WorldWideScience

Sample records for global accretion rate

  1. TESTING CONVERGENCE FOR GLOBAL ACCRETION DISKS

    Hawley, John F.; Richers, Sherwood A.; Guan Xiaoyue [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Krolik, Julian H., E-mail: jh8h@virginia.edu, E-mail: xg3z@virginia.edu, E-mail: jhk@pha.jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2013-08-01

    Global disk simulations provide a powerful tool for investigating accretion and the underlying magnetohydrodynamic turbulence driven by magneto-rotational instability (MRI). Using them to accurately predict quantities such as stress, accretion rate, and surface brightness profile requires that purely numerical effects, arising from both resolution and algorithm, be understood and controlled. We use the flux-conservative Athena code to conduct a series of experiments on disks having a variety of magnetic topologies to determine what constitutes adequate resolution. We develop and apply several resolution metrics: (Q{sub z} ) and (Q{sub {phi}}), the ratio of the grid zone size to the characteristic MRI wavelength, {alpha}{sub mag}, the ratio of the Maxwell stress to the magnetic pressure, and /, the ratio of radial to toroidal magnetic field energy. For the initial conditions considered here, adequate resolution is characterized by (Q{sub z} ) {>=} 15, (Q{sub {phi}}) {>=} 20, {alpha}{sub mag} Almost-Equal-To 0.45, and /{approx}0.2. These values are associated with {>=}35 zones per scaleheight H, a result consistent with shearing box simulations. Numerical algorithm is also important. Use of the Harten-Lax-van Leer-Einfeldt flux solver or second-order interpolation can significantly degrade the effective resolution compared to the Harten-Lax-van Leer discontinuities flux solver and third-order interpolation. Resolution at this standard can be achieved only with large numbers of grid zones, arranged in a fashion that matches the symmetries of the problem and the scientific goals of the simulation. Without it, however, quantitative measures important to predictions of observables are subject to large systematic errors.

  2. Turbulence in Accretion Discs. The Global Baroclinic Instability

    Klahr, Hubert; Bodenheimer, Peter

    The transport of angular momentum away from the central object is a sufficient condition for a protoplanetary disk to accrete matter onto the star and spin it down. Magnetic fields cannot be of importance for this process in a large part of the cold and dusty disk where the planets supposedly form. Our new hypothesis on the angular momentum transport based on radiation hydro simulations is as follows: We present the global baroclinic instability as a source for vigorous turbulence leading to angular momentum transport in Keplerian accretion disks. We show by analytical considerations and three-dimensional radiation hydro simulations that, in particular, protoplanetary disks have a negative radial entropy gradient, which makes them baroclinic. Two-dimensional numerical simulations show that this baroclinic flow is unstable and produces turbulence. These findings are currently tested for numerical effects by performing barotropic simulations which show that imposed turbulence rapidly decays. The turbulence in baroclinic disks draws energy from the background shear, transports angular momentum outward and creates a radially inward bound accretion of matter, thus forming a self consistent process. Gravitational energy is transformed into turbulent kinetic energy, which is then dissipated, as in the classical accretion paradigm. We measure accretion rates in 2D and 3D simulations of dot M= - 10-9 to -10-7 Msolar yr-1 and viscosity parameters of α = 10-4 - 10-2, which fit perfectly together and agree reasonably with observations. The turbulence creates pressure waves, Rossby waves, and vortices in the (r-φ) plane of the disk. We demonstrate in a global simulation that these vortices tend to form out of little background noise and to be long-lasting features, which have already been suggested to lead to the formation of planets.

  3. Coastal erosion and accretion rates in Greece

    Foteinis, Spyros; Papadopoulos, Costas; Koutsogiannaki, Irini; Synolakis, Costas

    2010-05-01

    Erosion threatens many coastal regions of Greece. Anthropogenic changes of landforms such as coastal roads built on even narrow beaches, sand mining for construction, poor design of coastal structures that interfere with sediment, and dams without sediment bypasses have significantly reduced beach widths. We present erosion rates for different beaches, some of which are in sensitive ecosystems, otherwise "protected" by local and EU ordinances. By comparing inferences of beach widths in varying intervals from 1933 to 2006, we infer that the construction of dams in Acheloos river in western Greece, built in a faraonic attempt to partially divert its flows to eastern Greece, this is responsible for up to 20m/year erosion rates observed in certain locales in the Acheloos delta. More characteristic erosion rates in the region are ~ 2m/year. By contrast, there appears rapid accretion of up to 4m/year in the beaches around the Nestos delta in northern Greece (Papadopoulos, 2009). In beaches that are not near large river deltas, erosion rates range from 0.5m/year to 1m/year. While we have not done comprehensive comparisons among coastlines with different levels of coastal development, it does appear that rapid coastal development correlates well with erosion rates. The underlying problem is the complete lack of any semblance of coastal zone management in Greece and substandard design of coastal structures, which are often sited without any measurements of waves and currents offshore (Synolakis et al, 2008). Beach maintenance remains an exotic concept for most local authorities, who invariably prefer to build hard coastal structures to "protect" versus nourish, siting lack of experience with nourishment and "environmental" concerns. In certain cases, choices are dictated by costs, the larger the cost the easier the project gets approved by regulatory authorities, hence the preference for concrete or rubble structures. We conclude that, unless urgent salvage measures are

  4. MEASURING TINY MASS ACCRETION RATES ONTO YOUNG BROWN DWARFS

    Herczeg, Gregory J.; Cruz, Kelle L.; Hillenbrand, Lynne A.

    2009-01-01

    We present low-resolution Keck I/LRIS spectra spanning from 3200 to 9000 A of nine young brown dwarfs and three low-mass stars in the TW Hya Association and in Upper Sco. The optical spectral types of the brown dwarfs range from M5.5 to M8.75, though two have near-IR spectral types of early L dwarfs. We report new accretion rates derived from excess Balmer continuum emission for the low-mass stars TW Hya and Hen 3-600A and the brown dwarfs 2MASS J12073347-3932540, UScoCTIO 128, SSSPM J1102-3431, USco J160606.29-233513.3, DENIS-P J160603.9-205644, and Oph J162225-240515B, and upper limits on accretion for the low-mass star Hen 3-600B and the brown dwarfs UScoCTIO 112, Oph J162225-240515A, and USco J160723.82-221102.0. For the six brown dwarfs in our sample that are faintest at short wavelengths, the accretion luminosity or upper limit is measurable only when the image is binned over large wavelength intervals. This method extends our sensitivity to accretion rate down to ∼10 -13 M sun yr -1 for brown dwarfs. Since the ability to measure an accretion rate from excess Balmer continuum emission depends on the contrast between excess continuum emission and the underlying photosphere, for objects with earlier spectral types the upper limit on accretion rate is much higher. Absolute uncertainties in our accretion rate measurements of ∼3-5 include uncertainty in accretion models, brown dwarf masses, and distance. The accretion rate of 2 x 10 -12 M sun yr -1 onto 2MASS J12073347-3932540 is within 15% of two previous measurements, despite large changes in the Hα flux.

  5. Super-Eddington Accretion in Tidal Disruption Events: the Impact of Realistic Fallback Rates on Accretion Rates

    Wu, Samantha; Coughlin, Eric R.; Nixon, Chris

    2018-04-01

    After the tidal disruption of a star by a massive black hole, disrupted stellar debris can fall back to the hole at a rate significantly exceeding its Eddington limit. To understand how black hole mass affects the duration of super-Eddington accretion in tidal disruption events, we first run a suite of simulations of the disruption of a Solar-like star by a supermassive black hole of varying mass to directly measure the fallback rate onto the hole, and we compare these fallback rates to the analytic predictions of the "frozen-in" model. Then, adopting a Zero-Bernoulli Accretion flow as an analytic prescription for the accretion flow around the hole, we investigate how the accretion rate onto the black hole evolves with the more accurate fallback rates calculated from the simulations. We find that numerically-simulated fallback rates yield accretion rates onto the hole that can, depending on the black hole mass, be nearly an order of magnitude larger than those predicted by the frozen-in approximation. Our results place new limits on the maximum black hole mass for which super-Eddington accretion occurs in tidal disruption events.

  6. On the Dependence of the X-Ray Burst Rate on Accretion and Spin Rate

    Cavecchi, Yuri; Watts, Anna L.; Galloway, Duncan K.

    2017-12-01

    Nuclear burning and its dependence on the mass accretion rate are fundamental ingredients for describing the complicated observational phenomenology of neutron stars (NSs) in binary systems. Motivated by high-quality burst rate data emerging from large statistical studies, we report general calculations relating the bursting rate to the mass accretion rate and NS rotation frequency. In this first work, we ignore general relativistic effects and accretion topology, although we discuss where their inclusion should play a role. The relations we derive are suitable for different burning regimes and provide a direct link between parameters predicted by theory and what is to be expected in observations. We illustrate this for analytical relations of different unstable burning regimes that operate on the surface of an accreting NS. We also use the observed behavior of the burst rate to suggest new constraints on burning parameters. We are able to provide an explanation for the long-standing problem of the observed decrease of the burst rate with increasing mass accretion that follows naturally from these calculations: when the accretion rate crosses a certain threshold, ignition moves away from its initially preferred site, and this can cause a net reduction of the burst rate due to the effects of local conditions that set local differences in both the burst rate and stabilization criteria. We show under which conditions this can happen even if locally the burst rate keeps increasing with accretion.

  7. Reaction rate and composition dependence of the stability of thermonuclear burning on accreting neutron stars

    Keek, L.; Cyburt, R. H.; Heger, A.

    2014-01-01

    The stability of thermonuclear burning of hydrogen and helium accreted onto neutron stars is strongly dependent on the mass accretion rate. The burning behavior is observed to change from Type I X-ray bursts to stable burning, with oscillatory burning occurring at the transition. Simulations predict the transition at a 10 times higher mass accretion rate than observed. Using numerical models we investigate how the transition depends on the hydrogen, helium, and CNO mass fractions of the accreted material, as well as on the nuclear reaction rates of 3α and the hot-CNO breakout reactions 15 O(α, γ) 19 Ne and 18 Ne(α, p) 21 Na. For a lower hydrogen content the transition is at higher accretion rates. Furthermore, most experimentally allowed reaction rate variations change the transition accretion rate by at most 10%. A factor 10 decrease of the 15 O(α, γ) 19 Ne rate, however, produces an increase of the transition accretion rate of 35%. None of our models reproduce the transition at the observed rate, and depending on the true 15 O(α, γ) 19 Ne reaction rate, the actual discrepancy may be substantially larger. We find that the width of the interval of accretion rates with marginally stable burning depends strongly on both composition and reaction rates. Furthermore, close to the stability transition, our models predict that X-ray bursts have extended tails where freshly accreted fuel prolongs nuclear burning.

  8. Increases to Inferred Rates of Planetesimal Accretion due to Thermohaline Mixing in Metal-accreting White Dwarfs

    Bauer, Evan B.; Bildsten, Lars

    2018-06-01

    Many isolated, old white dwarfs (WDs) show surprising evidence of metals in their photospheres. Given that the timescale for gravitational sedimentation is astronomically short, this is taken as evidence for ongoing accretion, likely of tidally disrupted planetesimals. The rate of such accretion, {\\dot{M}}acc}, is important to constrain, and most modeling of this process relies on assuming an equilibrium between diffusive sedimentation and metal accretion supplied to the WD’s surface convective envelope. Building on the earlier work of Deal and collaborators, we show that high {\\dot{M}}acc} models with only diffusive sedimentation are unstable to thermohaline mixing and that models that account for the enhanced mixing from the active thermohaline instability require larger accretion rates, sometimes reaching {\\dot{M}}acc}≈ {10}13 {{g}} {{{s}}}-1 to explain observed calcium abundances. We present results from a grid of MESA models that include both diffusion and thermohaline mixing. These results demonstrate that both mechanisms are essential for understanding metal pollution across the range of polluted WDs with hydrogen atmospheres. Another consequence of active thermohaline mixing is that the observed metal abundance ratios are identical to accreted material.

  9. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  10. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    Vargas-Ángel, Bernardo; Richards, Cristi L; Vroom, Peter S; Price, Nichole N; Schils, Tom; Young, Charles W; Smith, Jennifer; Johnson, Maggie D; Brainard, Russell E

    2015-01-01

    This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2) yr(-1)) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA

  11. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    Bernardo Vargas-Ángel

    Full Text Available This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2 yr(-1 of early successional recruitment communities on Calcification Accretion Unit (CAU plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons

  12. Cosmological Evolution of the Central Engine in High-Luminosity, High-Accretion Rate AGN

    Matteo Guainazzi

    2014-12-01

    Full Text Available In this paper I discuss the status of observational studies aiming at probing the cosmological evolution of the central engine in high-luminosity, high-accretion rate Active Galactic Nuclei (AGN. X-ray spectroscopic surveys, supported by extensive multi-wavelength coverage, indicate a remarkable invariance of the accretion disk plus corona system, and of their coupling up to redshifts z≈6. Furthermore, hard X-ray (E >10 keV surveys show that nearby Seyfert Galaxies share the same central engine notwithstanding their optical classication. These results suggest that the high-luminosity, high accretion rate quasar phase of AGN evolution is homogeneous over cosmological times.

  13. X-RAY DETERMINATION OF THE VARIABLE RATE OF MASS ACCRETION ONTO TW HYDRAE

    Brickhouse, N. S.; Cranmer, S. R.; Dupree, A. K.; Guenther, H. M.; Wolk, S. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Luna, G. J. M. [Current address: Instituto de Astronomia y Fisica del Espacio (IAFE), Buenos Aires (Argentina)

    2012-12-01

    Diagnostics of electron temperature (T{sub e} ), electron density (n{sub e} ), and hydrogen column density (N{sub H}) from the Chandra High Energy Transmission Grating spectrum of He-like Ne IX in TW Hydrae (TW Hya), in conjunction with a classical accretion model, allow us to infer the accretion rate onto the star directly from measurements of the accreting material. The new method introduces the use of the absorption of Ne IX lines as a measure of the column density of the intervening, accreting material. On average, the derived mass accretion rate for TW Hya is 1.5 Multiplication-Sign 10{sup -9} M{sub Sun} yr{sup -1}, for a stellar magnetic field strength of 600 G and a filling factor of 3.5%. Three individual Chandra exposures show statistically significant differences in the Ne IX line ratios, indicating changes in N{sub H}, T{sub e} , and n{sub e} by factors of 0.28, 1.6, and 1.3, respectively. In exposures separated by 2.7 days, the observations reported here suggest a five-fold reduction in the accretion rate. This powerful new technique promises to substantially improve our understanding of the accretion process in young stars.

  14. Accretion rates in salt marshes in the Eastern Scheldt, South-west Netherlands

    Oenema, O.; DeLaune, R.D.

    1988-01-01

    Vertical accretion and sediment accumulation rates were determined from the distribution of 137 Cs in sediment cores, from historic documents, and from artificial white-coloured tracer layers in salt marshes in the Eastern Scheldt. Salt marsh accretion is related to the steady rise of the mean high tide in the Eastern Scheldt during the last few decades. Mean accretion rates vary from 0.4-0.9 cm year -1 in the St Annaland marsh to 1.0-1.5 cm year -1 in the Rattekaai marsh. Sediment accumulation in accreting marshes exceed the loss of sediment, by retreat of the marsh cliffs, by a factor of 10-20. Short-term spatial and temporal variations in accretion rates are large. Spatial variations are associated with levee and backmarsh sites and the density of marsh vegetation. Temporal variations are mainly related to fluctuations in hydrodynamic conditions. The net vertical accretion rate of organic carbon is 0.4 ± 0.1 kg m -2 year -1 , approximately half this rate is associated with the current deposit, and the other half with net additions from the belowground root biomass. A simple model for the root biomass distribution of Spartina anglica with depth and the depth-dependent fossilization of root biomass in sediments of the Rattekaai marsh is presented. (author)

  15. Accretion rates in salt marshes in the Eastern Scheldt, South-West Netherlands

    Oenema, O.; DeLaune, R.D.

    1988-04-01

    Vertical accretion and sediment accumulation rates were determined from the distribution of /sup 137/Cs in sediment cores, from historic documents, and from artificial white-coloured tracer layers in salt marshes in the Eastern Scheldt. Salt marsh accretion is related to the steady rise of the mean high tide in the Eastern Scheldt during the last few decades. Mean accretion rates vary from 0.4-0.9 cm year/sup -1/ in the St Annaland marsh to 1.0-1.5 cm year/sup -1/ in the Rattekaai marsh. Sediment accumulation in accreting marshes exceed the loss of sediment, by retreat of the marsh cliffs, by a factor of 10-20. Short-term spatial and temporal variations in accretion rates are large. Spatial variations are associated with levee and backmarsh sites and the density of marsh vegetation. Temporal variations are mainly related to fluctuations in hydrodynamic conditions. The net vertical accretion rate of organic carbon is 0.4 +- 0.1 kg m/sup -2/ year/sup -1/, approximately half this rate is associated with the current deposit, and the other half with net additions from the belowground root biomass. A simple model for the root biomass distribution of Spartina anglica with depth and the depth-dependent fossilization of root biomass in sediments of the Rattekaai marsh is presented.

  16. The impact of feedback and the hot halo on the rates of gas accretion onto galaxies

    Correa, Camila A.; Schaye, Joop; van de Voort, Freeke; Duffy, Alan R.; Wyithe, J. Stuart B.

    2018-04-01

    We investigate the physics that drives the gas accretion rates onto galaxies at the centers of dark matter haloes using the EAGLE suite of hydrodynamical cosmological simulations. We find that at redshifts z ≤ 2 the accretion rate onto the galaxy increases with halo mass in the halo mass range 1010 - 1011.7 M⊙, flattens between the halo masses 1011.7 - 1012.7 M⊙, and increases again for higher-mass haloes. However, the galaxy gas accretion does not flatten at intermediate halo masses when AGN feedback is switched off. To better understand these trends, we develop a physically motivated semi-analytic model of galaxy gas accretion. We show that the flattening is produced by the rate of gas cooling from the hot halo. The ratio of the cooling radius and the virial radius does not decrease continuously with increasing halo mass as generally thought. While it decreases up to ˜1013 M⊙ haloes, it increases for higher halo masses, causing an upturn in the galaxy gas accretion rate. This may indicate that in high-mass haloes AGN feedback is not sufficiently efficient. When there is no AGN feedback, the density of the hot halo is higher, the ratio of the cooling and virial radii does not decrease as much and the cooling rate is higher. Changes in the efficiency of stellar feedback can also increase or decrease the accretion rates onto galaxies. The trends can plausibly be explained by the re-accretion of gas ejected by progenitor galaxies and by the suppression of black hole growth, and hence AGN feedback, by stellar feedback.

  17. Effects of livestock species and stocking density on accretion rates in grazed salt marshes

    Nolte, Stefanie; Esselink, Peter; Bakker, Jan P.; Smit, Christian

    2015-01-01

    Coastal ecosystems, such as salt marshes, are threatened by accelerated sea-level rise (SLR). Salt marshes deliver valuable ecosystem services such as coastal protection and the provision of habitat for a unique flora and fauna. Whether salt marshes in the Wadden Sea area are able to survive accelerated SLR depends on sufficient deposition of sediments which add to vertical marsh accretion. Accretion rate is influenced by a number of factors, and livestock grazing was recently included. Livestock grazing is assumed to reduce accretion rates in two ways: (a) directly by increasing soil compaction through trampling, and (b) indirectly by affecting the vegetation structure, which may lower the sediment deposition. For four years, we studied the impact of two livestock species (horse and cattle) at two stocking densities (0.5 and 1.0 animal ha-1) on accretion in a large-scale grazing experiment using sedimentation plates. We found lower cumulative accretion rates in high stocking densities, probably because more animals cause more compaction and create a lower canopy. Furthermore, a trend towards lower accretion rates in horse-compared to cattle-grazed treatments was found, most likely because (1) horses are more active and thus cause more compaction, and (2) herbage intake by horses is higher than by cattle, which causes a higher biomass removal and shorter canopy. During summer periods, negative accretion rates were found. When the grazing and non-grazing seasons were separated, the impact of grazing differed among years. In summer, we only found an effect of different treatments if soil moisture (precipitation) was relatively low. In winter, a sufficiently high inundation frequency was necessary to create differences between grazing treatments. We conclude that stocking densities, and to a certain extent also livestock species, affect accretion rates in salt marshes. Both stocking densities and livestock species should thus be taken into account in management

  18. Mass accretion rate fluctuations in black hole X-ray binaries

    Rapisarda, S.

    2017-01-01

    This thesis is about the first systematic and quantitative application of propagating mass accretion rate fluctuations models to black hole X-ray binaries. Black hole X-ray binaries are systems consisting of a solar mass star orbiting around a stellar mass black hole. Eventually, the black hole

  19. A Spatial Analysis of Calcium Carbonate Accretion Rates on South Pacific Reefs

    Bartlett, T.; Misa, P.; Vargas-Angel, B.

    2016-02-01

    The potential effects of ocean acidification (OA) are of particular concern in the ocean sciences community, predominantly as it pertains to the health and survival of marine calcifying organisms, such as reef corals. As part of NOAA's Pacific Islands Fisheries Science Center, Coral Reef Ecosystem Division's long-term coral reef ecosystem monitoring, Calcification Accretion Units (CAU) are deployed every 2-3 years in different regions in the US Pacific. The purpose of this project is to examine temporal and spatial variability of calcium carbonate (CaCO3) accretion rates and their potential association with physical and biological drivers. The research presented in this study is based on laboratory work and processing of samples obtained from the last two expeditions to American Samoa and the Pacific Remote Island Areas (PRIA), specifically from CAU retrievals in Tutuila Island and Rose Atoll, from 2 deployments in 2010 and 2012. This study uses in situ net CaCO3 accretion rates (g CaCO3 cm-2 yr-1) of early successional recruitment communities to Calcification Accretion Unit (CAU) plates deployed at 24 discrete sites on Tutuila Island and Rose Atoll to quantify the efficiency of the recruited calcifying organisms. Accretion rates were determined via indirect measurements of CaCO3 on each plate and normalized for surface area and length of deployment time in days. Through statistical analysis it was then determined whether or not there is variability between sites, islands, or over time. The findings of this study will determine whether CAU plates can be used as a viable OA monitoring tool.

  20. THE GLOBAL EVOLUTION OF GIANT MOLECULAR CLOUDS. II. THE ROLE OF ACCRETION

    Goldbaum, Nathan J.; Krumholz, Mark R.; Matzner, Christopher D.; McKee, Christopher F.

    2011-01-01

    We present virial models for the global evolution of giant molecular clouds (GMCs). Focusing on the presence of an accretion flow and accounting for the amount of mass, momentum, and energy supplied by accretion and star formation feedback, we are able to follow the growth, evolution, and dispersal of individual GMCs. Our model clouds reproduce the scaling relations observed in both galactic and extragalactic clouds. We find that accretion and star formation contribute roughly equal amounts of turbulent kinetic energy over the lifetime of the cloud. Clouds attain virial equilibrium and grow in such a way as to maintain roughly constant surface densities, with typical surface densities of order 50-200 M sun pc -2 , in good agreement with observations of GMCs in the Milky Way and nearby external galaxies. We find that as clouds grow, their velocity dispersion and radius must also increase, implying that the linewidth-size relation constitutes an age sequence. Lastly, we compare our models to observations of GMCs and associated young star clusters in the Large Magellanic Cloud and find good agreement between our model clouds and the observed relationship between H II regions, young star clusters, and GMCs.

