WorldWideScience

Sample records for global auroral images

  1. Global auroral imaging instrumentation for the dynamics explorer mission

    International Nuclear Information System (INIS)

    Frank, L.A.; Craven, J.D.; Ackerson, K.L.; English, M.R.; Eather, R.H.; Carovillano, R.L.

    1981-01-01

    The instrumentation for gaining global images of the auroral oval from the high-altitude spacecraft of the Dynamics Explorer Mission is described. Three spin-scan auroral imaging (SAI) photometers are expected to be able to effectively view the dim emissions from earth in the presence of strong stray light sources near their fields-of-view along the sunlit portion of the spacecraft orbit. A special optical design which includes an off-axis parabolic mirror as the focusing element and super-reflecting mirror surfaces is used to minimize the effects of stray light. The rotation of the spacecraft and an instrument scanning mirror provide the two-dimensional array of pixels comprising an image frame. (orig.)

  2. Global auroral conductance distribution due to electron and proton precipitation from IMAGE-FUV observations

    Directory of Open Access Journals (Sweden)

    V. Coumans

    2004-04-01

    Full Text Available The Far Ultraviolet (FUV imaging system on board the IMAGE satellite provides a global view of the north auroral region in three spectral channels, including the SI12 camera sensitive to Doppler shifted Lyman-α emission. FUV images are used to produce instantaneous maps of electron mean energy and energy fluxes for precipitated protons and electrons. We describe a method to calculate ionospheric Hall and Pedersen conductivities induced by auroral proton and electron ionization based on a model of interaction of auroral particles with the atmosphere. Different assumptions on the energy spectral distribution for electrons and protons are compared. Global maps of ionospheric conductances due to instantaneous observation of precipitating protons are calculated. The contribution of auroral protons in the total conductance induced by both types of auroral particles is also evaluated and the importance of proton precipitation is evaluated. This method is well adapted to analyze the time evolution of ionospheric conductances due to precipitating particles over the auroral region or in particular sectors. Results are illustrated with conductance maps of the north polar region obtained during four periods with different activity levels. It is found that the proton contribution to conductance is relatively higher during quiet periods than during substorms. The proton contribution is higher in the period before the onset and strongly decreases during the expansion phase of substorms. During a substorm which occurred on 28 April 2001, a region of strong proton precipitation is observed with SI12 around 14:00MLT at ~75° MLAT. Calculation of conductances in this sector shows that neglecting the protons contribution would produce a large error. We discuss possible effects of the proton precipitation on electron precipitation in auroral arcs. The increase in the ionospheric conductivity, induced by a former proton precipitation can reduce the potential drop

  3. Global auroral conductance distribution due to electron and proton precipitation from IMAGE-FUV observations

    Directory of Open Access Journals (Sweden)

    V. Coumans

    2004-04-01

    Full Text Available The Far Ultraviolet (FUV imaging system on board the IMAGE satellite provides a global view of the north auroral region in three spectral channels, including the SI12 camera sensitive to Doppler shifted Lyman-α emission. FUV images are used to produce instantaneous maps of electron mean energy and energy fluxes for precipitated protons and electrons. We describe a method to calculate ionospheric Hall and Pedersen conductivities induced by auroral proton and electron ionization based on a model of interaction of auroral particles with the atmosphere. Different assumptions on the energy spectral distribution for electrons and protons are compared. Global maps of ionospheric conductances due to instantaneous observation of precipitating protons are calculated. The contribution of auroral protons in the total conductance induced by both types of auroral particles is also evaluated and the importance of proton precipitation is evaluated. This method is well adapted to analyze the time evolution of ionospheric conductances due to precipitating particles over the auroral region or in particular sectors. Results are illustrated with conductance maps of the north polar region obtained during four periods with different activity levels. It is found that the proton contribution to conductance is relatively higher during quiet periods than during substorms. The proton contribution is higher in the period before the onset and strongly decreases during the expansion phase of substorms. During a substorm which occurred on 28 April 2001, a region of strong proton precipitation is observed with SI12 around 14:00MLT at ~75° MLAT. Calculation of conductances in this sector shows that neglecting the protons contribution would produce a large error. We discuss possible effects of the proton precipitation on electron precipitation in auroral arcs. The increase in the ionospheric conductivity, induced by a former proton precipitation can reduce the potential drop

  4. Simultaneous observation of auroral substorm onset in Polar satellite global images and ground-based all-sky images

    Science.gov (United States)

    Ieda, Akimasa; Kauristie, Kirsti; Nishimura, Yukitoshi; Miyashita, Yukinaga; Frey, Harald U.; Juusola, Liisa; Whiter, Daniel; Nosé, Masahito; Fillingim, Matthew O.; Honary, Farideh; Rogers, Neil C.; Miyoshi, Yoshizumi; Miura, Tsubasa; Kawashima, Takahiro; Machida, Shinobu

    2018-05-01

    Substorm onset has originally been defined as a longitudinally extended sudden auroral brightening (Akasofu initial brightening: AIB) followed a few minutes later by an auroral poleward expansion in ground-based all-sky images (ASIs). In contrast, such clearly marked two-stage development has not been evident in satellite-based global images (GIs). Instead, substorm onsets have been identified as localized sudden brightenings that expand immediately poleward. To resolve these differences, optical substorm onset signatures in GIs and ASIs are compared in this study for a substorm that occurred on December 7, 1999. For this substorm, the Polar satellite ultraviolet global imager was operated with a fixed-filter (170 nm) mode, enabling a higher time resolution (37 s) than usual to resolve the possible two-stage development. These data were compared with 20-s resolution green-line (557.7 nm) ASIs at Muonio in Finland. The ASIs revealed the AIB at 2124:50 UT and the subsequent poleward expansion at 2127:50 UT, whereas the GIs revealed only an onset brightening that started at 2127:49 UT. Thus, the onset in the GIs was delayed relative to the AIB and in fact agreed with the poleward expansion in the ASIs. The fact that the AIB was not evident in the GIs may be attributed to the limited spatial resolution of GIs for thin auroral arc brightenings. The implications of these results for the definition of substorm onset are discussed herein.[Figure not available: see fulltext.

  5. Forecast of auroral activity

    International Nuclear Information System (INIS)

    Lui, A.T.Y.

    2004-01-01

    A new technique is developed to predict auroral activity based on a sample of over 9000 auroral sites identified in global auroral images obtained by an ultraviolet imager on the NASA Polar satellite during a 6-month period. Four attributes of auroral activity sites are utilized in forecasting, namely, the area, the power, and the rates of change in area and power. This new technique is quite accurate, as indicated by the high true skill scores for forecasting three different levels of auroral dissipation during the activity lifetime. The corresponding advanced warning time ranges from 22 to 79 min from low to high dissipation levels

  6. Auroral Electrojet Index Designed to Provide a Global Measure, Hourly Intervals, of Auroral Zone Magnetic Activity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Auroral Electrojet (AE) index is designed to provide a global quantitative measure of auroral zone magnetic activity produced by enhanced ionospheric currents...

  7. Auroral Electrojet Index Designed to Provide a Global Measure, l-minute Intervals, of Auroral Zone Magnetic Activity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Auroral Electrojet index (AE) is designed to provide a global quantitative measure of auroral zone magnetic activity produced by enhanced ionospheric currents...

  8. New imaging spectrometer for auroral research

    International Nuclear Information System (INIS)

    Rairden, R.; Swenson, G.

    1994-01-01

    A Loral 1024 x 1024 CCD array with 15-micron pixels has been incorporated as the focal plane detector in a new imaging spectrometer for auroral research. The large format low-noise CCD provides excellent dynamic range and signal to noise characteristics with image integration times on the order of 60 seconds using f/1.4 camera optics. Further signal enhancement is achieved through on-CCD pixel binning. In the nominal binned mode the instrument wavelength resolution varies from 15 to 30 angstrom across the 5000 to 8600 angstrom spectral range. Images are acquired and stored digitally on a Macintosh computer. This instrument was operated at a field site in Godhavn, Greenland during the past two winters (1993, 1994) to measure the altitude distribution of the various spectral emissions within auroral arcs. The height resolution on an auroral feature 300 km distant is ∼1 km. Examples of these measurements are presented here in snapshot and summary image formats illustrating the wealth of quantitative information provided by this new imaging spectrometer

  9. Auroral Electrojet Indices Designed to Provide a Global Measure, 2.5-Minute Intervals, of Auroral Zone Magnetic Activity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Auroral Electrojet index (AE) is designed to provide a global quantitative measure of auroral zone magnetic activity produced by enhanced ionospheric currents...

  10. Dawn- Dusk Auroral Oval Oscillations Associated with High- Speed Solar Wind

    Science.gov (United States)

    Liou, Kan; Sibeck, David G.

    2018-01-01

    We report evidence of global-scale auroral oval oscillations in the millihertz range, using global auroral images acquired from the Ultraviolet Imager on board the decommissioned Polar satellite and concurrent solar wind measurements. On the basis of two events (15 January 1999 and 6 January 2000) studied, it is found that (1) quasi-periodic auroral oval oscillations (approximately 3 megahertz) can occur when solar wind speeds are high at northward or southward interplanetary magnetic field turning, (2) the oscillation amplitudes range from a few to more than 10 degrees in latitudes, (3) the oscillation frequency is the same for each event irrespective of local time and without any azimuthal phase shift (i.e., propagation), (4) the auroral oscillations occur in phase within both the dawn and dusk sectors but 180 degrees out of phase between the dawn and dusk sectors, and (5) no micropulsations on the ground match the auroral oscillation periods. While solar wind conditions favor the growth of the Kelvin-Helmholtz (K-H) instability on the magnetopause as often suggested, the observed wave characteristics are not consistent with predictions for K-H waves. The in-phase and out-of-phase features found in the dawn-dusk auroral oval oscillations suggest that wiggling motions of the magnetotail associated with fast solar winds might be the direct cause of the global-scale millihertz auroral oval oscillations. Plain Language Summary: We utilize global auroral image data to infer the motion of the magnetosphere and show, for the first time, the entire magnetospheric tail can move east-west in harmony like a windsock flapping in wind. The characteristic period of the flapping motion may be a major source of global long-period ULF (Ultra Low Frequency) waves, adding an extra source of the global mode ULF waves.

  11. Numerical simulation of global formation of auroral arcs

    International Nuclear Information System (INIS)

    Miura, A.; Sato, T.

    1980-01-01

    Global simulation of auroral arcs is performed, based on the feedback theory of auroral arcs (Sato, 1978), for a three-dimensionally coupled ionosphere-magnetosphere system which includes two pairs of large-scale Birkeland currents, large-scale polar cap electric fields, and a day-night asymmetry of the electron density distribution. Simulation results have shown that auroral arcs are formed in the dark sector of the auroral oval, more preferentially in the evening sector. They usually appear in multiples with a shape elongating in the east-west direction, each arc being a couple of thousand kilometers in length and 10 to 40 km in width. A pair of small-scale, upward and downward, Birkeland currents is associated with each arc, the density of which becomes 10 to 200 μA/m 2 at 110-km height, and the intensity of the associated electrojet reaches 5 to 20 kA. Each arc is strongly polarized in the direction of the large-scale northsouth current so that the electric field inside the arc is reduced considerably from its ambient value. What controls the formation of auroral arcs (growing speed, locations, arc width, etc.) is examined in detail. For example, the arc width becomes sharper, as the bounce time of the Alfven wave decreases. The overall structure of auroras is largely dependent upon the large-scale Birkeland current, the electric field, and the electron density distribution in the auroral oval

  12. The Auroral Planetary Imaging and Spectroscopy (APIS) service

    Science.gov (United States)

    Lamy, L.; Prangé, R.; Henry, F.; Le Sidaner, P.

    2015-06-01

    The Auroral Planetary Imaging and Spectroscopy (APIS) service, accessible online, provides an open and interactive access to processed auroral observations of the outer planets and their satellites. Such observations are of interest for a wide community at the interface between planetology, magnetospheric and heliospheric physics. APIS consists of (i) a high level database, built from planetary auroral observations acquired by the Hubble Space Telescope (HST) since 1997 with its mostly used Far-Ultraviolet spectro-imagers, (ii) a dedicated search interface aimed at browsing efficiently this database through relevant conditional search criteria and (iii) the ability to interactively work with the data online through plotting tools developed by the Virtual Observatory (VO) community, such as Aladin and Specview. This service is VO compliant and can therefore also been queried by external search tools of the VO community. The diversity of available data and the capability to sort them out by relevant physical criteria shall in particular facilitate statistical studies, on long-term scales and/or multi-instrumental multi-spectral combined analysis.

  13. Influences on the radius of the auroral oval

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2009-07-01

    Full Text Available We examine the variation in the radius of the auroral oval, as measured from auroral images gathered by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE spacecraft, in response to solar wind inputs measured by the Advanced Composition Explorer (ACE spacecraft for the two year interval June 2000 to May 2002. Our main finding is that the oval radius increases when the ring current, as measured by the Sym-H index, is intensified during geomagnetic storms. We discuss our findings within the context of the expanding/contracting polar cap paradigm, in terms of a modification of substorm onset conditions by the magnetic perturbation associated with the ring current.

  14. Theoretical and experimental studies relevant to interpretation of auroral emissions. Annual Report

    International Nuclear Information System (INIS)

    Keffer, C.E.

    1992-06-01

    The results obtained in the second year of a three year collaborative effort with MSFC are summarized. A succession of experimental studies was completed to determine the effects of the natural and induced space vehicle environment on the measurement of auroral images from space-based platforms. In addition, a global model which incorporates both auroral and dayglow emission sources is being developed to allow interpretation of measured auroral emissions. A description of work completed on these two tasks is presented

  15. Comprehensive simulation study on local and global development of auroral arcs and field-aligned potentials

    International Nuclear Information System (INIS)

    Watanabe, Tomohiko; Oya, Hiroshi; Watanabe, Kunihiko; Sato, Tetsuya.

    1992-10-01

    Extensive three-dimensional computer simulations of the magnetosphere-ionosphere (M-I) coupling are performed to study self-excitation of auroral arcs with special emphasis on 1) nonlinear evolution of the feedback instability in the M-I coupling system, 2) controlling mechanisms of the auroral arc structure, 3) formation of a field-aligned electric potential structure in association with the development of the feedback instability, and 4) effects of the parallel potential generation on auroral arc development. It is reconfirmed that the feedback instability produces a longitudinally elongated, latitudinally striated structure where the upward field-aligned current and the ionospheric density are locally enhanced. The following important new features are revealed. 1) The global distribution of the striation structure is primarily governed by the magnetospheric convection pattern and the ionospheric density distribution. 2) There appears a significant dawn-dusk asymmetry in the auroral arc formation, even though the apparent geometrical relationship is symmetric. 3) The recombination effect plays a significant role in the global, as well as local, development of the auroral arc structure. The nonlinearity of recombination, in conjunction with the closure of an arc-associated local field-aligned current system, acts to destroy an old arc and creates a new arc in a different but adjacent position. 4) A V-shaped field aligned potential structure is created in association with an auroral arc. Rapid increase in the electron density and the local upward field-aligned current of an arc arises as a result of enhanced ionization by precipitating electrons accelerated by the parallel potential. 5) A drastic oscillatory behavior of appearance and disappearance of auroral arcs is obtained when the ionization effect is strong. The period is primarily given by the Alfven bounce time. (J.P.N.)

  16. Cassini UVIS Auroral Observations in 2016 and 2017

    Science.gov (United States)

    Pryor, Wayne R.; Esposito, Larry W.; Jouchoux, Alain; Radioti, Aikaterini; Grodent, Denis; Gustin, Jacques; Gerard, Jean-Claude; Lamy, Laurent; Badman, Sarah; Dyudina, Ulyana A.; Cassini UVIS Team, Cassini VIMS Team, Cassini ISS Team, HST Saturn Auroral Team

    2017-10-01

    In 2016 and 2017, the Cassini Saturn orbiter executed a final series of high-inclination, low-periapsis orbits ideal for studies of Saturn's polar regions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) obtained an extensive set of auroral images, some at the highest spatial resolution obtained during Cassini's long orbital mission (2004-2017). In some cases, two or three spacecraft slews at right angles to the long slit of the spectrograph were required to cover the entire auroral region to form auroral images. We will present selected images from this set showing narrow arcs of emission, more diffuse auroral emissions, multiple auroral arcs in a single image, discrete spots of emission, small scale vortices, large-scale spiral forms, and parallel linear features that appear to cross in places like twisted wires. Some shorter features are transverse to the main auroral arcs, like barbs on a wire. UVIS observations were in some cases simultaneous with auroral observations from the Cassini Imaging Science Subsystem (ISS) the Cassini Visual and Infrared Mapping Spectrometer (VIMS), and the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) that will also be presented.

  17. On the possibility of auroral remote sensing with the Viking ultraviolet imager

    International Nuclear Information System (INIS)

    Steele, D.P.; McEwen, D.J.; Murphree, J.S.

    1992-01-01

    An investigation was carried out to assess the value of ultraviolet auroral images for remote sensing of electron precipitation. The authors compared auroral images, obtained by both cameras of the Viking Ultraviolet Imager during April and early May 1986, with simultaneous measurements of electron precipitation from the DMSP F7 and HiLat satellites at low altitudes above the auroral zone. The electron data were averaged over the image pixels and were used to normalize the imager signals to unit electron energy flux. The resulting quantity, here termed the effective sensitivity, showed large scatter about the mean values for both cameras that tended to mask any energy dependence except a decrease at electron energies above 6 keV. The mean effective sensitivities were 11.3 ± 1.1 digitization numbers (DN)/(erg cm -2 s -1 ) for the Lyman-Birge-Hopfield (LBH) camera and 15.9 ± 2.5 DN/(erg cm -2 s -1 ) for the 1304 camera. The signal ratio in simultaneous images from both cameras was insensitive to electron energy in the two cases examined, consistent with the weak energy dependences of the effective sensitivities. Unusually high LBH camera effective sensitivities of 45-60 DN/(erg cm -2 s -1 ) were obtained during several orbits on May 2 and 3. They conclude that images from either Viking camera may be used to infer the instantaneous distribution of electron energy deposition, with roughly 50% accuracy

  18. Alaskan Auroral All-Sky Images on the World Wide Web

    Science.gov (United States)

    Stenbaek-Nielsen, H. C.

    1997-01-01

    In response to a 1995 NASA SPDS announcement of support for preservation and distribution of important data sets online, the Geophysical Institute, University of Alaska Fairbanks, Alaska, proposed to provide World Wide Web access to the Poker Flat Auroral All-sky Camera images in real time. The Poker auroral all-sky camera is located in the Davis Science Operation Center at Poker Flat Rocket Range about 30 miles north-east of Fairbanks, Alaska, and is connected, through a microwave link, with the Geophysical Institute where we maintain the data base linked to the Web. To protect the low light-level all-sky TV camera from damage due to excessive light, we only operate during the winter season when the moon is down. The camera and data acquisition is now fully computer controlled. Digital images are transmitted each minute to the Web linked data base where the data are available in a number of different presentations: (1) Individual JPEG compressed images (1 minute resolution); (2) Time lapse MPEG movie of the stored images; and (3) A meridional plot of the entire night activity.

  19. Auroral Tomography Workshop, Proceedings

    International Nuclear Information System (INIS)

    Steen, Aa.

    1993-08-01

    In ionospheric and atmospheric physics the importance of multi-station imaging has grown as a consequence of the availability of scientific grade CCD cameras with digital output and affordable massive computing power. Tomographic inversion techniques are used in many different areas, e.g. medicine, plasma research and space physics. The tomography workshop was announced to gather a limited group of people interested in auroral tomography or tomographic inversion methods in general. ALIS (Auroral Large Imaging System) is a multi-station ground-based system developed primarily for three-dimensional auroral imaging, however other non-auroral objects can be studied with ALIS, e.g. stratospheric clouds. Several of the contributions in the workshop dealt with problems related to geometries similar to the ALIS-configuration. The Proceedings contain written contributions received either in abstract form or as full papers. The Proceedings also contain contributions intended for the Workshop but not presented due to the absence of the speaker. Separate abstracts have been prepared for 15 of the 17 papers

  20. The Heppner-Maynard Boundary measured by SuperDARN as a proxy for the latitude of the auroral oval

    Science.gov (United States)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-02-01

    We present a statistical study relating the latitude of the auroral oval measured by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) SI-12 proton auroral camera to that of the Heppner-Maynard Boundary (HMB) determined from Super Dual Auroral Radar Network (SuperDARN) data during the period 2000-2002. The HMB represents the latitudinal extent of the ionospheric convection pattern. The oval latitude from the proton auroral images is determined using the method of Milan et al. (2009a), which fits a circle centered on a point 2° duskward and 5° antisunward of the magnetic pole. The auroral latitude at midnight is determined for those images where the concurrent SuperDARN northern hemisphere maps contain more than 200 data points such that the HMB is well-defined. The statistical study comprises over 198,000 two-minute intervals, and we find that the HMB is located on average 2.2° equatorward of the proton auroral latitude. A superposed epoch analysis of over 2500 substorms suggests that the separation between the HMB and the oval latitude increases slightly during periods of high geomagnetic activity. We suggest that during intervals where there are no auroral images available, the HMB latitude and motion could be used as a proxy for that of the aurora, and therefore provide information about motions of the open/closed field line boundary.

  1. Mapping using the Tsyganenko long magnetospheric model and its relationship to Viking auroral images

    International Nuclear Information System (INIS)

    Elphinstone, R.D.; Hearn, D.; Murphree, J.S.; Cogger, L.L.

    1991-01-01

    The Tsyganenko long magnetospheric model (1987) has been used in conjunction with ultra-violet images taken by the Viking spacecraft to investigate the relationship of the auroral distribution to different magnetospheric regions. The model describes the large-scale structure of the magnetosphere reasonably well for dipole tilt angles near zero, but it appears to break down at higher tilt angles. Even so, a wide variety of auroral configurations can be accurately described by the model. It appears that the open-closed field line boundary is a poor indicator of auroral arc systems with the possible exception of high-latitude polar arcs. The auroral distribution typically called the oval maps to a region in the equatorial plane quite close to the Earth and can be approximately located by mapping the model current density maximum from the equatorial plane into the ionosphere. Although the model may break down along the flanks of the magnetotail, the large-scale auroral distribution generally reflects variations in the near-Earth region and can be modeled quite effectively

  2. A Comparative Study of Spectral Auroral Intensity Predictions From Multiple Electron Transport Models

    Science.gov (United States)

    Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Hecht, James; Solomon, Stanley; Jahn, Jorg-Micha

    2018-01-01

    It is important to routinely examine and update models used to predict auroral emissions resulting from precipitating electrons in Earth's magnetotail. These models are commonly used to invert spectral auroral ground-based images to infer characteristics about incident electron populations when in situ measurements are unavailable. In this work, we examine and compare auroral emission intensities predicted by three commonly used electron transport models using varying electron population characteristics. We then compare model predictions to same-volume in situ electron measurements and ground-based imaging to qualitatively examine modeling prediction error. Initial comparisons showed differences in predictions by the GLobal airglOW (GLOW) model and the other transport models examined. Chemical reaction rates and radiative rates in GLOW were updated using recent publications, and predictions showed better agreement with the other models and the same-volume data, stressing that these rates are important to consider when modeling auroral processes. Predictions by each model exhibit similar behavior for varying atmospheric constants, energies, and energy fluxes. Same-volume electron data and images are highly correlated with predictions by each model, showing that these models can be used to accurately derive electron characteristics and ionospheric parameters based solely on multispectral optical imaging data.

  3. First light from a kilometer-baseline Scintillation Auroral GPS Array.

    Science.gov (United States)

    Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G

    2015-05-28

    We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100-1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed.

  4. Association between substorm onsets in auroral all-sky images and geomagnetic Pi2pulsations

    Science.gov (United States)

    Miura, T.; Ieda, A.; Teramoto, M.; Kawashima, T.

    2017-12-01

    Substorms are explosive disturbances in the magnetosphere and ionosphere of Earth. Substorm onsets are often identified usingsudden auroral brightenings (auroral breakup) or geomagnetic Pi2 pulsations. These auroral brightenings and Pi2 pulsations aresupposed to occur simultaneously within approximately 1 min of each other. However, as auroral brightenings typically includea two-stage development, this simultaneity is not straightforward. In this study, we clarify the correspondence between Pi2 pulsations and auroral brightenings, including the two-stage development.The first stage of the development is the sudden brightening of an auroral arc near the midnight (initial brightening)and the second stage is the poleward expansion of the auroral arc. We compared all-sky images (3 s resolution) in Canada andgeomagnetic observations (0.5-1 s resolution) in North and Central America, using data from the THEMIS project. In this study,we examined three substorms events that exhibit evidence of the two-stage auroral development. In the first event (4 March 2008), an auroral initial brightening occurred at 0533:57 UT and a poleward expansion was observedat 0538:12 UT (4 min after the initial brightening) in Gillam (magnetic latitude:66.0 °, longitude:333 °, MLT:22.9). In contract,the Pi2 pulsation started at 0539:30 UT, which is closer to the time of the poleward expansion, in Carson City (magnetic latitude:45.0 °, longitude:304 °). and San Juan (magnetic latitude:27.9 °, longitude:6.53 °). Thus, we consider this Pi2 pulsation ascorresponding to the poleward expansion rather than the initial brightening. This correspondence was also seen in the other twoevents, suggesting that it is not exceptional. We interpret that the Pi2 pulsation corresponds to the poleward expansion becauseboth are caused by the magnetic field dipolarization, which is a drastic change that propagates from low- to high-latitude fieldlines.

  5. A Wide Field Auroral Imager (WFAI for low Earth orbit missions

    Directory of Open Access Journals (Sweden)

    N. P. Bannister

    2007-03-01

    Full Text Available A comprehensive understanding of the solar wind interaction with Earth's coupled magnetosphere-ionosphere system requires an ability to observe the charged particle environment and auroral activity from the same platform, generating particle and photon image data which are matched in time and location. While unambiguous identification of the particles giving rise to the aurora requires a Low Earth Orbit satellite, obtaining adequate spatial coverage of aurorae with the relatively limited field of view of current space bourne auroral imaging systems requires much higher orbits. A goal for future satellite missions, therefore, is the development of compact, wide field-of-view optics permitting high spatial and temporal resolution ultraviolet imaging of the aurora from small spacecraft in low polar orbit. Microchannel plate optics offer a method of achieving the required performance. We describe a new, compact instrument design which can observe a wide field-of-view with the required spatial resolution. We report the focusing of 121.6 nm radiation using a spherically-slumped, square-pore microchannel plate with a focal length of 32 mm and an F number of 0.7. Measurements are compared with detailed ray-trace simulations of imaging performance. The angular resolution is 2.7±0.2° for the prototype, corresponding to a footprint ~33 km in diameter for an aurora altitude of 110 km and a spacecraft altitude of 800 km. In preliminary analysis, a more recent optic has demonstrated a full width at half maximum of 5.0±0.3 arcminutes, corresponding to a footprint of ~1 km from the same spacecraft altitude. We further report the imaging properties of a convex microchannel plate detector with planar resistive anode readout; this detector, whose active surface has a radius of curvature of only 100 mm, is shown to meet the spatial resolution and sensitivity requirements of the new wide field auroral imager (WFAI.

  6. Determining the source region of auroral emissions in the prenoon oval using coordinated Polar BEAR UV-imaging and DMSP particle measurements

    Science.gov (United States)

    Newell, Patrick T.; Meng, CHING-I.; Huffman, Robert E.

    1992-01-01

    The Polar Beacon Experiment and Auroral Research (Polar BEAR) satellite included the capability for imaging the dayside auroral oval in full sunlight at several wavelengths. Particle observations from the DMSP F7 satellite during dayside auroral oval crossings are compared with approximately simultaneous Polar BEAR 1356-A images to determine the magnetospheric source region of the dayside auroral oval. The source region is determined from the DMSP particle data, according to recent work concerning the classification and identification of precipitation source regions. The close DMSP/Polar BEAR coincidences all occur when the former satellite is located between 0945 and 1000 MLT. Instances of auroral arcs mapping to each of several different regions, including the boundary plasma sheet, the low-latitude boundary layer, and the plasma mantle were found. It was determined that about half the time the most prominent auroral arcs are located at the interfaces between distinct plasma regions, at least at the local time studied here.

  7. Determining the source region of auroral emissions in the prenoon oval using coordinated Polar BEAR UV-imaging and DMSP particle measurements

    International Nuclear Information System (INIS)

    Newell, P.T.; Meng, C.I.; Huffman, R.E.

    1992-01-01

    The Polar Beacon Experiment and Auroral Research (Polar BEAR) satellite included the capability for imaging the dayside auroral oval in full sunlight at several wavelengths. The authors compare particle observations from the DMSP F7 satellite during dayside auroral oval crossings with approximately simultaneous Polar BEAR 1,356-angstrom images to determine the magnetospheric source region of the dayside auroral oval. The source region is determined from the Defense Meteorological Satellite Program (DMSP) particle data, according to recent work concerning the classification and identification of precipitation source regions. The close DMSP/Polar BEAR coincidences all occur when the former satellite is located between 0945 and 1,000 MLT. The authors found instances of auroral arcs mapping to each of several different regions, including the boundary plasma sheet, the low-latitude boundary layer, and the plasma mantle. However, the results indicate that about half the time the most prominent auroral arcs are located at the interfaces between distinct plasma regions, at least at the local time studied here

  8. Spatial monitoring of auroral emissions

    International Nuclear Information System (INIS)

    Steen, Aa.

    1983-12-01

    A ground based technique to monitor the three-dimensional distribution of auroral emissions is presented. The system is composed of two subsystems. A monochromatic imaging system with digitizing capability monitors the two-dimensional variation of auroral intensity with 50 degree field of view. A second height measuring system obtains in real time the height distribution of the auroral luminosity within the field of view of the imaging system. This paper is a report of the stepwise development of the complete system. The measurements will be carried out in the magnetic meridian plane through the EISCAT-site in Norway and the Kiruna Geophysical Institute. The operation of the optical system will as much as possible be combined with incoherent scatter radar measurements. (author)

  9. Local Geomagnetic Indices and the Prediction of Auroral Power

    Science.gov (United States)

    Newell, P. T.; Gjerloev, J. W.

    2014-12-01

    As the number of magnetometer stations and data processing power increases, just how auroral power relates to geomagnetic observations becomes a quantitatively more tractable question. This paper compares Polar UVI auroral power observations during 1997 with a variety of geomagnetic indices. Local time (LT) versions of the SuperMAG auroral electojet (SME) are introduced and examined, along with the corresponding upper and lower envelopes (SMU and SML). Also, the East-West component, BE, is investigated. We also consider whether using any of the local indices is actually better at predicting local auroral power than a single global index. Each index is separated into 24 LT indices based on a sliding 3-h MLT window. The ability to predict - or better reconstruct - auroral power varies greatly with LT, peaking at 1900 MLT, where about 75% of the variance (r2) can be predicted at 1-min cadence. The aurora is fairly predictable from 1700 MLT - 0400 MLT, roughly the region in which substorms occur. Auroral power is poorly predicted from auroral electrojet indices from 0500 MLT - 1500 MLT, with the minima at 1000-1300 MLT. In the region of high predictability, the local variable which works best is BE, in contrast to long-standing expectations. However using global SME is better than any local variable. Auroral power is best predicted by combining global SME with a local index: BE from 1500-0200 MLT, and either SMU or SML from 0300-1400 MLT. In the region of the diffuse aurora, it is better to use a 30 min average than the cotemporaneous 1-min SME value, while from 1500-0200 MLT the cotemporaneous 1-min SME works best, suggesting a more direct physical relationship with the auroral circuit. These results suggest a significant role for discrete auroral currents closing locally with Pedersen currents.

  10. A satellite study of dayside auroral conjugacy

    Directory of Open Access Journals (Sweden)

    H. B. Vo

    1995-11-01

    Full Text Available A study of dayside auroral conjugacy has been done using the cleft/boundary layer auroral particle boundaries observed by the DMSP-F7 satellite in the southern hemisphere and the global UV auroral images taken by the Viking spacecraft in the northern hemisphere. The 22 events have been studied on the basis of an internal IGRF 1985 magnetic field; it is shown that there is a displacement of up to 4° in latitude from the conjugate points with the northern aurora appearing to be located poleward of the conjugate point. No local time dependence of the north-south auroral location difference was seen. The use of a more realistic magnetic field model for tracing field lines which incorporates the dipole tilt angle and Kp index, the Tsyganenko 1987 long model plus the IGRF 1985 internal magnetic field model, appears to organize the data better. Although with this external plus internal model some tracings did not close in the opposite hemisphere, 70% of those that did indicated satisfactory conjugacy. The study shows that the degree of auroral conjugacy is dependent upon the accuracy of the magnetic field model used to trace to the conjugate point, especially in the dayside region where the field lines can either go to the dayside magnetopause near the subsolar point or sweep all the way back to the flanks of the magnetotail. Also the discrepancy in the latitude of northern and southern aurora can be partially explained by the displacement of the neutral sheet (source region of the aurora by the dipole tilt effect.

  11. Quasi-periodic latitudinal shift of Saturn's main auroral emission

    Science.gov (United States)

    Roussos, E.; Palmaerts, B.; Grodent, D. C.; Radioti, K.; Krupp, N.; Yao, Z.

    2017-12-01

    The main component of the ultraviolet auroral emissions at Saturn consists in a ring of emission around each pole of the planet. This main ring of emission has been revealed to oscillate by a few degrees in the prenoon-premidnight direction with a period of 10.8h. This auroral oscillation is thought to be induced by a rotating external magnetospheric current system associated with the planetary period oscillations. Here we report, by means of auroral imaging sequences obtained with the Ultraviolet Imaging Spectrograph (UVIS) on board the Cassini spacecraft, the first direct observation of an additional motion of the main emission superimposed to this oscillation. The whole main emission ring exhibits step-like displacements in latitude mainly towards dayside, decoupled from the 10.8h oscillation. These latitude shifts recur around every hour, which is a typical short periodicity at Saturn previously identified in the aurora intensity, in the charged particle fluxes and in the magnetic field. This unique observation directly demonstrates what has been inferred from past in-situ and remote measurements: the 1-hour periodicities reveal a global and fundamental magnetospheric oscillation mode that acts independently of the local magnetospheric conditions. However, the magnetospheric mechanism responsible for these 1-hour auroral shifts is still unknown. It is possible that Alfvén waves inducing hourly magnetic fluctuations might also modify the place where the field-aligned electrons precipitate in the ionosphere and produce the main emission.

  12. The convection electric field in auroral substorms

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2001-01-01

    Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... this database enabled us to compile a model of the ionospheric convection electric field. The characteristics of the premidnight convection reversal show a pronounced local time dependency. Far west of the surge it is a fairly well defined point reversal or convection shear. Approaching the surge and within...... the surge it is a region of weak electric fields increasing in width toward midnight that separates regions of equatorward and poleward electric fields. Therefore we adopt the term Harang region rather than the Harang discontinuity for the premidnight convection reversal. A relatively narrow convection...

  13. Mapping of auroral kilometric radiation sources to the aurora

    International Nuclear Information System (INIS)

    Huff, R.L.; Calvert, W.; Craven, J.D.; Frank, L.A.; Gurnett, D.A.

    1988-01-01

    Auroral kilometric radiation (AKR) and optical auroral emissions are observed simultaneously using plasma wave instrumentation and auroral imaging photometers acrried on the DE 1 spacecraft. The DE 1 plasma wave instrument measures the relative phase of signals from orthogonal electric dipole antennas, and from these measurements, apparent source directions can be determined with a high degree of precision. Wave data are analyzed for several strong AKR events, and source directions are determined for several emission frequencies. By assuming that the AKR originates at cyclotron resonant altitudes, a condidate source field line is identified. When the selected source field line is traced down to auroral altitudes on the concurrent DE 1 auroral image, a striking correspondence between the AKR source field line and localized auroral features is produced. The magnetic mapping study provides strong evidence that AKR sources occur on field lines associated with discrete auroral arcs, and it provides confirmation that AKR is generated near the electron cyclotron frequency

  14. A satellite study of dayside auroral conjugacy

    Directory of Open Access Journals (Sweden)

    H. B. Vo

    Full Text Available A study of dayside auroral conjugacy has been done using the cleft/boundary layer auroral particle boundaries observed by the DMSP-F7 satellite in the southern hemisphere and the global UV auroral images taken by the Viking spacecraft in the northern hemisphere. The 22 events have been studied on the basis of an internal IGRF 1985 magnetic field; it is shown that there is a displacement of up to 4° in latitude from the conjugate points with the northern aurora appearing to be located poleward of the conjugate point. No local time dependence of the north-south auroral location difference was seen. The use of a more realistic magnetic field model for tracing field lines which incorporates the dipole tilt angle and Kp index, the Tsyganenko 1987 long model plus the IGRF 1985 internal magnetic field model, appears to organize the data better. Although with this external plus internal model some tracings did not close in the opposite hemisphere, 70% of those that did indicated satisfactory conjugacy. The study shows that the degree of auroral conjugacy is dependent upon the accuracy of the magnetic field model used to trace to the conjugate point, especially in the dayside region where the field lines can either go to the dayside magnetopause near the subsolar point or sweep all the way back to the flanks of the magnetotail. Also the discrepancy in the latitude of northern and southern aurora can be partially explained by the displacement of the neutral sheet (source region of the aurora by the dipole tilt effect.

  15. Viking investigations of auroral electrodynamical processes

    International Nuclear Information System (INIS)

    Marklund, G.

    1993-01-01

    Recent results from the Viking electric field experiment and their contribution to a better understanding of the aurora and of associated ionosphere-magnetosphere processes are briefly reviewed. The high-resolution electric field data have provided new and important results in a number of different areas, including auroral electrodynamics both on the arc scale size and on the global scale, the auroral acceleration process, the current-voltage relationship, substorms, and the dynamics of the polar cusp. After a short introduction presenting some of the characteristic features of the high-altitude electric field data the remainder of this paper focuses on the role of the electric field in auroral electrodynamics and in the auroral acceleration process. The relationships between the auroral emissions and the associated electric field, current, particle, and conductivity distributions are discussed for both small-scale and large-scale auroral distributions on the basis of results from Viking event studies and from numerical model studies. Particular attention is paid to ionospheric convection and field- aligned current signatures associated with northward interplanetary magnetic field (IMF) auroral distributions, such as the theta aurora or those characterized by extended auroral activity poleward of the classical auroral oval. The role of dc electric fields for the auroral acceleration process has been further investigated and clarified. Intense low-frequency electric field fluctuations (< l Hz) have been shown to play an important role in the auroral acceleration process. In this frequency range the electric field appears static for the electrons but not for the ions, giving rise to a selective acceleration. Estimates of the acceleration potential based on a number of different methods generally show good agreement, providing convincing evidence of the role of dc electric fields in the auroral acceleration process

  16. Auroral morphology

    International Nuclear Information System (INIS)

    Deehr, C.S.; Romick, G.J.; Sivjee, G.G.

    1981-01-01

    The aurora is a radiant manifestation of solar particle emissions and their control by intervening electromagnetic fields. The analogy with a television system was first made, we believe, by Elvey, (1958). The latest concepts of solar-terrestrial control are included in description by Akasofu (1979) showing the phosphor screen as the upper atmosphere with an auroral image produced by particles from a source on the sun, modulated by electric and magnetic fields with the magnetohydrodynamic (MDH) generator formed by electrons and protons from the solar wind across the geomagnetic tail as the power supply. Thus, the size and shape of the aurora must reflect all the forces acting in the auroral particles on their way from the sun to the earth. Auroral morphology, therefore, is the study of the occurence of aurora in space and time for the purpose of describing the origin of solar particels and the forces acting upon them between the time of their production on the sun and their loss in the atmosphere. The advantage of using the aurora as a television monitor of this process over any conceivable system of in situ measurements is obvious when one considers the large number of space vehicles which would be necessary to record the information concentrated in the auroral oval which differs in scale with the magnetosphere by perhaps 10 6 . (orig.)

  17. Auroral and sub-auroral phenomena: an electrostatic picture

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2010-02-01

    Full Text Available Many auroral and sub-auroral phenomena are manifestations of an underlying magnetosphere-ionosphere coupling. In the electrostatic perspective the associated auroral current circuit describes how the generator (often in the magnetosphere is connected to the load (often in the ionosphere through field-aligned currents. The present paper examines the generic properties of the current continuity equation that characterizes the auroral circuit. The physical role of the various elements of the current circuit is illustrated by considering a number of magnetospheric configurations, various auroral current-voltage relations, and different types of behaviour of the ionospheric conductivity. Based on realistic assumptions concerning the current-voltage relation and the ionospheric conductivity, a comprehensive picture of auroral and sub-auroral phenomena is presented, including diffuse aurora, discrete auroral arcs, black aurora, and subauroral ion drift. The electrostatic picture of field-aligned potential differences, field-aligned currents, ionospheric electric fields and plasma drift, and spatial scales for all these phenomena is in qualitative agreement with observations.

  18. Auroral Electrojet (AE, AL, AO, AU) - A Global Measure of Auroral Zone Magnetic Activity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AE index is derived from geomagnetic variations in the horizontal component observed at selected (10-13) observatories along the auroral zone in the northern...

  19. Comparison of ionospheric conductances and auroral luminosities observed simultaneously with the Chatanika radar and the DE 1 auroral imagers

    International Nuclear Information System (INIS)

    Robinson, R.M.; Vondrak, R.R.; Craven, J.D.; Frank, L.A.; Miller, K.

    1989-01-01

    Auroral luminosities at vacuum ultraviolet (VUV) wavelengths are combined with simultaneous and coincident ionospheric electron density measurements made by the Chatanika radar to relate ionospheric conductances to optical emissions. The auroral luminosities are obtained along the magnetic meridian through Chatanika with the auroral imaging photometers on the Dynamics Explorer 1 (DE 1) satellite as the radar scans in the magnetic meridian to measure electron density and conductivity as a function of altitude and latitude. The observations are used to determine an empirical relationship between the luminosities measured at VUV wavelengths and the Hall and Pedersen conductances. Of particular interest is the response of the photometer when using the VUV filter designated 123W. This filter admits the 130.4- and 135.6-nm emissions of atomic oxygen and the Lyman-Birge-Hopfield (LBH) bands of N 2 . Model calculations of the LBH and O I (135.6 nm) contributions to the total measured luminosity indicate that the relation between 123W luminosity and Pedersen conductance is less sensitive to the average energy of the precipitating electrons than the corresponding relation between the Hall conductance and 123W luminosity. This is because both the luminosity and Pedersen conductance decrease with increasing electron energy. The luminosity decreases with increasing energy because the emissions are more strongly absorbed by O 2 above the region of production. The Pedersen conductance decreases with increasing energy because the Pedersen mobility maximizes at an altitude of about 140 km. In contrast, the Hall conductance increases with increasing electron energy, so that the relation between Hall conductance and luminosity depends on the hardness of the precipitation

  20. Auroral pulsations and accompanying VLF emissions

    Directory of Open Access Journals (Sweden)

    V. R. Tagirov

    Full Text Available Results of simultaneous TV observations of pulsating auroral patches and ELF-VLF-emissions in the morning sector carried out in Sodankylä (Finland on February 15, 1991 are presented. Auroral pulsating activity was typical having pulsating patches with characteristic periods of about 7 s. Narrow-band hiss emissions and chorus elements at intervals of 0.3–0.4 s formed the main ELF-VLF activity in the frequency range 1.0–2.5 kHz at the same time. The analysis of auroral images with time resolution of 0.04 s allowed perfectly separate analysis of spatial and temporal variations in the auroral luminosity. Mutual correspondence between the behaviour of the luminous auroral patches and the appearance of ELF noise type hiss emissions and VLF chorus trains was found in two intervals chosen for analysis. While the hiss emissions were associated with the appearance of luminosity inside a limited area close to the zenith, the structured VLF emissions were accompanied by rapid motion of luminosity inside the area. The spatial dimension of the pulsating area was about 45–50 km and luminosity propagated inside it with velocity of about 10–12 kms. We discuss a new approach to explain the 5–15 s auroral pulsation based on the theory of flowing cyclotron maser and relaxation characteristics of ionosphere.

    Key words. Magnetospheric physics (auroral phenomena; magnetosphere-ionosphere interactions · Space plasma physics (wave-particle interactions

  1. Astrid-2, an advanced microsatellite for auroral research

    Directory of Open Access Journals (Sweden)

    G. T. Marklund

    Full Text Available The successful launch of the Swedish microsatellite Astrid-2 in December 1998 began a new era of auroral research, with advanced microprobes of 30 kg or less used as research tools. Innovative technologies and low-mass solutions were used for the sensors and deployment systems to allow a fairly complete set of scientific instruments within the 10 kg allocated for the scientific payload. A newly developed wire boom deployment system proved to function excellently. During its seven month lifetime Astrid-2 collected more than 26 Gbytes of high-quality data of auroral electric and magnetic fields, and auroral particle and plasma characteristics from approximately 3000 orbits at an inclination of 83° and an altitude of about 1000 km. Scientific results cover a broad range of topics, from the physics of energization of auroral particles to how the magnetosphere responds to the energy input from the solar wind and global magnetic field modelling. The fulfilment of both the technological and the scientific mission objectives has opened entirely new possibilities to carry out low-budget multipoint measurements in near-Earth space.

    Key words. Ionosphere (auroral ionosphere; instruments and techniques – Magnetospheric physics (auroral phenomena

  2. Solar wind control of stratospheric temperatures in Jupiter's auroral regions?

    Science.gov (United States)

    Sinclair, James Andrew; Orton, Glenn; Kasaba, Yasumasa; Sato, Takao M.; Tao, Chihiro; Waite, J. Hunter; Cravens, Thomas; Houston, Stephen; Fletcher, Leigh; Irwin, Patrick; Greathouse, Thomas K.

    2017-10-01

    Auroral emissions are the process through which the interaction of a planet’s atmosphere and its external magnetosphere can be studied. Jupiter exhibits auroral emission at a multitude of wavelengths including the X-ray, ultraviolet and near-infrared. Enhanced emission of CH4 and other stratospheric hydrocarbons is also observed coincident with Jupiter’s shorter-wavelength auroral emission (e.g. Caldwell et al., 1980, Icarus 44, 667-675, Kostiuk et al., 1993, JGR 98, 18823). This indicates that auroral processes modify the thermal structure and composition of the auroral stratosphere. The exact mechanism responsible for this auroral-related heating of the stratosphere has however remained elusive (Sinclair et al., 2017a, Icarus 292, 182-207, Sinclair et al., 2017b, GRL, 44, 5345-5354). We will present an analysis of 7.8-μm images of Jupiter measured by COMICS (Cooled Mid-Infrared Camera and Spectrograph, Kataza et al., 2000, Proc. SPIE(4008), 1144-1152) on the Subaru telescope. These images were acquired on January 11th, 12th, 13th, 14th, February 4, 5th and May 17th, 18th, 19th and 20th in 2017, allowing the daily variability of Jupiter’s auroral-related stratospheric heating to be tracked. Preliminary results suggest lower stratospheric temperatures are directly forced by the solar wind dynamical pressure. The southern auroral hotspot exhibited a significant increase in brightness temperature over a 24-hour period. Over the same time period, a solar wind propagation model (Tao et al. 2005, JGR 110, A11208) predicts a strong increase in the solar wind dynamical pressure at Jupiter.

  3. Electrondynamics of the auroral E region

    International Nuclear Information System (INIS)

    Kirkwood, Sheila.

    1990-10-01

    This study concentrates on the signatures of the interaction process seen closest to the Earth - i.e. in the region where the visible aurora is produced. A number of experimental investigations are presented which look at details of the dynamics and electrodynamics of auroral ionisation features in the ionospheric E region. The studies are based primarily on measurement with the EISCAT UHF incoherent scatter radar which is located in northern Scandinavia. Initial calibration of the radar, and some measurements of the properties of the background atmosphere are described first. These are a necessary basis for the detailed studies which follow, which are of two aspects of auroral electrodynamics - substorms and aurorally-associated sporadic E layers. For the substorm studies, all-sky camera observations of the aurora over Scandinavia and ultra-violet images from the Viking satellite are used to identify the auroral forms corresponding to EISCAT measurements. This allows the determination of representative conductivities for the different auroral features which are characteristic of the substorm development. These conductivities are an important input for modelling studies of the electric current systems and have not previously been measured directly. Particle measurements from the Viking satellite are used together with EISCAT to determine the origin of the particles precipitated into the ionosphere during the energy-storage phase prior to the substorm. The sporadic E layers studies address the question of how ion layers and associated neutral sodium layers can be produced by some process which is common in association with auroral activity. Two candidates are considered - gravity waves and electric fields. (author)

  4. Statistical study of auroral fragmentation into patches

    Science.gov (United States)

    Hashimoto, Ayumi; Shiokawa, Kazuo; Otsuka, Yuichi; Oyama, Shin-ichiro; Nozawa, Satonori; Hori, Tomoaki; Lester, Mark; Johnsen, Magnar Gullikstad

    2015-08-01

    The study of auroral dynamics is important when considering disturbances of the magnetosphere. Shiokawa et al. (2010, 2014) reported observations of finger-like auroral structures that cause auroral fragmentation. Those structures are probably produced by macroscopic instabilities in the magnetosphere, mainly of the Rayleigh-Taylor type. However, the statistical characteristics of these structures have not yet been investigated. Here based on observations by an all-sky imager at Tromsø (magnetic latitude = 67.1°N), Norway, over three winter seasons, we statistically analyzed the occurrence conditions of 14 large-scale finger-like structures that developed from large-scale auroral regions including arcs and 6 small-scale finger-like structures that developed in auroral patches. The large-scale structures were seen from midnight to dawn local time and usually appeared at the beginning of the substorm recovery phase, near the low-latitude boundary of the auroral region. The small-scale structures were primarily seen at dawn and mainly occurred in the late recovery phase of substorms. The sizes of these large- and small-scale structures mapped in the magnetospheric equatorial plane are usually larger than the gyroradius of 10 keV protons, indicating that the finger-like structures could be caused by magnetohydrodynamic instabilities. However, the scale of small structures is only twice the gyroradius of 10 keV protons, suggesting that finite Larmor radius effects may contribute to the formation of small-scale structures. The eastward propagation velocities of the structures are -40 to +200 m/s and are comparable with those of plasma drift velocities measured by the colocating Super Dual Auroral Radar Network radar.

  5. Observations of the auroral width spectrum at kilometre-scale size

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2010-03-01

    Full Text Available This study examines auroral colour camera data from the Canadian Dense Array Imaging SYstem (DAISY. The Dense Array consists of three imagers with different narrow (compared to all-sky view field-of-view optics. The main scientific motivation arises from an earlier study by Knudsen et al. (2001 who used All-Sky Imager (ASI combined with even earlier TV camera observations (Maggs and Davis, 1968 to suggest that there is a gap in the distribution of auroral arc widths at around 1 km. With DAISY observations we are able to show that the gap is an instrument artifact and due to limited spatial resolution and coverage of commonly used instrumentation, namely ASIs and TV cameras. If the auroral scale size spectrum is indeed continuous, the mechanisms forming these structures should be able to produce all of the different scale sizes. So far, such a single process has not been proposed in the literature and very few models are designed to interact with each other even though the range of their favourable conditions do overlap. All scale-sizes should be considered in the future studies of auroral forms and electron acceleration regions, both in observational and theoretical approaches.

  6. Global Coupled Model Studies of The Jovian Upper Atmosphere In Response To Electron Precipitation and Ionospheric Convection Within The Auroral Region.

    Science.gov (United States)

    Millward, G. H.; Miller, S.; Aylward, A. D.

    The Jovian Ionospheric Model (JIM) is a global three-dimensional model of Jupiter's coupled ionosphere and thermosphere, developed at University College London. Re- cently, the model has been used to investigate the atmospheric response to electron precipitation within the high-latitude auroral region. A series of simulations have been performed in which the model atmosphere is subjected to monochromatic precipitat- ing electrons of varying number flux and initial energy and, in addition, to various degrees of ionospheric convection. The auroral ionospheric conductivity which re- sults is shown to be strongly non-linear with respect to the incoming electron energy, with a maximum observed for incident particles of initial energy 60 KeV. Electrons with higher energies penetrate the thermospheric region completely, whilst electrons of lower energy (say 10 keV) produce ionisation at higher levels in the atmosphere which are less less condusive to the creation of ionospheric conductivity. Studies of the thermospheric winds with the auroral region show that zonal winds (around the auroral oval) can attain values of around 70% of the driving zonal ion velocity. Also the results show that these large neutral winds are limited in vertical extent to the region of large ionospheric conductivity, tailing off markedly at altitudes above this. The latest results from this work will be presented, and the implications for Jovian magnetospheric-ionospheric coupling will be discussed.

  7. Using spectral characteristics to interpret auroral imaging in the 731.9 nm O+ line

    Directory of Open Access Journals (Sweden)

    H. Dahlgren

    2008-07-01

    Full Text Available Simultaneous observations were made of dynamic aurora during substorm activity on 26 January 2006 with three high spatial and temporal resolution instruments: the ASK (Auroral Structure and Kinetics instrument, SIF (Spectrographic Imaging Facility and ESR (EISCAT Svalbard Radar, all located on Svalbard (78° N, 16.2° E. One of the narrow field of view ASK cameras is designed to detect O+ ion emission at 731.9 nm. From the spectrographic data we have been able to determine the amount of contaminating N2 and OH emission detected in the same filter. This is of great importance to further studies using the ASK instrument, when the O+ ion emission will be used to detect flows and afterglows in active aurora. The ratio of O+ to N2 emission is dependent on the energy spectra of electron precipitation, and was found to be related to changes in the morphology of the small-scale aurora. The ESR measured height profiles of electron densities, which allowed estimates to be made of the energy spectrum of the precipitation during the events studied with optical data from ASK and SIF. It was found that the higher energy precipitation corresponded to discrete and dynamic features, including curls, and low energy precipitation corresponded to auroral signatures that were dominated by rays. The evolution of these changes on time scales of seconds is of importance to theories of auroral acceleration mechanisms.

  8. A Synthesis of Star Calibration Techniques for Ground-Based Narrowband Electron-Multiplying Charge-Coupled Device Imagers Used in Auroral Photometry

    Science.gov (United States)

    Grubbs, Guy II; Michell, Robert; Samara, Marilia; Hampton, Don; Jahn, Jorg-Micha

    2016-01-01

    A technique is presented for the periodic and systematic calibration of ground-based optical imagers. It is important to have a common system of units (Rayleighs or photon flux) for cross comparison as well as self-comparison over time. With the advancement in technology, the sensitivity of these imagers has improved so that stars can be used for more precise calibration. Background subtraction, flat fielding, star mapping, and other common techniques are combined in deriving a calibration technique appropriate for a variety of ground-based imager installations. Spectral (4278, 5577, and 8446 A ) ground-based imager data with multiple fields of view (19, 47, and 180 deg) are processed and calibrated using the techniques developed. The calibration techniques applied result in intensity measurements in agreement between different imagers using identical spectral filtering, and the intensity at each wavelength observed is within the expected range of auroral measurements. The application of these star calibration techniques, which convert raw imager counts into units of photon flux, makes it possible to do quantitative photometry. The computed photon fluxes, in units of Rayleighs, can be used for the absolute photometry between instruments or as input parameters for auroral electron transport models.

  9. Ray tracing of auroral Z mode radiation, AKR and auroral hiss

    International Nuclear Information System (INIS)

    Horne, R.B.; Jones, D.; Kimura, I.; Sawada, A.

    1990-01-01

    While observed frequency bandwidths of auroral Z mode radiation cannot be directly accounted for in terms of direct cyclotron maser instability generation, ray tracing in a hot plasma indicates that if the radiation near a plasma frequency lower than the gyrofrequency, the observed bandwidths are explainable in terms of upward propagation away from the earth. An auroral Z-mode generation mechanism is proposed involving mode conversion from O-mode auroral kilometric radiation (AKR) at the plasma frequency, as well as mode conversion from upgoing auroral hiss. Ray tracings in the O mode identify a possible AKR source region along L = 8.55. 11 refs

  10. Auroral particles

    International Nuclear Information System (INIS)

    Evans, D.S.

    1987-01-01

    The problems concerning the aurora posed prior to the war are now either solved in principle or were restated in a more fundamental form. The pre-war hypothesis concerning the nature of the auroral particles and their energies was fully confirmed, with the exception that helium and oxygen ions were identified as participating in the auroral particle precipitation in addition to the protons. The nature of the near-Earth energization processes affecting auroral particles was clarified. Charged particle trajectories in various electric field geometries were modeled. The physical problems have now moved from determining the nature and geometry of the electric fields, which accelerate charged particles near the Earth, to accounting for the existence of these electric fields as a natural consequence of the solar wind's interaction with Earth. Ultimately the reward in continuing the work in auroral and magnetospheric particle dynamics will be a deeper understanding of the subtleties of classical electricity and magnetism as applied to situations not blessed with well-defined and invariant geometries

  11. Evidence in the auroral record for secular solar variability

    International Nuclear Information System (INIS)

    Sicoe, G.L.

    1980-01-01

    The historial record of aurorae is continuous and usefully dense for at least the 2000 years. Revival of interest in the secular variability in solar activity motivates a review of the auroral record. The existence of secular variations in the auroral occurrence frequency has been known since the early 1700's, including the existence of a significant attenuation of auroral activity during the Maunder Minimum. Investigation of secular variations prior to the Maunder Minimum is now possible based on six auroral catalogs that have been published within the last 20 years. The catalogs cover the time period from the fifth century B.C. to the seventeenth century A.D. and combine both oriental and European obsertions. Features corresponding to the previously recognized Medieval Minimum, Medieval Maximum, and the Spoerer Minimum are clearly evident in both oriental and European records. The global synchronicity of anomalies in the auroral occurrence frequency is used to argue that they are caused by changes in the level or state of solar activity. The combined catalogs provide a sufficient number of events in the Middle Ages to resolve a quasi-80-year periodicity in the recorded auroral occurrence frequency. Also in the unusually rich intervals of the Middle Ages, clear quasi-10-year periodicities appear in the recorded occurrence frequency wave from. These are most reasonably interpreted as manifestations of the 11-year solar cycle and indicate that the solar cycle was then operative

  12. Relative Timing of Substorm-Associated Processes in the Near-Earth Magnetotail and Development of Auroral Onset Arc

    Science.gov (United States)

    Miyashita, Y.; Ieda, A.; Machida, S.; Hiraki, Y.; Angelopoulos, V.; McFadden, J. P.; Auster, H. U.; Mende, S. B.; Donovan, E.; Larson, D. E.

    2014-12-01

    We have studied the relative timing of the processes in the near-Earth magnetotail and development of auroral onset arc at the beginning of the expansion phase, based on substorm events observed by the THEMIS spacecraft and ground-based all-sky imagers. The THEMIS all-sky imagers can observe auroras over a wide area with temporal and spacial resolutions higher than spacecraft-borne cameras. This enables us to investigate the timing of auroral development in more detail than before. A few min after the appearance and intensification of an auroral onset arc, it begins to form wave-like structure. Then auroral poleward expansion begins another few min later. THEMIS magnetotail observations clearly show that magnetic reconnection is initiated at X~-20 Re at least 1-2 min before the intensification of auroral onset arc. Then low-frequency waves are excited in the plasma sheet at X~-10 Re 2 min before dipolarization, which is simultaneous with the formation of auroral wave-like structure. Dipolarization begins at the same time as the auroral poleward expansion. These results suggest that near-Earth magnetic reconnection plays some role in the development of dipolarization and auroral onset arc.

  13. The configuration of the auroral distribution for interplanetary magnetic field Bz northward. 2. Ionospheric convection consistent with Viking observations

    International Nuclear Information System (INIS)

    Jankowska, K.; Elphinstone, R.D.; Murphree, J.S.; Cogger, L.L.; Hearn, D.; Marklund, G.

    1990-01-01

    Views of the northern hemisphere auroral distribution obtained by the Viking satellite present a qualitative means of inferring the convective patterns which occur during interplanetary magnetic field (IMF) B z northward. The approach is taken whereby upward field-aligned currents are assumed to be coincident with large-scale discrete auroral features and on this basis possible convective patterns are deduced. While the patterns are not unique solutions, they are found to be consistent with merging theory predictions. That is, for B z northward the auroral observations support the possibility of three and/or four cell patterns. When the IMF azimuthal angle is 90 degree (270 degree), a clockwise (anticlockwise) cell is found to be located in the polar region between the two standard viscous cells. When IMF B x dominates and is in a toward orientation, convection stagnates, whereas if B x is negative, a four-cell pattern may form with sunward flow at very high latitudes. The concept of using global auroral images as an additional tool when developing convection models could prove to be necessary in order to extend beyond the few isolated measurements taken in situ by satellites

  14. Jupiter Thermospheric General Circulation Model (JTGCM): Global Structure and Dynamics Driven by Auroral and Joule Heating

    Science.gov (United States)

    Bougher, S. W.; J. Il. Waite, Jr.; Majeed, T.

    2005-01-01

    A growing multispectral database plus recent Galileo descent measurements are being used to construct a self-consistent picture of the Jupiter thermosphere/ionosphere system. The proper characterization of Jupiter s upper atmosphere, embedded ionosphere, and auroral features requires the examination of underlying processes, including the feedbacks of energetics, neutral-ion dynamics, composition, and magnetospheric coupling. A fully 3-D Jupiter Thermospheric General Circulation Model (JTGCM) has been developed and exercised to address global temperatures, three-component neutral winds, and neutral-ion species distributions. The domain of this JTGCM extends from 20-microbar (capturing hydrocarbon cooling) to 1.0 x 10(exp -4) nbar (including aurora/Joule heating processes). The resulting JTGCM has been fully spun-up and integrated for greater than or equal to40 Jupiter rotations. Results from three JTGCM cases incorporating moderate auroral heating, ion drag, and moderate to strong Joule heating processes are presented. The neutral horizontal winds at ionospheric heights vary from 0.5 km/s to 1.2 km/s, atomic hydrogen is transported equatorward, and auroral exospheric temperatures range from approx.1200-1300 K to above 3000 K, depending on the magnitude of Joule heating. The equatorial temperature profiles from the JTGCM are compared with the measured temperature structure from the Galileo AS1 data set. The best fit to the Galileo data implies that the major energy source for maintaining the equatorial temperatures is due to dynamical heating induced by the low-latitude convergence of the high-latitude-driven thermospheric circulation. Overall, the Jupiter thermosphere/ionosphere system is highly variable and is shown to be strongly dependent on magnetospheric coupling which regulates Joule heating.

  15. Generation of auroral kilometric radiation and the structure of auroral acceleration region

    International Nuclear Information System (INIS)

    Lee, L.C.; Kan, J.R.; Wu, C.S.

    1980-01-01

    Generation of auroral kilometric radiation (AKR) in the auroral acceleration region is studied. It is shown that auroral kilometric radiation can be generated by the backscattered electrons trapped in the acceleration region via a cyclotron maser process. The parallel electric field in the acceleration region is required to be distributed over 1-2 Rsub(E). The observed AKR frequency spectrum can be used to estimate the altitude range of the auroral acceleration region. The altitudes of the lower and upper boundaries of the acceleration region determined from the AKR data are respectively approximately 2000 and approximately 9000 km. (author)

  16. V and V Efforts of Auroral Precipitation Models: Preliminary Results

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Masha; Rastaetter, Lutz; Hesse, Michael

    2011-01-01

    Auroral precipitation models have been valuable both in terms of space weather applications and space science research. Yet very limited testing has been performed regarding model performance. A variety of auroral models are available, including empirical models that are parameterized by geomagnetic indices or upstream solar wind conditions, now casting models that are based on satellite observations, or those derived from physics-based, coupled global models. In this presentation, we will show our preliminary results regarding V&V efforts of some of the models.

  17. The configuration of the auroral distribution for interplanetary magnetic field Bz northward. 1. IMF Bx and By dependencies as observed by the Viking satellite

    International Nuclear Information System (INIS)

    Eliphinstone, R.D.; Jankowska, K.; Murphree, J.S.; Cogger, L.L.

    1990-01-01

    Viking images obtained throughout 1986 have been utilized in combination with IMP 8 satellite measurements of the interplanetary magnetic fields (IMF) to determine typical northern hemisphere auroral distributions for a variety of IMF B z positive conditions. Varying B y has an effect which is consistent with expected results. That is, B y positive implies high-latitude auroral arcs in the dusk sector while negative B y gives dawn sector polar arcs. A new result gives significant importance to the B x component of the IMF. B x toward the Sun (B y = 0) gives polar arcs on both dawn and dusk with comparatively weak UV emissions. With B x away from the Sun (B y = 0) a single Sun-aligned morning sector polar arc dominates the auroral distribution. Azimuthal angle changes to the IMF of only 45 degree seem to affect the global auroral distribution with time scales of less than 2-3 hours. Poleward boundaries of the aurora were found to have a strong dependence on the IMF azimuthal angle which varied according to the magnetic local time investigated

  18. Distribution of auroral surges in the evening sector

    International Nuclear Information System (INIS)

    Kidd, S.R.; Rostoker, G.

    1991-01-01

    Over the past dacades a large statistical data base has been gathered consisting of both ground-based magnetometer and all-sky camera records from which researchers have inferred the distribution of substorm expansive phase events across the nighttime sector. Almost without exception, the activity distribution has been based on single station data acquired over periods of years. However, to truly establish the occurrence frequency of substorm expansive phase events, it is necessary to view the entire nighttime sector instantaneously in the light of evidence which shows that more than one expansive phase disturbance can be in progress across the broad expanse of the evening sector. In this paper, the authors study the distribution of regions of localized auroral luminosity in the poleward portion of the evening sectorauroral oval using images in the ultraviolet portion of the auroral spectrum acquired by the Viking satellite over 9 months in 1986. They find that auroral surge activity peaks in the hour before local magnetic midnight, with the probability of detecting a surge steadily decreasing to 10% of the probability of finding a surge in the hour prior to midnight as one moves westward towards 1,900 MLT. They show that their conclusion is not dependent on the threshold chosen for surge identification over a reasonable portion of the intensity range covered by the Viking imager. They further show that for the interval of several months near sunspot minimum in 1986 there is better than a 90% chance that no surge will be detected in a 1-hour range of magnetic local time if one were to sample that segment of the auroral oval at any arbitrary time

  19. Statistical study of auroral omega bands

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2017-09-01

    Full Text Available The presence of very few statistical studies on auroral omega bands motivated us to test-use a semi-automatic method for identifying large-scale undulations of the diffuse aurora boundary and to investigate their occurrence. Five identical all-sky cameras with overlapping fields of view provided data for 438 auroral omega-like structures over Fennoscandian Lapland from 1996 to 2007. The results from this set of omega band events agree remarkably well with previous observations of omega band occurrence in magnetic local time (MLT, lifetime, location between the region 1 and 2 field-aligned currents, as well as current density estimates. The average peak emission height of omega forms corresponds to the estimated precipitation energies of a few keV, which experienced no significant change during the events. Analysis of both local and global magnetic indices demonstrates that omega bands are observed during substorm expansion and recovery phases that are more intense than average substorm expansion and recovery phases in the same region. The omega occurrence with respect to the substorm expansion and recovery phases is in a very good agreement with an earlier observed distribution of fast earthward flows in the plasma sheet during expansion and recovery phases. These findings support the theory that omegas are produced by fast earthward flows and auroral streamers, despite the rarity of good conjugate observations.

  20. Relationship between Alfvén Wave and Quasi-Static Acceleration in Earth's Auroral Zone

    Science.gov (United States)

    Mottez, Fabrice

    2016-02-01

    There are two main categories of acceleration processes in the Earth's auroral zone: those based on quasi-static structures, and those based on Alfvén wave (AW). AWs play a nonnegligible role in the global energy budget of the plasma surrounding the Earth because they participate in auroral acceleration, and because auroral acceleration conveys a large portion of the energy flux across the magnetosphere. Acceleration events by double layers (DLs) and by AW have mostly been investigated separately, but many studies cited in this chapter show that they are not independent: these processes can occur simultaneously, and one process can be the cause of the other. The quasi-simultaneous occurrences of acceleration by AW and by quasi-static structures have been observed predominantly at the polar cap boundary of auroral arc systems, where often new bright arcs develop or intensify.

  1. The day to night absorption ratio in auroral and subauroral zone riometer measurements during auroral absorption

    International Nuclear Information System (INIS)

    Ranta, H.; Ranta, A.; Rosenberg, T.J.

    1984-01-01

    The day to night ratio of auroral absorption has been studied using data from auroral and subauroral latitudes and by application of different kinds of statistical analyses. Ratios between 0.5 and 3.0 are obtained, depending on the criteria applied to the selection of data. Previous studies obtained similar ratios, but reached different conclusions about the effective solar control of auroral absorption. It is concluded here that evidence of solar control of the day to night ratio of auroral absorption, or the lack thereof, cannot be extracted by these statistical analyses. (author)

  2. Electrodynamics properties of auroral surges

    International Nuclear Information System (INIS)

    Robinson, R.M.; Vondrak, R.R.

    1990-01-01

    The incoherent scatter radar technique provides an excellent means to study the ionization and electric fields associated with auroral precipitation events. One of the most intense and dynamic auroral events is the so-called surge or breakup aurora that accompanies auroral substorms. For their purposes they define a surge as a transient intensification of auroral precipitation that occurs simultaneously with a pronounced negative bay in the ground magnetometer data. They present data obtained during five such events in 1980 and 1981. Prior to the surge, auroral forms move equatorward, develop ray structure, and intensify. The surge is identified by an apparent poleward motion of the aurora producing aurorally associated ionization that extends over several hundred kilometers in latitude. The presurge auroral forms are embedded in a region of northward electric field. The auroral forms that comprise the surge span a region within which the meridional electric field is small and at times southward. A westward electric field is often but not always present within the surge. The behavior of the westward electric field is significantly different from the north-south field, in that sharp spatial gradients are absent even in very disturbed conditions. Although the westward Hall currents are mostly responsible for the negative bays that accompany the surge, at times the westward Pedersen current sustained by the westward electric field can be important. Sudden variations in the H component of the ground magnetogram can be caused by motions of the aurora or by temporal variations in the fields or conductivities. They present a model that simulates the observed changes in electric field and precipitation that accompany surges. The perturbation in the electric field produced by the surge is simulated by adding negative potential in regions of intense precipitation

  3. Correspondence between the ULF wave power spatial distribution and auroral oval boundaries

    Directory of Open Access Journals (Sweden)

    Kozyreva O.V.

    2016-06-01

    Full Text Available The world-wide spatial distribution of the wave power in the Pc5 band during magnetic storms has been compared with auroral oval boundaries. The poleward and equatorward auroral oval boundaries are estimated using either the British Antarctic Survey database containing IMAGE satellite UV observations of the aurora or the OVATION model based on the DMSP particle data. The “epicenter” of the spectral power of broadband Pc5 fluctuations during the storm growth phase is mapped inside the auroral oval. During the storm recovery phase, the spectral power of narrowband Pc5 waves, both in the dawn and dusk sectors, is mapped inside the auroral oval or around its equatorward boundary. This observational result confirms previously reported effects: the spatial/temporal variations of the Pc5 wave power in the morning/pre-noon sector are closely related to the dynamics of the auroral electrojet and magnetospheric field-aligned currents. At the same time, narrowband Pc5 waves demonstrate typical resonant features in the amplitude-phase latitudinal structure. Thus, the location of the auroral oval or its equatorward boundary is the preferred latitude for magnetospheric field-line Alfven resonator excitation. This effect is not taken into account by modern theories of ULF Pc5 waves, but it could be significant for the development of more adequate models.

  4. Observed characteristics of auroral forms

    International Nuclear Information System (INIS)

    Davis, T.N.

