouse of microorganism culture

  7. Analytical methods for determination of terbinafine hydrochloride in pharmaceuticals and biological materials

    Basavaiah Kanakapura

    2016-06-01

    Full Text Available Terbinafine is a new powerful antifungal agent indicated for both oral and topical treatment of mycosessince. It is highly effective in the treatment of determatomycoses. The chemical and pharmaceutical analysis of the drug requires effective analytical methods for quality control and pharmacodynamic and pharmacokinetic studies. Ever since it was introduced as an effective antifungal agent, many methods have been developed and validated for its assay in pharmaceuticals and biological materials. This article reviews the various methods reported during the last 25 years.

  8. Ionometric determination of boron in natural, waste waters and biological materials

    Yakimov, V.P.; Markova, O.L.

    1992-01-01

    Method have been developed for the determination of boron in natural, waste waters and biological materials using direct potentiometry with a BF 4 - selective electrode. In order to estimate the matrix effects in plotting the calibration graphs, it is recommended to and the test water or solution of biomaterial mineralizates, containing boron in electrode-inactive form, to the calibration solutions before e.m.f. measurements version of boron into tetrafluoroborate in solid phase on heating the mineralized samples with ammonium bifluoride at 150-180 deg C

  9. A complex method for the neutron activation analysis of biological materials

    Ordogh, M.

    1978-05-01

    The destructive and nondestructive approach of neutron activation analysis used by the author is reviewed to determine some trace elements in biological materials: Ca, Cl, Co, Cu, Fe, K, Mg, Mn, Na, Rb, Sb, Sc, V and Zn. Bowen's kale was used to determine the accuracy and reliability. The parameters obtained were confirmed by participating in round robins organized by the IAEA: in which potato powder and animal bone have been analyzed for Zn, Co, Fe, Cr, Mn, Rb, Na, K and Cu. Tabulated results are given and compared with recommended values and literature data. Gamma spectra are shown. (T.G.)

  10. MAK and BAT values list 2014. Maximum permissible concentrations at the place of work and biological tolerance values for working materials

    2014-01-01

    The book on the MAK (maximum permissible concentrations at the place of work) and BAT (biological tolerance values for working materials) value list 2014 includes the following chapters: (a) Maximum permissible concentrations at the place of work: definition, application and determination of MAT values, list of materials; carcinogenic working materials, sensibilizing working materials, aerosols, limiting the exposition peaks, skin resorption, MAK values during pregnancy, germ cell mutagens, specific working materials; (b) Biological tolerance values for working materials: definition and application of BAT values, list of materials, carcinogenic working materials, biological guide values, biological working material reference values.

  11. MAK and BAT values list 2015. Maximum permissible concentrations at the place of work and biological tolerance values for working materials

    2015-01-01

    The book on the MAK (maximum permissible concentrations at the place of work) and BAT (biological tolerance values for working materials) value list 2015 includes the following chapters: (a) Maximum permissible concentrations at the place of work: definition, application and determination of MAT values, list of materials; carcinogenic working materials, sensibilizing working materials, aerosols, limiting the exposition peaks, skin resorption, MAK values during pregnancy, germ cell mutagens, specific working materials; (b) Biological tolerance values for working materials: definition and application of BAT values, list of materials, carcinogenic working materials, biological guide values, biological working material reference values.

  12. Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions.

    Vernon, Ian; Liu, Junli; Goldstein, Michael; Rowe, James; Topping, Jen; Lindsey, Keith

    2018-01-02

    Many mathematical models have now been employed across every area of systems biology. These models increasingly involve large numbers of unknown parameters, have complex structure which can result in substantial evaluation time relative to the needs of the analysis, and need to be compared to observed data of various forms. The correct analysis of such models usually requires a global parameter search, over a high dimensional parameter space, that incorporates and respects the most important sources of uncertainty. This can be an extremely difficult task, but it is essential for any meaningful inference or prediction to be made about any biological system. It hence represents a fundamental challenge for the whole of systems biology. Bayesian statistical methodology for the uncertainty analysis of complex models is introduced, which is designed to address the high dimensional global parameter search problem. Bayesian emulators that mimic the systems biology model but which are extremely fast to evaluate are embeded within an iterative history match: an efficient method to search high dimensional spaces within a more formal statistical setting, while incorporating major sources of uncertainty. The approach is demonstrated via application to a model of hormonal crosstalk in Arabidopsis root development, which has 32 rate parameters, for which we identify the sets of rate parameter values that lead to acceptable matches between model output and observed trend data. The multiple insights into the model's structure that this analysis provides are discussed. The methodology is applied to a second related model, and the biological consequences of the resulting comparison, including the evaluation of gene functions, are described. Bayesian uncertainty analysis for complex models using both emulators and history matching is shown to be a powerful technique that can greatly aid the study of a large class of systems biology models. It both provides insight into model behaviour

  13. The monostandard method in thermal neutron activation analysis of geological, biological and environmental materials

    Alian, A.; Djingova, R.G.; Kroener, B.; Sansoni, B.

    1984-01-01

    A simple method is described for instrumental multielement thermal neutron activation analysis using a monostandard. For geological and air dust samples, iron is used as a comparator, while sodium has advantages for biological materials. To test the capabilities of this method, the values of the effective cross sections of the 23 elements determined were evaluated in a reactor site with an almost pure thermal neutron flux of about 9x10 12 nxcm -2 xs -1 and an epithermal neutron contribution of less than 0.03%. The values obtained were found to agree mostly well with the best literature values of thermal neutron cross sections. The results of an analysis by activation in the same site agree well with the relative method using multielement standards and for several standard reference materials with certified element contents. A comparison of the element contents obtained by the monostandard and relative methods together with corresponding precisions and accuracies is given. (orig.) [de

  14. Stopping powers for protons in materials of interest in dosimetry and in medical and biological applications

    Thwaites, D.I.

    1985-01-01

    Stopping powers are required for many radiation applications in medicine and biology. Their accuracy can be critical. Some published calculations for these situations have not included recent developments in stopping power theory or the body of work on deviations from additivity due to phase of chemical binding effects. These areas have recently been reviewed and mean excitation energies recommended for a range of materials of interest. Calculated stopping powers are presented for protons of 0.4 to 200 MeV taking the available information into account. The materials considered are Lucite, ICRU composition muscle and bone, A-150 plastic, a TE gas, acetylene and polystyrene and water and water vapour. With suitable corrections and suitable I values in the Bethe stopping power expression, accuracies of <2% can be achieved. (author)

  15. Global NDE Best Practice for Technology Improvement, Outage Management, Foreign Material Exclusion and Dose Control

    Glass, S. W.; Mohr, F.

    2010-01-01

    Non Destructive Examination (NDE) is a critical element of both Boiling Water and Pressurized Water Reactor outages. Frequently this includes critical path activity so both the utility and the inspection vendor are under intense pressure to perform the work quickly. Concurrent with AREVA's new global organization of NDE resources, AREVA NDE SOLUTIONS, efforts have intensified for global application of lessons learned and best practices. These best practices include new developments as well as continuous improvements to well established tools and NDE techniques. Advancements range from steam generator robots, advanced steam generator deposit characterization sensors and method, new phased array approaches for PWR and BWR reactor vessel examination, new sensors and approaches for RPV head examinations, plus advanced internals examination robots and methods. In addition to specialized tools and techniques, best practice includes numerous management innovations. AREVA's multi-disciplined integrated nuclear worker strategy helps to minimize the total number of personnel deployed to multi-task outages. Specific design and on-site practice has been implemented to minimize or eliminate foreign material from the reactor system and vigorous pursuit of dose management practices keeps our nuclear worker dose as low as reasonably achievable. The industry is moving to much more conservative nuclear worker dose limits. While this is proving to be an issue with many vendors, AREVA has had an internal policy of <2R since 2006. Globalizing the organization also helps AREVA manage peaks and unplanned emergency inspections from an enlarged pool of globally qualified inspection personnel and tools. (Author)

  16. Biological availability of energy related effluent material in the coastal ecosystem

    Gibson, C.I.; Abel, K.H.; Ahlstrom, S.W.; Crecelius, E.A.; Schmidt, R.L.; Thatcher, T.O.; Wildung, R.E.

    1977-01-01

    In order to make the predictions necessary to forecast the ecological consequences of an energy-related technology, there must be an understanding of: the biogeochemical processes involved in the natural system; the manner in which an energy technology affects these processes and how, in turn, this affects the ecosystem as a whole. Direct biological effects such as lethality, behavioral changes, and physiological changes, are being studied under the program previously discussed. The biological availability and impact studies are investigating: the chemical, physical, and biological processes that occur in the natural marine ecosystem; how energy effluents affect these processes; and the factors involved in regulating the bioavailability of effluent material. This past year's effort has centered on defining the quantities and forms of metals and radioisotopes in nuclear power plant effluent streams, the chemical forms present in bioassay systems, the chemical and microbial processes controlling the forms of metals available from the sediments, and the uptake and control of copper in shrimp. In addition, several sites in Sequim Bay have been monitored for potential use in field verification studies

  17. Human biological monitoring for exposure assessment in response to an incident involving hazardous materials.

    Scheepers, Paul T J; van Brederode, Nelly E; Bos, Peter M J; Nijhuis, Nicole J; van de Weerdt, Rik H J; van der Woude, Irene; Eggens, Martin L

    2014-12-15

    Biological monitoring in humans (HBM) is widely used in the field of occupational and environmental health. In the situation of an unexpected release of hazardous materials HBM may contribute to the medical support and treatment of exposed individuals from the general population or of emergency responders. Such exposure information may also be used to respond to individual concerns such as questions about a possible relationship between the chemicals released during the incident and health effects. In The Netherlands a guideline was prepared to support early decision-making about the possible use of HBM for exposure assessment during or as soon as possible following a chemical incident. The application of HBM in such an emergency setting is not much different from situations where HBM is normally used but there are some issues that need extra attention such as the choice of the biomarker, the biological media to be sampled, the time point at which biological samples should be collected, the ethics approval and technical implementation of the study protocol and the interpretation and communication of the study results. These issues addressed in the new guideline will support the use of HBM in the management of chemical disasters. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Occupational exposure to potentially infectious biological material in a dental teaching environment.

    Machado-Carvalhais, Helenaura P; Ramos-Jorge, Maria L; Auad, Sheyla M; Martins, Laura H P M; Paiva, Saul M; Pordeus, Isabela A

    2008-10-01

    The aims of this cross-sectional study were to determine the prevalence of occupational accidents with exposure to biological material among undergraduate students of dentistry and to estimate potential risk factors associated with exposure to blood. Data were collected through a self-administered questionnaire (86.4 percent return rate), which was completed by a sample of 286 undergraduate dental students (mean age 22.4 +/-2.4 years). The students were enrolled in the clinical component of the curriculum, which corresponds to the final six semesters of study. Descriptive, bivariate, simple logistic regression and multiple logistic regression (Forward Stepwise Procedure) analyses were performed. The level of statistical significance was set at 5 percent. Percutaneous and mucous exposures to potentially infectious biological material were reported by 102 individuals (35.6 percent); 26.8 percent reported the occurrence of multiple episodes of exposure. The logistic regression analyses revealed that the incomplete use of individual protection equipment (OR=3.7; 95 percent CI 1.5-9.3), disciplines where surgical procedures are carried out (OR=16.3; 95 percent CI 7.1-37.2), and handling sharp instruments (OR=4.4; 95 percent CI 2.1-9.1), more specifically, hollow-bore needles (OR=6.8; 95 percent CI 2.1-19.0), were independently associated with exposure to blood. Policies of reviewing the procedures during clinical practice are recommended in order to reduce occupational exposure.

  19. Accidents with biological material among undergraduate nursing students in a public Brazilian university.

    Reis, Renata Karina; Gir, Elucir; Canini, Silvia Rita M S

    2004-02-01

    During their academic activities, undergraduate nursing students are exposed to contamination by bloodborne pathogens, as well as by others found in body fluids, among which are the Human Immunodeficiency (HIV), Hepatitis B and C viruses. We developed a profile of victimized students, characterizing accidents with biological material occurring among undergraduate nursing students at a public university in São Paulo State, Brazil. We identified the main causes and evaluated the conduct adopted by students and their reactions and thoughts concerning the accidents. Seventy-two accidents were identified, of which 17% involved potentially contaminated biological material. Needles were the predominant cause of accidents. The most frequently involved topographic areas were the fingers. Only five students reported the accidents and sought medical care. Among these, two students were advised to begin prophylactic treatment against HIV infection by means of antiretroviral drugs. It was found that the risk of accidents is underestimated and that strategies such as formal teaching and continual training are necessary in order to make students aware of biosafety measures.

  20. ATTENDING PROFESSIONALS VICTIMS OF ACCIDENT WITH BIOLOGICAL MATERIAL IN A TROPICAL DISEASES HOSPITAL

    Lillian Kelly de Oliveira Lopes

    2006-12-01

    Full Text Available ABSTRACT: The occupational risk for the health´s workers is a subject discussed in the last decades. However, the professional accident involving biological material´s records in the health´s units don´t describe the real situation. The purpose of this article is to identify the number of attending of professional accident involving biological material and the source of the leading. The data were obtained by the professional accident´s handbooks in 2003. The hospital had 5768 appointments. Among these, 621 (10,76% were about professional accident, 25 (4,03% of this amount came from the own hospital and 596 (95,97% from other services. The article verified that workers proceeding from big services are leaded to the hospital evaluated. It´s important to structure health´s services to optimize the worker´s attending in the original´s unit. KEYWORDS: Occupational accidents; Occupational risk; Occupational Accidents registry.

  1. Accidents with biological material among undergraduate nursing students in a public Brazilian university

    Renata Karina Reis

    Full Text Available During their academic activities, undergraduate nursing students are exposed to contamination by bloodborne pathogens, as well as by others found in body fluids, among which are the Human Immunodeficiency (HIV, Hepatitis B and C viruses. We developed a profile of victimized students, characterizing accidents with biological material occurring among undergraduate nursing students at a public university in São Paulo State, Brazil. We identified the main causes and evaluated the conduct adopted by students and their reactions and thoughts concerning the accidents. Seventy-two accidents were identified, of which 17% involved potentially contaminated biological material. Needles were the predominant cause of accidents. The most frequently involved topographic areas were the fingers. Only five students reported the accidents and sought medical care. Among these, two students were advised to begin prophylactic treatment against HIV infection by means of antiretroviral drugs. It was found that the risk of accidents is underestimated and that strategies such as formal teaching and continual training are necessary in order to make students aware of biosafety measures.

  2. Modelling effective dielectric properties of materials containing diverse types of biological cells

    Huclova, Sonja; Froehlich, Juerg; Erni, Daniel

    2010-01-01

    An efficient and versatile numerical method for the generation of different realistically shaped biological cells is developed. This framework is used to calculate the dielectric spectra of materials containing specific types of biological cells. For the generation of the numerical models of the cells a flexible parametrization method based on the so-called superformula is applied including the option of obtaining non-axisymmetric shapes such as box-shaped cells and even shapes corresponding to echinocytes. The dielectric spectra of effective media containing various cell morphologies are calculated focusing on the dependence of the spectral features on the cell shape. The numerical method is validated by comparing a model of spherical inclusions at a low volume fraction with the analytical solution obtained by the Maxwell-Garnett mixing formula, resulting in good agreement. Our simulation data for different cell shapes suggest that around 1MHz the effective dielectric properties of different cell shapes at different volume fractions significantly deviate from the spherical case. The most pronounced change exhibits ε eff between 0.1 and 1 MHz with a deviation of up to 35% for a box-shaped cell and 15% for an echinocyte compared with the sphere at a volume fraction of 0.4. This hampers the unique interpretation of changes in cellular features measured by dielectric spectroscopy when simplified material models are used.

  3. Certification of biological reference materials: participation of the Neutron Activation Laboratory (LAN-IPEN/CNEN-SP)

    Ticianelli, Regina B.; Figueiredo, Ana Maria G.

    2007-01-01

    Analytical laboratories have as one of their important goals to demonstrate their competence allowing international acceptance and comparison of analytical data. The IPEN Neutron Activation Laboratory (LAN-IPEN) has implemented its Quality Assurance Program which comprises, among other activities, the participation in intercomparison runs. As a part of this Quality Assurance Program, LAN-IPEN has participated in interlaboratorial trials to analyze two biological candidate reference materials: INCT-CF-3 Corn Flour and INCT-SBF-4 Soya Bean Flour from the Institute of Nuclear Chemistry And Technology (Warszawa, Poland). The elements Br, Ca, Co, Cs, Fe, K, Na, Rb and Zn were analyzed in the candidate reference materials by instrumental neutron activation analysis (INAA). The performance of the laboratory was statistically evaluated in relation to the consensus values for these materials using the Z-Score test. This laboratory evaluation method has been accepted as a standard by ISO/IUPAC. In the present study, adequate Z-Score values (|Z|<2) were observed for all of the analyzed elements, confirming the accuracy of the nuclear methodology employed. The contribution of LAN-IPEN in the certification of the reference materials analyzed was very important, since the results provided were used in the statistical evaluation of the certified value. (author)

  4. Communication of work accidents involving biological material: a study in the city of Santa Cruz do Sul/RS

    Dayane Diehl; Karini da Rosa; Susimar Souza Rosa; Susane Beatriz Frantz Krug

    2012-01-01

    Rationale and Objectives: Healthcare workers are constantly exposed to the risk of occupational accidents involving biological material. Thus the aim of the study was to develop a profile of workers involved in workplace accidents with biological materials in Santa Cruz do Sul, through the number of notifications made in information systems. Methods: Transversal retrospective study with a quantitative approach; data collection was carried out between the years 2008 and 2010 from medical recor...

  5. Procurement of a Large Area Mapping FTIR Microscope for Organic-Inorganic Interfacial Analysis in Biological Materials

    2015-12-31

    SECURITY CLASSIFICATION OF: After acquiring the Infrared Imaging Microscope with large area mapping capabilities for structure -function research and...Inorganic Interfacial Analysis in Biological Materials The views, opinions and/or findings contained in this report are those of the author(s) and should...of a Large Area Mapping FTIR Microscope for Organic-Inorganic Interfacial Analysis in Biological Materials Report Title After acquiring the Infrared

  6. Analytic determination of the activation of essential and toxic trace elements in biological material

    Schelenz, R.

    1980-01-01

    A neutron activation-analysis technique for the multielement determination in biological material was developed. The individual steps of this procedure comprise radiochemical and also instrumental analytic techniques. After radiochemical separation 34 elements can be determined, after only instrumental procedures 26 elements can be detected in biological material. The radiochemical analysis of 34 elements lasts 4 days. Tracer investigations on the radionuclide retention of the anorganic separators HAP, TiP and ZP in 9N aqueous HNO 3 solution indicated that apart from Na-24, K-42 and P-32 the radionuclides Cs-134, Rb-86 and Se-75 are almost quantitatively adsorbed at the separators. For the remaining investigated radionuclides different but well-reproducible retention values resulted. The pH-value only slightly influences the extent of the radionuclide retention. Kinetic investigations on the radiochemical precipitation of some radionuclides on Cu and Cu(Hg)sub(x) were carried out. The depositing of the radionuclides Ag-110m, Hg-203 and Se-75 at 0 0 C and room temperature on Cu(Hg)sub(x) and Cu foil is a first order reaction. The half-life periods and the velocity constants of the depositing on Cu and Cu(Hg)sub(x) were determined for the investigated radionuclides in dependency of the temperature. The technique was examined by means of international biological multielement standards of known element combinations. The realisation of ring tests for the multielement determination in potatoe and milk powder showed that this method provides precise results. The applicability of the radiochemical method was confirmed by the simultaneous determination of 25 elements in overall nutrition samples. The instrumental technique was applied for the multielement determination in human hair (of the head) and in river water. (orig./MG) [de

  7. Globalization

    Andru?cã Maria Carmen

    2013-01-01

    The field of globalization has highlighted an interdependence implied by a more harmonious understanding determined by the daily interaction between nations through the inducement of peace and the management of streamlining and the effectiveness of the global economy. For the functioning of the globalization, the developing countries that can be helped by the developed ones must be involved. The international community can contribute to the institution of the development environment of the gl...

  8. Biological Sciences for the 21st Century: Meeting the Challenges of Sustainable Development in an Era of Global Change

    Joel Cracraft; Richard O' Grady

    2007-05-12

    The symposium was held 10-12 May, 2007 at the Capitol Hilton Hotel in Washington, D. C. The 30 talks explored how some of today's key biological research developments (such as biocomplexity and complex systems analysis, bioinformatics and computational biology, the expansion of molecular and genomics research, and the emergence of other comprehensive or system wide analyses, such as proteomics) contribute to sustainability science. The symposium therefore emphasized the challenges facing agriculture, human health, sustainable energy, and the maintenance of ecosystems and their services, so as to provide a focus and a suite of examples of the enormous potential contributions arising from these new developments in the biological sciences. This symposium was the first to provide a venue for exploring how the ongoing advances in the biological sciences together with new approaches for improving knowledge integration and institutional science capacity address key global challenges to sustainability. The speakers presented new research findings, and identified new approaches and needs in biological research that can be expected to have substantial impacts on sustainability science.

  9. Survey of local and global biological network alignment: the need to reconcile the two sides of the same coin.

    Guzzi, Pietro Hiram; Milenković, Tijana

    2017-01-05

    Analogous to genomic sequence alignment that allows for across-species transfer of biological knowledge between conserved sequence regions, biological network alignment can be used to guide the knowledge transfer between conserved regions of molecular networks of different species. Hence, biological network alignment can be used to redefine the traditional notion of a sequence-based homology to a new notion of network-based homology. Analogous to genomic sequence alignment, there exist local and global biological network alignments. Here, we survey prominent and recent computational approaches of each network alignment type and discuss their (dis)advantages. Then, as it was recently shown that the two approach types are complementary, in the sense that they capture different slices of cellular functioning, we discuss the need to reconcile the two network alignment types and present a recent first step in this direction. We conclude with some open research problems on this topic and comment on the usefulness of network alignment in other domains besides computational biology. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. STUDENTS’ SCIENCE LITERACY ABILITY PROFILE IN ENVIRONMENTAL POLLUTION AND GLOBAL WARMING MATERIAL

    Laela Ulfa

    2017-12-01

    Full Text Available This research head for measure profile of students’ science literacy ability in environmental pollution and global warming material. The study was conducted in one of SMP Negeri Semarang with samples of 70 students from grade VII D and VII E. The profile of literacy science of students from the highest percentage till the lowest was science as a body of a knowledge was 70,36%, science as a way of thinking was 61,71%, the interaction between science, technology, and society was 61,43% categorized enough level, and science as a way for investigating was 38,21 categorized too less. keywords: science literacy, scince literacy ability

  11. Determination of tin in biological reference materials by atomic absorption spectrophotometry and neutron activation analysis

    Chiba, M.; Iyengar, V.; Gills, T.

    1991-01-01

    Because of a lack of reliable analytical techniques for the determination of tin in biological materials, there have been no reference materials certified for this element. However, the authors' experience has shown that it is feasible to use both atomic absorption and nuclear activation techniques at least for selected matrices. Therefore, an investigation was undertaken to determine tin in several biological materials such as non-fat milk powder (NBS-SRM-1549), citrus leaves (NBS-SRM-1572), total diet (NIST-SRM-1548), mixed diet (NBS-RM-8431), and USDIET-I by atomic absorption spectrophotometry (AAS) and neutron activation analysis (NAA). AAS-ashed samples were extracted with MIBK and assayed using a Perkin Elmer model 5000 apparatus. NAA was carried out by irradiating the samples at the NIST reactor in the RT-4 facility and counting with the help of a Ge(Li) detector connected to a multichannel analyzer. The concentration of tin measured by both AAS and NAA agree well for USDIET-I, total diet, citrus leaves and non-fat milk powder (the concentration ranges for tin in these matrices were from 0.0025 to 3.8 micro g/g). However, in the case of mixed diet (RM-8431), the mean values found were 47 ± 5.6 (n = 19) by AAS and 55.5 ± 2.5 (n = 6) by INAA. Since RM-8431 is not certified it is difficult to draw conclusions. For apple and peach leaves, a distillation step was required. The results were apple leaves 0.085 ± 0.015 (n = 10) by AAS and < 0.2 (n = 3) by RNAA; for peach leaves 0.077 ± 0.02 (n = 9) by AAS and < 0.1 (n = 3) by RNAA. All concentrations are expressed in micro g/g dry weight

  12. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-A review.

    Boyd, Philip W; Collins, Sinead; Dupont, Sam; Fabricius, Katharina; Gattuso, Jean-Pierre; Havenhand, Jonathan; Hutchins, David A; Riebesell, Ulf; Rintoul, Max S; Vichi, Marcello; Biswas, Haimanti; Ciotti, Aurea; Gao, Kunshan; Gehlen, Marion; Hurd, Catriona L; Kurihara, Haruko; McGraw, Christina M; Navarro, Jorge M; Nilsson, Göran E; Passow, Uta; Pörtner, Hans-Otto

    2018-06-01

    Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy-making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain process-oriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science-based policy formulation. © 2018 John Wiley & Sons Ltd.

  13. Global Stress Classification System for Materials Used in Solar Energy Applications

    Slamova, Karolina; Schill, Christian; Herrmann, Jan; Datta, Pawan; Chih Wang, Chien

    2016-08-01

    Depending on the geographical location, the individual or combined impact of environmental stress factors and corresponding performance losses for solar applications varies significantly. Therefore, as a strategy to reduce investment risks and operating and maintenance costs, it is necessary to adapt the materials and components of solar energy systems specifically to regional environmental conditions. The project «GloBe Solar» supports this strategy by focusing on the development of a global stress classification system for materials in solar energy applications. The aim of this classification system is to assist in the identification of the individual stress conditions for every location on the earth's surface. The stress classification system could serve as a decision support tool for the industry (manufacturers, investors, lenders and project developers) and help to improve knowledge and services that can provide higher confidence to solar power systems.

  14. Influence of Pichia pastoris cellular material on polymerase chain reaction performance as a synthetic biology standard for genome monitoring.

    Templar, Alexander; Woodhouse, Stefan; Keshavarz-Moore, Eli; Nesbeth, Darren N

    2016-08-01

    Advances in synthetic genomics are now well underway in yeasts due to the low cost of synthetic DNA. These new capabilities also bring greater need for quantitating the presence, loss and rearrangement of loci within synthetic yeast genomes. Methods for achieving this will ideally; i) be robust to industrial settings, ii) adhere to a global standard and iii) be sufficiently rapid to enable at-line monitoring during cell growth. The methylotrophic yeast Pichia pastoris (P. pastoris) is increasingly used for industrial production of biotherapeutic proteins so we sought to answer the following questions for this particular yeast species. Is time-consuming DNA purification necessary to obtain accurate end-point polymerase chain reaction (e-pPCR) and quantitative PCR (qPCR) data? Can the novel linear regression of efficiency qPCR method (LRE qPCR), which has properties desirable in a synthetic biology standard, match the accuracy of conventional qPCR? Does cell cultivation scale influence PCR performance? To answer these questions we performed e-pPCR and qPCR in the presence and absence of cellular material disrupted by a mild 30s sonication procedure. The e-pPCR limit of detection (LOD) for a genomic target locus was 50pg (4.91×10(3) copies) of purified genomic DNA (gDNA) but the presence of cellular material reduced this sensitivity sixfold to 300pg gDNA (2.95×10(4) copies). LRE qPCR matched the accuracy of a conventional standard curve qPCR method. The presence of material from bioreactor cultivation of up to OD600=80 did not significantly compromise the accuracy of LRE qPCR. We conclude that a simple and rapid cell disruption step is sufficient to render P. pastoris samples of up to OD600=80 amenable to analysis using LRE qPCR which we propose as a synthetic biology standard. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Effects of chemical and biological warfare remediation agents on the materials of museum objects

    Solazzo, C.; Erhardt, D.; Marte, F.; von Endt, D.; Tumosa, C.

    In the fall of 2001, anthrax-contaminated letters were sent to public figures in the United States. Chemical and radiation treatments were employed to decontaminate exposed buildings, objects, and materials. These treatments are effective, but potentially damaging to exposed objects and materials. The recommended surface chemical treatments include solutions, gels, and foams of oxidizing agents such as peroxides or chlorine bleaching agents. Such oxidizing agents are effective against a wide range of hazardous chemical and biological agents. Knowing how these reagents affect various substrates would help to anticipate and to minimize any potential damage. We are examining the effects on typical museum materials of reagents likely to be used, including hydrogen peroxide, sodium hypochlorite, and potassium peroxymonosulfate. Results so far show significant changes in a number of materials. Surface corrosion was observed on metals such as copper, silver, iron, and brass. Color changes occurred with at least one reagent in about one-fourth of the dyed fabric swatches tested, and about half of the inks. Samples of aged yellowed paper are bleached. Effects varied with both the substrate and the tested reagent. The observed changes were generally less drastic than might have been expected. Enough materials were affected, though, to preclude the use of these reagents on museum objects unless no less drastic alternative is available. It appears that many objects of lesser intrinsic value can be treated without severe loss of properties or usefulness. For example, most documents should remain legible if the appropriate reagent is used. This work will provide a basis for determining which treatment is most appropriate for a specific situation and what consequences are to be expected from other treatments.

  16. Simultaneous determination of arsenic, copper, manganese, selenium, and zinc in biological materials by neutron activation analysis

    Damsgaard, E.; Heydorn, K.

    1976-08-01

    A method for the simultaneous determination of arsenic, copper, manganese, selenium, and zinc in biological material was developed by the incorporation of separation procedures for copper and zinc into an existing procedure. Investigation of the performance characteristics of the method was carried out with reference to copper and zinc. For certain materials characterized by a high Cu/Zn ratio, or a high zinc content, or both, such as liver, copper ihterferes in the determination of zinc thus requiring a small correction by an iterative procedure. Blank values for copper depend on the rinsing of the irradiation container, and a single rinsing with redistilled water was found superior to other rinsing procedures. Nuclear interference was negligible. The accuracy of the method was checked by analysis of Standard Reference Materials and the precision verified by analysis of Intercomparison Samples. Results are presented for 5 male foetuses of 3-5 months' gestational age. The distribution of arsenic, manganese and selenium is similar to that previously reported for adults. With the exception of liver, concentrations of copper in foetal organs were lower than values in the literature indicate. (author)

  17. Occupational exposure to contaminated biological material: perceptions and feelings experienced among dental students

    Camila PINELLI

    Full Text Available INTRODUCTION: Dental students may be a particularly vulnerable group exposed to the risk of acquiring infections through occupational injuries.OBJECTIVE: To investigate the perceptions with regard to their occupational exposure to potentially infectious biologic materials.MATERIAL AND METHOD: Interviews were conducted by means of a script with open questions. The speeches were recorded, transcribed and qualitative analysis was performed with the aid of QUALIQUANTISOFT® software. The Collective Subject Discourse (CSD was obtained.RESULT: The feeling most frequently experienced was related to the fear of contagion. Most accidents occurred during the handling of sharp dental instruments. Respondents attributed the occurrence of accidents especially the lack of attention, carelessness while handling sharp instruments, and lack of use of Personal Protective Equipment. As regards the measures taken right after the exposure, they "washed the local area". Other respondents reported they "continued the dental treatment". They complained mostly about the fear of having been infected, and because they had to leave the faculty to take blood exams for HIV screening. As part of the learning experience the injured reported they paid more attention when handling sharp instruments. The students informed that any type of injury due to contact with contaminated material must be notified. However, they were neglectful about reporting their own injury.CONCLUSION: Education strategies for preventive measures related to occupational exposure must be restructured, because the knowledge and the fear of contagion among dental students were not always sufficient for a complete adherence to treatment protocols and notification.

  18. The Effects of Instruction with Visual Materials on the Development of Preservice Elementary Teachers' Knowledge and Attitude towards Global Warming

    Bozdogan, Aykut Emre

    2011-01-01

    This study aimed to identify the erroneous knowledge and misconceptions of preservice elementary teachers about global warming and examine the effects of instruction with visual materials on rectifying these misconceptions and fostering a positive attitude towards the issue of global warming. Having a quasi-experimental design, the study made use…

  19. Banking biological collections: data warehousing, data mining, and data dilemmas in genomics and global health policy.

    Blatt, R J R

    2000-01-01

    While DNA databases may offer the opportunity to (1) assess population-based prevalence of specific genes and variants, (2) simplify the search for molecular markers, (3) improve targeted drug discovery and development for disease management, (4) refine strategies for disease prevention, and (5) provide the data necessary for evidence-based decision-making, serious scientific and social questions remain. Whether samples are identified, coded, or anonymous, biological banking raises profound ethical and legal issues pertaining to access, informed consent, privacy and confidentiality of genomic information, civil liberties, patenting, and proprietary rights. This paper provides an overview of key policy issues and questions pertaining to biological banking, with a focus on developments in specimen collection, transnational distribution, and public health and academic-industry research alliances. It highlights the challenges posed by the commercialization of genomics, and proposes the need for harmonization of biological banking policies.