  1. WIND-DRIVEN ACCRETION IN PROTOPLANETARY DISKS. II. RADIAL DEPENDENCE AND GLOBAL PICTURE

    Bai Xuening, E-mail: xbai@cfa.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States)

    2013-08-01

    Non-ideal magnetohydrodynamical effects play a crucial role in determining the mechanism and efficiency of angular momentum transport as well as the level of turbulence in protoplanetary disks (PPDs), which are the key to understanding PPD evolution and planet formation. It was shown in our previous work that at 1 AU, the magnetorotational instability (MRI) is completely suppressed when both ohmic resistivity and ambipolar diffusion (AD) are taken into account, resulting in a laminar flow with accretion driven by magnetocentrifugal wind. In this work, we study the radial dependence of the laminar wind solution using local shearing-box simulations. The scaling relation on the angular momentum transport for the laminar wind is obtained, and we find that the wind-driven accretion rate can be approximated as M-dot approx. 0.91 x 10{sup -8}R{sub AU}{sup 1.21}(B{sub p}/10 mG){sup 0.93} M{sub Sun} yr{sup -1}, where B{sub p} is the strength of the large-scale poloidal magnetic field threading the disk. The result is independent of disk surface density. Four criteria are outlined for the existence of the laminar wind solution: (1) ohmic resistivity dominated the midplane region, (2) the AD-dominated disk upper layer, (3) the presence of a (not too weak) net vertical magnetic flux, and (4) sufficiently well-ionized gas beyond the disk surface. All these criteria are likely to be met in the inner region of the disk from {approx}0.3 AU to about 5-10 AU for typical PPD accretion rates. Beyond this radius, the angular momentum transport is likely to proceed due to a combination of the MRI and disk wind, and eventually completely dominated by the MRI (in the presence of strong AD) in the outer disk. Our simulation results provide key ingredients for a new paradigm on the accretion processes in PPDs.

  2. NOVAE WITH LONG-LASTING SUPERSOFT EMISSION THAT DRIVE A HIGH ACCRETION RATE

    Schaefer, Bradley E.; Collazzi, Andrew C.

    2010-01-01

    We identify a new class of novae characterized by the post-eruption quiescent light curve being more than roughly a factor of 10 brighter than the pre-eruption light curve. Eight novae (V723 Cas, V1500 Cyg, V1974 Cyg, GQ Mus, CP Pup, T Pyx, V4633 Sgr, and RW UMi) are separated out as being significantly distinct from other novae. This group shares a suite of uncommon properties, characterized by the post-eruption magnitude being much brighter than before eruption, short orbital periods, long-lasting supersoft emission following the eruption, a highly magnetized white dwarf (WD), and secular declines during the post-eruption quiescence. We present a basic physical picture which shows why all five uncommon properties are causally connected. In general, novae show supersoft emission due to hydrogen burning on the WD in the final portion of the eruption, and this hydrogen burning will be long-lasting if new hydrogen is poured onto the surface at a sufficient rate. Most novae do not have adequate accretion for continuous hydrogen burning, but some can achieve this if the companion star is nearby (with short orbital period) and a magnetic field channels the matter onto a small area on the WD so as to produce a locally high accretion rate. The resultant supersoft flux irradiates the companion star and drives a higher accretion rate (with a brighter post-eruption phase), which serves to keep the hydrogen burning and the supersoft flux going. The feedback loop cannot be perfectly self-sustaining, so the supersoft flux will decline over time, forcing a decline in the accretion rate and the system brightness. We name this new group after the prototype, V1500 Cyg. V1500 Cyg stars are definitely not progenitors of Type Ia supernovae. The V1500 Cyg stars have similar physical mechanisms and appearances as predicted for nova by the hibernation model, but with this group accounting for only 14% of novae.

  3. Quasi-periodic oscillations and the global modes of relativistic, MHD accretion discs

    Dewberry, Janosz W.; Latter, Henrik N.; Ogilvie, Gordon I.

    2018-05-01

    The high-frequency quasi-periodic oscillations that punctuate the light curves of X-ray binary systems present a window on to the intrinsic properties of stellar-mass black holes and hence a testbed for general relativity. One explanation for these features is that relativistic distortion of the accretion disc's differential rotation creates a trapping region in which inertial waves (r-modes) might grow to observable amplitudes. Local analyses, however, predict that large-scale magnetic fields push this trapping region to the inner disc edge, where conditions may be unfavourable for r-mode growth. We revisit this problem from a pseudo-Newtonian but fully global perspective, deriving linearized equations describing a relativistic, magnetized accretion flow, and calculating normal modes with and without vertical density stratification. In an unstratified model we confirm that vertical magnetic fields drive r-modes towards the inner edge, though the effect depends on the choice of vertical wavenumber. In a global model we better quantify this susceptibility, and its dependence on the disc's vertical structure and thickness. Our calculations suggest that in thin discs, r-modes may remain independent of the inner disc edge for vertical magnetic fields with plasma betas as low as β ≈ 100-300. We posit that the appearance of r-modes in observations may be more determined by a competition between excitation and damping mechanisms near the ISCO than by the modification of the trapping region by magnetic fields.

  4. Wetland Accretion Rates Along Coastal Louisiana: Spatial and Temporal Variability in Light of Hurricane Isaac’s Impacts

    Thomas A. Bianchette

    2015-12-01

    Full Text Available The wetlands of the southern Louisiana coast are disappearing due to a host of environmental stressors. Thus, it is imperative to analyze the spatial and temporal variability of wetland vertical accretion rates. A key question in accretion concerns the role of landfalling hurricanes as a land-building agent, due to their propensity to deposit significant volumes of inorganic sediments. Since 1996, thousands of accretion measurements have been made at 390 sites across coastal Louisiana as a result of a regional monitoring network, called the Coastal Reference Monitoring System (CRMS. We utilized this dataset to analyze the spatial and temporal patterns of accretion by mapping rates during time periods before, around, and after the landfall of Hurricane Isaac (2012. This analysis is vital for quantifying the role of hurricanes as a land-building agent and for understanding the main mechanism causing heightened wetland accretion. The results show that accretion rates averaged about 2.89 cm/year from stations sampled before Isaac, 4.04 cm/year during the period encompassing Isaac, and 2.38 cm/year from sites established and sampled after Isaac. Accretion rates attributable to Isaac’s effects were therefore 40% and 70% greater than before and after the event, respectively, indicating the event’s importance toward coastal land-building. Accretion associated with Isaac was highest at sites located 70 kilometers from the storm track, particularly those near the Mississippi River and its adjacent distributaries and lakes. This spatial pattern of elevated accretion rates indicates that freshwater flooding from fluvial channels, rather than storm surge from the sea per se, is the main mechanism responsible for increased wetland accretion. This significance of riverine flooding has implications toward future coastal restoration policies and practices.

  5. Soil and phosphorus accretion rates in sub-tropical wetlands: Everglades Stormwater Treatment Areas as a case example.

    Bhomia, R K; Inglett, P W; Reddy, K R

    2015-11-15

    Wetlands are known to serve as sinks for particulate matter and associated nutrients and contaminants. Consequently rate of soil accretion is critical for continued performance of wetlands to provide ecosystem services including water quality improvement and reduce excess contaminant loads into downstream waters. Here we demonstrate a new technique to determine rate of soil accretion in selected subtropical treatment wetlands located in southern USA. We also report changes in soil accretion rates and subsequent phosphorus (P) removal efficiency with increasing operational history of these treatment wetlands. Utilizing discernible signatures preserved within the soil depth profiles, 'change points' (CP) that corresponded to specific events in the life history of a wetland were determined. The CP was observed as an abrupt transition in the physico-chemical properties of soil as a manifestation of prevailing historical conditions (e.g. startup of treatment wetlands in this case). Vertical depth of CP from the soil surface was equivalent to the depth of recently accreted soil (RAS) and used for soil accretion rate calculations. Annual soil and P accretion rates determined using CP technique (CPT) in studied wetlands ranged from 1.0±0.3 to 1.7±0.8 cm yr(-1) and 1.3±0.6 to 3.3±2 g m(-2) yr(-1), respectively. There was no difference in RAS depth between emergent and submerged aquatic vegetation communities found at the study location. Our results showed that soil and P accretion rates leveled off after 10 yr of treatment wetlands' operation. On comparison, soil accretion rates and RAS depth determined by CPT were commensurate with that measured by other techniques. CPT can be easily used where a reliable record of wetland establishment date or some significant alteration/perturbation is available. This technique offers a relatively simple alternative to determine vertical accretion rates in free-water surface wetlands. Copyright © 2015 Elsevier B.V. All rights

  6. An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.

    Gilfanov, Marat; Bogdán, Akos

    2010-02-18

    There is wide agreement that type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for about 10(7) years before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of approximately 30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than about five per cent of type Ia supernovae in early-type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate.

  7. EQUILIBRIUM DISKS, MAGNETOROTATIONAL INSTABILITY MODE EXCITATION, AND STEADY-STATE TURBULENCE IN GLOBAL ACCRETION DISK SIMULATIONS

    Parkin, E. R.; Bicknell, G. V.

    2013-01-01

    Global three-dimensional magnetohydrodynamic (MHD) simulations of turbulent accretion disks are presented which start from fully equilibrium initial conditions in which the magnetic forces are accounted for and the induction equation is satisfied. The local linear theory of the magnetorotational instability (MRI) is used as a predictor of the growth of magnetic field perturbations in the global simulations. The linear growth estimates and global simulations diverge when nonlinear motions—perhaps triggered by the onset of turbulence—upset the velocity perturbations used to excite the MRI. The saturated state is found to be independent of the initially excited MRI mode, showing that once the disk has expelled the initially net flux field and settled into quasi-periodic oscillations in the toroidal magnetic flux, the dynamo cycle regulates the global saturation stress level. Furthermore, time-averaged measures of converged turbulence, such as the ratio of magnetic energies, are found to be in agreement with previous works. In particular, the globally averaged stress normalized to the gas pressure P >bar = 0.034, with notably higher values achieved for simulations with higher azimuthal resolution. Supplementary tests are performed using different numerical algorithms and resolutions. Convergence with resolution during the initial linear MRI growth phase is found for 23-35 cells per scale height (in the vertical direction).

  8. Probing the Jet Turnover Frequency Dependence on Mass and Mass Accretion Rate

    Hammerstein, Erica; Gültekin, Kayhan; King, Ashley

    2018-01-01

    We have examined a sample of 15 sub-Eddington supermassive black holes (SMBHs) in a variety of galaxy classifications to further understand the proposed fundamental plane of black hole activity and scaling relations between black hole masses and their radio and X-ray luminosities. This plane describes black holes from stellar-mass to supermassive. The physics probed by these sub-Eddington systems is thought to be a radiatively inefficient, jet-dominated accretion flow. By studying black holes in this regime, we can learn important information on the disk-jet connection for accreting black holes.A key factor in studying the fundamental plane is the turnover frequency — the frequency at which emission transitions from optically thick at lower frequencies to optically thin at higher frequencies. This turnover point can be measured by observing the source in both radio and X-ray. Our project aims to test the dependence of the turnover frequency on mass and mass accretion rate.Radio observations of the sample were obtained using the Karl G. Jansky Very Large Array (VLA) in the range of 5-40 GHz across four different frequency bands in A configuration to give the highest spatial resolution to focus on the core emission. Our carefully chosen sample of SMBHs with dynamically measured masses consists of two sub-samples: those with approximately constant mass accretion rate (LX/LEdd ~ 10‑7) and those with approximately constant mass (MBH ~ 108 Msun). X-ray data were obtained from archival Chandra observations. To find the turnover frequency, we used Markov Chain Monte Carlo methods to fit two power laws to the radio data and the archival X-ray data. The intersection of the radio and X-ray fits is the turnover frequency.We present the results for both subsamples of SMBHs and their relationship between the turnover frequency and X-ray luminosity, which we take to scale with mass accretion rate, and jet power derived from both radio and X-ray properties.

  9. National Coral Reef Monitoring Program: Calcification Rates of Crustose Coralline Algae Derived from Calcification Accretion Units (CAUs) Deployed across Marianas Archipelago in 2011

    National Oceanic and Atmospheric Administration, Department of Commerce — Calcification accretion units, or CAUs, are used to assess the current effects of changes in seawater carbonate chemistry on calcification and accretion rates of...

  10. National Coral Reef Monitoring Program: Calcification Rates of Crustose Coralline Algae Derived from Calcification Accretion Units (CAUs) Deployed across the Pacific Remote Island Areas since 2011

    National Oceanic and Atmospheric Administration, Department of Commerce — Calcification accretion units, or CAUs, are used to assess the current effects of changes in seawater carbonate chemistry on calcification and accretion rates of...

  11. National Coral Reef Monitoring Program: Calcification Rates of Crustose Coralline Algae Derived from Calcification Accretion Units (CAUs) Deployed across American Samoa in 2012

    National Oceanic and Atmospheric Administration, Department of Commerce — Calcification accretion units, or CAUs, are used to assess the current effects of changes in seawater carbonate chemistry on calcification and accretion rates of...

  12. National Coral Reef Monitoring Program: Calcification Rates of Crustose Coralline Algae Derived from Calcification Accretion Units (CAUs) Deployed across the Hawaiian Archipelago in 2010

    National Oceanic and Atmospheric Administration, Department of Commerce — Calcification accretion units, or CAUs, are used to assess the current effects of changes in seawater carbonate chemistry on calcification and accretion rates of...

  13. A New Paradigm for Gamma Ray Bursts: Long Term Accretion Rate Modulation by an External Accretion Disk

    Cannizzo, John; Gehrels, Neil

    2009-01-01

    We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.

  14. Accretion rate of extraterrestrial {sup 41}Ca in Antarctic snow samples

    Gómez-Guzmán, J.M., E-mail: jose.gomez@ph.tum.de [Technische Universität München, Fakultät für Physik, James-Franck-Strasse 1, 85748 Garching (Germany); Bishop, S.; Faestermann, T.; Famulok, N.; Fimiani, L.; Hain, K.; Jahn, S.; Korschinek, G.; Ludwig, P. [Technische Universität München, Fakultät für Physik, James-Franck-Strasse 1, 85748 Garching (Germany); Rodrigues, D. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica (Argentina)

    2015-10-15

    Interplanetary Dust Particles (IDPs) are small grains, generally less than a few hundred micrometers in size. Their main source is the Asteroid Belt, located at 3 AU from the Sun, between Mars and Jupiter. During their flight from the Asteroid Belt to the Earth they are irradiated by galactic and solar cosmic rays (GCR and SCR), thus radionuclides are formed, like {sup 41}Ca and {sup 53}Mn. Therefore, {sup 41}Ca (T{sub 1/2} = 1.03 × 10{sup 5} yr) can be used as a key tracer to determine the accretion rate of IDPs onto the Earth because there are no significant terrestrial sources for this radionuclide. The first step of this study consisted to calculate the production rate of {sup 41}Ca in IDPs accreted by the Earth during their travel from the Asteroid Belt. This production rate, used in accordance with the {sup 41}Ca/{sup 40}Ca ratios that will be measured in snow samples from the Antarctica will be used to calculate the amount of extraterrestrial material accreted by the Earth per year. There challenges for this project are, at first, the much longer time for the flight needed by the IDPs to travel from the Asteroid Belt to the Earth in comparison with the {sup 41}Ca half-life yields an early saturation for the {sup 41}Ca/{sup 40}Ca ratio, and second, the importance of selecting the correct sampling site to avoid a high influx of natural {sup 40}Ca, preventing dilution of the {sup 41}Ca/{sup 40}Ca ratio, the quantity measured by AMS.

  15. Global variations in gravity-derived oceanic crustal thickness: Implications on oceanic crustal accretion and hotspot-lithosphere interactions

    Lin, J.; Zhu, J.

    2012-12-01

    We present a new global model of oceanic crustal thickness based on inversion of global oceanic gravity anomaly with constrains from seismic crustal thickness profiles. We first removed from the observed marine free-air gravity anomaly all gravitational effects that can be estimated and removed using independent constraints, including the effects of seafloor topography, marine sediment thickness, and the age-dependent thermal structure of the oceanic lithosphere. We then calculated models of gravity-derived crustal thickness through inversion of the residual mantle Bouguer anomaly using best-fitting gravity-modeling parameters obtained from comparison with seismically determined crustal thickness profiles. Modeling results show that about 5% of the global crustal volume (or 9% of the global oceanic surface area) is associated with model crustal thickness 8.6 km and is interpreted to have been affected by excess magmatism. The percentage of oceanic crustal volume that is associated with thick crustal thickness (>8.6 km) varies greatly among tectonic plates: Pacific (33%), Africa (50%), Antarctic (33%), Australia (30%), South America (34%), Nazca (23%), North America (47%), India (74%), Eurasia (68%), Cocos (20%), Philippine (26%), Scotia (41%), Caribbean (89%), Arabian (82%), and Juan de Fuca (21%). We also found that distribution of thickened oceanic crust (>8.6 km) seems to depend on spreading rate and lithospheric age: (1) On ocean basins younger than 5 Ma, regions of thickened crust are predominantly associated with slow and ultraslow spreading ridges. The relatively strong lithospheric plate at slow and ultraslow ridges might facilitate the loading of large magmatic emplacements on the plate. (2) In contrast, crustal thickness near fast and intermediately fast spreading ridges typically does not exceed 7-8 km. The relatively weak lithosphere at fast and intermediately fast ridges might make it harder for excess magmatism to accrete. We further speculate that

  16. POISSON project. III. Investigating the evolution of the mass accretion rate

    Antoniucci, S.; García López, R.; Nisini, B.; Caratti o Garatti, A.; Giannini, T.; Lorenzetti, D.

    2014-12-01

    Context. As part of the Protostellar Optical-Infrared Spectral Survey On NTT (POISSON) project, we present the results of the analysis of low-resolution near-IR spectroscopic data (0.9-2.4 μm) of two samples of young stellar objects in the Lupus (52 objects) and Serpens (17 objects) star-forming clouds, with masses in the range of 0.1 to 2.0 M⊙ and ages spanning from 105 to a few 107 yr. Aims: After determining the accretion parameters of the targets by analysing their H i near-IR emission features, we added the results from the Lupus and Serpens clouds to those from previous regions (investigated in POISSON with the same methodology) to obtain a final catalogue (143 objects) of mass accretion rate values (Ṁacc) derived in a homogeneous and consistent fashion. Our final goal is to analyse how Ṁacc correlates with the stellar mass (M∗) and how it evolves in time in the whole POISSON sample. Methods: We derived the accretion luminosity (Lacc) and Ṁacc for Lupus and Serpens objects from the Brγ (Paβ in a few cases) line by using relevant empirical relationships available in the literature that connect the H i line luminosity and Lacc. To minimise the biases that arise from adopting literature data that are based on different evolutionary models and also for self-consistency, we re-derived mass and age for each source of the POISSON samples using the same set of evolutionary tracks. Results: We observe a correlation Ṁacc~M*2.2 between mass accretion rate and stellar mass, similarly to what has previously been observed in several star-forming regions. We find that the time variation of Ṁacc is roughly consistent with the expected evolution of the accretion rate in viscous disks, with an asymptotic decay that behaves as t-1.6. However, Ṁacc values are characterised by a large scatter at similar ages and are on average higher than the predictions of viscous models. Conclusions: Although part of the scattering may be related to systematics due to the

  17. GLOBAL GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF BLACK HOLE ACCRETION FLOWS: A CONVERGENCE STUDY

    Shiokawa, Hotaka; Dolence, Joshua C.; Gammie, Charles F.; Noble, Scott C.

    2012-01-01

    Global, general relativistic magnetohydrodynamic (GRMHD) simulations of non-radiative, magnetized disks are widely used to model accreting black holes. We have performed a convergence study of GRMHD models computed with HARM3D. The models span a factor of four in linear resolution, from 96 × 96 × 64 to 384 × 384 × 256. We consider three diagnostics of convergence: (1) dimensionless shell-averaged quantities such as plasma β; (2) the azimuthal correlation length of fluid variables; and (3) synthetic spectra of the source including synchrotron emission, absorption, and Compton scattering. Shell-averaged temperature is, except for the lowest resolution run, nearly independent of resolution; shell-averaged plasma β decreases steadily with resolution but shows signs of convergence. The azimuthal correlation lengths of density, internal energy, and temperature decrease steadily with resolution but show signs of convergence. In contrast, the azimuthal correlation length of magnetic field decreases nearly linearly with grid size. We argue by analogy with local models, however, that convergence should be achieved with another factor of two in resolution. Synthetic spectra are, except for the lowest resolution run, nearly independent of resolution. The convergence behavior is consistent with that of higher physical resolution local model ( s hearing box ) calculations and with the recent non-relativistic global convergence studies of Hawley et al.

  18. Modelling hard and soft states of Cygnus X-1 with propagating mass accretion rate fluctuations

    Rapisarda, S.; Ingram, A.; van der Klis, M.

    2017-12-01

    We present a timing analysis of three Rossi X-ray Timing Explorer observations of the black hole binary Cygnus X-1 with the propagating mass accretion rate fluctuations model PROPFLUC. The model simultaneously predicts power spectra, time lags and coherence of the variability as a function of energy. The observations cover the soft and hard states of the source, and the transition between the two. We find good agreement between model predictions and data in the hard and soft states. Our analysis suggests that in the soft state the fluctuations propagate in an optically thin hot flow extending up to large radii above and below a stable optically thick disc. In the hard state, our results are consistent with a truncated disc geometry, where the hot flow extends radially inside the inner radius of the disc. In the transition from soft to hard state, the characteristics of the rapid variability are too complex to be successfully described with PROPFLUC. The surface density profile of the hot flow predicted by our model and the lack of quasi-periodic oscillations in the soft and hard states suggest that the spin of the black hole is aligned with the inner accretion disc and therefore probably with the rotational axis of the binary system.

  19. Global hydromagnetic simulations of a planet embedded in a dead zone: Gap opening, gas accretion, and formation of a protoplanetary jet

    Gressel, O. [NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Nelson, R. P. [Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Turner, N. J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Ziegler, U., E-mail: oliver.gressel@nordita.org, E-mail: r.p.nelson@qmul.ac.uk, E-mail: neal.j.turner@jpl.nasa.gov, E-mail: uziegler@aip.de [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482, Potsdam (Germany)

    2013-12-10

    We present global hydrodynamic (HD) and magnetohydrodynamic (MHD) simulations with mesh refinement of accreting planets embedded in protoplanetary disks (PPDs). The magnetized disk includes Ohmic resistivity that depends on the overlying mass column, leading to turbulent surface layers and a dead zone near the midplane. The main results are: (1) the accretion flow in the Hill sphere is intrinsically three-dimensional for HD and MHD models. Net inflow toward the planet is dominated by high-latitude flows. A circumplanetary disk (CPD) forms. Its midplane flows outward in a pattern whose details differ between models. (2) The opening of a gap magnetically couples and ignites the dead zone near the planet, leading to stochastic accretion, a quasi-turbulent flow in the Hill sphere, and a CPD whose structure displays high levels of variability. (3) Advection of magnetized gas onto the rotating CPD generates helical fields that launch magnetocentrifugally driven outflows. During one specific epoch, a highly collimated, one-sided jet is observed. (4) The CPD's surface density is ∼30 g cm{sup −2}, small enough for significant ionization and turbulence to develop. (5) The accretion rate onto the planet in the MHD simulation reaches a steady value 8 × 10{sup –3} M {sub ⊕} yr{sup –1} and is similar in the viscous HD runs. Our results suggest that gas accretion onto a forming giant planet within a magnetized PPD with a dead zone allows rapid growth from Saturnian to Jovian masses. As well as being relevant for giant planet formation, these results have important implications for the formation of regular satellites around gas giant planets.