    1978-01-01

    Observations indicate that the extended auroral arc is the basic form of the discrete aurora, the brightest and most obvious kind of aurora. Both motions of auroral arcs and their distortions into convoluted forms indicate the presence of shear processes involving substantial charge excesses and magnetic field-aligned currents. Consequently, strong electric fields, both horizontal and vertical, characterize the discrete aurora. The observations of auroral arcs and observations of associated charged-particle fluxes, electric fields and currents fit together into a relatively cohesive description of the auroral arc which is compatible with at least one proposed model of the causative processes. On the other hand, an equally important type of aurora - pulsating aurora - exhibits quite different characteristics which distinguish it from the discrete aurora and which are difficult to interpret satisfactorily in terms of existing proposed models of particle precipitation and excitation of auroral emission. The lack of shearing behavior in the pulsating aurora indicates that substantial electric fields are not associated with it. Transitional forms of auroras exhibit an intermediate degree of shear motion. (Auth.)

  5. Harmonic H+ gyrofrequency structures in auroral hiss observed by high-altitude auroral sounding rockets

    International Nuclear Information System (INIS)

    Kintner, P.M.; Vago, J.; Scales, W.; Yau, A.; Whalen, B.; Arnoldy, R.; Moore, T.

    1991-01-01

    Two recent sounding rocket experiments have yielded VLF wave data with spectral structures ordered by the hydrogen gyrofrequency. The spectral structures occur near and above the lower hybrid frequency in association with auroral hiss. These structures are observed within and near regions of auroral electron precipitation and transverse ion acceleration. They are accompanied by auroral hiss but are anticorrelated with spectral peaks at the lower hybrid frequency. They are typically found above 500 km altitude, have no measureable magnetic component, and are at least occasionally short wavelength (kρ i ≥1). Because the spectral structures appear to be electrostatic, are ordered by the hydrogen gyrofrequency, and are short wavelength, the authors interpret the structures as modes which connect the lower hybrid mode with the hydrogen Bernstein modes. A study of the plasma wave mode structure in the vicinity of the lower hybrid frequency is presented to substantiate this interpretation. The results imply that these waves are a common feature of the auroral zone ionosphere above 500 km altitude and exist any time that auroral hiss exists. The absence of previous satellite abservations of this phenomenon can be explained by Doppler broadening

  6. An observation of ionospheric convection and auroral arc motion

    International Nuclear Information System (INIS)

    Doolittle, J.H.; Mende, S.B.; Robinson, R.M.; Swenson, G.R.; Valladares, C.E.

    1990-01-01

    An all-sky imager operated at Sondre Stromfjord, Greenland has been used to make auroral measurements in correlation with data from the incoherent scatter radar. Reviewing the images as movie sequences with an apparent time compression ratio of 60 allows the eye to discern features which are not apparent in the individual frames. The faint 630 nm airglow background lying poleward of the bright auroral oval arcs appears to be structured in the time lapse observations and drifting at a uniform rate. Analysis of the motion of the airglow structures shows excellent agreement with Doppler radar measurement of the ion drift velocities. Electron density profiles derived from the radar data corroborate the existence of high altitude F-region ionization enhancements. The electron temperature in the patches was about 1,000 K and no higher than outside of the patch signifying that the patches were not produced by local soft electron precipitation. According to the radar Doppler data there was a small component of the drift velocity parallel to the arc at either side of the auroral boundary. The sense of those small components was consistent with drifts driven by a convergent electric field which would also produce an up going field aligned current. The larger component of drift velocity perpendicular to the arc appeared to be continuous on either side of the arc. This drift component shows the existence of an electric field parallel to the arc, showing that the arc was not on an equipotential. During the observations the arc moved slowly in the opposite sense to the ion drift, signifying that the auroral arc motion is not driven by the electric field impressed on the atmosphere by the magnetosphere. Calculations of the expected intensity of the 630 nm emissions are in good agreement with the measured intensities of the moving patches

  7. Influence of Auroral Streamers on Rapid Evolution of Ionospheric SAPS Flows

    Science.gov (United States)

    Gallardo-Lacourt, Bea; Nishimura, Y.; Lyons, L. R.; Mishin, E. V.; Ruohoniemi, J. M.; Donovan, E. F.; Angelopoulos, V.; Nishitani, N.

    2017-12-01

    Subauroral polarization streams (SAPS) often show large, rapid enhancements above their slowly varying component. We present simultaneous observations from ground-based all-sky imagers and flows from the Super Dual Auroral Radar Network radars to investigate the relationship between auroral phenomena and flow enhancement. We first identified auroral streamers approaching the equatorward boundary of the auroral oval to examine how often the subauroral flow increased. We also performed the reverse query starting with subauroral flow enhancements and then evaluated the auroral conditions. In the forward study, 98% of the streamers approaching the equatorward boundary were associated with SAPS flow enhancements reaching 700 m/s and typically hundreds of m/s above background speeds. The reverse study reveals that flow enhancements associated with streamers (60%) and enhanced larger-scale convection (37%) contribute to SAPS flow enhancements. The strong correlation of auroral streamers with rapid evolution (approximately minutes) of SAPS flows suggests that transient fast earthward plasma sheet flows can often lead to westward SAPS flow enhancements in the subauroral region and that such enhancements are far more common than only during substorms because of the much more frequent occurrences of streamers under various geomagnetic conditions. We also found a strong correlation between flow duration and streamer duration and a weak correlation between SAPS flow velocity and streamer intensity. This result suggests that intense flow bursts in the plasma sheet (which correlate with intense streamers) are associated with intense SAPS ionospheric flows perhaps by enhancing the ring current pressure and localized pressure gradients when they are able to penetrate close enough to Earth.

  8. Response of the auroral electrojet indices to abrupt southward IMF turnings

    Science.gov (United States)

    Gjerloev, J. W.; Hoffman, R. A.; Ohtani, S.; Weygand, J.; Barnes, R.

    2010-05-01

    We present results from a study of the behavior of the auroral electrojet indices following abrupt southward turnings of the IMF Bz. The auroral electrojet indices are calculated from observations made by more than 100 ground based stations provided by the SuperMAG collaborators. Based on three simple criteria we selected 73 events. In each event the interval of analysis started at the time of the IMF Bz southward turning and ended 45 minutes later or at the onset of any abrupt energy unloading event in the magnetosphere, regardless of size. We refer to this period as the "pre-unloading phase". To isolate the dependence of the auroral electrojets on the solar induced ionospheric conductivity during this phase we separated the standard AU/AL indices into two new sets of indices defined by the upper and lower envelope of the north-south component for all sunlit stations (AUs/ALs) and for all stations in darkness (AUd/ALd). Based on events and statistical analyses we can conclude that following a southward turning of the IMF Bz the AUd/ALd indices show no measurable response while the AUs/ALs indices clearly intensify. The intensifications of AUs/ALs are dependent on the intensity of the solar wind driver (as measured by IMF Bz or the Akasofu ɛ parameter). The lack of AUd/ALd response does not depend on the intensity of any subsequent substorm. We find that during these isolated events the ionospheric current system is primarily confined to the sunlit ionosphere. This truncated version of the classical global DP-2 current system suggests that auroral electrojet continuity is not maintained across the terminator. Because of its conductivity dependence on the solar zenith angle, this truncated global current pattern is expected to be highly dependent on UT and season and thus can be asymmetric between hemispheres. Thus we argue that the global two-cell DP-2 current system is not a consequence only of a southward turning of the IMF but requires also the reduction of the

  9. Swarm-Aurora: A web-based tool for quickly identifying multi-instrument auroral events

    Science.gov (United States)

    Chaddock, D.; Donovan, E.; Spanswick, E.; Knudsen, D. J.; Frey, H. U.; Kauristie, K.; Partamies, N.; Jackel, B. J.; Gillies, M.; Holmdahl Olsen, P. E.

    2016-12-01

    In recent years there has been a dramatic increase in ground-based auroral imaging systems. These include the continent-wide THEMIS-ASI network, and imagers operated by other programs including GO-Canada, MIRACLE, AGO, OMTI, and more. In the near future, a new Canadian program called TREx will see the deployment of new narrow-band ASIs that will provide multi-wavelength imaging across Western Canada. At the same time, there is an unprecedented fleet of international spacecraft probing geospace at low and high altitudes. We are now in the position to simultaneously observe the magnetospheric drivers of aurora, observe in situ the waves, currents, and particles associated with MI coupling, and the conjugate aurora. Whereas a decade ago, a single magnetic conjunction between one ASI and a low altitude satellite was a relatively rare event, we now have a plethora of triple conjunctions between imagers, low-altitude spacecraft, and near-equatorial magnetospheric probes. But with these riches comes a new level of complexity. It is often difficult to identify the many useful conjunctions for a specific line of inquiry from the multitude of conjunctions where the geospace conditions are often not relevant and/or the imaging is compromised by clouds, moon, or other factors. Swarm-Aurora was designed to facilitate and drive the use of Swarm in situ measurements in auroral science. The project seeks to build a bridge between the Swarm science community, Swarm data, and the complimentary auroral data and community. Swarm-Aurora (http://swarm-aurora.phys.ucalgary.ca) incorporates a web-based tool which provides access to quick-look summary data for a large array of instruments, with Swarm in situ and ground-based ASI data as the primary focus. This web interface allows researchers to quickly and efficiently browse Swarm and ASI data to identify auroral events of interest to them. This allows researchers to be able to easily and quickly identify Swarm overflights of ASIs that

  10. Influence of Magnetically Conjugate Fragments of Auroral Emission Images on the Accuracy of Determining E av of Precipitating Electrons

    Science.gov (United States)

    Banshchikova, M. A.; Chuvashov, I. N.; Kuzmin, A. K.; Kruchenitskii, G. M.

    2018-05-01

    Results of magnetic conjugation of image fragments of auroral emissions at different altitudes along the magnetic field lines and preliminary results of evaluation of their influence on the accuracy of remote mapping of energy characteristics of precipitating electrons are presented. The results are obtained using the code of tracing being an integral part of the software Vector M intended for calculation of accompanying, geophysical, and astronomical information for the center of mass of a space vehicle (SV) and remote observation of aurora by means of Aurovisor-VIS/MP imager onboard the SV Meteor-MP to be launched.

  11. Generation of auroral kilometric radiation

    International Nuclear Information System (INIS)

    Green, J.L.

    1979-01-01

    Simultaneous observations between the Hawkeye spacecraft in the AKR emission cone and the low altitude polar orbiting spacecraft Triad and AE-D reveal that auroral kilometric radiation (AKR) is correlated with a variety of auroral particle precipitation in the evening to midnight local time sector. It is found that as the AKR intensity increases so does the integrated current sheet intensity of auroral zone field aligned currents observed by Triad of 257 simultaneous observations. Statistically, the linear correlation coefficient between the log of the AKR power flux and the log of the current sheet intensity is 0.57. Auroral kilometric radiation observations from Hawkeye during low altitude (2.0 to 2.5 R/sub E/) auroral zone passes reveal that intense AKR has a low frequency cutoff near the local electron gyrofrequency (f/sub g/ - ) with maximum electric field strengths as large as 12 mV/m. The large electric fields observed near f/sub g/ - are consistent with high altitude observations of AKR using a simple 1/R 2 scaling indicating that the kilometric radiation in or near the average source region is almost completely electromagnetic. The results presented in this study indicate that kilometric radiation is generated by inverted-V electron distribution functions in a direct coupling mechanism between particle energy and R-X mode electromagnetic waves in the region of the auroral zone where f/sub g/ - >> f/sub p/ -

  12. A Computer Simulation of Auroral Arc Formation.

    Science.gov (United States)

    Wagner, John Scott

    Recent satellite measurements have revealed two intriguing features associated with the formation of auroral arcs. The first is that an auroral arc is produced by a sheet of electrons accelerated along a geomagnetic field -aligned potential drop, and the second is that these electrons carry a field-aligned, upward directed electric current. In order to explain these measurements, a self-consistent, time dependent, computer simulation of auroral arc formation has been developed. The simulation demonstrates for the first time that a stable V-shaped potential structure, called an auroral double layer, develops spontaneously as a result of an ion shielded electron current sheet interacting with a conducting ionosphere. The double layer accelerates current-carrying electrons into the upper atmosphere at auroral energies. The double layer potential depends critically on the drift speed of the current-carrying electrons and on the temperature of the ambient shielding ions. Localized double layers occur near the ionosphere when the geomagnetic field is assumed to be uniform, but when a converging magnetic field is introduced, the double layer becomes extended due to the presence of an additional population of electrons trapped between the magnetic mirror and the double layer potential. The simulated auroral current sheet is subject to auroral curl and fold type deformations due to unstable Kelvin-Helmholtz waves. The previous incompletely understood auroral fold producing mechanism is described.

  13. On the formation of auroral arcs

    International Nuclear Information System (INIS)

    Stasiewicz, K.

    1984-04-01

    A new mechanism for auroral arc formation is presented. The characteristic linear shape of auroral arcs is determined by magnetically connected plasma clouds in the distant equatorial magnetosphere. These clouds originate as high speed plasma beams in the magnetotail and in the solar wind. It is found that the free energy for driving an auroral arc is provided by the difference of pressure between the cloud and the ambient plasma. (author)

  14. Plasma sheet fast flows and auroral dynamics during substorm: a case study

    Directory of Open Access Journals (Sweden)

    N. L. Borodkova

    2002-03-01

    Full Text Available Interball-1 observations of a substorm development in the mid-tail on 16 December 1998 are compared with the auroral dynamics obtained from the Polar UV imager. Using these data, the relationship between plasma flow directions in the tail and the location of the auroral activation is examined. Main attention is given to tailward and earth-ward plasma flows, interpreted as signatures of a Near Earth Neutral Line (NENL. It is unambiguously shown that in the mid-plasma sheet the flows were directed tailward when the auroral bulge developed equatorward of the spacecraft ionospheric footprint. On the contrary, when active auroras moved poleward of the Interball-1 projection, earthward fast flow bursts were observed. This confirms the concept that the NENL (or flow reversal region is the source of auroras forming the poleward edge of the auroral bulge. The observed earthward flow bursts have all typical signatures of Bursty Bulk Flows (BBFs, described by Angelopolous et al. (1992. These BBFs are related to substorm activations starting at the poleward edge of the expanded auroral bulge. We interpret the BBFs as a result of reconnection pulses occurring tail-ward of Interball-1. In addition, some non-typically observed phenomena were detected in the plasma sheet during this substorm: (i tailward/earthward flows were superimposed on a very strong duskward flow, and (ii wavy structures of both magnetic field and plasma density were registered. The latter observation is probably linked to the filamentary structure of the current sheet.Key words. Magnetospheric physics (auroral phenomena; plasma sheet; storms and substorms

  15. Midday auroral breakup

    International Nuclear Information System (INIS)

    Sandholt, P.E.; Lybekk, B.; Egeland, A.

    1988-08-01

    Groundbased observations of the midday aurora by all-sky TV and meridian scanning photometers reveal the intermittent occurence of discrete auroral displays within the cusp/cleft. A typical sequence includes the following features: Auroral brightening, near the equatorward boundary of the persistent cusp/cleft arc and subsequent poleward motion of discrete forms through the cusp/cleft region. A strong westward component of auroral motion, both of the individual forms and internal ray structures within these forms, if often observed. At maximum brightness green line intensities of ∼ 10 kR are observed, even within the interval characterized as the midday gap. The duration of the whole sequence is normally less than 10 minutes. During this period the auroral activity moves poleward, in some cases by 3-5 degrees, say from 71 o up to 75 o MLAT. Characteristic ground magnetic signatures are observed, including a ∼ 50 - 100 nT positive deflection in the H-component and a negative Z-component at stations located poleward of the initial brightening. A poleward propagating filamentary Hall current belt associated with the discrete aurora is inferred from the optical and magnetic data. A quantitative estimate shows that the conductivity enhancement, due to electron precipitation in conjunction with northward electric field, roughly accounts for the magnetic deflection on the ground. Series of such events are often observed when the cusp is located at rather low latitudes, say south of 75 o MLAT, presumably associated with negative IMF B z

  16. Crowd-sourcing, Communicating, and Improving Auroral Science at the Speed of Social Media through Aurorasaurus.org

    Science.gov (United States)

    Patel, K.; MacDonald, E.; Case, N.; Hall, M.; Clayton, J.; Heavner, M.; Tapia, A.; Lalone, N.; McCloat, S.

    2015-12-01

    On March 17, 2015, a geomagnetic storm—the largest of the solar cycle to date— hit Earth and gave many sky watchers around the world a beautiful auroral display. People made thousands of aurora-related tweets and direct reports to Aurorasaurus.org, an interdisciplinary citizen science project that tracks auroras worldwide in real-time through social media and the project's apps and website. Through Aurorasaurus, researchers are converting these crowdsourced observations into valuable data points to help improve models of where aurora can be seen. In this presentation, we will highlight how the team communicates with the public during these global, sporadic events to help drive and retain participation for Aurorasaurus. We will highlight some of the co-produced scientific results and increased media interest following this event. Aurorasaurus uses mobile apps, blogging, and a volunteer scientist network to reach out to aurora enthusiasts to engage in the project. Real-time tweets are voted on by other users to verify their accuracy and are pinned on a map located on aurorasaurus.org to help show the instantaneous, global auroral visibility. Since the project launched in October 2014, hundreds of users have documented the two largest geomagnetic storms of this solar cycle. In some cases, like for the St. Patrick's Day storm, users even reported seeing aurora in areas different than aurora models suggested. Online analytics indicate these events drive users to our page and many also share images with various interest groups on social media. While citizen scientists provide observations, Aurorasaurus gives back by providing tools to help the public see and understand the aurora. When people verify auroral sightings in a specific area, the project sends out alerts to nearby users of possible auroral visibility. Aurorasaurus team members around the world also help the public understand the intricacies of space weather and aurora science through blog articles

  17. E-region echo characteristics governed by auroral arc electrodynamics

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2003-07-01

    Full Text Available Observations of a pair of auroral arc features by two imagers, one ground- and one space-based, allows the associated field-aligned current (FAC and electric field structure to be inferred. Simultaneous observations of HF radar echoes provide an insight into the irregularity-generating mechanisms. This is especially interesting for the E-region echoes observed, which form the focus of our analysis, and from which several conclusions can be drawn, summarized as follows. Latitudinal variations in echo characteristics are governed by the FAC and electric field background. Particularly sharp boundaries are found at the edges of auroral arcs. Within regions of auroral luminosity, echoes have Doppler shifts below the ion-acoustic speed and are proportional to the electric field, suggesting scatter from gradient drift waves. Regions of downward FAC are associated with mixed high and low Doppler shift echoes. The high Doppler shift component is greatly in excess of the ion-acoustic speed, but seems to be commensurate with the driving electric field. The low Doppler shift component appears to be much depressed below expectations.Key words. Ionosphere (ionospheric irregularities; electric fields and currents

  18. E-region echo characteristics governed by auroral arc electrodynamics

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available Observations of a pair of auroral arc features by two imagers, one ground- and one space-based, allows the associated field-aligned current (FAC and electric field structure to be inferred. Simultaneous observations of HF radar echoes provide an insight into the irregularity-generating mechanisms. This is especially interesting for the E-region echoes observed, which form the focus of our analysis, and from which several conclusions can be drawn, summarized as follows. Latitudinal variations in echo characteristics are governed by the FAC and electric field background. Particularly sharp boundaries are found at the edges of auroral arcs. Within regions of auroral luminosity, echoes have Doppler shifts below the ion-acoustic speed and are proportional to the electric field, suggesting scatter from gradient drift waves. Regions of downward FAC are associated with mixed high and low Doppler shift echoes. The high Doppler shift component is greatly in excess of the ion-acoustic speed, but seems to be commensurate with the driving electric field. The low Doppler shift component appears to be much depressed below expectations.

    Key words. Ionosphere (ionospheric irregularities; electric fields and currents

  19. Observations of auroral zone processes by the Viking satellite

    International Nuclear Information System (INIS)

    Hultqvist, B.

    1989-01-01

    The scientific results of the Viking project obtained up to the spring of 1988 are reviewed. During solar minimum conditions, when Viking was operated, the dayside auroral oval has been found to be the most active part, except during strong substorms and storms. A number of new auroral morphological features have been seen with the imaging experiment onboard Viking. Large-amplitude slow fluctuations of the electric field heat the ionospheric plasma and pump up the magnetic moment of the ionospheric ions so that they may leave the ionosphere. These fluctuations also accelerate ionospheric electrons upwards along the magnetic field lines. The importance of the acceleration of auroral electrons into the atmosphere by magnetic field-aligned potential differences has been confirmed. The first satellite-borne plasma wave interferometer on Viking has made it possible to determine a number of characteristics of the 'weak' double layers, seen first by the S3-3 satellite. A large number of these along the magnetic field lines produce large electric potential differences. Many new results concerning wave-particle interactions have been obtained, of which a few are presented here. (author)

  20. Studies of currents and electric fields in the auroral zone ionosphere using radar auroral backscatter

    International Nuclear Information System (INIS)

    Greenwald, R.A.

    1980-01-01

    During the 1970s several advances have been made in the understanding of radar aurora. Recent VHF studies have shown that Doppler data obtained from radar auroral backscatter can be used to measure the E-region electron drift velocity, the F-region plasma velocity, and the ionospheric electric field. This type of measurement is particularly valuable when it is made with dual auroral radar systems similar to STARE (Scandinavian Twin Auroral Radar Experiment). Over the past two years STARE has been used to study electric field patterns associated with electrojet and field-aligned currents, magnetospheric convection, the Harang discontinuity, Pc5 micropulsations, and the substorm expansion phase. (Auth.)

  1. A theory of auroral hiss and implications on the origin of auroral electrons

    International Nuclear Information System (INIS)

    Swift, D.W.; Kan, J.R.

    1975-01-01

    A theory for auroral hiss is developed based on the existence of a beam of energetic particles that is also believed responsible for the visual aurora. A dispersion relation for electromagnetic waves in a plasma consisting of an electron beam and a background plasma is derived. The Hermitian part of the dispersion relation is assumed to be governed by the denser cold background plasma, whereas the anti-Hermitian part is governed by the electron beam. It is shown that the electron beam can excite an electron whistler mode instability near the resonance cone by the Landau interaction because near the resonance cone the phase velocity of the wave can be made arbitrarily small. The instability can be excited at all frequencies between the lower hybrid resonance and the electron plasma frequencies. The wave normal angles along the resonance curve vary between 0degree and 90degree with respect to the magnetic field. Waves whose wave normal angles are small have the largest growth rates and are most likely to grow to observable amplitudes. Only waves generated within a few degrees of the vertical can reach the ground. The results of the calculations are applied to auroral hiss observations. From the fact that auroral hiss is observed on the ground at frequencies less than 10 kHz it is concluded that at least some of the auroral hiss is generated at altitudes where the ambient electron density is of the order of 1 cm -3 . This suggests that auroral electrons are energized in regions where the ambient density is of the order of 1 cm -3 or less

  2. The optical manifestation of dispersive field-aligned bursts in auroral breakup arcs

    Science.gov (United States)

    Dahlgren, H.; Semeter, J. L.; Marshall, R. A.; Zettergren, M.

    2013-07-01

    High-resolution optical observations of a substorm expansion show dynamic auroral rays with surges of luminosity traveling up the magnetic field lines. Observed in ground-based imagers, this phenomenon has been termed auroral flames, whereas the rocket signatures of the corresponding energy dispersions are more commonly known as field-aligned bursts. In this paper, observations of auroral flames obtained at 50 frames/s with a scientific-grade Complementary Metal Oxide Semiconductor (CMOS) sensor (30° × 30° field of view, 30 m resolution at 120 km) are used to provide insight into the nature of the precipitating electrons similar to high-resolution particle detectors. Thanks to the large field of view and high spatial resolution of this system, it is possible to obtain a first-order estimate of the temporal evolution in altitude of the volume emission rate from a single sensor. The measured volume emission rates are compared with the sum of modeled eigenprofiles obtained for a finite set of electron beams with varying energy provided by the TRANSCAR auroral flux tube model. The energy dispersion signatures within each auroral ray can be analyzed in detail during a fraction of a second. The evolution of energy and flux of the precipitation shows precipitation spanning over a large range of energies, with the characteristic energy dropping from 2.1 keV to 0.87 keV over 0.2 s. Oscillations at 2.4 Hz in the magnetic zenith correspond to the period of the auroral flames, and the acceleration is believed to be due to Alfvenic wave interaction with electrons above the ionosphere.

  3. Relationships between particle precipitation and auroral forms

    International Nuclear Information System (INIS)

    Burch, J.L.; Winningham, J.D.

    1978-01-01

    The present state of knowledge on the relationships between high-latitude particle precipitation and the aurora is reviewed. Attention is focused on the largescale relationships between auroral forms and magnetospheric particle populations, on the relationships between satellite and sounding-rocket measurements, and on the interaction of auroral electrons with the atmosphere. While significant progress is being made in relating the largescale features of the aurora to magnetospheric plasma domains, and in understanding the way in which auroral electrons deposit their energy in the atmosphere, only slight progress has been made in relating satellite data to the small-scale phenomena associated with auroral arcs. (author)

  4. Observation of auroral fading before breakup

    International Nuclear Information System (INIS)

    Pellinen, R.J.; Heikkila, W.J.

    1978-02-01

    We have obtained detailed observations of the onset of auroral breakup using a variety of instruments with time resolution of some tens of seconds. Rapid sequences of all-sky photographs, and fast meridian scans by photometers, show that breakup is usually preceded by moderate brightening, followed by fading of the auroral brightness lasting one or two minutes, before the actual breakup itself. At the time of the fading there is a brief darkening of the poleward sky. Often the breakup is preceded by one or more rapid intensifications, each one preceded by local fading. Pseudo-breakups may also occur without the development of a major event. A bonafide breakup may begin on the fading arc, on an adjacent arc, or in an entirely new region nearby. This optical activity is closely correlated with the development of auroral radar echoes, suggesting that variations in the ionospheric and magnetospheric electric and magnetic fields are responsible for the observed auroral variations. Data from the IMS magnetometer network provide some indication of a correlated response by the local auroral and ionospheric current, although this could be partly due to changes in conductivity. Riometer recordings show a slow decrease in ionsperic radio wave absorption over a period of about ten minutes prior to breakup, with the largest decrease essentially to quiet-time values in the region of auroral fading and subsequent breakup. The implications of these observations regarding the trigger mechanism for the expansion phase of a magnetospheric substorm are discussed. (author)

  5. Theory for the asymmetry in the auroral ionization density profile for the generation of auroral infrasonic waves

    International Nuclear Information System (INIS)

    Goodwin, P.A.

    1979-01-01

    Traveling pressure waves with periods from 10 to 100 seconds are generated in the lower ionosphere by auroral electrojet current filaments as they move supersonically in an equatorward direction. The infrasonic waves produced by the auroral motions propagate to the ground as highly directional bow waves that can be detected by infrasonic microphones on the surface. There is an asymmetry in the reception of auroral infrasonic waves (AIW) with respect to whether the auroral arcs are moving equatorward to poleward. In the literature it is suggested that the asymmetry may be due to anisotropic propagation conditions along the acoustic ray path from the E-region, where AIW are produced, to the surface. Some intrinsic property of the AIW generation mechanism itself has also been suggested as a possible explanation. In this thesis anisotropic propagation is eliminated as the cause of the AIW reception asymmetry. Theoretical calculations, beginning with a model of an auroral precipitation region, are presented to show that there can be a significant difference in the transverse ionization density profiles between an auroral arc that is moving equatorward and an arc that is moving poleward, for a given equatorward-directed E-region ambient electric field. The calculation has been accomplished by solving the equations of motion and continuity for the cross-sectional ionization density profile associated with the transverse motion of a filamentary auroral electrojet. Thus, it is shown that there is an asymmetry in the ionization profiles associated with moving arcs, and in their coupling, that is related to the relative direction of motion of the arc with respect to the ambient electric field, and that it is this asymmetry that is probably the cause of the observed AIW reception asymmetry

  6. Wave processes. Auroral kilometer radiowave radiation

    International Nuclear Information System (INIS)

    Safargaleev, V.V.

    1993-01-01

    Characteristics of auroral kilometer radiowave radiation (AKRR) are discussed. AKRR is produced at altitudes 1.5-3 R e (R e is the Earth radius) in the auroral cavity. Electrons at energy 1-15 keV are always observed in AKRR production regions

  7. The Isinglass Auroral Sounding Rocket Campaign: data synthesis incorporating remote sensing, in situ observations, and modelling

    Science.gov (United States)

    Lynch, K. A.; Clayton, R.; Roberts, T. M.; Hampton, D. L.; Conde, M.; Zettergren, M. D.; Burleigh, M.; Samara, M.; Michell, R.; Grubbs, G. A., II; Lessard, M.; Hysell, D. L.; Varney, R. H.; Reimer, A.

    2017-12-01

    The NASA auroral sounding rocket mission Isinglass was launched from Poker Flat Alaska in winter 2017. This mission consists of two separate multi-payload sounding rockets, over an array of groundbased observations, including radars and filtered cameras. The science goal is to collect two case studies, in two different auroral events, of the gradient scale sizes of auroral disturbances in the ionosphere. Data from the in situ payloads and the groundbased observations will be synthesized and fed into an ionospheric model, and the results will be studied to learn about which scale sizes of ionospheric structuring have significance for magnetosphere-ionosphere auroral coupling. The in situ instrumentation includes thermal ion sensors (at 5 points on the second flight), thermal electron sensors (at 2 points), DC magnetic fields (2 point), DC electric fields (one point, plus the 4 low-resource thermal ion RPA observations of drift on the second flight), and an auroral precipitation sensor (one point). The groundbased array includes filtered auroral imagers, the PFISR and SuperDarn radars, a coherent scatter radar, and a Fabry-Perot interferometer array. The ionospheric model to be used is a 3d electrostatic model including the effects of ionospheric chemistry. One observational and modelling goal for the mission is to move both observations and models of auroral arc systems into the third (along-arc) dimension. Modern assimilative tools combined with multipoint but low-resource observations allow a new view of the auroral ionosphere, that should allow us to learn more about the auroral zone as a coupled system. Conjugate case studies such as the Isinglass rocket flights allow for a test of the models' intepretation by comparing to in situ data. We aim to develop and improve ionospheric models to the point where they can be used to interpret remote sensing data with confidence without the checkpoint of in situ comparison.

  8. INTERBALL-Auroral observations of 0.1-12 keV ion gaps in the diffuse auroral zone

    Directory of Open Access Journals (Sweden)

    R. A. Kovrazhkin

    1999-06-01

    Full Text Available We examine ion flux dropouts detected by INTERBALL-Auroral upon traversal of the auroral zone at altitudes of \\sim13 000 up to 20 000 km. These dropouts which we refer to as "gaps", are frequently observed irrespectively of longitudinal sector and appear characteristic of INTERBALL-Auroral ion spectrograms. Whereas some of these gaps display a nearly monoenergetic character (~12 keV, others occur at energies of a few hundreds of eV up to several keV. INTERBALL-Auroral data exhibit the former monoenergetic gap variety essentially in the evening sector. As examined in previous studies, these gaps appear related to transition from particle orbits that are connected with the magnetotail plasma source to closed orbits encircling the Earth. The latter gap variety, which spreads over several hundreds of eV to a few keV is often observed in the dayside magnetosphere. It is argued that such gaps are due to magnetospheric residence times well above the ion lifetime. This interpretation is supported by numerical orbit calculations which reveal extremely large (up to several tens of hours times of flight in a limited energy range as a result of conflicting E × B and gradient-curvature drifts. The characteristic energies obtained numerically depend upon both longitude and latitude and are quite consistent with those measured in-situ.Key words. Magnetospheric physics (auroral phenomena; plasma convection

  9. Untangling the Space-Time Ambiguity of Auroral Emissions

    Science.gov (United States)

    Gjerloev, J. W.; Humberset, B.; Michell, R. G.; Samara, M.; Mann, I. R.

    2012-12-01

    In this paper we address the spatiotemporal characteristics of the magnetosphere-ionosphere (M-I) system as observed by an all-sky imager (ASI). We utilize 557.7 nm images obtained by a ground based ASI located under the dark ionosphere (~22 MLT) at Poker Flat, Alaska. The 19 min movie was recorded at 3.31 Hz during continuous moderately intense auroral activity driven by a southward IMF Bz of about -5 nT. We analyze this movie using a simple, yet robust, 2D FFT technique that allows us to determine the scale size dependent variability. When plotting the correlation pattern as a function of scale size and time separation we find a pattern with distinct regions of high and low correlation. Larger scale sizes are found to have longer duration. We interpret this remarkable result as indicative of a M-I system that uses repeatable solutions to transfer energy and momentum from the magnetosphere to the ionosphere. Our findings support the characteristics of the field-aligned currents as determined from multi-point satellite observations (ST-5, Gjerloev et al., Annales Geophysicae, 2011). Two different electromagnetic parameters, auroral emissions and field-aligned currents, display similar characteristics supporting our conclusion that this is indicative of a fundamental behavior of the M-I system.

  10. Auroral-zone plasma dynamics

    International Nuclear Information System (INIS)

    Gorney, D.J.

    1982-01-01

    Analysis of the USAF S3-3 charged particle data and electric field observations has provided extensive quantitative understanding of the auroral particle acceleration process. The results of an effort to use energetic charged particle observations to probe the altitude profile of auroral electric potential structures by applying adiabatic mapping theory are presented here. In situ energetic charged particle measurements differ from local electric field observations in that charged particles execute dynamic trajectories along the magnetic field lines and retain information on the spatial electric potential distribution in their velocity space distribution function. Although a unique determination of the potential distribution is not possible, basic differences between local or non-local acceleration are readily apparent in the particle observations. Together, the charged particle and electric field measurements have enabled us to form a reasonable picture of the auroral ''inverted-V'' structure which can then be applied to study the nonadiabatic processes that occur in these strong acceleration regions, such as energy scattering of ion and electron beams. Specifically, this study shows that a large scale auroral electric field exists at all times in the evening sector with an altitude distribution that is fairly unstructured at altitudes near and above one earth radius. Significant parallel potential drop is not observed below about 4000 kilometers altitude. At times, however, a substantial portion of the potential drop appears to lie in the low altitude region (4000-10,000 km)

  11. Hubble Images Reveal Jupiter's Auroras

    Science.gov (United States)

    1996-01-01

    These images, taken by the Hubble Space Telescope, reveal changes in Jupiter's auroral emissions and how small auroral spots just outside the emission rings are linked to the planet's volcanic moon, Io. The images represent the most sensitive and sharply-detailed views ever taken of Jovian auroras.The top panel pinpoints the effects of emissions from Io, which is about the size of Earth's moon. The black-and-white image on the left, taken in visible light, shows how Io and Jupiter are linked by an invisible electrical current of charged particles called a 'flux tube.' The particles - ejected from Io (the bright spot on Jupiter's right) by volcanic eruptions - flow along Jupiter's magnetic field lines, which thread through Io, to the planet's north and south magnetic poles. This image also shows the belts of clouds surrounding Jupiter as well as the Great Red Spot.The black-and-white image on the right, taken in ultraviolet light about 15 minutes later, shows Jupiter's auroral emissions at the north and south poles. Just outside these emissions are the auroral spots. Called 'footprints,' the spots are created when the particles in Io's 'flux tube' reach Jupiter's upper atmosphere and interact with hydrogen gas, making it fluoresce. In this image, Io is not observable because it is faint in the ultraviolet.The two ultraviolet images at the bottom of the picture show how the auroral emissions change in brightness and structure as Jupiter rotates. These false-color images also reveal how the magnetic field is offset from Jupiter's spin axis by 10 to 15 degrees. In the right image, the north auroral emission is rising over the left limb; the south auroral oval is beginning to set. The image on the left, obtained on a different date, shows a full view of the north aurora, with a strong emission inside the main auroral oval.The images were taken by the telescope's Wide Field and Planetary Camera 2 between May 1994 and September 1995.This image and other images and data

  12. Geographic asymmetries of the Viking auroral distribution: Implications for ionospheric coordinate systems

    International Nuclear Information System (INIS)

    Hearn, D.J.; Elphinstone, R.D.; Murphree, J.S.; Cogger, L.L.

    1993-01-01

    Viking images of the auroral distribution have been used to investigate the relevance of various ionospheric coordinate systems. An important aspect of the large-scale auroral shape is its dependence on the asymmetries of the Earth's internal field. Model predictions of where the aurora occurs, using the equatorial plane's volume current density, agree with observations and imply that the internal field plays a more important role that generally believed. Historically, the belief that the internal field has only small effects seems to stem from the widespread use of the corrected geomagnetic and invariant coordinate systems. These systems involve the mapping of field lines and have advantages in statistical studies and comparisons; less sophisticated systems such as the eccentric dipole coordinate system should be used in individual studies and in studies involving differentiation or integration of some observational parameters. Observations of the auraoral distribution are give to illustrate the universal time, tilt angle, and Kp variability in different coordinate systems and demonstrate that the dominant variability of the aurora is due to internal field asymmetries. A new set of coordinate systems are briefly developed as examples of how to incorporate external field models into studies of auraoral images. It is proposed that the one of these coordinate systems can be used as a test of how well an external field model can match observed auroral distributions. 19 refs., 1 tab

  13. A study of auroral activity in the nightside polar cap

    International Nuclear Information System (INIS)

    Wu, Q.

    1989-01-01

    Using various ground observations at South Pole, Antarctica (invariant magnetic latitude -74 degree) and its conjugate point, Frobisher Bay, Canada, the author has studied the following aspects of nightside polar cap auroral activity: the appearance and disappearance of polar cap auroras (diffuse and discrete) associated with substorms and interplanetary magnetic field (IMF) variations; auroral optical emission line intensities; and the seasonal variation of auroral conjugacy. The observations show that the polar cap auroras usually fade away before the expansive phase of a substorm and bright auroral arcs reach high latitude (-74 degree) near the recovery phase. Just before the auroras fade away the discrete polar cap auroral arcs, which are usually on the poleward boundary of the diffuse aurora, intensify for 1 to 2 minutes. The observations also indicate the IMF may have stronger control over polar cap auroral activity than do substorms. A search for energy spectral variation of precipitating electrons using the intensities of 630.0 nm (0) and 427 nm (N 2 + ) auroral emission lines reveals no dramatic changes in the energy spectrum; instead, the data show possible atmospheric scattering and geometric effects on the photometric measurements while the bright auroral arc is moving into the polar cap. The conjugate observations show that the stormtime auroral electrojet current, which is associated with the bright auroral arc, in most cases reaches higher (lower) latitudes in the winter (summer) hemisphere. An asymmetric plasma sheet (with respect to the neutral sheet) is proposed, which expands deeper into the winter lobe, under a tilted geomagnetic dipole. Accordingly, the winter polar cap would have smaller area and the auroral electrojet would be at higher latitude

  14. Investigations of auroral dynamics: techniques and results

    International Nuclear Information System (INIS)

    Steen, Aa.

    1988-10-01

    This study is an experimental investigation of the dynamics of the aurora, describing both the systems developed for the optical measurements and the results obtained. It is found that during a auroral arc deformation, a fold travelling eastward along the arc is associated with an enhanced F-region ion temperature of 2700 K, measured by EISCAT, indicative of enhanced ionspheric electric fields. It is shown that for an auroral break-up, the large-scale westward travelling surge (WTS) is the last developed spiral in a sequence of spiral formations. It is proposed that the Kelvin-Helmholtz instability is the responsible process. In another event it is shown that large-amplitude long-lasting pulsations, observed both in ground-based magnetic field and photometer recordings, correspond to strong modulations of the particle intensity at the equatorial orbit (6.6 Re). In this event a gradual transition occurs between pulses classified as Ps6/auroral torches toward pulses with characteristics of substorms. The observations are explained by the Kelvin-Helmholtz instability in a magnetospheric boundary layer. The meridional neutral wind, at about 240 km altitude, is found to be reduced prior to or at the onset of auroral activity. These findings are suggestive of large-scale reconfigurations of the ionspheric electric fields prior to auroral onsets. A new real time triangulation technique developed to determine the altitude of auroral arcs is presented, and an alternative method to analyze incoherent scatter data is discussed. (With 46 refs.) (author)

  15. Electron currents associated with an auroral band

    International Nuclear Information System (INIS)

    Spiger, R.J.; Anderson, H.R.

    1975-01-01

    Measurements of electron pitch angle distributions and energy spectra over a broad auroral band were used to calculate net electric current carried by auroral electrons in the vicinity of the band. The particle energy spectrometers were carried by a Nike-Tomahawk rocket launched from Poker Flat, Alaska, at 0722 UT on February 25, 1972. Data are presented which indicate the existence of upward field-aligned currents of electrons in the energy range 0.5-20 keV. The spatial relationship of these currents to visual structure of the auroral arc and the characteristics of the electrons carrying the currents are discussed

  16. Electron currents associated with an auroral band

    Science.gov (United States)

    Spiger, R. J.; Anderson, H. R.

    1975-01-01

    Measurements of electron pitch angle distributions and energy spectra over a broad auroral band were used to calculate net electric current carried by auroral electrons in the vicinity of the band. The particle energy spectrometers were carried by a Nike-Tomahawk rocket launched from Poker Flat, Alaska, at 0722 UT on February 25, 1972. Data are presented which indicate the existence of upward field-aligned currents of electrons in the energy range 0.5-20 keV. The spatial relationship of these currents to visual structure of the auroral arc and the characteristics of the electrons carrying the currents are discussed.

  17. The Effect of Sub-Auroral Polarization Streams (SAPS) on Ionosphere and Thermosphere during 2015 St. Patrick's Day storm: Global Ionosphere-Thermosphere Model (GITM) Simulations

    Science.gov (United States)

    Guo, J.; Deng, Y.; Zhang, D.; Lu, Y.; Sheng, C.

    2017-12-01

    Sub-Auroral Polarization Streams (SAPS) are incorporated into the non-hydrostatic Global Ionosphere-Thermosphere Model (GITM), revealing the complex effects on neutral dynamics and ion-neutral coupling processes. The intense westward ion stream could enhance the neutral zonal wind within the SAPS channel. Through neutral dynamics the neutrals then divide into two streams, one turns poleward and the other turns equatorward, forming a two-cell pattern in the SAPS-changed wind. The significant Joule heating induced by SAPS also leads to traveling atmospheric disturbances (TAD) accompanied by traveling ionospheric disturbances (TID), increasing the total electron content (TEC) by 2-8 TECu in the mid-latitude ionosphere. We investigate the potential causes of the reported poleward wind surge during the St. Patrick's Day storm in 2015. It is confirmed that Coriolis force on the westward zonal wind can contribute the poleward wind during post-SAPS interval. In addition, the simulations imply that the sudden decrease of heating rate within auroral oval could result in a TAD propagating equatorward, which could also be responsible for the sudden poleward wind surge. This study highlights the complicated effects of SAPS on ion-neutral coupling and neutral dynamics.

  18. Plasma mechanizm for auroral kilometer wave radiation

    International Nuclear Information System (INIS)

    Vlasov, V.G.

    1989-01-01

    The linear mechanism of auroral kilometer radiation (AKR) on the Cherenkov resonance is developed. The point is that plasma waves swinged by the electron beam in a dimer auroral plasma cavern on the Cherenkov resonance excercise 100% transformation under conventional and inconventional AKR modes under definite conditions

  19. The size of the auroral belt during magnetic storms

    Directory of Open Access Journals (Sweden)

    N. Yokoyama

    1998-05-01

    Full Text Available Using the auroral boundary index derived from DMSP electron precipitation data and the Dst index, changes in the size of the auroral belt during magnetic storms are studied. It is found that the equatorward boundary of the belt at midnight expands equatorward, reaching its lowest latitude about one hour before Dst peaks. This time lag depends very little on storm intensity. It is also shown that during magnetic storms, the energy of the ring current quantified with Dst increases in proportion to Le–3, where Le is the L-value corresponding to the equatorward boundary of the auroral belt designated by the auroral boundary index. This means that the ring current energy is proportional to the ion energy obtained from the earthward shift of the plasma sheet under the conservation of the first adiabatic invariant. The ring current energy is also proportional to Emag, the total magnetic field energy contained in the spherical shell bounded by Le and Leq, where Leq corresponds to the quiet-time location of the auroral precipitation boundary. The ratio of the ring current energy ER to the dipole energy Emag is typically 10%. The ring current leads to magnetosphere inflation as a result of an increase in the equivalent dipole moment.Key words. Ionosphere (Auroral ionosphere · Magnetospheric physics (Auroral phenomena; storms and substorms

  20. The APIS service : a tool for accessing value-added HST planetary auroral observations over 1997-2015

    Science.gov (United States)

    Lamy, L.; Henry, F.; Prangé, R.; Le Sidaner, P.

    2015-10-01

    The Auroral Planetary Imaging and Spectroscopy (APIS) service http://obspm.fr/apis/ provides an open and interactive access to processed auroral observations of the outer planets and their satellites. Such observations are of interest for a wide community at the interface between planetology, magnetospheric and heliospheric physics. APIS consists of (i) a high level database, built from planetary auroral observations acquired by the Hubble Space Telescope (HST) since 1997 with its mostly used Far-Ultraviolet spectro- imagers, (ii) a dedicated search interface aimed at browsing efficiently this database through relevant conditional search criteria (Figure 1) and (iii) the ability to interactively work with the data online through plotting tools developed by the Virtual Observatory (VO) community, such as Aladin and Specview. This service is VO compliant and can therefore also been queried by external search tools of the VO community. The diversity of available data and the capability to sort them out by relevant physical criteria shall in particular facilitate statistical studies, on long-term scales and/or multi-instrumental multispectral combined analysis [1,2]. We will present the updated capabilities of APIS with several examples. Several tutorials are available online.

  1. Birkeland current flow in a structured auroral arc

    International Nuclear Information System (INIS)

    Casserly, R.T. Jr.

    1975-01-01

    At 0722 UT on 25 February 1972 a Nike-Tomahawk rocket payload was launched over a structured auroral arc which had a visual intensity of greater than or equal to 40 kR. An array of charged particle detectors measured the auroral electrons and protons in the energy range 0.5-20 keV while a cesium vapor magnetometer made vector magnetic field measurements along the rocket's trajectory. Perturbations in the magnetic field profile are inferred to be the result of a system of two electrojets and a pair of oppositely directed Birkeland currents. Movement and structure in the Birkeland current sheets is shown to be due to the presence of fold motion along the visual auroral band. These results are compared to the observations of the other onboard detectors and discussed in the light of related current auroral research

  2. New look at radar auroral motions

    International Nuclear Information System (INIS)

    Greenwald, R.A.; Ecklund, W.L.

    1975-01-01

    During October 1974, three modifications were temporarily added to the NOAA radar auroral backscatter facility located at Anchorage, Alaska. These modifications included (1) a multiple azimuth antenna system. (2) an on-line computer for processing amplitude and mean Doppler profiles of the radar backscatter, and (3) a 13-baud Barker coder. In combination with the radar these modifications provided data relevant to understanding both the microscopic and the macroscopic nature of the radar aurora. Appreciable structure was often found in the Doppler velocity profiles of radar auroral irregularities. Doppler velocities of nearly 2000 m/s were observed. By combining scatter amplitude profiles and mean Doppler profiles from the five azimuths we have produced contour maps of the scatter intensity and the Doppler velocity. The scatter intensity maps often indicate appreciable temporal and spatial structure in the radar auroral irregularities, corroborating the results of Tsunoda et al. (1974). The mean Doppler contour maps indicate that there is also appreciable temporal and spatial structure in the flow velocities of radar auroral irregularities. At those times when there appears to be large-scale uniformity in the irregularity flow, the Doppler velocity varies with azimuth in a manner that is consistent with a cosine-dependent azimuthal variation

  3. Sounding rocket study of auroral electron precipitation

    International Nuclear Information System (INIS)

    McFadden, J.P.

    1985-01-01

    Measurement of energetic electrons in the auroral zone have proved to be one of the most useful tools in investigating the phenomena of auroral arc formation. This dissertation presents a detailed analysis of the electron data from two sounding rocket campaigns and interprets the measurements in terms of existing auroral models. The Polar Cusp campaign consisted of a single rocket launched from Cape Parry, Canada into the afternoon auroral zone at 1:31:13 UT on January 21, 1982. The results include the measurement of a narrow, magnetic field aligned electron flux at the edge of an arc. This electron precipitation was found to have a remarkably constant 1.2 eV temperature perpendicular to the magnetic field over a 200 to 900 eV energy range. The payload also made simultaneous measurements of both energetic electrons and 3-MHz plasma waves in an auroral arc. Analysis has shown that the waves are propagating in the upper hybrid band and should be generated by a positive slope in the parallel electron distribution. A correlation was found between the 3-MHz waves and small positive slopes in the parallel electron distribution but experimental uncertainties in the electron measurement were large enough to influence the analysis. The BIDARCA campaign consisted of two sounding rockets launched from Poker Flat and Fort Yukon, Alaska at 9:09:00 UT and 9:10:40 UT on February 7, 1984

  4. Observations pertaining to the generation of auroral kilometric radiation

    International Nuclear Information System (INIS)

    Green, J.L.

    1981-01-01

    Auroral kilometric radiation (AKR) observations that have determined the propagation mode or polarization of the radiation and the detailed intensity distribution of the AKR emission cone are discussed. Attention is also given to correlations between AKR with discrete field-aligned currents. It is noted that these observations have helped to identify the auroral particle population most likely responsible for the generation of AKR and the possible sources of the free energy that drives the instability. Thus far, AKR has not been observed simultaneously with large electrostatic waves. Auroral zone current systems are thought to be intimately involved in the generation of AKR. In particular, the most probable source of energy for AKR is the precipitating inverted-V auroral electron distribution

  5. Correlations of auroral kilometric radiation with Birkeland currents

    International Nuclear Information System (INIS)

    Saflekos, N.A.; Carovillano, R.L.; Sheehan, R.E.

    1983-01-01

    This chapter examines auroral kilometric radiation (AKR) in relation to the strength of field-aligned currents (FAC), which represent an energy source stored in the form of magnetic field energy density in the neighborhood of the earth. An attempt is made to find a direct relationship between AKR power flux and optical auroral emissions. Topics considered include correlated Hawkeye and Triad satellite observations and correlated AKR and optical emissions. It is indicated that AKR is electromagnetic radiation in the frequency range of 50 to 500 kHz; AKR is generated at frequencies above the electron plasma frequency and below the electron gyrofrequency; AKR propagates in the Right Hand Extraordinary mode; and AKR may show fine structure in frequency. The principal findings include: distributions of AKR intensity with increasing auroral activity show that although quiet and disturbed auroras are generally accompanied by weak and intense AKR, the moderate auroras are associated with a broad range of AKR power; distributions of AKR intensity with increasing auroral electrojet (AE) index during the expansion phase of a polar magnetic substorm show near maximum levels of AKR power emission; and the maximum AKR power increases with increasing auroral activity and with increasing Birkeland current strength

  6. Search for auroral belt Eparallel fields with high-velocity barium ion injections

    International Nuclear Information System (INIS)

    Heppner, J.P.; Ledley, B.G.; Miller, M.L.; Marionni, P.A.; Pongratz, M.B.; Slater, D.W.; Hallinan, T.J.; Rees, D.

    1989-01-01

    Four high-velocity shaped charge Ba + injections were conducted from two Black Brant-10 rockets at collision-free altitudes (770-975 km) over northern Alaska (L = 7.4-10.6) in April 1984 under active auroral and magnetic disturbance (Kp 4+ and 5) conditions. The motions of the Ba + pencil beams from these injections were accurately triangulated to altitudes ranging from 9,000 to 14,000 km from multistation image observations. Well-defined initial conditions and improved software for predicting the unperturbed. E = 0, trajectories in the presence of convection, E perpendicular , fields permitted an accurate detection of changes in the motion which could be attributed to E parallel fields. Large (> 1 keV) potential changes that might be anticipated from double-layer or V-, U- and S-shaped potential structures were not encountered even though the Ba + rays were clearly located on auroral arc flux tubes on at least several occasions and were at various times in close proximity to auroral flux tubes for many minutes. Abnormally intense E perpendicular fields that might also indicate that the above potential structures were also not observed. Transient accelerations and/or decelerations involving magnetic field-aligned energy changes ≤ 375 eV were, however, encountered by each of the seven principal Ba + rays tracked to high altitudes. Acceleration events were only slightly more frequent than deceleration events. Interpretation, taking into account limits on the duration of the events and simultaneous auroral conditions, favors explanation in terms of propagating waves, soliton trains, or other pulse forms provided that the propagation is primarily field-aligned

  7. The size of the auroral belt during magnetic storms

    Directory of Open Access Journals (Sweden)

    N. Yokoyama

    Full Text Available Using the auroral boundary index derived from DMSP electron precipitation data and the Dst index, changes in the size of the auroral belt during magnetic storms are studied. It is found that the equatorward boundary of the belt at midnight expands equatorward, reaching its lowest latitude about one hour before Dst peaks. This time lag depends very little on storm intensity. It is also shown that during magnetic storms, the energy of the ring current quantified with Dst increases in proportion to Le–3, where Le is the L-value corresponding to the equatorward boundary of the auroral belt designated by the auroral boundary index. This means that the ring current energy is proportional to the ion energy obtained from the earthward shift of the plasma sheet under the conservation of the first adiabatic invariant. The ring current energy is also proportional to Emag, the total magnetic field energy contained in the spherical shell bounded by Le and Leq, where Leq corresponds to the quiet-time location of the auroral precipitation boundary. The ratio of the ring current energy ER to the dipole energy Emag is typically 10%. The ring current leads to magnetosphere inflation as a result of an increase in the equivalent dipole moment.

    Key words. Ionosphere (Auroral ionosphere · Magnetospheric physics (Auroral phenomena; storms and substorms

  8. Auroral zone thermospheric dynamics using Fabry-Perot interferometric measurements of the O1 15867 K emission

    International Nuclear Information System (INIS)

    Sica, R.J.

    1985-01-01

    Forty-four nights of thermospheric neutral wind and temperature measurements were obtained from College, Alaska (65 0 invariant latitude) during solar maximum using a ground-based Fabry-Perot interferometer. When averaged by increasing geomagnetic activity, the wind exhibits two main features. First, the general flow pattern poleward and westward in the evening, changing to southward and eastward in the morning, persists with increasing activity. The flow velocity increases and the change in direction occurs earlier in magnetic local time as the geomagnetic activity increases. Second, as the activity increases, the meridional wind pattern shifts equatorward with the auroral oval. Consequently, the low geomagnetic activity average wind pattern in the north is similar to the moderate activity average pattern in the south. The average thermospheric temperature is governed by the geomagnetic activity and by the previous day's 10.7 cm solar flux. The increase in temperature with solar flux is about the same as with auroral activity (approx. = 225 0 K). The dynamical behavior on individual nights highlights the importance of local auroral substorms, which can cause large deviations from both global models and the observed averages. Coupling between the E and F regions is inferred by comparing the bulk motion of the optical aurora and the observed wind. Westward-drifting auroral forms accompany the westward evening zonal wind

  9. Conversion from HST ACS and STIS auroral counts into brightness, precipitated power and radiated power for H2 giant planets

    Science.gov (United States)

    Gustin, J.; Bonfond, B.; Grodent, D.; Gerard, J. C.

    2012-09-01

    The STIS and ACS instruments onboard HST are widely used to study the giant planet's aurora. Several assumptions have to be made to convert the instrumental counts into meaningful physical values (type and bandwidth of the filters, definition of the physical units, etc…), but these may significantly differ from one author to another, which makes it difficult to compare the auroral characteristics published in different studies. We present a method to convert the counts obtained in representative ACS and STIS imaging modes / filters used by the auroral scientific community to brightness, precipitated power and radiated power in the ultraviolet (700- 1800 Å). Since hydrocarbon absorption may considerably affect the observed auroral emission, the conversion factors are determined for several attenuation levels. Several properties of the auroral emission have been determined: the fraction of the H2 emission shortward and longward of the HLy-a line is 50.3 % and 49.7 % respectively, the contribution of HLy-a to the total unabsorbed auroral signal has been set to 9.1 % and an input of 1 mW m-2 produces 10 kR of H2 in the Lyman and Werner bands. A first application sets the order of magnitude of Saturn's auroral characteristics in the total UV bandwidth to a brightness of 10 kR and an emitted power of ~2.8 GW. A second application uses published brighnesses of Europa's footprint to determine the current density associated with the Europa auroral spot: 0.21 and 0.045 μA m-2 assuming no hydrocarbon absorption and a color ratio of 2, respectively.

  10. Astrid-2 and ground-based observations of the auroral bulge in the middle of the nightside convection throat

    Directory of Open Access Journals (Sweden)

    G. T. Marklund

    2001-06-01

    Full Text Available Results concerning the electrodynamics of the nightside auroral bulge are presented based on simultaneous satellite and ground-based observations. The satellite data include Astrid-2 measurements of electric fields, currents and particles from a midnight auroral oval crossing and Polar UVI images of the large-scale auroral distribution. The ground-based observations include STARE and SuperDARN electric fields and magnetic records from the Greenland and MIRACLE magnetometer network, the latter including stations from northern Scandinavia north to Svalbard. At the time of the Astrid-2 crossing the ground-based data reveal intense electrojet activity, both to the east and west of the Astrid-2 trajectory, related to the Polar observations of the auroral bulge but not necessarily to a typical substorm. The energetic electron fluxes measured by Astrid-2 across the auroral oval were generally weak being consistent with a gap observed in the auroral luminosity distribution. The electric field across the oval was directed westward, intensifying close to the poleward boundary followed by a decrease in the polar cap. The combined observations suggests that Astrid-2 was moving close to the separatrix between the dusk and dawn convection cells in a region of low conductivity. The constant westward direction of the electric field across the oval indicates that current continuity was maintained, not by polarisation electric fields (as in a Cowling channel, but solely by localized up- and downward field-aligned currents in good agreement with the Astrid-2 magnetometer data. The absence of a polarisation electric field and thus of an intense westward closure current between the dawn and dusk convection cells is consistent with the relatively weak precipitation and low conductivity in the convection throat. Thus, the Cowling current model is not adequate for describing the electrodynamics of the nightside auroral bulge treated here.Key words. Ionosphere (auroral

  11. Velocity of small-scale auroral ionospheric current systems over ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    a sub-auroral location during magnetically quiet conditions (ΣKp < 10), but attains an auroral position when the ..... ary 1995, the authors thank the expedition leader, .... 6 245–249. Tighe W G and Rostoker G 1981 Characteristics of west-.

  12. Production of nitrous oxide in the auroral D and E regions

    Science.gov (United States)

    Zipf, E. C.; Prasad, S. S.

    1980-01-01

    A study of nitrous oxide formation mechanisms indicates that N2O concentrations greater than 10 to the 9th per cu cm could be produced in IBC III aurora or by lower-level activity lasting for many hours, and, in favorable conditions, the N2O concentration could exceed the local nitric oxide density. An upper limit on the globally averaged N2O production rate from auroral activity is estimated at 2 x 10 to the 27th per second.

  13. Estimates of the field-aligned current density in current-carrying filaments using auroral zone ground-based observations

    Directory of Open Access Journals (Sweden)

    M. A. Danielides

    Full Text Available We described the ground signatures of dynamic substorm features as observed by the imaging riometer, magnetometers and all-sky camera (ASC at Kilpisjärvi, Finland on 5 and 25 October 1999 during the late evening hours. The magnetometer data was consistent with the motion of up-ward field-aligned currents (FACs associated with absorption patches moving within the field of view of the riometer. We used riometer data in order to estimate the intensity of FACs associated with these local current-carrying filaments. It is shown that during these events, the estimated FAC intensity exceeds a threshold value that corresponds to the excitation of the low-frequency turbulence in the upper ionosphere. As a result, a quasi-oscillating regime of anomalous resistivity on the auroral field lines can give rise to the burst-like electron acceleration responsible for simultaneously observed auroral forms and bursts of Pi1B pulsations.

    Key words. Ionosphere (active experiments; auroral ionosphere; electric fields and currents

  14. Ionospheric response to variable electric fields in small-scale auroral structures

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    1998-10-01

    Full Text Available High time and space resolution optical and radar measurements have revealed the influence of electric fields on E-region electron density profiles in small-scale auroral structures. Large electric fields are present adjacent to auroral filaments produced by monoenergetic electron fluxes. The ionisation profiles measured within and beside the auroral filaments show the effects of plasma convection due to electric fields as well as the consequences of the response time to large and dynamic fluxes of energetic electrons. Without high-resolution optical measurements, the interpretation of the radar data is limited.Key words. Auroral ionosphere · Ionosphere-magnetosphere interactions · EISCAT

  15. Ionospheric response to variable electric fields in small-scale auroral structures

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    Full Text Available High time and space resolution optical and radar measurements have revealed the influence of electric fields on E-region electron density profiles in small-scale auroral structures. Large electric fields are present adjacent to auroral filaments produced by monoenergetic electron fluxes. The ionisation profiles measured within and beside the auroral filaments show the effects of plasma convection due to electric fields as well as the consequences of the response time to large and dynamic fluxes of energetic electrons. Without high-resolution optical measurements, the interpretation of the radar data is limited.

    Key words. Auroral ionosphere · Ionosphere-magnetosphere interactions · EISCAT

  16. Digital Images and Globalized Conflict

    DEFF Research Database (Denmark)

    Blaagaard, Bolette; Mortensen, Mette; Neumayer, Christina

    2017-01-01

    As the number of digital images of globalized conflicts online grow, critical examination of their impact and consequence is timely. This editorial provides an overview of digital images and globalized conflict as a field of study by discussing regimes of visibility and invisibility, proximity...... of conflict-related images raise issues of knowledge production and research....

  17. Enabling Future Large Searches for Exoplanet Auroral Emission with the EPIC Correlator Architecture

    Science.gov (United States)

    Thyagarajan, Nithyanandan; Beardsley, Adam P.; Bowman, Judd D.; Morales, Miguel F.

    2017-05-01

    Extrasolar planets are expected to emit strong ``auroral'' emission at radio frequencies generated by the interaction of the host star's stellar winds with the planet's magnetosphere through electron-cyclotron maser emission. This transient emission lasts a few seconds to days and is almost fully circularly polarized. Detecting this emission in exoplanets is a critical probe of their magnetospheres and thus their interior compositions and habitability. The intensity and detectability of the emission depends on the suitability of many factors to the observing parameters such as the strength of the stellar wind power, the planetary magnetosphere cross-section, the highly beamed and coherent nature of electron-cyclotron emission, and narrow ranges of the planet's orbital phase. Large areas of sky must be surveyed continuously to high sensitivity to detect auroral emission. Next-generation radio telescopes with wide fields of view, large collecting areas and high efficiency are needed for these searches. This poses challenges to traditional correlator architectures whose computational cost scales as the square of the number of antennas. I will present a novel radio aperture synthesis imaging architecture - E-field Parallel Imaging Correlator (EPIC) - whose all-sky and full Stokes imaging capabilities will not only address the aforementioned factors preventing detection but also solve the computational challenges posed by large arrays. Compared to traditional imaging, EPIC is inherently fast and thus presents the unique advantage of probing transient timescales ranging orders of magnitude from tens of microseconds to days at no additional cost.

  18. Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope.

    Science.gov (United States)

    Nichols, J D; Badman, S V; Baines, K H; Brown, R H; Bunce, E J; Clarke, J T; Cowley, S W H; Crary, F J; Dougherty, M K; Gérard, J-C; Grocott, A; Grodent, D; Kurth, W S; Melin, H; Mitchell, D G; Pryor, W R; Stallard, T S

    2014-05-28

    We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current.

  19. Compression and Processing of Space Image Sequences of Northern Lights and Sprites

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Martins, Bo; Jensen, Ole Riis

    1999-01-01

    Compression of image sequences of auroral activity as northern lights and thunderstorms with sprites is investigated.......Compression of image sequences of auroral activity as northern lights and thunderstorms with sprites is investigated....

  20. Auroral kilometric radiation from transpolar arcs

    International Nuclear Information System (INIS)

    Pederson, B.M.; Pottelette, R.; Eliasson, L.; Murphree, J.S.; Elphinstone, R.D.; Bahnsen, A.; Jespersen, M.

    1992-01-01

    Observations from the Swedish satellite Viking allow the authors to study the relationship between auroral kilometric radiation (AKR) and discrete auroral features. Previous work has shown that AKR generation is most often associated with nightside aurora. They present wave data which show that under certain circumstances the source regions may also occur on discrete features, identified as transpolar arcs. The wave spectrograms detected during crossings or closest approaches to such sources exhibit structures similar to those observed during nightside AKR source crossings. Also, the associated ion beams and trapped conical electron populations with enhanced upward directed loss cones peak at comparable energies (∼1 keV)

  1. Observed tail current systems associated with bursty bulk flows and auroral streamers during a period of multiple substorms

    Directory of Open Access Journals (Sweden)

    C. Forsyth

    2008-02-01

    Full Text Available We present a multi-instrument study of a substorm bursty bulk flow (BBF and auroral streamer. During a substorm on 25 August 2003, which was one of a series of substorms that occurred between 00:00 and 05:00 UT, the Cluster spacecraft encountered a BBF event travelling Earthwards and duskwards with a velocity of ~500 km s−1 some nine minutes after the onset of the substorm. Coincident with this event the IMAGE spacecraft detected an auroral streamer in the substorm auroral bulge in the Southern Hemisphere near the footpoints of the Cluster spacecraft. Using FluxGate Magnetometer (FGM data from the four Cluster spacecraft, we determine the field-aligned currents in the BBF, using the curlometer technique, to have been ~5 mA km−2. When projected into the ionosphere, these currents give ionospheric field-aligned currents of ~18 A km−2, which is comparable with previously observed ionospheric field-aligned currents associated with BBFs and auroral streamers. The observations of the BBF are consistent with the plasma "bubble" model of Chen and Wolf (1993. Furthermore, we show that the observations of the BBF are consistent with the creation of the BBF by the reconnection of open field lines Earthward of a substorm associated near-Earth neutral line.

  2. Pathway and conversion of energy incident on auroral and sub-auroral ionosphere at substorm expansion onset

    Science.gov (United States)

    Ebihara, Y.; Tanaka, T.

    2017-12-01

    One explanation for SAPS/SAID is the poleward ionospheric electric field arising from a pair of Region 1 and Region 2 field-aligned currents (FACs). At substorm expansion onset, the FACs are intensified, resulting in intensification of energy incident on the auroral and sub-auroral ionosphere. Where does the energy comes from? Based on the results obtained by the global magnetohydrodynamics (MHD) simulation, we present energy flow and energy conversion associated with the Region 1 and Region 2 FACs that are intensified at the onset of substorm expansion. The cusp/mantle region transmits electromagnetic energy to almost the entire region of the magnetosphere. A part of electromagnetic energy is stored in the lobe in the growth phase. When reconnection takes place in the near-Earth tail region, the stored energy is released in addition to the continuously supplied one from the cusp/mantle dynamo. Two types of pathways of energy seem to be involved in the generation of the near-Earth dynamo that is associated with FACs at the expansion onset. The first type is related to the earthward fast flow in the plasma sheet. The electromagnetic energy coming from the lobe splits into the thermal energy and the kinetic energy. The kinetic energy is then converted to the thermal energy and the electromagnetic energy, in association of flow braking. The second type is that the plasma coming from the lobe goes into the inner magnetosphere directly. The electromagnetic energy is converted to the thermal energy, followed by the electromagnetic energy at off-equator. The near-Earth dynamo region seems to be embedded in the magnetospheric convection system. In this sense, the expansion onset may be regarded as a sudden, local intensification of the convection.

  3. Towards a synthesis of substorm electrodynamics: HF radar and auroral observations

    Directory of Open Access Journals (Sweden)

    A. Grocott

    2006-12-01

    Full Text Available At 08:35 UT on 21 November 2004, the onset of an interval of substorm activity was captured in the southern hemisphere by the Far UltraViolet (FUV instrument on board the IMAGE spacecraft. This was accompanied by the onset of Pi2 activity and subsequent magnetic bays, evident in ground magnetic data from both hemispheres. Further intensifications were then observed in both the auroral and ground magnetic data over the following ~3 h. During this interval the fields-of-view of the two southern hemisphere Tasman International Geospace Enviroment Radars (TIGER moved through the evening sector towards midnight. Whilst initially low, the amount of backscatter from TIGER increased considerably during the early stages of the expansion phase such that by ~09:20 UT an enhanced dusk flow cell was clearly evident. During the expansion phase the equatorward portion of this flow cell developed into a narrow high-speed flow channel, indicative of the auroral and sub-auroral flows identified in previous studies (e.g. Freeman et al., 1992; Parkinson et al., 2003. At the same time, higher latitude transient flow features were observed and as the interval progressed the flow reversal region and Harang discontinuity became very well defined. Overall, this study has enabled the spatial and temporal development of many different elements of the substorm process to be resolved and placed within a simple conceptual framework of magnetospheric convection. Specifically, the detailed observations of ionospheric flows have illustrated the complex interplay between substorm electric fields and associated auroral dynamics. They have helped define the distinct nature of different substorm current systems such as the traditional substorm current wedge and the more equatorward currents associated with polarisation electric fields. Additionally, they have revealed a radar signature of nightside reconnection which provides the promise of quantifying nightside reconnection in a

  4. On the formation of auroral arcs and acceleration of auroral electrons

    International Nuclear Information System (INIS)

    Swift, D.W.

    1975-01-01

    It is suggested that the highly structured auroral arc is caused by a current-driven laminar electrostatic shock oblique to the geomagnetic field. Electrons are accelerated by the potential jump associated with the shock. The shock is assumed to be confined to a plane. Self-consistent solutions to the Poisson-Vlasov systems are calculated for the electrostatic potential. A diabatic theory is used to calculate the ion number density in terms of the electrostatic potential and its derivatives. The electrons are assumed to be highly magnetized so they can only move parallel to the magnetic field. Solutions are exhibited for two plasma models: (1) streaming electrons and a two-temperature distribution of ions and (2) streaming electrons and ions and thermal electrons and ions. In the latter model, solutions can be obtained for an arbitrary potential jump across the shock. The shock is identified with the linear electrostatic ion cyclotron wave, and stability of these waves is examined to determine conditions for the formation of oblique shocks. Finally, the theory is discussed in the context of the magnetosphere, and possible model shocks are exhibited and discussed in terms of auroral arc formation

  5. Mapping auroral activity with Twitter

    Science.gov (United States)

    Case, N. A.; MacDonald, E. A.; Heavner, M.; Tapia, A. H.; Lalone, N.

    2015-05-01

    Twitter is a popular, publicly accessible, social media service that has proven useful in mapping large-scale events in real time. In this study, for the first time, the use of Twitter as a measure of auroral activity is investigated. Peaks in the number of aurora-related tweets are found to frequently coincide with geomagnetic disturbances (detection rate of 91%). Additionally, the number of daily aurora-related tweets is found to strongly correlate with several auroral strength proxies (ravg≈0.7). An examination is made of the bias for location and time of day within Twitter data, and a first-order correction of these effects is presented. Overall, the results suggest that Twitter can provide both specific details about an individual aurora and accurate real-time indication of when, and even from where, an aurora is visible.

  6. EISCAT as a tristatic auroral radar

    International Nuclear Information System (INIS)

    Schlegel, K.; Moorcroft, D.R.