  20. Reference methods and materials. A programme of support for regional and global marine pollution assessments

    1990-01-01

    This document describes a programme of comprehensive support for regional and global marine pollution assessments developed by the United Nations Environment Programme (UNEP) in cooperation with the International Atomic Energy Agency (IAEA) and the Intergovernmental Oceanographic Commission (IOC) and with the collaboration of a number of other United Nations Specialized agencies including the Food and Agriculture Organisation (FAO), the World Meteorological Organisation (WMO), the World Health Organisation (WHO) and the International Maritime Organisation (IMO). Two of the principle components of this programme, Reference Methods and Reference materials are given special attention in this document and a full Reference Method catalogue is included, giving details of over 80 methods currently available or in an advanced stage of preparation and testing. It is important that these methods are seen as a functional component of a much wider strategy necessary for assuring good quality and intercomparable data for regional and global pollution monitoring and the user is encouraged to read this document carefully before employing Reference Methods and Reference Materials in his/her laboratory. 3 figs

  1. Global risks due to illicit trafficking of nuclear and radiological materials

    Barakat, M. F.

    2012-01-01

    The global widespread applications of of the peaceful uses of atomic energy resulted in the production and accumulation of huge amounts of dangerous nuclear wastes and nuclear materials, the greater part of which is left either unattended or insufficiently protected. In the mean time, many terrorist groups appeared in the international arena aiming at fighting against all forms of pressure, discrimination or injustice in the international relations among developed and developing countries particularly in politically unstable regions of the world. Unfortunately, these terrorist groups were inclined to adopt the use of nuclear or radiological rather crude weapons to improve their methods and efforts in imposing situations of maximum horror possible to subjected communities. In the present work a brief study of the dimensions of nuclear terrorism, its forms and means directed to its support , has been carried out. The efforts to combat against nuclear proliferation in Central Asia as a region in which most of the violations of the non proliferation efforts occurred has been treated. In contrast, the prevailing conditions and efforts in the Americas region are discussed being a region in which combined efforts of the united states with other American countries were rather successful in combating nuclear proliferation. Some recommendations have been given concerning the necessary measures to face the global risk of illicit trafficking of nuclear materials all over the world. (author)

  2. Planetary Biology and Microbial Ecology: Molecular Ecology and the Global Nitrogen cycle

    Nealson, Molly Stone (Editor); Nealson, Kenneth H. (Editor)

    1993-01-01

    This report summarizes the results of the Planetary Biology and Molecular Ecology's summer 1991 program, which was held at the Marine Biological Laboratory in Woods Hole, Massachusetts. The purpose of the interdisciplinary PBME program is to integrate, via lectures and laboratory work, the contributions of university and NASA scientists and student interns. The goals of the 1991 program were to examine several aspects of the biogeochemistry of the nitrogen cycle and to teach the application of modern methods of molecular genetics to field studies of organisms. Descriptions of the laboratory projects and protocols and abstracts and references of the lectures are presented.

  3. [Work accidents with biological material occurred in municipalities of Minas Gerais].

    Julio, Renata Siqueira; Filardi, Monique Borsato Silva; Marziale, Maria Helena Palucci

    2014-01-01

    The study aimed to identify the profile accidents involving exposure to biological material occurring in Minas Gerais. A descriptive study carried out by querying the Information System for Notifiable Diseases, 50 cities in south of Minas Gerais State, Brazil, in the period of 2007-2011. Were recorded 460 accidents, and about half occurred among nursing assistants and technicians, followed by nurses and physicians. There were more accidents due to improper disposal of sharps. Among the source patients, there was a 8.0% prevalence of positive serology for HIV, 1.0% for HBsAg, 6.0% for anti-HBc and 3% for anti-HCV. Among the injured 14.0% were not immunized to hepatitis B; however, the vaccine and immunoglobulin prescription was lower than necessary. The results will subsidize the plan preventive measures and new approach towards the occurrence of such accidents.

  4. Why should we respect the privacy of donors of biological material?

    Tännsjö, Torbjörn

    2011-02-01

    Why should we respect the privacy of donors of biological material? The question is answered in the present article in general philosophical terms from the point of view of an ethics of honour, a libertarian theory of rights, a view of respect for privacy based on the idea that autonomy is of value in itself, and utilitarianism respectively. For different reasons the ethics of honour and the idea of the value of autonomy are set to one side. It surfaces that the moral rights theory and utilitarianism present conflicting answers to the question. The main thrust of the argument is that there is no way of finding an overlapping consensus, so politicians have to take decisions that are bound to be controversial in that they can be questioned on reasonable philosophical grounds.

  5. Ultratrace determination of platinum in biological materials via neutron activation and radiochemical separation

    Zeisler, R.; Greenberg, R.R.

    1982-01-01

    A neutron activation analysis scheme based upon a radiochemical separation of the activation products has been developed. The method utilizes the inherent sensitivity of the activation reaction 198 Pt(n,ν) 199 Pt and counting of the daughter nuclide 199 Au. This nuclide is radiochemically separated from interfering activities by homogeneous precipitation as elemental gold. The remaining interference of the secondary reaction 197 Au(n,ν) 198 Au(n,ν) 199 Au from gold in the samples is quantitatively assessed and corrected. During this process accurate gold concentrations in the samples are obtained at ultratrace levels. The analysis scheme is applied to gold and platinum determinations in biological Standard Reference Materials and human liver specimens. Gold and platinum are determined at concentrations of 5x10 - 11 g/g, and at higher levels. (author)

  6. Activation analytical determination of essential and toxic trace elements in biological material

    Schelenz, R.

    1980-01-01

    In order to determine the essential trace elements Hg, Ag, Cu and Se in food (potatoes, milk powder) and biological standard materials (fruit tree leaves), simple, fast radiochemical separation methods are worked out. Following oxidative decomposition and destillation of Hg, the elements silver, copper and selenium are found in the destillation residue and can be electrochemically enriched on an amalgamated Cu foil (determination of Ag and Se in the concentration range of 10 -9 to 10 -8 g, of Cu in the range of 10 -12 to 10 -10 g), whilst the matrix elements Na, K, P are adsorbed on a column with 3 different inorganic ion exchangers. The eluate of the ion exchanger can be added directly to the multielement gamma spectroscopy. The possiblity of working purely instrumentally is demonstrated by 2 examples: multielement analysis of human hair and river water. (RB) [de

  7. A rapid screening method for heavy metals in biological materials by emission spectroscopy.

    Blacklock, E C; Sadler, P A

    1981-06-02

    A semi-quantitative screening method for heavy metals in biological material is described. The metals are complexed with ammonium pyrrolidine dithiocarbamate, sodium diethyl dithiocarbamate and potassium sodium tartrate. The solutions are adjusted to pH 4 and then extracted into chloroform. The chloroform phase is evaporated onto a matrix mixture of lithium fluoride and graphite. The sample is analysed by direct current arc emission spectroscopy using a 3 metre grating spectrograph. The spectra are recorded on a photographic plate. The method is developed on aqueous and spiked samples and then applied to in vivo samples containing toxic levels of heavy metals. Atomic absorption spectroscopy is used to check standard concentrations and to monitor the efficiency of the extraction procedure.

  8. Reactivity comparison of biological material after radiolabeling with avidin-biotin system

    Fan Wo; Qian Jianhua; Zhu Benxing

    2003-01-01

    To find a method for determining the immunoreactivity of monoclonal antibodies after radiolabeling avidin is unlabeled and labeled with Rodamine, 131 I and 188 Re, respectively. The affinities and half-desorbed amounts of biotin and four kinds of avidin are determined by the biotin columns plus non-labeled avidin (cold avidin). The affinities of biotin and avidin unlabeled and labeled with Rodamine, 188 Re and 131 I are decreased in turn. Their half-desorbed amounts from biotin are 21.9, 19.5, 25.7 and 47.9 μg of cold avidin. Two kinds of radiolabeled avidin have lower affinity with biotin than that of avidin unlabeled and labeled with Rodamine. There is a possibility to evaluate the reactivity of biological materials with different labeling methods by avidin-biotin system

  9. Determination of selenium in biological material by instrumental neutron activation analysis using 77m Se radioisotope

    Vasconcellos, Marina B.A.; Moreira, Edson G.; Catharino, Marilia G.M.; Tokura, Alexandra M.; Saiki, Mitiko

    1999-01-01

    Selenium is an essential element in human diet due to its relation to the protection against carcinogenic substances, heart disease, hypertension, sexual performance enhancement, and others. In this work Se concentration in samples of the biological certificate reference materials Human Hair BCR-CRM 397, Spiked Human Hair IAEA-085, Unspiked Human Hair IAEA-086; Dogfish Liver DOLT-1 and Dogfish Muscle DORM-1 were determined in order to improve the instrumental neutron activation analysis, INAA, method using 77m Se radioisotope. The application of this method allows the analysis of a large number of samples of samples with reduced time of experimental and cost. the best results were obtained with the reactor operating at 5 MW and time of irradiation between 10 and 20 s. In these experimental conditions the relative standard deviation and error were generally lower than 10%. (author)

  10. Method for determination of radioactive iodine isotopes in environmental objects and biologic materials

    Dubynin, O.D.; Pogodin, R.I.

    1981-01-01

    The method proposed for determination of radioactive iodine isotopes content in environmental objects and biologic materials is based on the extraction of iodine with carbon tetrachloride and subsequent precipitation of bismuthyl iodine (BiOI) in perchloric medium. Sample preparation for analysis is carried out using conventional alkaline ashing methods. Quantitative iodine separation is hampered if macroquantities of Cl - , Br - , SO 4 2 - , SO 8 2 - , Cr 2 O 7 2 - and other ions are present in the solution. Iodine extraction is carried out before its precipitation. Separated iodine preparation activity is measured using scintillation (NaI) Tl gamma spectrometer. The method's sensitivity when measuring iodine-131 preparations makes up 0.07 Bq per 1 sample with the error +-25 %

  11. Determination of zinc stable isotopes in biological materials using isotope dilution inductively coupled plasma mass spectrometry

    Patterson, K.Y.; Veillon, Claude

    1992-01-01

    A method is described for using isotope dilution to determine both the amount of natural zinc and enriched isotopes of zinc in biological samples. Isotope dilution inductively coupled plasma mass spectrometry offers a way to quantify not only the natural zinc found in a sample but also the enriched isotope tracers of zinc. Accurate values for the enriched isotopes and natural zinc are obtained by adjusting the mass count rate data for measurable instrumental biases. Analytical interferences from the matrix are avoided by extracting the zinc from the sample matrix using diethylammonium diethyldithiocarbamate. The extraction technique separates the zinc from elements which form interfering molecular ions at the same nominal masses as the zinc isotopes. Accuracy of the method is verified using standard reference materials. The detection limit is 0.06 μg Zn per sample. Precision of the abundance ratios range from 0.3-0.8%. R.S.D. for natural zinc concentrations is about 200-600 μg g -1 . The accuracy and precision of the measurements make it possible to follow enriched isotopic tracers of zinc in biological samples in metabolic tracer studies. (author). 19 refs.; 1 fig., 4 tabs

  12. Recovery of iodine as iodine-125 from biological materials prior to assay

    Jones, G.B.; Belling, G.B.; Buckley, R.A.

    1979-01-01

    In biological tissues iodine is usually present as iodoamino acids or iodoproteins. The organic material must be oxidised and the iodine converted into iodate prior to the final spectrophotometric determination. At parts per billion (10 9 ) levels, recoveries of added iodine are difficult to measure precisely as iodine can easily be lost from the sample and added inorganic iodine may not be recovered in the same proportions as the naturally occurring iodine. Iodine-125 provides a much more sensitive, specific and accurate means of testing the recovery of nanogram amounts of iodine from biological tissues and it can be incorporated into tissues in the naturally occurring compounds. Plants can be grown in a solution culture containing iodine-125 and animals can be injected with iodine-125 to provide tissues where naturally occurring iodine compounds are labelled with radioactive iodine. These tissues can be used to examine the recovery of iodine after oven drying, freeze drying, alkali ashing and acid digestion of the samples. Experimental details are given for spinach, tobacco, oats, cauliflower and thyroid. Results are given and discussed. (author)

  13. Quantitative global sensitivity analysis of a biologically based dose-response pregnancy model for the thyroid endocrine system.

    Lumen, Annie; McNally, Kevin; George, Nysia; Fisher, Jeffrey W; Loizou, George D

    2015-01-01

    A deterministic biologically based dose-response model for the thyroidal system in a near-term pregnant woman and the fetus was recently developed to evaluate quantitatively thyroid hormone perturbations. The current work focuses on conducting a quantitative global sensitivity analysis on this complex model to identify and characterize the sources and contributions of uncertainties in the predicted model output. The workflow and methodologies suitable for computationally expensive models, such as the Morris screening method and Gaussian Emulation processes, were used for the implementation of the global sensitivity analysis. Sensitivity indices, such as main, total and interaction effects, were computed for a screened set of the total thyroidal system descriptive model input parameters. Furthermore, a narrower sub-set of the most influential parameters affecting the model output of maternal thyroid hormone levels were identified in addition to the characterization of their overall and pair-wise parameter interaction quotients. The characteristic trends of influence in model output for each of these individual model input parameters over their plausible ranges were elucidated using Gaussian Emulation processes. Through global sensitivity analysis we have gained a better understanding of the model behavior and performance beyond the domains of observation by the simultaneous variation in model inputs over their range of plausible uncertainties. The sensitivity analysis helped identify parameters that determine the driving mechanisms of the maternal and fetal iodide kinetics, thyroid function and their interactions, and contributed to an improved understanding of the system modeled. We have thus demonstrated the use and application of global sensitivity analysis for a biologically based dose-response model for sensitive life-stages such as pregnancy that provides richer information on the model and the thyroidal system modeled compared to local sensitivity analysis.

  14. Quantitative global sensitivity analysis of a biologically based dose-response pregnancy model for the thyroid endocrine system

    Annie eLumen

    2015-05-01

    Full Text Available A deterministic biologically based dose-response model for the thyroidal system in a near-term pregnant woman and the fetus was recently developed to evaluate quantitatively thyroid hormone perturbations. The current work focuses on conducting a quantitative global sensitivity analysis on this complex model to identify and characterize the sources and contributions of uncertainties in the predicted model output. The workflow and methodologies suitable for computationally expensive models, such as the Morris screening method and Gaussian Emulation processes, were used for the implementation of the global sensitivity analysis. Sensitivity indices, such as main, total and interaction effects, were computed for a screened set of the total thyroidal system descriptive model input parameters. Furthermore, a narrower sub-set of the most influential parameters affecting the model output of maternal thyroid hormone levels were identified in addition to the characterization of their overall and pair-wise parameter interaction quotients. The characteristic trends of influence in model output for each of these individual model input parameters over their plausible ranges were elucidated using Gaussian Emulation processes. Through global sensitivity analysis we have gained a better understanding of the model behavior and performance beyond the domains of observation by the simultaneous variation in model inputs over their range of plausible uncertainties. The sensitivity analysis helped identify parameters that determine the driving mechanisms of the maternal and fetal iodide kinetics, thyroid function and their interactions, and contributed to an improved understanding of the system modeled. We have thus demonstrated the use and application of global sensitivity analysis for a biologically based dose-response model for sensitive life-stages such as pregnancy that provides richer information on the model and the thyroidal system modeled compared to local

  15. Measuring spatially- and directionally-varying light scattering from biological material.

    Harvey, Todd Alan; Bostwick, Kimberly S; Marschner, Steve

    2013-05-20

    Light interacts with an organism's integument on a variety of spatial scales. For example in an iridescent bird: nano-scale structures produce color; the milli-scale structure of barbs and barbules largely determines the directional pattern of reflected light; and through the macro-scale spatial structure of overlapping, curved feathers, these directional effects create the visual texture. Milli-scale and macro-scale effects determine where on the organism's body, and from what viewpoints and under what illumination, the iridescent colors are seen. Thus, the highly directional flash of brilliant color from the iridescent throat of a hummingbird is inadequately explained by its nano-scale structure alone and questions remain. From a given observation point, which milli-scale elements of the feather are oriented to reflect strongly? Do some species produce broader "windows" for observation of iridescence than others? These and similar questions may be asked about any organisms that have evolved a particular surface appearance for signaling, camouflage, or other reasons. In order to study the directional patterns of light scattering from feathers, and their relationship to the bird's milli-scale morphology, we developed a protocol for measuring light scattered from biological materials using many high-resolution photographs taken with varying illumination and viewing directions. Since we measure scattered light as a function of direction, we can observe the characteristic features in the directional distribution of light scattered from that particular feather, and because barbs and barbules are resolved in our images, we can clearly attribute the directional features to these different milli-scale structures. Keeping the specimen intact preserves the gross-scale scattering behavior seen in nature. The method described here presents a generalized protocol for analyzing spatially- and directionally-varying light scattering from complex biological materials at multiple

  16. Biological evaluation of a new pulp capping material developed from Portland cement.

    Negm, Ahmed M; Hassanien, Ehab E; Abu-Seida, Ashraf M; Nagy, Mohamed M

    2017-03-02

    This study evaluates the biological properties of a new pulp capping material developed from Portland cement. This study was conducted on 48 teeth in 4 dogs (12 teeth/dog). The dogs were classified into two equal groups (n=24 teeth) according to the evaluation period including: group A (3 weeks) and group B (3 months). Each group was further subdivided into three equal subgroups (n=8 teeth) according to the capping material including: subgroup 1: mineral trioxide aggregate (MTA), subgroup2: Portland cement+10% calcium hydroxide+20% bismuth oxide (Port Cal) and subgroup 3: Portland cement+bismuth oxide. After general anesthesia, a class V buccal cavity was prepared coronal to the gingival margin. After pulp exposure and hemostasis,the capping materials and glass ionomer filling were placed on the exposure sites. All histopathological findings, inflammatory cell count and dentin bridge formation were recorded. Data were analyzed statistically. After 3 months, the histopathological picture of the pulp in subgroup 1 showed normal pulp, continuous odontoblastic layer and complete dentin bridge formation while subgroup 2 showed partial and complete dentin bridge over a normal and necrotic pulps. Subgroup 3 showed loss of normal architecture, areas of necrosis, complete, or incomplete dentin bridge formation, attached and detached pulp stones and fatty degeneration in group B. For group A, MTA subgroup showed the least number of inflammatory cell infiltrate followed by Port Cal subgroup. While subgroup 3 showed the highest number of inflammatory cell infiltrate. For group B, the mean inflammatory cell count increased with the three tested materials with no statistical difference. Regarding dentin bridge formation at group A, no significant differences was found between subgroups, while at group B, MTA subgroup exhibited significantly higher scores than other subgroups. In conclusion, addition of calcium hydroxide to Portland cement improves the dentin bridge formation

  17. Synthetic biology and global health in the age of intellectual property

    Belt, van den H.

    2014-01-01

    Although synthetic biology (SB) conjures up a future cornucopia of new medicines and other health applications, the antimalarial drug artemisinin is still one of the few concrete illustrations to substantiate this promise. As SB’s favorite poster child, it is atypical because it exemplifies a rather

  18. Emergy Evaluations of the Global Biogeochemical Cycles of Six Biologically Active Elements and Two Compounds

    Estimates of the emergy carried by the flows of biologically active elements (BAE) and compounds are needed to accurately evaluate the near and far field effects of anthropogenic wastes. The transformities and specific emergies of these elements and of their different chemical sp...

  19. "We Share the Same Biology..." Cultivating Cross-Cultural Empathy and Global Ethics through Multilingualism

    Rolbin, Cyrus; Chiesa, Bruno Della

    2010-01-01

    The "language-culture tesseract" hypothesized in the September 2010 issue of "Mind, Brain, and Education" suggests successive links between non-native language (NNL) acquisition, the development of cross-cultural empathy, and prosocial global ethics. Invoking Goethe's (1833/1999) aphorism, "those who do not know other languages know nothing of…

  20. Radioactively contaminated metallic materials: the search for a global solution; Materiales metalicos con contaminacion radiactiva: en busca de una solucion global

    Sanz, S.

    2009-07-01

    Radioactively contaminated metallic materials: the search for a global solution. Tarragona hosted the first International Conference on Control and Management of Inadvertent Radioactive Material in Metal Scrap, which was sponsored by the IAEA and organised by various Spanish entities, among them the CSN. The meeting served for the exchange of ideas and precautionary measures, a field in which Spain already has a long and recognised experience, and focussed on the voluntary Protocol, endorsed by the majority of the Spanish steelyards. (Author)

  1. Radiation distribution through serpentine concrete using local materials and its application as a reactor biological shield

    Kansouh, W.A.

    2012-01-01

    Highlights: ► New serpentine concrete was made and examined as a reactor biological shield. ► Ilmenite–limonite concrete is a better reactor biological shield. ► New serpentine concrete is a better reactor fast neutrons shield than ordinary and hematite–serpentine concretes. ► Serpentine concrete has lower properties as a reactor total gamma rays shields. - Abstract: In the present work attempt has been made to estimate the shielding parameters of the new serpentine concrete (density = 2.4 g/cm 3 ) using local materials on the shielding parameters for two types of heat resistant concretes, namely hematite–serpentine (density = 2.5 g/cm 3 ) and ilmenite–limonite (density = 2.9 g/cm 3 ). Shielding parameters for ordinary concrete (density = 2.3 g/cm 3 ) were also discussed. These parameters were determined experimentally for serpentine concrete and compared with previously published values for other concretes, which had also been obtained using local materials. The leakage spectra of reactor fast neutrons and total gamma photon beams from cylindrical samples of these concrete shields were also investigated using a collimated beam from ET-RR-1 reactor. A neutron–gamma spectrometer was used in order to obtain pulse height spectra of reactor fast neutrons and the total gamma rays leakage through the investigated concrete samples. These spectra were utilized to obtain the energy spectra required in these investigations. Removal cross section Σ R (E n ) and linear attenuation coefficient μ(E g ) for reactor fast neutrons and total gamma rays and their relative coefficients were evaluated and presented. Measured results were compared with those previously measured for other concretes. The results show that ilmenite–limonite concrete is a better reactor biological shield than the other three concretes. Serpentine concrete under investigation is a better reactor fast neutrons shield than ordinary and hematite–serpentine concretes. Serpentine concrete

  2. Effects of addictive substances during pregnancy and infancy and their analysis in biological materials.

    Płotka, Justyna; Narkowicz, Sylwia; Polkowska, Zaneta; Biziuk, Marek; Namieśnik, Jacek

    2014-01-01

    The use of addictive substances during pregnancy is a serious social problem, not only because of effects on the health of the woman and child, but also because drug or alcohol dependency detracts from child care and enhances the prospect of child neglect and family breakdown. Developing additive substance abuse treatment programs for pregnant women is socially important and can help ensure the health of babies, prevent subsequent developmental and behavioral problems (i.e., from intake of alcohol or other additive substances such as methamphetamine, cocaine,or heroine) and can reduce addiction costs to society. Because women of childbearing age often abuse controlled substances during their pregnancy, it is important to undertake biomonitoring of these substances in biological samples taken from the pregnant or nursing mother (e.g., blood, urine,hair, breast milk, sweat, oral fluids, etc.), from the fetus and newborn (e.g., meconium,cord blood, neonatal hair and urine) and from both the mother and fetus (i.e.,amniotic fluids and placenta). The choice of specimens to be analyzed is determined by many factors; however, the most important is knowledge of the chemical and physical characteristics of a substance and the route of it administration. Maternal and neonatal biological materials reflect exposures that occur over a specific time period, and each of these biological specimens has different advantages and disadvantages,in terms of accuracy, time window of exposure and cost/benefit ratio.Sampling the placenta may be the most important biomonitoring choice for assessing in utero exposure to addictive substances. The use of the placenta in scientific research causes a minimum of ethical problems, partly because its sampling is noninvasive, causes no harm to mother or child, and partly because, in any case,placentas are discarded and incinerated after birth. Such samples, when properly analyzed, may provide key essential information about fetal exposure to toxic

  3. Estimation of global inventories of radioactive waste and other radioactive materials

    2008-06-01

    A variety of nuclear activities have been carried out in the second part of the twentieth century for different purposes. Initially the emphasis was on military applications, but with the passage of time the main focus of nuclear activities has shifted to peaceful uses of nuclear energy and to the use of radioactive material in industry, medicine and research. Regardless of the objectives, the nuclear activities generate radioactive waste. It was considered worthwhile to produce a set of worldwide data that could be assessed to evaluate the legacy of the nuclear activities performed up to the transition between the twentieth and the twenty first century. The assessment tries to cover the inventory of all the human produced radioactive material that can be considered to result from both military and civilian applications. This has caused remarkable difficulties since much of the data, particularly relating to military programmes, are not readily available. Consequently the data on the inventory of radioactive material should be considered as order-of-magnitude approximations. This report as a whole should be considered as a first iteration in a continuing process of updating and upgrading. The accumulations of radioactive materials can be considered a burden for human society, both at present and in the future, since they require continuing monitoring and control. Knowing the amounts and types of such radioactive inventories can help in the assessment of the relative burdens. Knowledge of the national or regional radioactive waste inventory is necessary for planning management operations, including the sizing and design of conditioning, storage and disposal facilities. A global inventory, either of radioactive waste or of other environmental accumulations of radioactive material, could be used to provide a perspective on the requirements and burdens associated with their management, by means of comparisons with the burdens caused by other types of waste or other

  4. Determination of copper in biological materials by neutron activation analysis using short-lived 66Cu

    Dybczynski, R.; Danko, B.; Kaczorowski, J.

    1989-01-01

    A method for determination of copper traces in biological materials based on neutron activation employing 65 Cu(n, γ) 66 Cu reaction and preconcentration by extraction chromatography has been devised. The 200-500 mg samples after wet digestion and evaporation were dissolved in glycine solution and after pH adjusting to ca. 4.4 were passed through the column with Lix 64N on Bio Beads SM-1 for isolation of copper traces from the matrix elements. Other cations were selectively eluted with 0.1 mol x 1 -1 (glycine-HNO 3 ) buffer, 1 mol x 1 -1 in NH 4 NO 3 (pH = 3.6). The resin bed with quantitatively retained copper was sealed in the PE bag and irradiated together with Cu standards in EWA reactor using pneumatic tube facility. The activity of the short-lived 66 Cu was measured in samples and standard by gamma-ray spectrometry with Ge(Li) detector. Good accuracy of the method was confirmed by analysis of the following certified reference materials: NBS 1571 Orchad leaves, IAEA H-4 Animal muscle, IAEA V-8 Rye flour, IAEA A-11 milk powder. The detection limit amounted to 0.34 mg/kg, for the sample weight of 500 mg. (author)

  5. Evaluation of radiochemical neutron activation analysis methods for determination of arsenic in biological materials.

    Paul, Rick L

    2011-01-01

    Radiochemical neutron activation analysis (RNAA) with retention on hydrated manganese dioxide (HMD) has played a key role in the certification of As in biological materials at NIST. Although this method provides very high and reproducible yields and detection limits at low microgram/kilogram levels, counting geometry uncertainties may arise from unequal distribution of As in the HMD, and arsenic detection limits may not be optimal due to significant retention of other elements. An alternate RNAA procedure with separation of arsenic by solvent extraction has been investigated. After digestion of samples in nitric and perchloric acids, As(III) is extracted from 2 M sulfuric acid solution into a solution of zinc diethyldithiocarbamate in chloroform. Counting of (76)As allows quantitation of arsenic. Addition of an (77)As tracer solution prior to dissolution allows correction for chemical yield and counting geometries, further improving reproducibility. The HMD and solvent extraction procedures for arsenic were compared through analysis of SRMs 1577c (bovine liver), 1547 (peach leaves), and 1575a (pine needles). Both methods gave As results in agreement with certified values with comparable reproducibility. However, the solvent extraction method yields a factor of 3 improvement in detection limits and is less time-consuming than the HMD method. The new method shows great promise for use in As certification in reference materials.

  6. [Determinant factors and conduct in post-accident with biological material among pre-hospital professionals].

    Paiva, Maria Henriqueta Rocha Siqueira; Oliveira, Adriana Cristina

    2011-01-01

    This transversal study was carried out with a multiprofessional team in the pre-hospital care in Minas Gerais, Brazil. It aimed to estimate the incidence of occupational accidents by exposure to biological material and post-accidents conductsta. Descriptive analysis and logistic regression were used. Incidence of accidents was 19.8%: 39,1% perforating-cutting materials and 56.5% body fluids. Doctors (33.3%) and drivers (24.0%) were most involved. Inadequate subsequent measures were highly prevalent: no medical assessment (69.6%), no work accident communication issued (91.3%), no measures (52.2%) and no serological follow-up (52.2%). Variables associated with accidents were: age >31 years old (OR = 3,02; IC95%: 1,25 - 7,33; p = 0,014) and working in basic support units (OR = 5,36; IC95%: 1,51 19,08; p = 0,010). The implementation of post-accidents protocols is suggested in order to reduce accidents and under-notification, and increase post-accident follow-up.

  7. Water regime of mechanical-biological pretreated waste materials under fast-growing trees.

    Rüth, Björn; Lennartz, Bernd; Kahle, Petra

    2007-10-01

    In this study mechanical-biological pre-treated waste material (MBP) was tested for suitability to serve as an alternative surface layer in combination with fast-growing and water-consumptive trees for final covers at landfill sites. The aim was to quantify evapotranspiration and seepage losses by numerical model simulations for two sites in Germany. In addition, the leaf area index (LAI) of six tree species over the growing season as the driving parameter for transpiration calculations was determined experimentally. The maximum LAI varied between 3.8 and 6.1 m2 m(-2) for poplar and willow clones, respectively. The evapotranspiration calculations revealed that the use of MBP waste material for re-cultivation enhanced evapotranspiration by 40 mm year(-1) (10%) over an 11 year calculation period compared to a standard mineral soil. Between 82% (for LAI(max) = 3.8) and 87% (for LAI(max) = 6.1) of the average annual precipitation (506 mm) could be retained from the surface layer assuming eastern German climate conditions, compared with a retention efficiency between 79 and 82% for a mineral soil. Although a MBP layer in conjunction with water-consumptive trees can reduce vertical water losses as compared to mineral substrates, the effect is not sufficient to meet legal regulations.

  8. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications

    Palagi, Stefano; Mazzolai, Barbara; Beccai, Lucia; Jager, Edwin WH

    2013-01-01

    The quest for swimming microrobots originates from possible applications in medicine, especially involving navigation in bodily fluids. Swimming microorganisms have become a source of inspiration because their propulsion mechanisms are effective in the low-Reynolds number regime. In this study, we address a propulsion mechanism inspired by metachronal waves, i.e. the spontaneous coordination of cilia leading to the fast swimming of ciliates. We analyse the biological mechanism (referring to its particular embodiment in Paramecium caudatum), and we investigate the contribution of its main features to the swimming performance, through a three-dimensional finite-elements model, in order to develop a simplified, yet effective artificial design. We propose a bioinspired propulsion mechanism for a swimming microrobot based on a continuous cylindrical electroactive surface exhibiting perpendicular wave deformations travelling longitudinally along its main axis. The simplified propulsion mechanism is conceived specifically for microrobots that embed a micro-actuation system capable of executing the bioinspired propulsion (self-propelled microrobots). Among the available electroactive polymers, we select polypyrrole as the possible actuation material and we assess it for this particular embodiment. The results are used to appoint target performance specifications for the development of improved or new electroactive materials to attain metachronal-waves-like propulsion. (paper)

  9. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications.

    Palagi, Stefano; Jager, Edwin W H; Mazzolai, Barbara; Beccai, Lucia

    2013-12-01

    The quest for swimming microrobots originates from possible applications in medicine, especially involving navigation in bodily fluids. Swimming microorganisms have become a source of inspiration because their propulsion mechanisms are effective in the low-Reynolds number regime. In this study, we address a propulsion mechanism inspired by metachronal waves, i.e. the spontaneous coordination of cilia leading to the fast swimming of ciliates. We analyse the biological mechanism (referring to its particular embodiment in Paramecium caudatum), and we investigate the contribution of its main features to the swimming performance, through a three-dimensional finite-elements model, in order to develop a simplified, yet effective artificial design. We propose a bioinspired propulsion mechanism for a swimming microrobot based on a continuous cylindrical electroactive surface exhibiting perpendicular wave deformations travelling longitudinally along its main axis. The simplified propulsion mechanism is conceived specifically for microrobots that embed a micro-actuation system capable of executing the bioinspired propulsion (self-propelled microrobots). Among the available electroactive polymers, we select polypyrrole as the possible actuation material and we assess it for this particular embodiment. The results are used to appoint target performance specifications for the development of improved or new electroactive materials to attain metachronal-waves-like propulsion.

  10. Information and Biological Revolutions: Global Governance Challenges Summary of a Study Group

    2000-01-01

    34 become secondary or subconscious thoughts. A succession of focus occurs when the content of consciousness shifts and a new pattern prevails. This...conscious, subconscious or unconscious—is the search for hidden patterns. In their first four years of life, children go through at least four...body parts in the peritoneal cavities of animals, perfusing newly dead bodies as factories for useful biologicals, or reprogramming the human body

  11. Initiating Joint Chinese-U.S. Activities on Biological Safety and Global Health Security

    Center on Contemporary Conflict

    2014-01-01

    Performer: National Academy of Sciences (NAS) Principal Investigator: Benjamin J. Rusek Cost: $125,000 Fiscal Year(s): 2014-2015 China is critically important to international health and biological security efforts, yet awareness and implementation of biosafety and biosecurity practices are inconsistent among life science researchers and others working with pathogens and dual-use biotechnology in China. In late 2012, the Committee on International Security and Arms ...