  20. LOW-FREQUENCY OSCILLATIONS IN GLOBAL SIMULATIONS OF BLACK HOLE ACCRETION

    O'Neill, Sean M.; Reynolds, Christopher S.; Coleman Miller, M.; Sorathia, Kareem A.

    2011-01-01

    We have identified the presence of large-scale, low-frequency dynamo cycles in a long-duration, global, magnetohydrodynamic (MHD) simulation of black hole accretion. Such cycles have previously been seen in local shearing box simulations, but we discuss their evolution over 1500 inner disk orbits of a global π/4 disk wedge spanning two orders of magnitude in radius and seven scale heights in elevation above/below the disk midplane. The observed cycles manifest themselves as oscillations in azimuthal magnetic field occupying a region that extends into a low-density corona several scale heights above the disk. The cycle frequencies are 10-20 times lower than the local orbital frequency, making them potentially interesting sources of low-frequency variability when scaled to real astrophysical systems. Furthermore, power spectra derived from the full time series reveal that the cycles manifest themselves at discrete, narrowband frequencies that often share power across broad radial ranges. We explore possible connections between these simulated cycles and observed low-frequency quasi-periodic oscillations (LFQPOs) in galactic black hole binary systems, finding that dynamo cycles have the appropriate frequencies and are located in a spatial region associated with X-ray emission in real systems. Derived observational proxies, however, fail to feature peaks with rms amplitudes comparable to LFQPO observations, suggesting that further theoretical work and more sophisticated simulations will be required to form a complete theory of dynamo-driven LFQPOs. Nonetheless, this work clearly illustrates that global MHD dynamos exhibit quasi-periodic behavior on timescales much longer than those derived from test particle considerations.

  1. Crustal accretion along the global mid-ocean ridge system based on basaltic glass and olivine-hosted melt inclusion compositions

    Wanless, V. D.; Behn, M. D.

    2015-12-01

    The depth and distribution of crystallization at mid-ocean ridges controls the overall architecture of the oceanic crust, influences hydrothermal circulation, and determines geothermal gradients in the crust and uppermost mantle. Despite this, there is no overall consensus on how crystallization is distributed within the crust/upper mantle or how this varies with spreading rate. Here, we examine crustal accretion at mid-ocean ridges by combining crystallization pressures calculated from major element barometers on mid-ocean ridge basalt (MORB) glasses with vapor-saturation pressures from melt inclusions to produce a detailed map of crystallization depths and distributions along the global ridge system. We calculate pressures of crystallization from >11,500 MORB glasses from the global ridge system using two established major element barometers (1,2). Additionally, we use vapor-saturation pressures from >400 olivine-hosted melt inclusions from five ridges with variable spreading rates to constrain pressures and distributions of crystallization along the global ridge system. We show that (i) crystallization depths from MORB glasses increase and become less focused with decreasing spreading rate, (ii) maximum glass pressures are greater than the maximum melt inclusion pressure, which indicates that the melt inclusions do not record the deepest crystallization at mid-ocean ridges, and (iii) crystallization occurs in the lower crust/upper mantle at all ridges, indicating accretion is distributed throughout the crust at all spreading rates, including those with a steady-state magma lens. Finally, we suggest that the remarkably similar maximum vapor-saturation pressures (~ 3000 bars) in melt inclusion from all spreading rates reflects the CO2 content of the depleted upper mantle feeding the global mid-ocean ridge system. (1) Michael, P. & W. Cornell (1998), Journal of Geophysical Research, 103(B8), 18325-18356; (2) Herzberg, C. (2004), Journal of Petrology, 45(12), 2389.

  2. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats.

    Domenichiello, Anthony F; Chen, Chuck T; Trepanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain.

  3. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[S

    Domenichiello, Anthony F.; Chen, Chuck T.; Trepanier, Marc-Olivier; Stavro, P. Mark; Bazinet, Richard P.

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain. PMID:24212299

  4. GLOBAL STRUCTURE OF THREE DISTINCT ACCRETION FLOWS AND OUTFLOWS AROUND BLACK HOLES FROM TWO-DIMENSIONAL RADIATION-MAGNETOHYDRODYNAMIC SIMULATIONS

    Ohsuga, Ken; Mineshige, Shin

    2011-01-01

    We present the detailed global structure of black hole accretion flows and outflows through newly performed two-dimensional radiation-magnetohydrodynamic simulations. By starting from a torus threaded with weak toroidal magnetic fields and by controlling the central density of the initial torus, ρ 0 , we can reproduce three distinct modes of accretion flow. In model A, which has the highest central density, an optically and geometrically thick supercritical accretion disk is created. The radiation force greatly exceeds the gravity above the disk surface, thereby driving a strong outflow (or jet). Because of mild beaming, the apparent (isotropic) photon luminosity is ∼22L E (where L E is the Eddington luminosity) in the face-on view. Even higher apparent luminosity is feasible if we increase the flow density. In model B, which has moderate density, radiative cooling of the accretion flow is so efficient that a standard-type, cold, and geometrically thin disk is formed at radii greater than ∼7 R S (where R S is the Schwarzschild radius), while the flow is radiatively inefficient otherwise. The magnetic-pressure-driven disk wind appears in this model. In model C, the density is too low for the flow to be radiatively efficient. The flow thus becomes radiatively inefficient accretion flow, which is geometrically thick and optically thin. The magnetic-pressure force, together with the gas-pressure force, drives outflows from the disk surface, and the flow releases its energy via jets rather than via radiation. Observational implications are briefly discussed.

  5. Gestational age dependent content, composition and intrauterine accretion rates of fatty acids in fetal white adipose tissue

    Kuipers, Remko S.; Luxwolda, Martine F.; Offringa, Pieter J.; Martini, Ingrid A.; Boersma, E. Rudy; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2012-01-01

    Background: Little is known about the gestational age (GA) dependent content, composition and intrauterine accretion rates of fatty acids (FA) in fetal white adipose tissue (WAT). Objective & design: To acquire this information, we collected abdominal subcutaneous WAT samples from 40 preterm and

  6. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IX. 10 New Observations of Reverberation Mapping and Shortened Hβ Lags

    Du, Pu; Zhang, Zhi-Xiang; Wang, Kai; Huang, Ying-Ke; Zhang, Yue; Lu, Kai-Xing; Hu, Chen; Li, Yan-Rong; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C.; Wang, Jian-Min; SEAMBH collaboration

    2018-03-01

    As one paper in a series reporting on a large reverberation mapping campaign of super-Eddington accreting massive black holes (SEAMBHs) in active galactic nuclei (AGNs), we present the results of 10 SEAMBHs monitored spectroscopically during 2015–2017. Six of them are observed for the first time, and have generally higher 5100 Å luminosities than the SEAMBHs monitored in our campaign from 2012 to 2015; the remaining four are repeat observations to check if their previous lags change. Similar to the previous SEAMBHs, the Hβ time lags of the newly observed objects are shorter than the values predicted by the canonical R Hβ –L 5100 relation of sub-Eddington AGNs, by factors of ∼2–6, depending on the accretion rate. The four previously observed objects have lags consistent with previous measurements. We provide linear regressions for the R Hβ –L 5100 relation, solely for the SEAMBH sample and for low-accretion AGNs. We find that the relative strength of Fe II and the profile of the Hβ emission line can be used as proxies of accretion rate, showing that the shortening of Hβ lags depends on accretion rates. The recent SDSS-RM discovery of shortened Hβ lags in AGNs with low accretion rates provides compelling evidence for retrograde accretion onto the black hole. These evidences show that the canonical R Hβ –L 5100 relation holds only in AGNs with moderate accretion rates. At low accretion rates, it should be revised to include the effects of black hole spin, whereas the accretion rate itself becomes a key factor in the regime of high accretion rates.

  7. WEAK LINE QUASARS AT HIGH REDSHIFT: EXTREMELY HIGH ACCRETION RATES OR ANEMIC BROAD-LINE REGIONS?

    Shemmer, Ohad; Trakhtenbrot, Benny; Netzer, Hagai; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Lira, Paulina; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2010-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad Hβ line and place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black hole mass determinations indicate normalized accretion rates of L/L Edd =0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ = 1.91 +0.24 -0.22 , which supports the virial L/L Edd determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  8. Viscous driving of global oscillations in accretion discs around black holes

    Miranda, R.; Horák, Jiří; Lai, D.

    2015-01-01

    Roč. 446, č. 1 (2015), s. 240-253 ISSN 0035-8711 R&D Projects: GA MŠk(CZ) LH14049 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100031202 Institutional support: RVO:67985815 Keywords : accretion discs * hydrodynamics * waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.952, year: 2015

  9. Supermassive black holes with high accretion rates in active galactic nuclei. I. First results from a new reverberation mapping campaign

    Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Wang, Jian-Min; Lu, Kai-Xing; Wang, Fang; Bai, Jin-Ming; Kaspi, Shai; Netzer, Hagai

    2014-01-01

    We report first results from a large project to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). Such objects may be different from other AGNs in being powered by slim accretion disks and showing saturated accretion luminosities, but both are not yet fully understood. The results are part of a large reverberation mapping (RM) campaign using the 2.4 m Shangri-La telescope at the Yunnan Observatory in China. The goals are to investigate the gas distribution near the BH and the properties of the central accretion disks, to measure BH mass and Eddington ratios, and to test the feasibility of using such objects as a new type of cosmological candles. The paper presents results for three objects, Mrk 335, Mrk 142, and IRAS F12397+3333, with Hβ time lags relative to the 5100 Å continuum of 10.6 −2.9 +1.7 , 6.4 −2.2 +0.8 and 11.4 −1.9 +2.9 days, respectively. The corresponding BH masses are (8.3 −3.2 +2.6 )×10 6 M ⊙ , (3.4 −1.2 +0.5 )×10 6 M ⊙ , and (7.5 −4.1 +4.3 )×10 6 M ⊙ , and the lower limits on the Eddington ratios are 0.6, 2.3, and 4.6 for the minimal radiative efficiency of 0.038. Mrk 142 and IRAS F12397+333 (extinction corrected) clearly deviate from the currently known relation between Hβ lag and continuum luminosity. The three Eddington ratios are beyond the values expected in thin accretion disks and two of them are the largest measured so far among objects with RM-based BH masses. We briefly discuss implications for slim disks, BH growth, and cosmology.

  10. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. I. First Results from a New Reverberation Mapping Campaign

    Du, Pu; Hu, Chen; Lu, Kai-Xing; Wang, Fang; Qiu, Jie; Li, Yan-Rong; Bai, Jin-Ming; Kaspi, Shai; Netzer, Hagai; Wang, Jian-Min; SEAMBH Collaboration

    2014-02-01

    We report first results from a large project to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). Such objects may be different from other AGNs in being powered by slim accretion disks and showing saturated accretion luminosities, but both are not yet fully understood. The results are part of a large reverberation mapping (RM) campaign using the 2.4 m Shangri-La telescope at the Yunnan Observatory in China. The goals are to investigate the gas distribution near the BH and the properties of the central accretion disks, to measure BH mass and Eddington ratios, and to test the feasibility of using such objects as a new type of cosmological candles. The paper presents results for three objects, Mrk 335, Mrk 142, and IRAS F12397+3333, with Hβ time lags relative to the 5100 Å continuum of 10.6^{+1.7}_{-2.9}, 6.4^{+0.8}_{-2.2} and 11.4^{+2.9}_{-1.9} days, respectively. The corresponding BH masses are (8.3_{-3.2}^{+2.6})\\times 10^6\\,M_{\\odot }, (3.4_{-1.2}^{+0.5})\\times 10^6\\,M_{\\odot }, and (7.5_{-4.1}^{+4.3})\\times 10^6\\,M_{\\odot }, and the lower limits on the Eddington ratios are 0.6, 2.3, and 4.6 for the minimal radiative efficiency of 0.038. Mrk 142 and IRAS F12397+333 (extinction corrected) clearly deviate from the currently known relation between Hβ lag and continuum luminosity. The three Eddington ratios are beyond the values expected in thin accretion disks and two of them are the largest measured so far among objects with RM-based BH masses. We briefly discuss implications for slim disks, BH growth, and cosmology.

  11. Accretion rate in mangroves sediment at Sungai Miang, Pahang, Malaysia: 230Thexcess versus artificial horizon marker method

    Kamaruzzaman Yunus; Jamil Tajam; Hasrizal Shaari; Noor Azhar Mohd Shazili; Misbahul Mohd Amin

    2008-01-01

    Mangroves have enormous ecological value and one of their important role is to act as an efficient sediment trappers which dominantly supplied by rivers and the atmosphere to the oceans. Applying the 230 Th excess method, an average accretion rate of 0.54 cm yr -1 was obtained. this is comparable to that of an artificial horizon marker method giving an average of 0.54 cm yr -1 . The 230 Th excess method provides a rapid and simple method of evaluating 230 Th excess accumulation histories in sediment cores. Sample preparation is also significantly simplified, thus providing a relatively quick and easy method for the determination of the accretion rate in mangrove area. (author)

  12. A Global Three-Dimensional Radiation Hydrodynamic Simulation of a Self-Gravitating Accretion Disk

    Phillipson, Rebecca; Vogeley, Michael S.; McMillan, Stephen; Boyd, Patricia

    2018-01-01

    We present three-dimensional, radiation hydrodynamic simulations of initially thin accretion disks with self-gravity using the grid-based code PLUTO. We produce simulated light curves and spectral energy distributions and compare to observational data of X-ray binary (XRB) and active galactic nuclei (AGN) variability. These simulations are of interest for modeling the role of radiation in accretion physics across decades of mass and frequency. In particular, the characteristics of the time variability in various bandwidths can probe the timescales over which different physical processes dominate the accretion flow. For example, in the case of some XRBs, superorbital periods much longer than the companion orbital period have been observed. Smoothed particle hydrodynamics (SPH) calculations have shown that irradiation-driven warping could be the mechanism underlying these long periods. In the case of AGN, irradiation-driven warping is also predicted to occur in addition to strong outflows originating from thermal and radiation pressure driving forces, which are important processes in understanding feedback and star formation in active galaxies. We compare our simulations to various toy models via traditional time series analysis of our synthetic and observed light curves.

  13. Steep Hard-X-ray Spectra Indicate Extremely High Accretion Rates in Weak Emission-Line Quasars

    Marlar, Andrea; Shemmer, Ohad; Anderson, Scott F.; Brandt, W. Niel; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Luo, Bin; Plotkin, Richard; Richards, Gordon T.; Schneider, Donald P.; Wu, Jianfeng

    2018-06-01

    We present XMM-Newton imaging spectroscopy of ten weak emission-line quasars (WLQs) at 0.928 ≤ z ≤ 3.767, six of which are radio quiet and four which are radio intermediate. The new X-ray data enabled us to measure the hard-X-ray power-law photon index (Γ) in each source with relatively high accuracy. These measurements allowed us to confirm previous reports that WLQs have steeper X-ray spectra, therefore indicating higher accretion rates with respect to "typical" quasars. A comparison between the Γ values of our radio-quiet WLQs and those of a carefully-selected, uniform sample of 84 quasars shows that the first are significantly higher, at the ≥ 3σ level. Collectively, the four radio-intermediate WLQs have lower Γ values with respect to the six radio-quiet WLQs, as may be expected if the spectra of the first group are contaminated by X-ray emission from a jet. These results suggest that, in the absence of significant jet emission along our line of sight, WLQs constitute the extreme high end of the accretion rate distribution in quasars. We detect soft excess emission in our lowest-redshift radio-quiet WLQ, in agreement with previous findings suggesting that the prominence of this feature is associated with a high accretion rate. We have not detected signatures of Compton reflection, Fe Kα lines, or strong variability between two X-ray epochs in any of our WLQs.

  14. Skeletal muscle protein accretion rates and hindlimb growth are reduced in late gestation intrauterine growth-restricted fetal sheep.

    Rozance, Paul J; Zastoupil, Laura; Wesolowski, Stephanie R; Goldstrohm, David A; Strahan, Brittany; Cree-Green, Melanie; Sheffield-Moore, Melinda; Meschia, Giacomo; Hay, William W; Wilkening, Randall B; Brown, Laura D

    2018-01-01

    Adults who were affected by intrauterine growth restriction (IUGR) suffer from reductions in muscle mass, which may contribute to insulin resistance and the development of diabetes. We demonstrate slower hindlimb linear growth and muscle protein synthesis rates that match the reduced hindlimb blood flow and oxygen consumption rates in IUGR fetal sheep. These adaptations resulted in hindlimb blood flow rates in IUGR that were similar to control fetuses on a weight-specific basis. Net hindlimb glucose uptake and lactate output rates were similar between groups, whereas amino acid uptake was significantly lower in IUGR fetal sheep. Among all fetuses, blood O 2 saturation and plasma glucose, insulin and insulin-like growth factor-1 were positively associated and norepinephrine was negatively associated with hindlimb weight. These results further our understanding of the metabolic and hormonal adaptations to reduced oxygen and nutrient supply with placental insufficiency that develop to slow hindlimb growth and muscle protein accretion. Reduced skeletal muscle mass in the fetus with intrauterine growth restriction (IUGR) persists into adulthood and may contribute to increased metabolic disease risk. To determine how placental insufficiency with reduced oxygen and nutrient supply to the fetus affects hindlimb blood flow, substrate uptake and protein accretion rates in skeletal muscle, late gestation control (CON) (n = 8) and IUGR (n = 13) fetal sheep were catheterized with aortic and femoral catheters and a flow transducer around the external iliac artery. Muscle protein kinetic rates were measured using isotopic tracers. Hindlimb weight, linear growth rate, muscle protein accretion rate and fractional synthetic rate were lower in IUGR compared to CON (P fetal norepinephrine and reduced IGF-1 and insulin. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  15. Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts

    Fryer, Chris L.; Woosley, S. E.; Hartmann, Dieter H.

    1999-01-01

    The cosmological origin of at least an appreciable fraction of classical gamma-ray bursts (GRBs) is now supported by redshift measurements for a half-dozen faint host galaxies. Still, the nature of the central engine (or engines) that provide the burst energy remains unclear. While many models have been proposed, those currently favored are all based upon the formation of and/or rapid accretion into stellar-mass black holes. Here we discuss a variety of such scenarios and estimate the probability of each. Population synthesis calculations are carried out using a Monte Carlo approach in which the many uncertain parameters intrinsic to such calculations are varied. We estimate the event rate for each class of model as well as the propagation distances for those having significant delay between formation and burst production, i.e., double neutron star (DNS) mergers and black hole-neutron star (BH/NS) mergers. One conclusion is a 1-2 order of magnitude decrease in the rate of DNS and BH/NS mergers compared to that previously calculated using invalid assumptions about common envelope evolution. Other major uncertainties in the event rates and propagation distances include the history of star formation in the universe, the masses of the galaxies in which merging compact objects are born, and the radii of the hydrogen-stripped cores of massive stars. For reasonable assumptions regarding each, we calculate a daily event rate in the universe for (1) merging neutron stars: ∼100 day-1; (2) neutron star-black hole mergers: ∼450 day-1; (3) collapsars: ∼104 day-1; (4) helium star black hole mergers: ∼1000 day-1; and (5) white dwarf-black hole mergers: ∼20 day-1. The range of uncertainty in these numbers, however, is very large, typically 2-3 orders of magnitude. These rates must additionally be multiplied by any relevant beaming factor (f Ω <1) and sampling fraction (if the entire universal set of models is not being observed). Depending upon the mass of the host

  16. Global warming and interest rate

    Rey, Francisco C.

    1999-01-01

    The socio-economical growth of our country will yield unavoidably a sustained growth on the energy demand, particularly on the electricity demand. If the expected assumptions are fulfilled, the needed power needed to cover the electrical demand between 1997 and 2020 will almost triple, and the natural gas consumption by the generating facilities and CO 2 emissions in that sector will multiply by five. If the emissions of other sector grow at the same rate as those of the electric sector the level of the emissions in our country will be equivalent to those of the developed countries at present. It is imperative to put limits to the growth of those emissions. In order to avoid that limiting of the emissions to be just a declaration, it is necessary to find and implement mechanisms that will lead to that goal. In the electric sector, and in order to promote the use of energy sources free of those emissions, the possible measures are: Application of an emission tax of U$ 10 (or higher) per ton of CO 2 and use of the resulting funds to cause a decrease in the interest rate applied to electric generation projects which do not emit greenhouse gases. Contributions by the countries responsible for the present level of CO 2 in the atmosphere to lower the incidence of the initial capital costs on the generation costs for the same type of projects (via low rate loans or subsidies). Being active any one of these two mechanisms (or both), will provoke those clean generation sources to compete successfully and will allow them to be a valuable tool to effectively diminish the growth of the emissions of those gases from the electric sector. Besides, a tax of such magnitude would not provoke an important increase on the electric energy prices. If any mechanism is implemented which intends to effectively diminish the CO 2 emissions, the first important project to be completed is the completion of the Atucha II power station. (author)

  17. Experimental measurements of the 15O(alpha,gamma)19Ne reaction rate and the stability of thermonuclear burning on accreting neutron stars

    Fisker, J; Tan, W; Goerres, J; Wiescher, M; Cooper, R

    2007-01-01

    Neutron stars in close binary star systems often accrete matter from their companion stars. Thermonuclear ignition of the accreted material in the atmosphere of the neutron star leads to a thermonuclear explosion which is observed as an X-ray burst occurring periodically between hours and days depending on the accretion rate. The ignition conditions are characterized by a sensitive interplay between the accretion rate of the fuel supply and its depletion rate by nuclear burning in the hot CNO cycle and the rp-process. For accretion rates close to stable burning the burst ignition therefore depends critically on the hot CNO breakout reaction 15 O(α, γ) 19 Ne that regulates the flow between the hot CNO cycle and the rapid proton capture process. Until recently, the 15 O(α, γ) 19 Ne reaction rate was not known experimentally and the theoretical estimates carried significant uncertainties. In this paper we perform a parameter study of the uncertainty of this reaction rate and determine the astrophysical consequences of the first measurement of this reaction rate. Our results corroborate earlier predictions and show that theoretically burning remains unstable up to accretion rates near the Eddington limit, in contrast to astronomical observations

  18. Is Black Hole Growth a Universal Process? Exploring Selection Effects in Measurements of AGN Accretion Rates and Host Galaxies.

    Jones, Mackenzie

    2018-01-01

    At the center of essentially every massive galaxy is a monstrous black hole producing luminous radiation driven by the accretion of gas. By observing these active galactic nuclei (AGN) we may trace the growth of black holes across cosmic time. However, our knowledge of the full underlying AGN population is hindered by complex observational biases. My research aims to untangle these biases by using a novel approach to simulate the impact of selection effects on multiwavelength observations.The most statistically powerful studies of AGN to date come from optical spectroscopic surveys, with some reporting a complex relationship between AGN accretion rates and host galaxy characteristics. However, the optical waveband can be strongly influenced by selection effects and dilution from host galaxy star formation. I have shown that accounting for selection effects, the Eddington ratio distribution for optically-selected AGN is consistent with a broad power-law, as seen in the X-rays (Jones et al. 2016). This suggests that a universal Eddington ratio distribution may be enough to describe the full multiwavelength AGN population.Building on these results, I have expanded a semi-numerical galaxy formation simulation to include this straightforward prescription for AGN accretion and explicitly model selection effects. I have found that a simple model for AGN accretion can broadly reproduce the host galaxies and halos of X-ray AGN, and that different AGN selection techniques yield samples with very different host galaxy properties (Jones et al. 2017). Finally, I will discuss the capabilities of this simulation to build synthetic multiwavelength SEDs in order to explore what AGN populations would be detected with the next generation of observatories. This research is supported by a NASA Jenkins Graduate Fellowship under grant no. NNX15AU32H.