    1989-01-01

    The authors have used the European Incoherent Scatter radar (EISCAT) in a mode which allows them to use it as a tristatic auroral radar. Observing at an elevation of less than 10 degree with the Tromsoe beam, they achieved magnetic aspect angles between 4 degree and 6 degree at 105 km altitude and recorded coherent echoes simultaneously from all three sites. The backscattered power for these echoes is up to 3 orders of magnitude higher than typical incoherent scatter echoes. Contrary to most existing auroral radars, they can calibrate the coherent echo strength and thus determine absolute values of the coherent backscatter cross section. Moreover, switching the common volume in short time intervals from E to F region heights, permits the determination of the E x B drift vector almost simultaneously with the E region coherent scattering measurements. This opens unique possibilities to study the E region plasma instabilities and their driving force. The main aim of this paper is to describe the capabilities of EISCAT as an auroral radar and to present and discuss results in terms of coherent backscatter cross sections, coherent spectra shape, irregularity phase velocities, and aspect angle dependence. In forthcoming papers several of these topics will be explored in more detail

  7. Issues in Quantitative Analysis of Ultraviolet Imager (UV) Data: Airglow

    Science.gov (United States)

    Germany, G. A.; Richards, P. G.; Spann, J. F.; Brittnacher, M. J.; Parks, G. K.

    1999-01-01

    The GGS Ultraviolet Imager (UVI) has proven to be especially valuable in correlative substorm, auroral morphology, and extended statistical studies of the auroral regions. Such studies are based on knowledge of the location, spatial, and temporal behavior of auroral emissions. More quantitative studies, based on absolute radiometric intensities from UVI images, require a more intimate knowledge of the instrument behavior and data processing requirements and are inherently more difficult than studies based on relative knowledge of the oval location. In this study, UVI airglow observations are analyzed and compared with model predictions to illustrate issues that arise in quantitative analysis of UVI images. These issues include instrument calibration, long term changes in sensitivity, and imager flat field response as well as proper background correction. Airglow emissions are chosen for this study because of their relatively straightforward modeling requirements and because of their implications for thermospheric compositional studies. The analysis issues discussed here, however, are identical to those faced in quantitative auroral studies.

  8. Resonant Alfven waves on auroral field lines

    International Nuclear Information System (INIS)

    Chiu, Y.T.

    1987-01-01

    It is shown that resonant Alfven waves on dipole magnetic field geometry and plasma distributions suitable for auroral field lines can be conveniently treated in the theory of Mathieu functions. Resurgent interest in invoking large-scale Alfven waves to structure some elements of auroral electrodynamics calls for interpretation of measured perpendicular electric and magnetic disturbance fields in terms of Alfven waves. The ability to express the resonant eigenmodes in closed form in terms of Mathieu functions allows for convenient tests of the Alfven wave structuring hypothesis. Implications for current vector electric and magnetic disturbance measurements are discussed

  9. THE RELATIONSHIP BETWEEN THE SEPTEMBER 2017 MARS GLOBAL AURORA EVENT AND CRUSTAL MAGNETIC FIELDS

    Science.gov (United States)

    Nasr, Camella-Rosa; Schneider, Nick; Connour, Kyle; Jain, Sonal; Deighan, Justin; Jakosky, Bruce; MAVEN/IUVS Team

    2018-01-01

    In September 2017, the Imaging UltraViolet Spectrograph (IUVS) on the MAVEN spacecraft observed global aurora on Mars caused by a surprisingly strong solar energetic particle event. Widespread “diffuse aurora” have previously been detected on Mars through more limited observations (Schneider et al., Science 350, (2015); DOI: 10.1126/science.aad0313), but recent observations established complete coverage of the observable portion of Mars’ nightside. The aurora was global due to Mars’s lack of a global magnetic field, which allowed energetic electrons from the Sun to directly precipitate into the atmosphere. On September 11th, IUVS detected aurora more than 25 times brighter than any prior IUVS observation, with high SNR detections of aurora at the limb and against the disk of the planet. Fainter auroral emission was seen around the nightside limb over 13 orbits spanning nearly 3 days.On September 14th, during the declining phase of the event, faint linear features and patches were detected by the spacecraft, which were higher than the noise floor, with a similar spatial distribution to “discrete aurora” patches observed on Mars by the SPICAM instrument on the Mars Express spacecraft (Bertaux et al., Nature 435, doi :10.1038/nature03603). Discrete aurora occur near areas of the crust affected by the magnetism left over from Mars’ once-strong dipole field. Emission is limited to regions of the crustal magnetic field where the field lines are likely to be open to solar wind interactions. Those regions are concentrated in Mars’ southern hemisphere centered on 180 degrees east longitude.We studied the localized emissions on 14 September to determine whether there might be a connection between the observed diffuse aurora event and discrete auroral processes. First, we investigated the localized emissions to confirm that the observed signal was consistent with expected auroral spectra. Second, their locations were projected on a map of the crustal magnetic

  10. Digital Images and Globalized Conflict

    DEFF Research Database (Denmark)

    Blaagaard, Bolette; Mortensen, Mette; Neumayer, Christina

    2017-01-01

    As the number of digital images of globalized conflicts online grow, critical examination of their impact and consequence is timely. This editorial provides an overview of digital images and globalized conflict as a field of study by discussing regimes of visibility and invisibility, proximity...... and distance, and the multiplicity of images. It engages critically with these interlinking themes as they are addressed in the contributing articles to the Special Issue as well as beyond, asking how genres and tropes are reproduced, how power plays a role in access to images, and how the sheer quantity...... of conflict-related images raise issues of knowledge production and research....

  11. Automatic Georeferencing of Astronaut Auroral Photography: Providing a New Dataset for Space Physics

    Science.gov (United States)

    Riechert, Maik; Walsh, Andrew P.; Taylor, Matt

    2014-05-01

    Astronauts aboard the International Space Station (ISS) have taken tens of thousands of photographs showing the aurora in high temporal and spatial resolution. The use of these images in research though is limited as they often miss accurate pointing and scale information. In this work we develop techniques and software libraries to automatically georeference such images, and provide a time and location-searchable database and website of those images. Aurora photographs very often include a visible starfield due to the necessarily long camera exposure times. We extend on the proof-of-concept of Walsh et al. (2012) who used starfield recognition software, Astrometry.net, to reconstruct the pointing and scale information. Previously a manual pre-processing step, the starfield can now in most cases be separated from earth and spacecraft structures successfully using image recognition. Once the pointing and scale of an image are known, latitudes and longitudes can be calculated for each pixel corner for an assumed auroral emission height. As part of this work, an open-source Python library is developed which automates the georeferencing process and aids in visualization tasks. The library facilitates the resampling of the resulting data from an irregular to a regular coordinate grid in a given pixel per degree density, it supports the export of data in CDF and NetCDF formats, and it generates polygons for drawing graphs and stereographic maps. In addition, the THEMIS all-sky imager web archive has been included as a first transparently accessible imaging source which in this case is useful when drawing maps of ISS passes over North America. The database and website are in development and will use the Python library as their base. Through this work, georeferenced auroral ISS photography is made available as a continously extended and easily accessible dataset. This provides potential not only for new studies on the aurora australis, as there are few all-sky imagers in

  12. Electric field measurements in the auroral E region

    International Nuclear Information System (INIS)

    Mahon, H.P.; Smiddy, M.; Sagalyn, R.C.

    1975-01-01

    Dipole electric field, positive ion and electron densities and temperatures, vehicle potential, and plasma sheath measurements have been made in the auroral E region by means of rockets flown from Fort Churchill, Canada. These results are described and compared over the altitude region 100 to 165 km. On a rocket flight launched on 10 December 1969 during very quiet conditions, adjacent to a stable, low intensity auroral arc, the plasma density and temperatures are found to be high and the electric fields large and steady. Electric field components of the order of -17 mv m -1 to +6 mv m -1 were measured along the Earth's magnetic field. The plasma results indicate that these fields may be contributing to enhanced electron temperatures. On a flight of 9 March 1970 during a large magnetic storm with widespread auroral activity, lower plasma densities and temperatures and much smaller and more erratic electric fields were observed with no significant component parallel to the magnetic field. (auth)

  13. Observed tail current systems associated with bursty bulk flows and auroral streamers during a period of multiple substorms

    Directory of Open Access Journals (Sweden)

    C. Forsyth

    2008-02-01

    Full Text Available We present a multi-instrument study of a substorm bursty bulk flow (BBF and auroral streamer. During a substorm on 25 August 2003, which was one of a series of substorms that occurred between 00:00 and 05:00 UT, the Cluster spacecraft encountered a BBF event travelling Earthwards and duskwards with a velocity of ~500 km s−1 some nine minutes after the onset of the substorm. Coincident with this event the IMAGE spacecraft detected an auroral streamer in the substorm auroral bulge in the Southern Hemisphere near the footpoints of the Cluster spacecraft. Using FluxGate Magnetometer (FGM data from the four Cluster spacecraft, we determine the field-aligned currents in the BBF, using the curlometer technique, to have been ~5 mA km−2. When projected into the ionosphere, these currents give ionospheric field-aligned currents of ~18 A km−2, which is comparable with previously observed ionospheric field-aligned currents associated with BBFs and auroral streamers. The observations of the BBF are consistent with the plasma "bubble" model of Chen and Wolf (1993. Furthermore, we show that the observations of the BBF are consistent with the creation of the BBF by the reconnection of open field lines Earthward of a substorm associated near-Earth neutral line.

  14. Experimental study of diffuse auroral precipitations

    International Nuclear Information System (INIS)

    Mouaia, K.

    1983-01-01

    First chapter is devoted to low energy electron precipitation in the evening sector of the auroral magnetosphere, during quiet and disturbed magnetic periods. Four subjects are studied in detail: the latitude distribution of the varied auroral forms and their relations to external magnetosphere; the time coefficients related to precipitations, the form and the dynamic of the diffuse precipitation equatorial frontier; the precipitation effect on the ionosphere concentration. The last part of the chapter shows that the plasma convection in the magnetosphere, associated to wave-particle interactions near the equatorial accounts for the principal characteristics of the evening sector diffuse electronic precipitations. The second chapter deals with subauroral precipitations of low energy ions, after the magnetospheric substorms, in the high latitude regions of the morning sector [fr

  15. A new method of organizing spectral line intensity ratio fluctuations of auroral emissions

    International Nuclear Information System (INIS)

    Thelin, B.

    1986-02-01

    In this paper a new kind of linearization effect between the atmospheric auroral emissions is presented. The same kind of linearization effect has previously been found in nightglow emissions from photometer measurements and in the spectrochemical field from studies of optical light sources. Linear graphs have been obtained for atomic spectral lines and vibrational bandspectra when the spectral line ratio fluctuations were plotted versus the photon energies of these emissions. This new effect has been studied with a spectrophotometer in auroral emissions, where linear graphs have been obtained on different auroral occasions. By doing such studies of auroral light it is possible to see the importance of the inelastic scattering cross section between electrons - atoms and electrons - molecules. In this way it has shown to be possible to determine the mean energy of the interacting thermal electrons that are active in the different auroral phases. (author)

  16. The role of magnetic-field-aligned electric fields in auroral acceleration

    International Nuclear Information System (INIS)

    Block, L.P.; Faelthammar, C.G.

    1990-01-01

    Electric field measurements on the Swedish satellite Viking have confirmed and extended earlier observations on S3-3 and provided further evidence of the role of dc electric fields in auroral acceleration processes. On auroral magnetic field lines the electric field is strongly fluctuating both transverse and parallel to the magnetic field. The significance of these fluctuations for the auroral acceleration process is discussed. A definition of dc electric fields is given in terms of their effects on charged particles. Fluctuations below several hertz are experienced as dc by typical auroral electrons if the acceleration length is a few thousand kilometers. For ions the same is true below about 0.1 Hz. The magnetic-field-aligned (as well as the transverse) component of the electric field fluctuations has a maximum below 1 Hz, in a frequency range that appears as dc to the electrons but not to the ions. This allows it to cause a selective acceleration, which may be important in explaining some of the observed characteristics of auroral particle distributions. The electric field observations on Viking support the conclusion that magnetic-field-aligned potential drops play an important role in auroral acceleration, in good agreement with particle observations boht on Viking and on the DE satellites. They also show that a large part, or even all, of the accelerating potential drop may be accounted for by numerous weak (about a volt) electric double layers, in agreement with earlier observations on the S3-3 satellite and with an early theoretical suggestion by L. Block

  17. Middle-energy electron anisotropies in the auroral region

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2004-01-01

    Full Text Available Field-aligned anisotropic electron distribution functions of T > T type are observed on auroral field lines at both low and high altitudes. We show that typically the anisotropy is limited to a certain range of energies, often below 1keV, although sometimes extending to slightly higher energies as well. Almost always there is simultaneously an isotropic electron distribution at higher energies. Often the anisotropies are up/down symmetrical, although cases with net upward or downward electron flow also occur. For a statistical analysis of the anisotropies we divide the energy range into low (below 100eV, middle (100eV–1keV and high (above 1keV energies and develop a measure of anisotropy expressed in density units. The statistical magnetic local time and invariant latitude distribution of the middle-energy anisotropies obeys that of the average auroral oval, whereas the distributions of the low and high energy anisotropies are more irregular. This suggests that it is specifically the middle-energy anisotropies that have something to do with auroral processes. The anisotropy magnitude decreases monotonically with altitude, as one would expect, because electrons have high mobility along the magnetic field and thus, the anisotropy properties spread rapidly to different altitudes.

    Key words. Magnetospheric physics (auroral phenomena. Space plasma physics (wave-particle interactions; changed particle motion and acceleration

  18. Auroral electron acceleration by lower-hybrid waves

    International Nuclear Information System (INIS)

    Bingham, R.; Bryant, D.A.; Hall, D.S.

    1986-01-01

    Because the particles and electric fields association with inverted-V electron streams do not have the characteristics expected for acceleration by a quasistatic potential difference, the possiblity that the electrons are stochastically accelerated by waves is investigated. It is demonstrated that the lower hybrid waves seen on auroral field lines have the righ properties to account for the electron acceleration. It is further shown that the lower hybrid wave power measured on auroral field lines can be generated by the streaming ions observed at the boundary of the plasma sheet, and that this wave power is sufficient to account for the electron power observed close to the atmosphere. (author)

  19. Rocket measurement of auroral partial parallel distribution functions

    Science.gov (United States)

    Lin, C.-A.

    1980-01-01

    The auroral partial parallel distribution functions are obtained by using the observed energy spectra of electrons. The experiment package was launched by a Nike-Tomahawk rocket from Poker Flat, Alaska over a bright auroral band and covered an altitude range of up to 180 km. Calculated partial distribution functions are presented with emphasis on their slopes. The implications of the slopes are discussed. It should be pointed out that the slope of the partial parallel distribution function obtained from one energy spectra will be changed by superposing another energy spectra on it.

  20. Anomalous dc resistivity and double layers in the auroral ionosphere

    International Nuclear Information System (INIS)

    Kindel, J.M.; Barnes, C.; Forslund, D.W.

    1980-01-01

    There are at least four candidate instabilities which might account for anomalous dc rereresistivity in the auroral ionosphere. These are: the ion-acoustic instability, the Buneman instability, the ion-cyclotron instability and double layers. Results are reported of computer simulations of these four instabilities which suggest that double layers are most likely to be responsible for sistivity in the auroral zone

  1. Auroral-arc splitting by intrusion of a new convection channel

    Directory of Open Access Journals (Sweden)

    H. U. Frey

    Full Text Available During a run of the Common Programme Three of the EISCAT radar the splitting of an auroral arc was observed by high time-resolution, ground-based cameras when the UHF radar beam was close to the arc. The evening eastward electrojet situation with a large-scale northward ionospheric electric field was disturbed by the intrusion of a convection channel with southward electric field from the east. The interaction of the new convection channel with the auroral arc caused changes in arc brightness and arc splitting, i.e. the creation of a new arc parallel to the pre-existing auroral arc. The event is described as one possibility for the creation of parallel arcs during slightly disturbed magnetic conditions far from the Harang discontinuity.

  2. Auroral-arc splitting by intrusion of a new convection channel

    Directory of Open Access Journals (Sweden)

    H. U. Frey

    1996-12-01

    Full Text Available During a run of the Common Programme Three of the EISCAT radar the splitting of an auroral arc was observed by high time-resolution, ground-based cameras when the UHF radar beam was close to the arc. The evening eastward electrojet situation with a large-scale northward ionospheric electric field was disturbed by the intrusion of a convection channel with southward electric field from the east. The interaction of the new convection channel with the auroral arc caused changes in arc brightness and arc splitting, i.e. the creation of a new arc parallel to the pre-existing auroral arc. The event is described as one possibility for the creation of parallel arcs during slightly disturbed magnetic conditions far from the Harang discontinuity.

  3. Auroral ionospheric quiet summer time conductances

    International Nuclear Information System (INIS)

    Brekke, A.; Hall, C.

    1988-01-01

    The auroral zone E-region conductivities and conductances have been studied for 7 quiet time summer days. The Hall- and Pedersen conductances are found to follow the solar zenith variations in a rather regular fashion, and empirical formulas for these conductances are obtained. The choice of proper collision frequency models is found to be of great importance when deriving the conductances, and it is argued that some of the different results presented by other authors may be due to different models of the collision frequencies. The Hall- to Pedersen conductance ratios can only be used as an indicator of the energy of the precipitating auroral particles when the contribution from the background solar ionization is subtracted. When this is done this ratio takes much higher values than previously reported

  4. Generation of auroral hectometer radio emission at the laser cyclotron resonance (ωp≥ωH)

    International Nuclear Information System (INIS)

    Vlasov, V.G.

    1992-01-01

    Generation of auroral hectometer (AHR) and kilometer (AKR) radio emission at a maser cyclotron resonance (MCR) in a relatively dense plasma (ω p ≥ω H ) is theoretically studied. The conclusion is made that availability of two-dimensional small-scale inhomogeneity of plasma density is the basic condition for the AHR generation at the MCR by auroral electron beams. The small-scale inhomogeneity of the auroral plasma, measured on satelites, meets by its parameters the conditions for the generation of auroral radio emission

  5. Space weather and the Earth ionosphere from auroral zone to equator

    Science.gov (United States)

    Biktash, L.

    2007-08-01

    Space weather conditions, geomagnetic variations, virtual ionospheric height and the critical frequency foF2 data during the geomagnetic storms are studied to demonstrate relationships between these phenomena. We examine the solar wind conditions and the auroral equatorial ionosphere response to illustrate what kind of solar wind parameters during the geomagnetic storms leads to short-term variations of the critical frequency foF2 and virtual height at the Earth ionosphere from the auroral zone to the equator. Model simulations as disturbed ionospheric wind dynamo do not allow explaining a significant part of the experimental data. Additional investigations of the ionospheric characteristics are required to clear up the origin of the short-term equatorial ionospheric variations. The critical frequency foF2 and virtual heights observed by the ionosondes are good indicators of the true layer heights and electron concentration and may provide information about the equatorial ionosphere dynamics. Intensive magnetospheric and ionospheric currents during geomagnetic storms disturb the quiet ionosphere and cause the observed short-term variations of the ionospheric characteristics. The ionosheric wind dynamo is considered as an important and the main mechanism in generation of ionospheric electric currents and fields. The disturbed ionospheric wind dynamo can be the generator of the equatorial ionospheric electric currents during geomagnetic storms in the aftermath of strong auroral heating. The magnetospheric electric field directly penetrating into the low-latitude ionosphere can be another source of electric field. During disturbed space weather conditions magnetospheric electric fields disturb the auroral ionosphere forming auroral electrojets and by the high-latitude electric field and termospheric disturbances can penetrate to the equatorial ionosphere. That is the reason the equatorial ionospheric electric field variations like geomagnetic variations are complex

  6. Correlation between Auroral kilometric radiation and field-aligned currents

    International Nuclear Information System (INIS)

    Green, J.L.; Saflekos, N.A.; Gurnett, D.A.; Potemra, T.A.

    1982-01-01

    Simultaneous observations of field-aligned currents (FAC) and auroral kilometric radiation (AKR) are compared from the polar-orbiting satellites Triad and Hawkeye. The Triad observations were restricted to the evening-to-midnight local time sector (1900 to 0100 hours magnetic local time) in the northern hemisphere. This is the region in which the most intense storms of AKR are believed to originate. The Hawkeye observations were restricted to when the satellite was in the AKR emission cone in the northern hemisphere and at radial distances > or =7R/sub E/ (earth radii) to avoid local propagation cutoff effects. A(R/7R/sub E/) 2 normalization to the power flux measurements of the kilometric radiation from Hawkeye is used to take into account the radial dependence of this radiation and to scale all intensity measurements so that they are independent of Hawkeye's position in the emission cone. Integrated field-aligned current intensities from Triad are determined from the observed transverse magnetic field disturbances. There appears to be a weak correlation between AKR intensity and the integrated current sheet intensity of field-aligned currents. In general, as the intensity of auroral kilometric radiation increases so does the integrated auroral zone current sheet intensity increase. Statistically, the linear correlation coefficient between the log of the AKR power flux and the log of the current sheet intensity is 0.57. During weak AKR bursts ( - 18 W m - 2 Hz - 1 ), Triad always observed weak FAC'S ( - 1 ), and when Triad observed large FAC's (> or =0.6 A m - 1 ), the AKR intensity from Hawkeye was moderately intense (10 - 5 to 10 - 14 W m - 2 Hz - 1 ) to intense (>10 - 14 W m - 2 Hz - 1 ). It is not clear from these preliminary results what the exact role is that auroral zone field-aligned currents play in the generation or amplification of auroral kilometric radiation

  7. Recent Advances in Observations of Ground-level Auroral Kilometric Radiation

    Science.gov (United States)

    Labelle, J. W.; Ritter, J.; Pasternak, S.; Anderson, R. R.; Kojima, H.; Frey, H. U.

    2011-12-01

    Recently LaBelle and Anderson [2011] reported the first definitive observations of AKR at ground level, confirmed through simultaneous measurements on the Geotail spacecraft and at South Pole Station, Antarctica. The initial observations consisted of three examples recorded in 2004. An Antarctic observing site is critical for observing ground level AKR which is obscured by man-made broadcast signals at northern hemisphere locations. Examination of 2008 austral winter radio data from Antarctic Automatic Geophysical Observatories (AGOs) of the Polar Experiment Network for Geospace Upper-atmosphere Investigations (PENGUIn) network and South Pole Station reveals 37 ground level AKR events on 23 different days, 30 of which are confirmed by correlation with AKR observed with the Geotail spacecraft. The location of the Geotail spacecraft appears to be a significant factor enabling coincident measurements. Six of the AKR events are detected at two or three ground-level observatories separated by approximately 500 km, suggesting that the events illuminate an area comparable to a 500-km diameter. For 14 events on ten nights, photometer and all-sky imager data from South Pole and AGOs were examined; in ten cases, locations of auroral arcs could be determined at the times of the events. In eight of those cases, the AKR was detected at observatories poleward of the auroral arcs, and in the other two cases the aurora was approximately overhead at the observatory where AKR was detected. These observations suggest that the AKR signals may be ducted to ground level along magnetic field lines rather than propagating directly from the AKR source region of approximately 5000 km altitude. Correlations between structures in the AKR and intensifications of auroral arcs are occasionally observed but are rare. The ground-level AKR events have a local time distribution similar to that of AKR observed from satellites, peaking in the pre-midnight to midnight sector. This data base of >30

  8. Complex image method for calculating electric and magnetic fields produced by an auroral electrojet of finite length

    Directory of Open Access Journals (Sweden)

    R. Pirjola

    1998-11-01

    Full Text Available The electromagnetic field due to ionospheric currents has to be known when evaluating space weather effects at the earth's surface. Forecasting methods of these effects, which include geomagnetically induced currents in technological systems, are being developed. Such applications are time-critical, so the calculation techniques of the electromagnetic field have to be fast but still accurate. The contribution of secondary sources induced within the earth leads to complicated integral formulas for the field at the earth's surface with a time-consuming computation. An approximate method of calculation based on replacing the earth contribution by an image source having mathematically a complex location results in closed-form expressions and in a much faster computation. In this paper we extend the complex image method (CIM to the case of a more realistic electrojet system consisting of a horizontal line current filament with vertical currents at its ends above a layered earth. To be able to utilize previous CIM results, we prove that the current system can be replaced by a purely horizontal current distribution which is equivalent regarding the total (=primary + induced magnetic field and the total horizontal electric field at the earth's surface. The latter result is new. Numerical calculations demonstrate that CIM is very accurate and several magnitudes faster than the exact conventional approach.Key words. Electromagnetic theory · Geomagnetic induction · Auroral ionosphere

  9. The magnetoionic modes and propagation properties of auroral radio emissions

    International Nuclear Information System (INIS)

    Calvert, W.; Hashimoto, Kozo

    1990-01-01

    The different magnetoionic wave modes which accompany the aurora are identified using DE 1 not only by their appearance on satellite radio spectrograms, but also by concurrent measurements of their wave polarization and arrival directions, and by ray-tracing models of their expected propagation behavior. Of the four possible propagation modes, designated O, X, W, and Z for the ordinary, extraordinary, whistler, and Z modes, respectively, all four are found to occur in the auroral zone, as follows: The most intense, of course, is the well-known auroral kilometric radiation (AKR), which originates primarily in the X mode near the electron cyclotron frequency, but which is frequently also accompanied by a weaker O-mode component from the same location. The next most prominent auroral emission is the W-mode auroral hiss originating from altitudes always well below the DE 1 satellite at frequencies below the local cyclotron frequency. The previously reported Z-mode auroral radiation was also detected, but from sources also below the satellite and at the poleward edge of the cavity, and not from the expected AKR source at the cyclotron frequency. A weaker O-mode component seems to accompany these emissions also, both within the polar cap poleward of the source and inside the cavity, the latter seemingly being guided upward by the cavity's lower plasma densities. Finally, exactly on the source field lines at the poleward edge of the cavity, there also occasionally seems to be localized Z-mode emissions extending from the Z-mode cutoff at quite low frequencies up to and above the plasma frequency

  10. The Auroral Field-aligned Acceleration - Cluster Results

    Science.gov (United States)

    Vaivads, A.; Cluster Auroral Team

    The four Cluster satellites cross the auroral field lines at altitudes well above most of acceleration region. Thus, the orbit is appropriate for studies of the generator side of this region. We consider the energy transport towards the acceleration region and different mechanisms for generating the potential drop. Using data from Cluster we can also for the first time study the dynamics of the generator on a minute scale. We present data from a few auroral field crossings where Cluster are in conjunction with DMSP satellites. We use electric and magnetic field data to estimate electrostatic po- tential along the satellite orbit, Poynting flux as well as the presence of plasma waves. These we can compare with data from particle and wave instruments on Cluster and on low latitude satellites to try to make a consistent picture of the acceleration region formation in these cases. Preliminary results show close agreement both between in- tegrated potential values at Cluster and electron peak energies at DMSP as well as close agreement between the integrated Poynting flux values at Cluster and the elec- tron energy flux at DMSP. At the end we draw a parallels between auroral electron acceleration and electron acceleration at the magnetopause.

  11. Polarization measurements of auroral kilometric radiation by Dynamics Explorer-1

    International Nuclear Information System (INIS)

    Shawhan, S.D.; Gurnett, D.A.

    1982-01-01

    The plasma wave instrument (PWI) on the Dynamics Explorer-1 has been used to measure polarization of auroral kilometric radiation (AKR) at frequencies of 50 to 400 kHz in both the northern and the southern nightside auroral regions at altitudes of 1 to 3 R/sub E/ above the AKR source regions. The AKR polarization sense is found to be the same as the right hand polarized auroral hiss found in the frequency range of 0.8 to 6.4 kHz. Consequently, these unambiguous direct polarization measurements of AKR lead to the conclusion that AKR escapes the magnetosphere in the R-X mode. Since DE-1 is close to the source region, it can be inferred that AKR is generated predominately in the R-X mode

  12. A hybrid simulation model for a stable auroral arc

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    Full Text Available We present a new type of hybrid simulation model, intended to simulate a single stable auroral arc in the latitude/altitude plane. The ionospheric ions are treated as particles, the electrons are assumed to follow a Boltzmann response and the magnetospheric ions are assumed to be so hot that they form a background population unaffected by the electric fields that arise. The system is driven by assumed parallel electron energisation causing a primary negative charge cloud and an associated potential structure to build up. The results show how a closed potential structure and density depletion of an auroral arc build up and how they decay after the driver is turned off. The model also produces upgoing energetic ion beams and predicts strong static perpendicular electric fields to be found in a relatively narrow altitude range (~ 5000–11 000 km.

    Key words. Magnetospheric physics (magnetosphere-ionosphere interactions; auroral phenomena – Space plasma physics (numerical simulation studies

  13. An auroral westward flow channel (AWFC and its relationship to field-aligned current, ring current, and plasmapause location determined using multiple spacecraft observations

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    2007-02-01

    Full Text Available An auroral westward flow channel (AWFC is a latitudinally narrow channel of unstable F-region plasma with intense westward drift in the dusk-to-midnight sector ionosphere. AWFCs tend to overlap the equatorward edge of the auroral oval, and their life cycle is often synchronised to that of substorms: they commence close to substorm expansion phase onset, intensify during the expansion phase, and then decay during the recovery phase. Here we define for the first time the relationship between an AWFC, large-scale field-aligned current (FAC, the ring current, and plasmapause location. The Tasman International Geospace Environment Radar (TIGER, a Southern Hemisphere HF SuperDARN radar, observed a jet-like AWFC during ~08:35 to 13:28 UT on 7 April 2001. The initiation of the AWFC was preceded by a band of equatorward expanding ionospheric scatter (BEES which conveyed an intense poleward electric field through the inner plasma sheet. Unlike previous AWFCs, this event was not associated with a distinct substorm surge; rather it occurred during an interval of persistent, moderate magnetic activity characterised by AL~−200 nT. The four Cluster spacecraft had perigees within the dusk sector plasmasphere, and their trajectories were magnetically conjugate to the radar observations. The Waves of High frequency and Sounder for Probing Electron density by Relaxation (WHISPER instruments on board Cluster were used to identify the plasmapause location. The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE EUV experiment also provided global-scale observations of the plasmapause. The Cluster fluxgate magnetometers (FGM provided successive measurements specifying the relative location of the ring current and filamentary plasma sheet current. An analysis of Iridium spacecraft magnetometer measurements provided estimates of large-scale ionospheric FAC in relation to the AWFC evolution. Peak flows in the AWFC were located close to the peak of a Region 2

  14. Development of the Near-Earth Magnetotail and the Auroral Arc Associated with Substorm Onset: Evidence for a New Model

    Science.gov (United States)

    Miyashita, Y.; Hiraki, Y.; Angelopoulos, V.; Ieda, A.; Machida, S.

    2015-12-01

    We have studied the time sequence of the development of the near-Earth magnetotail and the auroral arc associated with a substorm onset, using the data from the THEMIS spacecraft and ground-based observatories at high temporal and spatial resolutions. We discuss four steps of the auroral development, linking them to magnetotail changes: the auroral fading, the initial brightening of an auroral onset arc, the enhancement of the wave-like structure, and the poleward expansion. A case study shows that near-Earth magnetic reconnection began at X~-17 RE at least ~3 min before the auroral initial brightening and ~1 min before the auroral fading. Ionospheric large-scale convection also became enhanced just before the auroral fading and before the auroral initial brightening. Then low-frequency waves were amplified in the plasma sheet at X~-10 RE, with the pressure increase due to the arrival of the earthward flow from the near-Earth reconnection site ~20 s before the enhancement of the auroral wave-like structure. Finally, the dipolarization began ~30 s before the auroral poleward expansion. On the basis of the present observations, we suggest that near-Earth magnetic reconnection plays two roles in the substorm triggering. First, it generates a fast earthward flow and Alfvén waves. When the Alfvén waves which propagate much faster than the fast flow reach the ionosphere, large-scale ionospheric convection is enhanced, leading to the auroral initial brightening and subsequent gradual growth of the auroral wave-like structure. Second, when the reconnection-initiated fast flow reaches the near-Earth magnetotail, it promotes rapid growth of an instability, such as the ballooning instability, and the auroral wave-like structure is further enhanced. When the instability grows sufficiently, the dipolarization and the auroral poleward expansion are initiated.

  15. Viking observations at the source region of auroral kilometric radiation

    International Nuclear Information System (INIS)

    Bahnsen, A.; Jespersen, M.; Ungstrup, E.; Pedersen, B.M.; Eliasson, L.; Murphree, J.S.; Elphinstone, R.D.; Blomberg, L.; Holmgren, G.; Zanetti, L.J.

    1989-01-01

    The orbit of the Swedish satellite Viking was optimized for in situ observations of auroral particle acceleration and related phenomena. In a large number of the orbits, auroral kilometric radiation (AKR) was observed, and in approximately 35 orbits the satellite passed through AKR source regions as evidenced by very strong signals at the local electron cyclotron frequency f ce . These sources were found at the poleward edge of the auroral oval at altitudes, from 5,000 to 8,000 km, predominantly in the evening sector. The strong AKR signal has a sharp low-frequency cutoff at or very close to f ce in the source. In addition to AKR, strong broadband electrostatic noise is measured during the source crossings. Energetic (1-15 keV) electrons are always present at and around the AKR sources. Upward directed ion beams of several keV are closely correlated with the source as are strong and variable electric fields, indicating that a region of upward pointing electric field below the observation point is a necessary condition for AKR generation. The plasma density is measured by three independent experiments and it is generally found that the density is low across the whole auroral oval. For some source crossings the three methods agree and show a density depletion (but not always confined to the source region itself), but in many cases the three measurements do not yield consistent results. The magnetic projection of the satellite passes through auroral forms during the source crossings, and the strongest AKR events seem to be connected with kinks in an arc or more complicated structures

  16. Relationships between interplanetary quantities and the global auroral electrojet index

    International Nuclear Information System (INIS)

    Meloni, A.; Wolfe, A.; Lanzerotti, L.J.

    1982-01-01

    We have studied, using linear cross correlation and multilinear regression analyses, statistical relations between the magnetospheric auroral electrojet intensity index AE and various parameters characterizing the interplanetary plasma and magnetic field. We also consider the recently proposed epsilon parameter as an independent variable. The analyses were carried out separately for twenty-eight days in mid 1975 and for each of five individual magnetic storm intervals that have been previously discussed extensively in the literature. We find that when the interplanetary data set is not distinguished as to the direction of the north-south component B/sub z/, the interplanetary electric field -VB/sub z/ carried to the front of the magnetosphere correlates with AE substantially better than does epsilon. Considering only data during which B/sub z/ is negative gives a slightly better correlation of epsilon with AE than of the electric field with AE. The correlations are valid for the specific storm periods as well as for the unrestricted twenty-eight days of data. Our results suggest that the physical processes involved in energy transfer to the nightside magnetosphere depend upon the direction of the north-south component of the interplanetary magnetic field: the interplanetary electric field plays an important role during northward B/sub z/ and the epsilon parameter and the electric field both provide an indication of energy transfer and substorm activity during southward B/sub z/

  17. Field line projections of 6300 AA auroral emissions into the outer magnetosphere

    International Nuclear Information System (INIS)

    Shepherd, M.M.

    1979-07-01

    An empirical magnetospheric model is employed to project auroral intensity boundaries into the magnetosphere. The auroral data are in the form of instantaneous maps of 6300AA emission, acquired with the ISIS-II spacecraft and correspond to fluxes of low energy electrons. These are specific to a particular universal time and date. The magnetospheric model used is a purely empirical one, designed by Mead and Fairfield (1975) from 44.76 x 10 6 magnetic measurements made by 4 IMP satellites. Their model includes the dipole tilt as a variable, and permits selection from four different disturbance levels, so is particularly suited to these data. In a general way, the auroral projections agree with what is expected, giving some confidence in this application of the model. But a number of features appear that were not predicted, and which should permit new insights into the relationship of specific auroral boundaries to the structure of the magnetosphere. (author)

  18. RFP for the Auroral Multiscale Midex (AMM) Mission star tracker

    DEFF Research Database (Denmark)

    Riis, Troels; Betto, Maurizio; Jørgensen, John Leif

    1999-01-01

    This document is in response to the John Hopkins University - Applied Physics Laboratory RFP for the Auroral Multiscale Midex Mission star tracker.It describes the functionality, the requirements and the performance of the ASC Star Tracker.......This document is in response to the John Hopkins University - Applied Physics Laboratory RFP for the Auroral Multiscale Midex Mission star tracker.It describes the functionality, the requirements and the performance of the ASC Star Tracker....

  19. Stormtime Simulations of Sub-Auroral Polarization Streams (SAPS)

    Science.gov (United States)

    Huba, J.; Sazykin, S. Y.; Coster, A. J.

    2017-12-01

    We present simulation results from the self-consistently coupled SAMI3/RCM code on the impact of geomagnetic storms on the ionosphere/plasmasphere system with an emphasis on the development of sub-auroral plasma streams (SAPS). We consider the following storm events: March 31, 2001, March 17, 2013, March 17, 2015, September 3, 2012, and June 23, 2015. We compare and contrast the development of SAPS for these storms. The main results are the development of sub-auroral (< 60 degrees) low-density, high-speed flows (1 - 2 km/s). Additionally, we discuss the impact on plasmaspheric dynamics. We compare our model results to data (e.g., Millstone Hill radar, GPS TEC).

  20. Radar measurements of the latitudinal variation of auroral ionization

    International Nuclear Information System (INIS)

    Vondrak, R.R.; Baron, M.J.

    1976-01-01

    The Chatanika, Alaska, incoherent scatter radar has been used to measure the spatial variation of auroral ionization. A two-dimensional (altitude, latitude) cross-sectional map of electron densities in the ionosphere is produced by scanning in the geomagnetic meridian plane. The altitutde variation of ionization is used to infer the differential energy distribution of the incident auroral electrons. The latitudinal variation of this energy distribution and the total energy input are obtained by use of the meridian-scanning technique. Examples are shown of observations made during an active aurora

  1. Observations of transverse ion acceleration in the topside auroral ionosphere

    International Nuclear Information System (INIS)

    Garbe, G.P.; Arnoldy, R.L.; Moore, T.E.; Kintner, P.M.; Vago, J.L.

    1992-01-01

    Data obtained from a sounding rocket flight which reached an apogee of 927 km and passed through several auroral arcs are reported. During portions of the flight when the rocket was not in an energetic auroral structure, the ion data are fit to a Maxwellian function which yields the plasma parameters. Throughout the middle portion of the flight when above 700 km altitude, ion distributions having a superthermal tail were measured. These ion distributions generally coexisted with a cold thermal core distribution and peaked at pitch angles slightly greater than 90 degree, which identifies them as conic distributions. These ions can be modeled using a bi-Maxwellian distribution function with a perpendicular (to B) temperature about 10 times greater than the parallel temperature of 0.15 eV. When the rocket was immersed in energetic auroral electron precipitation, two other ion distributions were observed. Transversely accelerated ions which represented bulk heating of the ambient population were observed. Transversely accelerated ions which represented bulk heating of the ambient population were observed continuously in these arcs. The characteristic perpendicular energy of the transversely bulk heated ions reached as high as 3 eV compared to typically less than 0.4 eV during nonauroral times. Cold ions flowing down the magnetic field were also continuously observed when the rocket was immersed in auroral electron precipitation and had downward speeds between 3 and 5 km/s. If one balances electric and collisional forces, these speeds translate to an electric field pointing into the atmosphere of magnitude 0.01 mV/m. A close correlation between auroral electron precipitation, measured electrostatic oxygen cyclotron waves, cold downflowing ions and transversely bulk heated ions will be shown

  2. Nonlinear model of short-scale electrodynamics in the auroral ionosphere

    Directory of Open Access Journals (Sweden)

    J.-M. A. Noël

    Full Text Available The optical detection of auroral subarcs a few tens of m wide as well as the direct observation of shears several m/s per m over km to sub km scales by rocket instrumentation both indicate that violent and highly localized electrodynamics can occur at times in the auroral ionosphere over scales 100 m or less in width. These observations as well as the detection of unstable ion-acoustic waves observed by incoherent radars along the geomagnetic field lines has motivated us to develop a detailed time-dependent two-dimensional model of short-scale auroral electrodynamics that uses current continuity, Ohm's law, and 8-moment transport equations for the ions and electrons in the presence of large ambient electric fields to describe wide auroral arcs with sharp edges in response to sharp cut-offs in precipitation (even though it may be possible to describe thin arcs and ultra-thin arcs with our model, we have left such a study for future work. We present the essential elements of this new model and illustrate the model's usefulness with a sample run for which the ambient electric field is 100 mV/m away from the arc and for which electron precipitation cuts off over a region 100 m wide. The sample run demonstrates that parallel current densities of the order of several hundred µA m-2 can be triggered in these circumstances, together with shears several m/s per m in magnitude and parallel electric fields of the order of 0.1 mV/m around 130 km altitude. It also illustrates that the local ionospheric properties like densities, temperature and composition can strongly be affected by the violent localized electrodynamics and vice-versa.

    Key words: Ionosphere (auroral ionosphere, electric fields and currents, ionosphere-magnetosphere interactions

  3. Carl Størmer Auroral Pioneer

    CERN Document Server

    Egeland, Alv

    2013-01-01

    This biography summarizes the seminal contributions to auroral and space science of Carl Størmer (1874 - 1957). He was the first to develop precise photographic methods to calculate heights and morphologies of diverse auroral forms during four solar cycles. Størmer independently devised numerical techniques to determine the trajectories of high-energy charged particles allowed and forbidden in the Earth’s magnetic field. His theoretical analyses explained cosmic ray access to the upper atmosphere, 20 years before they were identified by other scientists. Størmer’s crowning achievement, “The Polar Aurora,” published when he was 81 years old, stands to this day as a regularly cited guide in graduate-level courses on space physics.   The authors present the life of this prodigious scientist in relation to the cultural life of early 20th century in Norway and to the development of the space sciences in the post-Sputnik era.

  4. Analysis of auroral infrared emissions observed during the ELIAS experiment

    Directory of Open Access Journals (Sweden)

    G. E. Caledonia

    Full Text Available The ELIAS (Earth Limb Infrared Atmospheric Structure experiment was flown from the Poker Flat Research Range, Alaska in 1983 and successfully monitored visible and infrared emissions from an IBC III+ aurora. Measurements were performed in both staring and scanning modes over several hundred seconds. The data for short- and mid-wave infrared regions have been analyzed in terms of auroral excitation of the NO and NO+ vibrational bands. Auroral excitation efficiencies and kinetic implications are presented.

  5. Records of auroral candidates and sunspots in Rikkokushi, chronicles of ancient Japan from early 7th century to 887

    Science.gov (United States)

    Hayakawa, Hisashi; Iwahashi, Kiyomi; Tamazawa, Harufumi; Ebihara, Yusuke; Kawamura, Akito Davis; Isobe, Hiroaki; Namiki, Katsuko; Shibata, Kazunari

    2017-12-01

    We present the results of the surveys on sunspots and auroral candidates in Rikkokushi, Japanese official histories from the early 7th century to 887, to review the solar and auroral activities. In total, we found one sunspot record and 13 auroral candidates in Rikkokushi. We then examine the records of the sunspots and auroral candidates, compare the auroral candidates with the lunar phase to estimate their reliability, and compare the records of the sunspots and auroral candidates with the contemporary total solar irradiance reconstructed from radioisotope data. We also identify the locations of the observational sites to review possible equatorward expansion of the auroral oval. These discussions suggest a major gap in auroral candidates from the late 7th to early 9th centuries, which includes the candidate of the grand minimum reconstructed from the radioisotope data, a similar tendency as the distributions of sunspot records in contemporary China, and a relatively high magnetic latitude of observational sites with a higher potential for observing aurorae more frequently than at present.

  6. Alfvénic Dynamics and Fine Structuring of Discrete Auroral Arcs: Swarm and e-POP Observations

    Science.gov (United States)

    Miles, D.; Mann, I. R.; Pakhotin, I.; Burchill, J. K.; Howarth, A. D.; Knudsen, D. J.; Wallis, D. D.; Yau, A. W.; Lysak, R. L.

    2017-12-01

    The electrodynamics associated with dual discrete arc aurora with anti-parallel flow along the arcs were observed nearly simultaneously by the enhanced Polar Outflow Probe (e-POP) and the Swarm A and C spacecraft. Auroral imaging from e-POP reveal 1-10 km structuring of the arcs, which move and evolve on second timescales and confound the traditional single-spacecraft field-aligned current algorithms. High-cadence magnetic data from e-POP shows 1-10 Hz, presumably Alfvénic perturbations co-incident with and at the same scale size as the observed dynamic auroral fine structures. High-cadence electric and magnetic field data from Swarm A reveals non-stationary electrodynamics involving reflected and interfering Alfvén waves and signatures of modulation consistent with trapping in the Ionospheric Alfvén Resonator (IAR). Together, these observations suggest a role for Alfven waves, perhaps also the IAR, in discrete arc dynamics on 0.2 - 10s timescales and 1-10 km spatial scales.

  7. Double layers do accelerate particles in the auroral zone

    International Nuclear Information System (INIS)

    Borovsky, J.E.

    1992-01-01

    In response to a recent report [D. A. Bryant, R. Bingham, and U. de Angelis, Phys. Rev. Lett. 68, 37 (1991)] that makes the claim that electrostatic fields are weak in the auroral zone and that electrostatic fields cannot accelerate particles, it is pointed out that the evidence for electrostatic fields in the auroral zone is overwhelming and that these electrostatic fields often are accelerating electrons to produce aurora. The literature cited in the article above as evidence against double layers (strong electric fields) is reexamined and is found not to be evidence against double layers

  8. The location of the open-closed magnetic field line boundary in the dawn sector auroral ionosphere

    Directory of Open Access Journals (Sweden)

    J. A. Wild

    2004-11-01

    Full Text Available As a measure of the degree of coupling between the solar wind-magnetosphere-ionosphere systems, the rate at which the size of the polar cap (the region corresponding to ionospheric termini of open magnetic flux tubes varies is of prime importance. However, a reliable technique by which the extent of the polar cap might be routinely monitored has yet to be developed. Current techniques provide particularly ambiguous indications of the polar cap boundary in the dawn sector. We present a case study of space- and ground-based observations of the dawn-sector auroral zone and attempt to determine the location of the polar cap boundary using multi-wavelength observations of the ultraviolet aurora (made by the IMAGE FUV imager, precipitating particle measurements (recorded by the FAST, DMSP, and Cluster 1 and 3 satellites, and SuperDARN HF radar observations of the ionospheric Doppler spectral width boundary. We conclude that in the dawn sector, during the interval presented, neither the poleward edge of the wideband auroral UV emission (140-180nm nor the Doppler spectral width boundary were trustworthy indicators of the polar cap boundary location, while narrow band UV emissions in the range 130-140nm appear to be much more reliable.

  9. Simultaneous auroral observations described in the historical records of China, Japan and Korea from ancient times to AD 1700

    Directory of Open Access Journals (Sweden)

    D. M. Willis

    Full Text Available Early auroral observations recorded in various oriental histories are examined in order to search for examples of strictly simultaneous and indisputably independent observations of the aurora borealis from spatially separated sites in East Asia. In the period up to ad 1700, only five examples have been found of two or more oriental auroral observations from separate sites on the same night. These occurred during the nights of ad 1101 January 31, ad 1138 October 6, ad 1363 July 30, ad 1582 March 8 and ad 1653 March 2. The independent historical evidence describing observations of mid-latitude auroral displays at more than one site in East Asia on the same night provides virtually incontrovertible proof that auroral displays actually occurred on these five special occasions. This conclusion is corroborated by the good level of agreement between the detailed auroral descriptions recorded in the different oriental histories, which furnish essentially compatible information on both the colour (or colours of each auroral display and its approximate position in the sky. In addition, the occurrence of auroral displays in Europe within two days of auroral displays in East Asia, on two (possibly three out of these five special occasions, suggests that a substantial number of the mid-latitude auroral displays recorded in the oriental histories are associated with intense geomagnetic storms.

    Key words. Magnetospheric physics (auroral phenomena; storms and substorms

  10. Auroral electron time dispersion

    International Nuclear Information System (INIS)

    Kletzing, C.A.

    1989-01-01

    A sounding rocket flight was launched from Greenland in 1985 to study high latitude, early morning auroral physics. The payload was instrumented with electron and ion detectors, AC and DC electric field experiments, a plasma density experiment, and a magnetometer to measure the ambient field. The rocket was launched during disturbed conditions, when the polar cap was in a contracted state with visible aurora overhead. The electron data contained numerous signatures indicative of time-of-flight energy dispersion characterized by a coherent structure in which lower energy electrons arrived at the rocket after higher energy electrons. A model was constructed to explain this phenomena by the sudden application of a region of parallel electric field along a length of magnetic field line above the rocket. The model incorporates detector response and uses an altitudinal density profile based on auroral zone measurements. Three types of potential structures were tried: linear, quadratic and cubic. Of the three it was found that the cubic (electric field growing in a quadratic manner moving up the field line) produced the best fit to the data. The potential region was found to be approximately 1-2 R e in extent with the lower edge 3000-4000 km away from the rocket. The background electron temperature in the model which produced the best fit to the data was of the order of 15 eV

  11. Extended period of polar cap auroral display: auroral dynamics and relation to the IMF and the ionospheric convection

    Directory of Open Access Journals (Sweden)

    V. G. Vorobjev

    1995-08-01

    Full Text Available An unusually extended period (5 h of polar cap auroral display on 3 August 1986 is examined. Auroras have been investigated using ground-based data as well as measurements from the IMP-8 spacecraft in interplanetary space and simultaneous observations from the polar-orbiting satellites Viking and DE-1 in the northern and southern hemispheres, respectively. It is found that visible Sun-aligned arcs are located inside the transpolar band of the θ-aurora observed from the satellite in ultraviolet wavelengths. The transpolar band can contain several Sun-aligned arcs that move inside the band toward the morning or evening side of the auroral oval independent of the direction of the band movement. Intensifications of polar cap auroras with durations of up to about 30 min are observed. No change has been found in either IMF parameters or substorm activity that can be related to these intensifications. The θ-aurora occurred during a 2-h period when the B z-component of the IMF was negative. A tendency is noted for dawnward (duskward displacement of the transpolar band when By>0 (By<0 in the southern hemisphere. Simultaneous observations of auroral ovals during interplanetary Bz<0, By<0 and Bx>0 in both hemispheres and convection patterns for Bz<0 and By<0 have been displayed using satellite and ground-based measurements. It was found that the transpolar band of the -aurora in the sunlit hemisphere was situated in the region of large-scale downward Birkeland currents.

  12. Simultaneous measurements of auroral particles and electric currents by a rocket-borne instrument system - Introductory remarks

    Science.gov (United States)

    Anderson, H. R.; Cloutier, P. A.

    1975-01-01

    A rocket-borne experiment package has been designed to obtain simultaneous in situ measurements of the pitch angle distributions and energy spectra of primary auroral particles, the flux of neutral hydrogen at auroral energies, the electric currents flowing in the vicinity of the auroral arc as determined from vector magnetic data, and the modulation of precipitating electrons in the frequency range 0.5-10 MHz. The experiment package was launched by a Nike-Tomahawk rocket from Poker Flat, Alaska, at 0722 UT on Feb. 25, 1972, over a bright auroral band. This paper is intended to serve as an introduction to the detailed discussion of results given in the companion papers. As such it includes a brief review of the general problem, a discussion of the rocket instrumentation, a delineation of the auroral and geomagnetic conditions at the time of launch, and comments on the overall payload performance.

  13. Simultaneous measurements of auroral particles and electric currents by a rocket-borne instrument system: introductory remarks

    International Nuclear Information System (INIS)

    Anderson, H.R.; Cloutier, P.A.

    1975-01-01

    A rocket-borne experiment package has been designed to obtain simultaneous in situ measurements of the pitch angle distribution and energy spectra of primary auroral particles, the flux of neutral hydrogen at auroral energies, the electric currents flowing in the vicinity of the auroral arc as determined from vector magnetic data, and the modulation of precipitating electrons in the frequency range 0.5-10 MHz. The experiment package was launched by a Nike-Tomahawk rocket from Poker Flat, Alaska, at 0722 UT on February 25, 1972, over a bright auroral band. This paper is intended to serve as an introduction to the detailed discussion of results given in the companion papers. As such it includes a brief review of the general problem, a discussion of the rocket instrumentation, a delineation of the auroral and geomagnetic conditions at the time of launch, and comments on the overall payload performance

  14. On the nature of electromagnetic waves in the vicinity of auroral archs

    International Nuclear Information System (INIS)

    Volokitin, A.S.; Mordovskaya, V.G.

    1988-01-01

    Excitation of kinetic Alfven waves by longitudinal current in the vicinity of auroral arcs is considered in the framework of quasilinear theory. It is shown that experimentally observed low-frequency electromagnetic waves with f<2Hz frequency in the vicinity of uniform auroral arcs represent the Alfven waves, excited at altitudes of three Earth radii and above by longitudinal electric current

  15. Nonlinear radiation generation processes in the auroral acceleration region

    Directory of Open Access Journals (Sweden)

    R. Pottelette

    2017-11-01

    Full Text Available It is known from laboratory plasma experiments that double layers (DLs radiate in the electromagnetic spectrum; but this is only known qualitatively. In these experiments, it was shown that the electron beam created on the high-potential side of a DL generates nonlinear structures which couple to electromagnetic waves and act as a sender antenna. In the Earth auroral region, observations performed by auroral spacecraft have shown that DLs occur naturally in the source region of intense radio emissions called auroral kilometric radiation (AKR. Very high time-, spatial-, and temporal-resolution measurements are needed in order to characterize waves and particle distributions in the vicinity of DLs, which are moving transient structures. We report observations from the FAST satellite of a localized large-amplitude parallel electric field (∼ 300 mV m−1 recorded at the edges of the auroral density cavity. In agreement with laboratory experiments, on the high-potential side of the DL, elementary radiation events are detected. They occur substantially above the local electron gyrofrequency and are associated with the presence of electron holes. The velocity of these nonlinear structures can be derived from the measurement of the Doppler-shifted AKR frequency spectrum above the electron gyrofrequency. The generated electron holes appear as the nonlinear evolution of electrostatic waves generated by the electron–electron two-stream instability because they propagate at about half the beam velocity. It is pointed out that, in the vicinity of a DL, the shape of the electron distribution gives rise to a significant power recorded in the left-hand polarized ordinary (LO mode.

  16. Particle energization by inertial Alfven wave in auroral ionosphere

    Science.gov (United States)

    Kumar, S.

    2017-12-01

    The role of inertial Alfven wave in auroral acceleration region and in the inertial regime to energize the plasma particles is an interesting field and widely discussed observationally as well as theoretically in recent years. In this work, we present the density perturbations by inertial Alfvén wave (AW) in the auroral ionosphere. We obtain dynamical equations for inertial AW and fast mode of AW using two-fluid model and then solve them numerically in order to analyze the localized structures and cavity formation. The ponderomotive force due to the high frequency inertial AW changes the background density and is believed to be responsible for the wave localization or for the formation of density cavities in auroral ionosphere. These density cavities are believed to be the sites for particle energization. This perturbed density channel grow with time until the modulation instability acquires steady state. We find that the density cavities are accompanied by the high amplitude magnetic fields. The amplitude of the strongest density cavity is estimated as ˜ 0.26n0 (n0 is unperturbed plasma number density). The results presented here are found consistent with the observational studies using FAST spacecraft.

  17. Reconstructing Global-scale Ionospheric Outflow With a Satellite Constellation

    Science.gov (United States)

    Liemohn, M. W.; Welling, D. T.; Jahn, J. M.; Valek, P. W.; Elliott, H. A.; Ilie, R.; Khazanov, G. V.; Glocer, A.; Ganushkina, N. Y.; Zou, S.

    2017-12-01

    The question of how many satellites it would take to accurately map the spatial distribution of ionospheric outflow is addressed in this study. Given an outflow spatial map, this image is then reconstructed from a limited number virtual satellite pass extractions from the original values. An assessment is conducted of the goodness of fit as a function of number of satellites in the reconstruction, placement of the satellite trajectories relative to the polar cap and auroral oval, season and universal time (i.e., dipole tilt relative to the Sun), geomagnetic activity level, and interpolation technique. It is found that the accuracy of the reconstructions increases sharply from one to a few satellites, but then improves only marginally with additional spacecraft beyond 4. Increased dwell time of the satellite trajectories in the auroral zone improves the reconstruction, therefore a high-but-not-exactly-polar orbit is most effective for this task. Local time coverage is also an important factor, shifting the auroral zone to different locations relative to the virtual satellite orbit paths. The expansion and contraction of the polar cap and auroral zone with geomagnetic activity influences the coverage of the key outflow regions, with different optimal orbit configurations for each level of activity. Finally, it is found that reconstructing each magnetic latitude band individually produces a better fit to the original image than 2-D image reconstruction method (e.g., triangulation). A high-latitude, high-altitude constellation mission concept is presented that achieves acceptably accurate outflow reconstructions.

  18. Identification of possible intense historical geomagnetic storms using combined sunspot and auroral observations from East Asia

    Directory of Open Access Journals (Sweden)

    D. M. Willis

    2005-03-01

    Full Text Available Comprehensive catalogues of ancient sunspot and auroral observations from East Asia are used to identify possible intense historical geomagnetic storms in the interval 210 BC-AD 1918. There are about 270 entries in the sunspot catalogue and about 1150 entries in the auroral catalogue. Special databases have been constructed in which the scientific information in these two catalogues is placed in specified fields. For the purposes of this study, an historical geomagnetic storm is defined in terms of an auroral observation that is apparently associated with a particular sunspot observation, in the sense that the auroral observation occurred within several days of the sunspot observation. More precisely, a selection criterion is formulated for the automatic identification of such geomagnetic storms, using the oriental records stored in the sunspot and auroral databases. The selection criterion is based on specific assumptions about the duration of sunspot visibility with the unaided eye, the likely range of heliographic longitudes of an energetic solar feature, and the likely range of transit times for ejected solar plasma to travel from the Sun to the Earth. This selection criterion results in the identification of nineteen putative historical geomagnetic storms, although two of these storms are spurious in the sense that there are two examples of a single sunspot observation being associated with two different auroral observations separated by more than half a (synodic solar rotation period. The literary and scientific reliabilities of the East Asian sunspot and auroral records that define the nineteen historical geomagnetic storms are discussed in detail in a set of appendices. A possible time sequence of events is presented for each geomagnetic storm, including possible dates for both the central meridian passage of the sunspot and the occurrence of the energetic solar feature, as well as likely transit times for the ejected solar plasma

  19. Ionization and electric field properties of auroral arcs during magnetic quiescence

    International Nuclear Information System (INIS)

    Robinson, R.M.; Mende, S.B.

    1990-01-01

    Studies of the morphology of auroral precipitation during times of magnetic quiescence indicate that the polar cap shrinks and becomes distorted into a teardrop or pear-shaped region. On November 16, 1987, incoherent scatter radar and all-sky imaging photometer measurements were made of auroral arcs over Sondre Stromfjord, Greenland. The arcs were generally oriented in a geographic east-west direction which is approximately Sun aligned at a local time just after dusk. Kp was 1, and the interlplanetary magnetic field was northward during the time of observation, so tha the arcs occurred under magnetically quiet conditions. The Sondrestrom radar measurements were used to determine the electron density and plasma drifts associated with the arcs; the all-sky imaging photometer data were used to relate the radar measurements to the arc morphology. Assuming the arcs were produced by precipitating electrons, the height profiles of electron density indicate average energies less than about 2 keV and energy fluxes of 1 erg/(cm 2 s). F region electron densities were high in the polar cap north of the arcs and low within the region of the arcs. The poleward boundary of the arc system was a convection reversal boundary across which plasma exited the polar cap region moving antisunward and then turned sunward (westward). The observed arc-associated convection is consistent with that expected under these geomagnetic conditions. Comparison of these results with the electrodynamic properties of other arcs observed in the afternoon and early evening suggests that there is a system of arcs that delineates the afternoon convection cell. The observed gradient in F region electron density across the arc can be explained in terms of the recombination of ionization drifting in response to the arc-associated convection pattern

  20. Latitudinal and longitudinal dispersion of energetic auroral protons

    Directory of Open Access Journals (Sweden)

    D. A. Lorentzen

    Full Text Available Using a collision by collision model from Lorentzen et al., the latitudinal and longitudinal dispersion of single auroral protons are calculated. The proton energies varies from 1 to 50 keV, and are released into the atmosphere at 700 km altitude. The dipole magnetic field has a dip-angle of 8 degrees. Results show that the main dispersion region is at high altitudes (300-350 km and occurs during the first few charge exchange collisions. As the proton travels further down the atmosphere the mean free path becomes smaller, and as a result the spreading effect will not be as pronounced. This means that the first few charge exchange collisions fully determines the width of both the latitudinal and longitudinal dispersion. The volume emission rate was calculated for energies between 1 and 50 keV, and it was found that dayside auroral hydrogen emissions rates were approximately 10 times weaker than nightside emission rates. Simulations were also performed to obtain the dependence of the particle dispersion as a function of initial pitch-angle. It was found that the dispersion varies greatly with initial pitch-angle, and the results are summarized in two tables; a main and an extreme dispersion region.

    Key words. Ionosphere (auroral ionosphere; · particle precipitation · Space plasma physics · (transport processes

  1. Latitudinal and longitudinal dispersion of energetic auroral protons

    Directory of Open Access Journals (Sweden)

    D. A. Lorentzen

    2000-01-01

    Full Text Available Using a collision by collision model from Lorentzen et al., the latitudinal and longitudinal dispersion of single auroral protons are calculated. The proton energies varies from 1 to 50 keV, and are released into the atmosphere at 700 km altitude. The dipole magnetic field has a dip-angle of 8 degrees. Results show that the main dispersion region is at high altitudes (300-350 km and occurs during the first few charge exchange collisions. As the proton travels further down the atmosphere the mean free path becomes smaller, and as a result the spreading effect will not be as pronounced. This means that the first few charge exchange collisions fully determines the width of both the latitudinal and longitudinal dispersion. The volume emission rate was calculated for energies between 1 and 50 keV, and it was found that dayside auroral hydrogen emissions rates were approximately 10 times weaker than nightside emission rates. Simulations were also performed to obtain the dependence of the particle dispersion as a function of initial pitch-angle. It was found that the dispersion varies greatly with initial pitch-angle, and the results are summarized in two tables; a main and an extreme dispersion region.Key words. Ionosphere (auroral ionosphere; · particle precipitation · Space plasma physics · (transport processes

  2. Interactive Auroral Science for Hearing-Impaired Students

    Science.gov (United States)

    Samara, M.; Michell, R. G.; Jahn, J.; Pfeifer, M.; Ibarra, S.; Hampton, D. L.; Powell, D.

    2012-12-01

    Under a NASA E/PO grant, we have partnered with San Antonio's Sunshine Cottage School for Deaf Children to develop a science class experience where students directly interact with scientists and participate in a research-grade space science measurement campaign. The unique aspect of partnering with Sunshine Cottage lies in Sunshine's approach of auditory-verbal communication. Aided by technology (hearing aids, cochlear implants), a diverse student body with students of all levels of hearing loss (moderate through profound) is taught in an entirely auditory-verbal environment at Sunshine Cottage. Bringing these students into early contact with research work can lay the foundation for future careers in the STEM field that normally they might not consider as indicated by the first year of this collaboration where the student response was distinctly positive. Here we report on the first year of those activities, as they related to a ground based imaging approach to exploring the northern lights and from the point of view of the scientists that participated. The major components of that activity included a site visit to SwRI by the students and their teachers, a semester long lab at school utilizing current research tools and a real-time campaign night. The students used a number of diagnostics to first predict and then verify auroral activity. One of the tools used was the MOOSE observatory which is a community resource state of the art observatory comprised of 5 EMCCD imagers in Alaska, established through an NSF MRI grant. We will discuss the approach and lessons learned during the first year of the project and the directions that we will likely take in the second year. Lessons learned from teaching these students space science related topic can be flowed right back into mainstream classroom settings. One other significant and unexpected aspect of this first year was that we were able to connect two groups of students through skype (in the 4th to 5th grades) that

  3. Characteristics of merging at the magnetopause inferred from dayside 557.7-nm all-sky images: IMF drivers of poleward moving auroral forms

    Directory of Open Access Journals (Sweden)

    N. C. Maynard

    2006-11-01

    Full Text Available We combine in situ measurements from Cluster with high-resolution 557.7 nm all-sky images from South Pole to investigate the spatial and temporal evolution of merging on the dayside magnetopause. Variations of 557.7 nm emissions were observed at a 6 s cadence at South Pole on 29 April 2003 while significant changes in the Interplanetary Magnetic Field (IMF clock angle were reaching the magnetopause. Electrons energized at merging sites are the probable sources for 557.7 nm cusp emissions. At the same time Cluster was crossing the pre-noon cusp in the Northern Hemisphere. The combined observations confirm results of a previous study that merging events can occur at multiple sites simultaneously and vary asynchronously on time scales of 10 s to 3 min (Maynard et al., 2004. The intensity of the emissions and the merging rate appear to vary with changes in the IMF clock angle, IMF BX and the dynamic pressure of the solar wind. Most poleward moving auroral forms (PMAFs reflect responses to changes in interplanetary medium rather than to local processes. The changes in magnetopause position required by increases in dynamic pressure are mediated by merging and result in the generation of PMAFs. Small (15–20% variations in dynamic pressure of the solar wind are sufficient to launch PMAFs. Changes in IMF BX create magnetic flux compressions and rarefactions in the solar wind. Increases (decreases in IMF BX strengthens |B| near northern (southern hemisphere merging sites thereby enhancing merging rates and triggering PMAFs. When correlating responses in the two hemispheres, the presence of significant IMF BX also requires that different lag-times be applied to ACE measurements acquired ~0.1 AU upstream of Earth. Cluster observations set lag times for merging at Northern Hemisphere sites; post-noon optical emissions set times of Southern Hemisphere merging. All-sky images and magnetohydrodynamic simulations indicate that merging occurs in multiple

  4. First Application of the Zeeman Technique to Remotely Measure Auroral Electrojet Intensity From Space

    Science.gov (United States)

    Yee, J. H.; Gjerloev, J.; Wu, D.; Schwartz, M. J.

    2017-01-01

    Using the O2 118 GHz spectral radiance measurements obtained by the Microwave Limb Sounder instrument on board the Aura spacecraft, we demonstrate that the Zeeman effect can be used to remotely measure the magnetic field perturbations produced by the auroral electrojet near the Hall current closure altitudes. Our derived current-induced magnetic field perturbations are found to be highly correlated with those coincidently obtained by ground magnetometers. These perturbations are also found to be linearly correlated with auroral electrojet strength. The statistically derived polar maps of our measured magnetic field perturbation reveal a spatial-temporal morphology consistent with that produced by the Hall current during substorms and storms. With today's technology, a constellation of compact, low-power, high spectral-resolution cubesats would have the capability to provide high precision and spatiotemporal magnetic field samplings needed for auroral electrojet measurements to gain insights into the spatiotemporal behavior of the auroral electrojet system.

  5. Coordinated ATS 5 electron flux and simultaneous auroral observations

    International Nuclear Information System (INIS)

    Mende, S.B.; Shelley, E.G.

    1976-01-01

    All-sky camera (ASCA) observations were made at the field line conjugate of the ATS 5 satellite. The field of view of these cameras covered the region of the magnetosphere from L=5 to L=11 at the approximate longitude of the ATS field line conjugate. With this coverage, definite statements can be made concerning the correlation of the auroras observed by the ASCA's and the magnetospheric trapped fluxes. In general, auroral forms are not simply correlated with the synchronous altitude electron fluxes. The presence of hot plasma at the ATS 5 satellite is a necessary but not sufficient condition for the occurrence of local auroras. On quiet days the hot plasma does not penetrate into the magnetosphere far enough to reach the ATS 5 orbit. Under these conditions, no auroras are observed at the field line conjugate, but auroras are usually observed on higher-latitude field lines. On more disturbed days, auroral arcs are observed at lower latitudes when the plasma sheet penetrates into the ATS 5 orbit. There is no general correlation between the intensity of the trapped electron fluxes observed by ATS 5 and the intensity of auroras observed by the ASCA's. Auroral displays exhibit very fast fluctuations, whereas the ATS 5 electron fluxes change on a much slower time scale. However, significant qualitative correlation between the ASCA data and the trapped fluxes is observed when a local plasma injection event occurs near ATS 5. The clearest signature of the injection event is magnetic and is most pronounced as a recovery of a negative bay in the north-south component of the field at the ATS 5. The local injection generally produces structured auroras such as breakup events and sometimes westward-traveling surges. A significant correlation is observed with the intensification of a diffuse uniform glow accompanying the structured auroral activity

  6. The peak altitude of H3+ auroral emission: comparison with the ultraviolet

    Science.gov (United States)

    Blake, J.; Stallard, T.; Miller, S.; Melin, H.; O'Donoghue, J.; Baines, K.

    2013-09-01

    The altitude of Saturn's peak auroral emission has previously been measured for specific cases in both the ultraviolet (UV) and the infrared (IR). Gerard et al [2009] concludes that the night side H2 UV emission is within the range of 800 to 1300 km above the 1-bar pressure surface. However, using colour ratio spectroscopy, Gustin et al [2009] located the emission layer at or above 610 km. Measurements of the infrared auroral altitude was conducted by Stallard et al [2012] on H3+ emissions from nine VIMS Cassini images, resulting in a measurement of 1155 ± 25 km above the 1-bar pressure surface. Here we present data analysed in a manner similar to Stallard et al [2012] on the observations of H3+ emission in twenty images taken by the Visual Infrared Mapping Spectrometer (VIMS) aboard the spacecraft Cassini from the years 2006, 2008 and 2012. The bins covered were 3.39872, 3.51284, 3.64853, 4.18299 and 4.33280 μm. These observations were selected from a set of 15,000 as they contained a useful alignment of the aurorae on the limb and the body of the planet. The specific conditions that had to be met for each image were as follows; minimum integration time of 75 milliseconds per pixel, minimum number of pixels in the x and y direction of 32, the image must include the latitude range of 70 to 90 degrees for either hemisphere and the sub spacecraft angle must be between 0 and 20 degrees. This alignment allowed for the altitudinal profiles to be analysed in terms of the difference between the latitude of aurorae on the limb and on the body of Saturn; thus permitting an investigation into the effects of misalignment. In this instance, misalignment was defined as the difference between the latitude of the peak emission latitude on the planet and the latitude of the limb; assuming the aurorae to be approximately circular. A statistical study by Badman et al [2011] showed that centre of the oval is on average offset anti sunward of the pole by about 1.6 degrees. To

  7. Radiations in space and global environment

    International Nuclear Information System (INIS)

    Oguti, Takasi

    1994-01-01

    It has been well known that the global environment of the earth is basically determined by the radiation equilibrium of the earth atmosphere system embedded in the solar radiation. However, the surface temperature of about 15 degC on average is much higher than that determined by the radiation equilibrium. This is due to the so-called greenhouse gases in the atmosphere such as carbon dioxide, water vapor, methane and others. Also the global environment has evolved by interacting with the living things on the earth, for example, tree oxygen by photosynthesis, and a small amount of ozone protecting living things from the fetal damage due to solar ultraviolet radiation. The solar radiation of short wavelength, that is, ultraviolet to X-ray influences atmospheric constituents, and the thermal structure and dynamics of the atmosphere through chemical reaction. The solar energetic particles produced by solar flares precipitate in the polar regions, and the nitric oxides are produced by auroral X-ray. Auroral activities accelerate particles in the magnetosphere. All these radiations cause significant global changes. Human activities increase greenhouse gases rapidly and cause global warming, and atmospheric chloro-fluoro-carbon (CFC) makes the ozone hole. Now, human activities must be modified to match the natural cycle of materials. (K.I.)

  8. The auroral electron accelerator

    International Nuclear Information System (INIS)

    Bryant, D.A.; Hall, D.S.