  12. Effectiveness of biological surrogates for predicting patterns of marine biodiversity: a global meta-analysis.

    Camille Mellin

    Full Text Available The use of biological surrogates as proxies for biodiversity patterns is gaining popularity, particularly in marine systems where field surveys can be expensive and species richness high. Yet, uncertainty regarding their applicability remains because of inconsistency of definitions, a lack of standard methods for estimating effectiveness, and variable spatial scales considered. We present a Bayesian meta-analysis of the effectiveness of biological surrogates in marine ecosystems. Surrogate effectiveness was defined both as the proportion of surrogacy tests where predictions based on surrogates were better than random (i.e., low probability of making a Type I error; P and as the predictability of targets using surrogates (R(2. A total of 264 published surrogacy tests combined with prior probabilities elicited from eight international experts demonstrated that the habitat, spatial scale, type of surrogate and statistical method used all influenced surrogate effectiveness, at least according to either P or R(2. The type of surrogate used (higher-taxa, cross-taxa or subset taxa was the best predictor of P, with the higher-taxa surrogates outperforming all others. The marine habitat was the best predictor of R(2, with particularly low predictability in tropical reefs. Surrogate effectiveness was greatest for higher-taxa surrogates at a <10-km spatial scale, in low-complexity marine habitats such as soft bottoms, and using multivariate-based methods. Comparisons with terrestrial studies in terms of the methods used to study surrogates revealed that marine applications still ignore some problems with several widely used statistical approaches to surrogacy. Our study provides a benchmark for the reliable use of biological surrogates in marine ecosystems, and highlights directions for future development of biological surrogates in predicting biodiversity.

  13. Global Advances in Health and Medicine Through Systems Biology: An Example From the Netherlands

    van der Heijden, Marianne J.E.; Schroen, Yan

    2012-01-01

    Globally, healthcare systems are facing problems with increasing healthcare costs due to chronic diseases. Cardiovascular disease, cancer, diabetes, depression, and chronic lung disease are some of the top chronic diseases that put pressure on our healthcare systems and are very difficult to resolve. The chronic diseases mentioned are often lifestyle-related and require a personalized approach. The solutions that we currently have at hand seem to be insufficient in meeting the needs of the pa...

  14. Globalization

    Plum, Maja

    Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA...

  15. Globalization

    F. Gerard Adams

    2008-01-01

    The rapid globalization of the world economy is causing fundamental changes in patterns of trade and finance. Some economists have argued that globalization has arrived and that the world is “flat†. While the geographic scope of markets has increased, the author argues that new patterns of trade and finance are a result of the discrepancies between “old†countries and “new†. As the differences are gradually wiped out, particularly if knowledge and technology spread worldwide, the t...

  16. Mitigating the risk of Zika virus contamination of raw materials and cell lines in the manufacture of biologicals.

    Zmurko, Joanna; Vasey, Douglas B; Donald, Claire L; Armstrong, Alison A; McKee, Marian L; Kohl, Alain; Clayton, Reginald F

    2018-02-01

    Ensuring the virological safety of biologicals is challenging due to the risk of viral contamination of raw materials and cell banks, and exposure during in-process handling to known and/or emerging viral pathogens. Viruses may contaminate raw materials and biologicals intended for human or veterinary use and remain undetected until appropriate testing measures are employed. The outbreak and expansive spread of the mosquito-borne flavivirus Zika virus (ZIKV) poses challenges to screening human- and animal -derived products used in the manufacture of biologicals. Here, we report the results of an in vitro study where detector cell lines were challenged with African and Asian lineages of ZIKV. We demonstrate that this pathogen is robustly detectable by in vitro assay, thereby providing assurance of detection of ZIKV, and in turn underpinning the robustness of in vitro virology assays in safety testing of biologicals.

  17. Enhancement of global flood damage assessments using building material based vulnerability curves

    Englhardt, Johanna; de Ruiter, Marleen; de Moel, Hans; Aerts, Jeroen

    2017-04-01

    This study discusses the development of an enhanced approach for flood damage and risk assessments using vulnerability curves that are based on building material information. The approach draws upon common practices in earthquake vulnerability assessments, and is an alternative for land-use or building occupancy approach in flood risk assessment models. The approach is of particular importance for studies where there is a large variation in building material, such as large scale studies or studies in developing countries. A case study of Ethiopia is used to demonstrate the impact of the different methodological approaches on direct damage assessments due to flooding. Generally, flood damage assessments use damage curves for different land-use or occupancy types (i.e. urban or residential and commercial classes). However, these categories do not necessarily relate directly to vulnerability of damage by flood waters. For this, the construction type and building material may be more important, as is used in earthquake risk assessments. For this study, we use building material classification data of the PAGER1 project to define new building material based vulnerability classes for flood damage. This approach will be compared to the widely applied land-use based vulnerability curves such as used by De Moel et al. (2011). The case of Ethiopia demonstrates and compares the feasibility of this novel flood vulnerability method on a country level which holds the potential to be scaled up to a global level. The study shows that flood vulnerability based on building material also allows for better differentiation between flood damage in urban and rural settings, opening doors to better link to poverty studies when such exposure data is available. Furthermore, this new approach paves the road to the enhancement of multi-risk assessments as the method enables the comparison of vulnerability across different natural hazard types that also use material-based vulnerability curves

  18. Cryoinsulation Material Development to Mitigate Obsolescence Risk for Global Warming Potential Foams

    Protz, Alison; Bruyns, Roland; Nettles, Mindy

    2015-01-01

    Cryoinsulation foams currently being qualified for the Space Launch System (SLS) core stage are nonozone- depleting substances (ODP) and are compliant with current environmental regulations. However, these materials contain the blowing agent HFC-245fa, a hydrofluorocarbon (HFC), which is a Global Warming Potential (GWP) substance. In August 2014, the Environmental Protection Agency (EPA) proposed a policy change to reduce or eliminate certain HFCs, including HFC-245fa, in end-use categories including foam blowing agents beginning in 2017. The policy proposes a limited exception to allow continued use of HFC and HFC-blend foam blowing agents for military or space- and aeronautics-related applications, including rigid polyurethane spray foams, but only until 2022.

  19. [Care and specialized clinical follow-up of nursing professionals who have been victims of accidents with biological material].

    Pimenta, Flaviana Regina; Ferreira, Milene Dias; Gir, Elucir; Hayashida, Miyeko; Canini, Silvia Rita Marin da Silva

    2013-02-01

    This cross-sectional study aimed to evaluate the conduct of nursing professionals who had been victims of accidents with biological material in a teaching hospital in the interior of the state of São Paulo, Brazil, regarding their care and specialized clinical follow-up. The study population consisted of 1,215 nursing professionals, who were interviewed individually between 2010 and 2011. Of the 1,215 nursing professionals interviewed, 636 (52.3%) reported having experienced accidents with biological material; of this population, 182 (28.6%) didn't sought specialized care. The most frequent reason reported for not seeking care was believing that it was a low-risk accident. The reasons professionals do not seek care and do not complete treatment and the clinical follow-up can contribute to strategies to increase professionals' adherence to prophylaxis measures after occupational exposure to biological material.

  20. Environmental routes for platinum group elements to biological materials. A review

    Ek, Kristine H.; Morrison, Gregory M. [Water Environment Transport, Chalmers University of Technology, SE 412 96 Goteborg (Sweden); Rauch, Sebastien [R.M. Parsons Laboratory 48-108, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2004-12-01

    The increased use of platinum group elements (PGE) in automobile catalysts has led to concern over potential environmental and biological accumulation. Platinum (Pt), palladium (Pd) and rhodium (Rh) concentrations have increased in the environment since the introduction of automobile catalysts. This review summarises current knowledge concerning the environmental mobility, speciation and bioavailability of Pt, Pd and Rh. The greater proportion of PGE emissions is from automobile catalysts, in the form of nanometer-sized catalyst particles, which deposit on roadside surfaces, as evidenced in samples of road dust, grass and soil. In soil, PGE can be transformed into more mobile species through complexation with organic matter and can be solubilised in low pH rainwater. There are indications that environmentally formed Pd species are more soluble and hence more mobile in the environment than Rh and Pt. PGE can reach waterbodies through stormwater transport and deposition in sediments. Besides external contamination of grass close to roads, internal PGE uptake has been observed for plants growing on soil contaminated with automobile catalyst PGE. Fine particles of PGE were also detected on the surface of feathers sampled from passerines and raptors in their natural habitat, and internal organs of these birds also contained PGE. Uptake has been observed in sediment-dwelling invertebrates, and laboratory studies have shown an uptake of PGE in eel and fish exposed to water containing road dust.The available evidence indicates that the PGE, especially Pd, are transported to biological materials through deposition in roots by binding to sulphur-rich low molecular weight species in plants. PGE uptake to exposed animals have uptake rates in the following order: Pd>Pt>Rh. The liver and kidney accumulate the highest levels of PGE, especially Pd. Urinary Pd and Rh, but not Pt, levels are correlated with traffic intensity. Dental alloys may lead to elevated urinary Pt levels

  1. Global existence and asymptotic behavior of a model for biological control of invasive species via supermale introduction

    Parshad, Rana

    2013-01-01

    The purpose of this manuscript is to propose a model for the biological control of invasive species, via introduction of phenotypically modified organisms into a target population. We are inspired by the earlier Trojan Y Chromosome model [J.B. Gutierrez, J.L. Teem, J. Theo. Bio., 241(22), 333-341, 2006]. However, in the current work, we remove the assumption of logisticgrowth rate, and do not consider the addition of sex-reversed supermales. Also the constant birth and death coefficients, considered earlier, are replaced by functionally dependent ones. In this case the nonlinearities present serious difficulties since they change sign, and the components of the solution are not a priori bounded, in some Lp-space for p large, to permit theapplication of the well known regularizing effect principle. Thus functional methods to deducethe global existence in time, for the system in question, are not applicable. Our techniques are based on the Lyapunov functional method. We prove global existence of solutions, as well asexistence of a finite dimensional global attractor, that supports states of extinction. Our analytical finding are in accordance with numerical simulations, which we also present. © 2013 International Press.

  2. International Trade Drives Global Resource Use: A Structural Decomposition Analysis of Raw Material Consumption from 1990-2010.

    Plank, Barbara; Eisenmenger, Nina; Schaffartzik, Anke; Wiedenhofer, Dominik

    2018-04-03

    Globalization led to an immense increase of international trade and the emergence of complex global value chains. At the same time, global resource use and pressures on the environment are increasing steadily. With these two processes in parallel, the question arises whether trade contributes positively to resource efficiency, or to the contrary is further driving resource use? In this article, the socioeconomic driving forces of increasing global raw material consumption (RMC) are investigated to assess the role of changing trade relations, extended supply chains and increasing consumption. We apply a structural decomposition analysis of changes in RMC from 1990 to 2010, utilizing the Eora multi-regional input-output (MRIO) model. We find that changes in international trade patterns significantly contributed to an increase of global RMC. Wealthy developed countries play a major role in driving global RMC growth through changes in their trade structures, as they shifted production processes increasingly to less material-efficient input suppliers. Even the dramatic increase in material consumption in the emerging economies has not diminished the role of industrialized countries as drivers of global RMC growth.

  3. Extended automated separation techniques in destructive neutron activation analysis; application to various biological materials, including human tissues and blood

    Tjioe, P.S.; Goeij, J.J.M. de; Houtman, J.P.W.

    1976-09-01

    Neutron activation analysis may be performed as a multi-element and low-level technique for many important trace elements in biological materials, provided that post-irradiation chemical separations are applied. This paper describes a chemical separation consisting of automated procedures for destruction, distillation, and anion-chromatography. The system developed enables the determination of 14 trace elements in biological materials, viz. antimony, arsenic, bromine, cadmium, chromium, cobalt, copper, gold, iron, mercury, molybdenum, nickel, selenium, and zinc. The aspects of sample preparation, neutron irradiation, gamma-spectrum evaluation, and blank-value contribution are also discussed

  4. Utilisation of biological and secondary raw materials VI. Recycling - conversion to energy; Bio- und Sekundaerrohstoffverwertung VI. Stofflich - energetisch

    Wiemer, Klaus; Kern, Michael

    2011-07-01

    In a lot of contributions the Kasseler waste and bio-energy forum reports on a sustainable management of wastes. The organizers hope that this results in a lively dialogue on sustainable activities in waste management corresponding to the responsibility towards future generations. Within the 23rd Kasseler waste and bio-energy forum at 12th to 14th April, 2010 in Kassel (Federal Republic of Germany) lectures were held to the following themes: (1) Perspectives of the waste management; (2) Ressource conservation and securing of raw material; (3) Common capture of packages and high-grade materials; (4) Bin for reusable materials - system trusteeship, material flows, qualities, financing, practical examples; (5) Industrial waste flows, EBS quality assurance and increase of efficiency; (6) New technological developments in the area of fermentation of biological wastes; (7) Perspectives of material and energetical utilization of biological wastes; (8) Renewable Energy Law and direct marketing of 'green' electricity; (9) Technology and experiences with biogas processing; (10) Fermentation of biogenic residues and catering waste; (11) Increase of efficiency of mechanical-biological treatment plants; (12) Mechanical-biological treatment technology in an international environment; (13) Concepts of energetic utilization for landfill sites; (14) Landfill law and landfill after-care; (15) Renaturation of landfills.

  5. Decontamination of chemical and biological warfare agents with a single multi-functional material.

    Amitai, Gabi; Murata, Hironobu; Andersen, Jill D; Koepsel, Richard R; Russell, Alan J

    2010-05-01

    We report the synthesis of new polymers based on a dimethylacrylamide-methacrylate (DMAA-MA) co-polymer backbone that support both chemical and biological agent decontamination. Polyurethanes containing the redox enzymes glucose oxidase and horseradish peroxidase can convert halide ions into active halogens and exert striking bactericidal activity against gram positive and gram negative bacteria. New materials combining those biopolymers with a family of N-alkyl 4-pyridinium aldoxime (4-PAM) halide-acrylate co-polymers offer both nucleophilic activity for the detoxification of organophosphorus nerve agents and internal sources of halide ions for generation of biocidal activity. Generation of free bromine and iodine was observed in the combined material resulting in bactericidal activity of the enzymatically formed free halogens that caused complete kill of E. coli (>6 log units reduction) within 1 h at 37 degrees C. Detoxification of diisopropylfluorophosphate (DFP) by the polyDMAA MA-4-PAM iodide component was dose-dependent reaching 85% within 30 min. A subset of 4-PAM-halide co-polymers was designed to serve as a controlled release reservoir for N-hydroxyethyl 4-PAM (HE 4-PAM) molecules that reactivate nerve agent-inhibited acetylcholinesterase (AChE). Release rates for HE 4-PAM were consistent with hydrolysis of the HE 4-PAM from the polymer backbone. The HE 4-PAM that was released from the polymer reactivated DFP-inhibited AChE at a similar rate to the oxime antidote 4-PAM. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. Differential laser-induced perturbation spectroscopy and fluorescence imaging for biological and materials sensing

    Burton, Dallas Jonathan

    The field of laser-based diagnostics has been a topic of research in various fields, more specifically for applications in environmental studies, military defense technologies, and medicine, among many others. In this dissertation, a novel laser-based optical diagnostic method, differential laser-induced perturbation spectroscopy (DLIPS), has been implemented in a spectroscopy mode and expanded into an imaging mode in combination with fluorescence techniques. The DLIPS method takes advantage of deep ultraviolet (UV) laser perturbation at sub-ablative energy fluences to photochemically cleave bonds and alter fluorescence signal response before and after perturbation. The resulting difference spectrum or differential image adds more information about the target specimen, and can be used in combination with traditional fluorescence techniques for detection of certain materials, characterization of many materials and biological specimen, and diagnosis of various human skin conditions. The differential aspect allows for mitigation of patient or sample variation, and has the potential to develop into a powerful, noninvasive optical sensing tool. The studies in this dissertation encompass efforts to continue the fundamental research on DLIPS including expansion of the method to an imaging mode. Five primary studies have been carried out and presented. These include the use of DLIPS in a spectroscopy mode for analysis of nitrogen-based explosives on various substrates, classification of Caribbean fruit flies versus Caribbean fruit flies that have been irradiated with gamma rays, and diagnosis of human skin cancer lesions. The nitrogen-based explosives and Caribbean fruit flies have been analyzed with the DLIPS scheme using the imaging modality, providing complementary information to the spectroscopic scheme. In each study, a comparison between absolute fluorescence signals and DLIPS responses showed that DLIPS statistically outperformed traditional fluorescence techniques

  7. Use of composite materials for the determination of Cu, As, Mo, Cd and Sb in biological materials by radiochemical neutron activation analysis

    Lucanikova, M.; John, J.; Kucera, J.; Sebesta, F.

    2006-01-01

    New composite materials were developed and tested for determination of Cu, As, Mo, Cd, and Sb in biological materials by radiochemical neutron activation analysis (RNAA). The materials were prepared by incorporation of solid zinc diethyldithiocarbamate or liquid bis(2,4,4-trimethylpentyl)dithiophosphinic acid (CYANEX 301) into a polyacrylonitrile (PAN) binding matrix. The accuracy of the RNAA procedures was proved by analysis of NIST SRM-1515 Apple Leaves, NIST SRM-1577b Bovine Liver, and NIST SRM-1549 Non Fat Milk Powder. (author)

  8. MAK and BAT values list 2016. Maximum permissible concentrations at the place of work and biological tolerance values for working materials

    2016-01-01

    The MAK and BAT values list 2016 includes the maximum permissible concentrations at the place of work and biological tolerance values for working materials. The following working materials are covered: carcinogenic working materials, sensitizing materials and aerosols. The report discusses the restriction of exposure peaks, skin resorption, MAK (maximum working place concentration) values during pregnancy, germ cell mutagens and specific working materials. Importance and application of BAT (biological working material tolerance) values, list of materials, carcinogens, biological guide values and reference values are also included.

  9. MAK and BAT values list 2017. Maximum permissible concentrations at the place of work and biological tolerance values for working materials

    2017-01-01

    The MAK and BAT values list 2017 includes the maximum permissible concentrations at the place of work and biological tolerance values for working materials. The following working materials are covered: carcinogenic working materials, sensitizing materials and aerosols. The report discusses the restriction of exposure peaks, skin resorption, MAK (maximum working place concentration) values during pregnancy, germ cell mutagens and specific working materials. Importance and application of BAT (biological working material tolerance) values, list of materials, carcinogens, biological guide values and reference values are also included.

  10. Predicting potential global distributions of two Miscanthus grasses: implications for horticulture, biofuel production, and biological invasions.

    Hager, Heather A; Sinasac, Sarah E; Gedalof, Ze'ev; Newman, Jonathan A

    2014-01-01

    In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis) that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models' sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus) is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk.

  11. Quantitative global and gene-specific promoter methylation in relation to biological properties of neuroblastomas

    Kiss Nimrod B

    2012-09-01

    Full Text Available Abstract Background In this study we aimed to quantify tumor suppressor gene (TSG promoter methylation densities levels in primary neuroblastoma tumors and cell lines. A subset of these TSGs is associated with a CpG island methylator phenotype (CIMP in other tumor types. Methods The study panel consisted of 38 primary tumors, 7 established cell lines and 4 healthy references. Promoter methylation was determined by bisulphate Pyrosequencing for 14 TSGs; and LINE-1 repeat element methylation was used as an indicator of global methylation levels. Results Overall mean TSG Z-scores were significantly increased in cases with adverse outcome, but were unrelated to global LINE-1 methylation. CIMP with hypermethylation of three or more gene promoters was observed in 6/38 tumors and 7/7 cell lines. Hypermethylation of one or more TSG (comprising TSGs BLU, CASP8, DCR2, CDH1, RASSF1A and RASSF2 was evident in 30/38 tumors. By contrast only very low levels of promoter methylation were recorded for APC, DAPK1, NORE1A, P14, P16, TP73, PTEN and RARB. Similar involvements of methylation instability were revealed between cell line models and neuroblastoma tumors. Separate analysis of two proposed CASP8 regulatory regions revealed frequent and significant involvement of CpG sites between exon 4 and 5, but modest involvement of the exon 1 region. Conclusions/significance The results highlight the involvement of TSG methylation instability in neuroblastoma tumors and cell lines using quantitative methods, support the use of DNA methylation analyses as a prognostic tool for this tumor type, and underscore the relevance of developing demethylating therapies for its treatment.

  12. PREFACE: 4th Global Conference on Materials Science and Engineering (CMSE 2015)

    Ruda, H. E.; Khotsianovsky, A.

    2015-12-01

    IOP Conference Series: Materials Science and Engineering is publishing a volume of conference proceedings that contains a selection of papers presented at the 4th Global Conference on Materials Science and Engineering (CMSE 2015), which is an annual event that started in 2012. CMSE 2015, technically supported by the Institute of Applied Physics and Materials Engineering of University of Macau, organized by Wuhan Advance Materials Society, was successfully held at the University of Macau-new campus located on Hengqin Island from August 3rd-6th, 2015. It aims to bring together leading academic scientists, researchers and scholars to exchange and share their experience and research results on all aspects of Materials Science and Engineering, and to discuss the practical challenges encountered and the solutions adopted. Macau, one of the two special administrative regions of the People's Republic of China, where East meets West, turned out to be an ideal meeting place for domestic and overseas participants of this annual international conference. The conference program included keynote presentations, special sessions, oral and poster contributions. From several hundred submissions, 52 of the most promising and mainstream, IOP-relevant, contributions were included in this volume. The submissions present original ideas or results of general significance, supported by clear reasoning, compelling evidence and methods, theories and practices relevant to the research. The authors state clearly the problems and the significance of their research to theory and practice. Being a successful conference, this event gathered more than 200 qualified and high-level researchers and experts from over 40 countries, including 10 keynote speakers from 6 countries, which created a good platform for worldwide researchers and engineers to enjoy the academic communication. Taking advantage of this opportunity, we would like to thank all participants of this conference, and particularly the

  13. Accidents with biological material and immunization against hepatitis B among students from the health area.

    Gir, Elucir; Netto, Jeniffer Caffer; Malaguti, Silmara Elaine; Canini, Silvia Rita Marin da Silva; Hayashida, Miyeko; Machado, Alcyone Artioli

    2008-01-01

    Undergraduate students from the health area often handle piercing-cutting instruments in their academic activities, which exposes them to the risk of contracting infections. This study aimed to analyze accidents with biological material among these students. Out of 170 accidents registered, 83 (48.8%) occurred with Dentistry students, 69 (40.6%) with Medical students, 11 (6.5%) with Nursing students and in 06 (3.5%) of the cases there was no such information in the files. Most accidents, 106 (62.4%), occurred with students from private schools and 55 (32.3%) with those from public schools. Percutaneous accidents occurred in 133 (78.2%) exposures and there was immediate search for specialized health care in only 38 (21.3%) accidents. In 127 (74.7%) accidents, the immunization schedule against hepatitis B was complete. Therefore, schools need to offer courses and specific class subjects regarding biosafety measures, including aspects related to immunization, especially the vaccine against hepatitis B.

  14. The biological impacts of ingested radioactive materials on the pale grass blue butterfly

    Nohara, Chiyo; Hiyama, Atsuki; Taira, Wataru; Tanahara, Akira; Otaki, Joji M.

    2014-05-01

    A massive amount of radioactive materials has been released into the environment by the Fukushima Dai-ichi Nuclear Power Plant accident, but its biological impacts have rarely been examined. Here, we have quantitatively evaluated the relationship between the dose of ingested radioactive cesium and mortality and abnormality rates using the pale grass blue butterfly, Zizeeria maha. When larvae from Okinawa, which is likely the least polluted locality in Japan, were fed leaves collected from polluted localities, mortality and abnormality rates increased sharply at low doses in response to the ingested cesium dose. This dose-response relationship was best fitted by power function models, which indicated that the half lethal and abnormal doses were 1.9 and 0.76 Bq per larva, corresponding to 54,000 and 22,000 Bq per kilogram body weight, respectively. Both the retention of radioactive cesium in a pupa relative to the ingested dose throughout the larval stage and the accumulation of radioactive cesium in a pupa relative to the activity concentration in a diet were highest at the lowest level of cesium ingested. We conclude that the risk of ingesting a polluted diet is realistic, at least for this butterfly, and likely for certain other organisms living in the polluted area.

  15. Sample sizing of biological materials analyzed by energy dispersion X-ray fluorescence

    Paiva, Jose D.S.; Franca, Elvis J.; Magalhaes, Marcelo R.L.; Almeida, Marcio E.S.; Hazin, Clovis A.

    2013-01-01

    Analytical portions used in chemical analyses are usually less than 1g. Errors resulting from the sampling are barely evaluated, since this type of study is a time-consuming procedure, with high costs for the chemical analysis of large number of samples. The energy dispersion X-ray fluorescence - EDXRF is a non-destructive and fast analytical technique with the possibility of determining several chemical elements. Therefore, the aim of this study was to provide information on the minimum analytical portion for quantification of chemical elements in biological matrices using EDXRF. Three species were sampled in mangroves from the Pernambuco, Brazil. Tree leaves were washed with distilled water, oven-dried at 60 deg C and milled until 0.5 mm particle size. Ten test-portions of approximately 500 mg for each species were transferred to vials sealed with polypropylene film. The quality of the analytical procedure was evaluated from the reference materials IAEA V10 Hay Powder, SRM 2976 Apple Leaves. After energy calibration, all samples were analyzed under vacuum for 100 seconds for each group of chemical elements. The voltage used was 15 kV and 50 kV for chemical elements of atomic number lower than 22 and the others, respectively. For the best analytical conditions, EDXRF was capable of estimating the sample size uncertainty for further determination of chemical elements in leaves. (author)

  16. Sample sizing of biological materials analyzed by energy dispersion X-ray fluorescence

    Paiva, Jose D.S.; Franca, Elvis J.; Magalhaes, Marcelo R.L.; Almeida, Marcio E.S.; Hazin, Clovis A., E-mail: dan-paiva@hotmail.com, E-mail: ejfranca@cnen.gov.br, E-mail: marcelo_rlm@hotmail.com, E-mail: maensoal@yahoo.com.br, E-mail: chazin@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2013-07-01

    Analytical portions used in chemical analyses are usually less than 1g. Errors resulting from the sampling are barely evaluated, since this type of study is a time-consuming procedure, with high costs for the chemical analysis of large number of samples. The energy dispersion X-ray fluorescence - EDXRF is a non-destructive and fast analytical technique with the possibility of determining several chemical elements. Therefore, the aim of this study was to provide information on the minimum analytical portion for quantification of chemical elements in biological matrices using EDXRF. Three species were sampled in mangroves from the Pernambuco, Brazil. Tree leaves were washed with distilled water, oven-dried at 60 deg C and milled until 0.5 mm particle size. Ten test-portions of approximately 500 mg for each species were transferred to vials sealed with polypropylene film. The quality of the analytical procedure was evaluated from the reference materials IAEA V10 Hay Powder, SRM 2976 Apple Leaves. After energy calibration, all samples were analyzed under vacuum for 100 seconds for each group of chemical elements. The voltage used was 15 kV and 50 kV for chemical elements of atomic number lower than 22 and the others, respectively. For the best analytical conditions, EDXRF was capable of estimating the sample size uncertainty for further determination of chemical elements in leaves. (author)

  17. The biological impacts of ingested radioactive materials on the pale grass blue butterfly.

    Nohara, Chiyo; Hiyama, Atsuki; Taira, Wataru; Tanahara, Akira; Otaki, Joji M

    2014-05-15

    A massive amount of radioactive materials has been released into the environment by the Fukushima Dai-ichi Nuclear Power Plant accident, but its biological impacts have rarely been examined. Here, we have quantitatively evaluated the relationship between the dose of ingested radioactive cesium and mortality and abnormality rates using the pale grass blue butterfly, Zizeeria maha. When larvae from Okinawa, which is likely the least polluted locality in Japan, were fed leaves collected from polluted localities, mortality and abnormality rates increased sharply at low doses in response to the ingested cesium dose. This dose-response relationship was best fitted by power function models, which indicated that the half lethal and abnormal doses were 1.9 and 0.76 Bq per larva, corresponding to 54,000 and 22,000 Bq per kilogram body weight, respectively. Both the retention of radioactive cesium in a pupa relative to the ingested dose throughout the larval stage and the accumulation of radioactive cesium in a pupa relative to the activity concentration in a diet were highest at the lowest level of cesium ingested. We conclude that the risk of ingesting a polluted diet is realistic, at least for this butterfly, and likely for certain other organisms living in the polluted area.

  18. Determination of 25 elements in biological standard reference materials by neutron activation analysis

    Guzzi, G.; Pietra, R.; Sabbioni, E.

    1974-12-01

    Standard and Certified Reference Materials programme of the JRC includes the determination of trace elements in complex biological samples delivered by the U.S. National Bureau of Standards: Bovine liver (NBS SRM 1577), Orchard Leaves (NBS SRM 1571) and Tomato Leaves. The study has been performed by the use of neutron activation analysis. Due to the very low concentration of some elements, radiochemical groups or elemental separation procedures were necessary. The paper describes the techniques used to analyse 25 elements. Computer assisted instrumental neutron activation analysis with high resolution Ge(Li) spectrometry was considerably advantageous in the determination of Na, K, Cl, Mn, Fe, Rb and Co and in some cases of Ca, Zn, Cs, Sc, and Cr. For low contents of Ca, Mg, Ni and Si special chemical separation schemes, followed by Cerenkov counting have been developped. Two other separation procedures allowing the determination of As, Cd, Ga, Hg, Mo, Cu, Sr Se, Ba and P have been set up. The first, the simplified one involves the use of high resolution Ge(Li) detectors, the second, the more complete one involves a larger number of shorter measurements performed by simpler and more sensitive techniques, such as NaI(Tl) scintillation spectrometry and Cerenkov counting. The results obtained are presented and discussed

  19. MyLabStocks: a web-application to manage molecular biology materials.

    Chuffart, Florent; Yvert, Gaël

    2014-05-01

    Laboratory stocks are the hardware of research. They must be stored and managed with mimimum loss of material and information. Plasmids, oligonucleotides and strains are regularly exchanged between collaborators within and between laboratories. Managing and sharing information about every item is crucial for retrieval of reagents, for planning experiments and for reproducing past experimental results. We have developed a web-based application to manage stocks commonly used in a molecular biology laboratory. Its functionalities include user-defined privileges, visualization of plasmid maps directly from their sequence and the capacity to search items from fields of annotation or directly from a query sequence using BLAST. It is designed to handle records of plasmids, oligonucleotides, yeast strains, antibodies, pipettes and notebooks. Based on PHP/MySQL, it can easily be extended to handle other types of stocks and it can be installed on any server architecture. MyLabStocks is freely available from: https://forge.cbp.ens-lyon.fr/redmine/projects/mylabstocks under an open source licence. © 2014 Laboratoire de Biologie Moleculaire de la Cellule CNRS. Yeast published by John Wiley & Sons, Ltd.

  20. [Accidents with biological materials among nurses in a training hospital: case-control study].

    Dalarosa, Micheline Gisele; Lautert, Liana

    2009-03-01

    This case-control study aimed at analyzing the association between occupational stress and disagreement between chronotype and the work shift of nurses who suffered accidents with biological materials in a hospital of Porto Alegre, Rio Grande do Sul, Brazil. A number of 99 workers who suffered accidents (cases) and 232 that had not suffered accidents (controls) were interviewed. Data were collected through the Job Stress Scale according to Karasek's model and the Horne-Ostberg scale The occurrence of accident was not statistically associated with high work requirement scores (p = 0.317), with a chronobiological profile discordant with work shift (p = 0.563), or with other labor variables associated to accidents--overtime, having two jobs (p = 1.000). In addition, there was no significant difference (chi2 Pearson; p = 1.00) among the scores of professionals with high work requirements who work in shifts discordant with their chronotype, both in the case group and in the control group as well.

  1. Determination of rare earth elements in the biological reference materials Pine Needles and Spruce Needles by neutron activation analysis

    Machado, C.N.; Maria, S.P.; Saiki, M.; Figueiredo, A.M.G.

    1998-01-01

    Instrumental neutron activation analysis was applied to determine La, Ce, Nd, Sm, Eu, Tb, Yb, Lu and Sc in two biological reference materials: NIST 1575 Pine Needles and BCR-CRM 101 Spruce Needles. The purpose was to contribute to the reference data for these two reference materials. The results were obtained with a good precision (relative standard deviations less than 15%). For the Pine Needles reference material there are already some proposed values and our results showed, in general, a good agreement with the data published. The contribution of uranium fission products to La, Ce, Nd and Sm was evaluated and considered in the determination of these elements. Interferences in the determination of rare earth elements in biological materials are also discussed. (author)

  2. Collaborative Research. Fundamental Science of Low Temperature Plasma-Biological Material Interactions

    Graves, David Barry [Univ. California, Berkeley, CA (United States); Oehrlein, Gottlieb [Univ. of Maryland, College Park, MD (United States)

    2014-09-01

    atmospheric pressure using several types of low temperature plasma sources, for which radical induced interactions generally dominate due to short mean free paths of ions and VUV photons. For these conditions we demonstrated the importance of environmental interactions when atmospheric pressure plasma sources are used to modify biomolecules. This is evident from both gas phase characterization data and in-situ surface characterization of treated biomolecules. Environmental interactions can produce unexpected outcomes due to the complexity of reactions of reactive species with the atmosphere which determines the composition of reactive fluxes and atomistic changes of biomolecules. Overall, this work clarified a richer spectrum of scientific opportunities and challenges for the field of low temperature plasma-biomolecule surface interactions than initially anticipated, in particular for plasma sources operating at atmospheric pressure. The insights produced in this work, e.g. demonstration of the importance of environmental interactions, are generally important for applications of APP to materials modifications. Thus one major contributions of this research has been the establishment of methodologies to more systematically study the interaction of plasma with bio-molecules. In particular, our studies of atmospheric pressure plasma sources using very well-defined experimental conditions enabled to combine atomistic surface modifications of biomolecules with changes in their biological function. The clarification of the role of ions, VUV photons and radicals in deactivation of biomolecules during low pressure and atmospheric pressure plasma-biomolecule interaction has broad implications, e.g. for the emerging field of plasma medicine. The development of methods to detect the effects of plasma treatment on immune-active biomolecules will be helpful in many future studies.