  19. Accretion from an inhomogeneous medium

    Livio, M.; Soker, N.; Koo, M. de; Savonije, G.J.

    1986-01-01

    The problem of accretion by a compact object from an inhomogeneous medium is studied in the general γnot=1 case. The mass accretion rate is found to decrease with increasing γ. The rate of accretion of angular momentum is found to be significantly lower than the rate at which angular momentum is deposited into the Bondi-Hoyle, symmetrical, accretion cylinder. The consequences of the results are studied for the cases of neutron stars accreting from the winds of early-type companions and white dwarfs and main-sequence stars accreting from winds of cool giants. (author)

  20. Erratum: The Growth Rate of Tidally Excited Waves in Accretion Disks

    Vishniac, Ethan T.; Zhang, Changsong

    1997-03-01

    In the paper ``The Growth Rate of Tidally Excited Waves in Accretion Disks'' by Ethan T. Vishniac and Changsong Zhang (ApJ, 461, 307 [1996]), the original formulae for the Eulerian velocities in terms of the Lagrangian displacements were in error. The correct formulae are (equation numbers here match those in the original paper) Δvr=-2ω¯ξr sin (2ω¯t+2θ) (33)and Δvθ=(3/2Ωξr+2ω¯ξθ) cos (2ω¯t+2θ) . (34) This changes the matrix elements used in calculating the wave growth rates to =sin (2ψ)/8 -∞∞ṽr[vr(-(∂rΔvr)/2-(Δvθ)/r)-Δvz∂zvr-((2Δvθ)/r-(2Δvr)/r)vθ-χkr Δρ/ρ S]dz=sin (2ψ)/8 -∞∞ṽr{vr(ω¯∂rξr-2ω¯ (ξθ)/r-3Ω (ξr)/r)+∂zvr2ω¯ξz-(2vθ)/r [ξr(3Ω/2+2ω¯)+2ω¯ξθ]+χkrS[(ξr)/r+∂rξr+2/r ξθ+∂zξz(1+z∂zlnρ)]}dz ,=sin (2ψ)/8 -∞∞ṽθ[vr(∂rΔvθ+(Δvθ)/r)+vθ(-1/2 ∂rΔvr+(Δvr)/r-(Δvθ)/r)+Δvz∂zvθ]dz=sin (2ψ)/8 -∞∞ṽθ{vr[3Ω/2 ∂rξr+2ω¯∂rξθ-3Ω/4 (ξr)/r+(2ω¯-3Ω) (ξθ)/r]+vθ[ω¯∂rξr-2ω¯ (ξθ)/r-(3Ω+2ω¯) (ξr)/r]-2ω¯ξz∂zvθ}dz ,=(sin(2ψ))/8-∞∞ṽz[vz(-∂zΔvz+1/2∂rΔvr-(Δvθ)/r)-Δvz∂zvz-Δρ/ρS(-(zΩ2)/(c2s)+∂z)χ-δ(1/ρ∂zΔP+2Δρ/ρzΩ2)]dz=sin (2ψ)/8 -∞∞ṽz{vz(-ω¯∂rξr-2ω¯ (ξθ)/r+2ω¯∂zξz)+2ω¯ξz∂zvz-Δρ/ρ S(-(zΩ2)/(c2s)+∂z)χ+zΩ2[(γ-2) Δρ/ρ+γ ΔS/S-∂zξz(2+z∂zlnρ+(γz2Ω2)/(c2s))]δ}dz , (44) (46) (48)=sin (2ψ)/8 -∞∞χ˜[[-(c2s)/S ΔP/P krvr+(c2s)/S ((∂zΔP)/γP+ΔP/P ∂z)vz×{(γ-1/2)[(∂r(rΔvr))/r-(2Δvθ)/r]+Δvz(-(zΩ2)/(c2s)+∂z)+γ∂z(Δvz)}χ

  1. Blinded by the light: on the relationship between CO first overtone emission and mass accretion rate in massive young stellar objects

    Ilee, J. D.; Oudmaijer, R. D.; Wheelwright, H. E.; Pomohaci, R.

    2018-04-01

    To date, there is no explanation as to why disc-tracing CO first overtone (or `bandhead') emission is not a ubiquitous feature in low- to medium-resolution spectra of massive young stellar objects, but instead is only detected toward approximately 25 per cent of their spectra. In this paper, we investigate the hypothesis that only certain mass accretion rates result in detectable bandhead emission in the near infrared spectra of MYSOs. Using an analytic disc model combined with an LTE model of the CO emission, we find that high accretion rates (≳ 10-4 M⊙yr-1) result in large dust sublimation radii, a larger contribution to the K-band continuum from hot dust at the dust sublimation radius, and therefore correspondingly lower CO emission with respect to the continuum. On the other hand, low accretion rates (≲ 10-6 M⊙yr-1) result in smaller dust sublimation radii, a correspondingly smaller emitting area of CO, and thus also lower CO emission with respect to the continuum. In general, moderate accretion rates produce the most prominent, and therefore detectable, CO first overtone emission. We compare our findings to a recent near-infrared spectroscopic survey of MYSOs, finding results consistent with our hypothesis. We conclude that the detection rate of CO bandhead emission in the spectra of MYSOs could be the result of MYSOs exhibiting a range of mass accretion rates, perhaps due to the variable accretion suggested by recent multi-epoch observations of these objects.

  2. National Coral Reef Monitoring Program: Calcification Rates of Crustose Coralline Algae Derived from Calcification Accretion Units (CAUs) Deployed across the Mariana Archipelago in 2011 and Retrieved in 2014 (NCEI Accession 0157758)

    National Oceanic and Atmospheric Administration, Department of Commerce — Calcification accretion units, or CAUs, are used to assess the current effects of changes in seawater carbonate chemistry on calcification and accretion rates of...

  3. National Coral Reef Monitoring Program: Calcification Rates of Crustose Coralline Algae Derived from Calcification Accretion Units (CAUs) Deployed across American Samoa in 2012 and Retrieved in 2015 (NCEI Accession 0159149)

    National Oceanic and Atmospheric Administration, Department of Commerce — Calcification accretion units, or CAUs, are used to assess the current effects of changes in seawater carbonate chemistry on calcification and accretion rates of...

  4. National Coral Reef Monitoring Program: Calcification Rates of Crustose Coralline Algae Derived from Calcification Accretion Units (CAUs) Deployed across the Northwestern Hawaiian Islands in 2010 and Retrieved in 2013 (NCEI Accession 0157722)

    National Oceanic and Atmospheric Administration, Department of Commerce — Calcification accretion units, or CAUs, are used to assess the current effects of changes in seawater carbonate chemistry on calcification and accretion rates of...

  5. Pacific Reef Assessment and Monitoring Program: Calcification Rates of Crustose Coralline Algae Derived from Calcification Accretion Units (CAUs) Deployed across American Samoa and the Pacific Remote Island Areas in 2010

    National Oceanic and Atmospheric Administration, Department of Commerce — Calcification accretion units, or CAUs, are used to assess the current effects of changes in seawater carbonate chemistry on calcification and accretion rates of...

  6. The White Dwarf Mass and the Accretion Rate of Recurrent Novae: An X-ray Perspective

    Mukai, Koji; Sokoloski, Jennifer L.; Nelson, Thomas; Luna, Gerardo J. M.

    2011-01-01

    We present recent results of quiescent X-ray observations of recurrent novae (RNe) and related objects. Several RNe are luminous hard X-ray sources in quiescence, consistent with accretion onto a near Chandrasekhar mass white dwarf. Detection of similar hard X-ray emissions in old novae and other cataclysmic variables may lead to identification of additional RN candidates. On the other hand, other RNe are found to be comparatively hard X-ray faint. We present several scenarios that may explain this dichotomy, which should be explored further.

  7. SELF-DESTRUCTING SPIRAL WAVES: GLOBAL SIMULATIONS OF A SPIRAL-WAVE INSTABILITY IN ACCRETION DISKS

    Bae, Jaehan; Hartmann, Lee [Department of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109 (United States); Nelson, Richard P.; Richard, Samuel, E-mail: jaehbae@umich.edu, E-mail: lhartm@umich.edu, E-mail: r.p.nelson@qmul.ac.uk, E-mail: samuel.richard@qmul.ac.uk [Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2016-09-20

    We present results from a suite of three-dimensional global hydrodynamic simulations that shows that spiral density waves propagating in circumstellar disks are unstable to the growth of a parametric instability that leads to break down of the flow into turbulence. This spiral wave instability (SWI) arises from a resonant interaction between pairs of inertial waves, or inertial-gravity waves, and the background spiral wave. The development of the instability in the linear regime involves the growth of a broad spectrum of inertial modes, with growth rates on the order of the orbital time, and results in a nonlinear saturated state in which turbulent velocity perturbations are of a similar magnitude to those induced by the spiral wave. The turbulence induces angular momentum transport and vertical mixing at a rate that depends locally on the amplitude of the spiral wave (we obtain a stress parameter α ∼ 5 × 10{sup −4} in our reference model). The instability is found to operate in a wide range of disk models, including those with isothermal or adiabatic equations of state, and in viscous disks where the dimensionless kinematic viscosity ν ≤ 10{sup −5}. This robustness suggests that the instability will have applications to a broad range of astrophysical disk-related phenomena, including those in close binary systems, planets embedded in protoplanetary disks (including Jupiter in our own solar system) and FU Orionis outburst models. Further work is required to determine the nature of the instability and to evaluate its observational consequences in physically more complete disk models than we have considered in this paper.

  8. SELF-DESTRUCTING SPIRAL WAVES: GLOBAL SIMULATIONS OF A SPIRAL-WAVE INSTABILITY IN ACCRETION DISKS

    Bae, Jaehan; Hartmann, Lee; Nelson, Richard P.; Richard, Samuel

    2016-01-01

    We present results from a suite of three-dimensional global hydrodynamic simulations that shows that spiral density waves propagating in circumstellar disks are unstable to the growth of a parametric instability that leads to break down of the flow into turbulence. This spiral wave instability (SWI) arises from a resonant interaction between pairs of inertial waves, or inertial-gravity waves, and the background spiral wave. The development of the instability in the linear regime involves the growth of a broad spectrum of inertial modes, with growth rates on the order of the orbital time, and results in a nonlinear saturated state in which turbulent velocity perturbations are of a similar magnitude to those induced by the spiral wave. The turbulence induces angular momentum transport and vertical mixing at a rate that depends locally on the amplitude of the spiral wave (we obtain a stress parameter α ∼ 5 × 10 −4 in our reference model). The instability is found to operate in a wide range of disk models, including those with isothermal or adiabatic equations of state, and in viscous disks where the dimensionless kinematic viscosity ν ≤ 10 −5 . This robustness suggests that the instability will have applications to a broad range of astrophysical disk-related phenomena, including those in close binary systems, planets embedded in protoplanetary disks (including Jupiter in our own solar system) and FU Orionis outburst models. Further work is required to determine the nature of the instability and to evaluate its observational consequences in physically more complete disk models than we have considered in this paper.

  9. Supermassive black holes with high accretion rates in active galactic nuclei. I. First results from a new reverberation mapping campaign

    Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Wang, Jian-Min [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China); Lu, Kai-Xing [Astronomy Department, Beijing Normal University, Beijing 100875 (China); Wang, Fang; Bai, Jin-Ming [Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011, Yunnan (China); Kaspi, Shai; Netzer, Hagai [Wise Observatory, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Collaboration: SEAMBH collaboration

    2014-02-10

    We report first results from a large project to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). Such objects may be different from other AGNs in being powered by slim accretion disks and showing saturated accretion luminosities, but both are not yet fully understood. The results are part of a large reverberation mapping (RM) campaign using the 2.4 m Shangri-La telescope at the Yunnan Observatory in China. The goals are to investigate the gas distribution near the BH and the properties of the central accretion disks, to measure BH mass and Eddington ratios, and to test the feasibility of using such objects as a new type of cosmological candles. The paper presents results for three objects, Mrk 335, Mrk 142, and IRAS F12397+3333, with Hβ time lags relative to the 5100 Å continuum of 10.6{sub −2.9}{sup +1.7}, 6.4{sub −2.2}{sup +0.8} and 11.4{sub −1.9}{sup +2.9} days, respectively. The corresponding BH masses are (8.3{sub −3.2}{sup +2.6})×10{sup 6} M{sub ⊙}, (3.4{sub −1.2}{sup +0.5})×10{sup 6} M{sub ⊙}, and (7.5{sub −4.1}{sup +4.3})×10{sup 6} M{sub ⊙}, and the lower limits on the Eddington ratios are 0.6, 2.3, and 4.6 for the minimal radiative efficiency of 0.038. Mrk 142 and IRAS F12397+333 (extinction corrected) clearly deviate from the currently known relation between Hβ lag and continuum luminosity. The three Eddington ratios are beyond the values expected in thin accretion disks and two of them are the largest measured so far among objects with RM-based BH masses. We briefly discuss implications for slim disks, BH growth, and cosmology.

  10. Magnetism, X-rays and accretion rates in WD 1145+017 and other polluted white dwarf systems

    Farihi, J.; Fossati, L.; Wheatley, P. J.; Metzger, B. D.; Mauerhan, J.; Bachman, S.; Gänsicke, B. T.; Redfield, S.; Cauley, P. W.; Kochukhov, O.; Achilleos, N.; Stone, N.

    2018-02-01

    This paper reports circular spectropolarimetry and X-ray observations of several polluted white dwarfs including WD 1145+017, with the aim to constrain the behaviour of disc material and instantaneous accretion rates in these evolved planetary systems. Two stars with previously observed Zeeman splitting, WD 0322-019 and WD 2105-820, are detected above 5σ and 〈Bz〉 > 1 kG, while WD 1145+017, WD 1929+011, and WD 2326+049 yield (null) detections below this minimum level of confidence. For these latter three stars, high-resolution spectra and atmospheric modelling are used to obtain limits on magnetic field strengths via the absence of Zeeman splitting, finding B* Earth composition material falling on to the magnetic polar regions of white dwarfs, where X-rays and cyclotron radiation may contribute to accretion luminosity. This analysis is applied to X-ray data for WD 1145+017, WD 1729+371, and WD 2326+049, and the upper bound count rates are modelled with spectra for a range of plasma kT = 1-10 keV in both the magnetic and non-magnetic accretion regimes. The results for all three stars are consistent with a typical dusty white dwarf in a steady state at 108-109 g s-1. In particular, the non-magnetic limits for WD 1145+017 are found to be well below previous estimates of up to 1012 g s-1, and likely below 1010 g s-1, thus suggesting the star-disc system may be average in its evolutionary state, and only special in viewing geometry.

  11. The Splashback Radius of Halos from Particle Dynamics. II. Dependence on Mass, Accretion Rate, Redshift, and Cosmology

    Diemer, Benedikt; Mansfield, Philip; Kravtsov, Andrey V.; More, Surhud

    2017-07-01

    The splashback radius R sp, the apocentric radius of particles on their first orbit after falling into a dark matter halo, has recently been suggested to be a physically motivated halo boundary that separates accreting from orbiting material. Using the Sparta code presented in Paper I, we analyze the orbits of billions of particles in cosmological simulations of structure formation and measure R sp for a large sample of halos that span a mass range from dwarf galaxy to massive cluster halos, reach redshift 8, and include WMAP, Planck, and self-similar cosmologies. We analyze the dependence of R sp/R 200m and M sp/M 200m on the mass accretion rate Γ, halo mass, redshift, and cosmology. The scatter in these relations varies between 0.02 and 0.1 dex. While we confirm the known trend that R sp/R 200m decreases with Γ, the relationships turn out to be more complex than previously thought, demonstrating that R sp is an independent definition of the halo boundary that cannot trivially be reconstructed from spherical overdensity definitions. We present fitting functions for R sp/R 200m and M sp/M 200m as a function of accretion rate, peak height, and redshift, achieving an accuracy of 5% or better everywhere in the parameter space explored. We discuss the physical meaning of the distribution of particle apocenters and show that the previously proposed definition of R sp as the radius of the steepest logarithmic density slope encloses roughly three-quarters of the apocenters. Finally, we conclude that no analytical model presented thus far can fully explain our results.

  12. Instantaneous global nitrous oxide photochemical rates

    Johnston, H.S.; Serang, O.; Podolske, J.

    1979-01-01

    In recent years, vertical profiles of nitrous oxide have been measured by balloon up to midstratosphere at several latitudes between 63 0 N and 73 0 S, including one profile in the tropical zone at 9 0 N. Two rocket flights measured nitrous oxide mixing ratios at 44 and 49 km. From these experimental data plus a large amount of interpolation and extrapolation, we have estimated a global distribution of nitrous oxide up to the altitude of 50 km. With standard global distributions of oxygen and ozone we carried out instantaneous, three-dimensional, global photochemical calculations, using recently measured temperature-dependent cross sections for nitrous oxide. The altitude of maximum photolysis rate of N 2 O is about 30 km at all latitudes, and the rate of photolysis is a maximum in tropical latitudes. The altitude of maximum rate of formation of nitric oxide is latitude dependent, about 26 km at the equator, about 23 km over temperate zones, and 20 km at the summer pole. The global rate of N 2 O destruction is 6.2 x 10 27 molecules s -1 , and the global rate of formation of NO from N 2 O is 1.4 x 10 27 molecules s -1 . The global N 2 O inventory divided by the stratospheric loss rate gives a residence time of about 175 years with respect to this loss process. From the global average N 2 O profile a vertical eddy diffusion profile was derived, and this profile agrees very closely with that of Stewart and Hoffert

  13. Spatial Trends and Variability of Vertical Accretion Rates in the Barataria Basin, Louisiana, U.S.A. using Pb-210 and Cs-137 radiochemistry

    Shrull, S.; Wilson, C.; Snedden, G.; Bentley, S. J.

    2017-12-01

    Barataria Basin on the south Louisiana coast is experiencing some of the greatest amounts of coastal land loss in the United States with rates as high as 23.1 km2 lost per year. In an attempt to help slow or reverse land loss, millions of dollars are being spent to create sediment diversions to increase the amount of available inorganic sediments to these vulnerable coastal marsh areas. A better understanding of the spatial trends and patterns of background accretion rates needs to be established in order to effectively implement such structures. Core samples from 25 Coastwide Reference Monitoring System (CRMS) sites spanning inland freshwater to coastal saline areas within the basin were extracted, and using vertical accretion rates from Cs-137 & Pb-210 radionuclide detection, mineral versus organic sediment composition, grain size distribution, and spatial trends of bulk densities, the controls on the accretion rates of the marsh soils will be constrained. Initial rates show a range from 0.31 cm/year to 1.02 cm/year with the average being 0.79 cm/year. Preliminary results suggest that location and proximity to an inorganic sediment source (i.e. river/tributary or open water) have a stronger influence on vertical accretion rates than marsh classification and salinity, with no clear relationship between vertical accretion and salinity. Down-core sediment composition and bulk density analyses observed at a number of the sites likely suggest episodic sedimentation and show different vertical accretion rates through time. Frequency and length of inundation (i.e. hydroperiod), and land/marsh classification from the CRMS data set will be further investigated to constrain the spatial variability in vertical accretion for the basin.

  14. Influence of Sea-Level Rise and Storms on Soil Accretion Rates in the Mangrove Forests of Everglades National Park, USA

    Smoak, J. M.; Breithaupt, J.; Smith, T., III; Sanders, C. J.; Peterson, L. C.

    2014-12-01

    Mangrove forests provide a range of valuable ecosystem services including sequestering large quantities of organic carbon (OC) in their soils at rates higher than other forests. Whether or not mangrove soils continue to be a sink for OC will be determined by the mangrove ecosystems' response to climate change-induced stressors. The threats of rising sea level outpacing mangrove forest soil accretion and increased wave energy associated with this rise may become the primary climate change-induced stressors on mangrove ecosystems. The threat from wave energy is amplified during storm events, which could increasingly damage mangrove forests along the coastline. However, storms may enhance accretion rates at some sites due to delivery of storm surge material, which could increase the system's ability to keep pace with sea-level rise (SLR). To investigate these processes we measure soil accretion rates over the last 100 years (via 210Pb dating) within the mangrove forests of Everglades National Park, which are situated within the largest contiguous mangrove forest in North America. Accretion rates range from 2 to 2.8 mm per year for sites within 10 km of the Gulf of Mexico. These rates match (within error) or exceed SLR over the last 100 years. Sites farther inland than 10 km have slightly lower accretion rates. Throughout the system organic matter accumulation is the most important source material contributing to accretion. The more seaward sites also show an important contribution from carbonate material. Soil cores from the most seaward sites exhibited visual laminations and Ca peaks (determined via x-ray fluorescence). These are indicators of storm surge deposits. While higher sea level might produce more damage and loss of mangrove forest along open water (e.g., Gulf of Mexico), our findings suggest some sites will have enhanced accretion rates due to supplementation with storm surge material.

  15. SPECTRAL INDEX AS A FUNCTION OF MASS ACCRETION RATE IN BLACK HOLE SOURCES: MONTE CARLO SIMULATIONS AND AN ANALYTICAL DESCRIPTION

    Laurent, Philippe; Titarchuk, Lev

    2011-01-01

    We present herein a theoretical study of correlations between spectral indexes of X-ray emergent spectra and mass accretion rate ( m-dot ) in black hole (BH) sources, which provide a definitive signature for BHs. It has been firmly established, using the Rossi X-ray Timing Explorer (RXTE) in numerous BH observations during hard-soft state spectral evolution, that the photon index of X-ray spectra increases when m-dot increases and, moreover, the index saturates at high values of m-dot . In this paper, we present theoretical arguments that the observationally established index saturation effect versus mass accretion rate is a signature of the bulk (converging) flow onto the BH. Also, we demonstrate that the index saturation value depends on the plasma temperature of converging flow. We self-consistently calculate the Compton cloud (CC) plasma temperature as a function of mass accretion rate using the energy balance between energy dissipation and Compton cooling. We explain the observable phenomenon, index- m-dot correlations using a Monte Carlo simulation of radiative processes in the innermost part (CC) of a BH source and we account for the Comptonization processes in the presence of thermal and bulk motions, as basic types of plasma motion. We show that, when m-dot increases, BH sources evolve to high and very soft states (HSS and VSS, respectively), in which the strong blackbody(BB)-like and steep power-law components are formed in the resulting X-ray spectrum. The simultaneous detections of these two components strongly depends on sensitivity of high-energy instruments, given that the relative contribution of the hard power-law tail in the resulting VSS spectrum can be very low, which is why, to date RXTE observations of the VSS X-ray spectrum have been characterized by the presence of the strong BB-like component only. We also predict specific patterns for high-energy e-fold (cutoff) energy (E fold ) evolution with m-dot for thermal and dynamical (bulk

  16. Docosahexaenoic acid (DHA) accretion in the placenta but not the fetus is matched by plasma unesterified DHA uptake rates in pregnant Long Evans rats.