    1989-01-01

    A model of the auroral electron acceleration process is presented in which the electrons are accelerated resonantly by lower-hybrid waves. The essentially stochastic acceleration process is approximated for the purposes of computation by a deterministic model involving an empirically derived energy transfer function. The empirical function, which is consistent with all that is known of electron energization by lower-hybrid waves, allows many, possibly all, observed features of the electron distribution to be reproduced. It is suggested that the process occurs widely in both space and laboratory plasmas. (author)

  9. Substorm associated radar auroral surges: a statistical study and possible generation model

    Directory of Open Access Journals (Sweden)

    B. A. Shand

    Full Text Available Substorm-associated radar auroral surges (SARAS are a short lived (15–90 minutes and spatially localised (~5° of latitude perturbation of the plasma convection pattern observed within the auroral E-region. The understanding of such phenomena has important ramifications for the investigation of the larger scale plasma convection and ultimately the coupling of the solar wind, magnetosphere and ionosphere system. A statistical investigation is undertaken of SARAS, observed by the Sweden And Britain Radar Experiment (SABRE, in order to provide a more extensive examination of the local time occurrence and propagation characteristics of the events. The statistical analysis has determined a local time occurrence of observations between 1420 MLT and 2200 MLT with a maximum occurrence centred around 1700 MLT. The propagation velocity of the SARAS feature through the SABRE field of view was found to be predominately L-shell aligned with a velocity centred around 1750 m s–1 and within the range 500 m s–1 and 3500 m s–1. This comprehensive examination of the SARAS provides the opportunity to discuss, qualitatively, a possible generation mechanism for SARAS based on a proposed model for the production of a similar phenomenon referred to as sub-auroral ion drifts (SAIDs. The results of the comparison suggests that SARAS may result from a similar geophysical mechanism to that which produces SAID events, but probably occurs at a different time in the evolution of the event.

    Key words. Substorms · Auroral surges · Plasma con-vection · Sub-auroral ion drifts

  10. Jovian longitudinal asymmetry in Io-related and Europa-related auroral hot spots

    International Nuclear Information System (INIS)

    Dessler, A.J.; Chamberlain, J.W.

    1979-01-01

    Jupiter's internal magnetic field is markedly non-dipolar. We propose that Io- or Europa-generated auroral emissions (originating at the foot of either Io's or Europa's magnetic flux tube) are largely restricted to longitudes where Jupiter's ionospheric conductivity is enhanced. Trapped, energetic electrons that drift into Jupiter's atmosphere, in regions where the Jovian magnetic field is anomalously weak, produce the increased conductivity. The longitude range of enchanced auroral hot-spot emissions is thus restricted to an active sector that is determined from dekametric radio emission to lie in the northern hemisphere in the Jovian System III (1965) longitude range of 205 0 +- 30 0 . Relatively weaker auroral hot spots should occur in the southern hemisphere along the mgnetic conjugate trace covering the longitude range of 215 0 +- 55 0 . At other longitudes, the brightness of the hot spot should decrease by at least one order of magnitude. These results, with respect to both brightness and longitude, are in accord with the observations of Jovian auroral hot spots reported by Atreya et al. We show that the northern hemisphere foot of either Io's or Europa's magnetic flux tube was in the preferred longitude range (the active sector) at the time of each observation

  11. Morphology of auroral zone radio wave scintillation

    International Nuclear Information System (INIS)

    Rino, C.L.; Matthews, S.J.

    1980-01-01

    This paper describes the morphology of midnight sector and morning sector auroral zone scintillation observations made over a two-year period using the Wideband satelite, which is in a sun-synchronous, low-altitude orbit. No definitive seasonal variation was found. The nighttime data showed the highest scintillation ocurrence levels, but significant amounts of morning scintillation were observed. For the most part the scintillation activity followed the general pattern of local magnetic activity. The most prominent feature in the nightime data is a localized amplitude and phase scintillation enhancement at the point where the propagation vector lies within an L shell. A geometrical effect due to a dynamic slab of sheetlike structures in the F region is hypothesized as the source of his enhancement. The data have been sorted by magnetic activity, proximity to local midnight, and season. The general features of the data are in agreement with the accepted morphology of auroral zone scintillation

  12. The role of natural E-region plasma turbulence in the enhanced absorption of HF radio waves in the auroral ionosphere:Implications for RF heating of the auroral electrojet

    Directory of Open Access Journals (Sweden)

    T. R. Robinson

    1994-03-01

    Full Text Available Physical processes which affect the absorption of radio waves passing through the auroral E-region when Farley-Buneman irregularities are present are examined. In particular, the question of whether or not it is legitimate to include the anomalous wave-enhanced collision frequency, which has been used successfully to account for the heating effects of Farley-Buneman waves in the auroral E-region, in the usual expression for the radio-wave absorption coefficient is addressed. Effects also considered are those due to wave coupling between electromagnetic waves and high-frequency electrostatic waves in the presence of Farley-Buneman irregularities. The implications for radio-wave heating of the auroral electrojet of these processes are also discussed. In particular, a new theoretical model for calculating the effects of high-power radio-wave heating on the electron temperature in an electrojet containing Farley-Buneman turbulence is presented.

  13. The role of natural E-region plasma turbulence in the enhanced absorption of HF radio waves in the auroral ionosphere:Implications for RF heating of the auroral electrojet

    Directory of Open Access Journals (Sweden)

    T. R. Robinson

    Full Text Available Physical processes which affect the absorption of radio waves passing through the auroral E-region when Farley-Buneman irregularities are present are examined. In particular, the question of whether or not it is legitimate to include the anomalous wave-enhanced collision frequency, which has been used successfully to account for the heating effects of Farley-Buneman waves in the auroral E-region, in the usual expression for the radio-wave absorption coefficient is addressed. Effects also considered are those due to wave coupling between electromagnetic waves and high-frequency electrostatic waves in the presence of Farley-Buneman irregularities. The implications for radio-wave heating of the auroral electrojet of these processes are also discussed. In particular, a new theoretical model for calculating the effects of high-power radio-wave heating on the electron temperature in an electrojet containing Farley-Buneman turbulence is presented.

  14. Magnetospheric electric fields and auroral oval

    Science.gov (United States)

    Laakso, Harri; Pedersen, Arne; Craven, John D.; Frank, L. A.

    1992-01-01

    DC electric field variations in a synchronous orbit (GEOS 2) during four substorms in the time sector 19 to 01 LT were investigated. Simultaneously, the imaging photometer on board DE 1 provided auroral images that are also utilized. Substorm onset is defined here as a sudden appearance of large electric fields. During the growth phase, the orientation of the electric field begins to oscillate some 30 min prior to onset. About 10 min before the onset GEOS 2 starts moving into a more tenuous plasma, probably due to a thinning of the current sheet. The onset is followed by a period of 10 to 15 min during which large electric fields occur. This interval can be divided into two intervals. During the first interval, which lasts 4 to 8 min, very large fields of 8 to 20 mV/m are observed, while the second interval contains relatively large fields (2 to 5 mV/m). A few min after the onset, the spacecraft returns to a plasma region of higher electron fluxes which are usually larger than before substorm. Some 30 min after onset, enhanced activity, lasting about 10 min, appears in the electric field. One of the events selected offers a good opportunity to study the formation and development of the Westward Traveling Surge (WST). During the traversal of the leading edge of the WTS (approximately 8 min) a stable wave mode at 5.7 mHz is detected.

  15. Extracting 3D layout from a single image using global image structures.

    Science.gov (United States)

    Lou, Zhongyu; Gevers, Theo; Hu, Ninghang

    2015-10-01

    Extracting the pixel-level 3D layout from a single image is important for different applications, such as object localization, image, and video categorization. Traditionally, the 3D layout is derived by solving a pixel-level classification problem. However, the image-level 3D structure can be very beneficial for extracting pixel-level 3D layout since it implies the way how pixels in the image are organized. In this paper, we propose an approach that first predicts the global image structure, and then we use the global structure for fine-grained pixel-level 3D layout extraction. In particular, image features are extracted based on multiple layout templates. We then learn a discriminative model for classifying the global layout at the image-level. Using latent variables, we implicitly model the sublevel semantics of the image, which enrich the expressiveness of our model. After the image-level structure is obtained, it is used as the prior knowledge to infer pixel-wise 3D layout. Experiments show that the results of our model outperform the state-of-the-art methods by 11.7% for 3D structure classification. Moreover, we show that employing the 3D structure prior information yields accurate 3D scene layout segmentation.

  16. Auroral electron acceleration

    International Nuclear Information System (INIS)

    Bryant, D.A.

    1989-10-01

    Two theories of auroral electron acceleration are discussed. Part 1 examines the currently widely held view that the acceleration is an ordered process in a quasi-static electric field. It is suggested that, although there are many factors seeming to support this theory, the major qualifications and uncertainties that have been identified combine to cast serious doubt over its validity. Part 2 is devoted to a relatively new interpretation in terms of stochastic acceleration in turbulent electric fields. This second theory, which appears to account readily for most known features of the electron distribution function, is considered to provide a more promising approach to this central question in magnetospheric plasma physics. (author)

  17. Auroral spectrograph data annals of the international geophysical year, v.25

    CERN Document Server

    Carrigan, Anne; Norman, S J

    1964-01-01

    Annals of the International Geophysical Year, Volume 25: Auroral Spectrograph Data is a five-chapter text that contains tabulations of auroral spectrograph data. The patrol spectrograph built by the Perkin-Elmer Corporation for the Aurora and Airglow Program of the IGY is a high-speed, low-dispersion, automatic instrument designed to photograph spectra of aurora occurring along a given magnetic meridian of the sky. Data from each spectral frame were recorded on an IBM punched card. The data recorded on the cards are printed onto the tabulations in this volume. These tabulations are available

  18. Extended period of polar cap auroral display: auroral dynamics and relation to the IMF and the ionospheric convection

    Directory of Open Access Journals (Sweden)

    V. G. Vorobjev

    Full Text Available An unusually extended period (5 h of polar cap auroral display on 3 August 1986 is examined. Auroras have been investigated using ground-based data as well as measurements from the IMP-8 spacecraft in interplanetary space and simultaneous observations from the polar-orbiting satellites Viking and DE-1 in the northern and southern hemispheres, respectively. It is found that visible Sun-aligned arcs are located inside the transpolar band of the θ-aurora observed from the satellite in ultraviolet wavelengths. The transpolar band can contain several Sun-aligned arcs that move inside the band toward the morning or evening side of the auroral oval independent of the direction of the band movement. Intensifications of polar cap auroras with durations of up to about 30 min are observed. No change has been found in either IMF parameters or substorm activity that can be related to these intensifications. The θ-aurora occurred during a 2-h period when the B z-component of the IMF was negative. A tendency is noted for dawnward (duskward displacement of the transpolar band when By>0 (By<0 in the southern hemisphere. Simultaneous observations of auroral ovals during interplanetary Bz<0, By<0 and Bx>0 in both hemispheres and convection patterns for Bz<0 and By<0 have been displayed using satellite and ground-based measurements. It was found that the transpolar band of the -aurora in the sunlit hemisphere was situated in the region of large-scale downward Birkeland currents.

  19. Angular dependent transport of auroral electrons in the upper atmosphere

    International Nuclear Information System (INIS)

    Lummerzheim, D.; Rees, M.H.

    1989-01-01

    The transport of auroral electrons through the upper atmosphere is analyzed. The transport equation is solved using a discrete ordinate method including elastic and inelastic scattering of electrons resulting in changes of pitch angle, and degradation in energy as the electrons penetrate into the atmosphere. The transport equation is solved numerically for the electron intensity as a function of altitude, pitch angle, and energy. In situ measurements of the pitch angle and energy distribution of precipitating electrons over an auroral arc provide boundary conditions for the calculation. The electron spectra from various locations over the aurora present a variety of anisotropic pitch angle distributions and energy spectra. Good agreement is found between the observed backscattered electron energy spectra and model predictions. Differences occur at low energies (below 500 eV) in the structure of the pitch angle distribution. Model calculations were carried out with various different phase functions for elastic and inelastic collisions to attempt changing the angular scattering, but the observed pitch angle distributions remain unexplained. We suggest that mechanisms other than collisional scattering influence the angular distribution of auroral electrons at or below 300 km altitude in the low energy domain. (author)

  20. Balloon observations of auroral X-rays at Esrange, Sweden and related phenomena

    OpenAIRE

    Hirasima,Yo; Murakami,Hiroyuki; Okudaira,Kiyoaki; Fujii,Masami; Nishimura,Jun; Yamagami,Takamasa; Ejiri,Masaki; Miyaoka,Hiroshi; Ono,Takayuki; Kodama,Masahiro

    1984-01-01

    Balloon observations of auroral X-rays using different detector systems were carried out twice over Esrange, Sweden, in November and December 1982,in order to examine spatial and temporal characteristics of the energetic component of auroral electrons. One detector is a telescope system consisting of four scintillation counters whose fields of view are different with each other as well as with the viewing directions. It is shown from the first flight carrying the telescope system that a limit...

  1. Simulation of auroral current sheet equilibria and associated V-shaped potential structures

    International Nuclear Information System (INIS)

    Singh, N.; Thiemann, H.; Schunk, R.W.

    1983-01-01

    Results from numerical simulations of auroral current sheet equilibrium and associated V-shaped potential structures are presented. It is shown that with allowance for both hot magnetospheric ion and cold ionospheric ion populations, the perpendicular potential drop, assiciated with a non-neutral auroral current sheet is critically controlled by the temperature of the 'heated' ionospheric ions. The heating is caused by the wave turbulence excited by the auroral current sheet. In the presence of heated ionospheric ions, a relatively large variation in the temperature of the hot magnetospheric ion population causes a very small variation in the potential drop thetam. The perpendicular potential drop acts to produce a V-shaped double layer with multiple potential steps parallel to the magnetic field when a zero potential boundary condition is imposed at the ionospheric boundary. Outside the V-shaped potential structure, ionospheric return currents develop self-consistently

  2. Physical Processes for Driving Ionospheric Outflows in Global Simulations

    Science.gov (United States)

    Moore, Thomas Earle; Strangeway, Robert J.

    2009-01-01

    We review and assess the importance of processes thought to drive ionospheric outflows, linking them as appropriate to the solar wind and interplanetary magnetic field, and to the spatial and temporal distribution of their magnetospheric internal responses. These begin with the diffuse effects of photoionization and thermal equilibrium of the ionospheric topside, enhancing Jeans' escape, with ambipolar diffusion and acceleration. Auroral outflows begin with dayside reconnexion and resultant field-aligned currents and driven convection. These produce plasmaspheric plumes, collisional heating and wave-particle interactions, centrifugal acceleration, and auroral acceleration by parallel electric fields, including enhanced ambipolar fields from electron heating by precipitating particles. Observations and simulations show that solar wind energy dissipation into the atmosphere is concentrated by the geomagnetic field into auroral regions with an amplification factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Internal plasmas thus enable electromagnetic driving via coupling to the plasma, neutral gas and by extension, the entire body " We assess the Importance of each of these processes in terms of local escape flux production as well as global outflow, and suggest methods for their implementation within multispecies global simulation codes. We complete 'he survey with an assessment of outstanding obstacles to this objective.

  3. Electron cyclotron waves in the presence of parallel electric fields in the Earth's auroral plasma

    Directory of Open Access Journals (Sweden)

    S. Kumar

    1997-01-01

    Full Text Available The electron cyclotron waves that originate at low altitudes (<0.5 RE and observed by ground facilities have been studied in the presence of a weak parallel electric field in auroral magnetoplasma consisting of trapped energetic auroral electrons and cold background electrons of ionospheric origin. The model distribution for auroral trapped electrons is taken as Maxwellian ring distribution. An expression for the growth rate has been obtained in the presence of parallel electric field assuming that the real frequency in the whistler mode is not affected by the presence of the electric field. The results show that waves grow (or damp in amplitude for a parallel (or antiparallel electric field. The influence of the electric field is more pronounced at a shorter wavelength spectrum. An increase in population of energetic electrons increases the growth rate and thus, plays a significant role in the wave excitation process in the auroral regions.

  4. Turbulent acceleration of auroral electrons

    International Nuclear Information System (INIS)

    Bryant, D.A.; Cook, A.C.; Wang, Z.-S.; Angelis, U. de; Perry, C.H.

    1991-07-01

    It is shown that the characteristic peak in the auroral electron velocity distribution can be generated stochastically through resonant interactions with lower-hybrid electrostatic turbulence. The peak itself is shown to be a direct consequence of restrictions imposed on reflexion of electron velocities in the frame of reference of individual wave packets by the limitation in group velocity. A Monte-Carlo model demonstrates how the various properties of the acceleration region are reflected in the resultant electron distribution. It is shown, in particular, that the width of the peak is governed by the amplitude of the turbulence, while the amplitude of the peak reflects the column density of wave energy. Electron distributions encountered within three auroral arcs are interpreted to yield order of magnitude estimates of the amplitude and rms electric field of lower-hybrid wave packets. The velocities and frequencies of the resonant waves, the net electric field, the column density of wave energy and the electric-field energy density are also estimated. The results are found to be consistent with available electric-field measurements. A general broadening of the electron distribution caused by less systematic interactions between electrons and wave packets is shown to have a negligible effect on the peak resulting from the reflexion process; it does, though, lead to the creation of a characteristic high-energy tail. (author)

  5. Saturn's polar ionospheric flows and their relation to the main auroral oval

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2004-04-01

    current bounding the region of open and closed field lines. Estimates indicate that auroras of brightness from a few kR to a few tens of kR can be produced by precipitating accelerated magnetospheric electrons of a few keV to a few tens of keV energy, if the current flows in a region which is sufficiently narrow, of the order of or less than ~1000 km (~1° latitude wide. Arguments are also given which indicate that the auroras should typically be significantly brighter on the dawn side of the oval than at dusk, by roughly an order of magnitude, and should be displaced somewhat towards dawn by the down-tail outflow at dusk associated with the Vasyliunas cycle. Model estimates are found to be in good agreement with data derived from high quality images newly obtained using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope, both in regard to physical parameters, as well as local time effects. The implication of this picture is that the form, position, and brightness of Saturn's main auroral oval provide remote diagnostics of the magnetospheric interaction with the solar wind, including dynamics associated with magnetopause and tail plasma interaction processes. Key words. Magnetospheric physics (auroral phenomena, magnetosphere-ionosphere interactions, solar windmagnetosphere interactions

  6. Thermospheric winds in the auroral oval: observations of small scale structures and rapid fluctuations by a Doppler imaging system

    International Nuclear Information System (INIS)

    Batten, S.; Rees, D.

    1990-01-01

    At high geomagnetic latitudes, thermospheric wind flows are dramatically affected by the combined effects of magnetospheric ion convection and Joule and particle heating. Thermospheric winds have been observed by ground based and space-borne Fabry-Perot interferometers (FPIs). Short period, localized wind fluctuations have always been difficult to resolve with a conventional FPI, due to the limited time and spatial resolution. However, the highest quality wind data obtained by these instruments from the middle and upper thermosphere have implied that thermospheric winds may respond to the combination of strong local ion drag forcing and heating within the auroral oval and polar cap, with spatial scale sizes of 50-500 km, and with time scales as short as 10-30 min. Since the 1982/1983 winter, a prototype Doppler Imaging System (DIS) has been operated at Kiruna (67.84 0 N, 20.42 0 E). This instrument maps thermospheric wind flows over a region some 500 km in diameter centred on Kiruna and has observed many interesting features in the thermospheric wind fields. In particular, strong local wind gradients, rapid wind reversals and small scale structures are regularly observed, particularly during geomagnetically disturbed nights. (author)

  7. Generation of a auroral kilometer radiowaves at a maser cyclotron resonance

    International Nuclear Information System (INIS)

    Vlasov, V.G.

    1991-01-01

    A linear mechanism of auroral kilometer radiowave (AKR) generation at a maser cyclotron resonance (MCR) in non-homogeneous non-monodimensional plasma is developed. Model distribution functions introduced for longitudinal and transverse electron beasms allow one to obtain x- and o-mode increments in the form of elementary functions. The key concept of work consists in MCR time, taking account of the complex of all processes leading to wave outlet from the MCR. It is shown that MCR time can be sufficient for AKR generation only in certain region of auroral plasma. For x-mode these are such plasma sections where the longitudinal geomagnetic field gradient is compensated by plasma density gradient. O-mode is generated only in those local regions where the plasma density longitudinal gradient is very low. The theoretical minimal width of AKR spectrum line obtained coincides with the minimal measured line width equal to 5Hz. A conclusion is made that the discrete AKR spectrum appears to be the reflection of the auroral plasma inhomogeneous structure

  8. Generation of auroral kilometric radio emission at the cyclotron maser resonance

    International Nuclear Information System (INIS)

    Vlasov, V.G.

    1992-01-01

    A linear mechanism of auroral kilometric radiation (AKR) generation at the maser cyclotron resonance (MCR) in an inhomogeneous multidimensional plasma is developed. The model distribution functions introduced by the author for longitudinal and transverse electron beams allow one to obtain x- and O-mode growth rates in the form of elementary functions. The key idea of the study is the MCR time taking into account all processes leading to the emission of waves from the MCR. It is shown that the MCR time can be sufficient for AKR generation in isolated regions of the auroral plasma. For the X-mode these are the parts of the plasma where the longitudinal gradient of the geomagnetic field is compensated by the plasma density gradient. The O-mode is generated only in those local regions where there is an extremely small longitudinal plasma density gradient. The theoretical minimum width of the AKR spectral line obtained coincides with the minimal measured line width of 5 Hz. It is concluded that the discrete AKR spectrum is related to the inhomogeneous structure of the auroral plasma

  9. High speed global shutter image sensors for professional applications

    Science.gov (United States)

    Wu, Xu; Meynants, Guy

    2015-04-01

    Global shutter imagers expand the use to miscellaneous applications, such as machine vision, 3D imaging, medical imaging, space etc. to eliminate motion artifacts in rolling shutter imagers. A low noise global shutter pixel requires more than one non-light sensitive memory to reduce the read noise. But larger memory area reduces the fill-factor of the pixels. Modern micro-lenses technology can compensate this fill-factor loss. Backside illumination (BSI) is another popular technique to improve the pixel fill-factor. But some pixel architecture may not reach sufficient shutter efficiency with backside illumination. Non-light sensitive memory elements make the fabrication with BSI possible. Machine vision like fast inspection system, medical imaging like 3D medical or scientific applications always ask for high frame rate global shutter image sensors. Thanks to the CMOS technology, fast Analog-to-digital converters (ADCs) can be integrated on chip. Dual correlated double sampling (CDS) on chip ADC with high interface digital data rate reduces the read noise and makes more on-chip operation control. As a result, a global shutter imager with digital interface is a very popular solution for applications with high performance and high frame rate requirements. In this paper we will review the global shutter architectures developed in CMOSIS, discuss their optimization process and compare their performances after fabrication.

  10. Predicting Electron Population Characteristics in 2-D Using Multispectral Ground-Based Imaging

    Science.gov (United States)

    Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Jahn, Jorg-Micha

    2018-01-01

    Ground-based imaging and in situ sounding rocket data are compared to electron transport modeling for an active inverted-V type auroral event. The Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission successfully launched from Poker Flat, Alaska, on 3 March 2014 at 11:09:50 UT and reached an apogee of approximately 335 km over the aurora. Multiple ground-based electron-multiplying charge-coupled device (EMCCD) imagers were positioned at Venetie, Alaska, and aimed toward magnetic zenith. The imagers observed the intensity of different auroral emission lines (427.8, 557.7, and 844.6 nm) at the magnetic foot point of the rocket payload. Emission line intensity data are correlated with electron characteristics measured by the GREECE onboard electron spectrometer. A modified version of the GLobal airglOW (GLOW) model is used to estimate precipitating electron characteristics based on optical emissions. GLOW predicted the electron population characteristics with 20% error given the observed spectral intensities within 10° of magnetic zenith. Predictions are within 30% of the actual values within 20° of magnetic zenith for inverted-V-type aurora. Therefore, it is argued that this technique can be used, at least in certain types of aurora, such as the inverted-V type presented here, to derive 2-D maps of electron characteristics. These can then be used to further derive 2-D maps of ionospheric parameters as a function of time, based solely on multispectral optical imaging data.

  11. Auroral ion acoustic wave enhancement observed with a radar interferometer system

    Directory of Open Access Journals (Sweden)

    N. M. Schlatter

    2015-07-01

    Full Text Available Measurements of naturally enhanced ion acoustic line (NEIAL echoes obtained with a five-antenna interferometric imaging radar system are presented. The observations were conducted with the European Incoherent SCATter (EISCAT radar on Svalbard and the EISCAT Aperture Synthesis Imaging receivers (EASI installed at the radar site. Four baselines of the interferometer are used in the analysis. Based on the coherence estimates derived from the measurements, we show that the enhanced backscattering region is of limited extent in the plane perpendicular to the geomagnetic field. Previously it has been argued that the enhanced backscatter region is limited in size; however, here the first unambiguous observations are presented. The size of the enhanced backscatter region is determined to be less than 900 × 500 m, and at times less than 160 m in the direction of the longest antenna separation, assuming the scattering region to have a Gaussian scattering cross section in the plane perpendicular to the geomagnetic field. Using aperture synthesis imaging methods volumetric images of the NEIAL echo are obtained showing the enhanced backscattering region to be aligned with the geomagnetic field. Although optical auroral emissions are observed outside the radar look direction, our observations are consistent with the NEIAL echo occurring on field lines with particle precipitation.

  12. Plasma line observations in the auroral oval

    International Nuclear Information System (INIS)

    Valladares, C.E.; Kelley, M.C.; Vickrey, J.F.

    1988-01-01

    We report here a series of experiments conducted at the Sondre Stromfjord incoherent scatter radar, aimed at detected enhanced plasma lines associated with midnight sector auroral arcs. Using different receivers, we detected both ion and plasma lines simultaneously. The plasma line signal was recorded with the use of a filter bank of eight frequencies. Plasma lines were found to originate mainly from the topside of the particle-produced E layer. The enhanced plasma lines are sometimes a factor of 100 times larger than the thermal level. Our data show a rapid decay of the plasma lines, however. In some cases, only a 30-s integration time was needed in order to unambiguously detect both upshifted and downshifted lines. The level of the plasma lines reaches values of, for the larger cases, up to 40 0 K above the noise temperature. These are considerably higher than results from prior auroral zone plasma line experiments. In situ observations of enhanced plasma waves in this same region are reported in a companion paper. copyright American Geophysical Union 1988

  13. Bremsstrahlung X rays from Jovian auroral electrons

    International Nuclear Information System (INIS)

    Barbosa, D.D.

    1990-01-01

    The spectrum of X rays from the planet Jupiter is calculated according to an auroral electron beam model. The electrons are assumed to be accelerated by a field-aligned potential drop and penetrate into the atmosphere as a Maxwellian beam of primaries which are scattered, degraded in energy, and merged with a population of ionization secondaries having a power law energy distribution. The soft X rays observed by the Einstein Observatory satelltie are due to bremsstrahlung from the sedondary electrons in the H 2 atmosphere. A good match to the X ray data is obtained if the power law spectral index of the secondary electrons, γ e , is ≅ 2, yielding a power law slope for the photon flux γ X = γ e + 1 ≅ 3. The X ray intensity is best reconciled with a beam of primaries having a characteristic energy 30-100 keV and penetrating the homopause with an auroral energy flux typically of 10-20 ergs cm -2 s -1 but no greater than 50 ergs cm -2 s -1

  14. Ancient Norwegian literature in relation to the auroral oval

    International Nuclear Information System (INIS)

    Brekke, A.

    1981-01-01

    The Poetic Edda and The King's Mirror are well preserved Norse documents from the period between 700 and 1300 A.D. The latter states that the aurora was known to people living in Greenland but probably not observed in Norway at about 1200 A.D. The Poetic Edda does not include any decisive evidence for the aurora being known to the Norse scalds in the Viking era. This is a rather surprising fact as the scalds were much inspired by natural phenomena, and in particular occupied by celestial gestalts. In a search for an explanation of this lack of inspiration from the northern lights among the Norse scalds it is maintained that the position and shape of the auroral oval was different in the Viking era from the present day auroral oval. (orig.)

  15. Acceleration of auroral electrons by waves

    International Nuclear Information System (INIS)

    Hall, D.S.

    1983-06-01

    The evolution of the auroral electron distribution function as the electrons traverse a region of plasma turbulence is discussed. Electron measurements are used to illustrate that if the energy densities of the waves associated with the turbulence are distributed in a particular way, various features of the electron distributions can be accounted for by changes in the details of the wave spectra without changes in the overall form. (author)

  16. Cassini MIMI Close-Up of Saturn Energetic Particles: Low Altitude Trapped Radiation, Auroral Ion Acceleration, and Interchange Flow Channels

    Science.gov (United States)

    Mitchell, D. G.; Krimigis, S. M.; Krupp, N.; Paranicas, C.; Roussos, E.; Kollmann, P.

    2017-12-01

    We present observations from the final orbits of the Cassini Mission at Saturn by the Magnetospheric Imaging Instrument (MIMI). Crossing inside the D-Ring at the equator and just above Saturn's atmosphere, these orbits covered regions never visited previously in the mission. Highlights include the confirmation of an inner radiation belt analogous to the inner radiation belt at Earth by the Low Energy Magnetospheric Measurement System (LEMMS), with surprising twists—Saturn's D-ring material appears to be a source for these particles. Details will be presented in another session. The Grand Finale orbits also afforded a close-up view of the auroral ion acceleration regions by the Ion and Neutral Camera (INCA). Ionospheric ions at the base of auroral field lines are accelerated perpendicular to the magnetic field to 10's and 100's of keV, and charge exchange with exospheric neutrals to be emitted as energetic neutral atoms and images by INCA. We show that this acceleration region lies at about 0.1 Rs. Another feature seen previously in the mission but imaged with greater resolution is a flow channel associated with interchange motion in the middle magnetosphere. We show this feature to extend over several Saturn radii in the radial direction, and over about 2 Saturn radii azimuthally. Additional data have been received since the writing of this abstract and before Cassini's plunge into the atmosphere on September 15, so additional features may be presented.

  17. On the role of magnetic mirroring in the auroral phenomena

    International Nuclear Information System (INIS)

    Lennartsson, W.

    1976-12-01

    On the basis of field and particle observations, it is suggested that a bright auroral display is a part of a magnetosphere-ionosphere current system which is fed by a charge-separation process in the outer magnetosphere (or the solar wind). The upward magnetic-field-aligned current is flowing out of the display, carried mainly by downflowing electrons from the hot-particle populations in the outer magnetosphere (the ambient cold electrons being depleted at high altitudes). As a result of the magnetic mirroring of these downflowing current carriers, a large potential drop is set up along the magnetic field, increasing both the number flux and the kinetic energy of precipitating electrons. It is found that this simple basic model, when combined with wave-particle interactions, may be able to explain a highly diversified selection of auroral particle observations. It may thus be possible to explain both 'inverted-V' events and auroral rays in terms of a static parallel electric field, and the electric field may be compatible with a strongly variable pitch-angle distribution of the precipitating electrons, including distributions peaked at 90 0 as well as 0 0 . This model may also provide a simple explanation of the simultaneous precipitation of electrons and collimated positive ions. (Auth.)

  18. Superposed epoch analysis of O+ auroral outflow during sawtooth events and substorms

    Science.gov (United States)

    Nowrouzi, N.; Kistler, L. M.; Lund, E. J.; Cai, X.

    2017-12-01

    Sawtooth events are repeated injection of energetic particles at geosynchronous orbit. Studies have shown that 94% of sawtooth events occurred during magnetic storm times. The main factor that causes a sawtooth event is still an open question. Simulations have suggested that heavy ions like O+ may play a role in triggering the injections. One of the sources of the O+ in the Earth's magnetosphere is the nightside aurora. O+ ions coming from the nightside auroral region have direct access to the near-earth magnetotail. A model (Brambles et al. 2013) for interplanetary coronal mass ejection driven sawtooth events found that nightside O+ outflow caused the subsequent teeth of the sawtooth event through a feedback mechanism. This work is a superposed epoch analysis to test whether the observed auroral outflow supports this model. Using FAST spacecraft data from 1997-2007, we examine the auroral O+ outflow as a function of time relative to an injection onset. Then we determine whether the profile of outflow flux of O+ during sawtooth events is different from the outflow observed during isolated substorms. The auroral region boundaries are estimated using the method of (Andersson et al. 2004). Subsequently the O+ outflow flux inside these boundaries are calculated and binned as a function of superposed epoch time for substorms and sawtooth "teeth". In this way, we will determine if sawtooth events do in fact have greater O+ outflow, and if that outflow is predominantly from the nightside, as suggested by the model results.

  19. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    Science.gov (United States)

    Nowling, M.; Ahmad, H.; Gamblin, R.; Guala, D.; Hermosillo, D.; Pina, M.; Marrero, E.; Canales, D. R. J.; Cao, J.; Ehteshami, A.; Bering, E. A., III; Lefer, B. L.; Dunbar, B.; Bias, C.; Shahid, S.

    2015-12-01

    This project is currently engaging twelve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological innovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The University of Houston Undergraduate Student Instrumentation Project (USIP) team has built ten such payloads for launch using 1500 gm latex weather balloons deployed in Houston, TX, Fairbanks, AK, and as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind velocity, temperature, electrical conductivity, ozone, and odd nitrogen. This instrument payload will also produce profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students flew payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Twelve out of the launched fifteen payloads were successfully launched and recovered. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  20. Preliminary results of rocket attitude and auroral green line emission rate in the DELTA campaign

    Science.gov (United States)

    Iwagami, Naomoto; Komada, Sayaka; Takahashi, Takao

    2006-09-01

    The attitude of a sounding rocket launched in the DELTA (Dynamics and Energetics of the Lower Thermosphere in Aurora) campaign was determined with IR horizon sensors and geomagnetic sensors. Since the payload was separated into two portions, two sets of attitude sensors were needed. A new IR sensor was developed for the present experiment, and found the zenith-angle of the spin-axis of the rocket with an accuracy of 2°. By combining information obtained by both type of sensors, the absolute attitudes were determined. The auroral green line emission rate was measured by a photometer on board the same rocket launched under active auroral conditions, and the energy flux of the auroral particle precipitation was estimated.

  1. Preliminary Observations of Ionospheric Response to an Auroral Driver from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) Sounding Rocket Campaign

    Science.gov (United States)

    Fernandes, P. A.; Lynch, K. A.; Hysell, D. L.; Powell, S.; Miceli, R.; Hampton, D. L.; Ahrns, J.; Lessard, M.; Cohen, I. J.; Moen, J. I.; Bekkeng, T.

    2012-12-01

    The nightside sounding rocket MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) launched from Poker Flat, AK, on February 19, 2012, and reached an apogee of 325km. MICA was launched into several discrete, localized arcs in the wake of a westward traveling surge. The MICA instrumentation included both in situ and ground based instruments, and was designed to measure the response of the ionosphere to an auroral driver. More specifically, the science goal was to measure response of the ionosphere to a feedback instability in the ionospheric Alfvén resonator. The MICA payload included in situ particle, electric and magnetic field, and GPS instruments. The ground-based array consisted of a multitude of imagers, coherent and incoherent scatter radars, and a Fabry-Perot interferometer. We present observational characteristics of the response of the ionospheric plasma to the auroral drivers inferred from inverting camera data. We compare the measured precipitating electron population to inversions of camera images, which use a transport model to infer a 2D map of the precipitation. Comparisons show that as the payload passes through what appears to be an Alfvénic auroral arc, the in situ electron instrument shows dispersions indicative of Alfvénic activity. We then introduce measurements of the thermal ion distribution, to examine how the auroral arcs drive a response in the ionosphere. The thermal ion data show that the payload potential strengthens as the payload passes through the arc. When including electron density, temperature, and electric field data, we observe times in which the ionospheric environment changes as the precipitation changes, and times during which there is no measured response by the ionosphere. Future work will compare how the ion bulk flow as measured by the thermal ion instrument compares to the ExB drift as measured by the electric field instrument and to the neutral wind measurements from the Fabry-Perot interferometer

  2. Height-integrated conductivity in auroral substorms. 1. Data

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2000-01-01

    to select substorms which display a typical bulge-type auroral emission pattern and to organize the position of individual DE 2 passes with respect to key features in the emission pattern. The Hall and Pedersen conductances are calculated from electron precipitation data obtained by the low altitude plasma...

  3. Auroral research in Norway up to the space age

    International Nuclear Information System (INIS)

    Egeland, A.; Brekke, A.

    1986-01-01

    Since Norway is located in and close to the belt of maximum auroral occurrence, this may explain why Norwegian scientists have made such a significant contribution in auroral research. This, however, does not explain why Norwegians have been more active in this field than scientists in our neighboring countries. The same is even true in meteorology. Thus, it seems that Norwegians have concentrated on ''outdoor'' natural sciences. K.O. Birkeland, F.M. Stoermer and L. Vegard were the first to apply precise methods to study aurora and associated phenomena. They were also the first to propose a realistic theory and to calculate the motion of fast electrons from the Sun to the Earth's polar atmosphere. Through their research, these pioneers discovered many new effects and laid the foundation of our present-day exploration of aurora from space

  4. Precipitation and total power consumption in the ionosphere: Global MHD simulation results compared with Polar and SNOE observations

    Directory of Open Access Journals (Sweden)

    M. Palmroth

    2006-05-01

    Full Text Available We compare the ionospheric electron precipitation morphology and power from a global MHD simulation (GUMICS-4 with direct measurements of auroral energy flux during a pair of substorms on 28-29 March 1998. The electron precipitation power is computed directly from global images of auroral light observed by the Polar satellite ultraviolet imager (UVI. Independent of the Polar UVI measurements, the electron precipitation energy is determined from SNOE satellite observations on the thermospheric nitric oxide (NO density. We find that the GUMICS-4 simulation reproduces the spatial variation of the global aurora rather reliably in the sense that the onset of the substorm is shown in GUMICS-4 simulation as enhanced precipitation in the right location at the right time. The total integrated precipitation power in the GUMICS-4 simulation is in quantitative agreement with the observations during quiet times, i.e., before the two substorm intensifications. We find that during active times the GUMICS-4 integrated precipitation is a factor of 5 lower than the observations indicate. However, we also find factor of 2-3 differences in the precipitation power among the three different UVI processing methods tested here. The findings of this paper are used to complete an earlier objective, in which the total ionospheric power deposition in the simulation is forecasted from a mathematical expression, which is a function of solar wind density, velocity and magnetic field. We find that during this event, the correlation coefficient between the outcome of the forecasting expression and the simulation results is 0.83. During the event, the simulation result on the total ionospheric power deposition agrees with observations (correlation coefficient 0.8 and the AE index (0.85.

  5. Jupiter's Auroral Energy Input Observed by Hisaki/EXCEED and its Modulations by Io's Volcanic Activity

    Science.gov (United States)

    Tao, C.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Yoshioka, K.; Kita, H.; Yamazaki, A.; Kasaba, Y.; Yoshikawa, I.; Fujimoto, M.

    2016-12-01

    Aurora is an important indicator representing the momentum transfer from the fast-rotating outer planet to the magnetosphere and the energy input into the atmosphere through the magnetosphere-ionosphere coupling. Long-term monitoring of Jupiter's northern aurora was achieved by the Extreme Ultraviolet (EUV) spectrometer called EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) onboard JAXA's Earth-orbiting planetary space telescope Hisaki until today after its launch in September 2013. We have proceeded the statistical survey of the Jupiter's auroral energy input into the upper atmosphere. The auroral electron energy is estimated using a hydrocarbon color ratio (CR) adopted for the wavelength range of EXCEED, and the emission power in the long wavelength range 138.5-144.8 nm is used as an indicator of total emitted power before hydrocarbon absorption and auroral electron energy flux. Temporal dynamic variation of the auroral intensity was detected when Io's volcanic activity and thus EUV emission from the Io plasma torus are enhanced in the early 2015. Average of the total input power over 80 days increases by 10% with sometimes sporadically more than a factor of 3 upto 7, while the CR indicates the auroral electron energy decrease by 20% during the volcanic event compared to the other period. This indicates much more increase in the current system and Joule heating which contributes heating of the upper atmosphere. We will discuss the impact of this event on the upper atmosphere and ionosphere.

  6. Electric field and electron density thresholds for coherent auroral echo onset

    International Nuclear Information System (INIS)

    Kustov, A.V.; Uspensky, M.V.; Sofko, G.J.; Koehler, J.A.; Jones, G.O.L.; Williams, P.J.S.

    1993-01-01

    The authors study the threshold dependence of electron density and electric field for the observation of coherent auroral echo onset. They make use of Polar Geophysical Institute 83 MHz auroral radar and the EISCAT facility in Scandanavia, to simultaneously get plasma parameter information and coherent scatter observations. They observe an electron density threshold of roughly 2.5x10 11 m -3 for electric fields of 15 - 20 mV/m (near the Farley-Buneman instability threshold). For electric fields of 5 - 10 mV/m echos are not observed for even twice the previous electron density. Echo strength is observed to have other parametric dependences

  7. Rocket measurements of electric fields, electron density and temperature during the three phases of auroral substorms

    International Nuclear Information System (INIS)

    Marklund, G.; Block, L.; Lindqvist, P.-A.

    1979-12-01

    On Jan. 27, 1979, three rocket payloads were launched from Kiruna, Sweden, into different phases of two successive auroral substorms. Among other experiments, the payloads carried the RIT double probe electric field experiments, providing electric field, electron density and temperature data, which are presented here. These are discussed in association with observations of particles, ionospheric drifts (STARE) and electric fields in the equatorial plane (GEOS). The motions of the auroral forms, as obtained from auroral pictures are compared with the E x B/B 2 drifts and the currents calculated from the rocket electric field and density measurements with the equivalent current system deduced from ground based magnetometer data (SMA). (Auth.)

  8. Spontaneous generation of auroral arcs in a three dimensionally coupled magnetosphere-ionosphere system

    International Nuclear Information System (INIS)

    Watanabe, Kunihiko; Sato, Tetsuya.

    1988-01-01

    This paper presents the first full three-dimensional dynamic simulation of auroral arc formation. The magnetospheric and ionospheric dynamics are represented by one-fluid magnetohydrodynamic equations and two-fluid weakly ionized plasma equations, respectively. The feedback coupling between magnetospheric Alfven waves and ionospheric density waves are self-consistently and three-dimensionally solved. Obtained is a spontaneous generation of longitudinally elongated striations of field-aligned currents and ionospheric electron densities, which compare very well with many features of quiet auroral arcs. (author)

  9. Results based on a correlative study of geomagnetic and radio auroral observations

    International Nuclear Information System (INIS)

    Haldoupis, C.

    The results presented here are from a correlative study of ground based magnetometer data from an auroral station, and STARE radar auroral data from a small ionospheric region located exactly above the magnetometer site. The magnetometer data includes both the horizontal X and Y magnetograms and micropulsation components. The STARE data represents time sequencies of both the echo intensity and irregularity drift velocity (or electric field) vector. The observations used in the analysis are from a reasonably disturbed 16-hour period covering the afternoon, midnight and morning sectors of auroral oval. A close relationship was found to exist between the geomagnetic variations and the backscatter amplitude. The results suggest that the conductivity, rather than the electric field, is the prime agent responsible for the long period modulation observed on both the magnetic signatures and the backscatter intensity. In one case, it was found that conductivity modifications cause direct modulation of direction but not the amplitude of the electric field. The rapid ac-fluctuations seen in the electric field most likely play a role in the generation of Pi-pulsations. (Auth.)

  10. Auroral-Region Dynamics Determined with the Chatanika Radar.

    Science.gov (United States)

    1982-11-01

    low-latitudes originate in the auroral region [Davis and Da Rosa, 1969; Testud , 1970; Chandra et al., 1979). They may be generated by particle...Ion Composition and Nitric Oxide," Planet. Sp. Sci., 25, 103-116 (1977). Testud , J., "Gravity Waves Generated During Magnetic Substorms," J. Atmos. and

  11. The sub-auroral electric field as observed by DMSP and the new SuperDARN mid-latitude radars

    Science.gov (United States)

    Talaat, E. R.; Sotirelis, T.; Hairston, M. R.; Ruohoniemi, J. M.; Greenwald, R. A.; Lester, M.

    2008-12-01

    In this paper we present analyses of the sub-auroral electric field environment as observed from both space and ground. We discuss the dependency of the configuration and strength of the sub-auroral electric field on IMF and geomagnetic activity, longitudinal, seasonal, and solar cycle variability. Primarily, e use ~20 years of electric field measurement dataset derived from the suite of DMSP ion drift meters. A major component of our analysis is correctly specifying the aurora boundary, as the behavior and magnitude of these fields will be drastically different away from the high-conductance auroral oval. As such, we use the coincident particle flux measurements from the DMSP SSJ4 monitors. We also present the solar minimum observations of the sub-auroral flow newly available from the mid-latitude SuperDARN radars at Wallops and Blackstone in Virginia. Preliminary comparisons between these flows and the DMSP climatology are discussed.

  12. Space Weather Products and Tools Used in Auroral Monitoring and Forecasting at CCMC/SWRC

    Science.gov (United States)

    Zheng, Yihua; Rastaetter, Lutz

    2015-01-01

    Key points discussed in this chapter are (1) the importance of aurora research to scientific advances and space weather applications, (2) space weather products at CCMC that are relevant to aurora monitoring and forecasting, and (3) the need for more effort from the whole community to achieve a better and long-lead-time forecast of auroral activity. Aurora, as manifestations of solar wind-magnetosphere-ionosphere coupling that occurs in a region of space that is relatively easy to access for sounding rockets, satellites, and other types of observational platforms, serves as a natural laboratory for studying the underlying physics of the complex system. From a space weather application perspective, auroras can cause surface charging of technological assets passing through the region, result in scintillation effects affecting communication and navigation, and cause radar cluttering that hinders military and civilian applications. Indirectly, an aurora and its currents can induce geomagnetically induced currents (GIC) on the ground, which poses major concerns for the wellbeing and operation of power grids, particularly during periods of intense geomagnetic activity. In addition, accurate auroral forecasting is desired for auroral tourism. In this chapter, we first review some of the existing auroral models and discuss past validation efforts. Such efforts are crucial in transitioning a model(s) from research to operations and for further model improvement and development that also benefits scientific endeavors. Then we will focus on products and tools that are used for auroral monitoring and forecasting at the Space Weather Research Center (SWRC). As part of the CCMC (Community Coordinated Modeling Center), SWRC has been providing space weather services since 2010.

  13. Polarisation of auroral emission lines in the Earth's upper atmosphere : first results and perspectives

    Science.gov (United States)

    Lamy, H.; Barthelemy, M.; Simon Wedlund, C.; Lilensten, J.; Bommier, V.

    2011-12-01

    Polarisation of light is a key observable to provide information about asymmetry or anisotropy within a radiative source. Following the pioneering and controversial work of Duncan in 1959, the polarisation of auroral emission lines in the Earth's upper atmosphere has been overlooked for a long time, even though the red intense auroral line (6300Å) produced by collisional impacts with electrons precipitating along magnetic field lines is a good candidate to search for polarisation. This problem was investigated again by Lilensten et al (2006) and observations were obtained by Lilensten et al (2008) confirming that the red auroral emission line is polarised. More recent measurements obtained by Barthélemy et al (2011) are presented and discussed. The results are compared to predictions of the theoretical work of Bommier et al (2011) and are in good agreement. Following these encouraging results, a new dedicated spectropolarimeter is currently under construction between BIRA-IASB and IPAG to provide simultaneously the polarisation of the red line and of other interesting auroral emission lines such as N2+ 1NG (4278Å), other N2 bands, etc... Perspectives regarding the theoretical polarisation of some of these lines will be presented. The importance of these polarisation measurements in the framework of atmospheric modeling and geomagnetic activity will be discussed.

  14. Two-dimensional quasi-neutral description of particles and fields above discrete auroral arcs

    Science.gov (United States)

    Newman, A. L.; Chiu, Y. T.; Cornwall, J. M.

    1986-01-01

    Models are presented for particle distributions, electric fields and currents in an adiabatic treatment of auroral electrostatic potential distributions in order to describe the quiet-time evening auroral arcs featuring both upward and return currents. The models are consistent with current continuity and charge balance requirements for particle populations controlled by adiabatic invariants and quasi-neutrality in the magnetosphere. The effective energy of the cool electron population is demonstrated to have a significant effect on the latitudinal breadth of the auroral electrostatic potential structure and the extent of the penetration of the accelerating potential into the ionosphere. Another finding is that the energy of any parallel potential drop in the lowest few thousand kilometers of the field line is of the same order of magnitude as the thermal energy of the cool electrons. Additional predictions include density cavities along field lines that support large potential drops, and density enhancements along field lines at the edge of an inverted V with a small potential drop.

  15. A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation.

    Science.gov (United States)

    Pelet, S; Previte, M J R; Laiho, L H; So, P T C

    2004-10-01

    Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained analysis. Convergence speed can be greatly accelerated by providing appropriate initial guesses. Realizing that the image morphology often correlates with fluorophore distribution, a global fitting algorithm has been developed to assign initial guesses throughout an image based on a segmentation analysis. This algorithm was tested on both simulated data sets and time-domain lifetime measurements. We have successfully measured fluorophore distribution in fibroblasts stained with Hoechst and calcein. This method further allows second harmonic generation from collagen and elastin autofluorescence to be differentiated in fluorescence lifetime imaging microscopy images of ex vivo human skin. On our experimental measurement, this algorithm increased convergence speed by over two orders of magnitude and achieved significantly better fits. Copyright 2004 Biophysical Society

  16. Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices

    Science.gov (United States)

    Newell, P. T.; Gjerloev, J. W.

    2011-12-01

    A generalization of the traditional 12-station auroral electrojet (AE) index to include more than 100 magnetometer stations, SME, is an excellent predictor of global auroral power (AP), even at high cadence (1 min). We use this index, and a database of more than 53,000 substorms derived from it, covering 1980-2009, to investigate time and energy scales in the magnetosphere, during substorms and otherwise. We find, contrary to common opinion, that substorms do not have a preferred recurrence rate but instead have two distinct dynamic regimes, each following a power law. The number of substorms recurring after a time Δt, N(Δt), varies as Δt-1.19 for short times (3 hours). Other evidence also shows these distinct regimes for the magnetosphere, including a break in the power law spectra for SME at about 3 hours. The time between two consecutive substorms is only weakly correlated (r = 0.18 for isolated and r = 0.06 for recurrent) with the time until the next, suggesting quasiperiodicity is not common. However, substorms do have a preferred size, with the typical peak SME magnitude reaching 400-600 nT, but with a mean of 656 nT, corresponding to a bit less than 40 GW AP. More surprisingly, another characteristic scale exists in the magnetosphere, namely, a peak in the SME distribution around 61 nT, corresponding to about 5 GW precipitating AP. The dominant form of auroral precipitation is diffuse aurora; thus, these values are properties of the magnetotail thermal electron distribution. The characteristic 5 GW value specifically represents a preferred minimum below which the magnetotail rarely drops. The magnetotail experiences continuous loss by precipitation, so the existence of a preferred minimum implies driving that rarely disappears altogether. Finally, the distribution of SME values across all times, in accordance with earlier work on AE, is best fit by the sum of two distributions, each normal in log(SME). The lower distribution (with a 40% weighting

  17. Custom auroral electrojet indices calculated by using MANGO value-added services

    Science.gov (United States)

    Bargatze, L. F.; Moore, W. B.; King, T. A.

    2009-12-01

    A set of computational routines called MANGO, Magnetogram Analysis for the Network of Geophysical Observatories, is utilized to calculate customized versions of the auroral electrojet indices, AE, AL, and AU. MANGO is part of an effort to enhance data services available to users of the Heliophysics VxOs, specifically for the Virtual Magnetospheric Observatory (VMO). The MANGO value-added service package is composed of a set of IDL routines that decompose ground magnetic field observations to isolate secular, diurnal, and disturbance variations of magnetic field disturbance, station-by-station. Each MANGO subroutine has been written in modular fashion to allow "plug and play"-style flexibility and each has been designed to account for failure modes and noisy data so that the programs will run to completion producing as much derived data as possible. The capabilities of the MANGO service package will be demonstrated through their application to the study of auroral electrojet current flow during magnetic substorms. Traditionally, the AE indices are calculated by using data from about twelve ground stations located at northern auroral zone latitudes spread longitudinally around the world. Magnetogram data are corrected for secular variation prior to calculating the standard version of the indices but the data are not corrected for diurnal variations. A custom version of the AE indices will be created by using the MANGO routines including a step to subtract diurnal curves from the magnetic field data at each station. The custom AE indices provide more accurate measures of auroral electrojet activity due to isolation of the sunstorm electrojet magnetic field signiture. The improvements in the accuracy of the custom AE indices over the tradition indices are largest during the northern hemisphere summer when the range of diurnal variation reaches its maximum.

  18. Auroral omens of the American Civil War

    Science.gov (United States)

    Love, Jeffrey J.

    2014-01-01

    Aurorae are a splendid night-time sight: coruscations of green, purple, and red fluorescent light in the form of gently wafting ribbons, billowing curtains, and flashing rays. Mostly seen at high latitudes, in the north aurorae are often called the northern lights or aurora borealis, and, in the south, the southern lights or aurora australis. The mystery of their cause has historically been the subject of wonder. The folklore and mythology of some far-northern civilizations attributed auroral light to celestial deities. And, in ironic contrast with their heavenly beauty, unusual auroral displays, such as those seen on rare occasions at lower southern latitudes, have sometimes been interpreted as portending unfavorable future events. Today we understand aurorae to be a visual manifestation of the dynamic conditions in the space environment surrounding the earth. Important direct evidence in support of this theory came on September 1, 1859. On that day, an English astronomer named Richard Carrington was situated at his telescope, which was pointed at the sun. While observing and sketching a large group of sunspots, he saw a solar flare—intense patches of white light that were superimposed upon the darker sunspot group and which were illuminated for about a minute. One day later, a magnetic storm was recorded at specially designed observatories in Europe, across Russia, and in India. By many measures, the amplitude of magnetic disturbance was the greatest ever recorded. In the United States, the effects of the Carrington storm could be seen as irregular backand-forth deflections of a few degrees in the magnetized needle of a compass. Rapid magnetic variation also induced electric fields in the earth’s conducting lithosphere, and interfered with the operation of telegraph systems. The Carrington magnetic storm, and an earlier storm that had occurred on August 28, 1859, caused spectacular displays of aurora borealis in the night-time sky over the entire United

  19. Numerical simulation for a vortex street near the poleward boundary of the nighttime auroral oval

    Science.gov (United States)

    Yamamoto, T.

    2012-02-01

    The formation of a vortex street is numerically studied as an aftermath of a transient (≈1 min) depression of the energy density of injected particles. It is basically assumed that the kinetic energies of auroral particles are substantially provided by nonadiabatic acceleration in the tail current sheet. One of the causes of such energy density depression is an outward (away from the Earth) movement of the neutral line because in such situation, a particle passes the acceleration zone for a shorter time interval while it is inwardly transported in the current sheet. The numerical simulation shows that a long chain of many (≥5) vortices can be formed in the nighttime high-latitude auroral oval as a result of the hybrid Kelvin-Helmholtz/Rayleigh-Taylor (KH/RT) instability. The main characteristics of long vortex chains in the simulation such as the short lifetime (≲2 min) and the correlation between wavelength, λ, and arc system width, A, compare well with those of the periodic auroral distortions observed primarily in the high-latitude auroral oval. Specifically, either λ-A relationship from simulation or observation shows a positive correlation between λ and A but with considerable dispersion in λ. Since auroral vortices arising from the hybrid KH/RT instability are not accompanied by significant rotational motions, the magnetic shear instability caused by undulations in the field-aligned current (FAC) sheet could turn the vortices into spirals which wind or unwind in response to increase or decrease of FACs, respectively.

  20. Investigating the auroral electrojets with low altitude polar orbiting satellites

    DEFF Research Database (Denmark)

    Moretto, T.; Olsen, Nils; Ritter, P.

    2002-01-01

    Three geomagnetic satellite missions currently provide high precision magnetic field measurements from low altitude polar orbiting spacecraft. We demonstrate how these data can be used to determine the intensity and location of the horizontal currents that flow in the ionosphere, predominantly...... to another event for which the combined measurements of the three satellites provide a comprehensive view of the current systems. The analysis hereof reveals some surprising results concerning the connection between solar wind driver and the resulting ionospheric currents. Specifically, preconditioning.......8-0.9) is observed between the amplitudes of the derived currents and the commonly used auroral electro-jet indices based on magnetic measurements at ground. This points to the potential of defining an auroral activity index based on the satellite observations, which could be useful for space weather monitoring...

  1. A statistical study of ion energization at 1700 km in the auroral region

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2002-12-01

    Full Text Available We present a comprehensive overview of several potentially relevant causes for the oxygen energization in the auroral region. Data from the Freja satellite near 1700 km altitude are used for an unconditional statistical investigation. The data are obtained in the Northern Hemisphere during 21 months in the declining phase of the solar cycle. The importance of various wave types for the ion energization is statistically studied. We also investigate the correlation of ion heating with precipitating protons, accelerated auroral electrons, suprathermal electron bursts, the electron density variations, Kp index and solar illumination of the nearest conjugate ionosphere. We find that sufficiently strong broad-band ELF waves, electromagnetic ion cyclotron waves, and waves around the lower hybrid frequency are foremost associated with the ion heating. However, magnetosonic waves, with a sharp, lower frequency cutoff just below the proton gyrofrequency, are not found to contribute to the ion heating. In the absence of the first three wave emissions, transversely energized ions are rare. These wave types are approximately equally efficient in heating the ions, but we find that the main source for the heating is broadband ELF waves, since they are most common in the auroral region. We have also observed that the conditions for ion heating are more favourable for smaller ratios of the spectral densities SE /SB of the broadband ELF waves at the oxygen gyrofrequency.Key words. Ionosphere (auroral ionosphere; wave propogation Magnetospheric physics (electric fields

  2. Excitation of low-frequency electrostatic instability on the auroral ...

    African Journals Online (AJOL)

    Low-Frequency Electrostatic Instability That Is Observed By Both Ground Facilities And Satellites Have Been Studied In The Auroral Acceleration Region Consisting Of Hot Precipitating Electron Beam From The Magnetosphere, Cold Background Electron And Ion Beam Moving Upward Away From The Earth Along The ...

  3. First results of the Auroral Turbulance II rocket experiment

    DEFF Research Database (Denmark)

    Danielides, M.A.; Ranta, A.; Ivchenco, N.

    1999-01-01

    The Auroral Turbulance II sounding rocket was launched on February 11, 1997 into moderately active nightside aurora from the Poker Flat Research Range, Alaska, US. The experiment consisted of three independent, completely instrumented payloads launched by a single vehicle. The aim of the experiment...

  4. Kinetic modeling of auroral ion outflows observed by the VISIONS sounding rocket

    Science.gov (United States)

    Albarran, R. M.; Zettergren, M. D.

    2017-12-01

    The VISIONS (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of the ion outflow below 1000km. Energetic ion data from the VISIONS polar cap boundary crossing show evidence of an ion "pressure cooker" effect whereby ions energized via transverse heating in the topside ionosphere travel upward and are impeded by a parallel potential structure at higher altitudes. VISIONS was also instrumented with an energetic neutral atom (ENA) detector which measured neutral particles ( 50-100 eV energy) presumably produced by charge-exchange with the energized outflowing ions. Hence, inferences about ion outflow may be made via remotely-sensing measurements of ENAs. This investigation focuses on modeling energetic outflowing ion distributions observed by VISIONS using a kinetic model. This kinetic model traces large numbers of individual particles, using a guiding-center approximation, in order to allow calculation of ion distribution functions and moments. For the present study we include mirror and parallel electric field forces, and a source of ion cyclotron resonance (ICR) wave heating, thought to be central to the transverse energization of ions. The model is initiated with a steady-state ion density altitude profile and Maxwellian velocity distribution characterizing the initial phase-space conditions for multiple particle trajectories. This project serves to advance our understanding of the drivers and particle dynamics in the auroral ionosphere and to improve data analysis methods for future sounding rocket and satellite missions.

  5. The first full-resolution measurements of Auroral Medium Frequency Burst Emissions

    Science.gov (United States)

    Bunch, N. L.; Labelle, J.; Weatherwax, A.; Hughes, J.

    2008-12-01

    Auroral MF burst is a naturally occurring auroral radio emission which appears unstructured on resolution of previous measurements, is observed in the frequency range of 0.8-4.5 MHz, and has typical amplitudes of around 10-14 V2/m2Hz, and durations of a few minutes. The emission occurs at substorm onset. Since Sept 2006, Dartmouth has operated a broadband (0-5 MHz) interferometer at Toolik Lake, Alaska (68° 38' N, 149° 36' W, 68.51 deg. magnetic latitude), designed for the study of auroral MF burst emissions. Normal operation involves taking snapshots of waveforms from four spaced antennas from which wave spectral and directional information is obtained. However, the experiment can also be run in "continuous mode" whereby the signal from a selected antenna is sampled continuously at 10 M samples/second. A "continuous mode" campaign was run 0800-1200 UT (~2200-0200 MLT) daily from March 21 to April 19, 2008. During this campaign more than twenty auroral MF burst emissions were observed, including three extraordinarily intense examples lasting approximately two minutes each. These observations represent the highest time and frequency resolution data ever collected of MF burst emissions. These data allow us to better characterize the null near twice the electron gyrofrequency identified in previous experiments, since examples of this feature observed during this campaign display a strong null ~50 kHz in bandwidth, with sharp boundaries and occasionally coincident with 2 fce auroral roar. These data also allow us to search for frequency-time structures embedded in MF-burst. One prominent feature appears to be a strong single frequency emission which broadens down to lower frequencies over time, spreading to approximately 500 kHz in bandwidth over ~10 ms. Among other features observed are a diffuse and unstructured emission, as well as what could potentially be several separate emission sources, with multiple emissions occurring simultaneously, appearing as weaker

  6. On I(5577 Å and I (7620 Å auroral emissions and atomic oxygen densities

    Directory of Open Access Journals (Sweden)

    R. L. Gattinger

    1996-07-01

    Full Text Available A model of auroral electron deposition processes has been developed using Monte Carlo techniques to simulate electron transport and energy loss. The computed differential electron flux and pitch angle were compared with in situ auroral observations to provide a check on the accuracy of the model. As part of the energy loss process, a tally was kept of electronic excitation and ionization of the important atomic and molecular states. The optical emission rates from these excited states were computed and compared with auroral observations of η(3914 Å, η(5577 Å, η(7620 Å and η(N2VK. In particular, the roles played by energy transfer from N2(A3Σ+u and by other processes in the excitation of O(1S and O2(b1Σ+g were investigated in detail. It is concluded that the N2(A3Σ+u mechanism is dominant for the production of OI(5577 Å in the peak emission region of normal aurora, although the production efficiency is much smaller than the measured laboratory value; above 150 km electron impact on atomic oxygen is dominant. Atomic oxygen densities in the range of 0.75±0.25 MSIS-86 [O] were derived from the optical comparisons for auroral latitudes in mid-winter for various levels of solar and magnetic activity.

  7. Saturn's polar ionospheric flows and their relation to the main auroral oval

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2004-04-01

    upward current bounding the region of open and closed field lines. Estimates indicate that auroras of brightness from a few kR to a few tens of kR can be produced by precipitating accelerated magnetospheric electrons of a few keV to a few tens of keV energy, if the current flows in a region which is sufficiently narrow, of the order of or less than ~1000 km (~1° latitude wide. Arguments are also given which indicate that the auroras should typically be significantly brighter on the dawn side of the oval than at dusk, by roughly an order of magnitude, and should be displaced somewhat towards dawn by the down-tail outflow at dusk associated with the Vasyliunas cycle. Model estimates are found to be in good agreement with data derived from high quality images newly obtained using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope, both in regard to physical parameters, as well as local time effects. The implication of this picture is that the form, position, and brightness of Saturn's main auroral oval provide remote diagnostics of the magnetospheric interaction with the solar wind, including dynamics associated with magnetopause and tail plasma interaction processes.

    Key words. Magnetospheric physics (auroral phenomena, magnetosphere-ionosphere interactions, solar windmagnetosphere interactions

  8. Scientific Achievements of Global ENA Imaging and Future Outlook

    Science.gov (United States)

    Brandt, P. C.; Stephens, G. K.; Hsieh, S. Y. W.; Demajistre, R.; Gkioulidou, M.

    2017-12-01

    Energetic Neutral Atom (ENA) imaging is the only technique that can capture the instantaneous global state of energetic ion distributions in planetary magnetospheres and from the heliosheath. In particular at Earth, ENA imaging has been used to diagnose the morphology and dynamics of the ring current and plasma sheet down to several minutes time resolution and is therefore a critical tool to validate global ring current physics models. However, this requires a detailed understanding for how ENAs are produced from the ring current and inversion techniques that are thoroughly validated against in-situ measurements. To date, several missions have carried out planetary and heliospheric ENA imaging including Cassini, JUICE, IBEX of the heliosphere, and POLAR, Astrid-1, Double Star, TWINS and IMAGE of the terrestrial magnetosphere. Because of their path-finding successes, a future global-imaging mission concept, MEDICI, has been recommended in the Heliophysics Decadal Survey. Its core mission consists of two satellites in one circular, near-polar orbit beyond the radiation belts at around 8 RE, with ENA, EUV and FUV cameras. This recommendation has driven the definition of smaller mission concepts that address specific science aspects of the MEDICI concept. In this presentation, we review the past scientific achievements of ENA imaging with a focus on the terrestrial magnetosphere from primarily the NASA IMAGE and the TWINS missions. The highlighted achievements include the storm, sub-storm and quiet-time morphology, dynamics and pitch-angle distributions of the ring current, global differential acceleration of protons versus O+ ions, the structure of the global electrical current systems associated with the plasma pressure of protons and O+ ions up to around 200 keV, and the relation between ring current and plasmasphere. We discuss the need for future global observations of the ring current, plasma sheet and magnetosheath ion distributions based and derive their

  9. Auroral-zone electric fields from DE-1 and -2 at magnetic conjuctions

    International Nuclear Information System (INIS)

    Weimer, D.R.

    1984-01-01

    Nearly simultaneous measurements of auroral zone electric fields are obtained by the Dynamics Explorer spacecraft at altitudes below 900 km and above 4500 km during magnetic conjuctions. The measured electric fields are approximately perpendicular to the magnetic field lines. The north-south meridional electric fields are projected to a common altitude by a mapping function. When plotted as a function of invariant latitude, graphs of the projected electric fields measured by DE-1 and DE-2 show that the large-scale electric field is the same at both altitudes. However, superimposed on the large-scale fields are small-scale features with wavelengths less than 100 km which are larger in magnitude at the higher altitude. Fourier transforms of the electric fields show that the magnitudes depend on wavelength. Outside of the auroral zone the electric field spectrums are nearly identical. But within the auroral zone the spectrums of the high and low altitude electric fields have a ratio which increases with the reciprocal of the wavelength. The small-scale electric field variations are associated with field-aligned currents. These currents are measured with both a plasma instrument and magnetometer on DE-1

  10. All-sky-imaging capabilities for ionospheric space weather research using geomagnetic conjugate point observing sites

    Science.gov (United States)

    Martinis, C.; Baumgardner, J.; Wroten, J.; Mendillo, M.

    2018-04-01

    Optical signatures of ionospheric disturbances exist at all latitudes on Earth-the most well known case being visible aurora at high latitudes. Sub-visual emissions occur equatorward of the auroral zones that also indicate periods and locations of severe Space Weather effects. These fall into three magnetic latitude domains in each hemisphere: (1) sub-auroral latitudes ∼40-60°, (2) mid-latitudes (20-40°) and (3) equatorial-to-low latitudes (0-20°). Boston University has established a network of all-sky-imagers (ASIs) with sites at opposite ends of the same geomagnetic field lines in each hemisphere-called geomagnetic conjugate points. Our ASIs are autonomous instruments that operate in mini-observatories situated at four conjugate pairs in North and South America, plus one pair linking Europe and South Africa. In this paper, we describe instrument design, data-taking protocols, data transfer and archiving issues, image processing, science objectives and early results for each latitude domain. This unique capability addresses how a single source of disturbance is transformed into similar or different effects based on the unique "receptor" conditions (seasonal effects) found in each hemisphere. Applying optical conjugate point observations to Space Weather problems offers a new diagnostic approach for understanding the global system response functions operating in the Earth's upper atmosphere.

  11. Correlated observations of several auroral substorms on February 17, 1971

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.; Akasofu, S.; Wolcott, J.H.; Bame, S.J.; Fairfield, D.H.; Meng, C.

    1976-01-01

    The purpose of this study is to correlate in detail auroral activity with the corresponding disturbances in the magnetotail. The auroral data were recorded by optical instruments aboard an airplane flying over the Arctic Ocean along the Alaska meridian and by the Alaska meridian chain of all-sky cameras. The corresponding magnetotail observations were made by various instruments on Vela 6A and Imp 5; the interplanetary magnetic field was monitored concurrently by Explorer 35 (Imp E). Three successive substorms were observed on February 17, 1971. Each substorm was readily identified by the classical auroral and magnetic signatures which accompanied its onset. The observed variations of plasma and magnetic field in the magnetotail were consistent with the idea that a neutral line formed in the range approx.-12 R/subE/>X/subS//subM/>-18 R/subE/ at the onset of each substorm expansive phase and then moved tailward past X/subS//subM/=-18 R/subE/ some tens of minutes afterward. The Z component of the tail magnetic field decreased rather steadily for a period of 1--21/2 hours after each substorm and until the onset of the next expansive phase, reaching a minimum value just before each onset. This taillike development of the field is more appropriately regarded as the normal evolutionary pattern of variation between substorms than as a 'growth phase' preceding each substorm

  12. The auroral and ionospheric flow signatures of dual lobe reconnection

    Directory of Open Access Journals (Sweden)

    S. M. Imber

    2006-11-01

    Full Text Available We present the first substantial evidence for the occurrence of dual lobe reconnection from ionospheric flows and auroral signatures. The process of dual lobe reconnection refers to an interplanetary magnetic field line reconnecting with lobe field lines in both the northern and southern hemispheres. Two bursts of sunward plasma flow across the noon portion of the open/closed field line boundary (OCB, indicating magnetic flux closure at the dayside, were observed in SuperDARN radar data during a period of strongly northward IMF. The OCB is identified from spacecraft, radar backscatter, and auroral observations. In order for dual lobe reconnection to take place, we estimate that the interplanetary magnetic field clock angle must be within ±10° of zero (North. The total flux crossing the OCB during each burst is small (1.8% and 0.6% of the flux contained within the polar cap for the two flows. A brightening of the noon portion of the northern auroral oval was observed as the clock angle passed through zero, and is thought to be due to enhanced precipitating particle fluxes due to the occurrence of reconnection at two locations along the field line. The number of solar wind protons captured by the flux closure process was estimated to be ~2.5×1030 (4 tonnes by mass, sufficient to populate the cold, dense plasma sheet observed following this interval.