  3. Multi trace element analysis of dry biological materials by neutron activation analysis including a chemical group separation

    Weers, C.A.

    1980-07-01

    Multi-element analysis of dry biological material by neutron activation analysis has to include radiochemical separation. The evaporation process is described in terms of the half-volume. The pretreatment of the samples and the development of the destruction-evaporation apparatus are described. The successive adsorption steps with active charcoal, Al 2 O 3 and coprecipitation with Fe(OH) 3 are described. Results obtained for standard reference materials are summarized. (G.T.H.)

  4. Efficiency of biological activator formulated material (BAFM) for volatile organic compounds removal--preliminary batch culture tests with activated sludge.

    Corre, Charline; Couriol, Catherine; Amrane, Abdeltif; Dumont, Eric; Andrès, Yves; Le Cloirec, Pierre

    2012-01-01

    During biological degradation, such as biofiltration of air loaded with volatile organic compounds, the pollutant is passed through a bed packed with a solid medium acting as a biofilm support. To improve microorganism nutritional equilibrium and hence to enhance the purification capacities, a Biological Activator Formulated Material (BAFM) was developed, which is a mixture of solid nutrients dissolving slowly in a liquid phase. This solid was previously validated on mineral pollutants: ammonia and hydrogen sulphide. To evaluate the efficiency of such a material for biodegradation of some organic compounds, a simple experiment using an activated sludge batch reactor was carried out. The pollutants (sodium benzoate, phenol, p-nitrophenol and 2-4-dichlorophenol) were in the concentration range 100 to 1200 mg L(-1). The positive impact of the formulated material was shown. The improvement of the degradation rates was in the range 10-30%. This was the consequence of the low dissolution of the nutrients incorporated during material formulation, followed by their consumption by the biomass, as shown for urea used as a nitrogen source. Owing to its twofold interest (mechanical resistance and nutritional supplementation), the Biological Activator Formulated Material seems to be a promising material. Its addition to organic or inorganic supports should be investigated to confirm its relevance for implementation in biofilters.

  5. Extracting Biological Meaning From Global Proteomic Data on Circulating-Blood Platelets: Effects of Diabetes and Storage Time

    Miller, John H.; Suleiman, Atef; Daly, Don S.; Springer, David L.; Spinelli, Sherry L.; Blumberg, Neil; Phipps, Richard P.

    2008-11-25

    Transfusion of platelets into patients suffering from trauma and a variety of disease is a common medical practice that involves millions of units per year. Partial activation of platelets can result in the release of bioactive proteins and lipid mediators that increase the risk of adverse post-transfusion effects. Type-2 diabetes and storage are two factors known to cause partial activation of platelets. A global proteomic study was undertaken to investigate these effects. In this paper we discuss the methods used to interpret these data in terms of biological processes affected by diabetes and storage. The main emphasis is on the processing of proteomic data for gene ontology enrichment analysis by techniques originally designed for microarray data.

  6. Effects of screenhouse cultivation and organic materials incorporation on global warming potential in rice fields.

    Xu, Guochun; Liu, Xin; Wang, Qiangsheng; Xiong, Ruiheng; Hang, Yuhao

    2017-03-01

    Global rice production will be increasingly challenged by providing healthy food for a growing population at minimal environmental cost. In this study, a 2-year field experiment was conducted to investigate the effects of a novel rice cultivation mode (screenhouse cultivation, SHC) and organic material (OM) incorporation (wheat straw and wheat straw-based biogas residue) on methane (CH 4 ) and nitrous oxide (N 2 O) emissions and rice yields. In addition, the environmental factors and soil properties were also determined. Relative to the traditional open-field cultivation (OFC), SHC decreased the CH 4 and N 2 O emissions by 6.58-18.73 and 2.51-21.35%, respectively, and the global warming potential (GWP) was reduced by 6.49-18.65%. This trend was mainly because of lower soil temperature and higher soil redox potential in SHC. Although the rice grain yield for SHC were reduced by 2.51-4.98% compared to the OFC, the CH 4 emissions and GWP per unit of grain yield (yield-scaled CH 4 emissions and GWP) under SHC were declined. Compared to use of inorganic fertilizer only (IN), combining inorganic fertilizer with wheat straw (WS) or wheat straw-based biogas residue (BR) improved rice grain yield by 2.12-4.10 and 4.68-5.89%, respectively. However, OM incorporation enhanced CH 4 emissions and GWP, leading to higher yield-scaled CH 4 emissions and GWP in WS treatment. Due to rice yield that is relatively high, there was no obvious effect of BR treatment on them. These findings suggest that apparent environmental benefit can be realized by applying SHC and fermenting straw aerobically before its incorporation.

  7. The development of peptide-based interfacial biomaterials for generating biological functionality on the surface of bioinert materials.

    Meyers, Steven R; Khoo, Xiaojuan; Huang, Xin; Walsh, Elisabeth B; Grinstaff, Mark W; Kenan, Daniel J

    2009-01-01

    Biomaterials used in implants have traditionally been selected based on their mechanical properties, chemical stability, and biocompatibility. However, the durability and clinical efficacy of implantable biomedical devices remain limited in part due to the absence of appropriate biological interactions at the implant interface and the lack of integration into adjacent tissues. Herein, we describe a robust peptide-based coating technology capable of modifying the surface of existing biomaterials and medical devices through the non-covalent binding of modular biofunctional peptides. These peptides contain at least one material binding sequence and at least one biologically active sequence and thus are termed, "Interfacial Biomaterials" (IFBMs). IFBMs can simultaneously bind the biomaterial surface while endowing it with desired biological functionalities at the interface between the material and biological realms. We demonstrate the capabilities of model IFBMs to convert native polystyrene, a bioinert surface, into a bioactive surface that can support a range of cell activities. We further distinguish between simple cell attachment with insufficient integrin interactions, which in some cases can adversely impact downstream biology, versus biologically appropriate adhesion, cell spreading, and cell survival mediated by IFBMs. Moreover, we show that we can use the coating technology to create spatially resolved patterns of fluorophores and cells on substrates and that these patterns retain their borders in culture.

  8. Biological responses of two marine organisms of ecological relevance to on-going ocean acidification and global warming.

    Gomiero, A; Bellerby, R G J; Manca Zeichen, M; Babbini, L; Viarengo, A

    2018-05-01

    Recently, there has been a growing concern that climate change may rapidly and extensively alter global ecosystems with unknown consequences for terrestrial and aquatic life. While considerable emphasis has been placed on terrestrial ecology consequences, aquatic environments have received relatively little attention. Limited knowledge is available on the biological effects of increments of seawater temperature and pH decrements on key ecological species, i.e., primary producers and/or organisms representative of the basis of the trophic web. In the present study, we addressed the biological effects of global warming and ocean acidification on two model organisms, the microbenthic marine ciliate Euplotes crassus and the green alga Dunaliella tertiocleta using a suite of high level ecological endpoint tests and sub-lethal stress measures. Organisms were exposed to combinations of pH and temperature (TR1: 7.9 [pH], 25.5 °C and TR2: 7.8 [pH], 27,0 °C) simulating two possible environmental scenarios predicted to occur in the habitats of the selected species before the end of this century. The outcomes of the present study showed that the tested scenarios did not induce a significant increment of mortality on protozoa. Under the most severe exposure conditions, sub-lethal stress indices show that pH homeostatic mechanisms have energetic costs that divert energy from essential cellular processes and functions. The marine protozoan exhibited significant impairment of the lysosomal compartment and early signs of oxidative stress under these conditions. Similarly, significant impairment of photosynthetic efficiency and an increment in lipid peroxidation were observed in the autotroph model organism held under the most extreme exposure condition tested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Global advances in health and medicine through systems biology: an example from the Netherlands.

    van der Heijden, Marianne J E; Schroen, Yan

    2012-09-01

    Globally, healthcare systems are facing problems with increasing healthcare costs due to chronic diseases. Cardiovascular disease, cancer, diabetes, depression, and chronic lung disease are some of the top chronic diseases that put pressure on our healthcare systems and are very difficult to resolve. The chronic diseases mentioned are often lifestyle-related and require a personalized approach. The solutions that we currently have at hand seem to be insufficient in meeting the needs of the patients and of our healthcare systems: the cracks in our systems are showing. Patients with chronic illness and multimorbidity find themselves caught in a web of referrals between medical specialists and conflicting treatment plans. As a result, they are consuming a lot of healthcare without actually reaching their goal: attaining the most optimal quality of life and the least physical burden possible. In short, mechanisms that previously functioned perfectly must now be replaced by new approaches. The supply of the healthcare system no longer meets the demands of society.

  10. Improved algorithm for estimating optical properties of food and biological materials using spatially-resolved diffuse reflectance

    In this research, the inverse algorithm for estimating optical properties of food and biological materials from spatially-resolved diffuse reflectance was optimized in terms of data smoothing, normalization and spatial region of reflectance profile for curve fitting. Monte Carlo simulation was used ...

  11. Investigation of biological material for metallic poisoning by the fractional method. Issledovaniya biologicheskogo materiala na metallicheskiya yady drobnym metodom

    Krylova, A.N.

    1975-01-01

    A fractional method is developed for analysis of biological material for the presence of toxic quantities of Pb, Hg, Ba, Mn, Cr, Ag, Cu, Sb, Tl, As, Bi, Cd and Zn. The method satisfies the requirements of medical forensic toxicology. (Ref. Zh.)

  12. Survey of currently available reference materials for use in connection with the determination of trace elements in biological and environmental materials

    Muramatsu, Y.; Parr, R.M.

    1985-12-01

    This report focuses on analytical reference materials which have been developed for use in connection with the determination of toxic and essential trace elements in biomedical and health-related environmental samples. Data are reported on 60 biological and 40 environmental (non-biological) reference materials from 11 suppliers. Certified concentration values (or their equivalents) and non-certified concentration values (or information values) are presented in various tables which are intended to help the user select a reference material that matches as closely as possible (i.e. with respect to matrix type and concentration of the element of interest) the ''real'' samples that are to be analysed. These tables have been generated from a database characterized by the following parameters: total number of reference materials=100; total number of elements recorded=69; total number of concentration values recorded=1771. Also included in the report is information (where available) on the cost of each material, the unit weight or volume supplied, and the minimum weight of material recommended for analysis. (author)

  13. Global transcriptomic analysis suggests carbon dioxide as an environmental stressor in spaceflight: A systems biology GeneLab case study.

    Beheshti, Afshin; Cekanaviciute, Egle; Smith, David J; Costes, Sylvain V

    2018-03-08

    Spaceflight introduces a combination of environmental stressors, including microgravity, ionizing radiation, changes in diet and altered atmospheric gas composition. In order to understand the impact of each environmental component on astronauts it is important to investigate potential influences in isolation. Rodent spaceflight experiments involve both standard vivarium cages and animal enclosure modules (AEMs), which are cages used to house rodents in spaceflight. Ground control AEMs are engineered to match the spaceflight environment. There are limited studies examining the biological response invariably due to the configuration of AEM and vivarium housing. To investigate the innate global transcriptomic patterns of rodents housed in spaceflight-matched AEM compared to standard vivarium cages we utilized publicly available data from the NASA GeneLab repository. Using a systems biology approach, we observed that AEM housing was associated with significant transcriptomic differences, including reduced metabolism, altered immune responses, and activation of possible tumorigenic pathways. Although we did not perform any functional studies, our findings revealed a mild hypoxic phenotype in AEM, possibly due to atmospheric carbon dioxide that was increased to match conditions in spaceflight. Our investigation illustrates the process of generating new hypotheses and informing future experimental research by repurposing multiple space-flown datasets.

  14. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 7 - Pathogenesis and Molecular Biology.

    Robinson, L; Knight-Jones, T J D; Charleston, B; Rodriguez, L L; Gay, C G; Sumption, K J; Vosloo, W

    2016-06-01

    We assessed research knowledge gaps in the fields of FMDV (foot-and-mouth disease virus) pathogenesis and molecular biology by performing a literature review (2011-15) and collecting research updates (2014) from 33 institutes from across the world. Findings were used to identify priority areas for future research. There have been important advances in FMDV pathogenesis; FMDV remains in lymph nodes of many recovered animals that otherwise do not appear persistently infected, even in species previously not associated with the carrier state. Whether virus retention helps maintain host immunity and/or virus survival is not known. Studies of FMDV pathogenesis in wildlife have provided insights into disease epidemiology, in endemic and epidemic settings. Many aspects of FMDV infection and virus entry remain unknown; however, at the cellular level, we know that expression level and availability of integrins (that permit viral entry), rate of clearance of infected cells and strength of anti-viral type I IFN (interferon) response are key determinants of tissue tropism. Extending findings to improved understanding of transmission requires a standardized approach and adoption of natural routes of infection during experimental study. There has been recognition of the importance of autophagosomes for FMDV entry into the cytoplasm following cell surface receptor binding, and that distinct internal cellular membranes are exploited for viral replication and immune evasion. New roles for viral proteins in blocking type I IFN production and downstream signalling have been identified facilitating research in anti-viral therapeutics. We know more about how infection affects cell protein expression, and research into molecular determinants of capsid stability has aided the development of stable vaccines. We have an expanding knowledge of viral and host molecular determinates of virulence and infectiousness, and of how phylogenetics may be used to estimate vaccine match and strain

  15. Detection of small number of Giardia in biological materials prepared from stray dogs.

    Esmailikia, Leila; Ebrahimzade, Elahe; Shayan, Parviz; Amininia, Narges

    2017-12-20

    Giardia lamblia is an intestinal protozoa with intermittent and low shedding especially in dogs, and the detection of Giardia is accompanied with problems such as sampling and diagnostic method. The objective of this study was to detection of Giardia in biological materials with low number of parasite using parasitological and molecular methods, and also to determine whether the examined stray dogs harbor known zoonotic genotype of Giardia. For this aim 85 fecal and duodenal samples were studied from which 1 was positive by Trichrome staining of stool, 4 were positive by staining of duodenal samples. The nested PCR analysis with primers derived from 18 SrRNA showed that the specific PCR product could be amplified in 4 stool and 4 duodenal samples. All positive samples in staining analysis were also positive in nested PCR. No amplification could be observed by nested PCR with primers derived from β giardin gene due to the single copy of gene. Interestingly, the extracted DNA from old fixed stained Giardia positive smears could be also amplified with primers derived from 18SrRNA gene. The sequence analysis of nested PCR products showed that they belong to the genotype D. In conclusion, it is to denote that the Trichrome or Giemsa methods were not suitable for the detection of small number of this parasite in stool and the nested PCR with primers derived from 18S rRNA gene can replace the traditional methods successfully. For detection of Giardia in stool, primers derived from β giardin will not be recommended.

  16. Updated Lagrangian finite element formulations of various biological soft tissue non-linear material models: a comprehensive procedure and review.

    Townsend, Molly T; Sarigul-Klijn, Nesrin

    2016-01-01

    Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications.

  17. Quantification of ultraviolet photon emission from interaction of charged particles in materials of interest in radiation biology research

    Ahmad, Syed Bilal, E-mail: ahmadsb@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); McNeill, Fiona E., E-mail: fmcneill@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Prestwich, William V., E-mail: prestwic@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Byun, Soo Hyun, E-mail: soohyun@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Seymour, Colin, E-mail: seymouc@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Mothersill, Carmel E., E-mail: mothers@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada)

    2014-01-15

    In radiation biology experiments often cells are irradiated using charged particles with the intention that only a specified number of cells are hit by the primary ion track. However, in doing so several other materials such as the cell container and the growth media etc. are also irradiated, and UV radiation emitted from these materials can potentially interact with the cells. We have hypothesized that some “bystander effects” that are thought to be chemically mediated, may be, in fact, a physical effect, where UV is interacting with non-targeted cells. Based upon our hypothesis we quantified the emission of UV from Polypropylene, Mylar, Teflon, and Cellophane which are all commonly used materials in radiation biology experiments. Additionally we measured the NIST standard materials of Oyster tissue and Citrus leaves as these powdered materials are derived from living cells. Protons accelerated up to an energy of 2.2 MeV, in a 3 MV Van de Graff accelerator, were used for irradiation. Beam current was kept to 10 nA, which corresponds to a proton fluence rate of 2.7 × 10{sup 10} protons mm{sup −2} s{sup −1}. All the materials were found to emit light at UV frequencies and intensities that were significant enough to conduct a further investigation for their biological consequences. Mylar and polypropylene are commonly used in radiation induced bystander effect studies and are considered to be non-fluorescent. However our study showed that this is not the case. Significant luminescence observed from the irradiated NIST standard reference materials for Oyster tissue and Citrus leaves verified that the luminescence emission is not restricted only to the polymeric materials that are used to contain cells. It can also occur from ion interactions within the cells as well.

  18. Chemically-functionalized microcantilevers for detection of chemical, biological and explosive material

    Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Hawk, John Eric [Olive Branch, MS; Boiadjiev, Vassil I [Knoxville, TN

    2007-04-24

    A chemically functionalized cantilever system has a cantilever coated on one side thereof with a reagent or biological species which binds to an analyte. The system is of particular value when the analyte is a toxic chemical biological warfare agent or an explosive.

  19. Radioprotection, biological effects of the radiations and security in the handling of radioactive material

    Teran, M

    2000-01-01

    The development of the philosophy of the radioprotection is dependent on the understanding of the effects of the radiation in the man. Behind the fact that the radiation is able to produce biological damages there are certain factors with regard to the biological effects of the radiations that determine the boarding of the radioprotection topics.

  20. Digital learning material for experimental design and model building in molecular biology

    Aegerter-Wilmsen, T.

    2005-01-01

    Designing experimental approaches is a major cognitive skill in molecular biology research, and building models, including quantitative ones, is a cognitive skill which is rapidly gaining importance. Since molecular biology education at university level is aimed at educating future researchers, we

  1. EDITORIAL: Nanotechnology at the interface of cell biology, materials science and medicine Nanotechnology at the interface of cell biology, materials science and medicine

    Engel, Andreas; Miles, Mervyn

    2008-09-01

    The atomic force microscope (AFM) and related scanning probe microscopes have become resourceful tools to study cells, supramolecular assemblies and single biomolecules, because they allow investigations of such structures in native environments. Quantitative information has been gathered about the surface structure of membrane proteins to lateral and vertical resolutions of 0.5 nm and 0.1 nm, respectively, about the forces that keep protein-protein and protein-nucleic acid assemblies together as well as single proteins in their native conformation, and about the nanomechanical properties of cells in health and disease. Such progress has been achieved mainly because of constant development of AFM instrumentation and sample preparation methods. This special issue of Nanotechnology presents papers from leading laboratories in the field of nanobiology, covering a wide range of topics in the form of original and novel scientific contributions. It addresses achievements in instrumentation, sample preparation, automation and in biological applications. These papers document the creativity and persistence of researchers pursuing the goal to unravel the structure and dynamics of cells, supramolecuar structures and single biomolecules at work. Improved cantilever sensors, novel optical probes, and quantitative data on supports for electrochemical experiments open new avenues for characterizing biological nanomachines down to the single molecule. Comparative measurements of healthy and metastatic cells promise new methods for early detection of tumors, and possible assessments of drug efficacy. High-speed AFMs document possibilities to monitor crystal growth and to observe large structures at video rate. A wealth of information on amyloid-type fibers as well as on membrane proteins has been gathered by single molecule force spectroscopy—a technology now being automated for large-scale data collection. With the progress of basic research and a strong industry supporting

  2. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  3. How to Choose between the Implant Materials Steel and Titanium in Orthopedic Trauma Surgery: Part 2 - Biological Aspects.

    Perren, S M; Regazzoni, P; Fernandez, A A

    2017-01-01

    BIOLOGICAL ASPECTS OF STEEL AND TITANIUM AS IMPLANT MATERIAL IN ORTHOPEDIC TRAUMA SURGERY The following case from the ICUC database, where a titanium plate was implanted into a flourishing infection, represents the clinical experience leading to preferring titanium over steel. (Fig. 1) (6). Current opinions regarding biological aspects of implant function. The "street" opinions regarding the biological aspects of the use of steel versus titanium as a surgical trauma implant material differ widely. Statements of opinion leaders range from "I do not see any difference in the biological behavior between steel and titanium in clinical application" to "I successfully use titanium implants in infected areas in a situation where steel would act as foreign body "sustaining" infection." Furthermore, some comments imply that clinical proof for the superiority of titanium in human application is lacking. The following tries to clarify the issues addressing the different aspects more through a practical clinical approach than a purely scientific one, this includes simplifications. Today's overall biocompatibility of implant materials is acceptable but: As the vast majority of secondary surgeries are elective procedures this allows the selection of implant materials with optimal infection resistance. The different biological reactions of stainless steel and titanium are important for this segment of clinical pathologies. Biological tole - rance (18) depends on the toxicity and on the amount of soluble implant material released. Release, diffusion and washout through blood circulation determine the local concentration of the corrosion products. Alloying components of steel, especially nickel and chromium, are less than optimal in respect to tissue tolerance and allergenicity. Titanium as a pure metal provides excellent biological tolerance (3, 4, 16). Better strength was obtained by titanium alloys like TiAl6V4. The latter found limited application as surgical implants. It

  4. A common basis for facilitated legitimate exchange of biological materials proposed by the European Culture Collections' Organisation

    Dagmar Fritze

    2009-12-01

    Full Text Available Being charged with the task of accessioning and supplying of living microbiological material, microbial culture collections are institutions that play a central role between the interests of a variety of user communities. On the one side are the providers of living microbiological material, such as individual scientists, institutions and countries of origin and on the other side are the various kinds of recipients/users of cultures of microorganisms from academia and industry. Thus, providing access to high quality biological material and scientific services while at the same time observing donor countries' rights, intellectual property rights, biosafety and biosecurity aspects poses demanding challenges. E.g. donor countries rights relate to Article 15 of the Convention on Biological Diversity: "Contracting parties …. recognize the sovereign rights of states over their natural resources …. shall facilitate access to resources … and not impose restrictions that run counter to the aims of the Convention. Access to natural resources shall be by mutually agreed terms and subject to prior informed consent ..." The use of a proposed standard contract by culture collections is discussed as a way of contractually safeguarding the existing research commons, while observing the new rights established in the Convention on Biological Diversity as well as other existing and new legislation impacting on the accessibility of living microbial material.

  5. The global partnership: its achievements, missed opportunities and potential to address future threats from the spread of CBRN materials and expertise - 59335

    Heyes, Alan; Bowen, Wyn; Chalmers, Hugh

    2012-01-01

    Document available in abstract form only. Full text of publication follows: In 2002, the G8 launched the Global Partnership (GP) against the Spread of Weapons and Materials of Mass Destruction. The partnerships budget was placed at $20 billion over 10 years, and it was supported by some 23 countries and the European Union (EU).Though it has had little public recognition, the partnership has been one of the G8's most successful initiatives and has led to many benefits, including improved international security and addressing a sizeable proportion of the Cold War nuclear and chemical weapons arsenal in the Former Soviet Union. Its future, however, remains undecided, as its funding is set to expire in less than two years. In 2009 and 2010 Kings College London with generous funding support from the US John D. and Catherine T. MacArthur Foundation, carried out a detailed evaluation of the achievements and benefits of the GP to date, its failings and lost opportunities, and potential future direction. Our findings indicate that the partnership has aided security in the Former Soviet Union and had a significant number of wider benefits with the potential to continue to do the same on a broader geographic level in future. As such, it is a valuable tool to assist the international community to work together to address global threats relating to chemical, biological, radiological and nuclear materials and related expertise and the G8 should take steps to renew its funding. (authors)

  6. PENGEMBANGAN HANDOUT BERBASIS KONTEKSTUAL PADA PELAJARAN BIOLOGI MATERI BIOTEKNOLOGI UNTUK SISWA KELAS XII SMK NEGERI 02 BATU

    Fega Rahmayani

    2015-03-01

    Full Text Available The teaching learning activity in SMK is inappropriate with the purpose of teaching and learning in SMK, which the students are taught to be able to apply the materials in the real life. Teaching material is taken from the biology book of SMA that the content is theoretically, so the explanation on the material is unsuitable and not applicative that makes the student less in ability and skill for application in daily life. From the problem above, this research purpose on developing the contextual basic handout of the biological course in biotechnology material in SMK N 02 Batu.This research is developing research based on research and development by Sugiyono’s model that use a few developing steps, those are: (1 Potential and problem, (2 Collecting data, (3 Product design, (4 Validation design, (5 Design revision, (6 Try out the product, (7 Product revision. The data collecting methods is using validation from the expert of handout, material expert and try out to the study club. The technique of analyze data using quantitative and qualitative data. The result of quantitative data is the percentage of handout product value that classify in the handout quality and the result of qualitative data come from comment and advise of validator and try out in SMK.The result quality of the handout found that the developing contextual basic handout reach out the good quality after following the procedure of validation with percentage 80.90% and try out to the student that use the handout with percentage very good, 97.75% and get the positive respond from student with percentage 90.82%. From the whole of the contextual basic handout have a good quality and appropriate in use for teaching material of Biology in teaching learning process in SMK N 02 Batu.

  7. PENGARUH MODEL PEMBELAJARAN SYNECTICS DIPADU MIND MAPS TERHADAP KEMAMPUAN BERPIKIR KREATIF, SIKAP KREATIF, DAN PENGUASAAN MATERI BIOLOGI

    Muh Khalifah Mustami

    2007-12-01

    Full Text Available One of the important tasks in teaching is assisting students to think. Synectics Model matched with Mind Maps are viewed necessary to be applied in the instruction in order to achieve the target.The research is an experiment research with pre-test post-test control group design. The results of analyses indicate that: (1 there is significance difference with the mean score of creative think ability, creative attitude, and mastery of biology materials due to difference of instruction model used, (2 there is no significant difference of mean score of creative attitude among the students who belong to the high and low achievement. (3 there is no interactional effect between the instructional model used with the students entry behavior towards creative thinking ability, creative attitude, and mastery of biology materials.

  8. [Accident with biological material at the prehospital mobile care: reality for health and non-healthcare workers].

    Tipple, Anaclara Ferreira Veiga; Silva, Elisangelo Aparecido Costa; Teles, Sheila Araújo; Mendonça, Katiane Martins; Souza, Adenícia Custódia Silva E; Melo, Dulcelene Sousa

    2013-01-01

    Analytical transversal study that was conducted with the objectives of identifying the prevalence and characterizing the accidents with biological material among professionals in pre-hospital service (PHS) and comparing the risk behaviors adopted by healthcare and non-healthcare groups that can affect the occurrence and seriousness of such accidents. Data were obtained by questionnaire applied to all PHS workers in Goiânia-GO. The study revealed a high prevalence of accidents involving biological material which, although higher for the healthcare group, also affected the non-healthcare group. There were significant (p accidents in both groups: not using gloves, masks or eye protectors; inappropriate disposal of sharps; inadequate dress; re-capping of needles; and a lack of immunization against hepatitis B. The results underscore the importance of both groups in adhering to preventive measures, and further point to the need to structure and implement vigilance and control system for this type of accident.

  9. Development of analytical methods for the determination of some radiologically important elements in biological materials using neutron activation analysis

    Dang, H.S.; Jaiswal, D.D.; Pullat, V.R.; Krishnamony, S.

    1998-01-01

    This paper describes the analytical methods developed for the estimation of Cs, I, Sr, Th and U in biological materials such as food and human tissues. The methods employ both, the instrumental neutron activation analysis (INAA) and radiochemical neutron activation analysis (RNAA). The adequacy of these methods to determine the concentrations of the above elements in dietary and tissue materials was also studied. The study showed that the analytical methods described in this paper are adequate for the determination of Cs, Sr, Th and U in all kinds of biological samples. In the case of I however, the method is adequate only for determining its concentration in thyroid, but needs to be modified to improve its sensitivity for the determination of I in diet samples. (author)

  10. Determination of gold and platinum in biological materials by radiochemical neutron activation analysis using electrolytic separation of gold

    Reitz, B.; Heydorn, K.

    1993-01-01

    A new method is presented for the determination of Au and Pt in biological materials based on neutron activation analysis with radiochemical separation of gold. Separation of gold by electrolytic deposition on a niobium cathode ascertains thee highest radiochemical purity without any interference from calcium or other major elements. With 199 Au as indicator for platinum the gold content of the sample not only strongly affects the limit of detection, but also causes interference by double neutron capture. Replicate analyses of BCR Certified Reference Materials No. 184, 185 and 186 were carried out. (author) 18 refs.; 3 figs.; 2 tabs

  11. Communication of work accidents involving biological material: a study in the city of Santa Cruz do Sul/RS

    Dayane Diehl

    2012-07-01

    Full Text Available Rationale and Objectives: Healthcare workers are constantly exposed to the risk of occupational accidents involving biological material. Thus the aim of the study was to develop a profile of workers involved in workplace accidents with biological materials in Santa Cruz do Sul, through the number of notifications made in information systems. Methods: Transversal retrospective study with a quantitative approach; data collection was carried out between the years 2008 and 2010 from medical records in the Municipal Reference Occupational Health Unit – UMREST – containing the notification via Individual Report of Accident Notification - RINA, and/or Work Accident Communication - CAT. Results: A total of 1,263 records were analyzed during the study period. There were 13 notifications in 2008, 7 cases in 2009 and 2 in 2010. Five records had CAT, 8 had RINA and 9 had RINA and CAT. The most frequently affected professional category was the nursing technician, with the highest frequency in 2008, followed by dentists and nurses. There was a higher prevalence of female workers, with 18 cases. The most prevalent age group was 20 to 49 years old. Conclusion: The study showed that women working in the nursingprofession at the productive-age group are the ones most often affected by work accidents involving biological material during the study period. The study results raise the suspicion of underreporting of accidents with biological material, considering the number of notifications in thesetting of records found in the investigated UMREST. KEYWORDS Wo rk-related accidents. Health care professional. Occupational accidents.

  12. Two-Dimensional Spectroscopy Is Being Used to Address Core Scientific Questions in Biology and Materials Science.

    Petti, Megan K; Lomont, Justin P; Maj, Michał; Zanni, Martin T

    2018-02-15

    Two-dimensional spectroscopy is a powerful tool for extracting structural and dynamic information from a wide range of chemical systems. We provide a brief overview of the ways in which two-dimensional visible and infrared spectroscopies are being applied to elucidate fundamental details of important processes in biological and materials science. The topics covered include amyloid proteins, photosynthetic complexes, ion channels, photovoltaics, batteries, as well as a variety of promising new methods in two-dimensional spectroscopy.

  13. Determination of the isotopic (C-13/C-12) discrimination by terrestrial biology from a global network of observations

    Bakwin, P.S.; Tans, P.P.; White, J.W.C.; Andres, R.J.

    1998-01-01

    Data from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory global air sampling network are analysed in order to extract the signatures of isotopic (C-13/C-12) discrimination by the terrestrial iota and of fossil fuel combustion for the regions surrounding the sampling sites. Measurements of carbon monoxide (CO) are used to give an estimate of the contribution of fossil fuel combustion to the short-term variability of carbon dioxide. In general, variations of CO 2 are more strongly dominated by biological exchange, so the isotopic signature of fossil fuel combustion, while consistent with inventory estimates, is not well constrained by the observations. Conversely, results for isotope discrimination by the terrestrial biosphere are not strongly dependent on assumptions about fossil fuel combustion. The analysis appears valid primarily for stations fairly near continental source/sink regions, particularly for midlatitude regions of the northern hemisphere. For these stations a mean discrimination of -16.8 per mil (%) is derived, with site-to-site variability of 0.8% and with little or no consistent latitudinal gradient

  14. The Global Garlic Mustard Field Survey (GGMFS: challenges and opportunities of a unique, large-scale collaboration for invasion biology

    Robert Colautti

    2014-04-01

    Full Text Available To understand what makes some species successful invaders, it is critical to quantify performance differences between native and introduced regions, and among populations occupying a broad range of environmental conditions within each region. However, these data are not available even for the world’s most notorious invasive species. Here we introduce the Global Garlic Mustard Field Survey, a coordinated distributed field survey to collect performance data and germplasm from a single invasive species: garlic mustard (Alliaria petiolata across its entire distribution using minimal resources. We chose this species for its ecological impacts, prominence in ecological studies of invasion success, simple life history, and several genetic and life history attributes that make it amenable to experimental study. We developed a standardised field survey protocol to estimate population size (area and density, age structure, plant size and fecundity, as well as damage by herbivores and pathogens in each population, and to collect representative seed samples. Across four years and with contributions from 164 academic and non-academic participants from 16 countries in North America and Europe thus far, we have collected 45,788 measurements and counts of 137,811 plants from 383 populations and seeds from over 5,000 plants. All field data and seed resources will be curated for release to the scientific community. Our goal is to establish A. petiolata as a model species for plant invasion biology and to encourage large collaborative studies of other invasive species.