    Metherel, Adam H; Kitson, Alex P; Domenichiello, Anthony F; Lacombe, R J Scott; Hopperton, Kathryn E; Trépanier, Marc-Olivier; Alashmali, Shoug M; Lin, Lin; Bazinet, Richard P

    2017-10-01

    Maternal delivery of docosahexaenoic acid (DHA, 22:6n-3) to the developing fetus via the placenta is required for fetal neurodevelopment, and is the only mechanism by which DHA can be accreted in the fetus. The aim of the current study was to utilize a balance model of DHA accretion combined with kinetic measures of serum unesterified DHA uptake to better understand the mechanism by which maternal DHA is delivered to the fetus via the placenta. Female rats maintained on a 2% α-linolenic acid diet free of DHA for 56 days were mated, and for balance analysis, sacrificed at 18 days of pregnancy, and fetus, placenta and maternal carcass fatty acid concentration were determined. For tissue DHA uptake, pregnant dams (14-18 days) were infused for 5 min with radiolabeled 14 C-DHA and kinetic modeling was used to determine fetal and placental serum unesterified DHA uptake rates. DHA accretion rates in the fetus were determined to be 38 ± 2 nmol/d/g, 859 ± 100 nmol/d/litter and 74 ± 3 nmol/d/pup, which are all higher (P  0.05) in placental DHA accretion rates versus serum unesterified DHA uptake rates were observed as values varied only 6-35% between studies. No differences in placental accretion and uptake rates suggests that serum unesterified DHA is a significant pool for the maternal-placental transfer of DHA, and lower fetal DHA uptake compared to accretion supports remodeling of placental DHA for delivery to the fetus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Nuclear-reaction rates in the thermonuclear runaway phase of accreting neutron stars

    Wiescher, M.; Barnard, V.; Goerres, J.; Fisker, J.L.; Martinez-Pinedo, G.; Langanke, K.; Rembges, F.; Thielemann, F.K.; Schatz, H.

    2002-01-01

    The rp-process has been suggested as the dominant nucleosynthesis process in explosive hydrogen burning at high temperature and density conditions. The process is characterized by a sequence of fast proton capture reactions and subsequent β-decays. The reaction path of the rp-process runs along the drip line up to Z∼50. Most of the charged-particle reaction rates for the reaction path are presently based on statistical Hauser-Feshbach calculations. While these rates are supposed to be reliable within a factor of two for conditions of high density in the compound nuclei, discrepancies may occur for nuclei near closed shells or near the proton drip line where the Q-values of proton capture processes are typically very small. It has been argued that the thermonuclear runaway is less sensitive to the reaction rates because of the rapid time-scale of the event. However, since these processes may operate at the same time-scale as fast mixing and convection processes, a change in reaction rates indeed may have a significant impact. In this paper we present two examples, the break-out from the hot CNO cycles, and the thermonuclear runaway in X-ray bursts itself, where changes in reaction rates have a direct impact on time-scale, energy generation and nucleosynthesis predictions for the explosive event. (orig.)

  18. On accretion from an inhomogeneous medium

    Davies, R.E.; Pringle, J.E.

    1980-01-01

    Hypersonic accretion flow in two dimensions from an infinite medium which contains a small density and/or velocity gradient is considered. To first order in rsub(a)/h, where rsub(a) is the accretion radius and h the scale of the gradient, the accretion rate is unaffected and the accreted angular momentum is zero. Thus previous estimates of the amount of angular momentum accreted may severely overestimate the actual value. (author)

  19. RADIATIVELY EFFICIENT MAGNETIZED BONDI ACCRETION

    Cunningham, Andrew J.; Klein, Richard I.; McKee, Christopher F.; Krumholz, Mark R.; Teyssier, Romain

    2012-01-01

    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of ∼2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of ∼0.2 β 1/2 compared to the Bondi value, where β is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  20. RADIATIVELY EFFICIENT MAGNETIZED BONDI ACCRETION

    Cunningham, Andrew J.; Klein, Richard I. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McKee, Christopher F. [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720 (United States); Krumholz, Mark R. [Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA 94560 (United States); Teyssier, Romain, E-mail: ajcunn@gmail.com [Service d' Astrophysique, CEA Saclay, 91191 Gif-sur-Yvette (France)

    2012-01-10

    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of {approx}2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of {approx}0.2 {beta}{sup 1/2} compared to the Bondi value, where {beta} is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  1. EVOLUTION OF MASSIVE PROTOSTARS VIA DISK ACCRETION

    Hosokawa, Takashi; Omukai, Kazuyuki; Yorke, Harold W.

    2010-01-01

    Mass accretion onto (proto-)stars at high accretion rates M-dot * > 10 -4 M sun yr -1 is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of 'cold' disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10 -3 M sun yr -1 , the radius of a protostar is initially small, R * ≅ a few R sun . After several solar masses have accreted, the protostar begins to bloat up and for M * ≅ 10 M sun the stellar radius attains its maximum of 30-400 R sun . The large radius ∼100 R sun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M * ≅ 30 M sun , independent of the accretion geometry. For accretion rates exceeding several 10 -3 M sun yr -1 , the protostar never contracts to the ZAMS. The very large radius of several hundreds R sun results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.

  2. Decadal-scale variation in dune erosion and accretion rates: An investigation of the significance of changing storm tide frequency and magnitude on the Sefton coast, UK

    Pye, K.; Blott, S. J.

    2008-12-01

    Monitoring of frontal dune erosion and accretion on the Sefton coast in northwest England over the past 50 years has revealed significant spatial and temporal variations. Previous work has shown that the spatial variations primarily reflect longshore differences in beach and nearshore morphology, energy regime and sediment budget, but the causes of temporal variations have not previously been studied in detail. This paper presents the results of work carried out to test the hypothesis that a major cause of temporal variation is changes in the frequency and magnitude of storms, surges and resulting high tides. Dune toe erosion/accretion records dating from 1958 have been compared with tide gauge records at Liverpool and Heysham. Relatively high dune erosion rates at Formby Point 1958-1968 were associated with a relatively large number of storm tides. Slower erosion at Formby, and relatively rapid accretion in areas to the north and south, occurred during the 1970's and 1980's when there were relatively few major storm tides. After 1990 rates of dune erosion at Formby increased again, and dunes to the north and south experienced slower accretion. During this period high storm tides have been more frequent, and the annual number of hours with water levels above the critical level for dune erosion has increased significantly. An increase in the rate of mean sea-level rise at both Liverpool and Heysham is evident since 1990, but we conclude that this factor is of less importance than the occurrence of extreme high tides and wave action associated with storms. The incidence of extreme high tides shows an identifiable relationship with the lunar nodal tidal cycle, but the evidence indicates that meteorological forcing has also had a significant effect. Storms and surges in the eastern Irish Sea are associated with Atlantic depressions whose direction and rate of movement have a strong influence on wind speeds, wave energy and the height of surge tides. However

  3. Poverty Mapping Project: Global Subnational Infant Mortality Rates

    National Aeronautics and Space Administration — The Global Subnational Infant Mortality Rates consists of estimates of infant mortality rates for the year 2000. The infant mortality rate for a region or country is...

  4. Nearly collisionless spherical accretion

    Begelman, M.C.

    1977-01-01

    A fluid-like gas accretes much more efficiently than a collisionless gas. The ability of an accreting gas to behave like a fluid depends on the relationship of the mean free path of a gas particle at r → infinity lambdasub(infinity), to the typical length scales associated with the star-gas system. This relationship is examined in detail. For constant collision cross-section evidence is found for a rapid changeover from collisionless to fluid-like accretion flow when lambdasub(infinity) drops below a certain value, but for hard Coulomb collisions, the transition is more gradual, and is sensitive to the adiabatic index of the gas at r→ infinity. To these results must be added the effects of the substantial cusp of bound particles, which always develops in a system with arbitrarily small but non-zero cross-section. The density run in such a cusp depends on the collision properties of the particles. 'Loss-cone' accretion from the cusp may in some cases exceed the predicted accretion rate. (author)

  5. Relativistic, accreting disks

    Abramowicz, M.A; Jaroszynski, M.; Sikora, M.

    1978-01-01

    An analytic theory of the hydrodynamical structure of accreting disks (without self-gravitation but with pressure) orbiting around and axially symmetric, stationary, compact body (e.g. black hole) is presented. The inner edge of the marginally stable accreting disk (i.e. disk with constant angular momentum density) has a sharp cusp located on the equatorial plane between rsub(ms) and rsub(mb). The existence of the cusp is also typical for any angular momentum distribution. The physical importance of the cusp follows from the close analogy with the case of a close binary system (L 1 Lagrange point on the Roche lobe). The existence of the cusp is thus a crucial phenomenon in such problems as boundary condition for the viscous stresses, accretion rate etc. (orig.) [de

  6. Relativistic, accreting disks

    Abramowicz, M A; Jaroszynski, M; Sikora, M [Polska Akademia Nauk, Warsaw

    1978-02-01

    An analytic theory of the hydrodynamical structure of accreting disks (without self-gravitation but with pressure) orbiting around an axially symmetric, stationary, compact body (e.g. black hole) is presented. The inner edge of the marginally stable accreting disk (i.e. disk with constant angular momentum density) has a sharp cusp located on the equatorial plane between r/sub ms/ and r/sub mb/. The existence of the cusp is also typical for any angular momentum distribution. The physical importance of the cusp follows from the close analogy with the case of a close binary system (L/sub 1/ Lagrange point on the Roche lobe). The existence of the cusp is thus a crucial phenomenon in such problems as boundary condition for the viscous stresses, accretion rate, etc.

  7. Bioerosion Accretion Replicate (BAR) data covering in situ calcification and bioerosion rates along pH gradients at two volcanically acidified reefs in Papua New Guinea from 2013-01-18 to 2014-11-10 (NCEI Accession 0156692)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bioerosion Accretion Replicate (BAR) data covering in situ calcification and bioerosion rates along pH gradients at two volcanically acidified reefs in Papua New...

  8. Wind accretion and formation of disk structures in symbiotic binary systems

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.

    2015-05-01

    We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence of the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2--10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic variable system CH Cyg.

  9. Accretion onto a Kiselev black hole

    Jiao, Lei [Hebei University, College of Physical Science and Technology, Baoding (China); Yang, Rongjia [Hebei University, College of Physical Science and Technology, Baoding (China); Hebei University, Hebei Key Lab of Optic-Electronic Information and Materials, Baoding (China)

    2017-05-15

    We consider accretion onto a Kiselev black hole. We obtain the fundamental equations for accretion without the back-reaction. We determine the general analytic expressions for the critical points and the mass accretion rate and find the physical conditions the critical points should fulfill. The case of a polytropic gas are discussed in detail. It turns out that the quintessence parameter plays an important role in the accretion process. (orig.)

  10. Low-density, radiatively inefficient rotating-accretion flow on to a black hole

    Inayoshi, Kohei; Ostriker, Jeremiah P.; Haiman, Zoltán; Kuiper, Rolf

    2018-05-01

    We study low-density axisymmetric accretion flows on to black holes (BHs) with two-dimensional hydrodynamical simulations, adopting the α-viscosity prescription. When the gas angular momentum is low enough to form a rotationally supported disc within the Bondi radius (RB), we find a global steady accretion solution. The solution consists of a rotational equilibrium distribution around r ˜ RB, where the density follows ρ ∝ (1 + RB/r)3/2, surrounding a geometrically thick and optically thin accretion disc at the centrifugal radius RC(accretion flows (ρ ∝ r-1/2). In the inner solution, the gas inflow rate decreases towards the centre due to convection (\\dot{M}∝ r), and the net accretion rate (including both inflows and outflows) is strongly suppressed by several orders of magnitude from the Bondi accretion rate \\dot{M}_B. The net accretion rate depends on the viscous strength, following \\dot{M}/\\dot{M}_B∝ (α /0.01)^{0.6}. This solution holds for low accretion rates of \\dot{M}_B/\\dot{M}_Edd≲ 10^{-3} having minimal radiation cooling, where \\dot{M}_Edd is the Eddington accretion rate. In a hot plasma at the bottom (r < 10-3 RB), thermal conduction would dominate the convective energy flux. Since suppression of the accretion by convection ceases, the final BH feeding rate is found to be \\dot{M}/\\dot{M}_B˜ 10^{-3}-10-2. This rate is as low as \\dot{M}/\\dot{M}_Edd˜ 10^{-7}-10-6 inferred for SgrA* and the nuclear BHs in M31 and M87, and can explain their low luminosities, without invoking any feedback mechanism.

  11. Hot Accretion onto Black Holes with Outflow

    Park Myeong-Gu

    2018-01-01

    Full Text Available Classic Bondi accretion flow can be generalized to rotating viscous accretion flow. Study of hot accretion flow onto black holes show that its physical charateristics change from Bondi-like for small gas angular momentum to disk-like for Keperian gas angular momentum. Especially, the mass accretion rate divided by the Bondi accretion rate is proportional to the viscosity parameter alpha and inversely proportional to the gas angular momentum divided by the Keplerian angular momentum at the Bondi radius for gas angular momentum comparable to the Keplerian value. The possible presence of outflow will increase the mass inflow rate at the Bondi radius but decrease the mass accretion rate across the black hole horizon by many orders of magnitude. This implies that the growth history of supermassive black holes and their coevolution with host galaxies will be dramatically changed when the accreted gas has angular momentum or develops an outflow.

  12. Transitional millisecond pulsars in the low-level accretion state

    Jaodard, Amruta D.; Hessels, Jason W. T.; Archibald, Anne; Bogdanov, Slavko; Deller, Adam; Hernandez Santisteban, Juan; Patruno, Alessandro; D'Angelo, Caroline; Bassa, Cees; Amruta Jaodand

    2018-01-01

    In the canonical pulsar recycling scenario, a slowly spinning neutron star can be rejuvenated to rapid spin rates by the transfer of angular momentum and mass from a binary companion star. Over the last decade, the discovery of three transitional millisecond pulsars (tMSPs) has allowed us to study recycling in detail. These systems transition between accretion-powered (X-ray) and rotation-powered (radio) pulsar states within just a few days, raising questions such as: what triggers the state transition, when does the recycling process truly end, and what will the radio pulsar’s final spin rate be? Systematic multi-wavelength campaigns over the last decade have provided critical insights: multi-year-long, low-level accretion states showing coherent X-ray pulsations; extremely stable, bi-modal X-ray light curves; outflows probed by radio continuum emission; a surprising gamma-ray brightening during accretion, etc. In my thesis I am trying to bring these clues together to understand the low-level accretion process that recycles a pulsar. For example, recently we timed PSR J1023+0038 in the accretion state and found it to be spinning down ~26% faster compared to the non-accreting radio pulsar state. We are currently conducting simultaneous multi-wavelength campaigns (XMM, HST, Kepler and VLA) to understand the global variability of the accretion flow, as well as high-energy Fermi-LAT observations to probe the gamma-ray emission mechanism. I will highlight these recent developments, while also presenting a broad overview of tMSPs as exciting new laboratories to test low-level accretion onto magnetized neutron stars.

  13. Three-dimensional hydrodynamical models of wind and outburst-related accretion in symbiotic systems

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.

    2017-07-01

    Gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion is a possible mechanism to explain mass transfer in symbiotic binaries. We study the mass accretion around the secondary caused by the strong wind from the primary late-type component using global three-dimensional hydrodynamic numerical simulations during quiescence and outburst stages. In particular, the dependence of the mass accretion rate on the mass-loss rate, wind parameters and phases of wind outburst development is considered. For a typical wind from an asymptotic giant branch star with a mass-loss rate of 10-6 M⊙ yr-1 and wind speeds of 20-50 km s-1, the mass transfer through a focused wind results in efficient infall on to the secondary. Accretion rates on to the secondary of 5-20 per cent of the mass-loss from the primary are obtained during quiescence and outburst periods where the wind velocity and mass-loss rates are varied, about 20-50 per cent larger than in the standard Bondi-Hoyle-Lyttleton approximation. This mechanism could be an important method for explaining observed accretion luminosities and periodic modulations in the accretion rates for a broad range of interacting binary systems.

  14. Wind accretion: Theory and observations

    Shakura, N. I.; Postnov, K. A.; Kochetkova, A. Yu.; Hjalmarsdotter, L.; Sidoli, L.; Paizis, A.

    2015-07-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus on different regimes of quasi-spherical accretion onto the neutron star (NS): the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically towards the NS magnetosphere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. These two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg s-1. In the subsonic case, which sets in at lower luminosities, a hot quasi-spherical shell must form around the magnetosphere, and the actual accretion rate onto NS is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. In turn, two regimes of subsonic accretion are possible, depending on plasma cooling mechanism (Compton or radiative) near the magnetopshere. The transition from the high-luminosity with Compton cooling to the lowluminosity (Lx ≲ 3 × 1035 erg s-1) with radiative cooling can be responsible for the onset of the off states repeatedly observed in several low-luminosity slowly accreting pulsars, such as Vela X-1, GX 301-2, and 4U 1907+09. The triggering of the transitionmay be due to a switch in the X-ray beam pattern in response to a change in the optical depth in the accretion column with changing luminosity. We also show that in the settling accretion theory, bright X-ray flares (~1038-1040 erg) observed in supergiant fast X-ray transients (SFXT) can be produced by sporadic capture of magnetized stellar wind plasma. At sufficiently low accretion rates, magnetic reconnection can enhance the magnetospheric plasma entry rate, resulting in copious production of X-ray photons, strong Compton cooling and ultimately in unstable accretion of the entire shell. A bright flare develops on the free-fall time scale in the shell, and the typical energy released in an SFXT bright flare corresponds to the mass

  15. Migration of accreting giant planets

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  16. Redefinition and global estimation of basal ecosystem respiration rate

    Yuan, Wenping [College of Global Change and Earth System Science, Beijing Normal University, Beijing, China; Luo, Yiqi [Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, USA; Li, Xianglan [College of Global Change and Earth System Science, Beijing Normal University, Beijing, China; Liu, Shuguang; Yu, Guirui [Key Laboratory of Ecosystem Network Observation and Modeling, Synthesis Research Center of Chinese Ecosystem Research Network, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; Zhou, Tao [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China; Bahn, Michael [Institute of Ecology, University of Innsbruck, Innsbruck, Austria; Black, Andy [Faculty of Land and Food Systems, University of British Columbia, Vancouver, B. C., Canada; Desai, Ankur R. [Atmospheric and Oceanic Sciences Department, Center for Climatic Research, Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, Wisconsin, USA; Cescatti, Alessandro [Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy; Marcolla, Barbara [Sustainable Agro-ecosystems and Bioresources Department, Fondazione Edmund Mach-IASMA Research and Innovation Centre, San Michele all' Adige, Italy; Jacobs, Cor [Alterra, Earth System Science-Climate Change, Wageningen University, Wageningen, Netherlands; Chen, Jiquan [Department of Earth, Ecological, and Environmental Sciences, University of Toledo, Toledo, Ohio, USA; Aurela, Mika [Climate and Global Change Research, Finnish Meteorological Institute, Helsinki, Finland; Bernhofer, Christian [Chair of Meteorology, Institute of Hydrology and Meteorology, Technische Universität Dresden, Dresden, Germany; Gielen, Bert [Department of Biology, University of Antwerp, Wilrijk, Belgium; Bohrer, Gil [Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, Ohio, USA; Cook, David R. [Climate Research Section, Environmental Science Division, Argonne National Laboratory, Argonne, Illinois, USA; Dragoni, Danilo [Department of Geography, Indiana University, Bloomington, Indiana, USA; Dunn, Allison L. [Department of Physical and Earth Sciences, Worcester State College, Worcester, Massachusetts, USA; Gianelle, Damiano [Sustainable Agro-ecosystems and Bioresources Department, Fondazione Edmund Mach-IASMA Research and Innovation Centre, San Michele all' Adige, Italy; Grünwald, Thomas [Chair of Meteorology, Institute of Hydrology and Meteorology, Technische Universität Dresden, Dresden, Germany; Ibrom, Andreas [Risø DTU National Laboratory for Sustainable Energy, Biosystems Division, Technical University of Denmark, Roskilde, Denmark; Leclerc, Monique Y. [Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA; Lindroth, Anders [Geobiosphere Science Centre, Physical Geography and Ecosystems Analysis, Lund University, Lund, Sweden; Liu, Heping [Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington, USA; Marchesini, Luca Belelli [Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Viterbo, Italy; Montagnani, Leonardo; Pita, Gabriel [Department of Mechanical Engineering, Instituto Superior Técnico, Lisbon, Portugal; Rodeghiero, Mirco [Sustainable Agro-ecosystems and Bioresources Department, Fondazione Edmund Mach-IASMA Research and Innovation Centre, San Michele all' Adige, Italy; Rodrigues, Abel [Unidade de Silvicultura e Produtos Florestais, Instituto Nacional dos Recursos Biológicos, Oeiras, Portugal; Starr, Gregory [Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA; Stoy, Paul C. [Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA

    2011-10-13

    Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models still use a global constant BR largely due to the lack of a functional description for BR. In this study, we redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity of this concept, we conducted a synthesis analysis using 276 site-years of eddy covariance data, from 79 research sites located at latitudes ranging from ~3°S to ~70°N. Results showed that mean annual ER rate closely matches ER rate at mean annual temperature. Incorporation of site-specific BR into global ER model substantially improved simulated ER compared to an invariant BR at all sites. These results confirm that ER at the mean annual

  17. A Solution to the Protostellar Accretion Problem

    Padoan, Paolo; Kritsuk, Alexei; Norman, Michael L.; Nordlund, Ake

    2004-01-01

    Accretion rates of order 10^-8 M_\\odot/yr are observed in young protostars of approximately a solar mass with evidence of circumstellar disks. The accretion rate is significantly lower for protostars of smaller mass, approximately proportional to the second power of the stellar mass, \\dot{M}_accr\\propto M^2. The traditional view is that the observed accretion is the consequence of the angular momentum transport in isolated protostellar disks, controlled by disk turbulence or self--gravity. Ho...

  18. PS1-10jh CONTINUES TO FOLLOW THE FALLBACK ACCRETION RATE OF A TIDALLY DISRUPTED STAR

    Gezari, S. [Department of Astronomy, University of Maryland, Stadium Drive, College Park, MD 20742-2421 (United States); Chornock, R. [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University Athens, OH 45701 (United States); Lawrence, A. [Institute for Astronomy, University of Edinburgh Scottish Universities Physics Alliance, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Rest, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Jones, D. O. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Berger, E.; Challis, P. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Narayan, G., E-mail: suvi@astro.umd.edu [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-12-10

    We present late-time observations of the tidal disruption event candidate PS1-10jh. UV and optical imaging with Hubble Space Telescope/WFC3 localize the transient to be coincident with the host galaxy nucleus to an accuracy of 0.023 arcsec, corresponding to 66 pc. The UV flux in the F225W filter, measured 3.35 rest-frame years after the peak of the nuclear flare, is consistent with a decline that continues to follow a t{sup −5/3} power-law with no spectral evolution. Late epochs of optical spectroscopy obtained with MMT ∼ 2 and 4 years after the peak, enable a clean subtraction of the host galaxy from the early spectra, revealing broad helium emission lines on top of a hot continuum, and placing stringent upper limits on the presence of hydrogen line emission. We do not measure Balmer Hδ absorption in the host galaxy that is strong enough to be indicative of a rare, post-starburst “E+A” galaxy as reported by Arcavi et al. The light curve of PS1-10jh over a baseline of 3.5 years is best modeled by fallback accretion of a tidally disrupted star. Its strong broad helium emission relative to hydrogen (He iiλ4686/Hα > 5) could be indicative of either the hydrogen-poor chemical composition of the disrupted star, or certain conditions in the tidal debris of a solar-composition star in the presence of an optically thick, extended reprocessing envelope.