  13. Atmospheric Pressure and Velocity Fluctuations Near the Auroral Electrojet.

    Science.gov (United States)

    1982-01-15

    various aspects of the atmosphere’s dynamical response to auroral activity have been carried out by Blumen and Hendl (1969), Testud (1970), Francis...Geophys. Res. 80, 2839, 1975. Testud , 3., Gravity waves generated during magnetic substorms, 3. Atmos. Terr. Phys. 32, 1793, 1970. Waco, D. E., A

  14. Cluster in the Auroral Acceleration Region

    Science.gov (United States)

    Pickett, Jolene S.; Fazakerley, Andrew N.; Marklund, Gorun; Dandouras, Iannis; Christopher, Ivar W.; Kistler, Lynn; Lucek, Elizabeth; Masson, Arnaud; Taylor, Matthew G.; Mutel, Robert L.; hide

    2010-01-01

    Due to a fortuitous evolution of the Cluster orbit, the Cluster spacecraft penetrated for the first time in its mission the heart of Earth's auroral acceleration region (AAR) in December 2009 and January 2010. During this time a special AAR campaign was carried out by the various Cluster instrument teams with special support from ESA and NASA facilities. We present some of the first multi-spacecraft observations of the waves, particles and fields made during that campaign. The Cluster spacecraft configuration during these AAR passages was such that it allowed us to explore the differences in the signatures of waves, particles, and fields on the various spacecraft in ways not possible with single spacecraft. For example, one spacecraft was more poleward than the other three (C2), one was at higher altitude (C1), and one of them (0) followed another (C4) through the AAR on approximately the same track but delayed by three minutes. Their separations were generally on the order of a few thousand km or less and occasionally two of them were lying along the same magnetic field line. We will show some of the first analyses of the data obtained during the AAR campaign, where upward and downward current regions, and the waves specifically associated with those regions, as well as the auroral cavities, were observed similarly and differently on the various spacecraft, helping us to explore the spatial, as well as the temporal, aspects of processes occurring in the AAR.

  15. Computer simulation of auroral kilometric radiation

    International Nuclear Information System (INIS)

    Wagner, J.S.; Tajima, T.; Lee, L.C.; Wu, C.S.

    1983-01-01

    We study the generation of auroral kilometric radiation (AKR) using relativistic, electromagnetic, particle simulations. The AKR source region is modeled by two electron populations in the simulation: a cold (200 eV) Maxwellian component and a hot (5-20 keV) population possessing a loss-cone feature. The loss cone distribution is found to be unstable to the cyclotron maser instability. The fast extraordinary (X-mode) waves dominate the radiation and saturate when resonant particles diffuse into the loss-cone via turbulent scattering of the particles by the amplified X-mode radiation

  16. A study of a sector spectrophotometer and auroral O+(2P-2D) emissions

    Science.gov (United States)

    Swenson, G. R.

    1976-01-01

    The metastable O+(2P-2D) auroral emission was investigated. The neighboring OH contaminants and low intensity levels of the emission itself necessitated the evolution of an instrument capable of separating the emission from the contaminants and having a high sensitivity in the wavelength region of interest. A new type of scanning photometer was developed and its properties are discussed. The theoretical aspects of auroral electron interaction with atomic oxygen and the resultant O+(2P-2D) emissions were examined in conjunction with N2(+)1NEG emissions. Ground based measurements of O+(2P-2D) auroral emission intensities were made using the spatial scanning photometer (sector spectrophotometer). Simultaneous measurements of N2(+)1NEG sub 1,0 emission intensity were made in the same field of view using a tilting photometer. Time histories of the ratio of these two emissions made in the magnetic zenith during auroral breakup periods are given. Theories of I sub 7319/I sub 4278 of previous investigators were presented. A rocket measurement of N2(+)1NEG sub 0,0 and O+(2P-2D) emission in aurora was examined in detail and was found to agree with the ground based measurements. Theoretical examination resulted in the deduction of the electron impact efficiency generating O+(2P) and also suggests a large source of O+(2P) at low altitude. A possible source is charge exchange of N+(1S) with OI(3P).

  17. Global Imaging referral guidelines

    International Nuclear Information System (INIS)

    Kawooya, M.; Perez, M.; Lau, L.; Reeed, M.

    2010-01-01

    The medical imaging specialists called for global referral guidelines which would be made available to referring doctors. These referral guidelines should be:- Applicable in different health care settings, including resource-poor settings; Inclusive in terms of the range of clinical conditions; User-friendly and accessible (format/media); Acceptable to stakeholders, in particular to the referrers as the main target audience. To conceive evidence-based medicine as an integration of best research evidence with clinical expertise and patient values. The Direct recipients of the Referral Guidelines would be:- Referrers: general practitioners / family doctors; paediatricians; emergency department doctors; other specialists and health workers. Providers (medical imaging practitioners): radiologists; nuclear medicine physicians; radiographers; other appropriately qualified practitioners providing diagnostic imaging services. For the Referral Guidelines to be effective there need to be: Credibility evidence-based Practicality end user involvement Context local resources, disease profiles Endorsement, opinion leaders Implementation- policy, education, CPOE - Monitoring of the use clinical audit, report feedback. The aim of the Referral Guidelines Project was to: Produce global referral guidelines that are evidence-based, cost effective and appropriate for the local setting, and include consideration of available equipment and expertise (RGWG; SIGs); Include supporting information about radiation doses, potential risks, protection of children and pregnant women (introductory chapter); Facilitate the implementation of the guidelines through guidance and tools (e.g. implementation guides, checklists, capacity building tools, guides on stakeholders engagement, audit support criteria); Conduct pilot testing in different clinical settings from each of the six WHO regions; Promote the inclusion of the referral guidelines in the curricula of medical schools; Develop and implement

  18. Rocket and ground-based study of an auroral breakup event

    International Nuclear Information System (INIS)

    Marklund, G.

    1982-02-01

    On 27 January, 1979 the substorm-GEOS rocket S23H was launched from ESRANGE, Kiruna, shortly after the onset of an intense magnetospheric substorm over northern Scandinavia. Rocket electric field and particle observations have been used to calculate ionospheric currents and heating rates. These results are generally consistent with the ground magnetic and optical observations. An important finding emerging from a comparison of this event with a pre-breakup event earlier on this day is that the ionospheric substorm-related electric field could be split up into two parts, namely: 1) an ambient LT dependent field, probably of magnetospheric origin 2) superimposed on this a small-scale electric field associated with the bright auroral structures, being southward for both events. This is shown to have important consequences on the location of the ionospheric currents and the Joule energy discussion relative to the auroral forms. (Author)

  19. Auroral streamers: characteristics of associated precipitation,convection and field-aligned currents

    Directory of Open Access Journals (Sweden)

    V. A. Sergeev

    2004-01-01

    Full Text Available During the long-duration steady convection activity on 11 December 1998, the development of a few dozen auroral streamers was monitored by Polar UVI instrument in the dark northern nightside ionosphere. On many occasions the DMSP spacecraft crossed the streamer-conjugate regions over the sunlit southern auroral oval, permitting the investigation of the characteristics of ion and electron precipitation, ionospheric convection and field-aligned currents associated with the streamers. We confirm the conjugacy of streamer-associated precipitation, as well as their association with ionospheric plasma streams having a substantial equatorward convection component. The observations display two basic types of streamer-associated precipitation. In its polewardmost half, the streamer-associated (field-aligned accelerated electron precipitation coincides with the strong (≥2–7μA/m2 upward field-aligned currents on the westward flank of the convection stream, sometimes accompanied by enhanced proton precipitation in the adjacent region. In the equatorward portion of the streamer, the enhanced precipitation includes both electrons and protons, often without indication of field-aligned acceleration. Most of these characteristics are consistent with the model describing the generation of the streamer by the narrow plasma bubbles (bursty bulk flows which are contained on dipolarized field lines in the plasma sheet, although the mapping is strongly distorted which makes it difficult to quantitatively interprete the ionospheric image. The convective streams in the ionosphere, when well-resolved, had the maximal convection speeds ∼0.5–1km/s, total field-aligned currents of a few tenths of MA, thicknesses of a few hundreds km and a potential drop of a few kV across the stream. However, this might represent only a small part of the associated flux transport in the equatorial plasma sheet.

    Key words. Ionosphere (electric fiels and

  20. Ulf waves in the auroral zone ionosphere and associated electron precipitation variations

    International Nuclear Information System (INIS)

    Petelski, E.F.; Fahleson, U.; Shawhan, S.D.

    1977-12-01

    On four rocket flights, ULF electric fields were observed in the nighttime auroral oval and in the polar cleft. They had periods between 0.5 and 3 sec, amplitudes from 2 to 30 mV/m, and exhibited left- and right-hand elliptical polarization. Intensifications of these fields often coincided with bursts of energetic electron precipitation which were on occasion modulated with nearly the same period as the fields. The events in the auroral oval were associated with substorms and visual auroral activity. The spectral and polarization properties of the ULF fields suggest that they represented the electric components of Pcl or Pil micropulsations. To model these waves and the concurrent electron flux variations, different mechanisms for wave excitation, electron acceleration, and wave-particle interaction are considered. One likely interpretation attributes the micropulsations to Birkeland current chopping by an unstable double layer located at approximately equal to 1 R(sub)E altitude. It is suggested that the double layer also accelerates the observed electrons, the electron flux variations being due either to the intrinsic variations of the double layer or to its interaction with the micropulsations. Due to the sparcity of parameters measured so far, the models are provisional. A follow-up experiment is proposed to further investigate the problem. (author)

  1. Auroral zone electric fields from DE 1 and 2 at magnetic conjunctions

    Science.gov (United States)

    Weimer, D. R.; Goertz, C. K.; Gurnett, D. A.; Maynard, N. C.; Burch, J. L.

    1985-01-01

    Nearly simultaneous measurements of auroral zone electric fields are obtained by the Dynamics Explorer spacecraft at altitudes below 900 km and above 4,500 km during magnetic conjunctions. The measured electric fields are usually perpendicular to the magnetic field lines. The north-south meridional electric fields are projected to a common altitude by a mapping function which accounts for the convergence of the magnetic field lines. When plotted as a function of invariant latitude, graphs of the projected electric fields measured by both DE-1 and DE-2 show that the large-scale electric field is the same at both altitudes, as expected. Superimposed on the large-scale fields, however, are small-scale features with wavelengths less than 100 km which are larger in magnitude at the higher altitude. Fourier transforms of the electric fields show that the magnitudes depend on wavelength. Outside of the auroral zone the electric field spectrums are nearly identical. But within the auroral zone the high and low altitude electric fields have a ratio which increases with the reciprocal of the wavelength. The small-scale electric field variations are associated with field-aligned currents. These currents are measured with both a plasma instrument and magnetometer on DE-1.

  2. Globally Imaging the Magnetosphere

    Science.gov (United States)

    Sibeck, D. G.

    2017-12-01

    Over the past two decades, a host of missions have provided the multipoint in situ measurementsneeded to understand the meso- and micro-scale physics governing the solar wind-magnetosphereinteraction. Observations by the ISTP missions, Cluster, THEMIS, Double Star, and most recentlyMMS, have enabled us to identify the occurrence of some of the many proposed models for magneticreconnection and particle acceleration in a wide range of accessible magnetospheric contexts. However, todetermine which of these processes are most important to the overall interaction, we need globalobservations, from both ground-based instrumentation and imaging spacecraft. This talk outlinessome of the the global puzzles that remain to be solved and some of the very novel means that are availableto address them, including soft X-ray, energetic neutral atom, far and extreme ultraviolet imaging andenhanced arrays of ground observatories.

  3. Relation between Statistics of Radiowave Reception at South Pole Station and Auroral Oval Characteristics: Data and Monte Carlo Simulations

    Science.gov (United States)

    Labelle, J.; Noonan, K.

    2006-12-01

    Despite their remote location, radio receivers at South Pole Station regularly detect AM broadcast band signals propagating from transmitters thousands of kilometers away. Statistical analysis of received radiowave power at South Pole during 2004 and 2005, integrated over the frequency range of AM broadcast stations, reveals a distinctive time-of-day (UT) dependence: a broad maximum in received power centered at 1500 UT corresponds to magnetic daytime; signal levels are lower during magnetic nighttime except for a calculated based on two contributions: daytime D-region absorption and auroral absorption. The latter varies with day of year and magnetic local time in a complex fashion due to the asymmetric shape and varying size of the auroral oval and the offset of South Pole from the geomagnetic pole. The Monte Carlo simulations confirm that the enhanced absorption of AM broadcast signals during magnetic nighttime results from auroral absorption. Furthermore, the simulations predict that a weak (<0.5 dB) peak near magnetic midnight, similar to that observed in the data, arises from including in the statistical data base intervals when the auroral oval is contracted. These results suggest that ground based radio observations at a sufficiently remote high-latitude site such as South Pole may effectively monitor auroral oval characteristics on a statistical basis at least.

  4. Measurements of auroral particles by means of sounding rockets of mother-daughter type

    International Nuclear Information System (INIS)

    Falck, A.

    1985-11-01

    The scientific objective of the S17 payloads was to study the ionosphere during auroral situations and especially with regards to the local fine structure and a possible separation of spatial and temporal variations of auroral phenomena. The intensities of 8 keV and 2 keV electrons have been measured from one sounding rocket launched into a breakup aurora of moderate activity and from another rocket launched into a very active substorm situation. Both the rockets were of mother-daughter type i.e. had two separated payloads. The general features in the data of different particle energies were very similar over the whole flight time of the rockets. Special events and gradients and well identifiable shapes in the particle intensities were studied to see if the intensity fluctuations obtained from two detectors in one payload or from detectors into separate payloads were time delayed. Such time delays in the particle flux intensities were obvious in both of the rocket measurements and most of these time shifts could be understood as caused by spatial variations in the particle precipitation. In parts of the rocket flights the particle intensity variations were true temporal changes. The time lags between 8 keV and 2 keV electron intensities detected in the same payload, which could be observed and were obtained by crosscorrelation analyses, were in the range less than 0.3 s and most of them less than 0.1 s. If the time differences are assumed to be caused by the velocity dispersion of the particles, the particle data reported here placed the modulation source at a distance of less than 10 000 km from the rocket position. Measurements at the S17-1 mother payload of the electric field have been compared with data of precipitating electrons and low-light-level-TV-recording of the auroral situation. An inverted-V precipitation event was observed and was associated with auroral arcs and with reversals of the measured electric field components implicating the possibility of

  5. Velocity of small-scale auroral ionospheric current systems over ...

    Indian Academy of Sciences (India)

    At the latter times, triangulation with 3 uxgate magnetometers located at the vertices of a suitable triangle provides a means of monitoring mobile auroral ionospheric current systems over Maitri. The spacing between the magnetometers is typically kept at 75-200 km, keeping in mind the scale-sizes of ∼100 km for these ...

  6. High-frequency and time resolution rocket observations of structured low- and medium-frequency whistler mode emissions in the auroral ionosphere

    Science.gov (United States)

    LaBelle, J.; McAdams, K. L.; Trimpi, M. L.

    High bandwidth electric field waveform measurements on a recent auroral sounding rocket reveal structured whistler mode signals at 400-800 kHz. These are observed intermittently between 300 and 500 km with spectral densities 0-10 dB above the detection threshold of 1.5×10-11V2/m2Hz. The lack of correlation with local particle measurements suggests a remote source. The signals are composed of discrete structures, in one case having bandwidths of about 10 kHz and exhibiting rapid frequency variations of the order of 200 kHz per 100 ms. In one case, emissions near the harmonic of the whistler mode signals are detected simultaneously. Current theories of auroral zone whistler mode emissions have not been applied to explain quantitatively the fine structure of these signals, which resemble auroral kilometric radiation (AKR) rather than auroral hiss.

  7. MANAGING THE IMAGE OF CITIES IN THE “GLOBAL VILLAGE:” City Branding As An Opportunity Against Globalization

    Directory of Open Access Journals (Sweden)

    Gözdem Çelikkanat Aysu

    2013-07-01

    Full Text Available In this article the strong effect of forming a corporate identity in city branding is  studied. It is emphasized that by strong identity and image acquisition cities distinguish by their unique branding elements rather than global city imposition  hat is carried out by globalization pressure. According to the opinions that perceive globalization as an absolute fact, cities like Istanbul have to articulate  to this new system. In this way of thinking, it is inevitable to suffer in McLuhan’s  “global village”. However creating strategies for powerful image and branding of a city can be a leading factor against global city imposition. Keeping up with the same method of creating a “corporate” identity, the image of the cities has to be managed by the symmetric communication with all the actors. By this way  globalization can be used as an opportunity instead of threat.

  8. Dynamics of night-side auroral oval associated with substorm activity during magnetic storms

    International Nuclear Information System (INIS)

    Tverskaya, L.V.; Tel'tsov, M.V.; Shkol'nikova, S.I.; AN SSSR, Moscow

    1989-01-01

    Data of measurements of precipitated electrons with E=1 keV and longitudinal currents, conducted on INTERCOSMOS-BOLGARIYA-1300 satellite, were used to analyze variations of latitude sizes of the night section of auroral oval during heavy magnetic storm on 1-4.3 1982. Rapid (during ∼ 0.5 h) oval expansion on the night side both to the pole and to the equator at the moment of suddent shift of the west polar electrojet to the equator was revealed. It is shown that the width of the night region of auroral electron precipitation in the process of world magnetic storm development increases during certain substorms

  9. Radio wave dissipation in turbulent auroral plasma during the precipitation of energetic electrons

    International Nuclear Information System (INIS)

    Mishin, E.V.; Luk'ianova, L.N.; Makarenko, S.F.; Atamaniuk, B.M.

    1992-01-01

    The results of the theoretical analysis of anomalous (collisionless) radio wave absorption in the turbulent auroral ionosphere during the intrusion of energetic electrons (i.e., in aurorae) are presented. The implications of the plasma turbulent layer (PTL) theory are used. It is shown that the dissipation of radio waves with frequencies much higher than the plasma frequency is caused by the nonlinear (combined) scattering in turbulent plasma of the PTL. In the auroral electrojet layer the principal dissipative process for the radio waves with frequencies close to the plasma frequency is O-Z transformation on the field-aligned, small-scale density fluctuations. The typical dissipation decrements are estimated. 26 refs

  10. Midday auroral breakup events and related energy and momentum transfer from the magnetosheath

    International Nuclear Information System (INIS)

    Sandholt, P.E.; Lybekk, B.; Egeland, A.; Oguti, T.; Cowley, S.W.

    1989-04-01

    Combined observation by meridan scanning photometers, all-sky auroral TV camera and the EISCAT radar, permitted a detailed analysis of the temporal and spatial development of the midday auroral breakup phenomenon and the related ionospheric ion flow pattern within the 71 o to 75 o invariant latitude radar field of view. The observations reported are considered to be strong evidence of transient reconnection at the dayside magnetopause. Furthermore, the observed relationship between the optical signature and the ion drift observations is found to be consistent with a twin-vortex flow/current pattern in the ionosphere. The geomagnetic signatures are also in accord with this interpretation

  11. Combined ESR and EISCAT observations of the dayside polar cap and auroral oval during the May 15, 1997 storm

    Directory of Open Access Journals (Sweden)

    H. Liu

    Full Text Available The high-latitude ionospheric response to a major magnetic storm on May 15, 1997 is studied and different responses in the polar cap and the auroral oval are highlighted. Depletion of the F2 region electron density occurred in both the polar cap and the auroral zone, but due to different physical processes. The increased recombination rate of O+ ions caused by a strong electric field played a crucial role in the auroral zone. The transport effect, however, especially the strong upward ion flow was also of great importance in the dayside polar cap. During the main phase and the beginning of the recovery phase soft particle precipitation in the polar cap showed a clear relation to the dynamic pressure of the solar wind, with a maximum cross-correlation coefficient of 0.63 at a time lag of 5 min.

    Key words: Ionosphere (auroral ionosphere; polar ionosphere - Magnetospheric physics (storms and substorms

  12. Combined ESR and EISCAT observations of the dayside polar cap and auroral oval during the May 15, 1997 storm

    Directory of Open Access Journals (Sweden)

    H. Liu

    2000-09-01

    Full Text Available The high-latitude ionospheric response to a major magnetic storm on May 15, 1997 is studied and different responses in the polar cap and the auroral oval are highlighted. Depletion of the F2 region electron density occurred in both the polar cap and the auroral zone, but due to different physical processes. The increased recombination rate of O+ ions caused by a strong electric field played a crucial role in the auroral zone. The transport effect, however, especially the strong upward ion flow was also of great importance in the dayside polar cap. During the main phase and the beginning of the recovery phase soft particle precipitation in the polar cap showed a clear relation to the dynamic pressure of the solar wind, with a maximum cross-correlation coefficient of 0.63 at a time lag of 5 min.Key words: Ionosphere (auroral ionosphere; polar ionosphere - Magnetospheric physics (storms and substorms

  13. Toward a Global Bundle Adjustment of SPOT 5 - HRS Images

    Science.gov (United States)

    Massera, S.; Favé, P.; Gachet, R.; Orsoni, A.

    2012-07-01

    The HRS (High Resolution Stereoscopic) instrument carried on SPOT 5 enables quasi-simultaneous acquisition of stereoscopic images on wide segments - 120 km wide - with two forward and backward-looking telescopes observing the Earth with an angle of 20° ahead and behind the vertical. For 8 years IGN (Institut Géographique National) has been developing techniques to achieve spatiotriangulation of these images. During this time the capacities of bundle adjustment of SPOT 5 - HRS spatial images have largely improved. Today a global single block composed of about 20,000 images can be computed in reasonable calculation time. The progression was achieved step by step: first computed blocks were only composed of 40 images, then bigger blocks were computed. Finally only one global block is now computed. In the same time calculation tools have improved: for example the adjustment of 2,000 images of North Africa takes about 2 minutes whereas 8 hours were needed two years ago. To reach such a result a new independent software was developed to compute fast and efficient bundle adjustments. In the same time equipment - GCPs (Ground Control Points) and tie points - and techniques have also evolved over the last 10 years. Studies were made to get recommendations about the equipment in order to make an accurate single block. Tie points can now be quickly and automatically computed with SURF (Speeded Up Robust Features) techniques. Today the updated equipment is composed of about 500 GCPs and studies show that the ideal configuration is around 100 tie points by square degree. With such an equipment, the location of the global HRS block becomes a few meters accurate whereas non adjusted images are only 15 m accurate. This paper will describe the methods used in IGN Espace to compute a global single block composed of almost 20,000 HRS images, 500 GCPs and several million of tie points in reasonable calculation time. Many advantages can be found to use such a block. Because the

  14. Electric field mapping and auroral Birkeland currents

    International Nuclear Information System (INIS)

    Kaufmann, R.L.; Larson, D.J.

    1989-01-01

    Magnetic field lines, electric fields and equipotentials have been mapped throughout the magnetosphere in the vicinity of strong Birkeland currents. It was found that a uniform electric field at either the ionospheric or the equatorial end of a field line can map to a highly structured field at the other end if strong Birkeland currents are located nearby. The initiation of sheet currents of the region 1 - region 2 scale size and intensity resulted in magnetic field line displacements of about 1/2 hour in local time between equatorial and ionospheric end points. As a result, a uniform dawn to dusk electric field at the equator mapped to an ionospheric electric field with strong inward pointing components in the dusk hemisphere. Similar distortions were produced by Birkeland currents associated with narrow east-west-aligned auroral arcs. A specific model for the auroral current system, based on ionospheric measurements during a large substorm, was used to study effects seen during disturbed periods. An iterative procedure was developed to generate a self-consistent current system even in the presence of highly twisted field lines. The measured ionospheric electric field was projected tot he equatorial plane in the presence of the model Birkeland current system. Several physical processes were seen to influence ionospheric and equatorial electric fields, and the associated plasma convection, during a substorm

  15. Effect of anomalous transport coefficients on the thermal structure of the storm time auroral ionosphere

    International Nuclear Information System (INIS)

    Fontheim, E.G.; Ong, R.S.B.; Roble, R.G.; Mayr, H.G.; Hoegy, W.H.; Baron, M.J.; Wickwar, V.B.

    1978-01-01

    By analyzing an observed storm time auroral electron temperature profile it is shown that anomalous transport effects strongly influence the thermal structure of the disturbed auroral ionosphere. Such anomalous transport effects are a consequence of plasma turbulence, the existence of which has been established by a large number of observations in the auroral ionosphere. The electron and composite ion energy equations are solved with anomalous electron thermal conductivity and parallel electrical resistivity coefficients. The solutions are parameterized with respect to a phenomenological altitude-dependent anomaly coefficient A and are compared with an observed storm time electron temperature profile above Chatanika. The calculated temperature profile for the classical case (A=1)disagrees considerably with the measured profile over most of the altitude range up to 450km. It is shown that an anomaly coefficient with a sharp peak of the order of 10 4 centered aroung the F 2 peak is consistent with observations

  16. IMF dependence of the open-closed field line boundary in Saturn's ionosphere, and its relation to the UV auroral oval observed by the Hubble Space Telescope

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2007-06-01

    Full Text Available We study the dependence of Saturn's magnetospheric magnetic field structure on the interplanetary magnetic field (IMF, together with the corresponding variations of the open-closed field line boundary in the ionosphere. Specifically we investigate the interval from 8 to 30 January 2004, when UV images of Saturn's southern aurora were obtained by the Hubble Space Telescope (HST, and simultaneous interplanetary measurements were provided by the Cassini spacecraft located near the ecliptic ~0.2 AU upstream of Saturn and ~0.5 AU off the planet-Sun line towards dawn. Using the paraboloid model of Saturn's magnetosphere, we calculate the magnetospheric magnetic field structure for several values of the IMF vector representative of interplanetary compression regions. Variations in the magnetic structure lead to different shapes and areas of the open field line region in the ionosphere. Comparison with the HST auroral images shows that the area of the computed open flux region is generally comparable to that enclosed by the auroral oval, and sometimes agrees in detail with its poleward boundary, though more typically being displaced by a few degrees in the tailward direction.

  17. Auroral energy input from energetic electrons and Joule heating at Chatanika

    International Nuclear Information System (INIS)

    Wickwar, V.B.; Baron, M.J.; Sears, R.D.

    1975-01-01

    With the incoherent scatter radar at Chatanika, Alaska, a wide variety of measurements can be made related to the ionosphere, magnetosphere, and neutral atmosphere. A significant parameter is the amount of energy transferred from the magnetosphere into the ionosphere and neutral atmosphere during periods of auroral activity. In this report a procedure is examined whereby the incident energy flux of auroral electrons is ascertained from radar measurements. As part of the process radar-determined fluxes are compared with those ascertained from simultaneous photometric observations at 4278 A. The fluxes obtained by both techniques had similar magnitudes and time variations. If it is assumed that the largest uncertainty in the radar/photometer comparison is the effective recombination coefficient, then that coefficient can also be deduced. A value 3times10 -7 cm 3 /s at about 105 km is found, which is in good agreement with other recent determinations during active auroral conditions. This technique is combined with one to ascertain the Joule heating to determine the energy input from the magnetosphere to the ionosphere in a region localized above the radar on March 22, 1973, in the midnight sector. The energy input is continuous at a significant level, i.e., greater than the 3 ergs/cm 2 that could be delivered by the sun, were it overhead. Moreover, at times, each of these inputs became as great as 30 ergs/cm 2 s

  18. On I(5577 Å and I (7620 Å auroral emissions and atomic oxygen densities

    Directory of Open Access Journals (Sweden)

    R. L. Gattinger

    Full Text Available A model of auroral electron deposition processes has been developed using Monte Carlo techniques to simulate electron transport and energy loss. The computed differential electron flux and pitch angle were compared with in situ auroral observations to provide a check on the accuracy of the model. As part of the energy loss process, a tally was kept of electronic excitation and ionization of the important atomic and molecular states. The optical emission rates from these excited states were computed and compared with auroral observations of η(3914 Å, η(5577 Å, η(7620 Å and η(N2VK. In particular, the roles played by energy transfer from N2(A3Σ+u and by other processes in the excitation of O(1S and O2(b1Σ+g were investigated in detail. It is concluded that the N2(A3Σ+u mechanism is dominant for the production of OI(5577 Å in the peak emission region of normal aurora, although the production efficiency is much smaller than the measured laboratory value; above 150 km electron impact on atomic oxygen is dominant. Atomic oxygen densities in the range of 0.75±0.25 MSIS-86 [O] were derived from the optical comparisons for auroral latitudes in mid-winter for various levels of solar and magnetic activity.

  19. Multiple current sheets in a double auroral oval observed from the MAGION-2 and MAGION-3 satellites

    Directory of Open Access Journals (Sweden)

    M. Echim

    1997-04-01

    Full Text Available A case is described of multiple current sheets crossed by the MAGION-2 satellite in the near-midnight quieting auroral oval. The data were obtained by the magnetometer experiment onboard. Results show during a quieting period after a preceding substorm, or during an early growth phase of the next substorm, two double-sheet current bands, POLB and EQUB, located at respectively the polar and equatorial borders of the auroral oval separated by about 500 km in latitude. This is consistent with the double-oval structure during recovery introduced by Elphinstone et al. (1995. Within the POLB, the magnetic field data show simultaneous existence of several narrow parallel bipolar current sheets within the upward current branch (at 69.5–70.3° invariant latitude with an adjacent downward current branch at its polar side at (70.5–71.3°. The EQUB was similarly stratified and located at 61.2–63.5° invariant latitude. The narrow current sheets were separated on average by about 35 km and 15 km, respectively, within the POLB and EQUB. A similar case of double-oval current bands with small-scale structuring of their upward current branches during a quieting period is found in the data from the MAGION-3 satellite. These observations contribute to the double-oval structure of the late recovery phase, and add a small-scale structuring of the upward currents producing the auroral arcs in the double- oval pattern, at least for the cases presented here. Other observations of multiple auroral current sheets and theories of auroral arc multiplicity are briefly discussed. It is suggested that multiple X-lines in the distant tail, and/or leakage of energetic particles and FA currents from a series of plasmoids formed during preceding magnetic activity, could be one cause of highly stratified upward FA currents at the polar edge of the quieting double auroral oval.

  20. Stimulation of auroral kilometric radiation by type III solar radio bursts

    International Nuclear Information System (INIS)

    Calvert, W.

    1981-01-01

    It has been found that the onset of auroral kilometric radiation (AKR) frequently coincides with the arrival of type III solar radio bursts. Although the AKR onsets are usually abrupt and appear to be spontaneous, they sometimes develop from a discrete frequency near the leading edge of a type III burst or sometimes occur at progressively lower frequencies following that edge. From this, and the absence of the related solar electrons in specific cases, it was concluded that the incoming type III waves were sometimes responsible for stimulating auroral kilometric radiation. It was estimated that intense, isolated type III bursts were capable of stimulating AKR roughly one third of the time, and that at least ten percent of the observed AKR onsets could be attributed to these and weaker bursts, including some barely detectable by the ISEE plasma wave receivers

  1. On waves below the local proton gyrofrequency in auroral acceleration regions

    International Nuclear Information System (INIS)

    Gustafsson, G.; Andre, M.; Matson, L.; Koskinen, H.

    1990-01-01

    The Viking wave electric field and density fluctuation measurements together with simultaneous particle observations are used to study waves at frequencies below the local proton gyrofrequency. Such waves were observed during about 20% of nightside auroral field line crossings by Viking at altitudes between 2,000 and 10,000 km. The observations are different from earlier spacecraft observations of similar waves in such a way that the center frequency in about one out of four of the observed events was below the gyrofrequency of singly charged helium, which has not been reported previously. The waves were well correlated with precipitating electrons of energies of a few keV and with VLF auroral hiss. Detailed investigations of simultaneously observed wave emissions, particles, and total densities strongly suggest that secondary peaks at keV energies in the distributions of downgoing electrons can cause the emissions

  2. Equilibrium motion of quict auroral arcs

    International Nuclear Information System (INIS)

    Lyatskij, V.B.; Leont'ev, S.V.

    1981-01-01

    Ionospheric plasma convection across auroral arc is investigated. It is shown that the existence of plasma area of increased concentration adjoining arc results not only from the arc but also is a factor supporting its existence. Under stable conditions the arc and plasma zone connected to it will move at a velocity different from a velocity of plasma convection. Arc velocity will be higher or lower as compared with convection velocity depending on arc orientation relative to an external electric field. At that the plasma zone is located either in front of or behind aurora polaris [ru

  3. Correlation between auroral kilometric radiation and inverted v electron precipitation

    International Nuclear Information System (INIS)

    Green, J.L.; Gurnfti, D.A.; Hoffmans, R.A.

    1979-01-01

    Simultaneous observations of energetic electron precipitations and auroral kilometric radiation (AKR) were obtained from the polar orbiting satellites AE-D and Hawkeye. The Hawkeye observations were restricted to periods when the satellite was in the AKR emission cone in the northern hemisphere an at radial distances > or approx. =7 R/sub E/ to avoid local propagation cutoff effects. In addition, the AE-D measurements were restricted to complete passes across the auroral oval in the evening to midnight local time sector (from 20 to 01 hours magnetic local time). This is the local time region where the most intense bursts of AKR are believed to originate. A qualitative survey of AKR and electron precipitation than with plasma sheet precipitation. Quantitatively, a good correlation is found between the AKR intensity and the peak energy of inverted V events. In addition, in the tail of the most field-aligned portion (approx.O 0 pitch angle) of the distribution functions of the inverted V events,systematic changes are indicated as the associated AKR intensity increases. When the AKR power flux is weak ( -17 W/(m 2 Hz)). From a determination of the simultaneous power in the inverted V events and the AKR bursts, the efficiency of converting the charge particle energy into EM radiation increases to a maximum of about 1% for the most intense AKR bursts. However, conversion efficiencies as low as 10 -5 % are also found. There is some evidence which suggests that the tail temperature, T in F (V) of the inverted V events, may play an important role in the efficient generation or amplification of auroral kilometric radiation

  4. Observations of Magnetosphere-Ionosphere Coupling Processes in Jupiter's Downward Auroral Current Region

    Science.gov (United States)

    Clark, G. B.; Mauk, B.; Allegrini, F.; Bagenal, F.; Bolton, S. J.; Bunce, E. J.; Connerney, J. E. P.; Ebert, R. W.; Gershman, D. J.; Gladstone, R.; Haggerty, D. K.; Hospodarsky, G. B.; Kotsiaros, S.; Kollmann, P.; Kurth, W. S.; Levin, S.; McComas, D. J.; Paranicas, C.; Rymer, A. M.; Saur, J.; Szalay, J. R.; Tetrick, S.; Valek, P. W.

    2017-12-01

    Our view and understanding of Jupiter's auroral regions are ever-changing as Juno continues to map out this region with every auroral pass. For example, since last year's Fall AGU and the release of publications regarding the first perijove orbit, the Juno particles and fields teams have found direct evidence of parallel potential drops in addition to the stochastic broad energy distributions associated with the downward current auroral acceleration region. In this region, which appears to exist in an altitude range of 1.5-3 Jovian radii, the potential drops can reach as high as several megavolts. Associated with these potentials are anti-planetward electron angle beams, energetic ion conics and precipitating protons, oxygen and sulfur. Sometimes the potentials within the downward current region are structured such that they look like the inverted-V type distributions typically found in Earth's upward current region. This is true for both the ion and electron energy distributions. Other times, the parallel potentials appear to be intermittent or spatially structured in a way such that they do not look like the canonical diverging electrostatic potential structure. Furthermore, the parallel potentials vary grossly in spatial/temporal scale, peak voltage and associated parallel current density. Here, we present a comprehensive study of these structures in Jupiter's downward current region focusing on energetic particle measurements from Juno-JEDI.

  5. Local-time survey of plasma at low altitudes over the auroral zones.

    Science.gov (United States)

    Frank, L. A.; Ackerson, K. L.

    1972-01-01

    Local-time survey of the low-energy proton and electron intensities precipitated into the earth's atmosphere over the auroral zones during periods of magnetic quiescence. This survey was constructed by selecting a typical individual satellite crossing of this region in each of eight local-time sectors from a large library of similar observations with the polar-orbiting satellite Injun 5. The trapping boundary for more-energetic electron intensities, E greater than 45 keV, was found to be a 'natural coordinate' for delineating the boundary between the two major types of lower-energy, 50 less than or equal to E less than or equal to 15,000 eV, electron precipitation commonly observed over the auroral zones at low altitudes. Poleward of this trapping boundary inverted 'V' electron precipitation bands are observed in all local-time sectors. These inverted 'V' electron bands in the evening and midnight sectors are typically more energetic and have greater latitudinal widths than their counterparts in the noon and morning sectors. In general, the main contributors to the electron energy influx into the earth's atmosphere over the auroral zones are the electron inverted 'V' precipitation poleward of the trapping boundary in late evening, the plasma-sheet electron intensities equatorward of this boundary in early morning, and both of these precipitation events near local midnight.

  6. Boundary layer plasmas as a source for high-latitude, early afternoon, auroral arcs

    International Nuclear Information System (INIS)

    Lundin, R.; Evans, D.S.

    1985-02-01

    Simultaneous measurements of hot boundary layer plasma from PROGNOZ-7 and particle precipitation from the TIROS/NOAA satellite in nearly magnetically conjugate regions have been used to study the dynamo process responsible for the formation of high latitude, early afternoon, auroral arcs. Characteristic for the PROGNOZ-7 observations in the dayside boundary layer at high latitudes is the frequent occurrence of regions with injected magnetosheath plasma embedded in a 'halo' of antisunward flowing magnetosphere plasma. The injected magnetosheath plasma have several features which indicate that it also acts as a local source of EMF in the boundary layer. The process resembles that of a local MHD dynamo driven by the excess drift velocity of the injected magnetosheath plasma relative to the background magnetospheric plasma. The dynamo region is capable of driving fielc-aligned currents that couple to the ionosphere, where the upward current is associated with the high latitude auroral arcs. We demonstrate that the large-scale morphology as well as the detailed data intercomparison between PROGNOZ-7 and TIROS-N both agree well with a local injection of magnetosheath plasma into the dayside boundary layer as the main dynamo process powering the high-latitude, early afternoon auroral arcs. (Author)

  7. Theoretical interpretation of upstreaming electrons and elevated conics on auroral field lines

    International Nuclear Information System (INIS)

    Ashour-Abdalla, M.; Schriver, D.

    1989-01-01

    Recent VIKING satellite observations in the auroral zone have shown the association of elevated ion conics (conics with a low energy cutoff above zero) with upward streaming electrons in the presence of low frequency electric field fluctuations. A self-consistent particle simulation was developed which assumed the presence of a steady state electric field on auroral zone field lines capable of accelerating ions up the magnetic field lines. Results from this study show that a low frequency ion-ion two stream instability can be excited. This low frequency instability creates a fluctuating electric field which heats the ions oblique to the magnetic field forming distributions similar to the elevated ion comics. The ion-ion waves also interact resonantly with electrons and accelerates them in the direction of the ion beam

  8. A preliminary comparison of F region plasma drifts and E region irregularity drifts in the auroral zone

    International Nuclear Information System (INIS)

    Ecklund, W.L.; Balsley, B.B.; Carter, D.A.

    1977-01-01

    During several days in April--May 1976 the Chatanika, Alaska, incoherent scatter radar and a temporary Doppler auroral radar located at Aniak, Alaska, were directed toward ionospheric volumes along a common magnetic field line in order to compare E region and F region drifts and associated electric fields. The Chatanika radar measured F region plasma drifts via the incoherent scatter technique, while the Aniak radar measured the drifts of E region irregularities (i.e., the radar aurora). The radar geometry was arranged so that both radars measured approximately the same velocity component of a magnetically westward or eastward motion. Preliminary data show good agreement between the drift velocity components measured by the two techniques during most of the experimental period. This result indicates that relatively modest auroral radar systems may be used, with some qualifications, to determine auroral electric fields

  9. Particle acceleration and wave emissions associated with the formation of auroral cavities and enhancements

    International Nuclear Information System (INIS)

    Winglee, R.M.; Pritchett, P.L.; Dusenbery, P.B.

    1988-01-01

    Observations from DE 1 and electrostatic particle simulations are combined in an effort to provide a unified model for (nightside) auroral particle acceleration and wave emissions and their association with plasma cavities and enhancements. The observations show that enhanced electron precipitation during inverted-V events is associated with broadband electrostatic bursts (BEB), increased upward field-aligned currents, and density enhancements. These regions are flanked by return current regions where the density is depleted (i.e., by plasma cavities). Perpendicular acceleration of ambient plasma ions can occur in both upward and return current regions. It is shown through the simulations that these processes are integrally related and are not independent of each other. The free energy for the auroral particle acceleration can be provided by energetic ion beams in the plasma sheet boundary layer with nonzero perpendicular energy. The perpendicular energy allows charge separation between the beam ions and costreaming electrons to occur. The resultant space charge fields accelerate electrons on the same field lines as the costreaming electrons downward toward the ionosphere, without the beam ions actually propagating down to auroral altitudes. Ambient plasma electrons on adjacent field lines are accelerated upward, forming a return current

  10. Jupiter's auroral-related stratospheric heating and chemistry II: Analysis of IRTF-TEXES spectra measured in December 2014

    Science.gov (United States)

    Sinclair, J. A.; Orton, G. S.; Greathouse, T. K.; Fletcher, L. N.; Moses, J. I.; Hue, V.; Irwin, P. G. J.

    2018-01-01

    We present a retrieval analysis of TEXES (Texas Echelon Cross Echelle Spectrograph (Lacy et al., 2002)) spectra of Jupiter's high latitudes obtained on NASA's Infrared Telescope Facility on December 10 and 11th 2014. The vertical temperature profile and vertical profiles of C2H2, C2H4 and C2H6 were retrieved at both high-northern and high-southern latitudes and results were compared in 'quiescent' regions and regions known to be affected by Jupiter's aurora in order to highlight how auroral processes modify the thermal structure and hydrocarbon chemistry of the stratosphere. In qualitative agreement with Sinclair et al. (2017a), we find temperatures in auroral regions to be elevated with respect to quiescent regions at two discrete pressures levels at approximately 1 mbar and 0.01 mbar. For example, in comparing retrieved temperatures at 70°N, 60°W (a representative quiescent region) and 70°N, 180°W (centred on the northern auroral oval), temperatures increase by 19.0 ± 4.2 K at 0.98 mbar, 20.8 ± 3.9 K at 0.01 mbar but only by 8.3 ± 4.9 K at the intermediate level of 0.1 mbar. We conclude that elevated temperatures at 0.01 mbar result from heating by joule resistance of the atmosphere and the energy imparted by electron and ion precipitation. However, temperatures at 1 mbar are considered to result either from heating by shortwave radiation of aurorally-produced haze particulates or precipitation of higher energy population of charged particles. Our former conclusion would be consistent with results of auroral-chemistry models, that predict the highest number densities of aurorally-produced haze particles at this pressure level (Wong et al., 2000, 2003). C2H2 and C2H4 exhibit enrichments but C2H6 remains constant within uncertainty when comparing retrieved concentrations in the northern auroral region with quiescent longitudes in the same latitude band. At 1 mbar, C2H2 increases from 278.4 ± 40.3 ppbv at 70°N, 60°W to 564.4 ± 72.0 ppbv at 70°N, 180

  11. Global adjustment for creating extended panoramic images in video-dermoscopy

    Science.gov (United States)

    Faraz, Khuram; Blondel, Walter; Daul, Christian

    2017-07-01

    This contribution presents a fast global adjustment scheme exploiting SURF descriptor locations for constructing large skin mosaics. Precision in pairwise image registration is well-preserved while significantly reducing the global mosaicing error.

  12. Storm time dynamics of auroral electrojets: CHAMP observation and the Space Weather Modeling Framework comparison

    Directory of Open Access Journals (Sweden)

    H. Wang

    2008-03-01

    Full Text Available We investigate variations of the location and intensity of auroral currents during two magnetic storm periods based on magnetic field measurements from CHAMP separately for both hemispheres, as well as for the dayside and nightside. The corresponding auroral electrojet current densities are on average enhanced by about a factor of 7 compared to the quiet time current strengths. The nightside westward current densities are on average 1.8 (2.2 times larger than the dayside eastward current densities in the Northern (Southern Hemisphere. Both eastward and westward currents are present during the storm periods with the most intense electrojets appearing during the main phase of the storm, before the ring current maximizes in strength. The eastward and westward electrojet centers can expand to 55° MLat during intense storms, as is observed on 31 March 2001 with Dst=−387 nT. The equatorward shift of auroral currents on the dayside is closely controlled by the southward IMF, while the latitudinal variations on the nightside are better described by the variations of the Dst index. However, the equatorward and poleward motion of the nightside auroral currents occur earlier than the Dst variations. The Space Weather Modeling Framework (SWMF can capture the general dynamics of the storm time current variations. Both the model and the actual data show that the currents tend to saturate when the merging electric field is larger than 10 mV/m. However, the exact prediction of the temporal development of the currents is still not satisfactory.

  13. Global Solar Radiation in Spain from Satellite Images

    International Nuclear Information System (INIS)

    Ramirez, L.; Mora, L.; Sidrach de Cardona, M.; Navarro, A. A.; Varela, M.; Cruz, M. de la

    2003-01-01

    In the context of the present work a series of algorithms of calculation of the solar radiation from satellite images has been developed. These models, have been applied to three years of images of the Meteosat satellite and the results of the treatment have been extrapolated to long term. For the development of the models of solar radiation registered in ground stations have been used, corresponding all of them to localities of peninsular Spain and the Balearic ones. The maximum periods of data available have been used, supposing in most of the cases periods of between 6 and 9 years. From the results has a year type of images of global solar radiation on horizontal surface. The original resolution of the image of 7x7 km in the study latitudes, has been reevaluated to 5x5 km. This supposes to have a value of the typical radiation for every day of the year, each 5x5 km in the study territory. This information, supposes an important advance as far as the knowledge of the space distribution of the radiation solar, impossible to reach about alternative methods. Doubtlessly, the precision of the provided values is not comparable with pyrano metric measures in a concrete locality, but it provides a very valid indicator in places in which it is not had previous information. In addition to the radiation maps, tables of the global solar radiation have been prepared on different inclinations, from the global radiation on horizontal surface calculated for every day of the year and in each pixel of the image. (Author) 24 refs

  14. IMF dependence of the open-closed field line boundary in Saturn's ionosphere, and its relation to the UV auroral oval observed by the Hubble Space Telescope

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2007-06-01

    Full Text Available We study the dependence of Saturn's magnetospheric magnetic field structure on the interplanetary magnetic field (IMF, together with the corresponding variations of the open-closed field line boundary in the ionosphere. Specifically we investigate the interval from 8 to 30 January 2004, when UV images of Saturn's southern aurora were obtained by the Hubble Space Telescope (HST, and simultaneous interplanetary measurements were provided by the Cassini spacecraft located near the ecliptic ~0.2 AU upstream of Saturn and ~0.5 AU off the planet-Sun line towards dawn. Using the paraboloid model of Saturn's magnetosphere, we calculate the magnetospheric magnetic field structure for several values of the IMF vector representative of interplanetary compression regions. Variations in the magnetic structure lead to different shapes and areas of the open field line region in the ionosphere. Comparison with the HST auroral images shows that the area of the computed open flux region is generally comparable to that enclosed by the auroral oval, and sometimes agrees in detail with its poleward boundary, though more typically being displaced by a few degrees in the tailward direction.

  15. Generation of the auroral electron velocity distribution by electrostatic turbulence

    International Nuclear Information System (INIS)

    Bryant, D.A.; Cook, A.C.; Wang, Z.-S.; Angelis, U. de; Perry, C.H.

    1991-01-01

    It is shown from first principles that the characteristic peak in the auroral electron velocity distribution can be generated stochastically through resonant interactions with lower-hybrid electrostatic turbulence. The peak itself is shown to be the inevitable consequence of restrictions imposed on random walk in velocity space by the limitation in wave group velocity. A Monte-Carlo model of the process demonstrates how the various properties of the acceleration region are reflected in the resultant electron distribution. It is shown, in particular, that the width of the peak is governed by the amplitude of the turbulence, while the amplitude of the peak reflects the column density of wave energy. Electron distributions encountered within three auroral arcs are interpreted to yield order of magnitude estimates of the amplitude and rms electric field of lower-hybrid wave packets. The velocities and frequencies of the resonant waves, the net electric field, the column density of wave energy and the electric field energy density are also estimated. The results are found to be not inconsistent with available electric-field measurements. (author)

  16. Reconstruction of energetic electron spectra in the upper atmosphere: balloon observations of auroral X-rays coordinated with measurements from the EISCAT radar

    International Nuclear Information System (INIS)

    Olafsson, K.J.

    1990-08-01

    Energetic electron precipitation in the auroral zone has been studied using coordinated auroral X-ray measurements from balloons, altitude profiles of the ionospheric electron density measured by the EISCAT radar above the balloons, and cosmic noise absorption data from the Scandinavian riometer network. The data were obtained during the Coordinated EISCAT and Balloon Observations (CEBO) campaign in August 1984. The energy spectral variations of both the X-ray fluxes and the primary precipitating electrons were examined for two precipitation events in the morning sector. As far as reasonably can be concluded from observations of magnetic activity in the auroral zone, and from the temporal development of the energy spectra, the two precipitation events can be interpreted in the frame of present models of energetic electron precipitation on the mordning side of the auroral zone. 96 refs., 70 figs., 11 tabs

  17. A Fast Global Fitting Algorithm for Fluorescence Lifetime Imaging Microscopy Based on Image Segmentation

    OpenAIRE

    Pelet, S.; Previte, M.J.R.; Laiho, L.H.; So, P.T. C.

    2004-01-01

    Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained ana...

  18. Remote sensing of auroral E region plasma structures by radio, radar, and UV techniques at solar minimum

    International Nuclear Information System (INIS)

    Basu, S.; Valladares, C.E.; Basu, S.; Eastes, R.; Huffman, R.E.; Daniell, R.E.; Chaturvedi, P.K.; Livingston, R.C.

    1993-01-01

    The unique capability of the Polar BEAR satellite to simultaneously image auroral luminosities at multiple ultraviolet (UV) wavelengths and to remote sense large-scale (hundreds to tens of kilometers) and small-scale (kilometers to hundreds of meters) plasma density structures with its multifrequency beacon package is utilized to probe the auroral E region in the vicinity of the incoherent scatter radar (ISR) facility near Sondrestrom. In particular, we present coordinated observations on two nights obtained during the sunspot minimum (sunspot number < 10) January-February 1987 period when good spatial and temporal conjunction was obtained between Polar BEAR overflights and Sondrestrom ISR measurements. With careful coordinated observations we were able to confirm that the energetic particle precipitation responsible for the UV emissions causes the electron density increases in the E region. The integrations up to the topside of these ISR electron density profiles were consistent with the total electron content (TEC) measured by the Polar BEAR satellite. An electron transport model was utilized to determine quantitatively the electron density profiles which could be produced by the particle precipitation, which also produced multiple UV emissions measured by the imager; these profiles were found to be in good agreement with the observed ISR profiles in the E region. This outer scale size is also consistent with the measured phase to amplitude scintillation ratio. An estimate of the linear growth rate of the gradient-drift instability in the E region shows that these plasma density irregularities could have been generated by this process. The mutual consistency of these different sets of measurements provides confidence in the ability of the different techniques to remote sense large- and small-scale plasma density structures in the E region at least during sunspot minimum when the convection-dominated high-latitude F region is fairly weak. 56 refs., 16 figs

  19. Global Solar radiation in Spain from Satellite Images; Radiacion Solar Global en la Espana Peninsular a partir de images de satelite

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Santigosa, L.; Mora Lopez, L.; Sidrach de Cardona Ortin, M.; Navarro Fernandez, A. A.; Varela conde, M.; Cruz Echeandia, M. de la

    2003-07-01

    In the context of the present work a series of algorithms of calculation of the solar radiation from satellite images has been developed. These models, have been applied to three years of images of the Meteosat satellite and the results of the treatment have been extrapolated to long term. For the development of the models of solar radiation registered in ground stations have been used, corresponding all of them to localities of peninsular Spain and the Balearic ones. The maximum periods of data available have been used, supposing in most of the cases periods of between 6 and 9 years. From the results has a year type of images of global solar radiation on horizontal surface. The original resolution of the image of 7x7 km in the study latitudes, has been revaluate to 5x5 km. This supposes to have a value of the typical radiation for every day of the year, each 5x5 km in the study territory. This information, supposes an important advance as far as the knowledge of the space distribution of the radiation solar,impossible to reach about alternative methods. Doubtlessly, the precision of the provided values is not comparable with pyranometric measures in a concrete localise, but it provides a very valid indicator in places in which, it not had previous information. In addition to the radiation maps, tables of the global solar radiation have been prepared on different inclinations, from the global radiation on horizontal surface calculated for every day of the year and in each pixel of the image. (Author) 24 refs.

  20. Cluster observations and theoretical identification of broadband waves in the auroral region

    Directory of Open Access Journals (Sweden)

    M. Backrud-Ivgren

    2005-12-01

    Full Text Available Broadband waves are common on auroral field lines. We use two different methods to study the polarization of the waves at 10 to 180 Hz observed by the Cluster spacecraft at altitudes of about 4 Earth radii in the nightside auroral region. Observations of electric and magnetic wave fields, together with electron and ion data, are used as input to the methods. We find that much of the wave emissions are consistent with linear waves in homogeneous plasma. Observed waves with a large electric field perpendicular to the geomagnetic field are more common (electrostatic ion cyclotron waves, while ion acoustic waves with a large parallel electric field appear in smaller regions without suprathermal (tens of eV plasma. The regions void of suprathermal plasma are interpreted as parallel potential drops of a few hundred volts.

  1. Auroral ion beams and ion acoustic wave generation by fan instability

    Energy Technology Data Exchange (ETDEWEB)

    Vaivads, A

    1996-04-01

    Satellite observations indicate that efficient energy transport among various plasma particles and between plasma waves and plasma particles is taking place in auroral ion beam regions. These observations show that two characteristic wave types are associated with the auroral ion beam regions: electrostatic hydrogen cyclotron waves with frequencies above hydrogen gyrofrequency, and low frequency waves with frequencies below hydrogen gyrofrequency. We speculate that the low frequency waves can be ion acoustic waves generated through the fan instability. The presence of a cold background ion component is necessary for the onset of this instability. A cold ion component has been directly observed and has been indirectly suggested from observations of solitary wave structures. The wave-particle interaction during the development of the fan instability results in an efficient ion beam heating in the direction perpendicular to the ambient magnetic field. The fan instability development and the ion beam heating is demonstrated in a numerical particle simulation. 23 refs, 16 figs.

  2. Ground and space observations of medium frequency auroral radio emissions

    Science.gov (United States)

    Broughton, Matthew C.

    The auroral zone is a rich source of natural radio emissions that can be observed in space and at ground-level. By studying these waves, scientists can gain insight into the plasma processes that generate them and use the near-Earth space environment as a large-scale plasma physics laboratory. This thesis uses both ground-level and in situ observations to study two kinds of natural radio emissions. First, we report observations of a new kind of auroral radio emission. The waves have frequencies ranging from 1.3-2.2 MHz, bandwidths ranging from 90-272 kHz, and durations ranging from 16-355 s. Spectral analysis of the waveform data has revealed that the emission has a complex combination of at least three kinds of fine structures. For model auroral electron distributions, calculations indicate that Langmuir waves could be excited at frequencies consistent with observations. The remainder of the thesis discusses auroral medium frequency (MF) burst, an impulsive, broadband natural radio emission observed at ground-level within a few minutes of local substorm onset. LaBelle [2011] proposed that MF burst originates as Langmuir/Z-mode waves on the topside of the ionosphere that subsequently mode convert to L-mode waves and propagate to ground-level. Using continuous waveform measurements and combined observations with the Sondrestrom Incoherent Scatter Radar, we have performed two tests of this mechanism. The results of these tests are consistent with the mechanism described in LaBelle [2011]. A survey of 8,624 half-orbits of the DEMETER spacecraft has revealed 68 observations of bursty MF waves. We have compared the wave properties of these waves to those of MF burst and have found that although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground-level MF burst. Finally, we have used numerical simulations to model both the fine structure of MF burst and to estimate the attenuation the

  3. An Image Matching Algorithm Integrating Global SRTM and Image Segmentation for Multi-Source Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiao Ling

    2016-08-01

    Full Text Available This paper presents a novel image matching method for multi-source satellite images, which integrates global Shuttle Radar Topography Mission (SRTM data and image segmentation to achieve robust and numerous correspondences. This method first generates the epipolar lines as a geometric constraint assisted by global SRTM data, after which the seed points are selected and matched. To produce more reliable matching results, a region segmentation-based matching propagation is proposed in this paper, whereby the region segmentations are extracted by image segmentation and are considered to be a spatial constraint. Moreover, a similarity measure integrating Distance, Angle and Normalized Cross-Correlation (DANCC, which considers geometric similarity and radiometric similarity, is introduced to find the optimal correspondences. Experiments using typical satellite images acquired from Resources Satellite-3 (ZY-3, Mapping Satellite-1, SPOT-5 and Google Earth demonstrated that the proposed method is able to produce reliable and accurate matching results.

  4. Storm time dynamics of auroral electrojets: CHAMP observation and the Space Weather Modeling Framework comparison

    Directory of Open Access Journals (Sweden)

    H. Wang

    2008-03-01

    Full Text Available We investigate variations of the location and intensity of auroral currents during two magnetic storm periods based on magnetic field measurements from CHAMP separately for both hemispheres, as well as for the dayside and nightside. The corresponding auroral electrojet current densities are on average enhanced by about a factor of 7 compared to the quiet time current strengths. The nightside westward current densities are on average 1.8 (2.2 times larger than the dayside eastward current densities in the Northern (Southern Hemisphere. Both eastward and westward currents are present during the storm periods with the most intense electrojets appearing during the main phase of the storm, before the ring current maximizes in strength. The eastward and westward electrojet centers can expand to 55° MLat during intense storms, as is observed on 31 March 2001 with Dst=−387 nT. The equatorward shift of auroral currents on the dayside is closely controlled by the southward IMF, while the latitudinal variations on the nightside are better described by the variations of the Dst index. However, the equatorward and poleward motion of the nightside auroral currents occur earlier than the Dst variations. The Space Weather Modeling Framework (SWMF can capture the general dynamics of the storm time current variations. Both the model and the actual data show that the currents tend to saturate when the merging electric field is larger than 10 mV/m. However, the exact prediction of the temporal development of the currents is still not satisfactory.

  5. Electrostatic mode coupling at 2ω/sub UH/: a generation mechanism for auroral kilometric radiation

    International Nuclear Information System (INIS)

    Barbosa, D.D.

    1976-01-01

    The instability of a low density, electron beam drifting along a magnetic field to nearly perpendicular propagating electrostatic waves near the upper hybrid frequency is investigated for application to an auroral environment. It was found that 4 to 10 KeV beams can interact significantly with the background plasma through anomalous cyclotron resonances which extend the range of unstable parallel wave numbers over a large region of wave number space. This region can include a nonconvective hot spot where the group velocity of the unstable waves approaches zero. Positive slope in the total distribution function is not a necessary requirement for instability; the broken symmetry along the field can allow the transfer of beam drift energy to electrostatic wave turbulence. Using Gurnett's (1974) polar ionospheric model for a representative auroral field line modeled as dipolar (L = 8), one infers that certain heights favor generation of enhanced, beamdriven electrostatic turbulence. Those regions are in the vicinity of where ω/sub UH//Ω/sub c/ approx. 3/2 with an excursion from this value depending on beam parameters. We speculate that electrostatic turbulence will heat the background electrons to a limiting temperature such that the instability becomes marginally effective. This limiting temperature is estimated for auroral beam-plasma conditions as 1 to 6 eV. Quasi-linear beam moment equations are developed to compute an upper bound to electrostatic wave amplitudes that can be maintained by the beam. We find that energy densities approaching E 2 /8πnT approx. 1 over auroral scale lengths can result in effective energy transfer from the beam to the plasma

  6. An empirical determination of the production efficiency for auroral 6300 AA emmission by energetic electrons

    International Nuclear Information System (INIS)

    Winningham, J.D.; Bunn, F.E.; Thirkettle, F.W.; Shepherd, G.G.

    1979-06-01

    Auroral data from the Soft Particle Spectrometer and the Red Line Photometer on the ISIS-2 spacecraft have been selected to form an electron energy flux and optical auroral emission data base. The energy fluxes are stored as integrated fluxes over four energy bands, and the corresponding stored optical emission rates are corrected for airglow and for albedo. Because of the variety of electron energy spectra represented in the data base it was possible to perform a regression analysis that yielded the production efficiency for the production of emission for each of the four bands. While the results of this analysis are interesting to compare with theoretical predictions of 6300 AA excitation processes, these statistical results are not as precise as the comparisons of individual experiments where all parameters, such as the atmospheric composition and temperature profiles are measured. The significance of this approach is that it permits a multiparameter description of an electron energy spectrum, and its relationship to a specific optical emission, by purely empirical means. This is particularly useful in the interpretation of ISIS-2 data from the instruments which provided the results, but should find further application in optical-particle auroral studies. (author)

  7. Electric potential structures of auroral acceleration region border from multi-spacecraft Cluster data

    Science.gov (United States)

    Sadeghi, S.; Emami, M. R.

    2018-04-01

    This paper studies an auroral event using data from three spacecraft of the Cluster mission, one inside and two at the poleward edge of the bottom of the Auroral Acceleration Region (AAR). The study reveals the three-dimensional profile of the region's poleward boundary, showing spatial segmentation of the electric potential structures and their decay in time. It also depicts localized magnetic field variations and field-aligned currents that appear to have remained stable for at least 80 s. Such observations became possible due to the fortuitous motion of the three spacecraft nearly parallel to each other and tangential to the AAR edge, so that the differences and variations can be seen when the spacecraft enter and exit the segmentations, hence revealing their position with respect to the AAR.

  8. Investigation of Io's auroral hiss emissions due to its motion in Jupiter's magnetosphere

    International Nuclear Information System (INIS)

    Moghimi, Mohsen H.

    2012-01-01

    The left-hand side of the auroral hiss emission observed by Galileo has a frequency time profile shaped very similar to the funnel shape observed in the Earth's auroral region. This close similarity indicates that we can use the theory of whistler-mode propagation near the resonance cone to locate the emission source. The general characteristics of the whistler mode are discussed. Then the position of the emission source is investigated using a geometrical method that takes into account the trajectory of Galileo. Initially a point source is assumed. Then the possibility of a sheet source aligned along the magnetic field lines which are tangent to the surface of Io is investigated. Both types of sources show that the whistler mode radiation originates very close to the surface of Io. (research papers)

  9. Comparison of auroral ovals from all-sky camera studies and from satellite photographs

    International Nuclear Information System (INIS)

    Bond, F.R.; Akasofu, S.I.

    1979-01-01

    A comparison is made of the statistical auroral ovals determined by all-sky camera photographs with DMSP photographs for different degrees of geomagnetic activity. It is shown that the agreement between them is excellent. (author)

  10. On the motion of dayside auroras caused by a solar wind pressure pulse

    Directory of Open Access Journals (Sweden)

    A. Kozlovsky

    2005-02-01

    Full Text Available Global ultraviolet auroral images from the IMAGE satellite were used to investigate the dynamics of the dayside auroral oval responding to a sudden impulse (SI in the solar wind pressure. At the same time, the TV all-sky camera and the EISCAT radar on Svalbard (in the pre-noon sector allowed for detailed investigation of the auroral forms and the ionospheric plasma flow. After the SI, new discrete auroral forms appeared in the poleward part of the auroral oval so that the middle of the dayside oval moved poleward from about 70° to about 73° of the AACGM latitude. This poleward shift first occurred in the 15 MLT sector, then similar shifts were observed in the MLT sectors located more westerly, and eventually the shift was seen in the 6 MLT sector. Thus, the auroral disturbance "propagated" westward (from 15 MLT to 6 MLT at an apparent speed of the order of 7km/s. This motion of the middle of the auroral oval was caused by the redistribution of the luminosity within the oval and was not associated with the corresponding motion of the poleward boundary of the oval. The SI was followed by an increase in the northward plasma convection velocity. Individual auroral forms showed poleward progressions with velocities close to the velocity of the northward plasma convection. The observations indicate firstly a pressure disturbance propagation through the magnetosphere at a velocity of the order of 200km/s which is essentially slower than the velocity of the fast Alfvén (magnetosonic wave, and secondly a potential (curl-free electric field generation behind the front of the propagating disturbance, causing the motion of the auroras. We suggest a physical explanation for the slow propagation of the disturbance through the magnetosphere and a model for the electric field generation. Predictions of the model are supported by the global convection maps produced by the SuperDARN HF radars. Finally, the interchange instability and the eigenmode toroidal

  11. VISIONS: Remote Observations of a Spatially-Structured Filamentary Source of Energetic Neutral Atoms near the Polar Cap Boundary During an Auroral Substorm

    Science.gov (United States)

    Collier, Michael R.; Chornay, D.; Clemmons, J.; Keller, J. W.; Klenzing, J.; Kujawski, J.; McLain, J.; Pfaff, R.; Rowland, D.; Zettergren, M.

    2015-01-01

    We report initial results from the VISualizing Ion Outflow via Neutral atom imaging during a Substorm (VISIONS) rocket that flew through and near several regions of enhanced auroral activity and also sensed regions of ion outflow both remotely and directly. The observed neutral atom fluxes were largest at the lower energies and generally higher in the auroral zone than in the polar cap. In this paper, we focus on data from the latter half of the VISIONS trajectory when the rocket traversed the polar cap region. During this period, many of the energetic neutral atom spectra show a peak at 100 electronvolts. Spectra with peaks around 100 electronvolts are also observed in the Electrostatic Ion Analyzer (EIA) data consistent with these ions comprising the source population for the energetic neutral atoms. The EIA observations of this low energy population extend only over a few tens of kilometers. Furthermore, the directionality of the arriving energetic neutral atoms is consistent with either this spatially localized source of energetic ions extending from as low as about 300 kilometers up to above 600 kilometers or a larger source of energetic ions to the southwest.

  12. Correlation of ground-based on topside photometric observations with auroral electron spectra measurements at rocket altitudes

    International Nuclear Information System (INIS)

    Arnoldy, R.L.; Lewis, P.B. Jr.

    1977-01-01

    Spectroscopic measurements of the auroral lines 5577, 4278, and 6300 A made at Fort Yukon, Alaska, are used in the model computations of Rees and Luckey (1974) to predict the energy influx and the characteristic energy of an assumed Maxwellian primary electron spectrum for two auroral displays. Simultaneous with the ground observations, electron detectors aboard a sounding rocket directly measured the primary electron spectrum and energy flux on the field lines which contained the auroral light in the E region observed by the ground photometers (magnetically conjugate in the local sense). For the two auroras studied, the in situ particle measurements show that the model (1) correctly predicts changes in spectral parameters. (2) predicts a precipitated energy flux in good agreement with measured values, and (3) assumes a spectral shape (Maxwellian) not typical of the peaked spectra measured above discrete auroras.One of the rocket flights also carried photometers sensitive to 5577 and 3914 A. Every 0.2 s the photometers sampled the auroral light from the E region magnetically conjugate to the rocket, and they have reaffirmed the very close correlation between emission at 3914 A and that at 5577 A. Finally, by using the measured electron precipitation and current ionospheric models the emissions at 3914, 4278, and 5577 A are calculated. The model computations closely predict the measured light at 3914 and 4278 A. However, the 5577-A emission calculated from dissociative recombination of O 2 + and direct excitation of atomic oxygen using a measured secondary spectrum accounts for only about one third of the observed emission

  13. F region electron density irregularity spectra near Auroral acceleration and shear regions

    International Nuclear Information System (INIS)

    Basu, S.; Basu, S.; MacKenzie, E.; Coley, W.R.; Hanson, W.B.; Lin, C.S.

    1984-01-01

    Spectral characteristics of auroral F region irregularities were studied by the use of high-resolution (approx.35 m) density measurements made by the retarding potential analyzer (RPA) on board the Atmosphere Explorer D (AE-D) satellite during two orbits when the satellite was traversing the high-latitude ionosphere in the evening sector. Coordinated DMSP passes provided synoptic coverage of auroral activity. The auroral energy input was estimated by intergrating the low-energy electron (LEE) data on AE-D. It was found that the one-dimensional in situ spectral index (p 1 ) of the irregularities at scale lengths of 1 values of approx.-3. This is interpreted as resulting from the effects of E region conductivity on the F region irregularity structure. The regions in between the precipitation structures, where presumably the E region conductivity was small, were generally associated with large shears in the horizontal E-W drifts and large velocities, as measured by the ion drift meter on board AE-D. The maximum drifts measured were approx.2 km s -1 , corresponding to an electric field of 100 mV m -1 . The large-velocity regions were also associated with substantial ion heating and electron density depletions. The largest shear magnitudes observed were approx.80 m s -1 km -1 , and the shear gradient scale lengths were approx.10 km, which was approximately the resolution of the ion drift meter data set used. The spectral characteristics of irregularities in the large, variable flow regions were very different, with p 1 being approx.-1

  14. Reconstruction of energetic electron spectra in the upper atmosphere: balloon observations of auroral X-rays coordinated with measurements from the Eiscat radar

    International Nuclear Information System (INIS)

    Olafsson, K.J.

    1990-01-01

    Energetic electron precipitation in the auroral zone has been studied using coordinated auroral X-ray measurements from balloons, altitude profiles of the ionospheric electron density measured by the EISCAT radar above the balloons, and cosmic noise absorption data from the Scandinavian riometer network. The data were obtained during the coordinated EISCAT and balloon observation campaign in August 1984. A method by which an estimate of the energy spectrum of precipitating energetic electrons can be obtained from balloon measurements of bremsstrahlung X-rays is described. The energy spectral variation of both the X-ray fluxes and the primary precipitating electrons were examined for two precipitation events in the morning sector. As far as reasonably can be concluded from observations of magnetic activity in the auroral zone, and from the temporal development of the energy spectra, the two precipitation events can be interpreted in the frame of present models of energetic electron precipitation on the morning side of the auroral zone. 96 refs

  15. Electron Velocity Shear Instability in the Auroral Ionosphere.

    Science.gov (United States)

    1982-06-25

    function of order .1 ~e y Le’ L 0, Vde - - (ve /2ae) Xn n/ax, Z is the plasma dispersion function and Z’( ) = dZ/d . The ion response X is simply...and 2 current. systems in the auroral ionosphere [lijima and Potemra, 19761 and to electron current return current regions in solar flares [Knight and... SYSTEMS (OS) -TE IS CDP:ES) or.XCCS SYSTE.. ENGLNEERING ORG DIRECTOR WASHINGTON, D.C. 20305 DEFENSE NUCLEAR AGENCY OICY ATTN R. CRAWFORDi,.’, WASHINGTION

  16. Testing an inversion method for estimating electron energy fluxes from all-sky camera images

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2004-06-01

    Full Text Available An inversion method for reconstructing the precipitating electron energy flux from a set of multi-wavelength digital all-sky camera (ASC images has recently been developed by tomografia. Preliminary tests suggested that the inversion is able to reconstruct the position and energy characteristics of the aurora with reasonable accuracy. This study carries out a thorough testing of the method and a few improvements for its emission physics equations. We compared the precipitating electron energy fluxes as estimated by the inversion method to the energy flux data recorded by the Defense Meteorological Satellite Program (DMSP satellites during four passes over auroral structures. When the aurorae appear very close to the local zenith, the fluxes inverted from the blue (427.8nm filtered ASC images or blue and green line (557.7nm images together give the best agreement with the measured flux values. The fluxes inverted from green line images alone are clearly larger than the measured ones. Closer to the horizon the quality of the inversion results from blue images deteriorate to the level of the ones from green images. In addition to the satellite data, the precipitating electron energy fluxes were estimated from the electron density measurements by the EISCAT Svalbard Radar (ESR. These energy flux values were compared to the ones of the inversion method applied to over 100 ASC images recorded at the nearby ASC station in Longyearbyen. The energy fluxes deduced from these two types of data are in general of the same order of magnitude. In 35% of all of the blue and green image inversions the relative errors were less than 50% and in 90% of the blue and green image inversions less than 100%. This kind of systematic testing of the inversion method is the first step toward using all-sky camera images in the way in which global UV images have recently been used to estimate the energy fluxes. The advantages of ASCs, compared to the space-born imagers, are

  17. GLOBAL CLASSIFICATION OF DERMATITIS DISEASE WITH K-MEANS CLUSTERING IMAGE SEGMENTATION METHODS

    OpenAIRE

    Prafulla N. Aerkewar1 & Dr. G. H. Agrawal2

    2018-01-01

    The objective of this paper to presents a global technique for classification of different dermatitis disease lesions using the process of k-Means clustering image segmentation method. The word global is used such that the all dermatitis disease having skin lesion on body are classified in to four category using k-means image segmentation and nntool of Matlab. Through the image segmentation technique and nntool can be analyze and study the segmentation properties of skin lesions occurs in...