  15. Survey of reference materials. V. 1: Biological and environmental reference materials for trace elements, nuclides and microcontaminants

    1995-12-01

    Irradiation in combination with other food process/treatments, at sterilizing or at substerilizing doses, has long been known to be capable of yielding shelf-stable foods, particularly dry-packed meat, poultry and fish/shellfish products having very good eating quality and nutritional value. However, other than highly specific, targeted used with astronauts and cosmonauts in space, with immune-suppressed medical patients at one US hospital, and for military feeding plus supplying small nich 'markets' in the Republic of South Africa, there has been no commercial exploitation of the research and development that has gone into establishing this potentially very useful and valuable food irradiation application category. But what with rising global energy costs, and immune-comprised/suppressed populations on the increase, together with increasing consumer demand for minimally processed superior eating quality foods in developed countries especially, the potential and need for industrial use of this largely neglected food irradiation areas is becoming more and more apparent. 8 refs, 12 tabs

  16. Multi-objective optimization of a compact pressurized water nuclear reactor computational model for biological shielding design using innovative materials

    Tunes, M.A., E-mail: matheus.tunes@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil); Oliveira, C.R.E. de, E-mail: cassiano@unm.edu [Department of Nuclear Engineering, The University of New Mexico, Farris Engineering Center, 221, Albuquerque, NM 87131-1070 (United States); Schön, C.G., E-mail: schoen@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil)

    2017-03-15

    Highlights: • Use of two n-γ transport codes leads to optimized model of compact nuclear reactor. • It was possible to safely reduce both weight and volume of the biological shielding. • Best configuration obtained by using new composites for both γ and n attenuation. - Abstract: The aim of the present work is to develop a computational model of a compact pressurized water nuclear reactor (PWR) to investigate the use of innovative materials to enhance the biological shielding effectiveness. Two radiation transport codes were used: the first one – MCNP – for the PWR design and the GEM/EVENT to simulate (in a 1D slab) the behavior of several materials and shielding thickness on gamma and neutron radiation. Additionally MATLAB Optimization Toolbox was used to provide new geometric configurations of the slab aiming at reducing the volume and weight of the walls by means of a cost/objective function. It is demonstrated in the reactor model that the dose rate outside biological shielding has been reduced by one order of magnitude for the optimized model compared with the initial configuration. Volume and weight of the shielding walls were also reduced. The results indicated that one-dimensional deterministic code to reach an optimized geometry and test materials, combined with a three-dimensional model of a compact nuclear reactor in a stochastic code, is a fast and efficient procedure to test shielding performance and optimization before the experimental assessment. A major outcome of this research is that composite materials (ECOMASS 2150TU96) may replace (with advantages) traditional shielding materials without jeopardizing the nuclear power plant safety assurance.

  17. [Prevention of occupational accidents with biological material as per Green and Kreuter Model].

    Manetti, Marcela Luisa; da Costa, João Carlos Souza; Marziale, Maria Helena Palucci; Trovó, Marli Elisa

    2006-03-01

    This study aimed at diagnosing the occurrence of occupational accidents deriving from exposition to biological substance among workers of a hospital from São Paulo, Brazil, analyzing the adopted safety measures and elaborating a flowchart of preventive actions according to the Health Promotion Model by Green and Kreuter. It is an exploratory study with data collected electronically from the website REPAT - Electronic Network for the Prevention of Occupational Accidents with biological substances. The strategy used by the hospital did not reduce the injures. Results were used to elaborate a flowchart of preventive actions in order to improve the workers' quality of life.

  18. High sensitivity neutron activation analysis of environmental and biological standard reference materials

    Greenberg, R.R.; Fleming, R.F.; Zeisler, R.

    1984-01-01

    Neutron activation analysis is a sensitive method with unique capabilities for the analysis of environmental and biological samples. Since it is based upon the nuclear properties of the elements, it does not suffer from many of the chemical effects that plague other methods of analysis. Analyses can be performed either with no chemical treatment of the sample (instrumentally), or with separations of the elements of interest after neutron irradiation (radiochemically). Typical examples of both types of analysis are discussed, and data obtained for a number of environmental and biological SRMs are presented. (author)

  19. Enhanced Electromagnetic and Chemical/Biological Sensing. Properties of Atomic Cluster-Derived Materials

    Schatz, George

    2003-01-01

    The Center for Atomic Clusters-derived Materials performed a broad range of research concerned with synthesizing, characterizing and utilizing atomic and molecular clusters, nanoparticles and nanomaterial...

  20. Supplementary Material for: A global sensitivity analysis approach for morphogenesis models

    Boas, Sonja; Navarro, Marí a; Merks, Roeland; Blom, Joke

    2015-01-01

    ) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided

  1. 84 The Third World Option in a Globalized Building Materials Market ...

    Choice-Academy

    Globalization has been described as a world phenomenon that provides a level ground for competitive ..... and the political class are held socially and .... enhance levels of occupants' comfort, safety ... well advanced in manufacturing industry.

  2. ANALISIS KUALITAS PERAIRAN SUNGAI RAMAN DESA PUJODADI TRIMURJO SEBAGAI SUMBER BELAJAR BIOLOGI SMA PADA MATERI EKOSISTEM

    Agus Sutanto

    2015-06-01

    Full Text Available River is one of fresh water ecosystem which is very important in human life since it is the most practical and economical source in fulfilling domestic and industrial needs. Therefore, it should meet the quality standards. The research objectives were: 1 knowing the quality of waterway in Raman River, Pujodadi, Trimurjo, based on the physical, chemical and biological aspects; 2 turning the information intoa Biology learning source on Ecosystem subject. The data were directly observed in the river by measuring the physical factors (temperature, stream, turbidity; chemical factors (pH, DO; and biological factor (macro invertebrates. The results were: temperature 24-29oC ; stream 0.3 – 0.6 mm/s; turbidity 33.5-3.7 NTU; pH 4.1-5.2; and DO 2.07-2.35 ml/I. Furthermore, micro vertebrates found were; a Plecoptra; b Tricoptra; c Mollusca, d Ephemeroptra; and e Hemiptra. In each station, they were classified as insects and non-insects. The insects found were: 1 Odonata; 2 Tricoptra; 3 Ephemeroptra; 4 Plecoptra. Based on those parameters, the waterway quality was qualified as light wasted. The results can be turned into student worksheet as a Biology learning source, especially on Ecosystem subject.

  3. Determination of carbon-14 content in biological materials and its application to vinegars

    Grau Malonda, A.; Martin-Casallo, M.T.; Chereguini, S.

    1976-01-01

    A radiometric method for the determination of synthetic acetic acid in the presence of biological vinegar has been developed. The activity of 1 4C is measured by liquid scintillation counting and the sensitivity is optimized by taking into account the composition of several liquid scintillation solutions and the concentration of their components. (author) [es

  4. Development and applications of photosensitive device systems to studies of biological and organic materials. Progress report

    1984-01-01

    The purpose was to develop and improve appropriate experimental techniques to the point where they could be applied to specific classes of biological problems. Progress is reported in the following areas: (1) area detectors; (2) x-ray diffraction studies of membranes; (3) electron transfer in loosely coupled systems; (4) bioluminescence and fluorescence; and (5) sonoluminescence

  5. Evaluation of biological activities and chemical constituent of storage medicinal plant materials used as a traditional medicine in Nepal

    Bishnu Prasad Pandey

    2017-12-01

    Full Text Available Aim: The main aims of the study were to evaluate the phytochemicals, antioxidant, antibacterial and chemical constituents of storage medicinal plant materials used as a traditional medicine in Nepal. Methods: Phytochemical screening, total phenolic content, total flavonoid content, antibacterial activities, anti-oxidant assay of the crude extract (water, methanol, n-hexane and acetone were carried out to identify the biological activities and phytonutrients present in the different extract. The chemical constituents present in the crude extract were analyzed using the high performance liquid chromatography (HPLC equipped with UV detector. Results: Evaluated medicinal plant materials were found to have diverse phytonutrients. Results revealed that methanol extract of Pakhanved and Jethimadhu have highest total flavonoids and polyphenol content. Among the selected medicinal plant materials Jethimadhu extract revealed the highest antioxidant activities. Furthermore, evaluated medicinal plants extract were found to exert a range of in vitro growth inhibition activity against both gram positive and gram negative species. The highest antibacterial activities were observed in the case of methanol extract, whereas, least activity was observed with the hexane extract. HPLC analysis of the acetone extract of Jethimadhu reveals the presence of diosmetin. Conclusions: Our result revealed that among the five evaluated medicinal plant materials, Jethimadhu extract revealed biological activities and exhibits a higher amount of polyphenol and flavonoid content. [J Complement Med Res 2017; 6(4.000: 369-377

  6. Merton and Ziman's modes of science: the case of biological and similar material transfer agreements

    Rodriguez, V.F.

    2007-01-01

    This paper makes a connection between recent studies on research materials exchange and its effect on the progress of science. Academia fears that scientific development could be hampered by the privatised practices of research material exchange. Since post-academic science represents a sufficient

  7. Nanogram determination of arsenic in biological reference materials by non-destructive Compton suppression neutron activation analysis

    Petra, M.; Landsberger, S.; Swift, G.

    1990-01-01

    Non-destructive epithermal neutron activation analysis in conjunction with Compton suppression has been applied to determine arsenic in seven biological standard reference materials from the National Institute of Standards and Technology. The accuracy is in excellent agreement with all the certified values and compilation results. For four of the materials detection limits between 1-4 ng/g were easily achieved while for three others they ranged from 18-50 ng/g. Overall analytical precision typically varied between 2-4% for five of the reference materials while for two other it was between 12-16%. These methods clearly demonstrate that through a judicious approach of anti-coincidence techniques, nanogram quantities of arsenic can be reliably determined without the need for labor intensive chemical separations. (orig.)

  8. The use of an ion-beam source to alter the surface morphology of biological implant materials

    Weigand, A. J.

    1978-01-01

    An electron-bombardment ion-thruster was used as a neutralized-ion-beam sputtering source to texture the surfaces of biological implant materials. The materials investigated included 316 stainless steel; titanium-6% aluminum, 4% vanadium; cobalt-20% chromium, 15% tungsten; cobalt-35% nickel, 20% chromium, 10% molybdenum; polytetrafluoroethylene; polyoxymethylene; silicone and polyurethane copolymer; 32%-carbon-impregnated polyolefin; segmented polyurethane; silicone rubber; and alumina. Scanning electron microscopy was used to determine surface morphology changes of all materials after ion-texturing. Electron spectroscopy for chemical analysis was used to determine the effects of ion-texturing on the surface chemical composition of some polymers. Liquid contact angle data were obtained for ion-textured and untextured polymer samples. Results of tensile and fatigue tests of ion-textured metal alloys are presented. Preliminary data of tissue response to ion-textured surfaces of some metals, polytetrafluoroethylene, alumina, and segmented polyurethane have been obtained.

  9. Critical assessment of the performance of electronic moisture analyzers for small amounts of environmental samples and biological reference materials.

    Krachler, M

    2001-12-01

    Two electronic moisture analyzers were critically evaluated with regard to their suitability for determining moisture in small amounts (environmental matrices such as leaves, needles, soil, peat, sediments, and sewage sludge, as well as various biological reference materials. To this end, several homogeneous bulk materials were prepared which were subsequently employed for the development and optimization of all analytical procedures. The key features of the moisture analyzers included a halogen or ceramic heater and an integrated balance with a resolution of 0.1 mg, which is an essential prerequisite for obtaining precise results. Oven drying of the bulk materials in a conventional oven at 105 degrees C until constant mass served as reference method. A heating temperature of 65degrees C was found to provide accurate and precise results for almost all matrices investigated. To further improve the accuracy and precision, other critical parameters such as handling of sample pans, standby temperature, and measurement delay were optimized. Because of its ponderous heating behavior, the performance of the ceramic radiator was inferior to that of the halogen heater, which produced moisture results comparable to those obtained by oven drying. The developed drying procedures were successfully applied to the fast moisture analysis (1.4-6.3 min) of certified biological reference materials of similar provenance to the investigated the bulk materials. Moisture results for 200 mg aliquots ranged from 1.4 to 7.8% and good agreement was obtained between the recommended drying procedure for the reference materials and the electronic moisture analyzers with absolute uncertainties amounting to 0.1% and 0.2-0.3%, respectively.

  10. Element concentrations in candidate biological and environmental reference materials by k0-standardized INAA

    Freitas, M.C.

    1993-01-01

    K 0 -Based Neutron Activation Analysis (k 0 INAA) was used to analyze the candidate reference materials Apple Leaves and Peach Leaves, and Oriental Tobacco Leaves and Virginia Tobacco Leaves. Concentration values for 27 elements were measured. The accuracy was ascertained by analysis of two certified reference materials. NIST 1572 Citrus Leaves and 1573 Tomato Leaves. The homogeneity test of the IAEA Evernia prunastri candidate reference material in aliquots ≥ 100 mg is extended to the elements Sc, Cr, Fe, Co, Zn, Rb, Sb, Cs, Ba, Ce and Th. (orig.)

  11. Exploring global history through the lens of history of Chemistry: Materials, identities and governance.

    Roberts, Lissa

    2016-12-01

    As global history continues to take shape as an important field of research, its interactive relationships with the history of science, technology, and medicine are recognized and being investigated as significant areas of concern. Strangely, despite the fact that it is key to understanding so many of the subjects that are central to global history and would itself benefit from a broader geographical perspective, the history of chemistry has largely been left out of this process - particularly for the modern historical period. This article argues for the value of integrating the history of chemistry with global history, not only for understanding the past, but also for thinking about our shared present and future. Toward this end, it (1) explores the various ways in which 'chemistry' has and can be defined, with special attention to discussions of 'indigenous knowledge systems'; (2) examines the benefits of organizing historical inquiry around the evolving sociomaterial identities of substances; (3) considers ways in which the concepts of 'chemical governance' and 'chemical expertise' can be expanded to match the complexities of global history, especially in relation to environmental issues, climate change, and pollution; and (4) seeks to sketch the various geographies entailed in bringing the history of chemistry together with global histories.

  12. Potential of the PIGE method in the analysis of biological and mineral materials

    Havranek, V.

    2006-01-01

    A possible application of the PIGE method for the analysis of the biological and mineral samples has been tested using a 3.5 MeV Van de Graaff accelerator. The limits of detection of 4 mg/kg for fluorine, 10 mg/kg for aluminium and 200 mg/kg for phosphorus were achieved with a 3.15 MeV proton beam (8 mm in diameter, 20 nA current and 1000 s irradiation time). The PIGE method was found to be a suitable method for the determination of fluorine in the samples analyzed. With this technique, total fluorine in the sample can be quantitated without any chemical treatment. In the analysis of the phosphorus in thick biological samples, PIGE can compete with PIXE and is probably less sensitive to matrix effects and spectra fitting, which may bring about a higher accuracy of the results

  13. Global existence and asymptotic behavior of a model for biological control of invasive species via supermale introduction

    Parshad, Rana; Kouachi, Saï d; Gutié rrez, Juan B.

    2013-01-01

    theapplication of the well known regularizing effect principle. Thus functional methods to deducethe global existence in time, for the system in question, are not applicable. Our techniques are based on the Lyapunov functional method. We prove global existence

  14. Global change and biological soil crusts: Effects of ultraviolet augmentation under altered precipitation regimes and nitrogen additions

    Belnap, J.; Phillips, S.L.; Flint, S.; Money, J.; Caldwell, M.

    2008-01-01

    Biological soil crusts (BSCs), a consortium of cyanobacteria, lichens, and mosses, are essential in most dryland ecosystems. As these organisms are relatively immobile and occur on the soil surface, they are exposed to high levels of ultraviolet (UV) radiation and atmospheric nitrogen (N) deposition, rising temperatures, and alterations in precipitation patterns. In this study, we applied treatments to three types of BSCs (early, medium, and late successional) over three time periods (spring, summer, and spring-fall). In the first year, we augmented UV and altered precipitation patterns, and in the second year, we augmented UV and N. In the first year, with average air temperatures, we saw little response to our treatments except quantum yield, which was reduced in dark BSCs during one of three sample times and in Collema BSCs two of three sample times. There was more response to UV augmentation the second year when air temperatures were above average. Declines were seen in 21% of the measured variables, including quantum yield, chlorophyll a, UV-protective pigments, nitrogenase activity, and extracellular polysaccharides. N additions had some negative effects on light and dark BSCs, including the reduction of quantum yield, ??-carotene, nitrogenase activity, scytonemin, and xanthophylls. N addition had no effects on the Collema BSCs. When N was added to samples that had received augmented UV, there were only limited effects relative to samples that received UV without N. These results indicate that the negative effect of UV and altered precipitation on BSCs will be heightened as global temperatures increase, and that as their ability to produce UV-protective pigments is compromised, physiological functioning will be impaired. N deposition will only ameliorate UV impacts in a limited number of cases. Overall, increases in UV will likely lead to lowered productivity and increased mortality in BSCs through time, which, in turn, will reduce their ability to contribute

  15. Microcantilever technology for law enforcement and anti-terrorism applications: chemical, biological, and explosive material detection

    Adams, J. D.; Rogers, B.; Whitten, R.

    2005-05-01

    The remarkable sensitivity, compactness, low cost, low power-consumption, scalability, and versatility of microcantilever sensors make this technology among the most promising solutions for detection of chemical and biological agents, as well as explosives. The University of Nevada, Reno, and Nevada Nanotech Systems, Inc (NNTS) are currently developing a microcantilever-based detection system that will measure trace concentrations of explosives, toxic chemicals, and biological agents in air. A baseline sensor unit design that includes the sensor array, electronics, power supply and air handling has been created and preliminary demonstrations of the microcantilever platform have been conducted. The envisioned device would measure about two cubic inches, run on a small watch battery and cost a few hundred dollars. The device could be operated by untrained law enforcement personnel. Microcantilever-based devices could be used to "sniff out" illegal and/or hazardous chemical and biological agents in high traffic public areas, or be packaged as a compact, low-power system used to monitor cargo in shipping containers. Among the best detectors for such applications at present is the dog, an animal which is expensive, requires significant training and can only be made to work for limited time periods. The public is already accustomed to explosives and metal detection systems in airports and other public venues, making the integration of the proposed device into such security protocols straightforward.

  16. Development and application of an ultratrace method for speciation of organotin compounds in cryogenically archived and homogenized biological materials

    Point, David; Davis, W.C.; Christopher, Steven J.; Ellisor, Michael B.; Pugh, Rebecca S.; Becker, Paul R. [Hollings Marine Laboratory, National Institute of Standards and Technology, Analytical Chemistry Division, Charleston, SC (United States); Donard, Olivier F.X. [Laboratoire de Chimie Analytique BioInorganique et Environnement UMR 5034 du CNRS, Pau (France); Porter, Barbara J.; Wise, Stephen A. [National Institute of Standards and Technology, Analytical Chemistry Division, Gaithersburg, MD (United States)

    2007-04-15

    An accurate, ultra-sensitive and robust method for speciation of mono, di, and tributyltin (MBT, DBT, and TBT) by speciated isotope-dilution gas chromatography-inductively coupled plasma-mass spectrometry (SID-GC-ICPMS) has been developed for quantification of butyltin concentrations in cryogenic biological materials maintained in an uninterrupted cryo-chain from storage conditions through homogenization and bottling. The method significantly reduces the detection limits, to the low pg g{sup -1} level (as Sn), and was validated by using the European reference material (ERM) CE477, mussel tissue, produced by the Institute for Reference Materials and Measurements. It was applied to three different cryogenic biological materials - a fresh-frozen mussel tissue (SRM 1974b) together with complex materials, a protein-rich material (whale liver control material, QC03LH03), and a lipid-rich material (whale blubber, SRM 1945) containing up to 72% lipids. The commutability between frozen and freeze-dried materials with regard to spike equilibration/interaction, extraction efficiency, and the absence of detectable transformations was carefully investigated by applying complementary methods and by varying extraction conditions and spiking strategies. The inter-method results enabled assignment of reference concentrations of butyltins in cryogenic SRMs and control materials for the first time. The reference concentrations of MBT, DBT, and TBT in SRM 1974b were 0.92 {+-} 0.06, 2.7 {+-} 0.4, and 6.58 {+-} 0.19 ng g{sup -1} as Sn (wet-mass), respectively; in SRM 1945 they were 0.38 {+-} 0.06, 1.19 {+-} 0.26, and 3.55 {+-} 0.44 ng g{sup -1}, respectively, as Sn (wet-mass). In QC03LH03, DBT and TBT concentrations were 30.0 {+-} 2.7 and 2.26 {+-} 0.38 ng g{sup -1} as Sn (wet-mass). The concentration range of butyltins in these materials is one to three orders of magnitude lower than in ERM CE477. This study demonstrated that cryogenically processed and stored biological materials are

  17. A New Approach to Studying Biological and Soft Materials Using Focused Ion Beam Scanning Electron Microscopy (FIB SEM)

    Stokes, D J; Morrissey, F; Lich, B H

    2006-01-01

    Over the last decade techniques such as confocal light microscopy, in combination with fluorescent labelling, have helped biologists and life scientists to study biological architectures at tissue and cell level in great detail. Meanwhile, obtaining information at very small length scales is possible with the combination of sample preparation techniques and transmission electron microscopy (TEM) or scanning transmission electron microscopy (STEM). Scanning electron microscopy (SEM) is well known for the determination of surface characteristics and morphology. However, the desire to understand the three dimensional relationships of meso-scale hierarchies has led to the development of advanced microscopy techniques, to give a further complementary approach. A focused ion beam (FIB) can be used as a nano-scalpel and hence allows us to reveal internal microstructure in a site-specific manner. Whilst FIB instruments have been used to study and verify the three-dimensional architecture of man made materials, SEM and FIB technologies have now been brought together in a single instrument representing a powerful combination for the study of biological specimens and soft materials. We demonstrate the use of FIB SEM to study three-dimensional relationships for a range of length scales and materials, from small-scale cellular structures to the larger scale interactions between biomedical materials and tissues. FIB cutting of heterogeneous mixtures of hard and soft materials, resulting in a uniform cross-section, has proved to be of particular value since classical preparation methods tend to introduce artefacts. Furthermore, by appropriate selection, we can sequentially cross-section to create a series of 'slices' at specific intervals. 3D reconstruction software can then be used to volume-render information from the 2D slices, enabling us to immediately see the spatial relationships between microstructural components

  18. Comparison of Principal Component Analysis and Linear Discriminant Analysis applied to classification of excitation-emission matrices of the selected biological material

    Maciej Leśkiewicz

    2016-03-01

    Full Text Available Quality of two linear methods (PCA and LDA applied to reduce dimensionality of feature analysis is compared and efficiency of their algorithms in classification of the selected biological materials according to their excitation-emission fluorescence matrices is examined. It has been found that LDA method reduces the dimensions (or a number of significant variables more effectively than PCA method. A relatively good discrimination within the examined biological material has been obtained with the use of LDA algorithm.[b]Keywords[/b]: Feature Analysis, Fluorescence Spectroscopy, Biological Material Classification

  19. A versatile route to hybrid open-framework materials | Ayi | Global ...

    The isolation of the intermediate phase and its reaction with metal ions to form open framework solids has been explored and it has proven a facile route of synthesizing inorganic-organic hybrid materials with open pores. Here the amine phosphate route of templating inorganic open-framework materials has been reviewed ...

  20. Accidental exposure to biological material in healthcare workers at a university hospital: Evaluation and follow-up of 404 cases.

    Gutierrez, Eliana Battaggia; Lopes, Marta Heloísa; Yasuda, Maria Aparecida Shikanai

    2005-01-01

    The care and follow-up provided to healthcare workers (HCWs) from a large teaching hospital who were exposed to biological material between 1 August 1998 and 31 January 2002 is described here. After exposure, the HCW is evaluated by a nurse and doctor in an emergency consultation and receives follow-up counselling. The collection of 10 ml of blood sample from each HCW and its source patient, when known, is made for immunoenzymatic testing for HIV, HBV and HCV. Evaluation and follow-up of 404 cases revealed that the exposures were concentrated in only a few areas of the hospital; 83% of the HCWs exposed were seen by a doctor responsible for the prophylaxis up to 3 h after exposure. Blood was involved in 76.7% (309) of the exposures. The patient source of the biological material was known in 80.7% (326) of the exposed individuals studied; 80 (24.5%) sources had serological evidence of infection with 1 or more agents: 16.2% were anti-HCV positive, 3.8% were HAgBs positive and 10.9% were anti-HIV positive. 67% (273) of the study population completed the proposed follow-up. No confirmed seroconversion occurred. In conclusion, the observed adherence to the follow-up was quite low, and measures to improve it must be taken. Surprisingly, no difference in adherence to the follow-up was observed among those exposed HCW at risk, i.e. those with an infected or unknown source patient. Analysis of post-exposure management revealed excess prescription of antiretroviral drugs, vaccine and immunoglobulin. Infection by HCV is the most important risk of concern, in our hospital, in accidents with biological material.

  1. Biological cell as a soft magnetoelectric material: Elucidating the physical mechanisms underpinning the detection of magnetic fields by animals

    Krichen, S.; Liu, L.; Sharma, P.

    2017-10-01

    Sharks, birds, bats, turtles, and many other animals can detect magnetic fields. Aside from using this remarkable ability to exploit the terrestrial magnetic field map to sense direction, a subset is also able to implement a version of the so-called geophysical positioning system. How do these animals detect magnetic fields? The answer to this rather deceptively simple question has proven to be quite elusive. The currently prevalent theories, while providing interesting insights, fall short of explaining several aspects of magnetoreception. For example, minute magnetic particles have been detected in magnetically sensitive animals. However, how is the detected magnetic field converted into electrical signals given any lack of experimental evidence for relevant electroreceptors? In principle, a magnetoelectric material is capable of converting magnetic signals into electricity (and vice versa). This property, however, is rare and restricted to a rather small set of exotic hard crystalline materials. Indeed, such elements have never been detected in the animals studied so far. In this work we quantitatively outline the conditions under which a biological cell may detect a magnetic field and convert it into electrical signals detectable by biological cells. Specifically, we prove the existence of an overlooked strain-mediated mechanism and show that most biological cells can act as nontrivial magnetoelectric materials provided that the magnetic permeability constant is only slightly more than that of a vacuum. The enhanced magnetic permeability is easily achieved by small amounts of magnetic particles that have been experimentally detected in magnetosensitive animals. Our proposed mechanism appears to explain most of the experimental observations related to the physical basis of magnetoreception.

  2. Synthesis and biological evaluation of PMMA/MMT nanocomposite as denture base material.

    Zheng, Junping; Su, Qiang; Wang, Chen; Cheng, Gang; Zhu, Ran; Shi, Jin; Yao, Kangde

    2011-04-01

    Inorganic-polymer nanocomposites are of significant interest for emerging materials due to their improved properties and unique combination of properties. Poly (methylmethacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were prepared by in situ suspension polymerization with dodecylamine used as MMT-modifier. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the structures of the nanocomposites. Cytotoxicity test, hemolysis test, acute systemic toxicity test, oral mucous membrane irritation test, guinea-pig maximization test and mouse bone-marrow micronucleus test were used to evaluate the biocompatibility of PMMA/MMT nanocomposites. The results indicated that an exfoliated nanocomposite was achieved, and the resulting nanocomposites exhibited excellent biocompatibility as denture base material and had potential application in dental materials.

  3. Using Synthetic Biology to Engineer Living Cells That Interface with Programmable Materials.

    Heyde, Keith C; Scott, Felicia Y; Paek, Sung-Ho; Zhang, Ruihua; Ruder, Warren C

    2017-03-09

    We have developed an abiotic-biotic interface that allows engineered cells to control the material properties of a functionalized surface. This system is made by creating two modules: a synthetically engineered strain of E. coli cells and a functionalized material interface. Within this paper, we detail a protocol for genetically engineering selected behaviors within a strain of E. coli using molecular cloning strategies. Once developed, this strain produces elevated levels of biotin when exposed to a chemical inducer. Additionally, we detail protocols for creating two different functionalized surfaces, each of which is able to respond to cell-synthesized biotin. Taken together, we present a methodology for creating a linked, abiotic-biotic system that allows engineered cells to control material composition and assembly on nonliving substrates.

  4. Novel Aspects of Materials Processing by Ultrafast Lasers: From Electronic to Biological and Cultural Heritage Applications

    Fotakis, C; Zorba, V; Stratakis, E; Athanassiou, A; Tzanetakis, P; Zergioti, I; Papagoglou, D G; Sambani, K; Filippidis, G; Farsari, M; Pouli, V; Bounos, G; Georgiou, S

    2007-01-01

    Materials processing by ultrafast lasers offers several distinct possibilities for micro/nano scale applications. This is due to the unique characteristics of the laser-matter interactions involved, when sub-picosecond pulses are employed. Prospects arising will be discussed in the context of surface and in bulk laser induced modifications. In particular, examples of diverse applications including the development and functionalization of laser engineered surfaces, the laser transfer of biomolecules and the functionalization of 3D structures constructed by three-photon stereolithography will be presented. Furthermore, the removal of molecular substrates by ultrafast laser ablation will be discussed with emphasis placed on assessing the photochemical changes induced in the remaining bulk material. The results indicate that in femtosecond laser processing of organic materials, besides the well acknowledged morphological advantages, a second fundamental factor responsible for its success pertains to the selective chemical effects. This is crucial for the laser cleaning of sensitive painted artworks

  5. New classes of tough composite materials-Lessons from natural rigid biological systems

    Mayer, G. [Department of Materials Science and Engineering, Box 352120, University of Washington, Seattle, WA 98195-2120 (United States)]. E-mail: gmayer@u.washington.edu

    2006-09-15

    The structures and properties of a new class of composite materials, containing a predominantly high volume fraction ceramic or glass phase, combined with minor organic (adhesive) phases, have been studied. These composites have unusual combinations of mechanical properties, such as stiffness, strength, and toughness. They are based on the architecture of a rigid natural material, the nacre structure, such as those found in the shells of the abalone Haliotis rufescens, and those of other mollusk shells. The mechanisms underlying these properties have also been studied. Analogs (utilizing high-performance engineering materials), that mimic many of the mechanisms underlying those superior combinations of properties, have been built. The results of the foregoing investigations are discussed. It was found that the toughness of segmented composite beams which have high volume fractions of ceramic (89 v / o) exceeded those of continuous layered beams, as well as the monolithic ceramic (alumina) on which they are based.

  6. New classes of tough composite materials-Lessons from natural rigid biological systems

    Mayer, G.

    2006-01-01

    The structures and properties of a new class of composite materials, containing a predominantly high volume fraction ceramic or glass phase, combined with minor organic (adhesive) phases, have been studied. These composites have unusual combinations of mechanical properties, such as stiffness, strength, and toughness. They are based on the architecture of a rigid natural material, the nacre structure, such as those found in the shells of the abalone Haliotis rufescens, and those of other mollusk shells. The mechanisms underlying these properties have also been studied. Analogs (utilizing high-performance engineering materials), that mimic many of the mechanisms underlying those superior combinations of properties, have been built. The results of the foregoing investigations are discussed. It was found that the toughness of segmented composite beams which have high volume fractions of ceramic (89 v / o) exceeded those of continuous layered beams, as well as the monolithic ceramic (alumina) on which they are based

  7. The use of a single technique for the separation and determination of actinides in biological materials

    Camera, V.; Giubileo.

    1975-01-01

    For the radiotoxicological survey of workers exposed to different types of alpha-emitting contaminants, a procedure was developed which permits the estimate of Th, Pa, U, Np, Pu, Am and Cm in biological samples with a single technique. The radionuclides are extracted on a column by tri-n-octylphosphine oxide and separated by elution at different pH values. Afterwards, the quantitative determinations are done by physical methods (alpha counting or spectrometry). In the case of an accident it is possible to use a simplification of the procedure (extraction in a beaker) for checks. A procedure for the rapid determination of actinides in faeces and in nasal secretions is described

  8. INAA applied to halogen (Br and I) stability in long-term storage of lyophilized biological materials

    Zaichick, V.; Zaichick, S.

    2000-01-01

    Instrumental neutron activation analysis (INAA) was used to determine the Br and I concentration in the same ten lyophilized and homogenized human thyroid samples prior and after a 20-year storage at room temperature. It was found that long-term storage had no effect on the iodine content. At the same time, the bromine content was about 2-fold lower (p<0.01). It was assumed that possible losses of other halogens can occur under long-term storage of lyophilized biological materials at room temperature. (author)

  9. Determination of trace elements in Brazilian rice grains and in biological reference materials by neutron activation analysis

    Maihara, V.A.; Vasconcellos, M.B.A.

    1989-01-01

    Instrumental neutron activation analysis was applied to the determination of the elements Na, K, Br, As, Rb, Zn, Co, Fe and Sc in Brazilian rice samples and in biological standards. Hg and Se concentrations were determined by using a simple radiochemical separation. The chemical procedure was carried out by means of distillation of Hg and Se in HBr medium and subsequent precipitation of selenium by sodium methabissulfide and mercury by thioacetamide. The accuracy of the instrumental and radiochemical methods was evaluated by means of analysis of the Reference Materials NBS-Bovine Liver, Bowen's Kale and NBS-Rice Flour. (author) [pt

  10. Determination of trace elements in Brazilian rice grains and in biological reference materials by neutron activation analysis

    Maihara, V.A.; Vasconcellos, M.B.A.