  19. Redefinition and global estimation of basal ecosystem respiration rate

    Yuan, Wenping; Luo, Yiqi; Li, Xianglan

    2011-01-01

    Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models sti...

  20. Characteristics of transonic spherical symmetric accretion flow in Schwarzschild-de Sitter and Schwarzschild anti-de Sitter backgrounds, in pseudo-general relativistic paradigm

    Ghosh, Shubhrangshu; Banik, Prabir

    2015-07-01

    In this paper, we present a complete work on steady state spherically symmetric Bondi type accretion flow in the presence of cosmological constant (Λ) in both Schwarzschild-de Sitter (SDS) and Schwarzschild anti-de Sitter (SADS) backgrounds considering an isolated supermassive black hole (SMBH), with the inclusion of a simple radiative transfer scheme, in the pseudo-general relativistic paradigm. We do an extensive analysis on the transonic behavior of the Bondi type accretion flow onto the cosmological BHs including a complete analysis of the global parameter space and the stability of flow, and do a complete study of the global family of solutions for a generic polytropic flow. Bondi type accretion flow in SADS background renders multiplicity in its transonic behavior with inner "saddle" type and outer "center" type sonic points, with the transonic solutions forming closed loops or contours. There is always a limiting value for ∣Λ∣ up to which we obtain valid stationary transonic solutions, which correspond to both SDS and SADS geometries; this limiting value moderately increases with the increasing radiative efficiency of the flow, especially correspond to Bondi type accretion flow in SADS background. Repulsive Λ suppresses the Bondi accretion rate by an order of magnitude for relativistic Bondi type accretion flow for a certain range in temperature, and with a marginal increase in the Bondi accretion rate if the corresponding accretion flow occurs in SADS background. However, for a strongly radiative Bondi type accretion flow with high mass accretion rate, the presence of cosmological constant do not much influence the corresponding Bondi accretion rate of the flow. Our analysis show that the relic cosmological constant has a substantial effect on Bondi type accretion flow onto isolated SMBHs and their transonic solutions beyond length-scale of kiloparsecs, especially if the Bondi type accretion occurs onto the host supergiant ellipticals or central

  1. Effects of raising US interest rates on global FX markets

    Kožul Nataša

    2016-01-01

    Full Text Available Following the global financial crisis of 2008, many countries decreased their domestic interest rates as a means of stimulating economic growth, while also providing protection from substantial default on debt. Low interest rates reduce the incentive to save, prompting consumers to purchase assets, such as housing, thus implicitly increasing wealth. In addition, they make the currency relatively cheaper, making exports more competitive, while reducing foreign demand for holding debt in that currency. All these should stimulate economy, albeit at the cost of reduced competitiveness in the world financial markets, where return on investment is largely determined by the interest rates. Low interest rates also prompt greater borrowing, which may not be sustainable once they start to rise. In addition, those that largely depend on interest rate income may seek more speculative and high-risk investments, potentially leading to significant defaults. Finally, as the market interest rate is composed of the real rate and inflation, decreasing rates changes the balance in this relationship, which may lead to inflationary economy. Now that the US has increased its domestic rates for the first time since 2006, it is important to examine the potential effects this will have on global markets and other economies. This paper offers some insights into the dynamics of the FX markets and discusses why the US rate is so closely watched worldwide.

  2. Redefinition and global estimation of basal ecosystem respiration rate

    Yuan, W.; Luo, Y.; Li, X.; Liu, S.; Yu, G.; Zhou, T.; Bahn, M.; Black, A.; Desai, A.R.; Cescatti, A.; Marcolla, B.; Jacobs, C.; Chen, J.; Aurela, M.; Bernhofer, C.; Gielen, B.; Bohrer, G.; Cook, D.R.; Dragoni, D.; Dunn, A.L.; Gianelle, D.; Grnwald, T.; Ibrom, A.; Leclerc, M.Y.; Lindroth, A.; Liu, H.; Marchesini, L.B.; Montagnani, L.; Pita, G.; Rodeghiero, M.; Rodrigues, A.; Starr, G.; Stoy, Paul C.

    2011-01-01

    Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models still use a global constant BR largely due to the lack of a functional description for BR. In this study, we redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity of this concept, we conducted a synthesis analysis using 276 site-years of eddy covariance data, from 79 research sites located at latitudes ranging from ∼3°S to ∼70°N. Results showed that mean annual ER rate closely matches ER rate at mean annual temperature. Incorporation of site-specific BR into global ER model substantially improved simulated ER compared to an invariant BR at all sites. These results confirm that ER at the mean annual temperature can be considered as BR in empirical models. A strong correlation was found between the mean annual ER and mean annual gross primary production (GPP). Consequently, GPP, which is typically more accurately modeled, can be used to estimate BR. A light use efficiency GPP model (i.e., EC-LUE) was applied to estimate global GPP, BR and ER with input data from MERRA (Modern Era Retrospective-Analysis for Research and Applications) and MODIS (Moderate resolution Imaging Spectroradiometer). The global ER was 103 Pg C yr −1, with the highest respiration rate over tropical forests and the lowest value in dry and high-latitude areas.

  3. Microanalytic Coding versus Global Rating of Maternal Parenting Behaviour

    Morawska, Alina; Basha, Allison; Adamson, Michelle; Winter, Leanne

    2015-01-01

    This study examined the relationship between microanalytic coding and global rating systems when coding maternal parenting behaviour in two contexts. Observational data from 55 mother--child interactions with two- to four-year-old children, in either a mealtime (clinic; N?=?20 or control; N?=?20) or a playtime context (community; N?=?15), were…

  4. Estimated migration rates under scenarios of global climate change.

    Jay R. Malcolm; Adam Markham; Ronald P. Neilson; Michael. Oaraci

    2002-01-01

    Greefihouse-induced warming and resulting shifts in climatic zones may exceed the migration capabilities of some species. We used fourteen combinations of General Circulation Models (GCMs) and Global Vegetation Models (GVMs) to investigate possible migration rates required under CO2 doubled climatic forcing.

  5. Simulating X-ray bursts during a transient accretion event

    Johnston, Zac; Heger, Alexander; Galloway, Duncan K.

    2018-06-01

    Modelling of thermonuclear X-ray bursts on accreting neutron stars has to date focused on stable accretion rates. However, bursts are also observed during episodes of transient accretion. During such events, the accretion rate can evolve significantly between bursts, and this regime provides a unique test for burst models. The accretion-powered millisecond pulsar SAX J1808.4-3658 exhibits accretion outbursts every 2-3 yr. During the well-sampled month-long outburst of 2002 October, four helium-rich X-ray bursts were observed. Using this event as a test case, we present the first multizone simulations of X-ray bursts under a time-dependent accretion rate. We investigate the effect of using a time-dependent accretion rate in comparison to constant, averaged rates. Initial results suggest that using a constant, average accretion rate between bursts may underestimate the recurrence time when the accretion rate is decreasing, and overestimate it when the accretion rate is increasing. Our model, with an accreted hydrogen fraction of X = 0.44 and a CNO metallicity of ZCNO = 0.02, reproduces the observed burst arrival times and fluences with root mean square (rms) errors of 2.8 h, and 0.11× 10^{-6} erg cm^{-2}, respectively. Our results support previous modelling that predicted two unobserved bursts and indicate that additional bursts were also missed by observations.

  6. Assessing historical rate changes in global tsunami occurrence

    Geist, E.L.; Parsons, T.

    2011-01-01

    The global catalogue of tsunami events is examined to determine if transient variations in tsunami rates are consistent with a Poisson process commonly assumed for tsunami hazard assessments. The primary data analyzed are tsunamis with maximum sizes >1m. The record of these tsunamis appears to be complete since approximately 1890. A secondary data set of tsunamis >0.1m is also analyzed that appears to be complete since approximately 1960. Various kernel density estimates used to determine the rate distribution with time indicate a prominent rate change in global tsunamis during the mid-1990s. Less prominent rate changes occur in the early- and mid-20th century. To determine whether these rate fluctuations are anomalous, the distribution of annual event numbers for the tsunami catalogue is compared to Poisson and negative binomial distributions, the latter of which includes the effects of temporal clustering. Compared to a Poisson distribution, the negative binomial distribution model provides a consistent fit to tsunami event numbers for the >1m data set, but the Poisson null hypothesis cannot be falsified for the shorter duration >0.1m data set. Temporal clustering of tsunami sources is also indicated by the distribution of interevent times for both data sets. Tsunami event clusters consist only of two to four events, in contrast to protracted sequences of earthquakes that make up foreshock-main shock-aftershock sequences. From past studies of seismicity, it is likely that there is a physical triggering mechanism responsible for events within the tsunami source 'mini-clusters'. In conclusion, prominent transient rate increases in the occurrence of global tsunamis appear to be caused by temporal grouping of geographically distinct mini-clusters, in addition to the random preferential location of global M >7 earthquakes along offshore fault zones.

  7. Assessing students' communication skills: validation of a global rating.

    Scheffer, Simone; Muehlinghaus, Isabel; Froehmel, Annette; Ortwein, Heiderose

    2008-12-01

    Communication skills training is an accepted part of undergraduate medical programs nowadays. In addition to learning experiences its importance should be emphasised by performance-based assessment. As detailed checklists have been shown to be not well suited for the assessment of communication skills for different reasons, this study aimed to validate a global rating scale. A Canadian instrument was translated to German and adapted to assess students' communication skills during an end-of-semester-OSCE. Subjects were second and third year medical students at the reformed track of the Charité-Universitaetsmedizin Berlin. Different groups of raters were trained to assess students' communication skills using the global rating scale. Validity testing included concurrent validity and construct validity: Judgements of different groups of raters were compared to expert ratings as a defined gold standard. Furthermore, the amount of agreement between scores obtained with this global rating scale and a different instrument for assessing communication skills was determined. Results show that communication skills can be validly assessed by trained non-expert raters as well as standardised patients using this instrument.

  8. Advection-dominated Inflow/Outflows from Evaporating Accretion Disks.

    Turolla; Dullemond

    2000-03-01

    In this Letter we investigate the properties of advection-dominated accretion flows (ADAFs) fed by the evaporation of a Shakura-Sunyaev accretion disk (SSD). In our picture, the ADAF fills the central cavity evacuated by the SSD and extends beyond the transition radius into a coronal region. We find that, because of global angular momentum conservation, a significant fraction of the hot gas flows away from the black hole, forming a transsonic wind, unless the injection rate depends only weakly on radius (if r2sigma&d2;~r-xi, xiBernoulli number of the inflowing gas is negative if the transition radius is less, similar100 Schwarzschild radii, so matter falling into the hole is gravitationally bound. The ratio of inflowing to outflowing mass is approximately 1/2, so in these solutions the accretion rate is of the same order as in standard ADAFs and much larger than in advection-dominated inflow/outflow models. The possible relevance of evaporation-fed solutions to accretion flows in black hole X-ray binaries is briefly discussed.

  9. Accretion onto CO White Dwarfs using MESA

    Feng, Wanda; Starrfield, Sumner

    2018-06-01

    The nature of type Ia Supernovae (SNe Ia) progenitor systems and their underlying mechanism are not well understood. There are two competing progenitor scenarios: the single-degenerate scenario wherein a white dwarf (WD) star accretes material from a companion star, reaching the Chandrasekhar mass limit; and, the double-degenerate scenario wherein two WDs merge. In this study, we investigate the single-degenerate scenario by accretion onto carbon-oxygen (CO) WDs using the Modules for Experiments in Stellar Astrophysics (MESA). We vary the WD mass, composition of the accreting material, and accretion rate in our models. Mixing between the accreted material and the WD core is informed by multidimensional studies that suggest occurance after thermonuclear runaway (TNR) ensues. We compare the accretion of solar composition material onto CO WDs with the accretion of mixed solar and core material after TNR. As many of our models eject less material than accreted, our study supports that accretion onto CO WDs is a feasible channel for SNe I progenitors.

  10. Migration of accreting giant planets

    Robert, C.; Crida, A.; Lega, E.; Méheut, H.

    2017-09-01

    Giant planets forming in protoplanetary disks migrate relative to their host star. By repelling the gas in their vicinity, they form gaps in the disk's structure. If they are effectively locked in their gap, it follows that their migration rate is governed by the accretion of the disk itself onto the star, in a so-called type II fashion. Recent results showed however that a locking mechanism was still lacking, and was required to understand how giant planets may survive their disk. We propose that planetary accretion may play this part, and help reach this slow migration regime.

  11. Accretion disks in active galactic nuclei

    Begelman, M.C.

    1985-01-01

    The innermost regions of the central engines in active galactic nuclei are examined, and it is shown how different modes of accretion with angular momentum may account for the diverse manifestations of activity in the nuclei of galaxies. These modes are subsequently compared with the observed properties of quasars, Type I Seyferts, and radio galaxies. It was found that the qualitative features of an accretion flow orbiting a massive black hole depend principally on the ratio of the actual accretion rate to the Eddington accretion rate. For a value of this ratio much less than one, the flow may become an ion torus supported by gas pressure; for a value much greater than one, the flow traps its radiative output and becomes an inefficient radiation torus. At intermediate values, the flow may settle into a thin accretion disk. 62 references

  12. The form and interpretation of clearance curves for injected radioisotopes based on negative power laws, especially for 47Ca and estimated bone accretion rate

    Wise, M.E.

    1978-01-01

    Many hundreds of clearance curves for plasma and urine after a single injection of tracer are well fitted by y=Σsub(i=1)sup(r)Asub(i)exp(-Bsub(i)t),r=2 or 3, based on models with homogeneous compartments. Reanalyzing such sums as in a plot of log y versus log t shows that many of the original curves would fit y=Atsup(-α) or Atsup(-α)exp(-βt) over wide ranges of time and specific activity. Results of such reanalyses for a complete published series for serum albumin 131 I are given, and an outline of those for various compounds in the human body labeled by 3 H. For radiocalcium two such power laws can be fitted in one curve, with a transition between about 1 and 3 days, so that much of the log y versus log t plot consists of two straight lines. These lines are used for starting a numerical analysis that splits the curve into 2 non-linear components, plus a third one that is negligible after 5 min from injection. An outline of the iteration method is given. The components are interpreted physiologically and used to predict total bone activities by (de)convolution, and these are compared with observed ankle activities and with excretion rates. The bone accretion rate is obtained mainly from the middle component and comes to 2 to 3 g Ca/day, while return of 47 Ca from bone to plasma begins at about 1/2 day. These results seem incompatible while any based on compartments. The concept of biological half-life then needs to be reconsidered. (Auth.)

  13. Accreting Black Holes

    Begelman, Mitchell C.

    2014-01-01

    I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole accretion depend on interactions between the relatively simple black-hole spacetime and complex radiation, plasma and magnetohydrodynamical processes in the surrounding gas. I will show how transient accretion processes could provide clues to these ...

  14. Mixed ice accretion on aircraft wings

    Janjua, Zaid A.; Turnbull, Barbara; Hibberd, Stephen; Choi, Kwing-So

    2018-02-01

    Ice accretion is a problematic natural phenomenon that affects a wide range of engineering applications including power cables, radio masts, and wind turbines. Accretion on aircraft wings occurs when supercooled water droplets freeze instantaneously on impact to form rime ice or runback as water along the wing to form glaze ice. Most models to date have ignored the accretion of mixed ice, which is a combination of rime and glaze. A parameter we term the "freezing fraction" is defined as the fraction of a supercooled droplet that freezes on impact with the top surface of the accretion ice to explore the concept of mixed ice accretion. Additionally we consider different "packing densities" of rime ice, mimicking the different bulk rime densities observed in nature. Ice accretion is considered in four stages: rime, primary mixed, secondary mixed, and glaze ice. Predictions match with existing models and experimental data in the limiting rime and glaze cases. The mixed ice formulation however provides additional insight into the composition of the overall ice structure, which ultimately influences adhesion and ice thickness, and shows that for similar atmospheric parameter ranges, this simple mixed ice description leads to very different accretion rates. A simple one-dimensional energy balance was solved to show how this freezing fraction parameter increases with decrease in atmospheric temperature, with lower freezing fraction promoting glaze ice accretion.

  15. Photometric Determination of the Mass Accretion Rates of Pre-main-sequence Stars. V. Recent Star Formation in the 30 Dor Nebula

    De Marchi, Guido; Panagia, Nino; Beccari, Giacomo

    2017-09-01

    We report on the properties of the low-mass stars that recently formed in the central ˜ 2\\buildrel{ \\prime}\\over{.} 7× 2\\buildrel{ \\prime}\\over{.} 7 of 30 Dor, including the R136 cluster. Using the photometric catalog of De Marchi et al., based on observations with the Hubble Space Telescope, and the most recent extinction law for this field, we identify 1035 bona fide pre-main-sequence (PMS) stars showing {{H}}α excess emission at the 4σ level with an {{H}}α equivalent width of 20 Å or more. We find a wide spread in age spanning the range ˜ 0.1{--}50 {Myr}. We also find that the older PMS objects are placed in front of the R136 cluster and are separated from it by a conspicuous amount of absorbing material, indicating that star formation has proceeded from the periphery into the interior of the region. We derive physical parameters for all PMS stars, including masses m, ages t, and mass accretion rates {\\dot{M}}{acc}. To identify reliable correlations between these parameters, which are intertwined, we use a multivariate linear regression fit of the type {log}{\\dot{M}}{acc}=a× {log}t+b× {log}m+c. The values of a and b for 30 Dor are compatible with those found in NGC 346 and NGC 602. We extend the fit to a uniform sample of 1307 PMS stars with 0.5contract NAS5-26555.

  16. The Spitzer-IRAC/MIPS Extragalactic Survey (SIMES). II. Enhanced Nuclear Accretion Rate in Galaxy Groups at z ∼ 0.2

    Baronchelli, I.; Rodighiero, G.; Teplitz, H. I.; Scarlata, C. M.; Franceschini, A.; Berta, S.; Barrufet, L.; Vaccari, M.; Bonato, M.; Ciesla, L.; Zanella, A.; Carraro, R.; Mancini, C.; Puglisi, A.; Malkan, M.; Mei, S.; Marchetti, L.; Colbert, J.; Sedgwick, C.; Serjeant, S.; Pearson, C.; Radovich, M.; Grado, A.; Limatola, L.; Covone, G.

    2018-04-01

    For a sample of star-forming galaxies in the redshift interval 0.15 < z < 0.3, we study how both the relative strength of the active galactic nucleus (AGN) infrared emission, compared to that due to the star formation (SF), and the numerical fraction of AGNs change as a function of the total stellar mass of the hosting galaxy group ({M}group}* ) between 1010.25 and 1011.9 M ⊙. Using a multicomponent spectral energy distribution SED fitting analysis, we separate the contribution of stars, AGN torus, and star formation to the total emission at different wavelengths. This technique is applied to a new multiwavelength data set in the SIMES field (23 not-redundant photometric bands), spanning the wavelength range from the UV (GALEX) to the far-IR (Herschel) and including crucial AKARI and WISE mid-IR observations (4.5 μm < λ < 24 μm), where the black hole thermal emission is stronger. This new photometric catalog, which includes our best photo-z estimates, is released through the NASA/IPAC Infrared Science Archive (IRSA). Groups are identified through a friends-of-friends algorithm (∼62% purity, ∼51% completeness). We identified a total of 45 galaxies requiring an AGN emission component, 35 of which are in groups and 10 in the field. We find the black hole accretion rate (BHAR) ∝ ({M}group}* {)}1.21+/- 0.27 and (BHAR/SFR) ∝ ({M}group}* {)}1.04+/- 0.24, while, in the same range of {M}group}* , we do not observe any sensible change in the numerical fraction of AGNs. Our results indicate that the nuclear activity (i.e., the BHAR and the BHAR/SFR ratio) is enhanced when galaxies are located in more massive and richer groups.

  17. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[S

    Domenichiello, Anthony F.; Chen, Chuck T.; Trepanier, Marc-Olivier; Stavro, P. Mark; Bazinet, Richard P.

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing...

  18. Guidelines for rating Global Assessment of Functioning (GAF

    Aas IH Monrad

    2011-01-01

    Full Text Available Abstract Background Global Assessment of Functioning (GAF is a scoring system for the severity of illness in psychiatry. It is used clinically in many countries, as well as in research, but studies have shown several problems with GAF, for example concerning its validity and reliability. Guidelines for rating are important. The present study aimed to identify the current status of guidelines for rating GAF, and relevant factors and gaps in knowledge for the development of improved guidelines. Methods A thorough literature search was conducted. Results Few studies of existing guidelines have been conducted; existing guidelines are short; and rating has a subjective element. Seven main categories were identified as being important in relation to further development of guidelines: (1 general points about guidelines for rating GAF; (2 introduction to guidelines, with ground rules; (3 starting scoring at the top, middle or bottom level of the scale; (4 scoring for different time periods and of different values (highest, lowest or average; (5 the finer grading of the scale; (6 different guidelines for different conditions; and (7 different languages and cultures. Little information is available about how rules for rating are understood by different raters: the final score may be affected by whether the rater starts at the top, middle or bottom of the scale; there is little data on which value/combination of GAF values to record; guidelines for scoring within 10-point intervals are limited; there is little empirical information concerning the suitability of existing guidelines for different conditions and patient characteristics; and little is known about the effects of translation into different languages or of different cultural understanding. Conclusions Few studies have dealt specifically with guidelines for rating GAF. Current guidelines for rating GAF are not comprehensive, and relevant points for new guidelines are presented. Theoretical and

  19. Assessment of competence for caesarean section with global rating scale

    Qureshi, R.N.; Ali, S.K.

    2013-01-01

    Objective: To establish as reliable and valid the nine-point global rating scale for assessing residents' independent performance of Caesarean Section. Methods: The validation study was conducted at the Department of Obstetrics and Gynaecology, Aga Khan University Hospital, from April to December 2008, and comprised 15 residents during 40 Caesarean Sections over 9 months. Independently two evaluators rated each procedure and the difficulty of each case. Results: The observations per faculty ranged from 1-8 (mean 4.07+- 2.56). The Year 4 residents were observed the most i.e. 32 (40%), followed by Year 3, 30 (37.5%); Year 2; 14 (17.5%); and Year 1, 4 (5%). Mean time required for observation of the surgery was 43.81+-14.28 (range: 20-90) with a mode of 45 min. Mean aggregate rating on all items showed gradual progression with the year of residency. The assessment tool had an internal consistency reliability (Cronbach's alpha) of 0.9097 with low inter-rater reliability. Conclusion: The evaluation tool was found to be reliable and valid for evaluating a resident's competence for performing Caesarean Section. Training of the assessors is required for a better inter-rater agreement. (author)

  20. Misaligned Accretion and Jet Production

    King, Andrew; Nixon, Chris

    2018-04-01

    Disk accretion onto a black hole is often misaligned from its spin axis. If the disk maintains a significant magnetic field normal to its local plane, we show that dipole radiation from Lense–Thirring precessing disk annuli can extract a significant fraction of the accretion energy, sharply peaked toward small disk radii R (as R ‑17/2 for fields with constant equipartition ratio). This low-frequency emission is immediately absorbed by surrounding matter or refracted toward the regions of lowest density. The resultant mechanical pressure, dipole angular pattern, and much lower matter density toward the rotational poles create a strong tendency to drive jets along the black hole spin axis, similar to the spin-axis jets of radio pulsars, also strong dipole emitters. The coherent primary emission may explain the high brightness temperatures seen in jets. The intrinsic disk emission is modulated at Lense–Thirring frequencies near the inner edge, providing a physical mechanism for low-frequency quasi-periodic oscillations (QPOs). Dipole emission requires nonzero hole spin, but uses only disk accretion energy. No spin energy is extracted, unlike the Blandford–Znajek process. Magnetohydrodynamic/general-relativistic magnetohydrodynamic (MHD/GRMHD) formulations do not directly give radiation fields, but can be checked post-process for dipole emission and therefore self-consistency, given sufficient resolution. Jets driven by dipole radiation should be more common in active galactic nuclei (AGN) than in X-ray binaries, and in low accretion-rate states than high, agreeing with observation. In non-black hole accretion, misaligned disk annuli precess because of the accretor’s mass quadrupole moment, similarly producing jets and QPOs.