  18. Observation and interpretation of particle and electric field measurements inside and adjacent to an active auroral arc

    International Nuclear Information System (INIS)

    Carlson, C.W.; Kelley, M.C.

    1977-01-01

    A Javelin sounding rocket instrumented to measure electric fields, energetic particles, and suprathermal electrons was flown across an auroral display in the late expansion phase of a substorm. Four distinct regions of fields and particles were interpreted here in light of our present understanding of auroral dynamics.r of 10 and resemble fluxes mesured in the equatorial plane during the expansion phase. The hard fluxes in the equatorward zone are further energized and may act as a source for the outer radiation belt as inward convection further energizes them

  19. Investigating the auroral electrojets with low altitude polar orbiting satellites

    Directory of Open Access Journals (Sweden)

    T. Moretto

    2002-07-01

    Full Text Available Three geomagnetic satellite missions currently provide high precision magnetic field measurements from low altitude polar orbiting spacecraft. We demonstrate how these data can be used to determine the intensity and location of the horizontal currents that flow in the ionosphere, predominantly in the auroral electrojets. First, we examine the results during a recent geomagnetic storm. The currents derived from two satellites at different altitudes are in very good agreement, which verifies good stability of the method. Further, a very high degree of correlation (correlation coefficients of 0.8–0.9 is observed between the amplitudes of the derived currents and the commonly used auroral electrojet indices based on magnetic measurements at ground. This points to the potential of defining an auroral activity index based on the satellite observations, which could be useful for space weather monitoring. A specific advantage of the satellite observations over the ground-based magnetic measurements is their coverage of the Southern Hemisphere, as well as the Northern. We utilize this in an investigation of the ionospheric currents observed in both polar regions during a period of unusually steady interplanetary magnetic field with a large negative Y-component. A pronounced asymmetry is found between the currents in the two hemispheres, which indicates real inter-hemispheric differences beyond the mirror-asymmetry between hemispheres that earlier studies have revealed. The method is also applied to another event for which the combined measurements of the three satellites provide a comprehensive view of the current systems. The analysis hereof reveals some surprising results concerning the connection between solar wind driver and the resulting ionospheric currents. Specifically, preconditioning of the magnetosphere (history of the interplanetary magnetic field is seen to play an important role, and in the winther hemisphere, it seems to be harder to

  20. Altitude variations of ionospheric currents at auroral latitudes

    International Nuclear Information System (INIS)

    Kamide, Y.; Brekke, A.

    1993-01-01

    On the basis of updated EISCAT experiments, the first full derivation of the ionospheric current density of the auroral electrojets at six different altitudes are presented. It is found that current vectors at different altitudes are quite different, although the eastward and westward currents prevail in the evening and morning sectors, respectively, once the currents are integrated over altitude. The eastward electrojet becomes almost northward whilst the westward electrojet becomes almost southward, at the highest altitude, 125 km, in this study. The physical implications of these characteristics are discussed

  1. Acceleration/heating of plasma on auroral field lines: preliminary results from the Viking satellite

    International Nuclear Information System (INIS)

    Lundin, R.

    1988-01-01

    In this report, a review of the first results obtained from the particle experiment on board the Viking spacecraft will be given. During the first part of the Viking mission, the orbit was suitable for high-altitude measurements (up to ∼ 13500 km) in the dayside oval and the cusp/cleft region. Thus, some emphasis will be put on processes occurring in the dayside auroral region. On the basis of more than 100 Viking traversals of the cusp and cleft it is suggested that these regions can be identified by some regular characteristics in the particle data. The cusp has a continuous presence of solar wind plasma, affected mainly by convection and containing modest plasma energization. Conversely, the cleft is characterized by extensive plasma energization, and strong field aligned current sheets. Temporal injections of solar wind plasma are frequently observed in the cleft. A distinguishing characteristic of the Viking charged particle experiment is the energy and angular resolution. Thus, the fine-structure of narrow particle beams and conical distributions of both electrons and ions can be determined. This enables very detailed studies of the plasma acceleration processes along auroral field lines. Some examples of accelerated plasma populations and their related energy and angular distribution will be presented. The observations are compared with existing theories of auroral plasma heating and acceleration processes

  2. Improvement of temporal and dynamic subtraction images on abdominal CT using 3D global image matching and nonlinear image warping techniques

    International Nuclear Information System (INIS)

    Okumura, E; Sanada, S; Suzuki, M; Takemura, A; Matsui, O

    2007-01-01

    Accurate registration of the corresponding non-enhanced and arterial-phase CT images is necessary to create temporal and dynamic subtraction images for the enhancement of subtle abnormalities. However, respiratory movement causes misregistration at the periphery of the liver. To reduce these misregistration errors, we developed a temporal and dynamic subtraction technique to enhance small HCC by 3D global matching and nonlinear image warping techniques. The study population consisted of 21 patients with HCC. Using the 3D global matching and nonlinear image warping technique, we registered current and previous arterial-phase CT images or current non-enhanced and arterial-phase CT images obtained in the same position. The temporal subtraction image was obtained by subtracting the previous arterial-phase CT image from the warped current arterial-phase CT image. The dynamic subtraction image was obtained by the subtraction of the current non-enhanced CT image from the warped current arterial-phase CT image. The percentage of fair or superior temporal subtraction images increased from 52.4% to 95.2% using the new technique, while on the dynamic subtraction images, the percentage increased from 66.6% to 95.2%. The new subtraction technique may facilitate the diagnosis of subtle HCC based on the superior ability of these subtraction images to show nodular and/or ring enhancement

  3. Oxygen auroral transition laser system excited by collisional and photolytic energy transfer

    International Nuclear Information System (INIS)

    Murray, J.R.; Powell, H.T.; Rhodes, C.K.

    1975-06-01

    The properties of laser media involving the auroral transition of atomic oxygen and analogous systems are examined. A discussion of the atomic properties, collisional mechanisms, excitation processes, and collisionally induced radiative phenomena is given. Crossing phenomena play a particularly important role in governing the dynamics of the medium

  4. Ring current and auroral electrojets in connection with interplanetary medium parameters during magnetic storm

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    1994-06-01

    Full Text Available The relationship between the auroral electrojet indices (AE and the ring current magnetic field (DR was investigated by observations obtained during the magnetic storm on 1-3 April 1973. During the storm main phase the DR development is accompanied by a shift of the auroral electrojets toward the equator. As a result, the standard AE indices calculated on the basis of data from auroral observatories was substantially lower than the real values (AE'. To determine AE' during the course of a storm main phase data from subauroral magnetic observatories should be used. It is shown that the intensity of the indices (AE' which take into account the shift of the electrojets is increased substantially relative to the standard indices during the storm main phase. AE' values are closely correlated with geoeffective solar wind parameters. A high correlation was obtained between AE' and the energy flux into the ring current during the storm main phase. Analysis of magnetic field variations during intervals with intense southward IMF components demonstrates a decrease of the saturation effect of auroral electrojet currents if subauroral stations magnetic field variations are taken into account. This applies both to case studies and statistical data. The dynamics of the electrojets in connection with the development of the ring current and of magnetospheric substorms can be described by the presence (absence of saturation for minimum (maximum AE index values during a 1-h interval. The ring current magnetic field asymmetry (ASY was calculated as the difference between the maximum and minimum field values along a parallel of latitude at low latitudes. The ASY value is closely correlated with geoeffective solar wind parameters and simultaneously is a more sensitive indicator of IMF Bz variations than the symmetric ring current. ASY increases (decreases faster during the main phase (the recovery phase than DR. The magnetic field decay at low latitudes in the

  5. Large-Scale Structure and Dynamics of the Sub-Auroral Polarization Stream (SAPS)

    Science.gov (United States)

    Baker, J. B. H.; Nishitani, N.; Kunduri, B.; Ruohoniemi, J. M.; Sazykin, S. Y.

    2017-12-01

    The Sub-Auroral Polarization Stream (SAPS) is a narrow channel of high-speed westward ionospheric convection which appears equatorward of the duskside auroral oval during geomagnetically active periods. SAPS is generally thought to occur when the partial ring current intensifies and enhanced region-2 field-aligned currents (FACs) are forced to close across the low conductance region of the mid-latitude ionospheric trough. However, recent studies have suggested SAPS can also occur during non-storm periods, perhaps associated with substorm activity. In this study, we used measurements from mid-latitude SuperDARN radars to examine the large-scale structure and dynamics of SAPS during several geomagnetically active days. Linear correlation analysis applied across all events suggests intensifications of the partial ring current (ASYM-H index) and auroral activity (AL index) are both important driving influences for controlling the SAPS speed. Specifically, SAPS flows increase, on average, by 20-40 m/s per 10 nT of ASYM-H and 10-30 m/s per 100 nT of AL. These dependencies tend to be stronger during the storm recovery phase. There is also a strong local time dependence such that the strength of SAPS flows decrease by 70-80 m/s for each hour of local time moving from dusk to midnight. By contrast, the evidence for direct solar wind control of SAPS speed is much less consistent, with some storms showing strong correlations with the interplanetary electric field components and/or solar wind dynamic pressure, while others do not. These results are discussed in the context of recent simulation results from the Rice Convection Model (RCM).

  6. Auroral electron energies

    International Nuclear Information System (INIS)

    McEwan, D.J.; Duncan, C.N.; Montalbetti, R.

    1981-01-01

    Auroral electron characteristic energies determined from ground-based photometer measurements of the ratio of 5577 A OI and 4278 A N 2 + emissions are compared with electron energies measured during two rocket flights into pulsating aurora. Electron spectra with Maxwellian energy distributions were observed in both flights with an increase in characteristic energy during each pulsation. During the first flight on February 15, 1980 values of E 0 ranging from 1.4 keV at pulsation minima to 1.8 keV at pulsation maxima were inferred from the 5577/4278 ratios, in good agreement with rocket measurements. During the second flight on February 23, direct electron energy measurements yielded E 0 values of 1.8 keV rising to 2.1 keV at pulsation maxima. The photometric ratio measurements in this case gave inferred E 0 values about 0.5 keV lower. This apparent discrepancy is considered due to cloud cover which impaired the absolute emission intensity measurements. It is concluded that the 5577/4278 ratio does yield a meaningful measure of the characteristic energy of incoming electrons. This ratio technique, when added to the more sensitive 6300/4278 ratio technique usable in stable auroras can now provide more complete monitoring of electron influx characteristics. (auth)

  7. Integrated global digital image correlation for interface delamination characterization

    KAUST Repository

    Hoefnagels, Johan P.M.

    2013-07-23

    Interfacial delamination is a key reliability challenge in composites and micro-electronic systems due to (high-density) integration of dissimilar materials. Predictive finite element models are used to minimize delamination failures during design, but require accurate interface models to capture (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, an Integrated Global Digital Image Correlation (I-GDIC) strategy is developed for accurate determination of mechanical interface behavior from in-situ delamination experiments. Recently, a novel miniature delamination setup was presented that enables in-situ microscopic characterization of interface delamination while sensitively measuring global load-displacement curves for all mode mixities. Nevertheless, extraction of detailed mechanical interface behavior from measured images is challenging, because deformations are tiny and measurement noise large. Therefore, an advanced I-GDIC methodology is developed which correlates the image patterns by only deforming the images using kinematically-admissible \\'eigenmodes\\' that correspond to the few parameters controlling the interface tractions in an analytic description of the crack tip deformation field, thereby greatly enhancing accuracy and robustness. This method is validated on virtual delamination experiments, simulated using a recently developed self-adaptive cohesive zone (CZ) finite element framework. © The Society for Experimental Mechanics, Inc. 2014.

  8. Energy of auroral electrons and Z mode generation

    Science.gov (United States)

    Krauss-Varban, D.; Wong, H. K.

    1990-01-01

    The present consideration of Z-mode radiation generation, in light of observational results indicating that the O mode and second-harmonic X-mode emissions can prevail over the X-mode fundamental radiation when suprathermal electron energy is low, gives attention to whether the thermal effect on the Z-mode dispersion can be equally important, and whether the Z-mode can compete for the available free-energy source. It is found that, under suitable circumstances, the growth rate of the Z-mode can be substantial even for low suprathermal auroral electron energies. Growth is generally maximized for propagation perpendicular to the magnetic field.

  9. Integrated global digital image correlation for interface delamination characterization

    KAUST Repository

    Hoefnagels, Johan P.M.; Blaysat, Benoî t; Lubineau, Gilles; Geers, Marc G D

    2013-01-01

    , but require accurate interface models to capture (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, an Integrated Global Digital Image Correlation (I-GDIC) strategy is developed for accurate determination of mechanical

  10. Energy and flux variations across thin auroral arcs

    Directory of Open Access Journals (Sweden)

    H. Dahlgren

    2011-10-01

    Full Text Available Two discrete auroral arc filaments, with widths of less than 1 km, have been analysed using multi-station, multi-monochromatic optical observations from small and medium field-of-view imagers and the EISCAT radar. The energy and flux of the precipitating electrons, volume emission rates and local electric fields in the ionosphere have been determined at high temporal (up to 30 Hz and spatial (down to tens of metres resolution. A new time-dependent inversion model is used to derive energy spectra from EISCAT electron density profiles. The energy and flux are also derived independently from optical emissions combined with ion-chemistry modelling, and a good agreement is found. A robust method to obtain detailed 2-D maps of the average energy and number flux of small scale aurora is presented. The arcs are stretched in the north-south direction, and the lowest energies are found on the western, leading edges of the arcs. The large ionospheric electric fields (250 mV m−1 found from tristatic radar measurements are evidence of strong currents associated with the region close to the optical arcs. The different data sets indicate that the arcs appear on the boundaries between regions with different average energy of diffuse precipitation, caused by pitch-angle scattering. The two thin arcs on these boundaries are found to be related to an increase in number flux (and thus increased energy flux without an increase in energy.

  11. Rocket measurements of electrons in a system of multiple auroral arcs

    Science.gov (United States)

    Boyd, J. S.; Davis, T. N.

    1977-01-01

    A Nike-Tomahawk rocket was launched into a system of auroral arcs northward of Poker Flat Research Range, Fairbanks, Alaska. The pitch-angle distribution of electrons was measured at 2.5, 5, and 10 keV and also at 10 keV on a separating forward section of the payload. The auroral activity appeared to be the extension of substorm activity centered to the east. The rocket crossed a westward-propagating fold in the brightest band. The electron spectrum was relatively hard through most of the flight, showing a peak in the range from 2.5 to 10 keV in the weaker aurora and below 5 keV in the brightest arc. The detailed structure of the pitch-angle distribution suggested that, at times, a very selective process was accelerating some electrons in the magnetic field direction, so that a narrow field-aligned component appeared superimposed on a more isotropic distribution. It is concluded that this process could not be a near-ionosphere field-aligned potential drop, although the more isotropic component may have been produced by a parallel electric field extending several thousand kilometers along the field line above the ionosphere.

  12. Rocket measurements of electrons in a system of multiple auroral arcs

    International Nuclear Information System (INIS)

    Boyd, J.S.; Davis, T.N.

    1977-01-01

    A Nike-Tomahawk rocket was launched into a system of auroral arcs northward of Poker Flat Research Range, Fairbanks, Alaska, at 0815 UT on March 20, 1971. The pitch angle distribution of electrons was measured at 2.5, 5, and 10 keV and also at 10 keV on a separating forward section of the payload. The auroral activity appeared to be the extension of substorm activity centered to the east. The rocket crossed a westward propagating fold in the brightest band. The electron spectrum was relatively hard through most of the flight, showing a peak in the range 2.5 5 keV in the brightest arc. The detailed structure of the pitch angle distribution suggested that, at times, a very selective process was accelerating some electrons in the direction of B, so that a narrow field-aligned component appeared superimposed on a more isotropic distribution. It is concluded that this process could not be a near-ionosphere field-aligned potential drop, although the more isotropic component may have been produced by a parallel electric field extending several thousand kilometers along the field line above the ionsophere

  13. Auroral phenomenology and magnetospheric processes earth and other planets

    CERN Document Server

    Keiling, Andreas; Bagenal, Fran; Karlsson, Tomas

    2013-01-01

    Published by the American Geophysical Union as part of the Geophysical Monograph Series. Many of the most basic aspects of the aurora remain unexplained. While in the past terrestrial and planetary auroras have been largely treated in separate books, Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets takes a holistic approach, treating the aurora as a fundamental process and discussing the phenomenology, physics, and relationship with the respective planetary magnetospheres in one volume. While there are some behaviors common in auroras of the diffe

  14. Anomalous width variation of rarefactive ion acoustic solitary waves in the context of auroral plasmas

    Directory of Open Access Journals (Sweden)

    S. S. Ghosh

    2004-01-01

    Full Text Available The presence of dynamic, large amplitude solitary waves in the auroral regions of space is well known. Since their velocities are of the order of the ion acoustic speed, they may well be considered as being generated from the nonlinear evolution of ion acoustic waves. However, they do not show the expected width-amplitude correlation for K-dV solitons. Recent POLAR observations have actually revealed that the low altitude rarefactive ion acoustic solitary waves are associated with an increase in the width with increasing amplitude. This indicates that a weakly nonlinear theory is not appropriate to describe the solitary structures in the auroral regions. In the present work, a fully nonlinear analysis based on Sagdeev pseudopotential technique has been adopted for both parallel and oblique propagation of rarefactive solitary waves in a two electron temperature multi-ion plasma. The large amplitude solutions have consistently shown an increase in the width with increasing amplitude. The width-amplitude variation profile of obliquely propagating rarefactive solitary waves in a magnetized plasma have been compared with the recent POLAR observations. The width-amplitude variation pattern is found to fit well with the analytical results. It indicates that a fully nonlinear theory of ion acoustic solitary waves may well explain the observed anomalous width variations of large amplitude structures in the auroral region.

  15. Particle precipitation influence in the conductivity of the auroral ionosphere during magnetic storms

    International Nuclear Information System (INIS)

    Monreal M, R.; Llop, C.

    2002-01-01

    The study of the energy transfer between the different regions of the solar wind - magnetosphere - ionosphere system is probably the main goal in Solar-Terrestrial Physics. In the magnetosphere - ionosphere coupling, the ionosphere power dissipation is highly sensitive to the conductivity in such a way that a detailed knowledge of this property in the auroral and polar ionosphere is of great interest because it is important not only to determine Joule heat, but also for electric fields and currents models including the field aligned currents coupling the magnetosphere and ionosphere. The main sources of ionization and subsequent conductivity in the ionosphere are due to the emission of electromagnetic radiation and charged energetic particles from the sun. In this work it is analysed the influence of the precipitating electrons on the auroral ionosphere conductivity during magnetic storms. It is shown that the conductance values appear sub estimated for high levels of activity due to the saturation produced during very intense magnetic storms. (Author)

  16. The solar wind plasma density control of night-time auroral particle precipitation

    Directory of Open Access Journals (Sweden)

    V. G. Vorobjev

    2004-03-01

    Full Text Available DMSP F6 and F7 spacecraft observations of the average electron and ion energy, and energy fluxes in different night-time precipitation regions for the whole of 1986 were used to examine the precipitation features associated with solar wind density changes. It was found that during magnetic quietness |AL|<100nT, the enhancement of average ion fluxes was observed at least two times, along with the solar wind plasma density increase from 2 to 24cm–3. More pronounced was the ion flux enhancement that occurred in the b2i–b4s and b4s–b5 regions, which are approximately corresponding to the statistical auroral oval and map to the magnetospheric plasma sheet tailward of the isotropy boundary. The average ion energy decrease of about 2–4kev was registered simultaneously with this ion flux enhancement. The results verify the occurrence of effective penetration of the solar wind plasma into the magnetospheric tail plasma sheet. Key words. Ionosphere (auroral ionosphere, particle precipitation – Magnetospheric physics (solar windmagnetosphere interaction

  17. The Detectability of Radio Auroral Emission from Proxima b

    Energy Technology Data Exchange (ETDEWEB)

    Burkhart, Blakesley; Loeb, Abraham [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States)

    2017-11-01

    Magnetically active stars possess stellar winds whose interactions with planetary magnetic fields produce radio auroral emission. We examine the detectability of radio auroral emission from Proxima b, the closest known exosolar planet orbiting our nearest neighboring star, Proxima Centauri. Using the radiometric Bode’s law, we estimate the radio flux produced by the interaction of Proxima Centauri’s stellar wind and Proxima b’s magnetosphere for different planetary magnetic field strengths. For plausible planetary masses, Proxima b could produce radio fluxes of 100 mJy or more in a frequency range of 0.02–3 MHz for planetary magnetic field strengths of 0.007–1 G. According to recent MHD models that vary the orbital parameters of the system, this emission is expected to be highly variable. This variability is due to large fluctuations in the size of Proxima b’s magnetosphere as it crosses the equatorial streamer regions of dense stellar wind and high dynamic pressure. Using the MHD model of Garraffo et al. for the variation of the magnetosphere radius during the orbit, we estimate that the observed radio flux can vary nearly by an order of magnitude over the 11.2-day period of Proxima b. The detailed amplitude variation depends on the stellar wind, orbital, and planetary magnetic field parameters. We discuss observing strategies for proposed future space-based observatories to reach frequencies below the ionospheric cutoff (∼10 MHz), which would be required to detect the signal we investigate.

  18. Observations of intense velocity shear and associated electrostatic waves near an auroral arc

    International Nuclear Information System (INIS)

    Kelley, M.C.; Carlson, C.W.

    1977-01-01

    An intense shear in plasma flow velocity of magnitude 20 (m/s)m -1 has been detected at the edge of an auroral arc. The region of shear appears to display structure with two characteristic scale sizes. The larger structures were of the order of a few kilometers in size and were identified by a deviation of the direction of the charge sheets crossed by the rocket from a direction parallel to the visible arc. As is shown in the companion paper (Carlson and Kelley, 1977), the average (undisturbed) charge sheet was parallel to the arc. These observations are consistent with television studies which often display such structures propagating along the edges of auroral forms. Additional intense irregularities were detected with characteristic wavelengths smaller than the scale size of the shear. The irregularities are discussed in light of the branches of a velocity shear driven instability suggested by several workers: the Kelvin-Helmholtz instability operating at the longest wavelengths and the drift shear instability at the shorter. Neither mode has wavelengths as short as those observed however. A velocity shear mechanism operating at wavelengths short in comparison with the shear scale length, such as those observed here, would be of significant geophysical importance. For example, it could be responsible for production of high-latitude irregularities which exist throughout the polar cap and for the short-wavelength waves responsible for intense 3-m backscatter during equatorial spread F conditions. Since the wavelengths produced by the short-wavelength mode are in the range of typical auroral E region radars, such data must be carefully checked for F region contamination

  19. Ring current and auroral electrojets in connection with interplanetary medium parameters during magnetic storm

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    Full Text Available The relationship between the auroral electrojet indices (AE and the ring current magnetic field (DR was investigated by observations obtained during the magnetic storm on 1-3 April 1973. During the storm main phase the DR development is accompanied by a shift of the auroral electrojets toward the equator. As a result, the standard AE indices calculated on the basis of data from auroral observatories was substantially lower than the real values (AE'. To determine AE' during the course of a storm main phase data from subauroral magnetic observatories should be used. It is shown that the intensity of the indices (AE' which take into account the shift of the electrojets is increased substantially relative to the standard indices during the storm main phase. AE' values are closely correlated with geoeffective solar wind parameters. A high correlation was obtained between AE' and the energy flux into the ring current during the storm main phase. Analysis of magnetic field variations during intervals with intense southward IMF components demonstrates a decrease of the saturation effect of auroral electrojet currents if subauroral stations magnetic field variations are taken into account. This applies both to case studies and statistical data. The dynamics of the electrojets in connection with the development of the ring current and of magnetospheric substorms can be described by the presence (absence of saturation for minimum (maximum AE index values during a 1-h interval. The ring current magnetic field asymmetry (ASY was calculated as the difference between the maximum and minimum field values along a parallel of latitude at low latitudes. The ASY value is closely correlated with geoeffective solar wind parameters and simultaneously is a more sensitive indicator of IMF Bz variations than the symmetric ring current.

  20. SSUSI: A Newly Available Resource for the Upper Atmosphere Community to Study the Global Response of the Coupled Ionosphere Thermosphere System

    Science.gov (United States)

    Paxton, L.; Schaefer, R. K.; Weiss, M.; Wolven, B. C.; Zhang, Y.; Miller, E.; Bust, G. S.; Romeo, G.

    2013-12-01

    The Global Ultraviolet Imager (GUVI) on TIMED was actually the 7th wide field of regard instrument built by APL. Five SSUSI instruments were built by APL and delivered, calibrated and ready for flight between 1994 and 1996. Another instrument, the Near Infrared Spectrograph was flown on the NASA NEAR mission using the SSUSI optical design. The first SSUSI flight was in 2003 on the DMSP F16 spacecraft. Two others have flown since then on DMSP F17 and F18. Two more await flight with the next slated for a Spring 2014 launch on DMSP F19. Recently, the SSUSI data have been made publicly releasable so they are, in principle, available to the research community. However, there are no funds to actually provide access to these products. We are working with various partners to provide a venue to access to the many products we routinely produce. SSUSI provides data products that both monitor the state of the auroral regions and yields a detailed picture of the ionosphere. SSUSI gives us the ability to observe the dynamics of these systems during storm and quiet periods throughout an entire solar cycle. The near polar orbit of the DMSP satellite provided excellent coverage of the auroral oval during solar minimum. During storm times, the high inclination orbit allows us to track the progress of the storm with 30 minute revisit time. In this presentation, we will also discuss the ability of SSUSI to image ionospheric dynamics and provide 3D images of the ionosphere. These data, when combined with assimilative data techniques provides a powerful new capability for examining the small and large scale structure of the ionosphere in a way that is not accessible to either GOLD or ICON.

  1. Interaction of upgoing auroral H+ and O+ beams

    International Nuclear Information System (INIS)

    Kaufmann, R.L.; Ludlow, G.R.; Collin, H.L.; Peterson, W.K.; Burch, J.L.

    1986-01-01

    Data from the S3-3 and DE 1 satellites are analyzed to study the interaction between H + and O + ions in upgoing auroral beams. Every data set analyzed showed some evidence of an interaction. The measured plasma was found to be unstable to a low-frequency electrostatic wave that propagates at an oblique angle to B-arrow-right 0 . A second wave, which can propagate parallel to B-arrow-right 0 , is weakly damped in the plasma studied in most detail. It is likely that the upgoing ion beams generate this parallel wave at lower altitudes. The resulting wave-particle interactions qualitatively can explain most of the features observed in ion distribution functions. H + ions in the low-velocity tail of the H + beam are decelerated and O + ions in the high-velocity tail of the 0 + beam are accelerated through this process. This may explain the occasional observation of O + beams with substantially higher streaming energies than the simultaneously observed H + beams. The wave-particle interactions also can explain the asymmetrical features that regularly are seen in H + and 0 + distribution functions. The wave which was found to be unstable in the measured plasma primarily accelerates 0 + perpendicular to B/sub O/. This process can produce weakly conical 0 + distributions which are characterized by T/sub perpendicular/>T/sub Pi/ rather than by having a peak at 90 0 pitch angle within the acceleration region. In general, the interaction between different ion species in multicomponent beams appears to be a dominant factor in determining the structure of upgoing auroral ions. The same process is likely to be important in a number of other beam-containing space plasmas

  2. Tensor voting for image correction by global and local intensity alignment.

    Science.gov (United States)

    Jia, Jiaya; Tang, Chi-Keung

    2005-01-01

    This paper presents a voting method to perform image correction by global and local intensity alignment. The key to our modeless approach is the estimation of global and local replacement functions by reducing the complex estimation problem to the robust 2D tensor voting in the corresponding voting spaces. No complicated model for replacement function (curve) is assumed. Subject to the monotonic constraint only, we vote for an optimal replacement function by propagating the curve smoothness constraint using a dense tensor field. Our method effectively infers missing curve segments and rejects image outliers. Applications using our tensor voting approach are proposed and described. The first application consists of image mosaicking of static scenes, where the voted replacement functions are used in our iterative registration algorithm for computing the best warping matrix. In the presence of occlusion, our replacement function can be employed to construct a visually acceptable mosaic by detecting occlusion which has large and piecewise constant color. Furthermore, by the simultaneous consideration of color matches and spatial constraints in the voting space, we perform image intensity compensation and high contrast image correction using our voting framework, when only two defective input images are given.

  3. Implicit Active Contours Driven by Local and Global Image Fitting Energy for Image Segmentation and Target Localization

    Directory of Open Access Journals (Sweden)

    Xiaosheng Yu

    2013-01-01

    Full Text Available We propose a novel active contour model in a variational level set formulation for image segmentation and target localization. We combine a local image fitting term and a global image fitting term to drive the contour evolution. Our model can efficiently segment the images with intensity inhomogeneity with the contour starting anywhere in the image. In its numerical implementation, an efficient numerical schema is used to ensure sufficient numerical accuracy. We validated its effectiveness in numerous synthetic images and real images, and the promising experimental results show its advantages in terms of accuracy, efficiency, and robustness.

  4. Electric fields and energetic particle precipitation in an auroral arc

    International Nuclear Information System (INIS)

    Edwards, T.; Bryant, D.A.; Smith, M.J.; Fahleson, U.; Faelthammer, C.G.; Pedersen, A.

    1975-01-01

    Preliminary results are presented from a rocket flight across a single discrete auroral arc extending from early evening to magnetic midnight. The rocket was fired at the end of the growth phase of an isolated auroral substorm. It carried a separating payload to make simultaneous measurements of electrons (0.6 - 25 keV, pitch angle 0 - 60 0 ) at two points. From the main vehicle measurements were also made of ions (same energy range) as well as of the electric field vector and plasma parameters. The electron spectra were hardest towards the centre of the arc, where the peak intensity was at 9.5 keV. The precipitation structure observed was similar to that of an 'inverted V' but on a smaller scale. The electric field was northward south of the arc, southward within the arc and somewhat north of it, then again northward. At the northern edge of the precipitation region the field was very irregular. The field strength reached a maximum of about 50 mV/m some distance north of the arc. The line integral of the electric field across the arc was of the order of a kilovolt, too small to be responsible for the changes observed in the electron energy spectrum. An electric potential distribution, consistent with the results obtained, is present. (Auth.)

  5. Ground-based and satellite observations of high-latitude auroral activity in the dusk sector of the auroral oval

    Directory of Open Access Journals (Sweden)

    K. Kauristie

    Full Text Available On 7 December 2000, during 13:30–15:30 UT the MIRACLE all-sky camera at Ny Ålesund observed auroras at high-latitudes (MLAT ~ 76 simultaneously when the Cluster spacecraft were skimming the magnetopause in the same MLT sector (at ~ 16:00–18:00 MLT. The location of the auroras (near the ionospheric convection reversal boundary and the clear correlation between their dynamics and IMF variations suggests their close relationship with R1 currents. Consequently, we can assume that the Cluster spacecraft were making observations in the magnetospheric region associated with the auroras, although exact magnetic conjugacy between the ground-based and satellite observations did not exist. The solar wind variations appeared to control both the behaviour of the auroras and the magnetopause dynamics. Auroral structures were observed at Ny Ålesund especially during periods of negative IMF BZ. In addition, the Cluster spacecraft experienced periodic (T ~ 4 - 6 min encounters between magnetospheric and magnetosheath plasmas. These undulations of the boundary can be interpreted as a consequence of tailward propagating magnetopause surface waves. Simultaneous dusk sector ground-based observations show weak, but discernible magnetic pulsations (Pc 5 and occasionally periodic variations (T ~ 2 - 3 min in the high-latitude auroras. In the dusk sector, Pc 5 activity was stronger and had characteristics that were consistent with a field line resonance type of activity. When IMF BZ stayed positive for a longer period, the auroras were dimmer and the spacecraft stayed at the outer edge of the magnetopause where they observed electromagnetic pulsations with T ~ 1 min. We find these observations interesting especially from the viewpoint of previously presented studies relating poleward-moving high-latitude auroras with pulsation activity and MHD waves propagating at the magnetospheric boundary layers

  6. Theoretical model of polar cap auroral arcs

    International Nuclear Information System (INIS)

    Kan, J.R.; Burke, W.J.; USAF, Bedford, MA)

    1985-01-01

    A theory of the polar cap auroral arcs is proposed under the assumption that the magnetic field reconnection occurs in the cusp region on tail field lines during northward interplanetary magnetic field (IMF) conditions. Requirements of a convection model during northward IMF are enumerated based on observations and fundamental theoretical considerations. The theta aurora can be expected to occur on the closed field lines convecting sunward in the central polar cap, while the less intense regular polar cap arcs can occur either on closed or open field lines. The dynamo region for the polar cap arcs is required to be on closed field lines convecting tailward in the plasma sheet which is magnetically connected to the sunward convection in the central polar cap. 43 references

  7. Periodic auroral forms and geomagnetic field oscillations in the 1400 MLT region

    International Nuclear Information System (INIS)

    Potemra, T.A.; Vo, H.; Venkatesan, D.; Cogger, L.L.; Erlandson, R.E.; Zanetti, L.J.; Bythrow, P.F.; Anderson, B.J.

    1990-01-01

    The UV images obtained with the Viking satellite often show bright features which resemble beads or pearls aligned in the east-west direction between noon and 1800 MLT. Viking acquired a series of 25 UV images during a 28-min period on July 29, 1986, which showed a distinct series of periodic bright features in this region. Magnetic field and hot plasma measurements obtained by Viking confirm that the UV emissions are colocated with the field line projection of an upward-flowing region 1 Birkeland current and precipitating energetic (∼200 eV) electrons. The magnetic field and electric field measurements show transverse oscillations with a nearly constant period of about 3.5 min from 67 degree invariant latitude equatorward up to the location of the large-scale Birkeland current system near 76 degree invariant latitude. The electric field oscillations lead the magnetic field oscillations by about a quarter-period. The authors interpret the observed oscillations as standing Alfven waves driven at a frequency near the local resonance frequency by a large-scale wave in the boundary layer. They propose that the energy flux of the precipitating low-energy electrons in this afternoon region is modulated by this boundary wave and produces the periodic UV emission features. The results of this study support the view that large-scale oscillations of magnetospheric boundaries, possibly associated with the Kelvin-Helmholtz instability, can modulate currents, particles, and auroral forms

  8. Transverse ion energization and low-frequency plasma waves in the mid-altitude auroral zone - A case study

    Science.gov (United States)

    Peterson, W. K.; Shelley, E. G.; Boardsen, S. A.; Gurnett, D. A.; Ledley, B. G.; Sugiura, M.; Moore, T. E.

    1988-01-01

    Evidence of transverse ion energization at altitudes of several earth radii in the auroral zone was reexamined using several hundred hours of high-sensitivity and high-resolution plasma data obtained by the Dynamics Explorer 1 satellite. The data on particle environment encountered at midaltitudes in the auroral zone disclosed rapid variations in the values of total density, thermal structure, and composition of the plasma in the interval measured; the modes of low-frequency plasma waves also varied rapidly. It was not possible to unambiguously identify in these data particle and wave signature of local transverse ion energization; however, many intervals were found where local transverse ion heating was consistent with the observations.

  9. Generation of auroral hectometer radio emission at the laser cyclotron resonance ([omega][sub p][>=][omega][sub H]). Generatsiya avroral'nogo gektometrovogo radioizlucheniya na mazernom tsiklotronnom rezonatore ([omega][sub p]>or approx. [omega][sub H])

    Energy Technology Data Exchange (ETDEWEB)

    Vlasov, V G [Irkutskij Politekhnicheskij Inst., Irkutsk (Russian Federation)

    1992-06-01

    Generation of auroral hectometer (AHR) and kilometer (AKR) radio emission at a maser cyclotron resonance (MCR) in a relatively dense plasma ([omega][sub p][>=][omega][sub H]) is theoretically studied. The conclusion is made that availability of two-dimensional small-scale inhomogeneity of plasma density is the basic condition for the AHR generation at the MCR by auroral electron beams. The small-scale inhomogeneity of the auroral plasma, measured on satelites, meets by its parameters the conditions for the generation of auroral radio emission.

  10. Laboratory investigation of physical mechanisms of auroral charged particle acceleration in the field-aligned currents layers

    Science.gov (United States)

    Gavrilov, B.; Zetzer, J.; Sobyanin, D.; Podgorny, I.

    One of the major topics of space weather research is to understand auroral structure and the processes that guide, accelerate, and otherwise control particle precipitation and produce auroral substorms. Navigation, communications and radars in the high latitude regions are severely affected through the effects on the ionosphere. It has long been recognized that the direct cause of the aurora is the precipitation of energetic electrons and ions into the atmosphere leading to excitation of the ambient atmospheric gases. Observations of the ionospheric ionization profiles and auroral precipitation characteristics have shown that field-aligned potential drops are formed to create this effect. The problem is that it is not clear the structure of the regions of magnetic field-aligned electric fields and how they are supported in the magnetospheric plasma. The objective of this research is to study the physical mechanisms of these phenomena in a laboratory experiment. It should be achieved by simulating the charged particle acceleration due to field-aligned electrical field generation in all totality of the interconnected events: generation of a plasma flow, its evolution in the magnetic field, polarization of plasma, generation of the field-aligned currents, development of instabilities in the plasma and current layers, double layers or anomalous resistance regions appearance, electrons acceleration. Parameters of the laboratory simulation and preliminary results of the experiment are discussed.

  11. Rocket measurement of auroral electron fluxes associated with field-aligned currents

    International Nuclear Information System (INIS)

    Pazich, P.M.; Anderson, H.R.

    1975-01-01

    A Nike-Tomahawk rocket was instrumented with a vector magnetometer and an array of particle detectors including an electron and proton energyspectrometer covering the energy range 0.5-20 keV in seven fixed intervals and measuring the pitch angle distribution from 0degree to 180degree as the rocket spun. The payload was launched from Poker Flat, Alaska, at 0722 UT on February 25, 1972, over a bright auroral band that evidently was the poleward electron aurora, beyond the trapping boundary. An upper limit to the measured proton flux was 10 6 /cm 2 s sr keV. The energy spectrum of the electron flux measured during passage over the visible aurora always exhibited a peak within the measured energy range. During passage over the brighter auroral forms the peak shifted from approx.3 to approx.10 keV, the pitch angle distribution became peaked along B, and the intensity increased. Maximum fluxes of approx.3times10 8 el/cm 2 s sr keV were seen over the aurora, which reached approx.60 kR of lambda5577. The electron flux in regions of maximum flux tended to be the most field-aligned in the energy interval showing the highest intensity

  12. Cassini UVIS Observations of Saturn during the Grand Finale Orbits

    Science.gov (United States)

    Pryor, W. R.; Esposito, L. W.; West, R. A.; Jouchoux, A.; Radioti, A.; Grodent, D. C.; Gerard, J. C. M. C.; Gustin, J.; Lamy, L.; Badman, S. V.

    2017-12-01

    In 2016 and 2017, the Cassini Saturn orbiter executed a final series of high inclination, low-periapsis orbits ideal for studies of Saturn's polar regions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) obtained an extensive set of auroral images, some at the highest spatial resolution obtained during Cassini's long orbital mission (2004-2017). In some cases, two or three spacecraft slews at right angles to the long slit of the spectrograph were required to cover the entire auroral region to form auroral images. We will present selected images from this set showing narrow arcs of emission, more diffuse auroral emissions, multiple auroral arcs in a single image, discrete spots of emission, small scale vortices, large-scale spiral forms, and parallel linear features that appear to cross in places like twisted wires. Some shorter features are transverse to the main auroral arcs, like barbs on a wire. UVIS observations were in some cases simultaneous with auroral observations from the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) that will also be presented. UVIS polar images also contain spectral information suitable for studies of the auroral electron energy distribution. The long wavelength part of the UVIS polar images contains a signal from reflected sunlight containing absorption signatures of acetylene and other Saturn hydrocarbons. The hydrocarbon spatial distribution will also be examined.

  13. Statistical characterization of the Sub-Auroral Polarization Stream (SAPS)

    Science.gov (United States)

    Kunduri, B.; Baker, J. B.; Ruohoniemi, J. M.; Erickson, P. J.; Coster, A. J.; Oksavik, K.

    2017-12-01

    The Sub-Auroral Polarization Stream (SAPS) is a narrow region of westward directed plasma convection typically observed in the dusk-midnight sector equatorward of the main auroral oval. SAPS plays an important role in mid-latitude space weather dynamics and has a controlling influence on the evolution of large-scale plasma features, such as Storm Enhanced Density (SED) plumes. In this study, data from North American mid-latitude SuperDARN radars collected between January 2011 and December 2014 have been used to compile a database of SAPS events for statistical analysis. We examine the dependence of SAPS velocity magnitude and direction on geomagnetic activity and magnetic local time. The lowest speed limit and electric fields observed during SAPS are discussed and histograms of SAPS velocities for different Dst bins and MLAT-MLT locations are presented. We find significant differences in SAPS characteristics between periods of low and high geomagnetic activity, suggesting that SAPS are driven by different mechanisms during storm and non-storm conditions. To further explore this possibility, we have characterized the SAPS location and peak speed relative to the ionospheric trough specified by GPS Total Electron Content (TEC) data from the MIT Haystack Madrigal database. A particular emphasis is placed on identifying the extent to which the location, structure, and depth of the trough may play a controlling influence on SAPS speeds during storm and non-storm periods. The results are interpreted in terms of the current paradigm for active thermosphere-ionosphere feedback being an important component of SAPS physics.

  14. A Study of Current Driven Electrostatic Instability on the Auroral Zone

    Directory of Open Access Journals (Sweden)

    S. Y. Kim

    1986-12-01

    Full Text Available According to recent satellite observations, strong ion transverse acceleration to the magnetic field(ion conics has been known. The ion conics may be a result of electrostatic waves frequently observed on the auroral zone. Both linear and nonlinear theory of electrostatic instability driven by an electron current based on 1-dimenstional particle simulation experiment have been considered. From the results of simulation strong ion transverse acceleration has been shown.

  15. General method for calculating polarization electric fields produced by auroral Cowling mechanism and application examples

    Science.gov (United States)

    Vanhamäki, Heikki; Amm, Olaf; Fujii, Ryo; Yoshikawa, Aki; Ieda, Aki

    2013-04-01

    The Cowling mechanism is characterized by the generation of polarization space charges in the ionosphere in consequence of a partial or total blockage of FAC flowing between the ionosphere and the magnetosphere. Thus a secondary polarization electric field builds up in the ionosphere, which guarantees that the whole (primary + secondary) ionospheric current system is again in balance with the FAC. In the Earth's ionosphere the Cowling mechanism is long known to operate in the equatorial electrojet, and several studies indicate that it is important also in auroral current systems. We present a general method for calculate the secondary polarization electric field, when the ionospheric conductances, the primary (modeled) or the total (measured) electric field, and the Cowling efficiency are given. Here the Cowling efficiency is defined as the fraction of the divergent Hall current canceled by secondary Pedersen current. In contrast to previous studies, our approach is a general solution which is not limited to specific geometrical setups (like an auroral arc), and all parameters may have any kind of spatial dependence. The solution technique is based on spherical elementary current (vector) systems (SECS). This way, we avoid the need to specify explicit boundary conditions for the searched polarization electric field or its potential, which would be required if the problem was solved in a differential equation approach. Instead, we solve an algebraic matrix equation, for which the implicit boundary condition that the divergence of the polarization electric field vanishes outside our analysis area is sufficient. In order to illustrate the effect of Cowling mechanism on ionospheric current systems, we apply our method to two simple models of auroral electrodynamic situations: 1) a mesoscale strong conductance enhancement in the early morning sector within a relatively weak southward primary electric field, 2) a morning sector auroral arc with only a weak conductance

  16. Energetic electron precipitation in the aurora as determined by x-ray imaging

    International Nuclear Information System (INIS)

    Werden, S.C.

    1988-01-01

    This work examines two aspects of energetic-particle dynamics in the Earth's magnetosphere through the use of an x-ray imager flown from a stratospheric balloon in the auroral zone. The design and theory of this instrument is completely described, including the technique of image formation using an on-board microprocessor and a statistical analysis of the imaging process. Day-side energetic-electron precipitation is examined in the context of global energy dissipation during the substorm process. It is found that the relationship between events on the night side and the day side are considerably more complex that can be modeled with just a simple picture of drifting particles that induced instabilities, wave growth, and pitch-angle diffusion into the loss cone. The driving force for precipitation is probably not the presence of the energetic electrons (>30 keV) alone, but is influenced either by local effects or the less energetic component. The presence of small-scale structure, including gradients and complex motions in the precipitation region in the morning sector, suggests a local process influencing the rate of electron precipitation. The spatial and temporal evolution of a classic 5-15 second pulsating aurora during the post-breakup phase is also examined with the x-ray imager

  17. Ionosphere-thermosphere energy budgets for the ICME storms of March 2013 and 2015 estimated with GITM and observational proxies

    Science.gov (United States)

    Verkhoglyadova, O. P.; Meng, X.; Mannucci, A. J.; Mlynczak, M. G.; Hunt, L. A.; Lu, G.

    2017-09-01

    The ionosphere-thermosphere (IT) energy partitioning for the interplanetary coronal mass ejection (ICME) storms of 16-19 March 2013 and 2015 is estimated with the Global Ionosphere-Thermosphere Model (GITM), empirical models and proxies derived from in situ measurements. We focus on auroral heating, Joule heating, and thermospheric cooling. Solar wind data, F10.7, OVATION Prime model and the Weimer 2005 model are used to drive GITM from above. Thermospheric nitric oxide and carbon dioxide cooling emission powers and fluxes are estimated from TIMED/SABER measurements. Assimilative mapping of ionospheric electrodynamics (AMIE) estimations of hemispheric power and Joule heating are presented, based on data from global magnetometers, the AMPERE magnetic field data, SSUSI auroral images, and the SuperDARN radar network. Modeled Joule heating and auroral heating of the IT system are mostly controlled by external driving in the March 2013 and 2015 storms, while NO cooling persists into the storm recovery phase. The total heating in the model is about 1000 GW to 3000 GW. Additionally, we intercompare contributions in selected energy channels for five coronal mass ejection-type storms modeled with GITM. Modeled auroral heating shows reasonable agreement with AMIE hemispheric power and is higher than other observational proxies. Joule heating and infrared cooling are likely underestimated in GITM. We discuss challenges and discrepancies in estimating and global modeling of the IT energy partitioning, especially Joule heating, during geomagnetic storms.

  18. The first year of observations of Jupiter's magnetosphere from Juno's Jovian Auroral Distributions Experiment (JADE)

    Science.gov (United States)

    Valek, P. W.; Allegrini, F.; Angold, N. G.; Bagenal, F.; Bolton, S. J.; Chae, K.; Connerney, J. E. P.; Ebert, R. W.; Gladstone, R.; Kim, T. K. H.; Kurth, W. S.; Levin, S.; Louarn, P.; Loeffler, C. E.; Mauk, B.; McComas, D. J.; Pollock, C. J.; Reno, M. L.; Szalay, J. R.; Thomsen, M. F.; Weidner, S.; Wilson, R. J.

    2017-12-01

    Juno observations of the Jovian plasma environment are made by the Jovian Auroral Distributions Experiment (JADE) which consists of two nearly identical electron sensors - JADE-E - and an ion sensor - JADE-I. JADE-E measures the electron distribution in the range of 100 eV to 100 keV and uses electrostatic deflection to measure the full pitch angle distribution. JADE-I measures the composition separated energy per charge in the range of 10 eV / q to 46 keV / q. The large orbit - apojove 110 Rj, perijove 1.05 Rj - allows JADE to periodically cross through the magnetopause into the magnetosheath, transverse the outer, middle, and inner magnetosphere, and measures the plasma population down to the ionosphere. We present here in situ plasma observations of the Jovian magnetosphere and topside ionosphere made by the JADE instrument during the first year in orbit. Dawn-side crossings of the plasmapause have shown a general dearth of heavy ions except during some intervals at lower magnetic latitudes. Plasma disk crossings in the middle and inner magnetosphere show a mixture of heavy and light ions. During perijove crossings at high latitudes when Juno was connected to the Io torus, JADE-I observed heavy ions with energies consistent with a corotating pickup population. In the auroral regions the core of the electron energy distribution is generally from about 100 eV when on field lines that are connected to the inner plasmasheet, several keVs when connected to the outer plasmasheet, and tens of keVs when Juno is over the polar regions. JADE has observed upward electron beams and upward loss cones, both in the north and south auroral regions, and downward electron beams in the south. Some of the beams are of short duration ( 1 s) implying that the magnetosphere has a very fine spatial and/or temporal structure within the auroral regions. Joint observations with the Waves instrument have demonstrated that the observed loss cone distributions provide sufficient growth rates

  19. On the spectrum of the secondary auroral electrons

    International Nuclear Information System (INIS)

    Fung, S.F.; Hoffman, R.A.

    1988-01-01

    We present the results from a statistical study of the spectral characteristics of the (power law portion) secondary electrons associated with inverted-V electron precipitation events. A total of 106 inverted-V events observed at low altitudes ( - /sup γ/ with an averaged γ = 1.85. This spectral parameter is relatively insensitive to the variation of locations of the inverted-V events, but it depends on the primary beam parameters. We compare our results with the predictions and assess the applicabilities of the current theories on the generation of the low-energy auroral power law secondary electrons. Our analysis shows that collisional processes are the dominant source of the secondary electrons. copyright American Geophysical Union 1988

  20. Axi-symmetric models of auroral current systems in Jupiter's magnetosphere with predictions for the Juno mission

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2008-12-01

    Full Text Available We develop two related models of magnetosphere-ionosphere coupling in the jovian system by combining previous models defined at ionospheric heights with magnetospheric magnetic models that allow system parameters to be extended appropriately into the magnetosphere. The key feature of the combined models is thus that they allow direct connection to be made between observations in the magnetosphere, particularly of the azimuthal field produced by the magnetosphere-ionosphere coupling currents and the plasma angular velocity, and the auroral response in the ionosphere. The two models are intended to reflect typical steady-state sub-corotation conditions in the jovian magnetosphere, and transient super-corotation produced by sudden major solar wind-induced compressions, respectively. The key simplification of the models is that of axi-symmetry of the field, flow, and currents about the magnetic axis, limiting their validity to radial distances within ~30 RJ of the planet, though the magnetic axis is appropriately tilted relative to the planetary spin axis and rotates with the planet. The first exploration of the jovian polar magnetosphere is planned to be undertaken in 2016–2017 during the NASA New Frontiers Juno mission, with observations of the polar field, plasma, and UV emissions as a major goal. Evaluation of the models along Juno planning orbits thus produces predictive results that may aid in science mission planning. It is shown in particular that the low-altitude near-periapsis polar passes will generally occur underneath the corresponding auroral acceleration regions, thus allowing brief examination of the auroral primaries over intervals of ~1–3 min for the main oval and ~10 s for narrower polar arc structures, while the "lagging" field deflections produced by the auroral current systems on these passes will be ~0.1°, associated with azimuthal fields above the ionosphere of a few hundred nT.

  1. High spatial and spectral resolution measurements of Jupiter's auroral regions using Gemini-North-TEXES

    Science.gov (United States)

    Sinclair, J. A.; Orton, G. S.; Greathouse, T. K.; Lacy, J.; Giles, R.; Fletcher, L. N.; Vogt, M.; Irwin, P. G.

    2017-12-01

    Jupiter exhibits auroral emission at a multitude of wavelengths. Auroral emission at X-ray, ultraviolet and near-infrared wavelengths demonstrate the precipitation of ion and electrons in Jupiter's upper atmosphere, at altitudes exceeding 250 km above the 1-bar level. Enhanced mid-infrared emission of CH4, C2H2, C2H4 and further hydrocarbons is also observed coincident with Jupiter's auroral regions. Retrieval analyses of infrared spectra from IRTF-TEXES (Texas Echelon Cross Echelle Spectrograph on NASA's Infrared Telescope Facility) indicate strong heating at the 1-mbar level and evidence of ion-neutral chemistry, which enriches the abundances of unsaturated hydrocarbons (Sinclair et al., 2017b, doi:10.1002/2017GL073529, Sinclair et al., 2017c (under review)). The extent to which these phenomena in the stratosphere are correlated and coupled physically with the shorter-wavelength auroral emission originating from higher altitudes has been a challenge due to the limited spatial resolution available on the IRTF. Smaller-scale features observed in the near-infrared and ultraviolet emission, such as the main `oval', transient `swirls' and dusk-active regions within the main oval (e.g. Stallard et al., 2014, doi:10.1016/j/Icarus.2015.12.044, Nichols et al., 2017, doi: 10.1002/2017GL073029) are potentially being blurred in the mid-infrared by the diffraction-limited resolution (0.7") of IRTF's 3-metre primary aperture. However, on March 17-19th 2017, we obtained spectral measurements of H2 S(1), CH4, C2H2, C2H4 and C2H6 emission of Jupiter's high latitudes using TEXES on Gemini-North, which has a 8-metre primary aperture. This rare opportunity combines the superior spectral resolving power of TEXES and the high spatial resolution provided by Gemini-North's 8-metre aperture. We will perform a retrieval analyses to determine the 3D distributions of temperature, C2H2, C2H4 and C2H6. The morphology will be compared with near-contemporaneous measurements of H3+ emission from

  2. EISCAT observations of plasma patches at sub-auroral cusp latitudes

    Directory of Open Access Journals (Sweden)

    J. Moen

    2006-09-01

    Full Text Available A sequence of 3 patches of high-density (1012 m−3 cold plasma on a horizontal scale-size of 300–700 km was observed near magnetic noon by the EISCAT VHF radar above Svalbard on 17 December 2001. The patches followed a trajectory towards the cusp inflow region. The combination of radar and all-sky observations demonstrates that the patches must have been segmented equatorward of the cusp/cleft auroral display, and hence their properties had not yet been influenced by cusp particle showers and electrodynamics on open flux tubes. The last patch in the sequence was intersected by radio tomography observations, and was found to be located adjacent to a broader region of the same high electron density further south. The patches occurred under moderately active conditions (Kp=3 and the total electron content (TEC of the high-density plasma was 45 TEC units. The train of patches appeared as a segmentation of the tongue of ionization. The sequence of patches occurred in association with a sequence of flow bursts in the dusk cell return flow. It is proposed that reconnection driven pulsed convection is able to create sub-auroral patches in the region where high density mid-latitude plasma is diverted poleward toward the cusp. It is the downward Birkeland current sheet located at the equatorward boundary of the flow disturbance that represents the actual cutting mechanism.

  3. EISCAT observations of plasma patches at sub-auroral cusp latitudes

    Directory of Open Access Journals (Sweden)

    J. Moen

    2006-09-01

    Full Text Available A sequence of 3 patches of high-density (1012 m−3 cold plasma on a horizontal scale-size of 300–700 km was observed near magnetic noon by the EISCAT VHF radar above Svalbard on 17 December 2001. The patches followed a trajectory towards the cusp inflow region. The combination of radar and all-sky observations demonstrates that the patches must have been segmented equatorward of the cusp/cleft auroral display, and hence their properties had not yet been influenced by cusp particle showers and electrodynamics on open flux tubes. The last patch in the sequence was intersected by radio tomography observations, and was found to be located adjacent to a broader region of the same high electron density further south. The patches occurred under moderately active conditions (Kp=3 and the total electron content (TEC of the high-density plasma was 45 TEC units. The train of patches appeared as a segmentation of the tongue of ionization. The sequence of patches occurred in association with a sequence of flow bursts in the dusk cell return flow. It is proposed that reconnection driven pulsed convection is able to create sub-auroral patches in the region where high density mid-latitude plasma is diverted poleward toward the cusp. It is the downward Birkeland current sheet located at the equatorward boundary of the flow disturbance that represents the actual cutting mechanism.

  4. Global error minimization in image mosaicing using graph connectivity and its applications in microscopy

    Directory of Open Access Journals (Sweden)

    Parmeshwar Khurd

    2011-01-01

    Full Text Available Several applications such as multiprojector displays and microscopy require the mosaicing of images (tiles acquired by a camera as it traverses an unknown trajectory in 3D space. A homography relates the image coordinates of a point in each tile to those of a reference tile provided the 3D scene is planar. Our approach in such applications is to first perform pairwise alignment of the tiles that have imaged common regions in order to recover a homography relating the tile pair. We then find the global set of homographies relating each individual tile to a reference tile such that the homographies relating all tile pairs are kept as consistent as possible. Using these global homographies, one can generate a mosaic of the entire scene. We derive a general analytical solution for the global homographies by representing the pair-wise homographies on a connectivity graph. Our solution can accommodate imprecise prior information regarding the global homographies whenever such information is available. We also derive equations for the special case of translation estimation of an X-Y microscopy stage used in histology imaging and present examples of stitched microscopy slices of specimens obtained after radical prostatectomy or prostate biopsy. In addition, we demonstrate the superiority of our approach over tree-structured approaches for global error minimization.

  5. Infrared and visible images registration with adaptable local-global feature integration for rail inspection

    Science.gov (United States)

    Tang, Chaoqing; Tian, Gui Yun; Chen, Xiaotian; Wu, Jianbo; Li, Kongjing; Meng, Hongying

    2017-12-01

    Active thermography provides infrared images that contain sub-surface defect information, while visible images only reveal surface information. Mapping infrared information to visible images offers more comprehensive visualization for decision-making in rail inspection. However, the common information for registration is limited due to different modalities in both local and global level. For example, rail track which has low temperature contrast reveals rich details in visible images, but turns blurry in the infrared counterparts. This paper proposes a registration algorithm called Edge-Guided Speeded-Up-Robust-Features (EG-SURF) to address this issue. Rather than sequentially integrating local and global information in matching stage which suffered from buckets effect, this algorithm adaptively integrates local and global information into a descriptor to gather more common information before matching. This adaptability consists of two facets, an adaptable weighting factor between local and global information, and an adaptable main direction accuracy. The local information is extracted using SURF while the global information is represented by shape context from edges. Meanwhile, in shape context generation process, edges are weighted according to local scale and decomposed into bins using a vector decomposition manner to provide more accurate descriptor. The proposed algorithm is qualitatively and quantitatively validated using eddy current pulsed thermography scene in the experiments. In comparison with other algorithms, better performance has been achieved.

  6. Signatures of the high-altitude polar cusp and dayside auroral regions as seen by the Viking electric field experiment

    International Nuclear Information System (INIS)

    Marklund, G.T.; Blomberg, L.G.; Faelthammar, C.G.; Erlandson, R.E.; Potemra, T.A.

    1990-01-01

    Electric field and satellite potential observations along 42 Viking orbits in the high-altitude (2R E ) polar cusp and dayside auroral region have been examined. Within the cusp the plasma density usually reaches a maximum, and it is typically very homogeneous, in contrast to the irregular and lower density in the cleft and dayside auroral regions. The maxima in the plasma density are sometimes anticorrelated with the magnetic field strength, indicating a diamagnetic effect. The entire cusp and dayside auroral regions are characterized by irregular and burstlike electric fields, comprising field reversals on various scales (up to 3 min or 500 km), the larger scales, however, being rare in the cusp. Another common feature in these regions is the high correlation between mutually orthogonal components of the electric and magnetic fields, both for large-scale variations across spatial structures and for wave and pulsations in the ULF frequency range. The electric field signatures in the cusp (in the 1100-1300 MLT sector) are, however, characteristically different from the cleft and oval field signatures in that the electric field is usually less intense and less structured and not correlated with the substorm activity level

  7. Estimating perception of scene layout properties from global image features.

    Science.gov (United States)

    Ross, Michael G; Oliva, Aude

    2010-01-08

    The relationship between image features and scene structure is central to the study of human visual perception and computer vision, but many of the specifics of real-world layout perception remain unknown. We do not know which image features are relevant to perceiving layout properties, or whether those features provide the same information for every type of image. Furthermore, we do not know the spatial resolutions required for perceiving different properties. This paper describes an experiment and a computational model that provides new insights on these issues. Humans perceive the global spatial layout properties such as dominant depth, openness, and perspective, from a single image. This work describes an algorithm that reliably predicts human layout judgments. This model's predictions are general, not specific to the observers it trained on. Analysis reveals that the optimal spatial resolutions for determining layout vary with the content of the space and the property being estimated. Openness is best estimated at high resolution, depth is best estimated at medium resolution, and perspective is best estimated at low resolution. Given the reliability and simplicity of estimating the global layout of real-world environments, this model could help resolve perceptual ambiguities encountered by more detailed scene reconstruction schemas.

  8. l0 Sparsity for Image Denoising with Local and Global Priors

    Directory of Open Access Journals (Sweden)

    Xiaoni Gao

    2015-01-01

    Full Text Available We propose a l0 sparsity based approach to remove additive white Gaussian noise from a given image. To achieve this goal, we combine the local prior and global prior together to recover the noise-free values of pixels. The local prior depends on the neighborhood relationships of a search window to help maintain edges and smoothness. The global prior is generated from a hierarchical l0 sparse representation to help eliminate the redundant information and preserve the global consistency. In addition, to make the correlations between pixels more meaningful, we adopt Principle Component Analysis to measure the similarities, which can be both propitious to reduce the computational complexity and improve the accuracies. Experiments on the benchmark image set show that the proposed approach can achieve superior performance to the state-of-the-art approaches both in accuracy and perception in removing the zero-mean additive white Gaussian noise.

  9. Radar probing of the auroral plasma

    International Nuclear Information System (INIS)

    Brekke, A.

    1977-01-01

    The European Incoherent Scatter Radar in the Auroral Zone (EISCAT) is an intereuropean organization planning to install an incoherent scatter radar system in Northern Scandinavia. It is supported by Finland, France, Norway, Great Britain, Sweden and West Germany, and its headquarters is in Kiruna, Sweden. The radar is planned to be operating in 1979. In order to introduce students and young scientists to the incoherent scatter radar technique, a summer school was held in Tromsoe, from 5th to 13th June 1975. In these proceedings an introduction to the basic theory of fluctuations in a plasma is given. Some of the present incoherent scatter radars now in use are presented and special considerations with respect to the planned EISACT facility are discussed. Reviews of some recent results and scientific problems relevant to EISCAT are also presented and finally a presentation of some observational techniques complementary to incoherent scatter radars is included. (Ed.)

  10. Rocket measurements of X-rays and energetic electrons through an auroral arc

    International Nuclear Information System (INIS)

    Aarsnes, K.; Stadsnes, J.; Soeraas, F.

    1976-01-01

    Preliminary results from rocket measurements on auroral electron precipitation are discussed as far as the spatial structure and time and space variations in the primary electron fluxes are concerned. The analysis demonstrates that there was a good overall correspondence between the X-ray and electron data. By using a well collimated X-ray detector on a spinning rocket, it was possible to get additional information on the overall electron precipitation pattern

  11. Quasilinear simulation of auroral kilometric radiation by a relativistic Fokker-Planck code

    International Nuclear Information System (INIS)

    Matsuda, Y.

    1991-01-01

    An intense terrestrial radiation called the auroral kilometric radiation (AKR) is believed to be generated by cyclotron maser instability. We study a quasilinear evolution of this instability by means of a two-dimensional relativistic Fokker-Planck code which treats waves and distributions self-consistently, including radiation loss and electron source and sink. We compare the distributions and wave amplitude with spacecraft observations to elucidate physical processes involved. 3 refs., 1 fig

  12. Auroral particle acceleration by Alfvén waves and ionospheric feedback

    Science.gov (United States)

    Lysak, R. L.; Song, Y.

    2003-12-01

    Recent observations, particularly by Polar and FAST, have indicated that Alfvén waves can directly accelerate auroral electrons. A model for this interaction has been developed that can describe the linear modification of the Alfvén wave profile by the kinetic effects of electrons, including acceleration and heating of the electron population. While many of the heated electrons are accelerated upward into the magnetosphere by the mirror force, a significant fraction of the input Poynting flux due to Alfvén waves can be converted into precipitating electron energy flux. An important aspect of this particle precipitation is that the hot electrons do not arrive at the ionosphere in phase with the field-aligned current, which at ionospheric altitudes is largely carried by cold electrons. This phase shift has direct implications for models of ionospheric feedback that usually assume that the precipitating flux is in phase with the field-aligned current. The effects of quasi-static electric fields can be included in the model, which will introduce new particle populations such as the effects of secondary electrons of ionospheric origin that are reflected by the parallel potential drop. The possible role of Alfvén waves trapped in the ionospheric resonator in creating small-scale auroral structures through feedback and nonlinear interactions will be discussed.

  13. Global Pattern of The Evolutions of the Sub-Auroral Polarization Streams

    Science.gov (United States)

    He, F.; Zhang, X.; Wang, W.; Wan, W.

    2017-12-01

    Due to the spatial and temporal limitations of the in-situ measurements from the low altitude polar orbiting satellites or the ionospheric scan by incoherent scatter radars, the global configuration and evolution of SAPS are still not very clear. Here, we present multi-satellite observations of the evolution of subauroral polarization streams (SAPS) during the main phase of a server geomagnetic storm occurred on 31 March 2001. DMSP F12 to F15 observations indicate that the SAPS were first generated in the dusk sector at the beginning of the main phase. Then the SAPS channel expanded towards the midnight and moved to lower latitudes as the main phase went on. The peak velocity, latitudinal width, latitudinal alignment, and longitudinal span of the SAPS channels were highly dynamic during the storm main phase. The global evolution of the SAPS corresponds well with that of the region-2 field-aligned currents, which are mainly determined by the azimuthal pressure gradient of the ring current. Further studies on 37 storms and 30 isolated substorms indicate that the lifetime of the SAPS channel was proportional to the period of time for southward interplanetary magnetic field (IMF). The SAPS channel disappeared after northward turning of the IMF. During the recovery phase, if the IMF kept northward, no SAPS channel was generated, if the IMF turned to southward again, however, SAPS channel will be generated again with lifetime proportional to the duration of the southward IMF. During isolated substorms, the SAPS channel was also controlled by IMF. The SAPS channel was generated after substorm onset and the peak drift velocity of the SAPS channel achieved its maximum during the recovery phase of the substorm. It is suggested that, SAPS channel were mainly controlled by IMF, more works should be done with observations or simulations of investigate the global patterns of the SAPS and the magnetosphere-ionosphere couplings.

  14. Global Seismic Imaging Based on Adjoint Tomography

    Science.gov (United States)

    Bozdag, E.; Lefebvre, M.; Lei, W.; Peter, D. B.; Smith, J. A.; Zhu, H.; Komatitsch, D.; Tromp, J.

    2013-12-01

    Our aim is to perform adjoint tomography at the scale of globe to image the entire planet. We have started elastic inversions with a global data set of 253 CMT earthquakes with moment magnitudes in the range 5.8 ≤ Mw ≤ 7 and used GSN stations as well as some local networks such as USArray, European stations, etc. Using an iterative pre-conditioned conjugate gradient scheme, we initially set the aim to obtain a global crustal and mantle model with confined transverse isotropy in the upper mantle. Global adjoint tomography has so far remained a challenge mainly due to computational limitations. Recent improvements in our 3D solvers (e.g., a GPU version) and access to high-performance computational centers (e.g., ORNL's Cray XK7 "Titan" system) now enable us to perform iterations with higher-resolution (T > 9 s) and longer-duration (200 min) simulations to accommodate high-frequency body waves and major-arc surface waves, respectively, which help improve data coverage. The remaining challenge is the heavy I/O traffic caused by the numerous files generated during the forward/adjoint simulations and the pre- and post-processing stages of our workflow. We improve the global adjoint tomography workflow by adopting the ADIOS file format for our seismic data as well as models, kernels, etc., to improve efficiency on high-performance clusters. Our ultimate aim is to use data from all available networks and earthquakes within the magnitude range of our interest (5.5 ≤ Mw ≤ 7) which requires a solid framework to manage big data in our global adjoint tomography workflow. We discuss the current status and future of global adjoint tomography based on our initial results as well as practical issues such as handling big data in inversions and on high-performance computing systems.

  15. Resonance scattering by auroral N2+: steady state theory and observations from Svalbard

    Directory of Open Access Journals (Sweden)

    O. Jokiaho

    2009-09-01

    Full Text Available Studies of auroral energy input at high latitudes often depend on observations of emissions from the first negative band of ionised nitrogen. However, these emissions are affected by solar resonance scattering, which makes photometric and spectrographic measurements difficult to interpret. This work is a statistical study from Longyearbyen, Svalbard, Norway, during the solar minimum between January and March 2007, providing a good coverage in shadow height position and precipitation conditions. The High Throughput Imaging Echelle Spectrograph (HiTIES measured three bands of N2+ 1N (0,1, (1,2 and (2,3, and one N2 2P band (0,3 in the magnetic zenith. The brightness ratios of the N2+ bands are compared with a theoretical treatment with excellent results. Balance equations for all important vibrational levels of the three lowest electronic states of the N2+ molecule are solved for steady-state, and the results combined with ion chemistry modelling. Brightnesses of the (0,1, (1,2 and (2,3 bands of N2+ 1N are calculated for a range of auroral electron energies, and different values of shadow heights. It is shown that in sunlit aurora, the brightness of the (0,1 band is enhanced, with the scattered contribution increasing with decreasing energy of precipitation (10-fold enhancements for energies of 100 eV. The higher vibrational bands are enhanced even more significantly. In sunlit aurora the observed 1N (1,2/(0,1 and (2,3/(0,1 ratios increase as a function of decreasing precipitation energy, as predicted by theory. In non-sunlit aurora the N2+ species have a constant proportionality to neutral N2. The ratio of 2P(0,3/1N(0,1 in the morning hours shows a pronounced decrease, indicating enhancement of N2+ 1N emission. Finally we study the relationship of all emissions and their ratios to rotational temperatures. A clear effect is observed on rotational development of the bands. It is possible that greatly enhanced rotational temperatures may be a

  16. Alfven waves in the auroral ionosphere: A numerical model compared with measurements

    International Nuclear Information System (INIS)

    Knudsen, D.J.; Kelley, M.C.; Vickrey, J.F.

    1992-01-01

    The authors solve a linear numerical model of Alfven waves reflecting from the high-latitude ionosphere, both to better understanding the role of the ionosphere in the magnetosphere/ionosphere coupling process and to compare model results with in situ measurements. They use the model to compute the frequency-dependent amplitude and phase relations between the meridional electric and the zonal magnetic fields due to Alfven waves. These relations are compared with measurements taken by an auroral sounding rocket flow in the morningside oval and by the HILAT satellite traversing the oval at local noon. The sounding rocket's trajectory was mostly parallel to the auroral oval, and is measured enhanced fluctuating field energy in regions of electron precipitation. The rocket-measured phase data are in excellent agreement with the Alfven wave model, and the relation between the modeled and the measured by HILAT are related by the height-integrated Pedersen conductivity Σ p , indicating that the measured field fluctuations were due mainly to structured field-aligned current systems. A reason for the relative lack of Alfven wave energy in the HILAT measurements could be the fact that the satellite traveled mostly perpendicular to the oval and therefore quickly traversed narrow regions of electron precipitation and associated wave activity

  17. Development and performance of a suprathermal electron spectrometer to study auroral precipitations

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Stange, Jason L.; Trevino, John A.; Webster, James [Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States); Grubbs, Guy [University of Texas at San Antonio, One UTSA circle, San Antonio, Texas 78249 (United States); Goddard Space Flight Center, National Aeronautics and Space Administration, 8800 Greenbelt Rd, Greenbelt, Maryland 20771 (United States); Michell, Robert G.; Samara, Marilia [Goddard Space Flight Center, National Aeronautics and Space Administration, 8800 Greenbelt Rd, Greenbelt, Maryland 20771 (United States); Jahn, Jörg-Micha [Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States); University of Texas at San Antonio, One UTSA circle, San Antonio, Texas 78249 (United States)

    2016-05-15

    The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3−20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.