    1989-01-01

    INAA was applied to the determination of the elements Na, K, Br, As, Rb, Zn, Co, Fe and Sc in Brazilian rice samples and in biological standards. Hg and Se concentrations were determined using a simple radiochemical separation. The chemical procedure was carried out by means of distillation of Hg and Se in HBr medium and subsequent precipitation of Se by sodium metabisulfite and Hg by thioacetamide. The accuracy of the instrumental and radiochemical methods was evaluated by means of analysis of the Reference Materials NBS-Bovine Liver, Bowen's Kale and NBS-Rice Flour. (author) 15 refs.; 5 tabs

  11. Estimating the Cross-Shelf Export of Riverine Materials: Part 2. Estimates of Global Freshwater and Nutrient Export

    Izett, Jonathan G.; Fennel, Katja

    2018-02-01

    Rivers deliver large amounts of fresh water, nutrients, and other terrestrially derived materials to the coastal ocean. Where inputs accumulate on the shelf, harmful effects such as hypoxia and eutrophication can result. In contrast, where export to the open ocean is efficient riverine inputs contribute to global biogeochemical budgets. Assessing the fate of riverine inputs is difficult on a global scale. Global ocean models are generally too coarse to resolve the relatively small scale features of river plumes. High-resolution regional models have been developed for individual river plume systems, but it is impractical to apply this approach globally to all rivers. Recently, generalized parameterizations have been proposed to estimate the export of riverine fresh water to the open ocean (Izett & Fennel, 2018, https://doi.org/10.1002/2017GB005667; Sharples et al., 2017, https://doi.org/10.1002/2016GB005483). Here the relationships of Izett and Fennel, https://doi.org/10.1002/2017GB005667 are used to derive global estimates of open-ocean export of fresh water and dissolved inorganic silicate, dissolved organic carbon, and dissolved organic and inorganic phosphorus and nitrogen. We estimate that only 15-53% of riverine fresh water reaches the open ocean directly in river plumes; nutrient export is even less efficient because of processing on continental shelves. Due to geographic differences in riverine nutrient delivery, dissolved silicate is the most efficiently exported to the open ocean (7-56.7%), while dissolved inorganic nitrogen is the least efficiently exported (2.8-44.3%). These results are consistent with previous estimates and provide a simple way to parameterize export to the open ocean in global models.

  12. Canada's Global Partnership Program

    Ellis, M.

    2007-01-01

    Curbing the proliferation of biological weapons (BW) is an essential element of the Global Partnership Against the Spread of Weapons and Materials of Mass Destruction. At the Kananaskis Summit in June 2002, G8 Leaders committed to prevent terrorists, or those that harbour them, from acquiring or developing biological weapons and related materials, equipment and technology. To this end, Canada's Global Partnership Program is investing heavily in biological non-proliferation activities in countries of the former Soviet Union. A comprehensive strategy has been developed to help improve biological safety (biosafety) and biological security (biosecurity) with provision for addressing dual-use concerns. Raising awareness and creating a self-sustaining culture of biosecurity is a key driver of the program. Through this strategy, Canada is assisting various FSU countries to: develop and implement effective and practical biosafety/biosecurity standards and guidelines; establish national and/or regional biosafety associations; develop and deliver effective biosafety and biosecurity training; put in place enhanced physical security measures and equipment. In addition to biosafety and biosecurity, the GPP supports a broad range of Biological Non-Proliferation projects and initiatives, including dozens of projects aimed at redirecting former biological weapons scientists. To date, most of these activities have been supported through Canada's contribution to the International Science and Technology Center (ISTC) and the Science and Technology Centre Ukraine (STCU).(author)

  13. The double radio-isotope derivative techniques for the assay of drugs in biological material

    Riess, W.

    1977-01-01

    The neuroleptic drug opipramol and its deshydroxyethyl metabolite can be determined simultaneously in the same biological sample. Known amounts of 14 C-labelled opipramol and 14 C-labelled metabolite are added to the sample to serve as internal standards. After suitable extraction, both compounds are acetylated by 3 H-labelled acetic anhydride. Together with μg-amounts of carrier compounds, the O-acetyl derivative of opipramol and the N-acetyl derivative of the metabolite are purified and separated by two-dimensional thin-layer chromatography. Each of the derivatives is isolated and counted for 14 C- and 3 H-activity. The 14 C-activities recovered serve to determine the overall yield of the opipramol and metabolite, and to convert the measured 3 H-activity to 100% theoretical yield. From analyses of standard samples, the specific 3 H-activities of the acetyl derivatives were calculated and these values were used to convert the measured 3 H-activites from biological samples to concentrations of original opipramol and metabolite. For both compounds the standard deviations of blank samples were +- 1 ng/ml. For concentrations up to 100 ng/ml the standard deviation was +- 3 ng/ml

  14. Graphene: One Material, Many Possibilities—Application Difficulties in Biological Systems

    Marta Skoda

    2014-01-01

    Full Text Available Energetic technologies, nanoelectronics, biomedicine including gene therapy, cell imaging or tissue engineering are only few from all possible applications for graphene, the thinnest known carbon configuration and a basic element for other more complicated, better discovered and widely used nanostructures such as graphite, fullerenes and carbon nanotubes. The number of researches concerning graphene applications is rising every day which proves the great interest in its unique structure and properties. Ideal pristine graphene sheet presents a flat membrane of unlimited size with no imperfections while in practice we get different flakes with irregular edges and structural defects which influence the reactivity. Nanomaterials from graphene family differ in size, shape, layer number, lateral dimension, surface chemistry and defect density causing the existence of graphene samples with various influence on biological systems. Whether graphene induces cellular stress and activates apoptosis, or on the contrary facilitates growth and differentiation of the cells depends on its structure, chemical modifications and the growth process. A certain number of in vitro studies has indicated cytotoxic effects of graphene while the other show that it is safe. The diversity of the samples and methods of the production make it impossible to establish clearly the biological impact of graphene.

  15. Synthesis of Precision for the Certification of Phosphorus in Biological Materials by INAA

    Damsgaard, E.; Heydorn, K.

    1987-01-01

    The β-emitter32P was used to determine total phosphorus by INAA in Skim Milk Powder RM 63, a material now certified by the EEC Bureau of Reference (BCR). Samples and comparator were irradiated in the Danish reactor DR 3. One month later the samples were dissolved in water and aliquots counted...

  16. Compilation of elemental concentration data for NBS Biological and Environmental Standard Reference Materials

    Gladney, E.S.

    1980-07-01

    Concentration data on up to 76 elementals in 19 NBS Standard Reference Materials have been collected from 325 journal articles and technical reports. These data are summarized into mean +- one standard deviation values and compared with available data from NBS and other review articles. Data are presented on the analytical procedures employed and all raw data are presented in appendixes

  17. Electrospun Fibers as a Dressing Material for Drug and Biological Agent Delivery in Wound Healing Applications

    Gizaw, Mulugeta; Thompson, Jeffrey; Faglie, Addison; Lee, Shih-Yu; Neuenschwander, Pierre; Chou, Shih-Feng

    2018-01-01

    Wound healing is a complex tissue regeneration process that promotes the growth of new tissue to provide the body with the necessary barrier from the outside environment. In the class of non-healing wounds, diabetic wounds, and ulcers, dressing materials that are available clinically (e.g., gels and creams) have demonstrated only a slow improvement with current available technologies. Among all available current technologies, electrospun fibers exhibit several characteristics that may provide novel replacement dressing materials for the above-mentioned wounds. Therefore, in this review, we focus on recent achievements in electrospun drug-eluting fibers for wound healing applications. In particular, we review drug release, including small molecule drugs, proteins and peptides, and gene vectors from electrospun fibers with respect to wound healing. Furthermore, we provide an overview on multifunctional dressing materials based on electrospun fibers, including those that are capable of achieving wound debridement and wound healing simultaneously as well as multi-drugs loading/types suitable for various stages of the healing process. Our review provides important and sufficient information to inform the field in development of fiber-based dressing materials for clinical treatment of non-healing wounds. PMID:29382065

  18. Intercomparison of enriched stable isotope reference materials for medical and biological studies

    Parr, R.M.; Clements, S.A.

    1991-01-01

    This report summarizes the results of an intercomparison exercise organized by the IAEA during the latter part of 1988 and 1989. Data are presented for 13 different kinds of enriched stable isotope reference material containing 2 H, 13 C, 15 N and 18 O. Results were submitted by forty participants in twenty countries. 2 refs, 13 figs, 18 tabs

  19. MAK and BAT values list 2014. Maximum permissible concentrations at the place of work and biological tolerance values for working materials; MAK- und BAT-Werte-Liste 2014. Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte

    NONE

    2014-11-01

    The book on the MAK (maximum permissible concentrations at the place of work) and BAT (biological tolerance values for working materials) value list 2014 includes the following chapters: (a) Maximum permissible concentrations at the place of work: definition, application and determination of MAT values, list of materials; carcinogenic working materials, sensibilizing working materials, aerosols, limiting the exposition peaks, skin resorption, MAK values during pregnancy, germ cell mutagens, specific working materials; (b) Biological tolerance values for working materials: definition and application of BAT values, list of materials, carcinogenic working materials, biological guide values, biological working material reference values.

  20. MAK and BAT values list 2013. Maximum permissible concentrations at the place of work and biological tolerance values for working materials; MAK- und BAT-Werte-Liste 2013. Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte

    NONE

    2013-08-01

    The book on the MAK (maximum permissible concentrations at the place of work) and BAT (biological tolerance values for working materials) value list 2013 includes the following chapters: (a) Maximum permissible concentrations at the place of work: definition, application and determination of MAT values, list of materials; carcinogenic working materials, sensibilizing working materials, aerosols, limiting the exposition peaks, skin resorption, MAK values during pregnancy, germ cell mutagens, specific working materials; (b) Biological tolerance values for working materials: definition and application of BAT values, list of materials, carcinogenic working materials, biological guide values, biological working material reference values.

  1. MAK and BAT values list 2015. Maximum permissible concentrations at the place of work and biological tolerance values for working materials; MAK- und BAT-Werte-Liste 2015. Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte

    NONE

    2015-11-01

    The book on the MAK (maximum permissible concentrations at the place of work) and BAT (biological tolerance values for working materials) value list 2015 includes the following chapters: (a) Maximum permissible concentrations at the place of work: definition, application and determination of MAT values, list of materials; carcinogenic working materials, sensibilizing working materials, aerosols, limiting the exposition peaks, skin resorption, MAK values during pregnancy, germ cell mutagens, specific working materials; (b) Biological tolerance values for working materials: definition and application of BAT values, list of materials, carcinogenic working materials, biological guide values, biological working material reference values.

  2. Determination of Sr, Ba, Rb, and Cs in biological reference materials using a radiochemical NAA group separation procedure

    Mizera, J.; Randa, Z.

    2008-01-01

    Strontium, barium, rubidium, and cesium in selected, predominantly biological, reference materials (NIST 1515, 1547, 1549, 1566a, 1571, 1577b, 2704, CTA-OTL-1, and Bowen's Kale) were determined using neutron activation analysis (NAA) in two different analytical modes - instrumental NAA with epithermal neutrons (ENAA), and NAA with radiochemical group separation of Sr-Ba and Rb-Cs (RNAA). The ENAA mode was based on long-term (5 h) irradiation of samples in a Cd shielding. The RNAA procedure was based on long-term (20 h) irradiation of samples, their decomposition / dissolution by alkaline-oxidative fusion, and precipitation of Sr and Ba sulfates, and sorption of Rb and Cs onto ammonium phosphomolybdate (APM). Both methods provided element contents in the analyzed reference materials consistent with certified and/or literature values. (author)

  3. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  4. 2012 best practices for repositories collection, storage, retrieval, and distribution of biological materials for research international society for biological and environmental repositories.

    2012-04-01

    Third Edition [Formula: see text] [Box: see text] Printed with permission from the International Society for Biological and Environmental Repositories (ISBER) © 2011 ISBER All Rights Reserved Editor-in-Chief Lori D. Campbell, PhD Associate Editors Fay Betsou, PhD Debra Leiolani Garcia, MPA Judith G. Giri, PhD Karen E. Pitt, PhD Rebecca S. Pugh, MS Katherine C. Sexton, MBA Amy P.N. Skubitz, PhD Stella B. Somiari, PhD Individual Contributors to the Third Edition Jonas Astrin, Susan Baker, Thomas J. Barr, Erica Benson, Mark Cada, Lori Campbell, Antonio Hugo Jose Froes Marques Campos, David Carpentieri, Omoshile Clement, Domenico Coppola, Yvonne De Souza, Paul Fearn, Kelly Feil, Debra Garcia, Judith Giri, William E. Grizzle, Kathleen Groover, Keith Harding, Edward Kaercher, Joseph Kessler, Sarah Loud, Hannah Maynor, Kevin McCluskey, Kevin Meagher, Cheryl Michels, Lisa Miranda, Judy Muller-Cohn, Rolf Muller, James O'Sullivan, Karen Pitt, Rebecca Pugh, Rivka Ravid, Katherine Sexton, Ricardo Luis A. Silva, Frank Simione, Amy Skubitz, Stella Somiari, Frans van der Horst, Gavin Welch, Andy Zaayenga 2012 Best Practices for Repositories: Collection, Storage, Retrieval and Distribution of Biological Materials for Research INTERNATIONAL SOCIETY FOR BIOLOGICAL AND ENVIRONMENTAL REPOSITORIES (ISBER) INTRODUCTION T he availability of high quality biological and environmental specimens for research purposes requires the development of standardized methods for collection, long-term storage, retrieval and distribution of specimens that will enable their future use. Sharing successful strategies for accomplishing this goal is one of the driving forces for the International Society for Biological and Environmental Repositories (ISBER). For more information about ISBER see www.isber.org . ISBER's Best Practices for Repositories (Best Practices) reflect the collective experience of its members and has received broad input from other repository professionals. Throughout this document

  5. Global Existence of Classical Solutions to the Equations of Motion for Materials with Fading Memory.

    1984-02-01

    influence function , history value problems, classical solutions, global existence, decay. Work Unit Number 1 - Applied Analysis Sponsored by the United...introduce an " influence function " h, intended to JIN. characterize the rate at which memory fades, and construct an LP-type space of admissible...histories using the influence function as a weight. Here we use the term influence function to mean a positive, nonincreasing, real-valued function h e L (0

  6. The standardisation of trace elements in international biological standard reference materials with neutron activation analysis and atomic absorption spectrophotometry

    Pieterse, H.

    1981-12-01

    An investigation was undertaken into the analytical procedures and the identification of problem areas, for the certification of a new biological standard reference material supplied by the International Atomic Energy Agency, namely, a human hair sample designated as HH-I. The analyses comprised the determination of the elements As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Sb, Se, and Zn in the hair sample by using two analytical techniques, namely, Instrumental Neutron Activation Analysis and Atomic Absorption. Three other certified biological reference materials, namely, Orchard Leaves (ORCH-L), Sea Plant Material (SPM-I) and Copepod (MAA-I) were used as control standards. Determinations were made of the moisture content of the samples, using varying conditions of drying, and the necessary corrections were applied to all analytical results so that the final elemental values related to dry weight of samples. Attention was also given to the possible loss of specific elements during ashing of the samples prior to the actual instrumental analysis. The results obtained for the hair sample by the two techniques were in good agreement for the elements Co, Fe, Mn, and Zn, but did not agree for the elements Cr and Sb. As, Hg and Se could only be determined with Instrumental Neutron Activation Analysis, and Cd, Cu and Ni only with Atomic Absorption. Most of the results obtained for the three control standard reference materials were within the ranges specified for the individual elements in each sample. The analytical procedures used for determining Cd, Cr, Cu, Ni and Sb with Instrumental Neutron Activation Analysis and As, Cr, Sb and Se with Atomic Absorption, need further investigation. The measurement of the moisture content and the ashing of samples also require further investigation with a view to improving accuracy

  7. Understanding the biological invasion risk posed by the global wildlife trade: propagule pressure drives the introduction and establishment of Nearctic turtles.

    García-Díaz, Pablo; Ross, Joshua V; Ayres, César; Cassey, Phillip

    2015-03-01

    Biological invasions are a key component of human-induced global change. The continuing increase in global wildlife trade has raised concerns about the parallel increase in the number of new invasive species. However, the factors that link the wildlife trade to the biological invasion process are still poorly understood. Moreover, there are analytical challenges in researching the role of global wildlife trade in biological invasions, particularly issues related to the under-reporting of introduced and established populations in areas with reduced sampling effort. In this work, we use high-quality data on the international trade in Nearctic turtles (1999-2009) coupled with a statistical modelling framework, which explicitly accounts for detection, to investigate the factors that influence the introduction (release, or escape into the wild) of globally traded Nearctic turtles and the establishment success (self-sustaining exotic populations) of slider turtles (Trachemys scripta), the most frequently traded turtle species. We found that the introduction of a species was influenced by the total number of turtles exported to a jurisdiction and the age at maturity of the species, while the establishment success of slider turtles was best associated with the propagule number (number of release events), and the number of native turtles in the jurisdiction of introduction. These results indicate both a direct and indirect association between the wildlife trade and the introduction of turtles and establishment success of slider turtles, respectively. Our results highlight the existence of gaps in the number of globally recorded introduction events and established populations of slider turtles, although the expected bias is low. We emphasize the importance of researching independently the factors that affect the different stages of the invasion pathway. Critically, we observe that the number of traded individuals might not always be an adequate proxy for propagule pressure

  8. Material balance and diets in biological life support systems: a relationship with a coefficient of closure

    Manukovsky, N. S.; Kovalev, V. S.; Somova, L. A.

    Biological life support systems (BLSS) of various coefficients of closure were considered The basic coefficient of closure was accepted equal to 66%. With increase in coefficient of closure food requirements for the greater degree should be satisfied due to the manufacture of food inside the BLSS. In this connection food values were estimated both in the basic variant, and in those with increased coefficients of closure. Metabolic massflow rates were estimated at the input and output of the BLSS as well as inside it. Human massflow rates were submitted on the basis of characteristics of the 'reference man'. Stoichiometric synthesis - degradation equations of organic substances in the BLSS were obtained. A problem of nitrogen imbalance was shown to occur under an incomplete BLSS closure. To compensate losses of nitrogen with urine and feces, food and nitrogen-containing additives should be introduced into the BLSS.

  9. Atomic force microscopy applied to study macromolecular content of embedded biological material

    Matsko, Nadejda B. [Electron Microscopy Centre, Institute of Applied Physics, HPM C 15.1, ETH-Hoenggerberg, CH-8093, Zurich (Switzerland)]. E-mail: matsko@iap.phys.ethz.ch

    2007-02-15

    We demonstrate that atomic force microscopy represents a powerful tool for the estimation of structural preservation of biological samples embedded in epoxy resin, in terms of their macromolecular distribution and architecture. The comparison of atomic force microscopy (AFM) and transmission electron microscopy (TEM) images of a biosample (Caenorhabditis elegans) prepared following to different types of freeze-substitution protocols (conventional OsO{sub 4} fixation, epoxy fixation) led to the conclusion that high TEM stainability of the sample results from a low macromolecular density of the cellular matrix. We propose a novel procedure aimed to obtain AFM and TEM images of the same particular organelle, which strongly facilitates AFM image interpretation and reveals new ultrastructural aspects (mainly protein arrangement) of a biosample in addition to TEM data.

  10. Materials of 4. international meeting on pulse investigations in physics, chemistry and biology. PULS'94

    1994-01-01

    4. International Meeting on Pulse Investigations in Physics, Chemistry and Biology, PULS'94 has been organized in honor of Professor Jerzy Kroh, the precursor of radiation chemistry in Poland. The meeting has been divided into three sessions: the historical session (H) with four review lectures, lecture session (L) collected 23 papers and poster session (P) with 39 posters. The fundamental studies on early stages of radiolysis have been presented for different systems being irradiated. The pulse radiolysis and flash photolysis methods has been predominantly used in reported experimental works. The reaction of intermediate products of radiolysis and photolysis such a trapped and solvated electrons, ions and radicals has been extensively studied. The reaction mechanisms and kinetics have been also discussed

  11. Determination of mercury and selenium in biological materials by neutron activation analysis method

    Catharino, Marilia G.M.; Vasconcellos, Marina B.A.; Moreira, Edson G.; Cipriano, Roseli; Saiki, Mitiko

    2000-01-01

    Mercury presents a great number of applications, however, many mercury compounds are highly toxic and may cause diseases or even death. Other element of interest is selenium, as some studies have shown that it may reduce the toxic effects of mercury and other toxic elements, due to its ability to bind to these elements. In this work the mercury concentration in the 'Spiked Human Hair' IAEA-085 and 'Unspiked Human Hair' IAEA-086 certified reference materials, in hair samples of children under dental treatment and in hair samples of an Amazon Region population, subject to mercurial contamination was determined. Selenium determination was done using 77m Se and 75 Se radioisotopes. The selenium concentration was determined also in the (IAEA-085, IAEA-086, 'Dogfish Liver' DOLT-1 and 'Dogfish Muscle' DORM-1) certified reference materials, vitamin supplement and nail clipping samples. (author)

  12. Homogeneity study on biological candidate reference materials: the role of neutron activation analysis

    Silva, Daniel P.; Moreira, Edson G., E-mail: dsilva.pereira@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Instrumental Neutron activation Analysis (INAA) is a mature nuclear analytical technique able to accurately determine chemical elements without the need of sample digestion and, hence, without the associated problems of analyte loss or contamination. This feature, along with its potentiality use as a primary method of analysis, makes it an important tool for the characterization of new references materials and in the assessment of their homogeneity status. In this study, the ability of the comparative method of INAA for the within-bottle homogeneity of K, Mg, Mn and V in a mussel reference material was investigated. Method parameters, such as irradiation time, sample decay time and distance from sample to the detector were varied in order to allow element determination in subsamples of different sample masses in duplicate. Sample masses were in the range of 1 to 250 mg and the limitations of the detection limit for small sample masses and dead time distortions for large sample masses were investigated. (author)

  13. Analytical scheme for group separation of the lanthanides from biological materials before their determination by Neutron Activation Analysis

    Danko, B.; Samczynski, Z.; Dybczynski, R.

    2006-01-01

    The analytical procedure for the selective and quantitative isolation of the lanthanides as a group from biological materials has been developed on the basis of experiments with radio-tracers. Ion exchange and extraction column chromatography were used for the isolation of elements of interest from matrix and the other trace elements prior to irradiation in a nuclear reactor. The method enables quantitative separation of the lanthanide fraction, free from highly activating macro components, as well as from other trace elements including uranium, which can be the source of serious errors due to uranium 235 U fission reaction (n,f). In order to minimize the potential spectrometric interferences lanthanide fraction after neutron irradiation was divided into two sub-fractions, taking advantage of the different anion exchange affinities of individual lanthanide complexes with EDTA to strongly basic anion exchanger. The effective microwave digestion procedures for ca 500 mg biological samples was elaborated and the new, original method for checking the yield of the entire analytical procedure - including mineralization of the sample - was applied. Neutron activation analysis (NAA) of BCR 670 Aquatic Plant ? one of the only two CRMs of biological origin available on the market, which offers the certified values for all lanthanides was used for verification of performance of the proposed analytical scheme. (authors)

  14. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    Cha, Sangwon [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  15. Sustainable Materials Management (SMM) Web Academy Webinar: Compost from Food Waste: Understanding Soil Chemistry and Soil Biology on a College/University Campus

    This page contains information about the Sustainable Materials Management (SMM) Web Academy Webinar Series titled Compost from Food Waste:Understanding Soil Chemistry and Soil Biology on a College/University Campus

  16. Biological evaluation of zirconia/PEG hybrid materials synthesized via sol–gel technique

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Papale, F.; Bollino, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Gallicchio, M.; Pacifico, S. [Department Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy)

    2014-07-01

    The objective of the following study has been the synthesis via sol–gel and the characterization of novel organic–inorganic hybrid materials to be used in biomedical field. The prepared materials consist of an inorganic zirconia matrix containing as organic component the polyethylene glycol (PEG), a water-soluble polymer used in medical and pharmaceutical fields. Various hybrids have been synthesized changing the molar ratio between the organic and inorganic parts. Fourier transform spectroscopy suggests that the structure of the interpenetrating network is realized by hydrogen bonds between the Zr-OH group in the sol–gel intermediate species and both the terminal alcoholic group and ethereal oxygen atoms in the repeating units of polymer The amorphous nature of the gels has been ascertained by X-ray diffraction analysis. The morphology observation has been carried out by using the Scanning Electron Microscope and has confirmed that the obtained materials are nanostructurated hybrids. The bioactivity of the synthesized system has been shown by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating the human blood plasma. The potential biocompatibility of hybrids has been assessed as performing indirect MTT cytotoxicity assay towards 3T3 cell line at 24, 48, and 72 h exposure times. - Highlights: • ZrO{sub 2}/PEG amorphous class I organic–inorganic hybrid synthesis via sol–gel • Bioactivity evaluation of materials by the formation of apatite on surface in SBF • Biocompatibility test with indirect MTT cytotoxicity assay on NHI 3T3 cell line.

  17. Procurement of a Nanoindenter for Structure-Function Analyses of Biologically Inspired High Performance Composite Materials

    2012-01-13

    abalone shell (Figures 3, 4). Here, we can see that the damage is significantly mitigated in the nacreous regions while cracks formed in the Calcitic...properties. Page 5 / 11 Identifying the crack propagation mechanisms helps to identify new designs for impact resistant materials, so the...human tooth from dentin – dentin/ enamel junction – enamel . It is clear that higher resolution scans are necessary to interrogate local structure

  18. Biological evaluation of zirconia/PEG hybrid materials synthesized via sol–gel technique

    Catauro, M.; Papale, F.; Bollino, F.; Gallicchio, M.; Pacifico, S.

    2014-01-01

    The objective of the following study has been the synthesis via sol–gel and the characterization of novel organic–inorganic hybrid materials to be used in biomedical field. The prepared materials consist of an inorganic zirconia matrix containing as organic component the polyethylene glycol (PEG), a water-soluble polymer used in medical and pharmaceutical fields. Various hybrids have been synthesized changing the molar ratio between the organic and inorganic parts. Fourier transform spectroscopy suggests that the structure of the interpenetrating network is realized by hydrogen bonds between the Zr-OH group in the sol–gel intermediate species and both the terminal alcoholic group and ethereal oxygen atoms in the repeating units of polymer The amorphous nature of the gels has been ascertained by X-ray diffraction analysis. The morphology observation has been carried out by using the Scanning Electron Microscope and has confirmed that the obtained materials are nanostructurated hybrids. The bioactivity of the synthesized system has been shown by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating the human blood plasma. The potential biocompatibility of hybrids has been assessed as performing indirect MTT cytotoxicity assay towards 3T3 cell line at 24, 48, and 72 h exposure times. - Highlights: • ZrO 2 /PEG amorphous class I organic–inorganic hybrid synthesis via sol–gel • Bioactivity evaluation of materials by the formation of apatite on surface in SBF • Biocompatibility test with indirect MTT cytotoxicity assay on NHI 3T3 cell line

  19. Biological Effects of Provisional Resin Materials on Human Dental Pulp Stem Cells.

    Jun, S-K; Mahapatra, C; Lee, H-H; Kim, H-W; Lee, J-H

    This study investigated the in vitro cytotoxicity as well as the proinflammatory cytokine expression of provisional resin materials on primary cultured human dental pulp stem cells (hDPSCs). Five commercially available provisional resin materials were chosen (SNAP [SN], Luxatemp [LT], Jet [JE], Revotek LC [RL], and Vipi block [VB]). Eluates that were either polymerizing or already set were added to hDPSCs under serially diluted conditions divided into three different setting times (25% set, 50% set, and 100% set) and incubated for 24 hours with 2× concentrated culture media. Cell cytotoxicity tests were performed by LDH assay and live and dead confocal microscope images. The expression of proinflammatory cytokines in SN and VB was measured using cytokine antibody arrays. Data were analyzed using repeated measures analysis of variance (ANOVA) or ANOVA followed by the Tukey post hoc test at a significance level of pprovisional resin materials during polymerization (SN, LT, and JE) were cytotoxic to hDPSCs and may adversely affect pulp tissue.

  20. Global carbon benefits of material substitution in passenger cars until 2050 and the impact on the steel and aluminum industries.

    Modaresi, Roja; Pauliuk, Stefan; Løvik, Amund N; Müller, Daniel B

    2014-09-16

    Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of light-weighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We develop a dynamic stock model of the global car fleet and combine it with a dynamic MFA of the associated steel, aluminum, and energy supply industries. We propose four scenarios for substitution of conventional steel with high-strength steel and aluminum at different rates over the period 2010-2050. We show that light-weighting of passenger cars can become a "gigaton solution": Between 2010 and 2050, persistent light-weighting of passenger cars can, under optimal conditions, lead to cumulative GHG emissions savings of 9-18 gigatons CO2-eq compared to development business-as-usual. Annual savings can be up to 1 gigaton per year. After 2030, enhanced material recycling can lead to further reductions: closed-loop metal recycling in the automotive sector may reduce cumulative emissions by another 4-6 gigatons CO2-eq. The effectiveness of emissions mitigation by material substitution significantly depends on how the recycling system evolves. At present, policies focusing on tailpipe emissions and life cycle assessments of individual cars do not consider this important effect.

  1. Ecological evaluation of proposed dredged material from the John F. Baldwin Ship Channel: Phase 3 -- biological testing

    Kohn, N.P.; Karle, L.M.; Pinza, M.R.; Mayhew, H.L.; White, P.J.; Gruendell, B.D.; Word, J.Q. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1993-10-01

    The John F. Baldwin Ship Channel is a 28-mile-long portion of the San Francisco Bay to Stockton Ship Channel, the primary shipping lane through San Francisco Bay and Delta. The San Francisco District of the US Army Corps of Engineers (USACE) is responsible for construction of the John F. Baldwin Ship Channel, which is authorized to be deepened to a project depth of {minus}45 ft relative to mean lower low water (MLLW). Approximately 8.5 million cubic yards (mcy) of sediment will be removed from the channel to reach this project depth. The USACE requested Battelle/Marine Sciences Laboratory (MSL) to conduct testing for ocean disposal under the guidelines in Evaluation of Dredged Material Proposed for Ocean Disposal-Testing Manual (EPA/USACE 1991). This testing manual contains a tiered evaluation approach developed specifically for ocean disposal of dredged material at a selected site. In this study, John F. Baldwin Ship Channel sediments were evaluated under the Tier III (biological) testing guidance, which is considered to be highly stringent and protective of the environment. The Tier III guidance for ocean disposal testing requires tests of water column effects, (following dredged material disposal), deposited sediment toxicity, and bioaccumulation of contaminants from deposited sediment (dredged material).

  2. The analysis for energy distribution and biological effects of the clusters from electrons in the tissue equivalent material

    Zhang Wenzhong; Guo Yong; Luo Yisheng; Wang Yong

    2004-01-01

    Objective: To study energy distribution of the clusters from electrons in the tissue equivalent material, and discuss the important aspects of these clusters on inducing biological effects. Methods: Based on the physical mechanism for electrons interacting with tissue equivalent material, the Monte Carlo (MC) method was used. The electron tracks were lively simulated on an event-by-event (ionization, excitation, elastic scattering, Auger electron emission) basis in the material. The relevant conclusions were drawn from the statistic analysis of these events. Results: The electrons will deposit their energy in the form (30%) of cluster in passing through tissue equivalent material, and most clusters (80%) have the energy amount of more than 50 eV. The cluster density depends on its diameter and energy of electrons, and the deposited energy in the cluster depends on the type and energy of radiation. Conclusion: The deposited energy in cluster is the most important factor in inducing all sort of lesions on DNA molecules in tissue cells

  3. Diretrizes nacionais para biorrepositório e biobanco de material biológico humano Brazilian guidelines for biorepositories and biobanks of human biological material

    Gabriela Marodin

    2013-02-01

    Full Text Available OBJETIVO: Caracterizar a construção participativa e democrática das Diretrizes Nacionais para Biorrepositório e Biobanco de Material Biológico Humano com Finalidade de Pesquisa, baseada nos princípios éticos da dignidade humana, da autonomia, da beneficência, da justiça e da precaução. MÉTODOS: Para a elaboração do documento formou-se um grupo de trabalho interdisciplinar Bioética considerando os seguintes critérios: experiência na operacionalização de biobancos, Biobancos representatividade regional, tipo de material biológico acondicionado e especialistas em Biorrepositório bioética. Participaram, também, membros da Agência Nacional de Vigilância Sanitária Diretrizes - Anvisa, pela competência regulatória e da Comissão Nacional de Ética em Pesquisa - Conep, enquanto controle social. RESULTADOS: O documento, baseado nos preceitos éticos, legais e técnicos, apresenta os conceitos, as atividades, finalidades e diferenças entre biorrepositórios e biobancos, as formas de consentimento do sujeito, além de outros aspectos permeados pela preocupação do uso adequado da informação. As Diretrizes Nacionais para Biorrepositório e Biobanco de Material Biológico Humano com Finalidade de Pesquisa contém 39 artigos, dispostos em cinco capítulos. CONCLUSÃO: A importância de uma regulamentação surge da reflexão ética, considerando a moral, e tendo como norteador os aspectos legais, os quais se traduzem em um documento que não se esgota em si mesmo. A dinamicidade da ciência sempre nos remete à mudança de paradigmas, que podem ir além das legislações existentes.OBJECTIVE: To characterize the participatory and democratic creation of the Brazilian guidelines for biorepositories and biobanks of human biological material with the purpose of research based on the ethical principles of human dignity, autonomy, beneficence, justice, and precaution. METHODS: An interdisciplinary work group was constituted to

  4. Hidden biodiversity in entomological collections: The overlooked co-occurrence of dipteran and hymenopteran ant parasitoids in stored biological material.