  1. Global optimization numerical strategies for rate-independent processes

    Benešová, Barbora

    2011-01-01

    Roč. 50, č. 2 (2011), s. 197-220 ISSN 0925-5001 R&D Projects: GA ČR GAP201/10/0357 Grant - others:GA MŠk(CZ) LC06052 Program:LC Institutional research plan: CEZ:AV0Z20760514 Keywords : rate-independent processes * numerical global optimization * energy estimates based algorithm Subject RIV: BA - General Mathematics Impact factor: 1.196, year: 2011 http://math.hnue.edu.vn/portal/rss.viewpage.php?id=0000037780&ap=L3BvcnRhbC9ncmFiYmVyLnBocD9jYXRpZD0xMDEyJnBhZ2U9Mg==

  2. Formation and pre-MS Evolution of Massive Stars with Growing Accretion

    Maeder, A.; Behrend, R.

    2002-10-01

    We briefly describe the three existing scenarios for forming massive stars and emphasize that the arguments often used to reject the accretion scenario for massive stars are misleading. It is usually not accounted for the fact that the turbulent pressure associated to large turbulent velocities in clouds necessarily imply relatively high accretion rates for massive stars. We show the basic difference between the formation of low and high mass stars based on the values of the free fall time and of the Kelvin-Helmholtz timescale, and define the concept of birthline for massive stars. Due to D-burning, the radius and location of the birthline in the HR diagram, as well as the lifetimes are very sensitive to the accretion rate dM/dt(accr). If a form dM/dt(accr) propto A(M/Msun)phi is adopted, the observations in the HR diagram and the lifetimes support a value of A approx 10-5 Msun/yr and a value of phi > 1. Remarkably, such a law is consistent with the relation found by Churchwell and Henning et al. between the outflow rates and the luminosities of ultracompact HII regions, if we assume that a fraction 0.15 to 0.3 of the global inflow is accreted. The above relation implies high dM/dt(accr) approx 10-3 Msun/yr for the most massive stars. The physical possibility of such high dM/dt(accr) is supported by current numerical models. Finally, we give simple analytical arguments in favour of the growth of dM/dt(accr) with the already accreted mass. We also suggest that due to Bondi-Hoyle accretion, the formation of binary stars is largely favoured among massive stars in the accretion scenario.

  3. Trends in Accretion Rates of Riverine Sediments in a Distal Bay and Wetlands Using 7-Beryllium as a Tracer: Fourleague Bay, Louisiana.

    Restreppo, G. A.; Bentley, S. J.; Wang, J.; Xu, K.

    2017-12-01

    To combat land loss along the Mississippi River Delta, Louisiana has launched a historic campaign to sustain and regrow coastal lands using, in part, sediment diversions. Previous research has focused primarily on sand sized sediment load, which is usually deposited proximal to a river's delta or a diversion's outlet. Fine sediments constitute the majority of sediment load in the Mississippi, but are under-studied with respect to dispersal processes, particularly in terms of sediment supply to distal deltaic bays and wetlands. The Atchafalaya River and associated wetlands serve as prime study areas for this purpose. Bimonthly time-series push cores were collected from May 2015 to May 2016 along ten sites within Fourleague Bay, Louisiana. Fourleague Bay has remained stable against the deteriorative effects of relative sea level rise, standing out along Louisiana's declining coastline. Of the ten field sites, five are located across a longitudinal transect in the middle bay, while the other five are located in adjacent marshes. All sites fall within 10 to 30 km of the Atchafalaya Delta, extending south towards the Gulf of Mexico. Cores were extruded in 2 cm intervals, dried, ground, and analyzed via gamma spectrometry for the presence of 7Be. Inventories of 7Be were then calculated and used to determine daily mass accretion rate (MAR) over twelve months. Average MAR values for the bay and the marshes are compared with Atchafalaya River discharge, wind data, and atmospheric pressure through the year of sampling. Peak marsh MAR, 0.88 ± 0.20 kg m-2 d-1, occurs just after historically high river discharge. Peak bay MAR, 1.2 ± 0.67 kg m-2 d-1, occurs during seasonal low river discharge and calm winds. Average bay and marsh MARs have a moderate to strong, negative correlation when compared. Results indicate sediment bypass of the bay floor during periods of moderate to high river discharge, entering the marshes directly when inundation occurs and enhanced by the passage

  4. Accretion of Ghost Condensate by Black Holes

    Frolov, A

    2004-06-02

    The intent of this letter is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as tenth of a solar mass per second for 10MeV-scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model.

  5. Mind the rate. Why rate global climate change matters, and how much

    Ambrosi, Ph.

    2006-01-01

    To assess climate policies in a cost-efficiency framework with constraints on the magnitude and rate of global climate change we have built RESPONSE, an optimal control integrated assessment model. Our results show that the uncertainty about climate sensitivity leads to significant short-term mitigation efforts all the more as the arrival of information regarding this parameter is belated. There exists thus a high opportunity cost to know before 2030 the true value of this parameter, which is not totally granted so far. Given this uncertainty, a +2 deg C objective could lead to rather stringent policy recommendations for the coming decades and might prove unacceptable. Furthermore, the uncertainty about climate sensitivity magnifies the influence of the rate constraint on short-term decision, leading to rather stringent policy recommendations for the coming decades. This result is particularly robust to the choice of discount rate and to the beliefs of the decision-maker about climate sensitivity. We finally show that the uncertainty about the rate constraint is even more important for short-term decision than the uncertainty about climate sensitivity or magnitude of warming. This means that the critical rate of climate change, i.e. a transient characteristic of climate risks, matters much more than the long-term objective of climate policy, i.e. the critical magnitude of climate change. Therefore, research should be aimed at better characterising climate change risks in view to help decision-makers in agreeing on a safe guardrail to limit the rate of global warming. (author)

  6. Pebble Accretion in Turbulent Protoplanetary Disks

    Xu, Ziyan; Bai, Xue-Ning; Murray-Clay, Ruth A.

    2017-09-01

    It has been realized in recent years that the accretion of pebble-sized dust particles onto planetary cores is an important mode of core growth, which enables the formation of giant planets at large distances and assists planet formation in general. The pebble accretion theory is built upon the orbit theory of dust particles in a laminar protoplanetary disk (PPD). For sufficiently large core mass (in the “Hill regime”), essentially all particles of appropriate sizes entering the Hill sphere can be captured. However, the outer regions of PPDs are expected to be weakly turbulent due to the magnetorotational instability (MRI), where turbulent stirring of particle orbits may affect the efficiency of pebble accretion. We conduct shearing-box simulations of pebble accretion with different levels of MRI turbulence (strongly turbulent assuming ideal magnetohydrodynamics, weakly turbulent in the presence of ambipolar diffusion, and laminar) and different core masses to test the efficiency of pebble accretion at a microphysical level. We find that accretion remains efficient for marginally coupled particles (dimensionless stopping time {τ }s˜ 0.1{--}1) even in the presence of strong MRI turbulence. Though more dust particles are brought toward the core by the turbulence, this effect is largely canceled by a reduction in accretion probability. As a result, the overall effect of turbulence on the accretion rate is mainly reflected in the changes in the thickness of the dust layer. On the other hand, we find that the efficiency of pebble accretion for strongly coupled particles (down to {τ }s˜ 0.01) can be modestly reduced by strong turbulence for low-mass cores.

  7. Accretion Processes in Star Formation

    Küffmeier, Michael

    for short-lived radionuclides that enrich the cloud as a result of supernova explosions of the massive stars allows us to analyze the distribution of the short-lived radionuclides around young forming stars. In contradiction to results from highly-idealized models, we find that the discrepancy in 26 Al...... that the accretion process of stars is heterogeneous in space, time and among different protostars. In some cases, disks form a few thousand years after stellar birth, whereas in other cases disk formation is suppressed due to efficient removal of angular momentum. Angular momentum is mainly transported outward...... with potentially observable fluctuations in the luminosity profile that are induced by variations in the accretion rate. Considering that gas inside protoplanetary disks is not fully ionized, I implemented a solver that accounts for nonideal MHD effects into a newly developed code framework called dispatch...

  8. Estimated Glomerular Filtration Rate; Laboratory Implementation and Current Global Status.

    Miller, W Greg; Jones, Graham R D

    2018-01-01

    In 2002, the Kidney Disease Outcomes Quality Initiative guidelines for identifying and treating CKD recommended that clinical laboratories report estimated glomerular filtration rate (eGFR) with every creatinine result to assist clinical practitioners to identify people with early-stage CKD. At that time, the original Modification of Diet in Renal Disease (MDRD) Study equation based on serum creatinine measurements was recommended for calculating eGFR. Because the MDRD Study equation was developed using a nonstandardized creatinine method, a Laboratory Working Group of the National Kidney Disease Education program was formed and implemented standardized calibration traceability for all creatinine methods from global manufacturers by approximately 2010. A modified MDRD Study equation for use with standardized creatinine was developed. The Chronic Kidney Disease Epidemiology Collaboration developed a new equation in 2009 that was more accurate than the MDRD Study equation at values above 60 mL/min/1.73 m 2 . As of 2017, reporting eGFR with creatinine is almost universal in many countries. A reference system for cystatin C became available in 2010, and manufacturers are in the process to standardize cystatin C assays. Equations for eGFR based on standardized cystatin C alone and with creatinine are now available from the Chronic Kidney Disease Epidemiology Collaboration and other groups. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  9. Magnetohydrodynamics of accretion disks

    Torkelsson, U.

    1994-04-01

    The thesis consists of an introduction and summary, and five research papers. The introduction and summary provides the background in accretion disk physics and magnetohydrodynamics. The research papers describe numerical studies of magnetohydrodynamical processes in accretion disks. Paper 1 is a one-dimensional study of the effect of magnetic buoyancy on a flux tube in an accretion disk. The stabilizing influence of an accretion disk corona on the flux tube is demonstrated. Paper 2-4 present numerical simulations of mean-field dynamos in accretion disks. Paper 11 verifies the correctness of the numerical code by comparing linear models to previous work by other groups. The results are also extended to somewhat modified disk models. A transition from an oscillatory mode of negative parity for thick disks to a steady mode of even parity for thin disks is found. Preliminary results for nonlinear dynamos at very high dynamo numbers are also presented. Paper 3 describes the bifurcation behaviour of the nonlinear dynamos. For positive dynamo numbers it is found that the initial steady solution is replaced by an oscillatory solution of odd parity. For negative dynamo numbers the solution becomes chaotic at sufficiently high dynamo numbers. Paper 4 continues the studies of nonlinear dynamos, and it is demonstrated that a chaotic solution appears even for positive dynamo numbers, but that it returns to a steady solution of mixed parity at very high dynamo numbers. Paper 5 describes a first attempt at simulating the small-scale turbulence of an accretion disk in three dimensions. There is only find cases of decaying turbulence, but this is rather due to limitations of the simulations than that turbulence is really absent in accretion disks

  10. Hydrodynamical wind in magnetized accretion flows with convection

    Abbassi, Shahram; Mosallanezhad, Amin

    2012-01-01

    The existence of outflow and magnetic fields in the inner region of hot accretion flows has been confirmed by observations and numerical magnetohydrodynamic (MHD) simulations. We present self-similar solutions for radiatively inefficient accretion flows (RIAFs) around black holes in the presence of outflow and a global magnetic field. The influence of outflow is taken into account by adopting a radius that depends on mass accretion rate M-dot = M-dot 0 (r/r 0 ) s with s > 0. We also consider convection through a mixing length formula to calculate convection parameter α con . Moreover we consider the additional magnetic field parameters β r,φ,z [ = c 2 r,φ,z /(2c 2 s )], where c 2 r,φ,z are the Alfvén sound speeds in three directions of cylindrical coordinates. Our numerical results show that by increasing all components of the magnetic field, the surface density and rotational velocity increase, but the sound speed and radial infall velocity of the disk decrease. We have also found that the existence of wind will lead to reduction of surface density as well as rotational velocity. Moreover, the radial velocity, sound speed, advection parameter and the vertical thickness of the disk will increase when outflow becomes important in the RIAF. (research papers)

  11. Properties of two-temperature dissipative accretion flow around black holes

    Dihingia, Indu K.; Das, Santabrata; Mandal, Samir

    2018-04-01

    We study the properties of two-temperature accretion flow around a non-rotating black hole in presence of various dissipative processes where pseudo-Newtonian potential is adopted to mimic the effect of general relativity. The flow encounters energy loss by means of radiative processes acted on the electrons and at the same time, flow heats up as a consequence of viscous heating effective on ions. We assumed that the flow is exposed with the stochastic magnetic fields that leads to Synchrotron emission of electrons and these emissions are further strengthen by Compton scattering. We obtain the two-temperature global accretion solutions in terms of dissipation parameters, namely, viscosity (α) and accretion rate ({\\dot{m}}), and find for the first time in the literature that such solutions may contain standing shock waves. Solutions of this kind are multitransonic in nature, as they simultaneously pass through both inner critical point (xin) and outer critical point (xout) before crossing the black hole horizon. We calculate the properties of shock-induced global accretion solutions in terms of the flow parameters. We further show that two-temperature shocked accretion flow is not a discrete solution, instead such solution exists for wide range of flow parameters. We identify the effective domain of the parameter space for standing shock and observe that parameter space shrinks as the dissipation is increased. Since the post-shock region is hotter due to the effect of shock compression, it naturally emits hard X-rays, and therefore, the two-temperature shocked accretion solution has the potential to explain the spectral properties of the black hole sources.

  12. Gas accretion onto galaxies

    Davé, Romeel

    2017-01-01

    This edited volume presents the current state of gas accretion studies from both observational and theoretical perspectives, and charts our progress towards answering the fundamental yet elusive question of how galaxies get their gas. Understanding how galaxies form and evolve has been a central focus in astronomy for over a century. These studies have accelerated in the new millennium, driven by two key advances: the establishment of a firm concordance cosmological model that provides the backbone on which galaxies form and grow, and the recognition that galaxies grow not in isolation but within a “cosmic ecosystem” that includes the vast reservoir of gas filling intergalactic space. This latter aspect in which galaxies continually exchange matter with the intergalactic medium via inflows and outflows has been dubbed the “baryon cycle”. The topic of this book is directly related to the baryon cycle, in particular its least well constrained aspect, namely gas accretion. Accretion is a rare area of ast...

  13. Thermal structure of the accreting earth

    Turcotte, D.L.; Pflugrath, J.C.

    1985-01-01

    The energy associated with the accretion of the earth and the segregation of the core is more than sufficient to melt the entire earth. In order to understand the thermal evolution of the early earth it is necessary to study the relevant heat transfer mechanisms. In this paper we postulate the existence of a global magma ocean and carry out calculations of the heat flux through it in order to determine its depth. In the solid mantle heat is transferred by the upward migration of magma. This magma supplies the magma ocean. The increase in the mantle liquidus with depth (pressure) is the dominant effect influencing heat transfer through the magma ocean. We find that a magma ocean with a depth of the order of 20 km would have existed as the earth accreted. We conclude that the core segregated and an atmosphere was formed during accretion

  14. RINGED ACCRETION DISKS: INSTABILITIES

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2016-04-01

    We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  15. Accreting CO material onto ONe white dwarfs towards accretion-induced collapse

    Wu, Cheng-Yuan; Wang, Bo

    2018-03-01

    The final outcomes of accreting ONe white dwarfs (ONe WDs) have been studied for several decades, but there are still some issues that are not resolved. Recently, some studies suggested that the deflagration of oxygen would occur for accreting ONe WDs with Chandrasekhar masses. In this paper, we aim to investigate whether ONe WDs can experience accretion-induced collapse (AIC) or explosions when their masses approach the Chandrasekhar limit. Employing the stellar evolution code Modules for Experiments in Stellar Astrophysics (MESA), we simulate the long-term evolution of ONe WDs with accreting CO material. The ONe WDs undergo weak multicycle carbon flashes during the mass-accretion process, leading to mass increase of the WDs. We found that different initial WD masses and mass-accretion rates influence the evolution of central density and temperature. However, the central temperature cannot reach the explosive oxygen ignition temperature due to neutrino cooling. This work implies that the final outcome of accreting ONe WDs is electron-capture induced collapse rather than thermonuclear explosion.

  16. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION

    Dexter, Jason; Kasen, Daniel, E-mail: jdexter@berkeley.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2013-07-20

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time ({approx}>days) power potentially associated with the accretion of this 'fallback' material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as M-dot {proportional_to}t{sup -5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous ({approx}> 10{sup 44} erg s{sup -1}) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  17. Brown dwarf accretion: Nonconventional star formation over very long timescales

    Ćirković Milan M.

    2005-01-01

    Full Text Available We investigate the process of accretion of interstellar gas by the Galactic population of brown dwarfs over very long timescales typical for physical eschatology. In particular, we use the classical Hoyle-Lyttleton-Bondi accretion model to investigate the rate at which brown dwarfs collect enough additional mass to become red dwarfs, accretion-induced changes in the mass function of the low- mass objects, and the corresponding accretion heating of brown dwarfs. In addition, we show how we can make the definition of the final mass function for stellar objects more precise.

  18. Gamma-burst emission from neutron-star accretion

    Colgate, S. A.; Petschek, A. G.; Sarracino, R.

    1983-01-01

    A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without a magnetic field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required to drag electrons into the star with the nuclei against the flux of photons leaking out through the accreting matter. The photon number is not increased substantially by Bremsstrahlung or any other process. It is suggested that instability in an accretion disc might provide the infalling matter required.

  19. Pulsed Accretion in the T Tauri Binary TWA 3A

    Tofflemire, Benjamin M.; Mathieu, Robert D. [Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53706 (United States); Herczeg, Gregory J. [The Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Akeson, Rachel L.; Ciardi, David R. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States)

    2017-06-20

    TWA 3A is the most recent addition to a small group of young binary systems that both actively accrete from a circumbinary disk and have spectroscopic orbital solutions. As such, it provides a unique opportunity to test binary accretion theory in a well-constrained setting. To examine TWA 3A’s time-variable accretion behavior, we have conducted a two-year, optical photometric monitoring campaign, obtaining dense orbital phase coverage (∼20 observations per orbit) for ∼15 orbital periods. From U -band measurements we derive the time-dependent binary mass accretion rate, finding bursts of accretion near each periastron passage. On average, these enhanced accretion events evolve over orbital phases 0.85 to 1.05, reaching their peak at periastron. The specific accretion rate increases above the quiescent value by a factor of ∼4 on average but the peak can be as high as an order of magnitude in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in good agreement with numerical simulations of binary accretion with similar orbital parameters. In these simulations, periastron accretion bursts are fueled by periodic streams of material from the circumbinary disk that are driven by the binary orbit. We find that TWA 3A’s average accretion behavior is remarkably similar to DQ Tau, another T Tauri binary with similar orbital parameters, but with significantly less variability from orbit to orbit. This is only the second clear case of orbital-phase-dependent accretion in a T Tauri binary.

  20. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

    2012-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  1. The accretion of migrating giant planets

    Dürmann, Christoph; Kley, Wilhelm

    2017-02-01

    Aims: Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect one another. Methods: We modeled a two-dimensional disk with a steady accretion flow onto the central star and embedded a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant α. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Results: Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas originating predominantly from the inner disk for a fast migrating planet. In the case of slower migration, the fraction of gas from the outer disk increases. We also found that even for very high accretion rates, in some cases gas crosses the planetary gap from the inner to the outer disk. Our simulations show that the crossing of gas changes during the migration process as the migration rate slows down. Therefore, classical type II migration where the planet migrates with the viscous drift rate and no gas crosses the gap is no general process but may only occur for special parameters and at a certain time during the orbital evolution of the planet.

  2. A global synthesis of plant extinction rates in urban areas.

    Hahs, Amy K; McDonnell, Mark J; McCarthy, Michael A; Vesk, Peter A; Corlett, Richard T; Norton, Briony A; Clemants, Steven E; Duncan, Richard P; Thompson, Ken; Schwartz, Mark W; Williams, Nicholas S G

    2009-11-01

    Plant extinctions from urban areas are a growing threat to biodiversity worldwide. To minimize this threat, it is critical to understand what factors are influencing plant extinction rates. We compiled plant extinction rate data for 22 cities around the world. Two-thirds of the variation in plant extinction rates was explained by a combination of the city's historical development and the current proportion of native vegetation, with the former explaining the greatest variability. As a single variable, the amount of native vegetation remaining also influenced extinction rates, particularly in cities > 200 years old. Our study demonstrates that the legacies of landscape transformations by agrarian and urban development last for hundreds of years, and modern cities potentially carry a large extinction debt. This finding highlights the importance of preserving native vegetation in urban areas and the need for mitigation to minimize potential plant extinctions in the future.

  3. Bondi-Hoyle-Lyttleton Accretion onto Binaries

    Antoni, Andrea; MacLeod, Morgan; Ramírez-Ruiz, Enrico

    2018-01-01

    Binary stars are not rare. While only close binary stars will eventually interact with one another, even the widest binary systems interact with their gaseous surroundings. The rates of accretion and the gaseous drag forces arising in these interactions are the key to understanding how these systems evolve. This poster examines accretion flows around a binary system moving supersonically through a background gas. We perform three-dimensional hydrodynamic simulations of Bondi-Hoyle-Lyttleton accretion using the adaptive mesh refinement code FLASH. We simulate a range of values of semi-major axis of the orbit relative to the gravitational focusing impact parameter of the pair. On large scales, gas is gravitationally focused by the center-of-mass of the binary, leading to dynamical friction drag and to the accretion of mass and momentum. On smaller scales, the orbital motion imprints itself on the gas. Notably, the magnitude and direction of the forces acting on the binary inherit this orbital dependence. The long-term evolution of the binary is determined by the timescales for accretion, slow down of the center-of-mass, and decay of the orbit. We use our simulations to measure these timescales and to establish a hierarchy between them. In general, our simulations indicate that binaries moving through gaseous media will slow down before the orbit decays.

  4. 78 FR 1277 - International Product Change-Global Expedited Package Services-Non-Published Rates

    2013-01-08

    ... POSTAL SERVICE International Product Change--Global Expedited Package Services-- Non-Published...-- Non-Published Rates 4 (GEPS-NPR 4) to the Competitive Products List. DATES: Effective date: January 8... add Global Expedited Package Services-- Non-Published Rates 4 (GEPS-NPR 4) to the Competitive Products...