  18. Development and performance of a suprathermal electron spectrometer to study auroral precipitations

    International Nuclear Information System (INIS)

    Ogasawara, Keiichi; Stange, Jason L.; Trevino, John A.; Webster, James; Grubbs, Guy; Michell, Robert G.; Samara, Marilia; Jahn, Jörg-Micha

    2016-01-01

    The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3−20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.

  19. Ionospheric feedback effects on the quasi-stationary coupling between LLBL and postnoon/evening discrete auroral arcs

    Directory of Open Access Journals (Sweden)

    M. M. Echim

    2008-05-01

    Full Text Available We discuss a model for the quasi-stationary coupling between magnetospheric sheared flows in the dusk sector and discrete auroral arcs, previously analyzed for the case of a uniform height-integrated Pedersen conductivity (ΣP. Here we introduce an ionospheric feedback as the variation of ΣP with the energy flux of precipitating magnetospheric electrons (εem. One key-component of the model is the kinetic description of the interface between the duskward LLBL and the plasma sheet that gives the profile of Φm, the magnetospheric electrostatic potential. The velocity shear in the dusk LLBL plays the role of a generator for the auroral circuit closing through Pedersen currents in the auroral ionosphere. The field-aligned current density, j||, and the energy flux of precipitating electrons are given by analytic functions of the field-aligned potential drop, ΔΦ, derived from standard kinetic models of the adiabatic motion of particles. The ionospheric electrostatic potential, Φi (and implicitely ΔΦ is determined from the current continuity equation in the ionosphere. We obtain values of ΔΦ of the order of kilovolt and of j|| of the order of tens of μA/m2 in thin regions of the order of several kilometers at 200 km altitude. The spatial scale is significantly smaller and the peak values of ΔΦ, j|| and εem are higher than in the case of a uniform ΣP. Effects on the postnoon/evening auroral arc electrodynamics due to variations of dusk LLBL and solar wind dynamic and kinetic pressure are discussed. In thin regions (of the order of kilometer embedding the maximum of ΔΦ we evidence a non-linear regime of the current-voltage relationship. The model predicts also that visible arcs form when the velocity shear in LLBL is above a threshold value depending on the generator and ionospheric plasma properties. Brighter arcs are obtained for increased velocity shear in the LLBL; their spatial scale remains virtually unmodified. The field

  20. Upwelling to Outflowing Oxygen Ions at Auroral Latitudes during Quiet Times: Exploiting a New Satellite Database

    Science.gov (United States)

    Redmon, Robert J.

    The mechanisms by which thermal O+ escapes from the top of the ionosphere and into the magnetosphere are not fully understood even with 30 years of active research. This thesis introduces a new database, builds a simulation framework around a thermospheric model and exploits these tools to gain new insights into the study of O+ ion outflows. A dynamic auroral boundary identification system is developed using Defense Meteorological Satellite Program (DMSP) spacecraft observations at 850 km to build a database characterizing the oxygen source region. This database resolves the ambiguity of the expansion and contraction of the auroral zone. Mining this new dataset, new understanding is revealed. We describe the statistical trajectory of the cleft ion fountain return flows over the polar cap as a function of activity and the orientation of the interplanetary magnetic field y-component. A substantial peak in upward moving O+ in the morning hours is discovered. Using published high altitude data we demonstrate that between 850 and 6000 km altitude, O+ is energized predominantly through transverse heating; and acceleration in this altitude region is relatively more important in the cusp than at midnight. We compare data with a thermospheric model to study the effects of solar irradiance, electron precipitation and neutral wind on the distribution of upward O+ at auroral latitudes. EUV irradiance is shown to play a dominant role in establishing a dawn-focused source population of upwelling O+ that is responsible for a pre-noon feature in escaping O+ fluxes. This feature has been corroborated by observations on platforms including the Dynamics Explorer 1 (DE-1), Polar, and Fast Auroral Snapshot SnapshoT (FAST) spacecraft. During quiet times our analysis shows that the neutral wind is more important than electron precipitation in establishing the dayside O+ upwelling distribution. Electron precipitation is found to play a relatively modest role in controlling dayside, and a

  1. Magnetotail phenomena and auroral acceleration

    International Nuclear Information System (INIS)

    Giles, M.J.

    1980-01-01

    It is suggested that localised electrostatic potential wells could be generated in the plasma sheet by large amplitude electrostatic ion cyclotron waves. It is shown from a consideration of a simple one dimensional model that such wells could possess a double structure of oppositely directed fields elongated in longitude. The possibility that the waves could evolve from a turbulent ion wave cascade driven by Earthward streaming protons is discussed and the magnitude of the potentials that could be established in this way is estimated using results for condensed state turbulent equilibria. The projections of these wells along the highly conducting geomagnetic field lines form potential valleys across the field lines in the high latitude auroral plasma. It is shown that these valleys would be of the scale and depth needed to establish electrostatic shocks which would be of sufficient intensity to accelerate electrons to energies comparable to those observed in 'inverted-V' events. Potential wells are formed predominantly in the midnight sector of the plasma sheet and propagate Earthwards. This implies a corresponding equatorwards motion of the valley which, typically, would have a velocity of a few hundred m s -1 . (author)

  2. Structure of the auroral precipitation region in the dawn sector: relationship to convection reversal boundaries and field-aligned currents

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    2001-05-01

    Full Text Available Abstract. Simultaneous DMSP F7 and Viking satellite measurements of the dawnside high-latitude auroral energy electron and ion precipitation show that the region of the low and middle altitude auroral precipitation consists of three characteristic plasma regimes. The recommendation of the IAGA Working Group IIF/III4 at the IAGA Assembly in Boulder, July 1995 to decouple the nomenclature of ionospheric populations from magnetospheric population is used for their notation. The most equatorial regime is the Diffuse Auroral Zone (DAZ of diffuse spatially unstructured precipitating electrons. It is generated by the plasma injection to the inner magnetosphere in the nightside and the subsequent drift plasma to the dawnside around the Earth. Precipitating particles have a hard spectrum with typical energies of electrons and ions of more than 3 keV. In the DAZ, the ion pitch-angle distribution is anisotropic, with the peak near 90°. The next part is the Auroral Oval (AO, a structured electron regime which closely resembles the poleward portion of the night-side auroral oval. The typical electron energy is several keV, and the ion energy is up to 10 keV. Ion distributions are pre-dominantly isotropic. In some cases, this plasma regime may be absent in the pre-noon sector. Poleward of the Auroral Oval, there is the Soft Small Scale Luminosity (SSSL regime. It is caused by structured electron and ion precipitation with typical electron energy of about 0.3 keV and ion energy of about 1 keV. The connection of these low-altitude regimes with plasma domains of the distant magnetosphere is discussed. For mapping of the plasma regimes to the equatorial plane of the magnetosphere, the empirical model by Tsyganenko (1995 and the conceptual model by Alexeev et al. (1996 are used. The DAZ is mapped along the magnetic field lines to the Remnant Layer (RL, which is located in the outer radiation belt region; the zone of structured electrons and isotropic ion

  3. Structure of the auroral precipitation region in the dawn sector: relationship to convection reversal boundaries and field-aligned currents

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    Full Text Available

    Abstract. Simultaneous DMSP F7 and Viking satellite measurements of the dawnside high-latitude auroral energy electron and ion precipitation show that the region of the low and middle altitude auroral precipitation consists of three characteristic plasma regimes. The recommendation of the IAGA Working Group IIF/III4 at the IAGA Assembly in Boulder, July 1995 to decouple the nomenclature of ionospheric populations from magnetospheric population is used for their notation. The most equatorial regime is the Diffuse Auroral Zone (DAZ of diffuse spatially unstructured precipitating electrons. It is generated by the plasma injection to the inner magnetosphere in the nightside and the subsequent drift plasma to the dawnside around the Earth. Precipitating particles have a hard spectrum with typical energies of electrons and ions of more than 3 keV. In the DAZ, the ion pitch-angle distribution is anisotropic, with the peak near 90°. The next part is the Auroral Oval (AO, a structured electron regime which closely resembles the poleward portion of the night-side auroral oval. The typical electron energy is several keV, and the ion energy is up to 10 keV. Ion distributions are pre-dominantly isotropic. In some cases, this plasma regime may be absent in the pre-noon sector. Poleward of the Auroral Oval, there is the Soft Small Scale Luminosity (SSSL regime. It is caused by structured electron and ion precipitation with typical electron energy of about 0.3 keV and ion energy of about 1 keV. The connection of these low-altitude regimes with plasma domains of the distant magnetosphere is discussed. For mapping of the plasma regimes to the equatorial plane of the magnetosphere, the empirical model by Tsyganenko (1995 and the conceptual model by Alexeev et al. (1996 are used. The DAZ is mapped along the magnetic field lines to the Remnant Layer (RL, which is located in the outer radiation belt region; the zone of structured

  4. Nonlinear interactions of electromagnetic waves with the auroral ionosphere

    Science.gov (United States)

    Wong, Alfred Y.

    1999-09-01

    The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.

  5. Regions of mid-level human visual cortex sensitive to the global coherence of local image patches.

    Science.gov (United States)

    Mannion, Damien J; Kersten, Daniel J; Olman, Cheryl A

    2014-08-01

    The global structural arrangement and spatial layout of the visual environment must be derived from the integration of local signals represented in the lower tiers of the visual system. This interaction between the spatially local and global properties of visual stimulation underlies many of our visual capacities, and how this is achieved in the brain is a central question for visual and cognitive neuroscience. Here, we examine the sensitivity of regions of the posterior human brain to the global coordination of spatially displaced naturalistic image patches. We presented observers with image patches in two circular apertures to the left and right of central fixation, with the patches drawn from either the same (coherent condition) or different (noncoherent condition) extended image. Using fMRI at 7T (n = 5), we find that global coherence affected signal amplitude in regions of dorsal mid-level cortex. Furthermore, we find that extensive regions of mid-level visual cortex contained information in their local activity pattern that could discriminate coherent and noncoherent stimuli. These findings indicate that the global coordination of local naturalistic image information has important consequences for the processing in human mid-level visual cortex.

  6. Snapshots of high-latitude electrodynamics using Viking and DMSP F7 observations

    International Nuclear Information System (INIS)

    Marklund, G.T.; Blomberg, L.G.; Stasiewicz, K.; Murphree, J.S.; Pottelette, R.; Zanetti, L.J.; Potemra, T.A.; Hardy, D.A.; Rich, F.J.

    1988-01-01

    Simultandeous observations by the Viking an the DMSP F7 satellites have been used as input to a new method to obtain snapshot pictures of the auroral electrodynamics. In particular, an ''instantaneous'' global equipotential (or convection) pattern is calculated from distributions of field-aligned current and conductivity which are qualitatively consistent with the Viking auroral imager data and quantitatively consistent with magnetic field and particle data from the two satellites. This convection pattern, which is of the normal two-cell type, with a weak dusk cell and a strong, elongated crescent-shape dawn cell (consistent with positive interplanetary magnetic field B/sub y/), agrees well with the Viking electric field data. The model and the observed potential profiles agree nicely along the entire Viking orbit except for two intervals above acceleration regions where deviations are to be expected (due to parallel electric fields). These regions are characterized by U-shaped potential minima, upward field-aligned currents, upgoing ion beams, and relatively intense auroral kilometric radiation. Thus, the model results are consistent with the Viking observations not only on a global scale but also on the scale of the auroral acceleration regions. The corresponding convection in the magnetosphere is obtained from a simple projection to the equatorial plane of the deduced two-cell convection pattern. From this location of the plasmapause is inferred. copyright American Geophysical Union 1988

  7. Rapid and coordinated processing of global motion images by local clusters of retinal ganglion cells.

    Science.gov (United States)

    Matsumoto, Akihiro; Tachibana, Masao

    2017-01-01

    Even when the body is stationary, the whole retinal image is always in motion by fixational eye movements and saccades that move the eye between fixation points. Accumulating evidence indicates that the brain is equipped with specific mechanisms for compensating for the global motion induced by these eye movements. However, it is not yet fully understood how the retina processes global motion images during eye movements. Here we show that global motion images evoke novel coordinated firing in retinal ganglion cells (GCs). We simultaneously recorded the firing of GCs in the goldfish isolated retina using a multi-electrode array, and classified each GC based on the temporal profile of its receptive field (RF). A moving target that accompanied the global motion (simulating a saccade following a period of fixational eye movements) modulated the RF properties and evoked synchronized and correlated firing among local clusters of the specific GCs. Our findings provide a novel concept for retinal information processing during eye movements.

  8. Electron precipitation in the morning sector of the auroral zone

    International Nuclear Information System (INIS)

    Jentsch, V.

    1976-01-01

    Auroral electron precipitation in the morning sector is assumed to be the result of an electromagnetic cyclotron instability of a particle distribution that evolves adiabatically as its constituent electrons drift eastward from a source near midnight. The adiabatic distribution is calculated by using Green's function in various magnetospheric field models, and the corresponding growth rates for whistler mode waves are calculated by the method of Kennel and Petschek (1966). The region of maximum calculated wave growth corresponds spatially and temporally to the region of maximum observed electron precipitation only when the magnetospheric electric field is included realistically in the model

  9. Auroral vortex street formed by the magnetosphere–ionosphere coupling instability

    Directory of Open Access Journals (Sweden)

    Y. Hiraki

    2015-02-01

    Full Text Available By performing three-dimensional magnetohydrodynamic simulations including Alfvén eigenmode perturbations most unstable to the ionospheric feedback effects, we examined the auroral vortex street that often appears just before substorm onset. We found that an initially placed arc splits, intensifies, and rapidly deforms into a vortex street. We also found that there is a critical convection electric field for growth of the Alfvén eigenmodes. The vortex street is shown to be a consequence of coupling between the magnetospheric Alfvén waves carrying field-aligned currents and the ionospheric density waves driven by Pedersen/Hall currents.

  10. Auroral vortex street formed by the magnetosphere-ionosphere coupling instability

    Science.gov (United States)

    Hiraki, Y.

    2015-02-01

    By performing three-dimensional magnetohydrodynamic simulations including Alfvén eigenmode perturbations most unstable to the ionospheric feedback effects, we examined the auroral vortex street that often appears just before substorm onset. We found that an initially placed arc splits, intensifies, and rapidly deforms into a vortex street. We also found that there is a critical convection electric field for growth of the Alfvén eigenmodes. The vortex street is shown to be a consequence of coupling between the magnetospheric Alfvén waves carrying field-aligned currents and the ionospheric density waves driven by Pedersen/Hall currents.

  11. Transverse ion energization and low-frequency plasma waves in the mid-altitude auroral zone: A case study

    International Nuclear Information System (INIS)

    Peterson, W.K.; Shelley, E.G.; Boardsen, S.A.; Gurnett, D.A.; Ledley, B.G.; Sugiura, M.; Moore, T.E.; Waite, J.H.

    1988-01-01

    The transport of ions from the ionosphere to the magnetosphere requires that ions acquire significant energy in directions both transverse and parallel to the magnetic field. There is a considerable body of experimental evidence that shows that transverse energization occurs over a wide range of altitudes on auroral field lines. Many recent analytical and simulation studies have addressed the microphysics involved in transverse ion energization. There are, however, remarkably few published high-resolution plasma and plasma wave observations obtained in the mid-altitude auroral region available to compare with the analytical and simulation studies. Several hundred hours of high-resolution plasma data obtained from the Dynamics Explorer 1 satellite have been surveyed. A wide variety of plasma environments that are difficult to simply characterize were found. We present here a comprehensive set of high-sensitivity, high-resolution plasma wave, ion, and magnetometer data obtained from an evening auroral zone crossing at r/R/sub E/∼3. The total density, thermal structure, and composition of the plasma in this representative interval varied rapidly, as did the character (mode) of low-frequency plasma waves observed. We did not find an unambiguous particle and wave signature of local transverse ion energization, but we did frequently find intervals where local transverse ion heating was consistent with the observations. We also found a downward flowing ion distribution that occurred simultaneously with a region of intense plasma wave emissions primarily below the lower hybrid resonance frequency. copyright American Geophysical Union 1988

  12. Research on Remote Sensing Image Template Processing Based on Global Subdivision Theory

    OpenAIRE

    Xiong Delan; Du Genyuan

    2013-01-01

    Aiming at the questions of vast data, complex operation, and time consuming processing for remote sensing image, subdivision template was proposed based on global subdivision theory, which can set up high level of abstraction and generalization for remote sensing image. The paper emphatically discussed the model and structure of subdivision template, and put forward some new ideas for remote sensing image template processing, key technology and quickly applied demonstration. The research has ...

  13. High resolution measurements and modeling of auroral hydrogen emission line profiles

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    Full Text Available Measurements in the visible wavelength range at high spectral resolution (1.3 Å have been made at Longyearbyen, Svalbard (15.8 E,78.2 N during an interval of intense proton precipitation. The shape and Doppler shift of hydrogen Balmer beta line profiles have been compared with model line profiles, using as input ion energy spectra from almost coincident passes of the FAST and DMSP spacecraft. The comparison shows that the simulation contains the important physical processes that produce the profiles, and confirms that measured changes in the shape and peak wave-length of the hydrogen profiles are the result of changing energy input. This combination of high resolution measurements with modeling provides a method of estimating the incoming energy and changes in flux of precipitating protons over Svalbard, for given energy and pitch-angle distributions. Whereas for electron precipitation, information on the incident particles is derived from brightness and brightness ratios which require at least two spectral windows, for proton precipitation the Doppler profile of resulting hydrogen emission is directly related to the energy and energy flux of the incident energetic protons and can be used to gather information about the source region. As well as the expected Doppler shift to shorter wavelengths, the measured profiles have a significant red-shifted component, the result of upward flowing emitting hydrogen atoms.

    Key words. Ionosphere (auroral ionosphere; particle precipitation – Magnetospheric physics (auroral phenomena

  14. High resolution measurements and modeling of auroral hydrogen emission line profiles

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    2003-07-01

    Full Text Available Measurements in the visible wavelength range at high spectral resolution (1.3 Å have been made at Longyearbyen, Svalbard (15.8 E,78.2 N during an interval of intense proton precipitation. The shape and Doppler shift of hydrogen Balmer beta line profiles have been compared with model line profiles, using as input ion energy spectra from almost coincident passes of the FAST and DMSP spacecraft. The comparison shows that the simulation contains the important physical processes that produce the profiles, and confirms that measured changes in the shape and peak wave-length of the hydrogen profiles are the result of changing energy input. This combination of high resolution measurements with modeling provides a method of estimating the incoming energy and changes in flux of precipitating protons over Svalbard, for given energy and pitch-angle distributions. Whereas for electron precipitation, information on the incident particles is derived from brightness and brightness ratios which require at least two spectral windows, for proton precipitation the Doppler profile of resulting hydrogen emission is directly related to the energy and energy flux of the incident energetic protons and can be used to gather information about the source region. As well as the expected Doppler shift to shorter wavelengths, the measured profiles have a significant red-shifted component, the result of upward flowing emitting hydrogen atoms.Key words. Ionosphere (auroral ionosphere; particle precipitation – Magnetospheric physics (auroral phenomena

  15. Coordinated measurements made by the Sondrestrom radar and the Polar Bear ultraviolet imager

    International Nuclear Information System (INIS)

    Robinson, R.; Vondrak, R.; Dabbs, T.; Vickrey, J.; Eastes, R.; Del Greco, F.; Huffman, R.; Meng, C.; Daniell, R.; Strickland, D.; Vondrak, R.

    1992-01-01

    In 1986 and 1987 the Sondrestrom incoherent scatter radar in Greenland was operated routinely in coordination with selected overpasses of the Polar Bear satellite. For these experiments the auroral ionospheric remote sensor on Polar Bear obtained images of auroral emissions in two far ultraviolet wavelength bands centered at approximately 136 and 160 nm and one visible band centered at 391.4 nm. Measurements at these three wavelengths were extracted from the images for comparison with the coincident radar measurements. Model calculations have shown that for Maxwellian incident electron distributions the ratio between the 136-nm luminosity and 391.4-nm luminosity can be used to estimate the mean energy of precipitating electrons. Once the mean energy is known, then either of the two emissions can be used to determine the total energy flux. This procedure is used to determine the properties of the incident electron distribution during three midnight sector auroral events over Sondre Stromfjord. The incident electron flux is then used to calculate the expected height profile of electron density which is compared with the simultaneous and coincident radar measurements. The results show that the derived profiles agree well with the measured profiles both in the peak electron density and the altitude of the peak. The accuracy with which the peak of the profile is predicted by this technique is such that many important ionospheric parameters can be reliably inferred from remote measurements, including, for example, the height-integrated electrical conductivities

  16. Comparison of Subset-Based Local and Finite Element-Based Global Digital Image Correlation

    KAUST Repository

    Pan, Bing; Wang, B.; Lubineau, Gilles; Moussawi, Ali

    2015-01-01

    Digital image correlation (DIC) techniques require an image matching algorithm to register the same physical points represented in different images. Subset-based local DIC and finite element-based (FE-based) global DIC are the two primary image matching methods that have been extensively investigated and regularly used in the field of experimental mechanics. Due to its straightforward implementation and high efficiency, subset-based local DIC has been used in almost all commercial DIC packages. However, it is argued by some researchers that FE-based global DIC offers better accuracy because of the enforced continuity between element nodes. We propose a detailed performance comparison between these different DIC algorithms both in terms of measurement accuracy and computational efficiency. Then, by measuring displacements of the same calculation points using the same calculation algorithms (e.g., correlation criterion, initial guess estimation, subpixel interpolation, optimization algorithm and convergence conditions) and identical calculation parameters (e.g., subset or element size), the performances of subset-based local DIC and two FE-based global DIC approaches are carefully compared in terms of measurement error and computational efficiency using both numerical tests and real experiments. A detailed examination of the experimental results reveals that, when subset (element) size is not very small and the local deformation within a subset (element) can be well approximated by the shape function used, standard subset-based local DIC approach not only provides better results in measured displacements, but also demonstrates much higher computation efficiency. However, several special merits of FE-based global DIC approaches are indicated.

  17. Comparison of Subset-Based Local and Finite Element-Based Global Digital Image Correlation

    KAUST Repository

    Pan, Bing

    2015-02-12

    Digital image correlation (DIC) techniques require an image matching algorithm to register the same physical points represented in different images. Subset-based local DIC and finite element-based (FE-based) global DIC are the two primary image matching methods that have been extensively investigated and regularly used in the field of experimental mechanics. Due to its straightforward implementation and high efficiency, subset-based local DIC has been used in almost all commercial DIC packages. However, it is argued by some researchers that FE-based global DIC offers better accuracy because of the enforced continuity between element nodes. We propose a detailed performance comparison between these different DIC algorithms both in terms of measurement accuracy and computational efficiency. Then, by measuring displacements of the same calculation points using the same calculation algorithms (e.g., correlation criterion, initial guess estimation, subpixel interpolation, optimization algorithm and convergence conditions) and identical calculation parameters (e.g., subset or element size), the performances of subset-based local DIC and two FE-based global DIC approaches are carefully compared in terms of measurement error and computational efficiency using both numerical tests and real experiments. A detailed examination of the experimental results reveals that, when subset (element) size is not very small and the local deformation within a subset (element) can be well approximated by the shape function used, standard subset-based local DIC approach not only provides better results in measured displacements, but also demonstrates much higher computation efficiency. However, several special merits of FE-based global DIC approaches are indicated.

  18. Auroral electrojets and boundaries of plasma domains in the magnetosphere during magnetically disturbed intervals

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    2006-09-01

    Full Text Available We investigate variations in the location and intensity of the auroral electrojets during magnetic storms and substorms using a numerical method for estimating the equivalent ionospheric currents based on data from meridian chains of magnetic observatories. Special attention was paid to the complex structure of the electrojets and their interrelationship with diffuse and discrete particle precipitation and field-aligned currents in the dusk sector. During magnetospheric substorms the eastward electrojet (EE location in the evening sector changes with local time from cusp latitudes (Φ~77° during early afternoon to latitudes of diffuse auroral precipitation (Φ~65° equatorward of the auroral oval before midnight. During the main phase of an intense magnetic storm the eastward currents in the noon-early evening sector adjoin to the cusp at Φ~65° and in the pre-midnight sector are located at subauroral latitude Φ~57°. The westward electrojet (WE is located along the auroral oval from evening through night to the morning sector and adjoins to the polar electrojet (PE located at cusp latitudes in the dayside sector. The integrated values of the eastward (westward equivalent ionospheric current during the intense substorm are ~0.5 MA (~1.5 MA, whereas they are 0.7 MA (3.0 MA during the storm main phase maximum. The latitudes of auroral particle precipitation in the dusk sector are identical with those of both electrojets. The EE in the evening sector is accompanied by particle precipitation mainly from the Alfvén layer but also from the near-Earth part of the central plasma sheet. In the lower-latitude part of the EE the field-aligned currents (FACs flow into the ionosphere (Region 2 FAC, and at its higher-latitude part the FACs flow out of the ionosphere (Region 1 FAC. During intense disturbances, in addition to the Region 2 FAC and the Region 1 FAC, a Region 3 FAC with the downward current was identified. This FAC is accompanied by diffuse

  19. Landsat: A global land-imaging mission

    Science.gov (United States)

    ,

    2012-01-01

    Across four decades since 1972, Landsat satellites have continuously acquired space-based images of the Earth's land surface, coastal shallows, and coral reefs. The Landsat Program, a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA), was established to routinely gather land imagery from space. NASA develops remote-sensing instruments and spacecraft, then launches and validates the performance of the instruments and satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground reception, data archiving, product generation, and distribution. The result of this program is a long-term record of natural and human induced changes on the global landscape.

  20. Examination of Cross-Scale Coupling During Auroral Events using RENU2 and ISINGLASS Sounding Rocket Data.

    Science.gov (United States)

    Kenward, D. R.; Lessard, M.; Lynch, K. A.; Hysell, D. L.; Hampton, D. L.; Michell, R.; Samara, M.; Varney, R. H.; Oksavik, K.; Clausen, L. B. N.; Hecht, J. H.; Clemmons, J. H.; Fritz, B.

    2017-12-01

    The RENU2 sounding rocket (launched from Andoya rocket range on December 13th, 2015) observed Poleward Moving Auroral Forms within the dayside cusp. The ISINGLASS rockets (launched from Poker Flat rocket range on February 22, 2017 and March 2, 2017) both observed aurora during a substorm event. Despite observing very different events, both campaigns witnessed a high degree of small scale structuring within the larger auroral boundary, including Alfvenic signatures. These observations suggest a method of coupling large-scale energy input to fine scale structures within aurorae. During RENU2, small (sub-km) scale drivers persist for long (10s of minutes) time scales and result in large scale ionospheric (thermal electron) and thermospheric response (neutral upwelling). ISINGLASS observations show small scale drivers, but with short (minute) time scales, with ionospheric response characterized by the flight's thermal electron instrument (ERPA). The comparison of the two flights provides an excellent opportunity to examine ionospheric and thermospheric response to small scale drivers over different integration times.

  1. Current carrying properties of double layers and low frequency auroral fluctuations

    International Nuclear Information System (INIS)

    Singh, N.; Schunk, R.W.

    1982-01-01

    Numerical simulations showed recurring interruption and recovery of electron and ion currents through double layers. The time period tau of the recurring phenomena is governed by the ion dynamics; for ions with a drift V/sub i/ entering the simulation plasma such that V/sub i/ V/sub ti/ ion-acoustic modes also appear in the electron- and ion-current fluctuations. The electron current fluctuations are governed by the ion current through the Langmuir criterion. It is suggested that some low frequency auroral fluctuations could possibly be explained by current fluctuations through double layers

  2. Stability of Alfvén eigenmodes in the vicinity of auroral arc

    Science.gov (United States)

    Hiraki, Yasutaka

    2013-08-01

    The purpose of this study is to give a theoretical suggestion to the essential question why east-west elongated auroral arc can keep its anisotropic structure for a long time. It could be related to the stability of east-westward traveling modes in the vicinity of arc, which may develop into wavy or spiral structures, whereas north-southward modes are related to splitting of arcs. Taking into account the arc-inducing field-aligned current and magnetic shears, we examine changes in the stability of Alfvén eigenmodes that are coupled to perpendicular modes in the presence of convection electric field. It is demonstrated that the poleward current shear suppresses growth of the westward mode in case of the westward convection electric field. Only the poleward mode is still unstable because of the properties of feedback shear waves. It is suggested that this tends to promote (poleward) arc splitting as often observed during quiet times. We further draw a diagram of the westward mode growth rate as a function of convection electric field and current shear, evaluating critical fields for instabilities of lower Alfvén harmonics. It is discovered that a switching phenomenon of fast-growing mode from fundamental to the first harmonic occurs for a high electric field regime. Our stability criterion is applied to some observed situations of auroral arc current system during pre-breakup active times.

  3. Position Estimation and Local Mapping Using Omnidirectional Images and Global Appearance Descriptors

    Directory of Open Access Journals (Sweden)

    Yerai Berenguer

    2015-10-01

    Full Text Available This work presents some methods to create local maps and to estimate the position of a mobile robot, using the global appearance of omnidirectional images. We use a robot that carries an omnidirectional vision system on it. Every omnidirectional image acquired by the robot is described only with one global appearance descriptor, based on the Radon transform. In the work presented in this paper, two different possibilities have been considered. In the first one, we assume the existence of a map previously built composed of omnidirectional images that have been captured from previously-known positions. The purpose in this case consists of estimating the nearest position of the map to the current position of the robot, making use of the visual information acquired by the robot from its current (unknown position. In the second one, we assume that we have a model of the environment composed of omnidirectional images, but with no information about the location of where the images were acquired. The purpose in this case consists of building a local map and estimating the position of the robot within this map. Both methods are tested with different databases (including virtual and real images taking into consideration the changes of the position of different objects in the environment, different lighting conditions and occlusions. The results show the effectiveness and the robustness of both methods.

  4. How severe space weather can disrupt global supply chains

    Science.gov (United States)

    Schulte in den Bäumen, H.; Moran, D.; Lenzen, M.; Cairns, I.; Steenge, A.

    2014-10-01

    Coronal mass ejections (CMEs) strong enough to create electromagnetic effects at latitudes below the auroral oval are frequent events that could soon have substantial impacts on electrical grids. Modern society's heavy reliance on these domestic and international networks increases our susceptibility to such a severe space-weather event. Using a new high-resolution model of the global economy, we simulate the economic impact of strong CMEs for three different planetary orientations. We account for the economic impacts within the countries directly affected, as well as the post-disaster economic shock in partner economies linked by international trade. For a 1989 Quebec-like event, the global economic impacts would range from USD 2.4 to 3.4 trillion over a year. Of this total economic shock, about 50% would be felt in countries outside the zone of direct impact, leading to a loss in global Gross Domestic Product (GDP) of 3.9 to 5.6%. The global economic damage is of the same order as wars, extreme financial crisis and estimated for future climate change.

  5. Global effect of auroral particle and Joule heating in the undisturbed thermosphere

    Science.gov (United States)

    Hinton, B. B.

    1978-01-01

    From the compositional variations observed with the neutral atmosphere composition experiment on OGO 6 and a simplified model of thermospheric dynamics, global average values of non-EUV heating are deduced. These are 0.19-0.25 mW/sq m for quiet days and 0.44-0.58 mW/sq m for ordinary days.

  6. Auroral Current and Electrodynamics Structure (ACES) Observations of Ionospheric Feedback in the Alfven Resonator

    Science.gov (United States)

    Cohen, Ian J.; Lessard, Marc; Lund, Eric J.; Bounds, Scott R.; Kletzing, Craig; Kaeppler, Stephen R.; Sigsbee, Kristine M.; Streltsov, Anatoly V.; Labelle, James W.; Dombrowski, Micah P.; hide

    2011-01-01

    In 2009, the Auroral Current and Electrodynamics Structure (ACES) High and Low sounding rockets were launched from the Poker Flat Rocket Range (PFRR) in Alaska, with the science objective of gathering in-situ data to quantify current closure in a discrete auroral arc. As ACES High crossed through the return current of an arc (that was monitored using an all sky camera from the ground at Fort Yukon), its instruments recorded clear Alfv nic signatures both poleward and equatorward of the return current region, but not within the main region of the return current itself. These data provide an excellent opportunity to study ionospheric feedback and how it interacts with the Alfv n resonator. We compare the observations with predictions and new results from a model of ionospheric feedback in the ionospheric Alfv n resonator (IAR) and report the significance and impact of these new data for the Magnetosphere-Ionosphere Coupling in the Alfv n Resonator (MICA) rocket mission to launch from PFRR this winter. MICA s primary science objectives specifically focus on better understanding the small-scale structure that the model predicts should exist within the return current region.

  7. On geomagnetically-induced currents in the Finnish 400 kV power system by an auroral electrojet current

    International Nuclear Information System (INIS)

    Pirjola, R.; Viljanen, A.

    1989-01-01

    The auroral electrojet current flowing in the ionosphere is modeled by a horizontal east-west line current of infinite length. The earth is described by a simple two-layer model. An expression for the earth-surface electric field, which is thus connected with a geomagnetic disturbance in and near the auroral zone, is given. This electric field is considered as external from the viewpoint of the Finnish 400 kV power system, and the resulting geomagnetically-induced currents (GICs) in the system are computed. In the north, i.e. near the electrojet, GICs may have values even in the order of hundreds of amperes. A comparison to GICs produced by an equivalent spatially-constant external electric field is demonstrated. Sometimes the location of the electrojet is further south. This possibility is studied by letting the line current have several different locations above the Finnish power grid

  8. Auroral nitric oxide concentration and infrared emission

    Science.gov (United States)

    Reidy, W. P.; Degges, T. C.; Hurd, A. G.; Stair, A. T., Jr.; Ulwick, J. C.

    1982-05-01

    Rocket-borne measurements of infrared auroral emission by nitric oxide are analyzed. Four rocket flights provided opportunities to measure 5.3- and 2.7-micron NO emission by means of infrared fixed band radiometers and CVF spectrometers, narrow band photometers, and incident energy spectra on various occasions. Analysis of infrared emission profiles and electron flux data indicates the NO density to be significantly enhanced with respect to midlatitude values. NO emission in the fundamental 5.3-micron band is attributed to resonance excitation by warm earth radiation, collisional excitation primarily by O atoms and chemiluminescence from the reaction of N with O2; with an energy efficiency of 0.015. The overtone band emission at 2.7 microns is accounted for by chemiluminescence produced with an energy efficiency of 0.0054. Total photon yield for the chemiluminescence reaction is estimated to range from 1.2 to 2.4 vibrational quanta per NO molecule.

  9. A detector for high frequency modulation in auroral particle fluxes

    Science.gov (United States)

    Spiger, R. J.; Oehme, D.; Loewenstein, R. F.; Murphree, J.; Anderson, H. R.; Anderson, R.

    1974-01-01

    A high time resolution electron detector has been developed for use in sounding rocket studies of the aurora. The detector is used to look for particle bunching in the range 50 kHz-10 MHz. The design uses an electron multiplier and an onboard frequency spectrum analyzer. By using the onboard analyzer, the data can be transmitted back to ground on a single 93-kHz voltage-controlled oscillator. The detector covers the 50 kHz-10 MHz range six times per second and detects modulation on the order of a new percent of the total electron flux. Spectra are presented for a flight over an auroral arc.

  10. Ionospheric feedback effects on the quasi-stationary coupling between LLBL and postnoon/evening discrete auroral arcs

    Directory of Open Access Journals (Sweden)

    M. M. Echim

    2008-05-01

    Full Text Available We discuss a model for the quasi-stationary coupling between magnetospheric sheared flows in the dusk sector and discrete auroral arcs, previously analyzed for the case of a uniform height-integrated Pedersen conductivity (ΣP. Here we introduce an ionospheric feedback as the variation of ΣP with the energy flux of precipitating magnetospheric electrons (εem. One key-component of the model is the kinetic description of the interface between the duskward LLBL and the plasma sheet that gives the profile of Φm, the magnetospheric electrostatic potential. The velocity shear in the dusk LLBL plays the role of a generator for the auroral circuit closing through Pedersen currents in the auroral ionosphere. The field-aligned current density, j||, and the energy flux of precipitating electrons are given by analytic functions of the field-aligned potential drop, ΔΦ, derived from standard kinetic models of the adiabatic motion of particles. The ionospheric electrostatic potential, Φi (and implicitely ΔΦ is determined from the current continuity equation in the ionosphere. We obtain values of ΔΦ of the order of kilovolt and of j|| of the order of tens of μA/m2 in thin regions of the order of several kilometers at 200 km altitude. The spatial scale is significantly smaller and the peak values of ΔΦ, j|| and εem are higher than in the case of a uniform ΣP. Effects on the postnoon/evening auroral arc electrodynamics due to variations of dusk LLBL and solar wind dynamic and kinetic pressure are discussed. In thin regions (of the order of kilometer embedding the maximum of ΔΦ we evidence a non-linear regime of the current-voltage relationship. The model predicts also that visible arcs form when the velocity shear in LLBL is above a threshold value depending on the generator and

  11. Remote consultation and diagnosis in medical imaging using a global PACS backbone network

    Science.gov (United States)

    Martinez, Ralph; Sutaria, Bijal N.; Kim, Jinman; Nam, Jiseung

    1993-10-01

    A Global PACS is a national network which interconnects several PACS networks at medical and hospital complexes using a national backbone network. A Global PACS environment enables new and beneficial operations between radiologists and physicians, when they are located in different geographical locations. One operation allows the radiologist to view the same image folder at both Local and Remote sites so that a diagnosis can be performed. The paper describes the user interface, database management, and network communication software which has been developed in the Computer Engineering Research Laboratory and Radiology Research Laboratory. Specifically, a design for a file management system in a distributed environment is presented. In the remote consultation and diagnosis operation, a set of images is requested from the database archive system and sent to the Local and Remote workstation sites on the Global PACS network. Viewing the same images, the radiologists use pointing overlay commands, or frames to point out features on the images. Each workstation transfers these frames, to the other workstation, so that an interactive session for diagnosis takes place. In this phase, we use fixed frames and variable size frames, used to outline an object. The data pockets for these frames traverses the national backbone in real-time. We accomplish this feature by using TCP/IP protocol sockets for communications. The remote consultation and diagnosis operation has been tested in real-time between the University Medical Center and the Bowman Gray School of Medicine at Wake Forest University, over the Internet. In this paper, we show the feasibility of the operation in a Global PACS environment. Future improvements to the system will include real-time voice and interactive compressed video scenarios.

  12. General solution for calculating polarization electric fields in the auroral ionosphere and application examples

    Science.gov (United States)

    Amm, O.; Fujii, R.; VanhamäKi, H.; Yoshikawa, A.; Ieda, A.

    2013-05-01

    We devise an approach to calculate the polarization electric field in the ionosphere, when the ionospheric conductances, the primary (modeled) or the total (measured) electric field, and the Cowling efficiency are given. In contrast to previous studies, our approach is a general solution which is not limited to specific geometrical setups, and all parameters may have any kind of spatial dependence. The solution technique is based on spherical elementary current (vector) systems (SECS). This way, we avoid the need to specify explicit boundary conditions for the searched polarization electric field of its potential which would be required if the problem was solved in a differential equation approach. Instead, we solve an algebraic matrix equation, and the implicit boundary condition that the divergence of the polarization electric field vanishes outside our analysis area is sufficient. In order to illustrate our theory, we then apply it to two simple models of auroral electrodynamic situations, the first being a mesoscale strong conductance enhancement in the early morning sector within a relatively weak southward primary electric field, and a morning sector auroral arc with only a weak conductance enhancement, but a large southward primary electric field at the poleward flank of the arc. While the significance of the polarization electric field for maximum Cowling efficiency is large for the first case, it is rather minor for the second one. Both models show that the polarization electric field effect may not only change the magnitude of the current systems but also their overall geometry. Furthermore, the polarization electric field may extend into regions where the primary electric field is small, thus even dominating the total electric field in these regions. For the first model case, the total Joule heating integrated over the analysis area decreases by a factor of about 4 for maximum Cowling efficiency as compared to the case of vanishing Cowling efficiency

  13. Distribution of auroral arcs during quiet geomagnetic conditions

    International Nuclear Information System (INIS)

    Lassen, K.; Danielsen, C.

    1989-01-01

    Auroral arcs observed from the Greenland all-sky camera network during quiet intervals (AE 500 eV) and a poleward, low-energy part. Previous studies have shown that the arc pattern is composed of two subpatterns, too, the polar cap are pattern and the oval arc pattern. It is demonstrated that the polar cap arc pattern is situated in the poleward, low-energy part of the precipitation belt, connected to the low-latitude boundary layer, whereas the oval arc pattern is in the equatorial higher energy belt, connected to the plasma sheet. The dividing line between the two arc patterns is associated with the boundary of trapped ≥ 40-keV electrons. The designation polar cap arc pattern is shown to be ambiguous, wherefore it is proposed to replace it by the term high-latitude arc pattern

  14. Auroral kilometric radiation source region observations from ISIS 1

    International Nuclear Information System (INIS)

    Benson, R.F.

    1981-01-01

    The ISIS 1 observations of the high-frequency portion of the auroral kilometric radiation (AKR) spectrum are considered, that is, from the minimum frequency encountered for the extraordinary mode cut-off (approximately 450 kHz) to the upper frequency cut-off (approximately 800 kHz). AKR is found to be generated in the extraordinary mode just above the local cutoff frequency and to emanate in a direction that is nearly perpendicular to the magnetic field. It occurs within local depletions of electron density, where the ratio of plasma frequency to cyclotron frequency is below 0.2. The density depletion is restricted to altitudes above approximately 2,000 km, and the upper AKR frequency limit corresponds to the extraordinary cutoff frequency at this altitude

  15. Self-adaptive isogeometric global digital image correlation and digital height correlation

    NARCIS (Netherlands)

    Hoefnagels, J. P M; Kleinendorst, S. M.; Ruybalid, A. P.; Verhoosel, C. V.; Geers, M. G D; Yoshida, S.; Lamberti, L.; Sciammarella, C.

    2017-01-01

    This work explores the full potential of isogeometric shape functions for global digital image correlation. To this end, a novel DIC and DHC (digital height correlation) methodology have been developed based on adaptive refinement of isogeometric shape functions. Non-Uniform Rational B-Spline

  16. Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R., E-mail: rrufai@csir.co.za [Council for Scientific and Industrial Research, Pretoria (South Africa); Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Bellville (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi, Mumbai-410218 (India)

    2015-10-15

    The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid, Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers region, whereas, in the case of Cairn's nonthermal distribution model for the hot electron species studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed, width, and pulse duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in the range of the Viking spacecraft measurements.

  17. Visualizing Space Weather: The Planeterrella Auroral Simulator as a Heliophysics Public Outreach Tool

    Science.gov (United States)

    Masongsong, E. V.; Lilensten, J.; Booth, M. J.; Suri, G.; Heflinger, T. G.; Angelopoulos, V.

    2014-12-01

    The NASA THEMIS and ARTEMIS satellite missions study "space weather," which describes the solar wind influence on Earth's protective magnetic shield, the magnetosphere. Space weather is important to study and predict because it can damage critical GPS and communications satellites, harm space travelers, and even disable our global electrical grid. The Planeterrella is an innovative heliophysics outreach demonstration, expanding public awareness of space weather by visualizing the sun-Earth connection up close and in-person. Using a glass vacuum chamber, two magnetized spheres and a 1kV power supply, the device can simulate plasma configurations of the solar corona, solar wind, Van Allen radiation belts, and auroral ovals, all of which are observable only by satellites. This "aurora in a bottle" is a modernized version of the original Terrella built by Kristian Birkeland in the 1890s to show that the aurora are electrical in nature. Adapted from plans by Lilensten et al. at CNRS-IPAG, the UCLA Planeterrella was completed in Nov. 2013, the second device of its kind in the U.S., and the centerpiece of the THEMIS/ARTEMIS mobile public outreach exhibit. In combination with captivating posters, 3D magnetic field models, dazzling aurora videos and magnetosphere animations, the Planeterrella has already introduced over 1200 people to the electrical link between our sun and the planets. Most visitors had seen solar flare images in the news, however the Planeterrella experience enhanced their appreciation of the dynamic solar wind and its effects on Earth's invisible magnetic field. Most importantly, visitors young and old realized that magnets are not just cool toys or only for powering hybrid car motors and MRIs, they are a fundamental aspect of ongoing life on Earth and are key to the formation and evolution of planets, moons, and stars, extending far beyond our galaxy to other planetary systems throughout the universe. Novel visualizations such as the Planeterrella can

  18. Ordinary mode auroral kilometric radiation fine structure observed by DE 1

    International Nuclear Information System (INIS)

    Benson, R.F.; Mellott, M.M.; Huff, R.L.; Gurnett, D.A.

    1988-01-01

    The fine structure observed with intense right-hand extraordinary (R-X) mode auroral kilometric radiation (AKR) has received major theoretical attention. Data from the Dynamics Explorer 1 plasma wave instrument indicate that left-hand ordinary (L-O) mode AKR posses similar fine structure. Several theories have been proposed to explain the fine structure of the R-X mode AKR. In order to account for the L-O mode fine structure, these theories will have to be modified to produce the L-O mode directly or will have to rely on mode conversion processes from the R-X to the L-O mode

  19. JIRAM, the image spectrometer in the near infrared on board the Juno mission to Jupiter.

    Science.gov (United States)

    Adriani, Alberto; Coradini, Angioletta; Filacchione, Gianrico; Lunine, Jonathan I; Bini, Alessandro; Pasqui, Claudio; Calamai, Luciano; Colosimo, Fedele; Dinelli, Bianca M; Grassi, Davide; Magni, Gianfranco; Moriconi, Maria L; Orosei, Roberto

    2008-06-01

    The Jovian InfraRed Auroral Mapper (JIRAM) has been accepted by NASA for inclusion in the New Frontiers mission "Juno," which will launch in August 2011. JIRAM will explore the dynamics and the chemistry of Jupiter's auroral regions by high-contrast imaging and spectroscopy. It will also analyze jovian hot spots to determine their vertical structure and infer possible mechanisms for their formation. JIRAM will sound the jovian meteorological layer to map moist convection and determine water abundance and other constituents at depths that correspond to several bars pressure. JIRAM is equipped with a single telescope that accommodates both an infrared camera and a spectrometer to facilitate a large observational flexibility in obtaining simultaneous images in the L and M bands with the spectral radiance over the central zone of the images. Moreover, JIRAM will be able to perform spectral imaging of the planet in the 2.0-5.0 microm interval of wavelengths with a spectral resolution better than 10 nm. Instrument design, modes, and observation strategy will be optimized for operations onboard a spinning satellite in polar orbit around Jupiter. The JIRAM heritage comes from Italian-made, visual-infrared imaging spectrometers dedicated to planetary exploration, such as VIMS-V on Cassini, VIRTIS on Rosetta and Venus Express, and VIR-MS on the Dawn mission.

  20. Solitary waves observed in the auroral zone: the Cluster multi-spacecraft perspective

    Directory of Open Access Journals (Sweden)

    J. S. Pickett

    2004-01-01

    Full Text Available We report on recent measurements of solitary waves made by the Wideband Plasma Wave Receiver located on each of the four Cluster spacecraft at 4.5-6.5RE (well above the auroral acceleration region as they cross field lines that map to the auroral zones. These solitary waves are observed in the Wideband data as isolated bipolar and tripolar waveforms. Examples of the two types of pulses are provided. The time durations of the majority of both types of solitary waves observed in this region range from about 0.3 up to 5ms. Their peak-to-peak amplitudes range from about 0.05 up to 20mV/m, with a few reaching up to almost 70mV/m. There is essentially no potential change across the bipolar pulses. There appears to be a small, measurable potential change, up to 0.5V, across the tripolar pulses, which is consistent with weak or hybrid double layers. A limited cross-spacecraft correlation study was carried out in order to identify the same solitary wave on more than one spacecraft. We found no convincing correlations of the bipolar solitary waves. In the two cases of possible correlation of the tripolar pulses, we found that the solitary waves are propagating at several hundred to a few thousand km/s and that they are possibly evolving (growing, decaying as they propagate from one spacecraft to the next. Further, they have a perpendicular (to the magnetic field width of 50km or greater and a parallel width of about 2-5km. We conclude, in general, however, that the Cluster spacecraft at separations along and perpendicular to the local magnetic field direction of tens of km and greater are too large to obtain positive correlations in this region. Looking at the macroscale of the auroral zone at 4.5-6.5RE, we find that the onsets of the broadband electrostatic noise associated with the solitary waves observed in the spectrograms of the WBD data are generally consistent with propagation of the solitary waves up the field lines (away from Earth, or with

  1. Seasonal evolution of S q current system at sub-auroral latitude

    Science.gov (United States)

    Vichare, Geeta; Rawat, Rahul; Hanchinal, A.; Sinha, A. K.; Dhar, A.; Pathan, B. M.

    2012-11-01

    The quiet-time (Σ K p ≤ 3) daily variations of the geomagnetic field at the Indian Antarctic station, Maitri (Geographic Coord.: 70.75°S, 11.73°E; Geomagnetic Coord.: 66.84°S, 56.29°E) during two consecutive years of a solar minimum are considered in order to investigate the characteristics of the solar quiet ( S q) current system. The present work reports the signatures of the south limb of the S q current loop of the southern hemisphere over a sub-auroral station. It is observed that the seasonal variation of the S q current strength over Maitri is strongest during the summer months and weakest during the winter months. In spite of the total darkness during the winter months, an S q pattern is identified at Maitri. The range of the horizontal field variation in the daily S q pattern during summer is one order higher than that during winter. An interesting feature regarding the phase of the local time variation in the seasonal pattern is found here. A sharp shift in the time of the peak S q current to later local times (> 1 hour per month) is observed during January-February and July-August, which may correspond to the transition from the complete presence, or absence, of sunlight to partial sunlight. The differences in the incoming solar UV radiation during such transitions can cause a sudden change in the local ionospheric conductivity pattern, and can also trigger some unusual thermo-tidal activity, that might be responsible for modifying the global S q pattern.

  2. Auroral lights created by high-power radiowaves in the ionospheric E region

    International Nuclear Information System (INIS)

    Kagan, L M

    2008-01-01

    Artificial auroral lights are optical emissions induced by high-power radiowaves in a manner similar to the creation of natural auroral lights due to precipitation of superthermal electrons. Here the Earth's atmosphere itself plays the role of a plasma laboratory. A high-power radio-transmitter creates superthermal electrons in situ due to radiowave interactions with the ionospheric plasma. Low-altitude (85-125 km) artificial aurora is a relatively rare phenomenon observed for the first time about 10 years ago. Analysis of available observations shows that its intensity and structure, as well as the very possibility of its generation at these altitudes, depend largely on the presence and features of so-called sporadic ionization, best known for its effect on navigation and communication. Thus, all other parameters unchanged, a 20 times increase in the height-extent of sporadic ionization clouds could under certain circumstances result in a 27-fold increase in the intensity of the low-altitude artificial aurora. Understanding the morphology and typical features of sporadic ionization clouds for a given location would allow proper planning of experimental campaigns and noticeably extend our knowledge of the atmosphere and its use for human needs. Equally important is that low-altitude artificial auroras give information about the horizontal structure and dynamics of E-region sporadic ionization, the airglow-source region, the energy of superthermal electrons and perhaps the local atmospheric temperature and water vapor content at 80-90 km

  3. Rotational temperature of N2+ (0,2 ions from spectrographic measurements used to infer the energy of precipitation in different auroral forms and compared with radar measurements

    Directory of Open Access Journals (Sweden)

    D. Lummerzheim

    2008-05-01

    Full Text Available High resolution spectral data are used to estimate neutral temperatures at auroral heights. The data are from the High Throughput Imaging Echelle Spectrograph (HiTIES which forms part of the Spectrographic Imaging Facility (SIF, located at Longyearbyen, Svalbard in Norway. The platform also contains photometers and a narrow angle auroral imager. Quantum molecular spectroscopy is used for modelling N2+ 1NG (0,2, which serves as a diagnostic tool for neutral temperature and emission height variations. The theoretical spectra are convolved with the instrument function and fitted to measured rotational transition lines as a function of temperature. Measurements were made in the magnetic zenith, and along a meridian slit centred on the magnetic zenith. In the results described, the high spectral resolution of the data (0.08 nm allows an error analysis to be performed more thoroughly than previous findings, with particular attention paid to the correct subtraction of background, and to precise wavelength calibration. Supporting measurements were made with the Svalbard Eiscat Radar (ESR. Estimates were made from both optical and radar observations of the average energy of precipitating electrons in different types of aurora. These provide confirmation that the spectral results are in agreement with the variations observed in radar profiles. In rayed aurora the neutral temperature was highest (800 K and the energy lowest (1 keV. In a bright curling arc, the temperature at the lower border was about 550 K, corresponding to energies of 2 keV. The radar and modelling results confirm that these average values are a lower limit for an estimation of the characteristic energy. In each event the energy distribution is clearly made up of more than one spectral shape. This work emphasises the need for high time resolution as well as high spectral resolution. The present work is the first to provide rotational temperatures using a method which pays particular

  4. Local search for optimal global map generation using mid-decadal landsat images

    Science.gov (United States)

    Khatib, L.; Gasch, J.; Morris, Robert; Covington, S.

    2007-01-01

    NASA and the US Geological Survey (USGS) are seeking to generate a map of the entire globe using Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor data from the "mid-decadal" period of 2004 through 2006. The global map is comprised of thousands of scene locations and, for each location, tens of different images of varying quality to chose from. Furthermore, it is desirable for images of adjacent scenes be close together in time of acquisition, to avoid obvious discontinuities due to seasonal changes. These characteristics make it desirable to formulate an automated solution to the problem of generating the complete map. This paper formulates a Global Map Generator problem as a Constraint Optimization Problem (GMG-COP) and describes an approach to solving it using local search. Preliminary results of running the algorithm on image data sets are summarized. The results suggest a significant improvement in map quality using constraint-based solutions. Copyright ?? 2007, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

  5. Pulsating aurora from electron scattering by chorus waves

    Science.gov (United States)

    Kasahara, S.; Miyoshi, Y.; Yokota, S.; Mitani, T.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Matsuoka, A.; Kazama, Y.; Frey, H. U.; Angelopoulos, V.; Kurita, S.; Keika, K.; Seki, K.; Shinohara, I.

    2018-02-01

    Auroral substorms, dynamic phenomena that occur in the upper atmosphere at night, are caused by global reconfiguration of the magnetosphere, which releases stored solar wind energy. These storms are characterized by auroral brightening from dusk to midnight, followed by violent motions of distinct auroral arcs that suddenly break up, and the subsequent emergence of diffuse, pulsating auroral patches at dawn. Pulsating aurorae, which are quasiperiodic, blinking patches of light tens to hundreds of kilometres across, appear at altitudes of about 100 kilometres in the high-latitude regions of both hemispheres, and multiple patches often cover the entire sky. This auroral pulsation, with periods of several to tens of seconds, is generated by the intermittent precipitation of energetic electrons (several to tens of kiloelectronvolts) arriving from the magnetosphere and colliding with the atoms and molecules of the upper atmosphere. A possible cause of this precipitation is the interaction between magnetospheric electrons and electromagnetic waves called whistler-mode chorus waves. However, no direct observational evidence of this interaction has been obtained so far. Here we report that energetic electrons are scattered by chorus waves, resulting in their precipitation. Our observations were made in March 2017 with a magnetospheric spacecraft equipped with a high-angular-resolution electron sensor and electromagnetic field instruments. The measured quasiperiodic precipitating electron flux was sufficiently intense to generate a pulsating aurora, which was indeed simultaneously observed by a ground auroral imager.

  6. Magnetosphere-ionosphere coupling during periods of extended high auroral activity: a case study

    Directory of Open Access Journals (Sweden)

    S. Liléo

    2008-03-01

    Full Text Available Results are presented from a case study of a plasma boundary crossing by the Cluster spacecraft during an extended period of high auroral activity. The boundary between the magnetotail lobe region of the Southern Hemisphere and the plasma sheet boundary layer, was characterized by intense electric and magnetic field variations, structured upward accelerated ion beams, narrow-scale large field-aligned Poynting fluxes directed upward away from the ionosphere, and a relatively sharp plasma density gradient. The observations are shown to be consistent with the concept of a multi-layered boundary with temporal and/or spatial variations in the different layers. H+ and O+ ion beams are seen to be accelerated upwards both by means of a field-aligned electric field and by magnetic pumping caused by large-amplitude and low-frequency electric field fluctuations. The peak energy of the ion beams may here be used as a diagnostic tool for the temporal evolution of the spatial structures, since the temporal changes occur on a time-scale shorter than the times-of-flight of the detected ion species. The case study also shows the boundary region to be mainly characterized by a coupling of the detected potential structures to the low ionosphere during the extended period of high auroral activity, as indicated by the intense field-aligned Poynting fluxes directed upward away from the ionosphere.

  7. One-Year Observations of Jupiter by the Jovian Infrared Auroral Mapper on Juno

    Science.gov (United States)

    Adriani, A.; Mura, A.; Bolton, S. J.; Connerney, J. E. P.; Levin, S.; Becker, H. N.; Bagenal, F.; Hansen, C. J.; Orton, G.; Gladstone, R.; Kurth, W. S.; Mauk, B.; Valek, P. W.

    2017-12-01

    The Jovian InfraRed Auroral Mapper (JIRAM) [1] on board the Juno [2,3] spacecraft, is equipped with an infrared camera and a spectrometer working in the spectral range 2-5 μm. JIRAM was built to study the infrared aurora of Jupiter as well as to map the planet's atmosphere in the 5 µm spectral region. The spectroscopic observations are used for studying clouds and measuring the abundance of some chemical species that have importance in the atmosphere's chemistry, microphysics and dynamics like water, ammonia and phosphine. During 2017 the instrument will operate during all 7 of Juno's Jupiter flybys. JIRAM has performed several observations of the polar regions of the planet addressing the aurora and the atmosphere. Unprecedented views of the aurora and the polar atmospheric structures have been obtained. We present a survey of the most significant observations that the instrument has performed during the current year. [1] Adriani A. et al., JIRAM, the Jovian Infrared Auroral Mapper. Space Sci. Rew., DOI 10.1007/s11214-014-0094-y, 2014. [2] Bolton S.J. et al., Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science DOI: 10.1126/science.aal2108, 2017. [3] Connerney J. E.P. et al., Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, DOI: 10.1126/science.aam5928, 2017.

  8. Generation of auroral kilometric and Z mode radiation by the cyclotron maser mechanism

    Science.gov (United States)

    Omidi, N.; Gurnett, D. A.; Wu, C. S.

    1984-01-01

    The relativistic Doppler-shifted cyclotron resonance condition for EM wave interactions with a plasma defines an ellipse in velocity space when the product of the index of refraction and cosine of the wave normal angle is less than or equal to unity, and defines a partial ellipse when the product is greater than unity. It is also noted that waves with frequencies greater than the gyrofrequency can only resonate with particles moving in the same direction along the magnetic field, while waves with lower frequencies than these resonate with particles moving in both directions along the magnetic field. It is found, in the case of auroral kilometric radiation, that both the upgoing and the downgoing electrons are unstable and can give rise to this radiation's growth. The magnitudes of the growth rates for both the upgoing and downgoing auroral kilometric radiation are comparable, and indicate that the path lengths needed to account for the observed intensities of this radiation are of the order of a few hundred km, which is probably too large. Growth rate calculations for the Z mode radiation show that, for wave frequencies just below the gyrofrequency and wave normal angles at or near 90 deg, the electron distribution is unstable and the growth rates are large enough to account for the observed intensities.

  9. Image analysis of dayside aurora

    International Nuclear Information System (INIS)

    Lybekk, B.

    1989-12-01

    Ground based observations from Svalbard of the midday aurora by all sky cameras and meridian scanning photometers showed the sporadic occurrence of discrete auroral forms within or near the stable cusp or cleft aurora. Some of these forms appeared near the equatorward boundary of the stable cusp/cleft aurora and moved westward and northward. The duration of the whole event was typically less than 10 minutes. Series of such events were observed when the cusp/cleft was located at low latitudes. Satellite measurements of magnetic field and ion drift components above auroral strucures gave detailed information of auroral electrodynamics in the cusp/cleft ionosphere. Satellite observations of the dayside oval at ∼ 09 MLT showed that auroral emissions can be separated in different latitudinal zones with corresponding structures in the particle precipitation. The ground based optical instruments at Svalbard measured the stationary cleft aurora produced by soft electrons and transient discrete arcs produced by precipitating keV electrons. 89 refs

  10. Influences on Adolescent African American Females' Global Self-Esteem: Body Image and Ethnic Identity

    Science.gov (United States)

    Turnage, Barbara F.

    2004-01-01

    This study of 105 senior high school Southern African American adolescent females examined the relationship between global self-esteem, appearance evaluation (body image), and ethnic identity. As predicted, the relationship between global self-esteem, appearance evaluation (r = 0.46, p less than 0.001), and ethnic identity (r = 40, p less than…

  11. Simultaneous observations of electron spectra in the auroral zone and near the equatorial plane by the DMSP-5D-F2 and GEOS 1 Satellites

    International Nuclear Information System (INIS)

    Townend, M.

    1984-07-01

    Simultaneous observations of differential particle number fluxes in the auroral region by the DMSP-5D-F2 satellite and in the conjugate equatorial plane by GEOS 1, are studied. It is found that spectra in the precipitation region and in the plasma sheet can be similar, both in shape and magnitude. The features of auroral electron precipitation can be determined by the particle characteristics in the conjugate equatorial plane, and dumping of particles occurs without any significant acceleration by electric fields parallel to the Earth's magnetic field. (authors)

  12. Fast globally optimal segmentation of cells in fluorescence microscopy images.

    Science.gov (United States)

    Bergeest, Jan-Philip; Rohr, Karl

    2011-01-01

    Accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression in high-throughput screening applications. We propose a new approach for segmenting cell nuclei which is based on active contours and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images of different cell types. We have also performed a quantitative comparison with previous segmentation approaches.

  13. Complete wave-vector directions of electromagnetic emissions: Application to INTERBALL-2 measurements in the nightside auroral zone

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Lefeuvre, F.; Parrot, M.; Rauch, J. L.

    2001-01-01

    Roč. 106, - (2001), s. 13,191-13,201 ISSN 0148-0227 R&D Projects: GA ČR GA205/01/1064 Institutional research plan: CEZ:AV0Z3042911 Keywords : auroral kilometric radiation * wave propagation * analysis techniques Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.609, year: 2001

  14. Experimental investigation of auroral generator regions with conjugate Cluster and FAST data

    Directory of Open Access Journals (Sweden)

    O. Marghitu

    2006-03-01

    Full Text Available Here and in the companion paper, Hamrin et al. (2006, we present experimental evidence for the crossing of auroral generator regions, based on conjugate Cluster and FAST data. To our knowledge, this is the first investigation that concentrates on the evaluation of the power density, E·J, in auroral generator regions, by using in-situ measurements. The Cluster data we discuss were collected within the Plasma Sheet Boundary Layer (PSBL, during a quiet magnetospheric interval, as judged from the geophysical indices, and several minutes before the onset of a small substorm, as indicated by the FAST data. Even at quiet times, the PSBL is an active location: electric fields are associated with plasma motion, caused by the dynamics of the plasma-sheet/lobe interface, while electrical currents are induced by pressure gradients. In the example we show, these ingredients do indeed sustain the conversion of mechanical energy into electromagnetic energy, as proved by the negative power density, E·J<0. The plasma characteristics in the vicinity of the generator regions indicate a complicated 3-D wavy structure of the plasma sheet boundary. Consistent with this structure, we suggest that at least part of the generated electromagnetic energy is carried away by Alfvén waves, to be dissipated in the ionosphere, near the polar cap boundary. Such a scenario is supported by the FAST data, which show energetic electron precipitation conjugated with the generator regions crossed by Cluster. A careful examination of the conjunction timing contributes to the validation of the generator signatures.

  15. The rise of global warming skepticism: exploring affective image associations in the United States over time.

    Science.gov (United States)

    Smith, Nicholas; Leiserowitz, Anthony

    2012-06-01

    This article explores how affective image associations to global warming have changed over time. Four nationally representative surveys of the American public were conducted between 2002 and 2010 to assess public global warming risk perceptions, policy preferences, and behavior. Affective images (positive or negative feelings and cognitive representations) were collected and content analyzed. The results demonstrate a large increase in "naysayer" associations, indicating extreme skepticism about the issue of climate change. Multiple regression analyses found that holistic affect and "naysayer" associations were more significant predictors of global warming risk perceptions than cultural worldviews or sociodemographic variables, including political party and ideology. The results demonstrate the important role affective imagery plays in judgment and decision-making processes, how these variables change over time, and how global warming is currently perceived by the American public. © 2012 Society for Risk Analysis.

  16. Computer-aided global breast MR image feature analysis for prediction of tumor response to chemotherapy: performance assessment

    Science.gov (United States)

    Aghaei, Faranak; Tan, Maxine; Hollingsworth, Alan B.; Zheng, Bin; Cheng, Samuel

    2016-03-01

    Dynamic contrast-enhanced breast magnetic resonance imaging (DCE-MRI) has been used increasingly in breast cancer diagnosis and assessment of cancer treatment efficacy. In this study, we applied a computer-aided detection (CAD) scheme to automatically segment breast regions depicting on MR images and used the kinetic image features computed from the global breast MR images acquired before neoadjuvant chemotherapy to build a new quantitative model to predict response of the breast cancer patients to the chemotherapy. To assess performance and robustness of this new prediction model, an image dataset involving breast MR images acquired from 151 cancer patients before undergoing neoadjuvant chemotherapy was retrospectively assembled and used. Among them, 63 patients had "complete response" (CR) to chemotherapy in which the enhanced contrast levels inside the tumor volume (pre-treatment) was reduced to the level as the normal enhanced background parenchymal tissues (post-treatment), while 88 patients had "partially response" (PR) in which the high contrast enhancement remain in the tumor regions after treatment. We performed the studies to analyze the correlation among the 22 global kinetic image features and then select a set of 4 optimal features. Applying an artificial neural network trained with the fusion of these 4 kinetic image features, the prediction model yielded an area under ROC curve (AUC) of 0.83+/-0.04. This study demonstrated that by avoiding tumor segmentation, which is often difficult and unreliable, fusion of kinetic image features computed from global breast MR images without tumor segmentation can also generate a useful clinical marker in predicting efficacy of chemotherapy.

  17. Theory of auroral zone PiB pulsation spectra

    International Nuclear Information System (INIS)

    Lysak, R.L.

    1988-01-01

    Changes in the auroral zone current system are often accompanied by magnetic pulsations with periods of about 1 s. These so-called bursts of irregular pulsations (PiB) have been observed both on ground magnetograms and with in situ satellite observations. These pulsations can be understood as excitations of a resonant cavity in the topside ionosphere, where the Alfven speed has a strong gradient due to the exponential decrease of density above the ionosphere. These waves have a frequency which scales as the ratio of the Alfven speed at the ionosphere divided by the ionospheric scale height. For a pure exponential Alfven speed profile, the mode frequencies are related to zeros of the zeroth-order Bessel function. For other profiles of the density, and therefore Alfven speed, the frequencies are not exactly given by the simple theory, but the frequency and mode structure are similar provided the Alfven speed sharply increases above the ionosphere

  18. Phenomena in the ionosphere-magnetosphere system induced by injection of powerful HF radio waves into nightside auroral ionosphere

    Directory of Open Access Journals (Sweden)

    N. F. Blagoveshchenskaya

    2005-01-01

    Full Text Available Experimental results from three ionospheric HF pumping experiments in overdense E or F regions are summarized. The experiments were conducted by the use of the EISCAT HF Heating facility located near Tromsø, Norway, allowing HF pumping the ionosphere in a near geomagnetic field-aligned direction. Distinctive features related to auroral activations in the course of the experiments are identified. Typical features observed in all experiments are the following: generation of scattered components in dynamic HF radio scatter Doppler spectra; strong increase of ion temperatures Ti and local ionospheric electric field E0; modification of the auroral arc and local spiral-like formation. However, some effects were observed only when the HF pump wave was reflected from the F2 layer. Among them are the generation of intense field-aligned ion outflows, and a strong increase in the electron temperature Te with altitude. A possible scenario for the substorm triggering due to HF pumping into an auroral ionosphere is discussed. The authors present their interpretation of the data as follows. It is suggested that two populations of charged particles are at play. One of them is the runaway population of electrons and ions from the ionosphere caused by the effects of the powerful HF radio wave. The other is the population of electrons that precipitate from the magnetosphere. It is shown that the hydrodynamical equilibrium was disrupted due to the effects of the HF pumping. We estimate that the parallel electric field can reach values of the order of 30mV/m during substorm triggering.

  19. Magnetosphere-ionosphere coupling during periods of extended high auroral activity: a case study

    Directory of Open Access Journals (Sweden)

    S. Liléo

    2008-03-01

    Full Text Available Results are presented from a case study of a plasma boundary crossing by the Cluster spacecraft during an extended period of high auroral activity. The boundary between the magnetotail lobe region of the Southern Hemisphere and the plasma sheet boundary layer, was characterized by intense electric and magnetic field variations, structured upward accelerated ion beams, narrow-scale large field-aligned Poynting fluxes directed upward away from the ionosphere, and a relatively sharp plasma density gradient.

    The observations are shown to be consistent with the concept of a multi-layered boundary with temporal and/or spatial variations in the different layers. H+ and O+ ion beams are seen to be accelerated upwards both by means of a field-aligned electric field and by magnetic pumping caused by large-amplitude and low-frequency electric field fluctuations. The peak energy of the ion beams may here be used as a diagnostic tool for the temporal evolution of the spatial structures, since the temporal changes occur on a time-scale shorter than the times-of-flight of the detected ion species.

    The case study also shows the boundary region to be mainly characterized by a coupling of the detected potential structures to the low ionosphere during the extended period of high auroral activity, as indicated by the intense field-aligned Poynting fluxes directed upward away from the ionosphere.

  20. Global manipulation of digital images can lead to variation in cytological diagnosis.

    Science.gov (United States)

    Prasad, H; Wanjari, Sangeeta; Parwani, Rajkumar

    2011-03-31

    With the adoption of a completely electronic workflow by several journals and the advent of telepathology, digital imaging has become an integral part of every scientific research. However, manipulating digital images is very easy, and it can lead to misinterpretations. To analyse the impact of manipulating digital images on their diagnosis. Digital images were obtained from Papanicolaou-stained smears of dysplastic and normal oral epithelium. They were manipulated using GNU Image Manipulation Program (GIMP) to alter their brightness and contrast and color levels. A Power Point presentation composed of slides of these manipulated images along with the unaltered originals arranged randomly was created. The presentation was shown to five observers individually who rated the images as normal, mild, moderate or severe dysplasia. Weighted κ statistics was used to measure and assess the levels of agreement between observers. Levels of agreement between manipulated images and original images varied greatly among observers. Variation in diagnosis was in the form of overdiagnosis or under-diagnosis, usually by one grade. Global manipulations of digital images of cytological slides can significantly affect their interpretation. Such manipulations should therefore be kept to a minimum, and avoided wherever possible.