    Gabriela Pérez-Lachaud

    Full Text Available Biological collections around the world are the repository of biodiversity on Earth; they also hold a large quantity of unsorted, unidentified, or misidentified material and can house behavioral information on species that are difficult to access or no longer available to science. Among the unsorted, alcohol-preserved material stored in the Formicidae Collection of the 'El Colegio de la Frontera Sur' Research Center (Chetumal, Mexico, we found nine colonies of the ponerine ant Neoponera villosa, that had been collected in bromeliads at Calakmul (Campeche, Mexico in 1999. Ants and their brood were revised for the presence of any sign of parasitism. Cocoons were dissected and their content examined under a stereomicroscope. Six N. villosa prepupae had been attacked by the ectoparasitoid syrphid fly Hypselosyrphus trigonus Hull (Syrphidae: Microdontinae, to date the only known dipteran species of the Microdontinae with a parasitoid lifestyle. In addition, six male pupae from three colonies contained gregarious endoparasitoid wasps. These were specialized in parasitizing this specific host caste as no gyne or worker pupae displayed signs of having been attacked. Only immature stages (larvae and pupae of the wasp could be obtained. Due to the long storage period, DNA amplification failed; however, based on biological and morphological data, pupae were placed in the Encyrtidae family. This is the first record of an encyrtid wasp parasitizing N. villosa, and the second example of an encyrtid as a primary parasitoid of ants. Furthermore, it is also the first record of co-occurrence of a dipteran ectoparasitoid and a hymenopteran endoparasitoid living in sympatry within the same population of host ants. Our findings highlight the importance of biological collections as reservoirs of hidden biodiversity, not only at the taxonomic level, but also at the behavioral level, revealing complex living networks. They also highlight the need for funding in order

  5. Hidden biodiversity in entomological collections: The overlooked co-occurrence of dipteran and hymenopteran ant parasitoids in stored biological material.

    Pérez-Lachaud, Gabriela; Lachaud, Jean-Paul

    2017-01-01

    Biological collections around the world are the repository of biodiversity on Earth; they also hold a large quantity of unsorted, unidentified, or misidentified material and can house behavioral information on species that are difficult to access or no longer available to science. Among the unsorted, alcohol-preserved material stored in the Formicidae Collection of the 'El Colegio de la Frontera Sur' Research Center (Chetumal, Mexico), we found nine colonies of the ponerine ant Neoponera villosa, that had been collected in bromeliads at Calakmul (Campeche, Mexico) in 1999. Ants and their brood were revised for the presence of any sign of parasitism. Cocoons were dissected and their content examined under a stereomicroscope. Six N. villosa prepupae had been attacked by the ectoparasitoid syrphid fly Hypselosyrphus trigonus Hull (Syrphidae: Microdontinae), to date the only known dipteran species of the Microdontinae with a parasitoid lifestyle. In addition, six male pupae from three colonies contained gregarious endoparasitoid wasps. These were specialized in parasitizing this specific host caste as no gyne or worker pupae displayed signs of having been attacked. Only immature stages (larvae and pupae) of the wasp could be obtained. Due to the long storage period, DNA amplification failed; however, based on biological and morphological data, pupae were placed in the Encyrtidae family. This is the first record of an encyrtid wasp parasitizing N. villosa, and the second example of an encyrtid as a primary parasitoid of ants. Furthermore, it is also the first record of co-occurrence of a dipteran ectoparasitoid and a hymenopteran endoparasitoid living in sympatry within the same population of host ants. Our findings highlight the importance of biological collections as reservoirs of hidden biodiversity, not only at the taxonomic level, but also at the behavioral level, revealing complex living networks. They also highlight the need for funding in order to carry out

  6. Niobium pentoxide as radiopacifying agent of calcium silicate-based material: evaluation of physicochemical and biological properties.

    Silva, Guilherme F; Tanomaru-Filho, Mário; Bernardi, Maria I B; Guerreiro-Tanomaru, Juliane M; Cerri, Paulo S

    2015-11-01

    The physicochemical properties and the tissue reaction promoted by microparticulated or nanoparticulated niobium pentoxide (Nb2O5) added to calcium silicate-based cement (CS), compared to MTA-Angelus™, were evaluated. Materials were submitted to the tests of radiopacity, setting time, pH, and calcium ion release. Polyethylene tubes filled with the materials were implanted into rats subcutaneously. After 7, 15, 30, and 60 days, the specimens were fixed and embedded in paraffin. Hematoxylin & eosin (H&E)-stained sections were used to compute the number of inflammatory cells (IC). Interleukin-6 (IL-6) detection was performed, and the number of immunolabeled cells was obtained; von Kossa method was also carried out. Data were subjected to ANOVA and Tukey test (p ≤ 0.05). Nb2O5micro and Nb2O5nano provided to the CS radiopacity values (3.52 and 3.75 mm Al, respectively) superior to the minimum recommended. Groups containing Nb2O5 presented initial setting time significantly superior than mineral trioxide aggregate (MTA). All materials presented an alkaline pH and released calcium ions. The number of IC and IL-6 immunolabeled cells in the CS + Nb2O5 groups was significantly reduced in comparison to MTA in all periods. von Kossa-positive structures were observed adjacent to implanted materials in all periods. The addition of Nb2O5 to the CS resulted in a material biocompatible and with adequate characteristics regarding radiopacity and final setting time and provides an alkaline pH to the environment. Furthermore, the particle size did not significantly affect the physicochemical and biological properties of the calcium silicate-based cement. Niobium pentoxide can be used as radiopacifier for the development of calcium silicate-based materials.

  7. Supplementary Material for: A global sensitivity analysis approach for morphogenesis models

    Boas, Sonja

    2015-01-01

    Abstract Background Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such ‘black-box’ models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. Results To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. Conclusions We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all ‘black-box’ models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.

  8. The global equilibrium method and its hybrid implementation for identifying heterogeneous elastic material parameters

    Lubineau, Gilles

    2011-04-01

    New identification strategies have to be developed in order to perform the identification quickly and at very-low cost. A popular class of approaches relies on full-field measurement obtained through digital image correlation. We propose here a global equilibrium approach. It is based on the virtual field method in case specific virtual fields are used. It can also be seen as a generalization of the equilibrium gap method. This approach is easy to implement and we prove that it provides better or comparable results to the constitutive equation gap method that is known to be a very accurate reference. © 2010 Elsevier B.V.

  9. Processes of globalization, economic policy and the role of state in raw materials and energy complex

    Vladimír Vodzinský

    2009-09-01

    Full Text Available Authors dedicate this article to impacts of constrains in paradigm of potentials forming our society.As entire societies are assembled in certain pattern, this article is dedicated to reasoning why economical growth builton influence and a use of knowledge of the reasons would accelerate consumer orientation of reproduction cycle on the levelof ownership.Both of these, causes and reasons, result in aggravation of social order and ecological crises.End products of globalization and concomitant state economic policies do not lead to crisis solution nor do they lead to effectivedisappearance of their consequences.

  10. Global partnering related to nuclear materials safeguards and security - A pragmatic approach to international safeguards work

    Stanford, Dennis

    2007-01-01

    This paper documents issues Nuclear Fuel Services, Inc. has addressed in the performance of international work to safeguards and security work. It begins with a description of the package we put together for a sample proposal for the Global Threat Reduction Initiative, for which we were ranked number one for technical approach and cost, and concludes with a discussion of approaches that we have taken to performing this work, including issues related to performing the work as part of a team. The primary focus is on communication, workforce, equipment, and coordination issues. Finally, the paper documents the rules that we use to assure the work is performed safely and successfully. (author)

  11. Conjugation of nano and quantum materials with bovine serum albumin (BSA) to study their biological potential

    Singh, Suman, E-mail: sumansingh01@gmail.com [Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh (India); Kaur, Rajnish; Chahal, Jitender; Devi, P. [Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh (India); Jain, D.V.S. [Panjab University, Chandigarh (India); Singla, M.L., E-mail: singla_min@yahoo.co.in [Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh (India)

    2013-09-15

    Conjugates of gold nanoparticles (AuNPs) and semiconductor quantum dots (CdS/T) have been synthesized with bovine serum albumin (BSA) using wet chemistry. The optical properties of nano and quantum materials and their BSA conjugate have been studied using UV–Visible and Fluorescence spectroscopy. UV–Visible spectrum of pure BSA showed an absorption maximum at 278 nm, which showed blue shift after its conjugation with nano and quantum materials. Increased concentration of AuNPs during conjugation resulted in broadening of BSA peak (278 nm), which can be related to the formation of ground state complex formation, caused by the partial adsorption of BSA on the surface of NPs. However, increased concentrations of BSA resulted in decrease in SPR intensity of gold nanoparticles (528 nm) and absorbance peak of BSA started diminishing. AuNPs acted as quencher for BSA fluorescence intensity, when excited at 280 nm. The binding constant (K) and the number of binding sites (n) between AuNPs and BSA have been found to be 1.97×10{sup 2} LM{sup −1} and 0.6 respectively. With quantum dots, conjugation resulted in enhancement of fluorescence emission of quantum dots when excited at 300 nm, which might be due to the stabilizing effect of BSA on QDs or due to energy transfer from tryptophan moieties of albumin to quantum dots. -- Highlights: • Synthesis of nanoparticles (AuNPs) and quantum dots (CdS). • Conjugation of these materials with bovine serum albumin. • Optical behavioral studies.

  12. Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider.

    Ingi Agnarsson

    Full Text Available BACKGROUND: Combining high strength and elasticity, spider silks are exceptionally tough, i.e., able to absorb massive kinetic energy before breaking. Spider silk is therefore a model polymer for development of high performance biomimetic fibers. There are over 41,000 described species of spiders, most spinning multiple types of silk. Thus we have available some 200,000+ unique silks that may cover an amazing breadth of material properties. To date, however, silks from only a few tens of species have been characterized, most chosen haphazardly as model organisms (Nephila or simply from researchers' backyards. Are we limited to 'blindly fishing' in efforts to discover extraordinary silks? Or, could scientists use ecology to predict which species are likely to spin silks exhibiting exceptional performance properties? METHODOLOGY: We examined the biomechanical properties of silk produced by the remarkable Malagasy 'Darwin's bark spider' (Caerostris darwini, which we predicted would produce exceptional silk based upon its amazing web. The spider constructs its giant orb web (up to 2.8 m(2 suspended above streams, rivers, and lakes. It attaches the web to substrates on each riverbank by anchor threads as long as 25 meters. Dragline silk from both Caerostris webs and forcibly pulled silk, exhibits an extraordinary combination of high tensile strength and elasticity previously unknown for spider silk. The toughness of forcibly silked fibers averages 350 MJ/m(3, with some samples reaching 520 MJ/m(3. Thus, C. darwini silk is more than twice tougher than any previously described silk, and over 10 times better than Kevlar®. Caerostris capture spiral silk is similarly exceptionally tough. CONCLUSIONS: Caerostris darwini produces the toughest known biomaterial. We hypothesize that this extraordinary toughness coevolved with the unusual ecology and web architecture of these spiders, decreasing the likelihood of bridgelines breaking and collapsing the web

  13. BIOLOGICAL AND SYNTHETIC MATERIALS IN RECONSTRUCTIVE SURGERY FOR BREAST CANCER TREATMENT (LITERATURE REVIEW

    A. D. Zikiryakhodzhaev

    2018-01-01

    Full Text Available During the last years has been a worldwide trend towards rejuvenating breast cancer, and the evolution of reconstructive breast surgery is proceeding at a rapid pace. The surgical method is the primary method in the combined and complex treatment of breast cancer, and radical mastectomy is still the main option for surgical treatment in most Russian clinics. Most women who need a mastectomy prefer a one-stage breast reconstruction, because the woman is quickly rehabilitated psychologically and physically after this operation. Nevertheless, the use of silicone endoprostheses did not solve the problems of breast reconstruction in combined treatment in oncology. The issue remains unresolved of various complications, related not only to infections, but also to the development of capsular contracture after radiotherapy. Many patients with a one-stage breast reconstruction using a silicone endoprostheses lack the volume of their own tissues for reliable shelter of the endoprosthesis. In such cases, synthetic reticulated implants, biological implants or autologous flaps are used to cover and strengthen the lower slope of the reconstructed breast.

  14. Preparation and biological evaluation of a fibroblast growth factor-2-apatite composite layer on polymeric material

    Sasaki, Kenkichi; Kamitakahara, Masanobu; Ioku, Koji [Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Oyane, Ayako [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Hyodo, Koji [Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan); Ito, Atsuo; Sogo, Yu, E-mail: a-oyane@aist.go.j [Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566 (Japan)

    2010-12-15

    A polymeric percutaneous device with good biocompatibility and resistance to bacterial infection is required clinically. In this study, a fibroblast growth factor-2 (FGF-2)-hydroxyapatite (HAp) composite layer (FHAp layer) was formed on the surfaces of ethylene-vinyl alcohol copolymer (EVOH) specimens using a coating process in a supersaturated calcium phosphate solution supplemented with FGF-2. FGF-2 in the FHAp layer retained its biological activity to promote proliferation of fibroblasts. The EVOH specimens coated with HAp and FHAp layers were percutaneously implanted in the scalp of rats. Not only the HAp layer but also the FHAp layer showed good biocompatibility, and FGF-2 showed no harmful effects on the skin tissue responses to the implanted specimen as long as 14 d. No significantly higher infection resistance was verified for the FHAp layer over the HAp layer, although an FHAp layer coated on a metallic percutaneous device for bone fixation demonstrated higher resistance to bacterial infection over an HAp layer in the previous study. The efficacy of FHAp layers coated on percutaneous implants in resistance to bacterial infection depends on physical factors including fixation condition, stiffness and movement of implants.

  15. The role of riverine particulate material on the global cycles of the elements

    Oelkers, Eric H.; Gislason, Sigurdur R.; Eiriksdottir, Eydis Salome; Jones, Morgan; Pearce, Christopher R.; Jeandel, Catherine

    2011-01-01

    Highlights: → Particulate transport dominates dissolved transport of the elements to the ocean. → Particulate material readily dissolves in sea water releasing its elements. → Particulate element release can rapidly affect the isotopic composition of seawater. → Ocean Nd, Fe, Si, and Sr isotopic ratios are likely affected strongly by this process. - Abstract: A review of the relative masses of continental weathering products transported to the oceans indicates that particulate fluxes dominate dissolved fluxes for most elements. The degree to which this particulate material plays a role in the compositional evolution of seawater depends on its dissolution rate, which appears to be rapid due to its high surface area. Consideration of the results of batch experiments and mineral saturation state calculations suggest that much of the mass dissolved into seawater from particulate material dissolution is rapidly removed by the precipitation of secondary minerals. Although this process limits the degree to which the overall concentration of elements in seawater are affected by the addition of particulate material, the dissolution of isotopically distinct particulate phases may affect the isotopic composition of seawater over remarkably short timescales.

  16. [Alternative biological materials to detect prenatal exposure to drugs of abuse in the third trimester of pregnancy].

    García-Serra, J; Ramis, J; Simó, S; Joya, X; Pichini, S; Vall, O; García-Algar, O

    2012-11-01

    Detection of prenatal drug abuse exposure is essential to ensure an appropriate monitoring of affected children. A maternal questionnaire is not an efficient screening tool. The usefulness of maternal hair and meconium as biological materials to assess this exposure has been described in last few years. The aim of this study was to compare both these alternative biological materials for prenatal drug exposure detection in the third trimester of pregnancy, in order to assess its use as a screening tool. Between January and March 2010, samples of maternal hair and meconium from 107 mother-infant dyads were collected in Can Misses Hospital, Ibiza. The presence of opiates, cocaine, cannabis, and amphetamines, was determined in both materials, using standard chromatographic techniques. Maternal hair analysis showed a 15.9% positivity for drugs of abuse (17 cases): 11 cannabis, 7 cocaine, 1 cannabis and ecstasy, and 1 cannabis and cocaine. Only one mother reported cannabis consumption and another one, cocaine. Of the 7 cocaine positive cases in hair, 6 were confirmed in meconium analysis, while of 11 cannabis positive cases, only 3 were confirmed in meconium. Two different consumer profiles were defined: cocaine consumers and cannabis consumers (with only 2 cases of multiple drug use). The highest level of cocaine ever published was detected (1.582ng/g) in one case. This study reveals a high prevalence of drug abuse in this cohort during pregnancy. Improved screening methods may optimize prevention and monitoring of exposed infants. Maternal hair seems to be more sensitive than meconium to detect prenatal exposure to cannabis during the third trimester, so it might become a good screening tool. Copyright © 2011 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  17. Berstein's anti-reductionistic materialism: On the road towards a biology of activity (1965).

    Bongaardt, R; Pickenhain, L; Meijer, O G

    2000-10-01

    Bernstein's paper, "On the Road Towards a Biology of Activity," appeared the year before his death.2 With this paper, Bernstein closed several lines of argument that he had been developing from the onset of his career in the early 1920s. The paper converges on the notion of activity. In accordance with his own shifting focus heuristic (cf. Bongaardt, 1996), Bernstein challenged future researchers of movement to integrate models of the movement functions that constitute activity. He suggested that these functions are: the coordination of movement, the planning of movement, and the exploration of better, optimal ways to move. In the 1920s, Bernstein had collaborated with his friend and colleague L.S. Vygotsky at the Moscow Institute of Experimental Psychology. Vygotsky (cf. 1926/1994) was the first to place activity at the core of Soviet psychology. According to Vygotsky, reflexology and behaviorism, then dominant approaches in psychology, were fundamentally wrong; they focus on building-blocks of behavior without addressing phenomena that stand out as typically human, most importantly, consciousness. Rather than starting with building blocks, psychology should start with the daily activity of human beings in their environment and show how this activity relates to consciousness. Forty years later, in his 1965 paper, Bernstein stressed a point that mirrors Vygotsky's: Reflexes are not building blocks of movement. The general characteristics of any movement precede the specificity of such units, whether reflexes or synergies, and this primacy pertains to the actual organization of movements as well as to the study of movement. The development and relevance of the activity concept in Bernstein's work in the period from 1925 to 1965 deserves a study of its own; here, a brief historical sketch of Bernstein's activity concept is offered, along with a few theoretical considerations concerning activity's constituent functions.

  18. IDENTIFIKASI NEMATODA PARASIT PADA SALURAN PENCERNAAN MARMUT (Cavia cobaya SEBAGAI SUMBER BELAJAR BIOLOGI PADA MATERI INVERTEBRATA

    Septia Nurhasanah

    2014-05-01

    Full Text Available The research was conducted in the Laboratory of Science Education, University of Muhammadiyah Metro. The research is a descriptive analysis, morphological observations were made by identifying the nematode parasite found that Trichostrongylus sp, Strongyloides sp, Trichuris sp, Trichuris sp. The results showed the prevalence and intensity values is the large number of guinea pigs to parasites divided by the number of guinea pigs that are 100% inspected. While the intensity is seen from the total number of nematode parasites that infect in the number of guinea pigs infected with a parasite that is 2,3. The population in this study was 10 cows pigs (Cavia cobaya . This study took a part in the digestion of marmots (Cavia cobaya the intestines and stomach , then cut and taken part in the large intestine and be Indian ink or coloring 2-3 drops to be easily identified microscopically . Put the preparations into a petri dish , and given alcohol as much as 96 % with 2-3 drops . Taking part in the examination of the large intestine to taste then used the nematode worm structure with Indian ink dye to be observed , and placed in the glass object . Observed with a microscope. Document if the parasites are found by using the camera Erlina 2008. Identification of the observations made have found 3 types of parasites that attack the guinea pig (Cavia cobaya is Strongyloides sp on samples 1,2,3,4,5,6 , dan10 . Then parasite Trichuris sp species found in samples 8 and 9. Trichostrongylus sp parasite species found in sample 7 . Parasitic nematodes found were 3 types of Trichostrongylus sp, Strongyloides sp, Trichuris sp. Number of samples that have been observed as many as 10 cows pigs (Cavia cobaya , with the overall result is as much as 23 tails parasites.               Kata kunci: nematode parasit, marmut (Cavia cobaya, sumber belajar biologi.

  19. Accidents with potentially hazardous biological material among workers in hospital supporting services.

    Canini, Silvia Rita Marin da Silva; Gir, Elucir; Machado, Alcyone Artiolli

    2005-01-01

    Descriptive study was carried out to characterize the occupational accidents involving potentially contaminated material among workers of hospital supporting services. The study reviewed records of workers involved in these accidents and attended at a specialized outpatient clinic of a large tertiary care hospital between January 1997 and October 2001. A total of 2814 workers from different professional categories were attended during this period. Of these, 147 (5.2%) belonged to the hospital supporting services and were the victims of 156 accidents, auxiliary cleaning personnel (80.2%), and over a third of the workers had not received any dose of hepatitis B vaccine (35.4%). Most accidents were due to sharp injuries (96.8%) caused by inadequately discarded hollow needles. Chemoprophylaxis for HIV was not indicated in only 23.1% of cases. We conclude that these workers are also exposed to the possibility of acquiring blood-borne pathogens and that periodical education programs are needed.

  20. A novel three-dimensional scaffold for regenerative endodontics: materials and biological characterizations.

    Bottino, Marco C; Yassen, Ghaeth H; Platt, Jeffrey A; Labban, Nawaf; Windsor, L Jack; Spolnik, Kenneth J; Bressiani, Ana H A

    2015-11-01

    An electrospun nanocomposite fibrous material holds promise as a scaffold, as well as a drug-delivery device to aid in root maturogenesis and the regeneration of the pulp-dentine complex. A novel three-dimensional (3D) nanocomposite scaffold composed of polydioxanone (PDS II®) and halloysite nanotubes (HNTs) was designed and fabricated by electrospinning. Morphology, structure, mechanical properties and cell compatibility studies were carried out to evaluate the effects of HNTs incorporation (0.5-10 wt% relative to PDS w/w). Overall, a 3D porous network was seen in the different fabricated electrospun scaffolds, regardless of the HNT content. The incorporation of HNTs at 10 wt% led to a significant (p endodontics. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Computer-assisted Biology Learning Materials: Designing and Developing an Interactive CD on Spermatogenesis

    Haviz, M.

    2018-04-01

    The purpose of this article is to design and develop an interactive CD on spermatogenesis. This is a research and development. Procedure of development is making an outline of media program, making flowchart, making story board, gathering of materials, programming and finishing. The quantitative data obtained were analyzed by descriptive statistics. Qualitative data obtained were analyzed with Miles and Huberman techniques. The instrument used is a validation sheet. The result of CD design with a Macro flash MX program shows there are 17 slides generated. This prototype obtained a valid value after a self-review technique with many revisions, especially on sound and programming. This finding suggests that process-oriented spermatogenesis can be audio-visualized into a more comprehensive form of learning media. But this interactive CD product needs further testing to determine consistency and resistance to revisions.

  2. Global warming potential of material fractions occurring in source-separated organic household waste treated by anaerobic digestion or incineration under different framework conditions

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-01-01

    This study compared the environmental profiles of anaerobic digestion (AD) and incineration, in relation to global warming potential (GWP), for treating individual material fractions that may occur in source-separated organic household waste (SSOHW). Different framework conditions representative...

  3. Global nuclear material monitoring with NDA and C/S data through integrated facility monitoring

    Howell, J.A.; Menlove, H.O.; Argo, P.; Goulding, C.; Klosterbuer, S.; Halbig, J.

    1996-01-01

    This paper focuses on a flexible, integrated demonstration of a monitoring approach for nuclear material monitoring. This includes aspects of item signature identification, perimeter portal monitoring, advanced data analysis, and communication as a part of an unattended continuous monitoring system in an operating nuclear facility. Advanced analysis is applied to the integrated nondestructive assay and containment and surveillance data that are synchronized in time. End result will be the foundation for a cost-effective monitoring system that could provide the necessary transparency even in areas that are denied to foreign nationals of both US and Russia should these processes and materials come under full-scope safeguards or bilateral agreements. Monitoring systems of this kind have the potential to provide additional benefits including improved nuclear facility security and safeguards and lower personnel radiation exposures. Demonstration facilities in this paper include VTRAP-prototype, Los Alamos Critical Assemblies Facility, Kazakhstan BM-350 Reactor monitor, DUPIC radiation monitoring, and JOYO and MONJU radiation monitoring

  4. Protein Structure Initiative Material Repository: an open shared public resource of structural genomics plasmids for the biological community

    Cormier, Catherine Y.; Mohr, Stephanie E.; Zuo, Dongmei; Hu, Yanhui; Rolfs, Andreas; Kramer, Jason; Taycher, Elena; Kelley, Fontina; Fiacco, Michael; Turnbull, Greggory; LaBaer, Joshua

    2010-01-01

    The Protein Structure Initiative Material Repository (PSI-MR; http://psimr.asu.edu) provides centralized storage and distribution for the protein expression plasmids created by PSI researchers. These plasmids are a resource that allows the research community to dissect the biological function of proteins whose structures have been identified by the PSI. The plasmid annotation, which includes the full length sequence, vector information and associated publications, is stored in a freely available, searchable database called DNASU (http://dnasu.asu.edu). Each PSI plasmid is also linked to a variety of additional resources, which facilitates cross-referencing of a particular plasmid to protein annotations and experimental data. Plasmid samples can be requested directly through the website. We have also developed a novel strategy to avoid the most common concern encountered when distributing plasmids namely, the complexity of material transfer agreement (MTA) processing and the resulting delays this causes. The Expedited Process MTA, in which we created a network of institutions that agree to the terms of transfer in advance of a material request, eliminates these delays. Our hope is that by creating a repository of expression-ready plasmids and expediting the process for receiving these plasmids, we will help accelerate the accessibility and pace of scientific discovery. PMID:19906724

  5. PREFACE: International Symposium on Materials Science and Innovation for Sustainable Society - Eco-Materials and Eco-Innovation for Global Sustainability - The 21st Iketani Conference 2011

    Takahashi, Yasuo

    2012-08-01

    Conference logo The 21st century has been called the century of environmental revolution. Green innovations and environmentally friendly production systems based on physics, chemistry, materials science, and electronic engineering will be indispensable for ensuring renewable energy and establishing a sustainable society. In particular, production design, materials processing, and fabrication technologies such as welding and joining will be very important components of such green innovations. For these reasons, the International Symposium on Materials Science and Innovation for Sustainable Society - eco-materials and eco-innovation for global sustainability - (ECO-MATES 2011) was organized by the Joining and Welding Research Institute (JWRI) and the Center of Environmental Innovation Design for Sustainability (CEIDS), Osaka University. ECO-MATES 2011 was held at Hotel Hankyu Expo Park, Osaka, Japan from 28-30 November 2011. 435 participants from 20 countries around the world attended the symposium. 149 oral presentations including 60 invited talks and 160 posters were presented at the symposium to discuss the latest research and developments in green innovations in relation to environmental issues. The topics of the symposium covered all environmentally related fields including renewable energy, energy-materials, environment and resources, waste and biomass, power electronics, semiconductor, rare-earth metals, functional materials, organic electronics materials, electronics packaging, smart processing, joining and welding, eco-efficient processes, and green applied physics and chemistry. Therefore, 55 full papers concerning green innovations and environmentally benign production were selected and approved by the editorial board and the program committee of ECO-MATES 2011. All papers were accepted through peer review processes. I believe that all the papers have many informative contents. On behalf of the steering committee of the symposium, I would like to express

  6. Global Warming Implications of the Use of By-Products and Recycled Materials in Western Australia’s Housing Sector

    Krishna Lawania

    2015-10-01

    Full Text Available Western Australia’s housing sector is growing rapidly and around half a million houses are expected to be built by 2030, which not only will result in increased energy and resources demand but will have socio-economic impacts. Majority of Western Australians live in detached houses made of energy intensive clay bricks, which have a high potential to generate construction and demolition (C&D waste. Therefore, there is a need to look into the use of alternative materials and construction methods. Due to Western Australia’s temperate climate, concrete could not only offer a comfortable living space but an operational energy saving also can be achieved. This paper has assessed the global warming implications of cast in-situ concrete sandwich wall system as an alternative to clay brick walls (CBW with partial replacement of cement in concrete with by-products such as fly ash (FA and ground granulated blast furnace slag (GGBFS, natural aggregate (NA with recycled crushed aggregate (RCA, natural sand (NS with manufactured sand (MS and, polyethylene terephthalate (PET foam core as a replacement to polystyrene core for construction of a typical 4 × 2 × 2 detached house in Perth. Life cycle management (LCM approach has been used to determine global warming reduction benefits due to the use of available by-products and recycled materials in Western Australian houses.

  7. Global Warming Implications of the Use of By-Products and Recycled Materials in Western Australia’s Housing Sector

    Lawania, Krishna; Sarker, Prabir; Biswas, Wahidul

    2015-01-01

    Western Australia’s housing sector is growing rapidly and around half a million houses are expected to be built by 2030, which not only will result in increased energy and resources demand but will have socio-economic impacts. Majority of Western Australians live in detached houses made of energy intensive clay bricks, which have a high potential to generate construction and demolition (C&D) waste. Therefore, there is a need to look into the use of alternative materials and construction methods. Due to Western Australia’s temperate climate, concrete could not only offer a comfortable living space but an operational energy saving also can be achieved. This paper has assessed the global warming implications of cast in-situ concrete sandwich wall system as an alternative to clay brick walls (CBW) with partial replacement of cement in concrete with by-products such as fly ash (FA) and ground granulated blast furnace slag (GGBFS), natural aggregate (NA) with recycled crushed aggregate (RCA), natural sand (NS) with manufactured sand (MS) and, polyethylene terephthalate (PET) foam core as a replacement to polystyrene core for construction of a typical 4 × 2 × 2 detached house in Perth. Life cycle management (LCM) approach has been used to determine global warming reduction benefits due to the use of available by-products and recycled materials in Western Australian houses.

  8. 1st Global Conference on Biomedical Engineering & 9th Asian-Pacific Conference on Medical and Biological Engineering

    Wang, Shyh-Hau; Yeh, Ming-Long

    2015-01-01

    This volume presents the proceedings of the 9th Asian-Pacific Conference on Medical and Biological Engineering (APCMBE 2014). The proceedings address a broad spectrum of topics from Bioengineering and Biomedicine, like Biomaterials, Artificial Organs, Tissue Engineering, Nanobiotechnology and Nanomedicine, Biomedical Imaging, Bio MEMS, Biosignal Processing, Digital Medicine, BME Education. It helps medical and biological engineering professionals to interact and exchange their ideas and experiences.

  9. Determination of some trace elements in biological materials using the short living isotopes

    Taskaev, E.

    1985-01-01

    A method for determination of V, Cu, Rb, Mo and K in breast cancer tumors is described. Samples were irradiated with ICIS pneumatic irradiation system of University of London Reactor Centre for 5 min. with mixed neutron flux: 1,7.10 1 2 thermal neutrons.cm -2 .s -1 and 9.10 11 fast neutrons.cm -2 .s -1 . Wet ashing procedure of Byrne and Kosta was used for the dissolution. Consecutive separation procedures of V and Mo, Cu, Mn, K and Rb, followed by counting and activity measuring were carried out. In order to study the chemical yields for all the elements both animal and plant matrixes were used. The error of 3% ( 0.05 confidence level) for single determination of chemical yield was chosen as the highest value acceptable. The possibility of using 137-Cs tracer for K and Rb chemical yield determination was also checked. To check the whole procedure the standard reference materials SRM-1577 Bovine Liver, SRM-1571 Orchard Leaves and Bowen's Kale were analysed

  10. Measurement of spectra for intra-oral X-ray beams using biological materials as attenuator

    Zenóbio, Madelon A.F.; Nogueira-Tavares, Maria S.; Zenóbio, Elton G.; Squair, Peterson Lima; Santos, Marcus A.P.; Silva, Teógenes A. da

    2011-01-01

    In diagnostic radiology, the radiation interaction probability in matter is a strong function of the X-ray energy. The knowledge of the X-ray energy spectral distribution allows optimizing the radiographic imaging system in order to obtain high quality images with as low as reasonably achievable patient doses. In this study, transmitted X-ray spectra through dentin and enamel that are existing materials in intra-oral radiology were experimentally determined in an X-ray equipment with 40–70 kV variable range. Dentin and enamel samples with 0.4–3.8 and 0.6–2.6 mm thick were used as attenuators. X-ray transmitted spectra were measured with XR-100T model CdTe detector and half-value layers (HVL) were determined. Characteristics of both dentin and enamel transmitted spectra showed that they have differences in the penetration power in matter and in the spectrum distribution. The results will be useful for phantom developments based on dentin and enamel for image quality control in dental radiology. - Highlights: ► The X-ray energy spectral distribution, optimize the radiographic imaging system. Transmitted X-ray spectra through dentin and enamel were experimentally determined. X-ray transmitted spectra were measured (XR-100T model CdTe detector). The transmitted spectra showed differences in the penetration power and spectrum distribution. Dentin and enamel transmitted spectra will be useful for phantom developments.

  11. A review of cutting mechanics and modeling techniques for biological materials.

    Takabi, Behrouz; Tai, Bruce L

    2017-07-01

    This paper presents a comprehensive survey on the modeling of tissue cutting, including both soft tissue and bone cutting processes. In order to achieve higher accuracy in tissue cutting, as a critical process in surgical operations, the meticulous modeling of such processes is important in particular for surgical tool development and analysis. This review paper is focused on the mechanical concepts and modeling techniques utilized to simulate tissue cutting such as cutting forces and chip morphology. These models are presented in two major categories, namely soft tissue cutting and bone cutting. Fracture toughness is commonly used to describe tissue cutting while Johnson-Cook material model is often adopted for bone cutting in conjunction with finite element analysis (FEA). In each section, the most recent mathematical and computational models are summarized. The differences and similarities among these models, challenges, novel techniques, and recommendations for future work are discussed along with each section. This review is aimed to provide a broad and in-depth vision of the methods suitable for tissue and bone cutting simulations. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Sustainable Sourcing of Global Agricultural Raw Materials: Assessing Gaps in Key Impact and Vulnerability Issues and Indicators.

    Nathaniel P Springer

    Full Text Available Understanding how to source agricultural raw materials sustainably is challenging in today's globalized food system given the variety of issues to be considered and the multitude of suggested indicators for representing these issues. Furthermore, stakeholders in the global food system both impact these issues and are themselves vulnerable to these issues, an important duality that is often implied but not explicitly described. The attention given to these issues and conceptual frameworks varies greatly--depending largely on the stakeholder perspective--as does the set of indicators developed to measure them. To better structure these complex relationships and assess any gaps, we collate a comprehensive list of sustainability issues and a database of sustainability indicators to represent them. To assure a breadth of inclusion, the issues are pulled from the following three perspectives: major global sustainability assessments, sustainability communications from global food companies, and conceptual frameworks of sustainable livelihoods from academic publications. These terms are integrated across perspectives using a common vocabulary, classified by their relevance to impacts and vulnerabilities, and categorized into groups by economic, environmental, physical, human, social, and political characteristics. These issues are then associated with over 2,000 sustainability indicators gathered from existing sources. A gap analysis is then performed to determine if particular issues and issue groups are over or underrepresented. This process results in 44 "integrated" issues--24 impact issues and 36 vulnerability issues--that are composed of 318 "component" issues. The gap analysis shows that although every integrated issue is mentioned at least 40% of the time across perspectives, no issue is mentioned more than 70% of the time. A few issues infrequently mentioned across perspectives also have relatively few indicators available to fully represent

  13. Sustainable Sourcing of Global Agricultural Raw Materials: Assessing Gaps in Key Impact and Vulnerability Issues and Indicators.

    Springer, Nathaniel P; Garbach, Kelly; Guillozet, Kathleen; Haden, Van R; Hedao, Prashant; Hollander, Allan D; Huber, Patrick R; Ingersoll, Christina; Langner, Megan; Lipari, Genevieve; Mohammadi, Yaser; Musker, Ruthie; Piatto, Marina; Riggle, Courtney; Schweisguth, Melissa; Sin, Emily; Snider, Sara; Vidic, Nataša; White, Aubrey; Brodt, Sonja; Quinn, James F; Tomich, Thomas P

    2015-01-01

    Understanding how to source agricultural raw materials sustainably is challenging in today's globalized food system given the variety of issues to be considered and the multitude of suggested indicators for representing these issues. Furthermore, stakeholders in the global food system both impact these issues and are themselves vulnerable to these issues, an important duality that is often implied but not explicitly described. The attention given to these issues and conceptual frameworks varies greatly--depending largely on the stakeholder perspective--as does the set of indicators developed to measure them. To better structure these complex relationships and assess any gaps, we collate a comprehensive list of sustainability issues and a database of sustainability indicators to represent them. To assure a breadth of inclusion, the issues are pulled from the following three perspectives: major global sustainability assessments, sustainability communications from global food companies, and conceptual frameworks of sustainable livelihoods from academic publications. These terms are integrated across perspectives using a common vocabulary, classified by their relevance to impacts and vulnerabilities, and categorized into groups by economic, environmental, physical, human, social, and political characteristics. These issues are then associated with over 2,000 sustainability indicators gathered from existing sources. A gap analysis is then performed to determine if particular issues and issue groups are over or underrepresented. This process results in 44 "integrated" issues--24 impact issues and 36 vulnerability issues--that are composed of 318 "component" issues. The gap analysis shows that although every integrated issue is mentioned at least 40% of the time across perspectives, no issue is mentioned more than 70% of the time. A few issues infrequently mentioned across perspectives also have relatively few indicators available to fully represent them. Issues in the

  14. Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft X-ray photons

    Sayre, D.; Feder, R.; Spiller, E.; Kirz, J.; Kim, D.M.

    1977-01-01

    The minimum radiation dosage in a specimen consistent with transmission microscopy at resolution d and specimen thickness t is calculated for model specimens resembling biological materials in their natural state. The calculations cover 10 4 -10 7 eV electrons and 1.3-90 A photons in a number of microscopy modes. The results indicate that over a considerable part of the (t,d)-plane transmission microscopy on such specimens can be carried out at lower dosage with photons than with electrons. Estimates of the maximum resolutions obtainable with electrons and photons, consistent with structural survival of the specimen, are obtained, as are data on optimal operating conditions for microscopy with the two particles

  15. Use of 5-(4-dimethylaminobenzylidene)rhodanine in quantitating silver grains eluted from autoradiograms of biological material

    Ludlow, J.W.; Guikema, J.A.; Consigli, R.A.

    1986-01-01

    5-(4-Dimethylaminobenzylidene)rhodanine, a silver-specific dye, was used in a colorimetric assay to quantitate the autoradiographic deposition of silver onto X-ray film after exposure to sodium dodecyl sulfate-polyacrylamide gels of radiolabeled biological material. Silver grains were eluted from autoradiograms with 5 N potassium hydroxide, dissolved in nitric acid, and neutralized with 1 M Trizma Base. The concentration of silver was measured spectrophotometrically owing to the chelation properties of the dye. After corrections for background exposure were made, the silver contents of excised bands were then determined by comparison to a standard curve generated with silver nitrate. We have used this silver assay to quantitate the relative amount of each polypeptide band comprising the polyomavirus structural protein VP2 doublet. The method reported here has proven useful when densitometry is inconvenient (i.e., short distance between bands, irregular shape of bands, very faint bands) in addition to being inexpensive and simple to perform

  16. Microdetermination of lead, cadmium, zinc and tin in biological and related materials by atomic absorption spectrometry after mineralisation and extraction

    Boiteau, H.L.; Metayer, C.

    1978-01-01

    Two technics permitting to determine either lead, cadmium and zinc, or tin in any biological material (blood, urines, organs, alimentary products of animal or vegetable origin) are described. Every operation (mineralisation and extraction) is made in the same tube and technics, conceived in a way to simplify the manipulations and to reduce the more possible the contamination risks are suitable for determination in series. By working on trial samples near 250 mg, the lower determination limits are around 2 ppb for cadmium, 40 ppb for lead and tin and 2 ppm for zinc. The repeatability studies of different technical stages show that mineralisation and extraction only have a weak incidence on the acccuracy of the results [fr

  17. Evaluation of some procedures relevant to the determination of trace elemental components in biological materials by destructive neutron activation analysis

    Berry, D.L.

    1979-01-01

    The development of a simplified procedure for the analysis of biological materials by destructive neutron activation analysis (DNAA) is described. The sample manipulations preceding gamma ray assay were investigated as five specific stages of processing: (1) pre-irradiation treatment; (2) sample irradiation; (3) removal of the organic matrix; (4) removal of interfering radioactivities; and (5) concentration and separation of analyte activities. Each stage was evaluated with respect to susceptibility to sample contamination, loss of trace elemental components, and compatibility with other operations in the overall DNAA procedures. A complete DNAA procedure was proposed and evaluated for the analysis of standard bovine liver and blood samples. The DNAA system was effective for the determination of As, Cu, Fe, Hg, Mo, Rb, Sb, Se, and Zn without yield determinations and with a minimum turn-around time of approximately 3 days

  18. Evaluation of some procedures relevant to the determination of trace elemental components in biological materials by destructive neutron activation analysis

    Berry, D.L.

    1979-01-01

    The development of a simplified procedure for the analysis of biological materials by destructive neutron activation analysis (DNAA) is described. The sample manipulations preceding gamma ray assay were investigated as five specific stages of processing: (1) pre-irradiation treatment; (2) sample irradiation; (3) removal of the organic matrix; (4) removal of interfering radioactivities; and (5) concentration and separation of analyte activities. Each stage was evaluated with respect to susceptibility to sample contamination, loss of trace elemental components, and compatibility with other operations in the overall DNAA procedures. A complete DNAA procedure was proposed and evaluated for the analysis of standard bovine liver and blood samples. The DNAA system was effective for the determination of As, Cu, Fe, Hg, Mo, Rb, Sb, Se, and Zn without yield determinations and with a minimum turn-around time of approximately 3 days.

  19. Collaborative international research: ethical and regulatory issues pertaining to human biological materials at a South African institutional research ethics committee.

    Sathar, Aslam; Dhai, Amaboo; van der Linde, Stephan

    2014-12-01

    Human Biological Materials (HBMs) are an invaluable resource in biomedical research. To determine if researchers and a Research Ethics Committee (REC) at a South African institution addressed ethical issues pertaining to HBMs in collaborative research with developed countries. Ethically approved retrospective cross-sectional descriptive audit. Of the 1305 protocols audited, 151 (11.57%) fulfilled the study's inclusion criteria. Compared to other developed countries, a majority of sponsors (90) were from the USA (p = 0.0001). The principle investigators (PIs) in all 151 protocols informed the REC of their intent to store HBMs. Only 132 protocols informed research participants (P ethical and regulatory issues pertaining to HBMs. There was a lack of congruence between the ethical guidelines of developed countries and their actions which are central to the access to HBMs in collaborative research. HBMs may be leaving South Africa without EPs and MTAs during the process of international collaborative research. © 2013 John Wiley & Sons Ltd.

  20. Determination of several trace metals in biological materials by PIXE analysis after solvent extraction and polystyrene-film collection

    Iwata, Yoshihiro; Korenaga, Tatsumi; Suzuki, Nobuo

    1991-01-01

    Traces of vanadium, manganese, iron, cobalt, nickel, copper, and zinc were quantitatively extracted with diethyldithiocarbamate (DDTC) in benzene from a digested solution of biological materials and the metal-DDTC complexes were collected into a small amount of polystyrene foam produced by lyophilization of the benzene extract after addition of polystyrene. The polystyrene foam was dissolved in benzene and spread on Mylar film. After drying, a polystyrene film containing metal-DDTC complexes was produced on Mylar film, and then the polystyrene film was peeled from the Mylar film. This film was subjected to PIXE analysis. This method was applied to NBS SRM 1572 citrus leaves and a marine macroalgal sample, and 6 trace metals were simultaneously and accurately determined. (author)

  1. Neutron activation analysis of biological materials for sub PPM amount of mercury without determining the chemical yield

    Foldzinska, A.; Dybczynski, R.

    1976-01-01

    A simple method for the determination of sub ppm amounts of mercury in various biological materials by neutron activation analysis is described. Irradiated samples were decomposed with H 2 SO 4 - fuming HNO 3 mixture and mercury selectively isolated by ion exchange chromatography using Dowex 50X2(H + ) and Dowex 1X4(Br - ) columns in HBr medium. Finally the activity of 197 Hg fixed on an anion exchange resin was measured either with a Ge(Li) or a NaI (Tl) detector. Both the high radiochemical purity of mercury and the practically quantitative recovery were achieved thus eliminating the necessity of determining the chemical yield. The method was used for the determination of mercury in flour, milk, butter, margarine, fish, etc. Total time of analysis (including counting) amounted to 6-7 hrs and several samples could be simultaneously analysed by one technician. (T.G.)

  2. Standardization of digestion procedure for the determination of heavy metals in biological materials by atomic absorption spectrometry

    Khalid, N.; Chaudhri, S.A.

    1999-01-01

    Proper decomposition of the sample is one of the basic requirements of the atomic absorption spectroscopic analysis. In the present studies, heavy metals (Cu, Fe, Mn and Zn) were determined in biological samples by designating them in a mixture of nitric acid and perchloric acid. The quantification was made with atomic absorption spectrometry using an air-acetylene flame. The reliability of the procedure used was checked by analysing standard reference materials from NBS and IAEA, such as Rice flour (NBS-SRM-1568), Horse Kidney (IAEA H-8), Mixed Human diet(IAEA H-9), Copepod (IAEA MA-A-1) and fish flesh (IAEA MA-A-2) under identical conditions. A good agreement was observed between determined and the certified values reported by NBS and IAEA. (author)

  3. [Accidents with biological material in health care workers in 2 primary health care areas (1990-1999)].

    Hernández Navarrete, M J; Montes Villameriel, F J; Solano Bernad, V M; Sánchez Matienzo, D; del Val García, J L; Gil Montalbán, E; Arribas Llorente, J L

    2001-09-15

    To find out the exposures with biological material in health care workers in primary health care, registered in the biological accidents database from Preventive Medicine Service in Miguel Servet Universitary Hospital of Zaragoza. Descriptive study of a retrospective cohort. SITE: Primary health care, Areas II and V of Zaragoza.Participants. Workers in this areas, distributed by: physician, nursing staff, auxiliary, orderly, housekeeping staff, others. Data of: workers, accident, serologic source, worker protection and vaccinal status of hepatitis B. The incidence of accidents was 26 (period 1997-1999). Most proportion of accidents were declared by nursing (78%). The highest occupational incidence was in auxiliary (63 ). In 90,1% of the cases, the accident was needlestick injury. The source was known in 67,7% of cases. The accidents occurred in hands in 96,8% of cases, and only one third of workers carried gloves. Results obtained are similar with previous studies about this event. We must insist on the need to declare these accidents, providing more information and accessibility for the declaration to worker. Moreover, we must insist on the correct application in the health care field of the standard precautions, because almost 50% of accidents are evitable, and to increase hepatitis B vaccination covertures.

  4. [Accidents with exposure to biological material contaminated with HIV in workers at a third level hospital in Madrid].

    García de Codes Ilario, Aurelia; de Juanes Pardo, José Ramón; Arrazola Martínez, M del Pilar; Jaén Herreros, Felisa; Sanz Gallardo, M Inmaculada; Lago López, Emilia

    2004-01-01

    Human Immunodeficiency Virus (HIV) is an occupational hazard among healthcare professionals accidentally contaminated with HIV-positive blood. This study is aimed at describing the characteristics of the accidents involving blood of HIV-positive patients recorded over a sixteen-year period at a general hospital. Epidemiological study of the accidents reported in 2001 involving biological material from an HIV-positive source by the healthcare personnel of a general hospital throughout the 1986-2001 period entailing the presence of biological material from HIV-positive serology individuals. Individual, time and place-related variables, in addition to the initial serologies and those throughout the protocolized follow-up were studied for those individuals involved in these accidents. A total 550 accidents entailing an HIV-positive source were reported. The average number of accidents was 34.4/year. The accidental exposure rate for the period under study was 7.5/1000 workers/year. The professional group showing the highest accident rate was the nursing staff (54.4%). Percutaneous injuries were the most frequent (80.2%). The mean exposure rate was 2.6/100 beds/year. The anatomical areas involved to the greatest degree were the fingers (75.6%). A total 53.4% of those injured completed the serological follow-up without having shown any seroconversion. Throughout the sixteen-year period under study, the annual incidence of accidents involving an HIV-positive source increased from the 27 accidents reported in 1986 to the 60 accidents reported in 1990, there having been a downward trend as of that point in time, to the point of 12 accidents having been recorded in 2001.

  5. Bringing the material back in: US responses to the global climate change regime

    Fisher, D.R.

    2006-01-01

    Since environmental sociology was born as a sub-discipline of sociology, its proponents have encouraged sociological research that incorporates environmental factors. After a quarter of a century, however, sociological research continues to overlook the role of environmental factors - even when the object of the research is to understand an environmental issue. This paper analyzes the role of environmental factors to understand the ways that natural resource interests have been translated into political outcome in the form of American responses to the potential regulation of greenhouse gases. Incorporating data about natural resource use and national decision-making both before and after the Bush Administration's decision to pull out of negotiations for the Kyoto Protocol, this paper concludes that comprehending fully political decisions about global climate change in the United States requires that we recognize the conjoint constitution between policy-making and the environmental factors that are affected by such policies. More broadly, this research supports the notion that, in order to understand social phenomena more fully, sociologists must recommit to bringing environmental factors into social research. (author)

  6. Globalization of Japanese steel industry. Part 1. Materials; Tekkogyo no kokusaika. 1. Zairyo

    Aramaki, T. [Nippon Steel Corp., Tokyo (Japan)

    1995-01-01

    This paper discusses the globalization of the Japanese steel industry from the viewpoint of maintenance of international competitive potential. In the steel industry, remarkable technology innovation is currently occurring in the production process. The direct iron ore smelting process and strip caster process are being developed. These innovative technologies are characterized by processes having simplified facilities and lower fixed costs. A large problem of Japanese steel industry is the maintenance of competitive potential in the international price. For the purpose of the cost reduction, profitability improvement efforts have been made, as for the cut of research and development cost, consolidation of standards, intensive production, specialization among undertakings, cooperations, etc. Additionally, accompanied with the overseas production of steel consumers, the overseas steel production has been conducted. The overseas production is currently focused on Asia. Significance of the Japanese steel industry in Asia is provided from the viewpoint of accumulating technological know-how, establishment of new technologies, acquisition of operation technologies, promotion of talented persons for industries, etc. 12 refs., 7 figs., 3 tabs.

  7. New Methods of Simulation of Mn(II) EPR Spectra: Single Crystals, Polycrystalline and Amorphous (Biological) Materials

    Misra, Sushil K.

    Biological systems exhibit properties of amorphous materials. The Mn(II) ion in amorphous materials is characterized by distributions of spin-Hamiltonian parameters around mean values. It has a certain advantage over other ions, being one of the most abundant elements on the earth. The extent to which living organisms utilize manganese varies from one organism to the other. There is a fairly high concentration of the Mn(II) ion in green plants, which use it in the O2 evolution reaction of photosynthesis (Sauer, 1980). Structure-reactivity relationships in Mn(II)-O2 complexes are given in a review article by Coleman and Taylor (1980). Manganese is a trace requirement in animal nutrition; highly elevated levels of manganese in the diet can be toxic, probably because of an interference with iron homeostasis (Underwood, 1971). On the other hand, animals raised with a dietary deficiency of manganese exhibit severe abnormalities in connective tissue; these problems have been attributed to the obligatory role of Mn(II) in mucopolysaccharide metabolism (Leach, 1971). Mn(II) has been detected unequivocally in living organisms.

  8. Biological regeneration of carrier material for the adsorption of halogen hydrocarbons in plants for cleaning up contaminated groundwater. Final report

    Ressel, K.

    1993-06-01

    Halogen hydrocarbons and above all chlorinated hydrocarbons are widespread harmful substances in soils and in groundwater. When cleaning up groundwater contamination, the contaminants are brought into the gas phase by strip processes. From the gas phase, the contaminants can be adsorbed on different carrier materials, mostly active carbon. One was searching for ways to regenerate this adsorption material. The mixed culture from a sea sediment most suitable for the decomposition of chlorinated hydrocarbons was optimized regarding its decomposition performance and was later used on the technical scale. In the decomposition experiments on the large technical scale, the cultures were lodged on filling bodies which has a much higher amount of gaps. In this case, an optimum supply of the micro-organisms with oxygen and methane is guaranteed, which is used as co-substrate. No intermediate product was found in a gas chromatography examination. The biologically occupied stage is situated between a desorption column and the active carbon filters, and reduces the load of harmful substances which can no longer be brought into the gas phase by stripping out. This has the advantage that it can be integrated in existing plants and can be adapted to any case of contamination by lodging adapted micro-organisms on it. The basis for each application must be separately researched. (orig.) [de

  9. Accurate determination of trace amounts of lanthanum, yttrium and all stable lanthanides in biological materials by Ion Chromatography

    Dybczynski, R.S.; Kulisa, K.; Danko, B.; Samczynski, Z.

    2007-01-01

    The analytical procedure for the isolation and preconcentration of La, Y and the lanthanides from biological materials and their determination by ion chromatography (IC) with the use of Dionex Ion Pac CS3 + CG3 column (sulfonic acid type), α-hydroxyisobutyric acid (α-HIBA) as an eluent, and PAR or Arsenazo III as color forming reagents, was elaborated. The scheme originally devised for NAA, involving microwave assisted digestion and multi step separation employing ion exchange and extraction chromatography columns was used to selectively recover REE fraction (without scandium) with 100% yield. The REE fraction was analyzed by IC at 25 and 70 o C. The run at 70 o C enabled resolution of Y and Dy peaks and as a result made possible quantitative determination of La, Y, and all lanthanides. Investigation on the mechanism of band spreading revealed that longitudinal diffusion in the stationary phase considerably contributed to the total plate height. Surprisingly, the plate height (H) calculated from Y peak was distinctly lower than H values of the adjacent lanthanides. The method was validated by analyzing several certified reference materials (CRMs). (authors)

  10. Physical and biological properties of a novel anti-adhesion material made of thermally cross-linked gelatin film: Investigation of the usefulness as anti-adhesion material.

    Horii, Tsunehito; Tsujimoto, Hiroyuki; Miyamoto, Hiroe; Yamanaka, Koki; Tanaka, Shota; Torii, Hiroko; Ozamoto, Yuki; Takamori, Hideki; Nakamachi, Eiji; Ikada, Yoshito; Hagiwara, Akeo

    2018-02-01

    To create more useful, effective and safer anti-adhesion materials, we developed a thermally cross-linked gelatin film. In this study, we examined the physical properties of the film such as the physical strength and the adhesiveness to reveal the handling properties and biological properties, such as the anti-adhesion effect, the influence on cell proliferation, and the cytotoxicity to reveal the anti-adhesion mechanism, especially in comparison with the conventional hyaluronic acid and carboxymethylcellulose film (the conventional film). A tensile test under dry and wet conditions and shearing stress test showed that the gelatin film has significant higher maximum tensile stress and fracture strain than the conventional film. In the study using a rat model of cecum adhesion, the anti-adhesion effect of the gelatin film was significantly superior to that of the conventional film. In the cell proliferation test, the number of fibroblast cells on the gelatin film increased at each time point, while no cell proliferation was observed on the conventional film. Furthermore, in the cytotoxicity test using a colony assay and Live/Dead assay, the extract of the gelatin film had no cytotoxicity, while the extract of the conventional film had cytotoxicity considerably. These results suggest that the gelatin film provides better handling than the conventional film, due to better physical strength and ductility of the film. In addition, the gelatin film has a significantly greater anti-adhesion effect than the conventional film without any cytotoxicity. Therefore, the gelatin film is quite favorable as an anti-adhesion material. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 689-696, 2018. © 2017 Wiley Periodicals, Inc.

  11. Strengthening global norms for protecting nuclear materials - feedback on little countries radiation safety

    Chelidze, L.; Kakushadze, S.

    2002-01-01

    Full text: Georgia is the part of New Great Silk Road, connecting Europe and Asia. Along this rout will be laid oil and gas pipelines, transport and telecommunication lines. Unfortunately, besides economical communication, the rout can be used for illegal transit of nuclear materials. There is special concern regarding uncontrolled territories of conflict zones. Taking into consideration recent terrible terrorist acts we feel great responsibility for ensuring safety of this rout, which is a precondition of economical development and political stability of the whole Caucasian region A potentially hazardous radiological situation developed in Georgia with orphan radiation sources in the late 1990s and 2001: discovery of high-activity strong Radiation sources of (Strontium-90 from thermo-generators) in Tsalenjikha district. Eight such generators were brought to Georgia in 1984, and four of them have been found in Svanety mountainous region in addition to the two found in the Tsalenjikha, but remaining two are not yet found. During the last years several incidents of illicit trafficking were reported. The radiation problems greatly relate to the withdrawal of the Russian military bases. The radiological accident took place in Lilo, Georgia, when sealed radiation sources had been abandoned by a previous owner at a site. Taking into account the geopolitical location of Georgia it is quite important to strengthen the physical protection infrastructure in country with has serious territorial problems. The first step was to provide an appropriate legal framework for the safety management in the country and clearly identify regulatory body. The ministry implements state control in the nuclear and radiation safety field for protection of environment and natural resources of Georgia (hereinafter referred to as the Ministry). The Ministry is obliged to supervise the physical protection systems. The Ministry shall co-ordinate the state system of physical protection of the use

  12. Biodiversity's big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean.

    Thomas J Webb

    Full Text Available BACKGROUND: Understanding the distribution of marine biodiversity is a crucial first step towards the effective and sustainable management of marine ecosystems. Recent efforts to collate location records from marine surveys enable us to assemble a global picture of recorded marine biodiversity. They also effectively highlight gaps in our knowledge of particular marine regions. In particular, the deep pelagic ocean--the largest biome on Earth--is chronically under-represented in global databases of marine biodiversity. METHODOLOGY/PRINCIPAL FINDINGS: We use data from the Ocean Biogeographic Information System to plot the position in the water column of ca 7 million records of marine species occurrences. Records from relatively shallow waters dominate this global picture of recorded marine biodiversity. In addition, standardising the number of records from regions of the ocean differing in depth reveals that regardless of ocean depth, most records come either from surface waters or the sea bed. Midwater biodiversity is drastically under-represented. CONCLUSIONS/SIGNIFICANCE: The deep pelagic ocean is the largest habitat by volume on Earth, yet it remains biodiversity's big wet secret, as it is hugely under-represented in global databases of marine biological records. Given both its value in the provision of a range of ecosystem services, and its vulnerability to threats including overfishing and climate change, there is a pressing need to increase our knowledge of Earth's largest ecosystem.

  13. Material Units, Structures/Landforms, and Stratigraphy for the Global Geologic Map of Ganymede (1:15M)

    Patterson, G. Wesley; Head, James W.; Collins, Geoffrey C.; Pappalardo, Robert T.; Prockter, Louis M.; Lucchitta, Baerbel K.

    2008-01-01

    In the coming year a global geological map of Ganymede will be completed that represents the most recent understanding of the satellite on the basis of Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. Material units have been defined, structural landforms have been identified, and an approximate stratigraphy has been determined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS. This mosaic incorporates the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. This map has given us a more complete understanding of: 1) the major geological processes operating on Ganymede, 2) the characteristics of the geological units making up its surface, 3) the stratigraphic relationships of geological units and structures, and 4) the geological history inferred from these relationships. A summary of these efforts is provided here.

  14. LHS (latin hypercubes) sampling of the material properties of steels for the analysis of the global sensitivity in welding numerical simulation

    Petelet, Matthieu; Asserin, Olivier; Iooss, Bertrand; Petelet, Matthieu; Loredo, Alexandre

    2006-01-01

    In this work, the method of sensitivity analysis allowing to identify the inlet data the most influential on the variability of the responses (residual stresses and distortions). Classically, the sensitivity analysis is carried out locally what limits its validity domain to a given material. A global sensitivity analysis method is proposed; it allows to cover a material domain as wide as those of the steels series. A probabilistic modeling giving the variability of the material parameters in the steels series is proposed. The original aspect of this work consists in the use of the sampling method by latin hypercubes (LHS) of the material parameters which forms the inlet data (dependent of temperature) of the numerical simulations. Thus, a statistical approach has been applied to the welding numerical simulation: LHS sampling of the material properties, global sensitivity analysis what has allowed the reduction of the material parameterization. (O.M.)

  15. Investigations on construction material and construction concepts in order to obtain dose-reducing effects in the dismantling of the biological shield of a 1300 MWe-PWR

    Bittner, A.; Jungwirth, D.; Knell, M.; Schnitzler, L.

    1984-04-01

    Numerical values of neutron fluxes, activations, dose rates etc. as a function of characteristic values of materials required for optimization purposes to reduce the radiation effect of the biological shield of a PWR are not available. Design concepts are presented for biological shields of PWRs made of concrete with respect to both the most suitable application of materials and the design principles aiming at reduced radiation exposure as compared to present designs during entering, waste disposal and ultimate storage. To evaluate the present-state design the above values have been calculated. Suggested alternative designs are biological shields with selective material application, built from precast elements with or without boron carbide layer arranged in front of it. (orig./HP) [de

  16. The Legitimacy of Private Sector’s Involvement in Global Environmental Regimes: The Case of the Convention on Biological Diversity

    Orsini, Amandine

    2008-01-01

    This paper analyses a research topic poorly considered by authors interested in the legitimacy of environmental governance, that is to say the dynamics created by its interpretation by private sector actors. In order to fill this gap, a recent decision of the Convention on Biological Diversity (CBD) –decision VIII/17 adopted in Marsh 2006- to further involve the private sector in the activities of the Convention is considered. The legitimacy of decision VIII/17 is twofold. Its first dimension...

  17. Global asymptotic stability of bistable traveling fronts in reaction-diffusion systems and their applications to biological models

    Wu Shiliang; Li Wantong

    2009-01-01

    This paper deals with the global asymptotic stability and uniqueness (up to translation) of bistable traveling fronts in a class of reaction-diffusion systems. The known results do not apply in solving these problems because the reaction terms do not satisfy the required monotone condition. To overcome the difficulty, a weak monotone condition is proposed for the reaction terms, which is called interval monotone condition. Under such a weak monotone condition, the existence and comparison theorem of solutions is first established for reaction-diffusion systems on R by appealing to the theory of abstract differential equations. The global asymptotic stability and uniqueness (up to translation) of bistable traveling fronts are then proved by the elementary super- and sub-solution comparison and squeezing methods for nonlinear evolution equations. Finally, these abstract results are applied to a two species competition-diffusion model and a system modeling man-environment-man epidemics.

  18. The dynamic ocean biological pump: Insights from a global compilation of particulate organic carbon, CaCO3, and opal concentration profiles from the mesopelagic

    Lam, Phoebe J.; Doney, Scott C.; Bishop, James K. B.

    2011-09-01

    We have compiled a global data set of 62 open ocean profiles of particulate organic carbon (POC), CaCO3, and opal concentrations collected by large volume in situ filtration in the upper 1000 m over the last 30 years. We define concentration-based metrics for the strength (POC concentration at depth) and efficiency (attenuation of POC with depth in the mesopelagic) of the biological pump. We show that the strength and efficiency of the biological pump are dynamic and are characterized by a regime of constant and high transfer efficiency at low to moderate surface POC and a bloom regime where the height of the bloom is characterized by a weak deep biological pump and low transfer efficiency. The variability in POC attenuation length scale manifests in a clear decoupling between the strength of the shallow biological pump (e.g., POC at the export depth) and the strength of the deep biological pump (POC at 500 m). We suggest that the paradigm of diatom-driven export production is driven by a too restrictive perspective on upper mesopelagic dynamics. Indeed, our full mesopelagic analysis suggests that large, blooming diatoms have low transfer efficiency and thus may not export substantially to depth; rather, our analysis suggests that ecosystems characterized by smaller cells and moderately high %CaCO3 have a high mesopelagic transfer efficiency and can have higher POC concentrations in the deep mesopelagic even with relatively low surface or near-surface POC. This has negative implications for the carbon sequestration prospects of deliberate iron fertilization.

  19. Interactions among genes, tumor biology and the environment in cancer health disparities: examining the evidence on a national and global scale.

    Wallace, Tiffany A; Martin, Damali N; Ambs, Stefan

    2011-08-01

    Cancer incidence and mortality rates show great variations across nations and between population groups. These variations are largely explained by differences in age distribution, diet and lifestyle, access to health care, cultural barriers and exposure to carcinogens and pathogens. Cancers caused by infections are significantly more common in developing than developed countries, and they overproportionally affect immigrant populations in the USA and other countries. The global pattern of cancer is not stagnant. Instead, it is dynamic because of fluctuations in the age distribution of populations, improvements in cancer prevention and early detection in affluent countries and rapid changes in diet and lifestyle in parts of the world. For example, increased smoking rates have caused tobacco-induced cancers to rise in various Asian countries, whereas reduced smoking rates have caused these cancers to plateau or even begin to decline in Western Europe and North America. Some population groups experience a disproportionally high cancer burden. In the USA and the Caribbean, cancer incidence and mortality rates are excessively high in populations of African ancestry when compared with other population groups. The causes of this disparity are multifaceted and may include tumor biological and genetic factors and their interaction with the environment. In this review, we will discuss the magnitude and causes of global cancer health disparities and will, with a focus on African-Americans and selected cancer sites, evaluate the evidence that genetic and tumor biological factors contribute to existing cancer incidence and outcome differences among population groups in the USA.

  20. Modern science for better quality control of medicinal products "Towards global harmonization of 3Rs in biologicals": The report of an EPAA workshop.

    Schutte, Katrin; Szczepanska, Anna; Halder, Marlies; Cussler, Klaus; Sauer, Ursula G; Stirling, Catrina; Uhlrich, Sylvie; Wilk-Zasadna, Iwona; John, David; Bopst, Martin; Garbe, Joerg; Glansbeek, Harrie L; Levis, Robin; Serreyn, Pieter-Jan; Smith, Dean; Stickings, Paul

    2017-07-01

    This article summarizes the outcome of an international workshop organized by the European Partnership for Alternative Approaches to Animal Testing (EPAA) on Modern science for better quality control of medicinal products: Towards global harmonization of 3Rs in biologicals. As regards the safety testing of biologicals, the workshop participants agreed to actively encourage the deletion of abnormal toxicity tests and target animal batch safety tests from all relevant legal requirements and guidance documents (country-specific guidelines, pharmacopoeia monographs, WHO recommendations). To facilitate the global regulatory acceptance of non-animal methods for the potency testing of, e.g., human diphtheria and tetanus vaccines and veterinary swine erysipelas vaccines, international convergence on the scientific principles of the use of appropriately validated in vitro assays for replacing in vivo methods was identified as an overarching goal. The establishment of scientific requirements for new assays was recognized as a further means to unify regulatory approaches in different jurisdictions. It was recommended to include key regulators and manufacturers early in the corresponding discussions. Manufacturers and responsible expert groups, e.g. at the European Directorate for the Quality of Medicines and Health Care of the Council of Europe or the European Medicines Agency, were invited to consider leadership for international collaboration. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.