  1. Auroral kilometric radiation and magnetospheric substorm

    International Nuclear Information System (INIS)

    Morioka, Akira; Oya, Hiroshi

    1980-01-01

    The auroral kilometric radiation (AKR) and its relation to the development of the magnetospheric substorm have been studied based on the data obtained by JIKIKEN (EXOS-B) satellite. The occurrence of AKR is closely correlated to the intense UHR emission outside the plasmapause at the satellite position; the evidence clearly suggests that the development of the field aligned current system is associated with AKR generated at the upward current region and with the UHR emission at the downward current region. The drifting plasma due to the electric field that is generated in the magnetosphere at the moment of the magnetospheric substorm is derived from the frequency change of the plasma waves. The enhancement of the westward electric field in the duskside magnetosphere is detected simultaneously with the appearence of AKR. The altitude of the center of the AKR source region varies with intimate relation to the substorm activity suggesting that the generation of AKR is taking place in the region where the polar ionosphere and the magnetosphere are predominantly coupling through the precipitating or up going particles. From the fine structure of the dynamic spectra of AKR, it is suggested that the source of AKR might be closely related to the double layer type electric field along the magnetic field. (author)

  2. Measurements of low energy auroral ions

    International Nuclear Information System (INIS)

    Urban, A.

    1981-01-01

    This paper summarizes ion measurements in the energy range 0.1 to 30 keV observed during the campaigns 'Substorm Phenomena' and 'Porcupine'. For a clear survey of the physical processes during extraordinary events, sometimes ion measurements of higher energies are also taken into account. Generally, the pitch angle distributions were isotropic during all flights except some remarkable events. In general the ion and electron flux intensities correlated, but sometimes revealed a spectral anti-correlation. Acceleration of the ions by an electrostatic field aligned parallel to the magnetic field could be identified accompanied by intense electron precipitation. On the other hand deceleration of the ions was observed in other field-aligned current sheets which are indicated by the electron and magnetic field measurements. Temporal successive monoenergetic ion variations pointed to energy dispersion and to the location of the source region at 9 Rsub(E). Furthermore, ion fluxes higher than those of the electrons were measured at pitch angles parallel to the magnetic field. The integral down-going number and energy flux of the ions contributed to the total particle or energy influx between 65% and less than 7% and did not clearly characterize the geophysical launch conditions or auroral activities. (author)

  3. Precision 3d Surface Reconstruction from Lro Nac Images Using Semi-Global Matching with Coupled Epipolar Rectification

    Science.gov (United States)

    Hu, H.; Wu, B.

    2017-07-01

    The Narrow-Angle Camera (NAC) on board the Lunar Reconnaissance Orbiter (LRO) comprises of a pair of closely attached high-resolution push-broom sensors, in order to improve the swath coverage. However, the two image sensors do not share the same lenses and cannot be modelled geometrically using a single physical model. Thus, previous works on dense matching of stereo pairs of NAC images would generally create two to four stereo models, each with an irregular and overlapping region of varying size. Semi-Global Matching (SGM) is a well-known dense matching method and has been widely used for image-based 3D surface reconstruction. SGM is a global matching algorithm relying on global inference in a larger context rather than individual pixels to establish stable correspondences. The stereo configuration of LRO NAC images causes severe problem for image matching methods such as SGM, which emphasizes global matching strategy. Aiming at using SGM for image matching of LRO NAC stereo pairs for precision 3D surface reconstruction, this paper presents a coupled epipolar rectification methods for LRO NAC stereo images, which merges the image pair in the disparity space and in this way, only one stereo model will be estimated. For a stereo pair (four) of NAC images, the method starts with the boresight calibration by finding correspondence in the small overlapping stripe between each pair of NAC images and bundle adjustment of the stereo pair, in order to clean the vertical disparities. Then, the dominate direction of the images are estimated by project the center of the coverage area to the reference image and back-projected to the bounding box plane determined by the image orientation parameters iteratively. The dominate direction will determine an affine model, by which the pair of NAC images are warped onto the object space with a given ground resolution and in the meantime, a mask is produced indicating the owner of each pixel. SGM is then used to generate a disparity

  4. PRECISION 3D SURFACE RECONSTRUCTION FROM LRO NAC IMAGES USING SEMI-GLOBAL MATCHING WITH COUPLED EPIPOLAR RECTIFICATION

    Directory of Open Access Journals (Sweden)

    H. Hu

    2017-07-01

    Full Text Available The Narrow-Angle Camera (NAC on board the Lunar Reconnaissance Orbiter (LRO comprises of a pair of closely attached high-resolution push-broom sensors, in order to improve the swath coverage. However, the two image sensors do not share the same lenses and cannot be modelled geometrically using a single physical model. Thus, previous works on dense matching of stereo pairs of NAC images would generally create two to four stereo models, each with an irregular and overlapping region of varying size. Semi-Global Matching (SGM is a well-known dense matching method and has been widely used for image-based 3D surface reconstruction. SGM is a global matching algorithm relying on global inference in a larger context rather than individual pixels to establish stable correspondences. The stereo configuration of LRO NAC images causes severe problem for image matching methods such as SGM, which emphasizes global matching strategy. Aiming at using SGM for image matching of LRO NAC stereo pairs for precision 3D surface reconstruction, this paper presents a coupled epipolar rectification methods for LRO NAC stereo images, which merges the image pair in the disparity space and in this way, only one stereo model will be estimated. For a stereo pair (four of NAC images, the method starts with the boresight calibration by finding correspondence in the small overlapping stripe between each pair of NAC images and bundle adjustment of the stereo pair, in order to clean the vertical disparities. Then, the dominate direction of the images are estimated by project the center of the coverage area to the reference image and back-projected to the bounding box plane determined by the image orientation parameters iteratively. The dominate direction will determine an affine model, by which the pair of NAC images are warped onto the object space with a given ground resolution and in the meantime, a mask is produced indicating the owner of each pixel. SGM is then used to

  5. Land cover in the Guayas Basin using SAR images from low resolution ASAR Global mode to high resolution Sentinel-1 images

    Science.gov (United States)

    Bourrel, Luc; Brodu, Nicolas; Frappart, Frédéric

    2016-04-01

    Remotely sensed images allow a frequent monitoring of land cover variations at regional and global scale. Recently launched Sentinel-1 satellite offers a global cover of land areas at an unprecedented spatial (20 m) and temporal (6 days at the Equator). We propose here to compare the performances of commonly used supervised classification techniques (i.e., k-nearest neighbors, linear and Gaussian support vector machines, naive Bayes, linear and quadratic discriminant analyzes, adaptative boosting, loggit regression, ridge regression with one-vs-one voting, random forest, extremely randomized trees) for land cover applications in the Guayas Basin, the largest river basin of the Pacific coast of Ecuator (area ~32,000 km²). The reason of this choice is the importance of this region in Ecuatorian economy as its watershed represents 13% of the total area of Ecuador where 40% of the Ecuadorian population lives. It also corresponds to the most productive region of Ecuador for agriculture and aquaculture. Fifty percents of the country shrimp farming production comes from this watershed, and represents with agriculture the largest source of revenue of the country. Similar comparisons are also performed using ENVISAT ASAR images acquired in global mode (1 km of spatial resolution). Accuracy of the results will be achieved using land cover map derived from multi-spectral images.

  6. Investigation of intermittent magnetic flux in the auroral zones with kilometer radiation (AKR)

    International Nuclear Information System (INIS)

    Liu, S.Q.; Li, X.Q.

    2001-01-01

    On the basis of the nonlinear equations for self-generated magnetic fields, it is numerically shown that the magnetic fields self-generated are instable and may collapse, resulting in spatially highly intermittent flux fragment. Numerical results show that the enhanced magnetic flux has a strength about up to 10 -2 Gauss in range about around 250-350 km in auroral zones with kilometric radiation (AKR), which correspond to estimated values in both the strength and characteristic scale by Mckean et al. [J. Geophys. Res. [Oceans] 96, 21055 (1991)

  7. Jupiter's X-ray Auroral Pulsations and Spectra During Juno Perijove 7

    Science.gov (United States)

    Dunn, W.; Branduardi-Raymont, G.; Ray, L. C.; Jackman, C. M.; Kraft, R.; Gladstone, R.; Yao, Z.; Rae, J.; Gray, R.; Elsner, R.; Grodent, D. C.; Nichols, J. D.; Ford, P. G.; Ness, J. U.; Kammer, J.; Rodriguez, P.

    2017-12-01

    Jupiter's X-ray aurora is concentrated into a bright and dynamic hot spot that is produced by precipitating 10 MeV ions [Gladstone et al. 2002; Elsner et al. 2005; Branduardi-Raymont et al. 2007]. These highly energetic emissions exhibit pulsations over timescales of 10s of minutes and change morphology, intensity and precipitating particle populations from observation to observation and pole to pole [e.g. Dunn et al. 2016; in-press]. The acceleration process/es that allow Jupiter to produce these high-energy ion charge exchange emissions are not well understood, but are concentrated in the most poleward regions of the aurora, where field lines map to the outer magnetosphere and possibly beyond [Vogt et al. 2015; Kimura et al. 2016]. On July 11th 2017, NASA's Juno spacecraft conducted its 7th perijove flyby of Jupiter and is predicted to have flown directly through field lines that map to the Northern and Southern X-ray hot spots. During this unique flight, the XMM-Newton observatory conducted 40 hours of continuous time-tagged X-ray observations. We present the results from these X-ray observations, showing that Jupiter's X-ray aurora varies significantly from one planetary rotation to the next and that the spectral signatures, indicative of the precipitating ion and electron populations producing the emission, also vary. We measure the Doppler broadening of the spectral lines to calculate the ion energies at the point when they impact the ionosphere, in order that these might be compared with in-situ data to constrain Jovian auroral acceleration processes. Finally, we compare X-ray signatures from the last decade of observations with UV polar emissions at similar times to further enrich multi-wavelength connections and deepen our understanding of how Jupiter is able to generate its highly energetic polar auroral precipitations.

  8. Simultaneous rocket and radar measurements of currents in an auroral arc

    International Nuclear Information System (INIS)

    Robinson, R.M.; Bering, E.A.; Vondrak, R.R.; Anderson, H.R.; Cloutier, P.A.

    1981-01-01

    A detailed study of electric field, current and conductivities associated with an auroral arc was made in a coordinated rocket and radar experiment in Alaska on March 9, 1978. The payload, designated 29.007 UE, was launched at 1013 p.m. local time. It penetrated the diffuse aurora on the upleg and at apogee traversed field lines connected to a stable auroral arc of 40 kR intensity. Among the instruments carried by the payload were a vector magnetometer, a set of electrostatic double probes and a set of electron and proton spectrometers. Simultaneous electron density and line-of-sight velocity measurements were made by Chatanika radar operating in an elevation scan mode in the magnetic meridian plane. Both the radar and rocket measurements indicated that the zonal electric field was westward and approximately constant across the arc with a magnitude of about 7 mV/m. Small differences between the rocket and radar zonal electric field measurements indicated the presence of upward drifting ions in the region of the arc. The meridional field was large and northward equatorward of the arc, but negligible within the arc. Conductivities computed from measured fluxes of energetic electrons agreed well with the conductivities derived from the radar measureements of electron density. The electric field and conductivity measurements indicated that the zonal currents were eastward equatorward of the arc and westward within the arc. These electrojet currents agreed well with those inferred from the rocket magnetometer data. Better agreement was obtained when a westward neutral wind was added. The westward wind was also consistent with differences between the rocket and radar meridional electric fields. The meridional currents computed from the electric field measurements were northward over the entire region

  9. On the Role of Ionospheric Ions in Sawtooth Events

    Science.gov (United States)

    Lund, E. J.; Nowrouzi, N.; Kistler, L. M.; Cai, X.; Frey, H. U.

    2018-01-01

    Simulations have suggested that feedback of heavy ions originating in the ionosphere is an important mechanism for driving sawtooth injections. However, this feedback may only be necessary for events driven by coronal mass ejections (CMEs), whereas in events driven by streaming interaction regions (SIRs), solar wind variability may suffice to drive these injections. Here we present case studies of two sawtooth events for which in situ data are available in both the magnetotail (Cluster) and the nightside auroral region (FAST), as well as global auroral images (IMAGE). One event, on 1 October 2001, was driven by a CME; the other, on 24 October 2002, was driven by an SIR. The available data do not support the hypothesis that heavy ion feedback is necessary to drive either event. This result is consistent with simulations of the SIR-driven event but disagrees with simulation results for a different CME-driven event. We also find that in an overwhelming majority of the sawtooth injections for which Cluster tail data are available, the O+ observed in the tail comes from the cusp rather than the nightside auroral region, which further casts doubt on the hypothesis that ionospheric heavy ion feedback is the cause of sawtooth injections.

  10. Keyframes Global Map Establishing Method for Robot Localization through Content-Based Image Matching

    Directory of Open Access Journals (Sweden)

    Tianyang Cao

    2017-01-01

    Full Text Available Self-localization and mapping are important for indoor mobile robot. We report a robust algorithm for map building and subsequent localization especially suited for indoor floor-cleaning robots. Common methods, for example, SLAM, can easily be kidnapped by colliding or disturbed by similar objects. Therefore, keyframes global map establishing method for robot localization in multiple rooms and corridors is needed. Content-based image matching is the core of this method. It is designed for the situation, by establishing keyframes containing both floor and distorted wall images. Image distortion, caused by robot view angle and movement, is analyzed and deduced. And an image matching solution is presented, consisting of extraction of overlap regions of keyframes extraction and overlap region rebuild through subblocks matching. For improving accuracy, ceiling points detecting and mismatching subblocks checking methods are incorporated. This matching method can process environment video effectively. In experiments, less than 5% frames are extracted as keyframes to build global map, which have large space distance and overlap each other. Through this method, robot can localize itself by matching its real-time vision frames with our keyframes map. Even with many similar objects/background in the environment or kidnapping robot, robot localization is achieved with position RMSE <0.5 m.

  11. The Big Picture: Imaging of the Global Geospace Environment by the TWINS Mission

    Science.gov (United States)

    Goldstein, J.; McComas, D. J.

    2018-03-01

    Encircling our planet at distances of 2.5 to 8 Earth radii is a dynamic plasma population known as the ring current (RC). During geomagnetic storms, the solar wind's interaction with Earth's magnetic field pumps petaJoules of energy into the RC, energizing and transporting particles. To measure the global geospace response, RC imaging is performed by capturing energetic neutral atoms (ENAs) created by charge exchange between geospace ions and the neutral exosphere. The H exosphere is itself imaged via its geocoronal Lyman-α glow. Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is a stereoscopic ENA and Lyman-α imaging mission that has recorded the deep minimum of solar cycle (SC) 23 and the moderate maximum of SC 24, observing geospace conditions ranging from utterly quiet to major storms. This review covers TWINS studies of the geospace response published during 2013 to 2017. Stereo ENA imaging has revealed new dimensionality and structure of RC ions. Continuous coverage by two imagers has allowed monitoring storms from start to finish. Deconvolution of the low-altitude signal has extended ENA analysis and revealed causal connections between the trapped and precipitating ion populations. ENA-based temperature and composition analyses have been refined, validated, and applied to an unprecedented sequence of solar activity changes in SC 23 and SC 24. Geocoronal imaging has revealed a surprising amount of time variability and structure in the neutral H exosphere, driven by both Sun and solar wind. Global models have been measurably improved. Routine availability of simultaneous in situ measurements has fostered huge leaps forward in the areas of ENA validation and cross-scale studies.

  12. [18F]DPA 714 PET Imaging Reveals Global Neuroinflammation in Zika Virus Infected Mice

    Science.gov (United States)

    2017-09-12

    with neurotropic viruses and the evaluation of therapeutics being developed for treatment of infectious diseases. Keywords: Zika virus , Animal...18F]DPA-714 PET Imaging Reveals Global Neuroinflammation in Zika Virus - Infected Mice Kyle Kuszpit1†, Bradley S. Hollidge2†, Xiankun Zeng3, Robert...Running Head: PET Imaging of Zika Virus -Induced Neuroinflammation Manuscript Category: Article Affiliations: 1Molecular and Translational

  13. Global and Local Page Replacement Algorithms on Virtual Memory Systems for Image Processing

    OpenAIRE

    WADA, Ben Tsutom

    1985-01-01

    Three virtual memory systems for image processing, different one another in frame allocation algorithms and page replacement algorithms, were examined experimentally upon their page-fault characteristics. The hypothesis, that global page replacement algorithms are susceptible to thrashing, held in the raster scan experiment, while it did not in another non raster-scan experiment. The results of the experiments may be useful also in making parallel image processors more efficient, while they a...

  14. Comparison of subset-based local and FE-based global digital image correlation: Theoretical error analysis and validation

    KAUST Repository

    Pan, B.; Wang, Bo; Lubineau, Gilles

    2016-01-01

    Subset-based local and finite-element-based (FE-based) global digital image correlation (DIC) approaches are the two primary image matching algorithms widely used for full-field displacement mapping. Very recently, the performances

  15. Experimental investigation of auroral generator regions with conjugate Cluster and FAST data

    Directory of Open Access Journals (Sweden)

    O. Marghitu

    2006-03-01

    Full Text Available Here and in the companion paper, Hamrin et al. (2006, we present experimental evidence for the crossing of auroral generator regions, based on conjugate Cluster and FAST data. To our knowledge, this is the first investigation that concentrates on the evaluation of the power density, E·J, in auroral generator regions, by using in-situ measurements. The Cluster data we discuss were collected within the Plasma Sheet Boundary Layer (PSBL, during a quiet magnetospheric interval, as judged from the geophysical indices, and several minutes before the onset of a small substorm, as indicated by the FAST data. Even at quiet times, the PSBL is an active location: electric fields are associated with plasma motion, caused by the dynamics of the plasma-sheet/lobe interface, while electrical currents are induced by pressure gradients. In the example we show, these ingredients do indeed sustain the conversion of mechanical energy into electromagnetic energy, as proved by the negative power density, E·J<0. The plasma characteristics in the vicinity of the generator regions indicate a complicated 3-D wavy structure of the plasma sheet boundary. Consistent with this structure, we suggest that at least part of the generated electromagnetic energy is carried away by Alfvén waves, to be dissipated in the ionosphere, near the polar cap boundary. Such a scenario is supported by the FAST data, which show energetic electron precipitation conjugated with the generator regions crossed by Cluster. A careful examination of the conjunction timing contributes to the validation of the generator signatures.

  16. Electric potential differences across auroral generator interfaces

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2013-02-01

    Full Text Available Strong localized high-altitude auroral electric fields, such as those observed by Cluster, are often associated with magnetospheric interfaces. The type of high-altitude electric field profile (monopolar, bipolar, or more complicated depends on the properties of the plasmas on either side of the interface, as well as on the total electric potential difference across the structure. The present paper explores the role of this cross-field electric potential difference in the situation where the interface is a tangential discontinuity. A self-consistent Vlasov description is used to determine the equilibrium configuration for different values of the transverse potential difference. A major observation is that there exist limits to the potential difference, beyond which no equilibrium configuration of the interface can be sustained. It is further demonstrated how the plasma densities and temperatures affect the type of electric field profile in the transition, with monopolar electric fields appearing primarily when the temperature contrast is large. These findings strongly support the observed association of monopolar fields with the plasma sheet boundary. The role of shear flow tangent to the interface is also examined.

  17. A SmallSat Approach for Global Imaging Spectroscopy of the Earth SYSTEM Enabled by Advanced Technology

    Science.gov (United States)

    Green, R. O.; Asner, G. P.; Thompson, D. R.; Mouroulis, P.; Eastwood, M. L.; Chien, S.

    2017-12-01

    Global coverage imaging spectroscopy in the solar reflected energy portion of the spectrum has been identified by the Earth Decadal Survey as an important measurement that enables a diverse set of new and time critical science objectives/targets for the Earth system. These science objectives include biodiversity; ecosystem function; ecosystem biogeochemistry; initialization and constraint of global ecosystem models; fire fuel, combustion, burn severity, and recovery; surface mineralogy, geochemistry, geologic processes, soils, and hazards; global mineral dust source composition; cryospheric albedo, energy balance, and melting; coastal and inland water habitats; coral reefs; point source gas emission; cloud thermodynamic phase; urban system properties; and more. Traceability of these science objectives to spectroscopic measurement in the visible to short wavelength infrared portion of the spectrum is summarized. New approaches, including satellite constellations, to acquire these global imaging spectroscopy measurements is presented drawing from recent advances in optical design, detector technology, instrument architecture, thermal control, on-board processing, data storage, and downlink.

  18. Global manipulation of digital images can lead to variation in cytological diagnosis

    Directory of Open Access Journals (Sweden)

    H Prasad

    2011-01-01

    Full Text Available Background: With the adoption of a completely electronic workflow by several journals and the advent of telepathology, digital imaging has become an integral part of every scientific research. However, manipulating digital images is very easy, and it can lead to misinterpretations. Aim: To analyse the impact of manipulating digital images on their diagnosis. Design: Digital images were obtained from Papanicolaou-stained smears of dysplastic and normal oral epithelium. They were manipulated using GNU Image Manipulation Program (GIMP to alter their brightness and contrast and color levels. A Power Point presentation composed of slides of these manipulated images along with the unaltered originals arranged randomly was created. The presentation was shown to five observers individually who rated the images as normal, mild, moderate or severe dysplasia. Weighted k statistics was used to measure and assess the levels of agreement between observers. Results: Levels of agreement between manipulated images and original images varied greatly among observers. Variation in diagnosis was in the form of overdiagnosis or under-diagnosis, usually by one grade. Conclusion: Global manipulations of digital images of cytological slides can significantly affect their interpretation. Such manipulations should therefore be kept to a minimum, and avoided wherever possible.

  19. A Global Sampling Based Image Matting Using Non-Negative Matrix Factorization

    Directory of Open Access Journals (Sweden)

    NAVEED ALAM

    2017-10-01

    Full Text Available Image matting is a technique in which a foreground is separated from the background of a given image along with the pixel wise opacity. This foreground can then be seamlessly composited in a different background to obtain a novel scene. This paper presents a global non-parametric sampling algorithm over image patches and utilizes a dimension reduction technique known as NMF (Non-Negative Matrix Factorization. Although some existing non-parametric approaches use large nearby foreground and background regions to sample patches but these approaches fail to take the whole image to sample patches. It is because of the high memory and computational requirements. The use of NMF in the proposed algorithm allows the dimension reduction which reduces the computational cost and memory requirement. The use of NMF also allow the proposed approach to use the whole foreground and background region in the image and reduces the patch complexity and help in efficient patch sampling. The use of patches not only allows the incorporation of the pixel colour but also the local image structure. The use of local structures in the image is important to estimate a high-quality alpha matte especially in the images which have regions containing high texture. The proposed algorithm is evaluated on the standard data set and obtained results are comparable to the state-of-the-art matting techniques

  20. A global sampling based image matting using non-negative matrix factorization

    International Nuclear Information System (INIS)

    Alam, N.; Sarim, M.; Shaikh, A.B.

    2017-01-01

    Image matting is a technique in which a foreground is separated from the background of a given image along with the pixel wise opacity. This foreground can then be seamlessly composited in a different background to obtain a novel scene. This paper presents a global non-parametric sampling algorithm over image patches and utilizes a dimension reduction technique known as NMF (Non-Negative Matrix Factorization). Although some existing non-parametric approaches use large nearby foreground and background regions to sample patches but these approaches fail to take the whole image to sample patches. It is because of the high memory and computational requirements. The use of NMF in the proposed algorithm allows the dimension reduction which reduces the computational cost and memory requirement. The use of NMF also allow the proposed approach to use the whole foreground and background region in the image and reduces the patch complexity and help in efficient patch sampling. The use of patches not only allows the incorporation of the pixel colour but also the local image structure. The use of local structures in the image is important to estimate a high-quality alpha matte especially in the images which have regions containing high texture. The proposed algorithm is evaluated on the standard data set and obtained results are comparable to the state-of-the-art matting techniques. (author)

  1. The thermospheric auroral red line polarization: confirmation of detection and first quantitative analysis

    Directory of Open Access Journals (Sweden)

    Moen Joran

    2013-01-01

    Full Text Available The thermospheric atomic oxygen red line is among the brightest in the auroral spectrum. Previous observations in Longyearbyen, Svalbard, indicated that it may be intrinsically polarized, but a possible contamination by light pollution could not be ruled out. During the winter 2010/2011, the polarization of the red line was measured for the first time at the Polish Hornsund polar base without contamination. Two methods of data analysis are presented to compute the degree of linear polarization (DoLP and angle of linear polarization (AoLP: one is based on averaging and the other one on filtering. Results are compared and are in qualitative agreement. For solar zenith angles (SZA larger than 108° (with no contribution from Rayleigh scattering, the DoLP ranges between 2 and 7%. The AoLP is more or less aligned with the direction of the magnetic field line, in agreement with the theoretical predictions of Bommier et al. (2010. However, the AoLP values range between ±20° around this direction, depending on the auroral conditions. Correlations between the polarization parameters and the red line intensity I were considered. The DoLP decreases when I increases, confirming a trend observed during the observations in Longyearbyen. However, for small values of I, DoLP varies within a large range of values, while for large values of I, DoLP is always small. The AoLP also varies with the red line intensity, slightly rotating around the magnetic field line.

  2. Generation of auroral kilometric radiation in upper hybrid wave-lower hybrid soliton interaction

    International Nuclear Information System (INIS)

    Pottelette, R.; Dubouloz, N.; Treumann, R.A.

    1992-01-01

    Sporadic bursts of auroral kilometric radiation (AKR) associated with strong bursty electrostatic turbulence in the vicinity of the lower hybrid frequency have been frequently recorded in the AKR source region by the Viking satellite. The variation time scale of these emissions is typically 1 s, long enough for lower hybrid waves to grow to amplitudes of several hundred millivolts per meter and to evolve nonlinearly into solitons. On the basis on these observations it is suggested that formation of lower hybrid solitons may play a role in the generation of AKR. A theoretical model is proposed which is based on the direct acceleration of electrons in the combined lower hybrid soliton and upper hybrid wave fields. The solitons act as sporadic, localized antennas allowing for efficient conversions of the electrostatic energy stored in upper hybrid waves into electromagnetic radiation at a frequency above the X mode cutoff. Excitation of lower hybrid waves is due to the presence of energetic electron beams in the auroral zone found to be associated with steep plasma density gradients. Upper hybrid waves can be excited by a population of energetic electrons with loss cone distributions. The power of the electromagnetic radiation obtained is only noticeable in regions where the plasma frequency is less than the electron gyrofrequency. The theory predicts spectral power densities of the order of 10 -11 to 10 -9 W m -2 Hz -1 in the source region, in good agreement with the Viking observations. The sporadic nature of the radiation derives from lower hybrid soliton collapses which occur on ∼1-s time scales

  3. The Sondrestrom Research Facility All-sky Imagers

    Science.gov (United States)

    Kendall, E. A.; Grill, M.; Gudmundsson, E.; Stromme, A.

    2010-12-01

    The Sondrestrom Upper Atmospheric Research Facility is located near Kangerlussuaq, Greenland, just north of the Arctic Circle and 100 km inland from the west coast of Greenland. The facility is operated by SRI International in Menlo Park, California, under the auspices of the U.S. National Science Foundation. Operating in Greenland since 1983, the Sondrestrom facility is host to more than 20 instruments, the majority of which provide unique and complementary information about the arctic upper atmosphere. Together these instruments advance our knowledge of upper atmospheric physics and determine how the tenuous neutral gas interacts with the charged space plasma environment. The suite of instrumentation supports many disciplines of research - from plate tectonics to auroral physics and space weather. The Sondrestrom facility has recently acquired two new all-sky imagers. In this paper, we present images from both new imagers, placing them in context with other instruments at the site and detailing to the community how to gain access to this new data set. The first new camera replaces the intensified auroral system which has been on site for nearly three decades. This new all-sky imager (ASI), designed and assembled by Keo Scientific Ltd., employs a medium format 180° fisheye lens coupled to a set of five 3-inch narrowband interference filters. The current filter suite allows operation at the following wavelengths: 750 nm, 557.7 nm, 777.4 nm, 630.0 nm, and 732/3 nm. Monochromatic images from the ASI are acquired at a specific filter and integration time as determined by a unique configuration file. Integrations as short as 0.5 sec can be commanded for exceptionally bright features. Preview images are posted to the internet in near real-time, with final images posted weeks later. While images are continuously collected in a "patrol mode," users can request special collection sequences for targeted experiments. The second new imager installed at the Sondrestrom

  4. Initial results form the operation of two argon ion generators in the auroral ionosphere

    International Nuclear Information System (INIS)

    Erlandson, R.E.; Cahill, L.J. Jr.; Pollock, C.J.; Arnoldy, R.L.; Scales, W.A.; Kintner, P.M.

    1987-01-01

    Two argon ion generators were operated during a sounding rocket flight from Sondre Stromfjord, Greenland, on February 10, 1985. The ion generators were flown to investigate ion beam dynamics and beam effects on the ionosphere. The other major purpose of the flight was investigation of auroral electrodynamics as the rocket passed over auroral arcs. One generator emitted an ion beam perpendicular to the magnetic field and the other a beam parallel to the field. Ion detectors, an electric field meter and wave receivers were carried on the main payload to provide diagnostic measurements during the ion beam operations. Seventeen operations of the generators were observed over a 480-s interval before the rocket reentered the atmosphere. There was evidence of heating of the ionosphere around the subpayload during each ion beam emission. Ions of energy 100 to 200 eV, the ion beam energy range, were observed at the main payload during the first seven operations of each generator, with payload separation distances up to 800 m, reaching the main payload from directions appropriate for beam ions. Waves were observed during most of the first seven operations of each beam. Hydrogen, helium and oxygen cyclotron harmonics were observed in some of the perpendicular-beam operations. Waves were weak or absent during the first and third parallel-beam operations at separation distances near 80 and 320 m. In general the waves generated by the parallel beam were weaker than those generated by the perpendicular beam

  5. Effects of magnetic storm phases on F layer irregularities below the auroral oval

    International Nuclear Information System (INIS)

    Aarons, J.; Gurgiolo, C.; Rodger, A.S.

    1988-01-01

    Observations of F-layer irregularity development and intensity were obtained between September and October 1981, primarily over subauroral latitudes in the area of the plasmapause. The results reveal the descent of the auroral irregularity region to include subauroral latitudes in the general area of the plasmapause during the main phases of a series of magnetic storms. Irregularities were found primarily at lower latitudes during the subauroral or plasmapause storm. A model for the subauroral irregularities in recovery phases of magnetic storms is proposed in which energy stored in the ring current is slowly released. 27 references

  6. Wideband satellite phase coherent beacon observations at auroral and equatorial latitudes - A review

    International Nuclear Information System (INIS)

    Rino, C.L.; Livingston, R.C.; Cousins, M.D.; Fair, B.C.

    1978-01-01

    This paper presents a brief review of some of the principal results from the first two years of operation of the Wideband satellite which transmits phase-coherent signals from S-band to VHF. The auroral zone data show narrow regions of enhanced scintillation well equatorward of the discrete aurora. Such enhancements can be explained as a purely geometrical effect if the irregularities within the major precipitation regions have a sheet-like structure. Evidence of a localized irregularity source at the poleward boundary of the plasma trough is also found. Model computations are discussed and applied to the interpretation of equatorial data

  7. The EXCEDE spectral artificial auroral experiment: An overview

    International Nuclear Information System (INIS)

    O'Neil, R.R.; Burt, D.A.; Pendleton, W.R.; Stair, A.T.

    1982-01-01

    This chapter investigates the detailed production and loss processes of various excited electronic and vibrational states that result in optical and infrared emissions as energetic primary electrons and their secondaries and all subsequent generation electrons are stopped in the atmosphere. The dosing conditions (primary electron energy, beam power, deposition volume, deposition altitude, and dose duration) in the examined artificial auroral experiment are well controlled and monitored. EXCEDE is a Defense Nuclear Agency and Air Force Geophysics Laboratory program designed to study atmospheric radiative processes resulting from the controlled deposition of energetic electrons from rocketborne electron accelerators. The EXCEDE SPECTRAL payload, launched in 1979, contained a 60 kilowatt (3 kV) electron accelerator, an array of ultraviolet, visible, and cryogenic infrared spectrometers, photometers, and photographic film and video cameras. The extensive set of spectra measured in this experiment will be analyzed to determine production mechanisms for each excited state, to determine electron-induced luminous efficiencies and to determine collisional deactivation rate coefficients in the 72 to 128 km altitude range

  8. The quiet evening auroral arc and the structure of the growth phase near-Earth plasma sheet

    Science.gov (United States)

    Coroniti, F. V.; Pritchett, P. L.

    2014-03-01

    The plasma pressure and current configuration of the near-Earth plasma sheet that creates and sustains the quiet evening auroral arc during the growth phase of magnetospheric substorms is investigated. We propose that the quiet evening arc (QEA) connects to the thin near-Earth current sheet, which forms during the development of the growth phase enhancement of convection. The current sheet's large polarization electric fields are shielded from the ionosphere by an Inverted-V parallel potential drop, thereby producing the electron precipitation responsible for the arc's luminosity. The QEA is located in the plasma sheet region of maximal radial pressure gradient and, in the east-west direction, follows the vanishing of the approximately dawn-dusk-directed gradient or fold in the plasma pressure. In the evening sector, the boundary between the Region1 and Region 2 current systems occurs where the pressure maximizes (approximately radial gradient of the pressure vanishes) and where the approximately radial gradient of the magnetic flux tube volume also vanishes in an inflection region. The proposed intricate balance of plasma sheet pressure and currents may well be very sensitive to disruption by the arrival of equatorward traveling auroral streamers and their associated earthward traveling dipolarization fronts.

  9. Geocoronal imaging with Dynamics Explorer

    Science.gov (United States)

    Rairden, R. L.; Frank, L. A.; Craven, J. D.

    1986-01-01

    The ultraviolet photometer of the University of Iowa spin-scan auroral imaging instrumentation on board Dynamics Explorer-1 has returned numerous hydrogen Lyman alpha images of the geocorona from altitudes of 570 km to 23,300 km (1.09 R sub E to 4.66 R sub E geocentric radial distance). The hydrogen density gradient is shown by a plot of the zenith intensities throughout this range, which decrease to near celestial background values as the spacecraft approaches apogee. Characterizing the upper geocorona as optically thin (single-scattering), the zenith intensity is converted directly to vertical column density. This approximation loses its validity deeper in the geocorona, where the hydrogen is demonstrated to be optically thick in that there is no Lyman alpha limb brightening. Further study of the geocoronal hydrogen distribution will require computer modeling of the radiative transfer.

  10. Ionospheric response to daytime auroral electron precipitation: Results and analysis of a coordinated experiment between the AUREOL-3 satellite and the EISCAT radar

    International Nuclear Information System (INIS)

    Stamnes, K.; Roble, R.G.

    1986-01-01

    On June 2, 1982 the Soviet-French polar orbiting satellite AUREOL-3 passed over the EISCAT facility in northern Scandinavia. The EISCAT UHF radar measured electron and ion temperatures, electron density and ion composition, while the satellite measured the incident auroral particle spectra (protons and electrons) presumably giving rise to the densities and temperatures inferred from the radar data. The link between the satellite data obtained well above the atmosphere (at about 1300 km), and the radar measurements is an auroral model that simulates the ionospheric response to auroral particle precipitation and solar EUV radiation and makes predictions of ionospheric properties that 1) can be measured by the radar and 2) are the consequence of the satellite-observed particle precipitation. The analysis shows that there is good agreement between model-predicted and radar-inferred electron and ion temperatures and ion composition. However, inference of the ion composition from the radar data is a non-trivial and time-consuming undertaking which requires very good data (i.e. long integration times). Our initial attempts at analyzing the radar data with a fixed ion composition (as commonly practiced) which greatly simplifies the analysis yielded poor agreement between model predictions and radar measurements. Thus, our analysis demonstrates that the proper ion composition is crucial in order to obtain reliable temperature and density results from the measured autocorrelation functions

  11. Electronic Referrals and Digital Imaging Systems in Ophthalmology: A Global Perspective.

    Science.gov (United States)

    Jeganathan, V Swetha E; Hall, H Nikki; Sanders, Roshini

    2017-01-01

    Ophthalmology departments face intensifying pressure to expedite sight-saving treatments and reduce the global burden of disease. The use of electronic communication systems, digital imaging, and redesigned service care models is imperative for addressing such demands. The recently developed Scottish Eyecare Integration Project involves an electronic referral system from community optometry to the hospital ophthalmology department using National Health Service (NHS) email with digital ophthalmic images attached, via a virtual private network connection. The benefits over the previous system include reduced waiting times, improved triage, e-diagnosis in 20% without the need for hospital attendance, and rapid electronic feedback to referrers. We draw on the experience of the Scottish Eyecare Integration Project and discuss the global applications of this and other advances in teleophthalmology. We focus particularly on the implications for management and screening of chronic disease, such as glaucoma and diabetic eye disease, and ophthalmic disease, such as retinopathy of prematurity where diagnosis is almost entirely and critically dependent on fundus appearance. Currently in Scotland, approximately 75% of all referrals are electronic from community to hospital. The Scottish Eyecare Integration Project is globally the first of its kind and unique in a national health service. Such speedy, safe, and efficient models of communication are geographically sensitive to service provision, especially in remote and rural regions. Along with advances in teleophthalmology, such systems promote the earlier detection of sight-threatening disease and safe follow-up of non-sight-threatening disease in the community. Copyright© 2017 Asia-Pacific Academy of Ophthalmology.

  12. Plasma structure within poleward-moving cusp/cleft auroral transients: EISCAT Svalbard radar observations and an explanation in terms of large local time extent of events

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2000-09-01

    Full Text Available We report high-resolution observations of the southward-IMF cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter Svalbard radar (ESR, and compare them with observations of dayside auroral luminosity, as seen at a wavelength of 630 nm by a meridian scanning photometer at Ny Ålesund, and of plasma flows, as seen by the CUTLASS (co-operative UK twin location auroral sounding system Finland HF radar. The optical data reveal a series of poleward-moving transient red-line (630 nm enhancements, events that have been associated with bursts in the rate of magnetopause reconnection generating new open flux. The combined observations at this time have strong similarities to predictions of the effects of soft electron precipitation modulated by pulsed reconnection, as made by Davis and Lockwood (1996; however, the effects of rapid zonal flow in the ionosphere, caused by the magnetic curvature force on the newly opened field lines, are found to be a significant additional factor. In particular, it is shown how enhanced plasma loss rates induced by the rapid convection can explain two outstanding anomalies of the 630 nm transients, namely how minima in luminosity form between the poleward-moving events and how events can re-brighten as they move poleward. The observations show how cusp/cleft aurora and transient poleward-moving auroral forms appear in the ESR data and the conditions which cause enhanced 630 nm emission in the transients: they are an important first step in enabling the ESR to identify these features away from the winter solstice when supporting auroral observations are not available.Key words: Ionosphere (polar ionosphere - Magnetospheric physics (magnetopause; cusp and boundary layers; solar wind-magnetosphere interactions

  13. Snapshots of high-latitude electrodynamics using Viking and DMSP/F7 observations

    International Nuclear Information System (INIS)

    Marklund, G.T.; Blomberg, L.G.; Murphree, J.S.; Pottelette, R.; Zanetti, L.J.; Potemra, T.A.; Hardy, D.A.; Rich, F.J.

    1988-02-01

    Simultaneous observations by the Viking and the DMSP/F7 satellites have been used in a new method to obtain snapshot pictures of the auroral electrodynamics. In particular, an 'instantaneous' global equipotential (or convection) pattern is calculated using field-aligned current and conductivity distributions that are qualitatively consistent with the Viking auroral imager data and quantitatively consistent with magnetic field and particle data from the two satellites. This convection pattern which is of the normal two-cell type, with a weak dusk cell and a strong, elongated crescent-shaped dawn cell (consistent with positive IMF B y ) agrees well with the Viking electric field data. The model and the observed potential profiles agree nicely along the entire Viking orbit except for two intervals above acceleration regions where deviations are to be expected (due to parallel electric fields). These regions are characterized by: U-shaped potential minima, upward field-aligned currents, upgoing ion beams and relatively intense AKR. The model results are thus consistent with the Viking observations not only on a global scale but also on the scale size of the auroral acceleration regions. The corresponding convection in the magnetosphere is illustrated by a simple projection of the deduced two-cell convection pattern to the equatorial plane. From this the instantaneous location of the plasmapause is inferred. (authors)

  14. The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter

    Science.gov (United States)

    McComas, D. J.; Alexander, N.; Allegrini, F.; Bagenal, F.; Beebe, C.; Clark, G.; Crary, F.; Desai, M. I.; De Los Santos, A.; Demkee, D.; Dickinson, J.; Everett, D.; Finley, T.; Gribanova, A.; Hill, R.; Johnson, J.; Kofoed, C.; Loeffler, C.; Louarn, P.; Maple, M.; Mills, W.; Pollock, C.; Reno, M.; Rodriguez, B.; Rouzaud, J.; Santos-Costa, D.; Valek, P.; Weidner, S.; Wilson, P.; Wilson, R. J.; White, D.

    2017-11-01

    The Jovian Auroral Distributions Experiment (JADE) on Juno provides the critical in situ measurements of electrons and ions needed to understand the plasma energy particles and processes that fill the Jovian magnetosphere and ultimately produce its strong aurora. JADE is an instrument suite that includes three essentially identical electron sensors (JADE-Es), a single ion sensor (JADE-I), and a highly capable Electronics Box (EBox) that resides in the Juno Radiation Vault and provides all necessary control, low and high voltages, and computing support for the four sensors. The three JADE-Es are arrayed 120∘ apart around the Juno spacecraft to measure complete electron distributions from ˜0.1 to 100 keV and provide detailed electron pitch-angle distributions at a 1 s cadence, independent of spacecraft spin phase. JADE-I measures ions from ˜5 eV to ˜50 keV over an instantaneous field of view of 270∘×90∘ in 4 s and makes observations over all directions in space each 30 s rotation of the Juno spacecraft. JADE-I also provides ion composition measurements from 1 to 50 amu with m/Δ m˜2.5, which is sufficient to separate the heavy and light ions, as well as O+ vs S+, in the Jovian magnetosphere. All four sensors were extensively tested and calibrated in specialized facilities, ensuring excellent on-orbit observations at Jupiter. This paper documents the JADE design, construction, calibration, and planned science operations, data processing, and data products. Finally, the Appendix describes the Southwest Research Institute [SwRI] electron calibration facility, which was developed and used for all JADE-E calibrations. Collectively, JADE provides remarkably broad and detailed measurements of the Jovian auroral region and magnetospheric plasmas, which will surely revolutionize our understanding of these important and complex regions.

  15. Auroral kilometric radiation - An example of relativistic wave-particle interaction in geoplasma

    International Nuclear Information System (INIS)

    Pritchett, P.L.

    1990-01-01

    The earth's auroral kilometric radiation (AKR) is believed to be produced by the electron-cyclotron maser instability. This instability is the result of a wave-particle interaction in which relativistic effects are crucial. An explanation is given as to how these relativistic effects alter the shape of the resonance curve in velocity space and modify the R - X mode wave dispersion near the electron cyclotron frequency compared to the results obtained in the nonrelativistic limit and from cold-plasma theory. The properties of the cyclotron maser instability in a driven system are illustrated using two-dimensional electromagnetic particle simulations which incorporate a continual flow of primary energetic electrons along the magnetic field. 31 refs

  16. Modeling of Jovian Auroral Polar Ion and Proton Precipitation

    Science.gov (United States)

    Houston, S. J.; Ozak, N. O.; Cravens, T.; Schultz, D. R.; Mauk, B.; Haggerty, D. K.; Young, J. T.

    2017-12-01

    Auroral particle precipitation dominates the chemical and physical environment of the upper atmospheres and ionospheres of the outer planets. Precipitation of energetic electrons from the middle magnetosphere is responsible for the main auroral oval at Jupiter, but energetic electron, proton, and ion precipitation take place in the polar caps. At least some of the ion precipitation is associated with soft X-ray emission with about 1 GW of power. Theoretical modeling has demonstrated that the incident sulfur and oxygen ion energies must exceed about 0.5 MeV/nucleon (u) in order to produce the measured X-ray emission. In this work we present a model of the transport of magnetospheric oxygen ions as they precipitate into Jupiter's polar atmosphere. We have revised and updated the hybrid Monte Carlo model originally developed by Ozak et al., 2010 to model the Jovian X-ray aurora. We now simulate a wider range of incident oxygen ion energies (10 keV/u - 5 MeV/u) and update the collision cross-sections to model the ionization of the atmospheric neutrals. The polar cap location of the emission and magnetosphere-ionosphere coupling both indicate the associated field-aligned currents must originate near the magnetopause or perhaps the distant tail. Secondary electrons produced in the upper atmosphere by ion precipitation could be accelerated upward to relativistic energies due to the same field-aligned potentials responsible for the downward ion acceleration. To further explore this, we simulate the effect of the secondary electrons generated from the heavy ion precipitation. We use a two-stream transport model that computes the secondary electron fluxes, their escape from the atmosphere, and characterization of the H2 Lyman-Werner band emission, including a predicted observable spectrum with the associated color ratio. Our model predicts that escaping electrons have an energy range from 1 eV to 6 keV, H2 band emission rates produced are on the order of 75 kR for an input

  17. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, M.; Sakamoto, S.; Ishii, K. [Division of Neuroimaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders (Japan); Imamura, T.; Kazui, H.; Mori, E. [Division of Clinical Neurosciences, Hyogo Institute for Aging Brain and Cognitive Disorders, Hyogo (Japan)

    2002-03-01

    We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)

  18. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Matsui, M.; Sakamoto, S.; Ishii, K.; Imamura, T.; Kazui, H.; Mori, E.

    2002-01-01

    We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)

  19. A 4D global respiratory motion model of the thorax based on CT images: A proof of concept.

    Science.gov (United States)

    Fayad, Hadi; Gilles, Marlene; Pan, Tinsu; Visvikis, Dimitris

    2018-05-17

    Respiratory motion reduces the sensitivity and specificity of medical images especially in the thoracic and abdominal areas. It may affect applications such as cancer diagnostic imaging and/or radiation therapy (RT). Solutions to this issue include modeling of the respiratory motion in order to optimize both diagnostic and therapeutic protocols. Personalized motion modeling required patient-specific four-dimensional (4D) imaging which in the case of 4D computed tomography (4D CT) acquisition is associated with an increased dose. The goal of this work was to develop a global respiratory motion model capable of relating external patient surface motion to internal structure motion without the need for a patient-specific 4D CT acquisition. The proposed global model is based on principal component analysis and can be adjusted to a given patient anatomy using only one or two static CT images in conjunction with a respiratory synchronized patient external surface motion. It is based on the relation between the internal motion described using deformation fields obtained by registering 4D CT images and patient surface maps obtained either from optical imaging devices or extracted from CT image-based patient skin segmentation. 4D CT images of six patients were used to generate the global motion model which was validated by adapting it on four different patients having skin segmented surfaces and two other patients having time of flight camera acquired surfaces. The reproducibility of the proposed model was also assessed on two patients with two 4D CT series acquired within 2 weeks of each other. Profile comparison shows the efficacy of the global respiratory motion model and an improvement while using two CT images in order to adapt the model. This was confirmed by the correlation coefficient with a mean correlation of 0.9 and 0.95 while using one or two CT images respectively and when comparing acquired to model generated 4D CT images. For the four patients with segmented

  20. SuperDARN HF Scattering and Propagation in the Presence of Polar Patches Imaged Using RISR

    Science.gov (United States)

    Gillies, R. G.; Perry, G. W.; Varney, R. H.; Gillies, D. M.; Donovan, E.

    2017-12-01

    The global array of High Frequency (HF) Super Dual Auroral Radar Network (SuperDARN) radars continuously monitors ionospheric convection in the middle-to-high latitude region. The radars measure coherent backscatter from decameter scale field-aligned irregularities. One of the main generation mechanisms for these field-aligned irregularities is the gradient drift instability (GDI). The edges of ionospheric density structures, such as polar cap patches, provide ideal locations for GDI growth. The geometry required for GDI growth results in irregularities forming on the trailing edge of polar patches. However, irregularities generated by the non-linear evolution of the GDI can become prevalent throughout the patch within minutes. Modelling the irregularity growth and measurements of backscatter within patches have both confirmed this. One aspect that has often been overlooked in studies of coherent backscatter within patches is the effect of HF propagation on echo location. This study examines HF echo locations in the vicinity of patches that were imaged using the Resolute Bay Incoherent Scatter Radars (RISR). The effect of both vertical and lateral refraction of the HF wave on echo location is examined.

  1. Auroral and magnetic variations in the polar cusp and cleft. Signatures of magnetopause boundary layer dynamics

    International Nuclear Information System (INIS)

    Sandholt, P.E.; Egeland, A.

    1987-10-01

    By combining continous ground-based observations of polar cleft/cusp auroras and local magnetic variations with electromagnetic parameters obtained from satellites in polar orbit (low-altitude cleft/cusp) and in the magnetosheath/interplanetary space, different electrodynamic processes in the polar cleft/cusp have been investigated. One of the more controversial questions in this field is related to the observed shifts in latitude of cleft/cusp auroras and the relationships with the interplanetary magnetic field (IMF) orientation, local magnetic disturbances (DP2 and DPY modes) and magnetospheric substorms. A new approach which may contribute to clarifying these complicated relationships, simultaneous groundbased observations of the midday and evening-midnight sectors of the auroral oval, is illustrated. A related topic is the spatial relationship between the cleft/cusp auroras and the ionospheric convection currents. A characteristic feature of the polar cusp and cleft regions during negative IMF B z is repeated occurrence of certain short-lived auroral structures moving in accordance with the local convection pattern. Satellite measurements of particle precipitation, magnetic field and ion drift components permit detailed investigations of the electrodynamics of these cusp/cleft structures. Information on electric field components, Birkeland currents, Poynting flux, height-integrated Pedersen conductivity and Joule heat dissipation rate has been derived. These observations are discussed in relation to existing models of temporal plasma injections from the magnetosheath

  2. Measuring the Earth System in a Time of Global Environmental Change with Image Spectroscopy

    Science.gov (United States)

    Green, Robert O.

    2005-01-01

    Measuring the Earth system in a time of global environmental change. Imaging Spectroscopy enables remote measurement. Remote Measurement determination of the properties of the Earth's surface and atmosphere through the physics, chemistry and biology of the interaction of electromagnetic energy with matter.

  3. FPGA Accelerator for Wavelet-Based Automated Global Image Registration

    Directory of Open Access Journals (Sweden)

    Baofeng Li

    2009-01-01

    Full Text Available Wavelet-based automated global image registration (WAGIR is fundamental for most remote sensing image processing algorithms and extremely computation-intensive. With more and more algorithms migrating from ground computing to onboard computing, an efficient dedicated architecture of WAGIR is desired. In this paper, a BWAGIR architecture is proposed based on a block resampling scheme. BWAGIR achieves a significant performance by pipelining computational logics, parallelizing the resampling process and the calculation of correlation coefficient and parallel memory access. A proof-of-concept implementation with 1 BWAGIR processing unit of the architecture performs at least 7.4X faster than the CL cluster system with 1 node, and at least 3.4X than the MPM massively parallel machine with 1 node. Further speedup can be achieved by parallelizing multiple BWAGIR units. The architecture with 5 units achieves a speedup of about 3X against the CL with 16 nodes and a comparative speed with the MPM with 30 nodes. More importantly, the BWAGIR architecture can be deployed onboard economically.

  4. FPGA Accelerator for Wavelet-Based Automated Global Image Registration

    Directory of Open Access Journals (Sweden)

    Li Baofeng

    2009-01-01

    Full Text Available Abstract Wavelet-based automated global image registration (WAGIR is fundamental for most remote sensing image processing algorithms and extremely computation-intensive. With more and more algorithms migrating from ground computing to onboard computing, an efficient dedicated architecture of WAGIR is desired. In this paper, a BWAGIR architecture is proposed based on a block resampling scheme. BWAGIR achieves a significant performance by pipelining computational logics, parallelizing the resampling process and the calculation of correlation coefficient and parallel memory access. A proof-of-concept implementation with 1 BWAGIR processing unit of the architecture performs at least 7.4X faster than the CL cluster system with 1 node, and at least 3.4X than the MPM massively parallel machine with 1 node. Further speedup can be achieved by parallelizing multiple BWAGIR units. The architecture with 5 units achieves a speedup of about 3X against the CL with 16 nodes and a comparative speed with the MPM with 30 nodes. More importantly, the BWAGIR architecture can be deployed onboard economically.

  5. Identifications of the polar cap boundary and the auroral belt in the high-altitude magnetosphere: a model for field-aligned currents

    International Nuclear Information System (INIS)

    Sugiura, M.

    1975-01-01

    By means of the Ogo 5 Goddard Space Flight Center fluxgate magnetometer data the polar cap boundary is identified in the high-altitude magnetosphere by a sudden transition from a dipolar field to a more taillike configuration. It is inferred that there exists a field-aligned-current layer at the polar cap boundary. In the night side magnetosphere the polar cap boundary is identified as the high-latitude boundary of the plasma sheet. The field-aligned current flows downward to the ionosphere on the morning side of the magnetosphere and upward from the ionosphere on the afternoon side. The basic pattern of the magnetic field variations observed during the satellite's traversal of the auroral belt is presented. Currents flow in opposite directions in the two field-aligned-current layers. The current directions in these layers as observed by Ogo 5 in the high-altitude magnetosphere are the same as those observed at low altitudes by the polar-orbiting Triad satellite (Armstrong and Zmuda, 1973). The magnetic field in the region where the lower-latitude field-aligned-current layer is situated is essentially meridional. A model is presented in which two field-aligned-current systems, one at the polar cap boundary and the other on the low-latitude part of the auroral belt, are main []y connected by ionospheric currents flowing across the auroral belt. The existence of field-aligned currents deduced from the Ogo 5 observations is a permanent feature of the magnetosphere. Intensifications of the field-aligned currents and occurrences of multiple pairs of field-aligned-current layers characterize the disturbed conditions of these regions

  6. Interferometric phase velocity measurements in the auroral electrojet

    International Nuclear Information System (INIS)

    Labelle, J.; Kinter, P.M.; Kelley, M.C.

    1986-01-01

    A double-probe electric field detector and two spatially separated fixed-bias Langmuir probes were flown on a Taurus-Tomahawk sounding rocket launched from Poker Flat Research Range in March 1982. Interesting wave data have been obtained from about 10 s of the downleg portion of the flight during which the rocket passed through the auroral electrojet. Here the electric field receiver and both density fluctuation (deltan/n) receivers responded to a broad band of turbulence centered at 105 km altitude and at frequencies generally below 4 kHz. Closer examination of the two deltan/n turbulent waveforms reveals that they are correlated, and from the phase difference between the two signals, the phase velocity of the waves in the rocket reference frame is inferred. The magnitude and direction of the observed phase velocity are consistent either with waves which travel at the ion sound speed (Csub(s)) or with waves which travel at the electron drift velocity. The observed phase velocity varies by about 50% over a 5 km altitude range - an effect which probably results from shear in the zonal neutral wind, although unfortunately no simultaneous neutral wind measurements exist to confirm this. (author)

  7. D- and E-region effects in the auroral zone during a moderately active 24-h period in July 2005

    Directory of Open Access Journals (Sweden)

    J. K. Hargreaves

    2007-08-01

    Full Text Available The effects of energetic electron precipitation into the auroral region at a time of enhanced solar wind have been investigated during a continuous period of 24 h, using the European Incoherent Scatter (EISCAT radar, an imaging riometer, and particle measurements on an orbiting satellite. The relative effects in the E region (120 km and D region (90 km are found to vary during the day, consistent with a gradual hardening of the incoming electron spectrum from pre-midnight to morning. Whereas the night spectra are single peaked, the daytime spectra are found to be double peaked, suggesting the presence of two distinct populations.

    A comparison between the radiowave absorption observed with the riometer and values estimated from the radar data shows generally good agreement, but with some discrepancies suggesting the occurrence of some small-scale features. The height and thickness of the absorbing region are estimated. Two periods of enhanced precipitation and the related radio absorption, one near magnetic midnight and one in the early morning, are studied in detail, including their horizontal structure and movement of the absorption patches.

    A sharp reduction of electron flux recorded on a POES satellite is related to the edge of an absorption region delineated by the imaging riometer. The observed particle flux is compared with a value deduced from the radar data during the overpass, and found to be in general agreement.

  8. D- and E-region effects in the auroral zone during a moderately active 24-h period in July 2005

    Directory of Open Access Journals (Sweden)

    J. K. Hargreaves

    2007-08-01

    Full Text Available The effects of energetic electron precipitation into the auroral region at a time of enhanced solar wind have been investigated during a continuous period of 24 h, using the European Incoherent Scatter (EISCAT radar, an imaging riometer, and particle measurements on an orbiting satellite. The relative effects in the E region (120 km and D region (90 km are found to vary during the day, consistent with a gradual hardening of the incoming electron spectrum from pre-midnight to morning. Whereas the night spectra are single peaked, the daytime spectra are found to be double peaked, suggesting the presence of two distinct populations. A comparison between the radiowave absorption observed with the riometer and values estimated from the radar data shows generally good agreement, but with some discrepancies suggesting the occurrence of some small-scale features. The height and thickness of the absorbing region are estimated. Two periods of enhanced precipitation and the related radio absorption, one near magnetic midnight and one in the early morning, are studied in detail, including their horizontal structure and movement of the absorption patches. A sharp reduction of electron flux recorded on a POES satellite is related to the edge of an absorption region delineated by the imaging riometer. The observed particle flux is compared with a value deduced from the radar data during the overpass, and found to be in general agreement.

  9. On the lifetime and extent of an auroral westward flow channel (AWFC observed during a magnetospheric substorm

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    Full Text Available A -190-nT negative bay in the geomagnetic X component measured at Macquarie Island ( -65° L showed that an ionospheric substorm occurred during 09:58 to 11:10 UT on 27 February 2000. Signatures of an auroral westward flow channel (AWFC were observed nearly simultaneously in the backscatter power, LOS Doppler velocity, and Doppler spectral width measured using the Tasman International Geospace Environment Radar (TIGER, a Southern Hemisphere HF SuperDARN radar. Many of the characteristics of the AWFC were similar to those occurring during a polarisation jet (PJ, or subauroral ion drift (SAID event, and suggest that it may have been a pre-cursor to a fully developed, intense westward flow channel satisfying all of the criteria defining a PJ/SAID. A beam-swinging analysis showed that the westward drifts (poleward electric field associated with the flow channel were very structured in time and space, but the smoothed velocities grew to ~ 800 ms-1 (47 mVm-1 during the 22-min substorm onset interval 09:56 to 10:18 UT. Maximum west-ward drifts of >1.3 km s-1 (>77 mVm-1 occurred during a ~ 5-min velocity spike, peaking at 10:40 UT during the expansion phase. The drifts decayed rapidly to ~ 300 ms-1 (18 mVm-1 during the 6-min recovery phase interval, 11:04 to 11:10 UT. Overall, the AWFC had a lifetime of 74 min, and was located near -65° L in the evening sector west of the Harang discontinuity. The large westward drifts were confined to a geographic zonal channel of longitudinal ex-tent >20° (>1.3 h magnetic local time, and latitudinal width ~2° L. Using a half-width of ~ 100 km in latitude, the peak electric potential was >7.7 kV. However, a transient velocity of >3.1 km s-1 with potential >18.4 kV was observed further poleward at the end of the recovery phase. Auroral oval boundaries determined

  10. Diffusion magnetic resonance imaging in transient global amnesia

    Energy Technology Data Exchange (ETDEWEB)

    Godeiro-Junior, Clecio; Miranda-Alves, Maramelia Araujo de [Federal University of Sao Paulo (UNIFESP-EPM), Sao Paulo SP (Brazil). Dept. of Neurology and Neurosurgery], e-mail: cleciojunior@yahoo.com.br; Massaro, Ayrton Roberto [Fleury Diagnostic Center, Sao Paulo SP (Brazil)

    2009-03-15

    Transient global amnesia (TGA) is a well known clinical entity characterized by anterograde memory disturbance of sudden onset that lasts 1 to 24 hours. Orientation in space and time is impaired while consciousness remains undisturbed. TGA may refer to a single expression of several physiopathological phenomena. Conceptually, cerebral ischemia, epileptic discharge, and migraine constitute the main pathogenic hypothesis. Diffusion-weighted imaging (DWI) has become a powerful tool in the evaluation of patients with suspected stroke owing to its high sensitivity and specificity, even for small areas of acute ischemia. Consequently, this method has also been applied to TGA to gain further insights into the ischemic hypothesis of this condition. We report a patient with a typical TGA presentation and MRI findings suggestive of an ischemic insult. We further discuss the ischemic hypothesis of TGA. (author)

  11. Diffusion magnetic resonance imaging in transient global amnesia

    International Nuclear Information System (INIS)

    Godeiro-Junior, Clecio; Miranda-Alves, Maramelia Araujo de

    2009-01-01

    Transient global amnesia (TGA) is a well known clinical entity characterized by anterograde memory disturbance of sudden onset that lasts 1 to 24 hours. Orientation in space and time is impaired while consciousness remains undisturbed. TGA may refer to a single expression of several physiopathological phenomena. Conceptually, cerebral ischemia, epileptic discharge, and migraine constitute the main pathogenic hypothesis. Diffusion-weighted imaging (DWI) has become a powerful tool in the evaluation of patients with suspected stroke owing to its high sensitivity and specificity, even for small areas of acute ischemia. Consequently, this method has also been applied to TGA to gain further insights into the ischemic hypothesis of this condition. We report a patient with a typical TGA presentation and MRI findings suggestive of an ischemic insult. We further discuss the ischemic hypothesis of TGA. (author)

  12. Auroral electrojet dynamics during magnetic storms, connection with plasma precipitation and large-scale structure of the magnetospheric magnetic field

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    1999-04-01

    Full Text Available Effect of the equatorward shift of the eastward and westward electrojets during magnetic storms main phase is analyzed based on the meridional chains of magnetic observatories EISCAT and IMAGE and several Russian observatories (geomagnetic longitude ~110°, corrected geomagnetic latitudes 74°F 51°. Magnetic storms of various Dst index intensity where the main phase falls on 1000 UT - 2400 UT interval were selected so that one of the observatory chains was located in the afternoon - near midnight sector of MLT. The eastward electrojet center shifts equatorward with Dst intensity increase: when Dst ~ - 50 nT the electrojet center is located at F ~ 62°, when Dst ~ -300 nT it is placed at F ~54°. The westward electrojet center during magnetic storms main phase for intervals between substorms shifts equatorward with Dst increase: at F~ 62° when Dst ~ -100 nT and at F ~ 55° when Dst ~ -300 nT. During substorms within the magnetic storms intervals the westward electrojet widens poleward covering latitudes F~ 64°- 65°. DMSP (F08, F10 and F11 satellite observations of auroral energy plasma precipitations at upper atmosphere altitudes were used to determine precipitation region structure and location of boundaries of various plasma domains during magnetic storms on May 10-11, 1992, February 5-7 and February 21-22, 1994. Interrelationships between center location, poleward and equatorward boundaries of electrojets and characteristic plasma regions are discussed. The electrojet center, poleward and equatorward boundaries along the magnetic observatories meridional chain were mapped to the magnetosphere using the geomagnetic field paraboloid model. The location of auroral energy oxygen ion regions in the night and evening magnetosphere is determined. Considerations are presented on the mechanism causing the appearance in the inner magnetosphere during active intervals of magnetic storms of ions with energy of tens KeV. In the framework of the

  13. H(+) - O(+) two-stream interaction on auroral field lines

    International Nuclear Information System (INIS)

    Bergmann, R.

    1990-01-01

    Upflowing beams of hydrogen, oxygen, and minor ion species, and downward accelerated electrons have been observed above several thousand kilometers altitude on evening auroral field lines. The mechanism for electron and ion acceleration is generally accepted to be the presence of a quasi-static electric field with a component parallel to the earth's magnetic field. The thermal energy of the observed beams is much larger than ionospheric ion temperatures indicating that the beams have been heated as they are accelerated upward. This heating is probably due to a two-stream interaction between beams of different mass ions. The beams gain equal energy in the potential drop and so have different average velocities. Their relative streaming initiates an ion-ion two-stream interaction which then mediates a transfer of energy and momentum between the beams and causes thermalization of each beam. The qualitative evidence that supports this scenario is reviewed. Properties of the two-stream instability are presented in order to demonstrate that a calculation of the evolution of ion beams requires a model that includes field-aligned spatial structure. 26 refs

  14. Compounding local invariant features and global deformable geometry for medical image registration.

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    Full Text Available Using deformable models to register medical images can result in problems of initialization of deformable models and robustness and accuracy of matching of inter-subject anatomical variability. To tackle these problems, a novel model is proposed in this paper by compounding local invariant features and global deformable geometry. This model has four steps. First, a set of highly-repeatable and highly-robust local invariant features, called Key Features Model (KFM, are extracted by an effective matching strategy. Second, local features can be matched more accurately through the KFM for the purpose of initializing a global deformable model. Third, the positional relationship between the KFM and the global deformable model can be used to precisely pinpoint all landmarks after initialization. And fourth, the final pose of the global deformable model is determined by an iterative process with a lower time cost. Through the practical experiments, the paper finds three important conclusions. First, it proves that the KFM can detect the matching feature points well. Second, the precision of landmark locations adjusted by the modeled relationship between KFM and global deformable model is greatly improved. Third, regarding the fitting accuracy and efficiency, by observation from the practical experiments, it is found that the proposed method can improve 6~8% of the fitting accuracy and reduce around 50% of the computational time compared with state-of-the-art methods.

  15. Generation of the auroral electron velocity distribution by stochastic acceleration

    International Nuclear Information System (INIS)

    Bryant, D.A.; Cook, A.C.; Wang, Z.-S.; Angelis, U. de.

    1990-07-01

    In a further development of the wave theory of the aurora, it is demonstrated, using a Monte-Carlo numerical model, that the characteristic peak in the auroral electron velocity distribution can be generated stochastically through resonant interactions between an initially monotonic distribution and lower-hybrid electrostatic turbulence. The principal requirement is that the velocity spectrum of resonant waves has a sharp cut-off at high velocity. It is then shown that a cut-off is expected as a natural consequence of the difference between the phase and group velocities of lower-hybrid waves. The possibility is considered that a second peak, sometimes observed at lower velocities, is due to the same statistical mechanism, arising from the damping of waves of low phase velocity. An enhancement of wave intensity is found at higher velocities, where momentum flows preferentially from electrons to waves. The relation between the wave theory and the currently prevailing potential-difference theory emerges clearly from the analysis. (author)

  16. Generation of Z mode radiation by diffuse auroral electron precipitation

    Science.gov (United States)

    Dusenbery, P. B.; Lyons, L. R.

    1985-01-01

    The generation of Z mode waves by diffuse auroral electron precipitation is investigated assuming that a loss cone exists in the upgoing portion of the distribution due to electron interactions with the atmosphere. The waves are generated at frequencies above, but very near, the local electron cyclotron frequency omega(e) and at wave normal angles larger than 90 deg. In agreement with Hewitt et al. (1983), the group velocity is directed downward in regions where the ratio of the upper hybrid frequency omega(pe) to Omega(e) is less than 0.5, so that Z mode waves excited above a satellite propagate toward it and away from the upper hybrid resonance. Z mode waves are excited in a frequency band between Omega(e) and about 1.02 Omega(e), and with maximum growth rates of about 0.001 Omega(e). The amplification length is about 100 km, which allows Z mode waves to grow to the intensities observed by high-altitude satellites.

  17. Incoherent-scatter radar measurements of electric field and plasma in the auroral ionosphere

    International Nuclear Information System (INIS)

    Vondrak, R.

    1983-01-01

    This chapter summarizes Chatanika radar measurements of electric fields and currents, and their relation to E-region ionization and conductivity. Electric-field coupling between the ionosphere and magnetosphere and the relationship between field-aligned currents and meridional ionospheric currents are examined. Topics considered include the diurnal pattern of the ionization and electric field; electrical coupling between the ionosphere and magnetosphere; and the relationship between meridional currents and field-aligned currents. It is concluded that the incoherent-scatter radar technique has been developed into a powerful method for remotely measuring the electrical and thermal properties of the auroral ionospheric plasma, and that the usefulness of the radar measurements is greatly enhanced when combined with simultaneous satellite measurements

  18. Global rotational motion and displacement estimation of digital image stabilization based on the oblique vectors matching algorithm

    Science.gov (United States)

    Yu, Fei; Hui, Mei; Zhao, Yue-jin

    2009-08-01

    The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.

  19. Ionospheric storms at geophysically-equivalent sites – Part 1: Storm-time patterns for sub-auroral ionospheres

    Directory of Open Access Journals (Sweden)

    M. Mendillo

    2009-04-01

    Full Text Available The systematic study of ionospheric storms has been conducted primarily with groundbased data from the Northern Hemisphere. Significant progress has been made in defining typical morphology patterns at all latitudes; mechanisms have been identified and tested via modeling. At higher mid-latitudes (sites that are typically sub-auroral during non-storm conditions, the processes that change significantly during storms can be of comparable magnitudes, but with different time constants. These include ionospheric plasma dynamics from the penetration of magnetospheric electric fields, enhancements to thermospheric winds due to auroral and Joule heating inputs, disturbance dynamo electrodynamics driven by such winds, and thermospheric composition changes due to the changed circulation patterns. The ~12° tilt of the geomagnetic field axis causes significant longitude effects in all of these processes in the Northern Hemisphere. A complementary series of longitude effects would be expected to occur in the Southern Hemisphere. In this paper we begin a series of studies to investigate the longitudinal-hemispheric similarities and differences in the response of the ionosphere's peak electron density to geomagnetic storms. The ionosonde stations at Wallops Island (VA and Hobart (Tasmania have comparable geographic and geomagnetic latitudes for sub-auroral locations, are situated at longitudes close to that of the dipole tilt, and thus serve as our candidate station-pair choice for studies of ionospheric storms at geophysically-comparable locations. They have an excellent record of observations of the ionospheric penetration frequency (foF2 spanning several solar cycles, and thus are suitable for long-term studies. During solar cycle #20 (1964–1976, 206 geomagnetic storms occurred that had Ap≥30 or Kp≥5 for at least one day of the storm. Our analysis of average storm-time perturbations (percent deviations from the monthly means showed a remarkable

  20. Design and breadboarding activities of the second-generation Global imager (SGLI) on GCOM-C

    Science.gov (United States)

    Okamura, Yoshihiko; Tanaka, Kazuhiro; Amano, Takahiro; Hiramatsu, Masaru; Shiratama, Koichi

    2017-11-01

    The Global Change Observation Mission (GCOM) is the next generation earth observation project of Japan Aerospace Exploration Agency (JAXA). GCOM concept will take over the Advanced Earth Observing Satellite-II (ADEOS-II) and develop into long-term monitoring of global climate change. The GCOM observing system consists of two series of medium size satellites: GCOM-W (Water) and GCOM-C (Climate). The Second-generation Global Imager (SGLI) on GCOM-C is a multi-band imaging radiometer with 19 spectral bands in the wavelength range of near-UV to thermal infrared. SGLI will provide high-accuracy measurements of Ocean, Atmosphere, Land and Cryosphere. These data will be utilized for studies to understand the global climate change, especially human activity influence on earth environments. SGLI is a suite of two radiometers called Visible and Near Infrared Radiometer (VNR) and Infrared Scanner (IRS). VNR is a pushbroom-type radiometer with 13 spectral bands in 380nm to 865nm range. While having quite wide swath (1150km), instantaneous field of view (IFOV) of most bands is set to 250m comparing to GLI's 1km requirement. Unique observation function of the VNR is along-track +/-45deg tilting and polarization observation for 670nm and 865nm bands mainly to improve aerosol retrieval accuracy. IRS is a wiskbroom-type infrared radiometer that has 6 bands in 1μm to 12μm range. Swath and IFOV are 1400km and 250m to 1km, respectively. This paper describes design and breadboarding activities of the SGLI instrument.