  5. Should Global Items on Student Rating Scales Be Used for Summative Decisions?

    Berk, Ronald A.

    2013-01-01

    One of the simplest indicators of teaching or course effectiveness is student ratings on one or more global items from the entire rating scale. That approach seems intuitively sound and easy to use. Global items have even been recommended by a few researchers to get a quick-read, at-a-glance summary for summative decisions about faculty. The…

  6. A globally convergent MC algorithm with an adaptive learning rate.

    Peng, Dezhong; Yi, Zhang; Xiang, Yong; Zhang, Haixian

    2012-02-01

    This brief deals with the problem of minor component analysis (MCA). Artificial neural networks can be exploited to achieve the task of MCA. Recent research works show that convergence of neural networks based MCA algorithms can be guaranteed if the learning rates are less than certain thresholds. However, the computation of these thresholds needs information about the eigenvalues of the autocorrelation matrix of data set, which is unavailable in online extraction of minor component from input data stream. In this correspondence, we introduce an adaptive learning rate into the OJAn MCA algorithm, such that its convergence condition does not depend on any unobtainable information, and can be easily satisfied in practical applications.

  7. Statistics of exchange rate regimes in Nigeria | Iwueze | Global ...

    The three distinct exchange rate regimes of Nigeria were subjected to Autoregressive Integrated Moving Average (ARIMA) modeling in order to compare them with respect to model structure. It was found that the three regimes admit different models. Regime one admits Moving average model of order 2, Regime two admits ...

  8. Global epidemiology of hysterectomy: possible impact on gynecological cancer rates

    Hammer, Anne; Rositch, Anne; Kahlert, Johnny Abildgaard

    2015-01-01

    Despite the fact that hysterectomy is the most common surgical procedure worldwide in gynecology, national reporting of the incidence rate of gynecological cancers rarely removes the proportion no longer at risk of the disease from the population-at-risk-denominator (ie. women who have had a hyst...

  9. He stars and He-accreting CO white dwarfs

    Limongi, M.; Tornambe, A.

    1991-01-01

    He star models in the mass range 0.4-1.0 solar mass have been evolved until the red giant phase or, depending on their mass, until crystallization on the white-dwarf cooling sequence. Some of the degenerate structures obtained in these computations have been successively accreted at various He accretion rates in order to better define the fate of the accreting dwarf versus its mass and accretion rate for a fixed degeneracy level of the accreting dwarf. He stars have been further induced to transfer mass to a degenerate companion through Roche lobe overflow, in conditions of large gravitational wave radiation by the system. CO dwarfs in binary systems with He stars are found to experience a thermal behavior whose effects are such to locate the structure on the verge of obtaining a strong SN-like explosive event. 22 refs

  10. Multiwavelength diagnostics of accretion in an X-ray selected sample of CTTSs

    Curran, R. L.; Argiroffi, C.; Sacco, G. G.; Orlando, S.; Peres, G.; Reale, F.; Maggio, A.

    2011-02-01

    Context. High resolution X-ray spectroscopy has revealed soft X-rays from high density plasma in classical T Tauri stars (CTTSs), probably arising from the accretion shock region. However, the mass accretion rates derived from the X-ray observations are consistently lower than those derived from UV/optical/NIR studies. Aims: We aim to test the hypothesis that the high density soft X-ray emission originates from accretion by analysing, in a homogeneous manner, optical accretion indicators for an X-ray selected sample of CTTSs. Methods: We analyse optical spectra of the X-ray selected sample of CTTSs and calculate the accretion rates based on measuring the Hα, Hβ, Hγ, He ii 4686 Å, He i 5016 Å, He i 5876 Å, O i 6300 Å, and He i 6678 Å equivalent widths. In addition, we also calculate the accretion rates based on the full width at 10% maximum of the Hα line. The different optical tracers of accretion are compared and discussed. The derived accretion rates are then compared to the accretion rates derived from the X-ray spectroscopy. Results: We find that, for each CTTS in our sample, the different optical tracers predict mass-accretion rates that agree within the errors, albeit with a spread of ≈ 1 order of magnitude. Typically, mass-accretion rates derived from Hα and He i 5876 Å are larger than those derived from Hβ, Hγ, and O i. In addition, the Hα full width at 10%, whilst a good indicator of accretion, may not accurately measure the mass-accretion rate. When the optical mass-accretion rates are compared to the X-ray derived mass-accretion rates, we find that: a) the latter are always lower (but by varying amounts); b) the latter range within a factor of ≈ 2 around 2 × 10-10 M⊙ yr-1, despite the former spanning a range of ≈ 3 orders of magnitude. We suggest that the systematic underestimate of the X-ray derived mass-accretion rates could depend on the density distribution inside the accretion streams, where the densest part of the stream is

  11. Mortality of marine planktonic copepods : global rates and patterns

    Hirst, A.G.; Kiørboe, Thomas

    2002-01-01

    Using life history theory we make predictions of mortality rates in marine epi-pelagic copepods from field estimates of adult fecundity, development times and adult sex ratios. Predicted mortality increases with temperature in both broadcast and sac spawning copepods, and declines with body weight...... in broadcast spawners, while mortality in sac spawners is invariant with body size. Although the magnitude of copepod mortality does lie close to the overall general pattern for pelagic animals, copepod mortality scaling is much weaker, implying that small copepods are avoiding some mortality agent....../s that other pelagic animals of a similar size do not, We compile direct in situ estimates of copepod mortality and compare these with our indirect predictions; we find the predictions generally match the field measurements well with respect to average rates and patterns. Finally, by comparing in situ adult...

  12. PEAT ACCRETION HISTORIES DURING THE PAST 6000 YEARS IN MARSHES OF THE SACRAMENTO - SAN JOAQUIN DELTA, CALIFORNIA, USA

    Drexler, J Z; de Fontaine, C S; Brown, T A

    2009-07-20

    Peat cores were collected in 4 remnant marsh islands and 4 drained, farmed islands throughout the Sacramento - San Joaquin Delta of California in order to characterize the peat accretion history of this region. Radiocarbon age determination of marsh macrofossils at both marsh and farmed islands showed that marshes in the central and western Delta started forming between 6030 and 6790 cal yr BP. Age-depth models for three marshes were constructed using cubic smooth spline regression models. The resulting spline fit models were used to estimate peat accretion histories for the marshes. Estimated accretion rates range from 0.03 to 0.49 cm yr{sup -1} for the marsh sites. The highest accretion rates are at Browns Island, a marsh at the confluence of the Sacramento and San Joaquin rivers. Porosity was examined in the peat core from Franks Wetland, one of the remnant marsh sites. Porosity was greater than 90% and changed little with depth indicating that autocompaction was not an important process in the peat column. The mean contribution of organic matter to soil volume at the marsh sites ranges from 6.15 to 9.25% with little variability. In contrast, the mean contribution of inorganic matter to soil volume ranges from 1.40 to 8.45% with much greater variability, especially in sites situated in main channels. These results suggest that marshes in the Delta can be viewed as largely autochthonous vs. allochthonous in character. Autochthonous sites are largely removed from watershed processes, such as sediment deposition and scour, and are dominated by organic production. Allochthonous sites have greater fluctuations in accretion rates due to the variability of inorganic inputs from the watershed. A comparison of estimated vertical accretion rates with 20th century rates of global sea-level rise shows that currently marshes are maintaining their positions in the tidal frame, yet this offers little assurance of sustainability under scenarios of increased sea-level rise in

  13. Global shutdown dose rate maps for a DEMO conceptual design

    Leichtle, D.; Pereslavtsev, P.; Sanz, J.; Catalan, J.P.; Juarez, R.

    2015-01-01

    Highlights: • Application of R2S-method on high-resolution full torus sector mesh for DEMO. • Absorbed dose rates after shutdown for a variely of RH equipment at typical locations. • Idenification of radiation levels at several port based locations. - Abstract: For the calculations of highly reliable shutdown dose rate (SDR) maps in fusion devices like a DEMO plant, the Rigorous-2-step (R2S) method is nowadays routinely applied using high-resolution decay gamma sources from initial high-resolution neutron flux meshes activating all materials in the system. This approach has been utilized in the present paper with the objective to provide SDR results relevant for RH systems of a conceptual DEMO design developed in the EU. The primary objective was to assess specific locations of interest for RH equipment inside the vessel and along the extension of maintenance ports. To this end, a provisional DEMO MCNP model has been used, featuring HCLL-type blankets, tungsten/copper divertor, manifolds, vacuum vessel with ports and toroidal field coils. The operational scenario assumed 2.1 GW fusion power and a life-time of 20 years with plant availability of 30%, where removable parts will be extracted after 5.2 years. Results of absorbed dose rate distributions for several relevant materials are presented and discussed in terms of the different contributions from the various activated components.

  14. Global shutdown dose rate maps for a DEMO conceptual design

    Leichtle, D., E-mail: dieter.leichtle@f4e.europa.eu [Karlsruhe Institute of Technology KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Pereslavtsev, P. [Karlsruhe Institute of Technology KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Sanz, J.; Catalan, J.P.; Juarez, R. [Universidad Nacional de Educación a Distancia(UNED), E.T.S. Ingenieros Industriales, C/ Juan del Rosal 12, 28040 Madrid (Spain)

    2015-10-15

    Highlights: • Application of R2S-method on high-resolution full torus sector mesh for DEMO. • Absorbed dose rates after shutdown for a variely of RH equipment at typical locations. • Idenification of radiation levels at several port based locations. - Abstract: For the calculations of highly reliable shutdown dose rate (SDR) maps in fusion devices like a DEMO plant, the Rigorous-2-step (R2S) method is nowadays routinely applied using high-resolution decay gamma sources from initial high-resolution neutron flux meshes activating all materials in the system. This approach has been utilized in the present paper with the objective to provide SDR results relevant for RH systems of a conceptual DEMO design developed in the EU. The primary objective was to assess specific locations of interest for RH equipment inside the vessel and along the extension of maintenance ports. To this end, a provisional DEMO MCNP model has been used, featuring HCLL-type blankets, tungsten/copper divertor, manifolds, vacuum vessel with ports and toroidal field coils. The operational scenario assumed 2.1 GW fusion power and a life-time of 20 years with plant availability of 30%, where removable parts will be extracted after 5.2 years. Results of absorbed dose rate distributions for several relevant materials are presented and discussed in terms of the different contributions from the various activated components.

  15. Nuclear Power Learning and Deployment Rates; Disruption and Global Benefits Forgone

    Peter A. Lang

    2017-01-01

    This paper presents evidence of the disruption of a transition from fossil fuels to nuclear power, and finds the benefits forgone as a consequence are substantial. Learning rates are presented for nuclear power in seven countries, comprising 58% of all power reactors ever built globally. Learning rates and deployment rates changed in the late-1960s and 1970s from rapidly falling costs and accelerating deployment to rapidly rising costs and stalled deployment. Historical nuclear global capacit...

  16. Asymmetric Effects of Global Liquidity Expansion on Foreign Portfolio Inflows, Exchange Rates, and Stock Prices

    Dong-Eun Rhee

    2014-06-01

    Full Text Available This paper examines the effects of global liquidity expansion on advanced and emerging economies by using panel VAR methodology. The results show that global liquidity expansion tends to boost economy by increasing GDP growth and stock prices. However, we find that the effects are asymmetric. The effects of global liquidity on GDP and stock prices are greater and more persistent in emerging economies than in liquidity recipient advanced economies. Moreover, global liquidity appreciates emerging economies' exchange rates more persistently than those of advanced economies. Lastly, while global liquidity expansion increases foreign portfolio investment inflows to Asian countries and liquidity recipient advanced economies, there is no evidence for Latin American countries.

  17. Numerical Simulations of Wind Accretion in Symbiotic Binaries

    de Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-08-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10-4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent on

  18. NUMERICAL SIMULATIONS OF WIND ACCRETION IN SYMBIOTIC BINARIES

    De Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-01-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10 -4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent

  19. Stability of black hole accretion disks

    Czerny B.

    2012-12-01

    Full Text Available We discuss the issues of stability of accretion disks that may undergo the limit-cycle oscillations due to the two main types of thermal-viscous instabilities. These are induced either by the domination of radiation pressure in the innermost regions close to the central black hole, or by the partial ionization of hydrogen in the zone of appropriate temperatures. These physical processes may lead to the intermittent activity in AGN on timescales between hundreds and millions of years. We list a number of observational facts that support the idea of the cyclic activity in high accretion rate sources. We conclude however that the observed features of quasars may provide only indirect signatures of the underlying instabilities. Also, the support from the sources with stellar mass black holes, whose variability timescales are observationally feasible, is limited to a few cases of the microquasars. Therefore we consider a number of plausible mechanisms of stabilization of the limit cycle oscillations in high accretion rate accretion disks. The newly found is the stabilizing effect of the stochastic viscosity fluctuations.

  20. Pre-main-sequence disk accretion in Z Canis Majoris

    Hartmann, L.; Kenyon, S.J.; Hewett, R.; Edwards, S.; Strom, K.M.; Strom, S.E.; Stauffer, J.R.

    1989-01-01

    It is suggested that the pre-main-sequence object Z CMa is a luminous accretion disk, similar in many respects to the FU Orionis variables. Z CMa shows the broad, doubled optical absorption lines expected from a rapidly rotating accretion disk. The first overtone CO absorption detected in Z CMa is blue-shifted, suggesting line formation in a disk wind. Accretion at rates about 0.001 solar mass/yr over 100 yr is required to explain the luminosity of Z CMa. The large amount of material accreted (0.1 solar mass/yr) indicates that Z CMa is in a very early stage of stellar evolution, possibly in an initial phase of massive disk accretion. 41 references

  1. Accretion onto a noncommutative geometry inspired black hole

    Kumar, Rahul [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Jamia Millia Islamia, Multidisciplinary Centre for Advanced Research and Studies (MCARS), New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2017-09-15

    The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate M, sonic speed a{sub s} and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that M ∼ M{sup 2} is still achievable but r{sub s} seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process. (orig.)

  2. Variable accretion of stellar winds onto Sgr A*

    Cuadra, Jorge; Nayakshin, Sergei

    2006-12-01

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre.

  3. Variable accretion of stellar winds onto Sgr A*

    Cuadra, Jorge [Max-Planck-Institut fuer Astrophysik, D-85741 Garching (Germany); Nayakshin, Sergei [Department of Physics and Astronomy, University of Leicester, LEI 7RH (United Kingdom)

    2006-12-15

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre.

  4. Variable accretion of stellar winds onto Sgr A*

    Cuadra, Jorge; Nayakshin, Sergei

    2006-01-01

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre

  5. Pre-main-sequence disk accretion in Z Canis Majoris

    Hartmann, L.; Kenyon, S. J.; Hewett, R.; Edwards, S.; Strom, K. M.; Strom, S. E.; Stauffer, J. R.

    1989-01-01

    It is suggested that the pre-main-sequence object Z CMa is a luminous accretion disk, similar in many respects to the FU Orionis variables. Z CMa shows the broad, doubled optical absorption lines expected from a rapidly rotating accretion disk. The first overtone CO absorption detected in Z CMa is blue-shifted, suggesting line formation in a disk wind. Accretion at rates about 0.001 solar mass/yr over 100 yr is required to explain the luminosity of Z CMa. The large amount of material accreted (0.1 solar mass/yr) indicates that Z CMa is in a very early stage of stellar evolution, possibly in an initial phase of massive disk accretion.

  6. Superluminous accretion discs

    Sikora, M [Cambridge Univ. (UK). Inst. of Astronomy; Polska Akademia Nauk, Warsaw. Centrum Astronomiczne)

    1981-07-01

    Upper limits are computed for the total luminosities and collimation of radiation from thick, radiation supported accretion discs around black holes. Numerical results are obtained for the 'extreme' discs with rsub(out) = 10/sup 3/ GMsub(BH)/c/sup 2/, the angular momentum of the black hole being Jsub(BH) = 0.998 GMsub(BH)/c. The high luminosity (L approximately 8.5 Lsub(Edd)) and substantial collimation of radiation found for these discs indicate that such discs can explain both the high luminosities of quasars and similar objects and may produce some of the observed beams and jets.

  7. Source to Accretion Disk Tilt

    Montgomery, M. M.; Martin, E. L.

    2010-01-01

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source to cause and maintain disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through...

  8. 76 FR 2930 - International Product Change-Global Expedited Package Services-Non- Published Rates

    2011-01-18

    ... POSTAL SERVICE International Product Change--Global Expedited Package Services-- Non- Published... request with the Postal Regulatory Commission to add Global Expedited Package Services-- Non-Published...--Non-Published Rates, to the Competitive Products List, and Notice of Filing (Under Seal) the Enabling...

  9. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    Robinson, C. E.; Espaillat, C. C. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Owen, J. E. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Adams, F. C., E-mail: connorr@bu.edu [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States)

    2017-04-01

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that if the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.

  10. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    Robinson, C. E.; Espaillat, C. C.; Owen, J. E.; Adams, F. C.

    2017-01-01

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that if the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.

  11. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area

    National Aeronautics and Space Administration — ABSTRACT: This global data set of photosynthetic rates and leaf nutrient traits was compiled from a comprehensive literature review. It includes estimates of Vcmax...

  12. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area

    National Aeronautics and Space Administration — This global data set of photosynthetic rates and leaf nutrient traits was compiled from a comprehensive literature review. It includes estimates of Vcmax (maximum...

  13. Global Self-rating Validation of the Measurement of Extraversion and Neuroticism

    Farley, Frank H.; Soper, Robert E.

    1976-01-01

    Results show that individuals identified by the personality inventory as extravert or introvert differed significantly in the expected direction on the global self ratings. The results were also obtained for neuroticism. (Author/DEP)

  14. Risk Assessment of Diabetes Mellitus by Chaotic Globals to Heart Rate Variability via Six Power Spectra

    Garner David M.

    2017-09-01

    Full Text Available Background: The priniciple objective here is to analyze cardiovascular dynamics in diabetic subjects by actions related to heart rate variability (HRV. The correlation of chaotic globals is vital to evaluate the probability of dynamical diseases.

  15. Insulin accelerates global and mitochondrial protein synthesis rates in neonatal muscle during sepsis

    In neonatal pigs, sepsis decreases protein synthesis in skeletal muscle by decreasing translation initiation. However, insulin stimulates muscle protein synthesis despite persistent repression of translation initiation signaling. To determine whether the insulin-induced increase in global rates of m...

  16. The Emerging Paradigm of Pebble Accretion

    Ormel, C.W.; Pessah, M.; Gressel, O.

    2017-01-01

    Pebble accretion is the mechanism in which small particles ("pebbles") accrete onto big bodies big (planetesimals or planetary embryos) in gas-rich environments. In pebble accretion accretion , accretion occurs by settling and depends only on the mass of the gravitating body gravitating , not its

  17. Disk accretion onto magnetic T Tauri stars

    Koenigl, A.

    1991-01-01

    The dynamical and radiative consequences of disk accretion onto magnetic T Tauri stars (TTS) are examined using the Ghosh and Lamb model. It is shown that a prolonged disk accretion phase is compatible with the low rotation rates measured in these stars if they possess a kilogauss strength field that disrupts the disk at a distance of a few stellar radii from the center. It is estimated that a steady state in which the net torque exerted on the star is zero can be attained on a time scale that is shorter than the age of the youngest visible TTS. Although the disk does not develop an ordinary shear boundary layer in this case, one can account for the observed UV excess and Balmer emission in terms of the shocks that form at the bottom of the high-latitude magnetic accretion columns on the stellar surface. This picture also provides a natural explanation of some of the puzzling variability properties of stars like DF Tau and RY Lup. YY Ori stars are interpreted as magnetic TTS in which the observer's line of sight is roughly parallel to an accretion column. 37 refs

  18. Influence of birth rates and transmission rates on the global seasonality of rotavirus incidence.

    Pitzer, Virginia E; Viboud, Cécile; Lopman, Ben A; Patel, Manish M; Parashar, Umesh D; Grenfell, Bryan T

    2011-11-07

    Rotavirus is a major cause of mortality in developing countries, and yet the dynamics of rotavirus in such settings are poorly understood. Rotavirus is typically less seasonal in the tropics, although recent observational studies have challenged the universality of this pattern. While numerous studies have examined the association between environmental factors and rotavirus incidence, here we explore the role of intrinsic factors. By fitting a mathematical model of rotavirus transmission dynamics to published age distributions of cases from 15 countries, we obtain estimates of local transmission rates. Model-predicted patterns of seasonal incidence based solely on differences in birth rates and transmission rates are significantly correlated with those observed (Spearman's ρ = 0.65, p birth rates and transmission rates and explore how vaccination may impact these patterns. Our results suggest that the relative lack of rotavirus seasonality observed in many tropical countries may be due to the high birth rates and transmission rates typical of developing countries rather than being driven primarily by environmental conditions. While vaccination is expected to decrease the overall burden of disease, it may increase the degree of seasonal variation in the incidence of rotavirus in some settings.

  19. Thermal structure of accreting neutron stars and strange stars

    Miralda-Escude, J.; Paczynski, B.; Haensel, P.

    1990-01-01

    Steady-state models of accreting neutron stars and strange stars are presented, and their properties as a function of accretion rate are analyzed. The models have steady-state envelopes, with stationary hydrogen burning taken into account, the helium shell flashes artificially suppressed, and the crust with a large number of secondary heat sources. The deep interiors are almost isothermal and are close to thermal equilibrium. A large number of models were calculated for many values of the accretion rates, with ordinary, pion-condensed, and strange cores, with and without secondary heat sources in the crust, and with the heavy element content of the accreting matter in the range Z = 0.0002-0.02. All models show a similar pattern of changes as the accretion rate is varied. For low accretion rates, the hydrogen burning shell is unstable; for intermediate rates, the hydrogen burning shell is stable, but helium burning is not; for high rates, the two shell sources burn together and are unstable. 60 refs

  20. Cold gas accretion in galaxies

    Sancisi, Renzo; Fraternali, Filippo; Oosterloo, Tom; van der Hulst, Thijs

    Evidence for the accretion of cold gas in galaxies has been rapidly accumulating in the past years. HI observations of galaxies and their environment have brought to light new facts and phenomena which are evidence of ongoing or recent accretion: (1) A large number of galaxies are accompanied by

  1. SPREADING LAYERS IN ACCRETING OBJECTS: ROLE OF ACOUSTIC WAVES FOR ANGULAR MOMENTUM TRANSPORT, MIXING, AND THERMODYNAMICS

    Philippov, Alexander A.; Rafikov, Roman R.; Stone, James M., E-mail: sashaph@princeton.edu [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States)

    2016-01-20

    Disk accretion at a high rate onto a white dwarf (WD) or a neutron star has been suggested to result in the formation of a spreading layer (SL)—a belt-like structure on the object's surface, in which the accreted matter steadily spreads in the poleward (meridional) direction while spinning down. To assess its basic characteristics, we perform two-dimensional hydrodynamic simulations of supersonic SLs in the relevant morphology with a simple prescription for cooling. We demonstrate that supersonic shear naturally present at the base of the SL inevitably drives sonic instability that gives rise to large-scale acoustic modes governing the evolution of the SL. These modes dominate the transport of momentum and energy, which is intrinsically global and cannot be characterized via some form of local effective viscosity (e.g., α-viscosity). The global nature of the wave-driven transport should have important implications for triggering Type I X-ray bursts in low-mass X-ray binaries. The nonlinear evolution of waves into a system of shocks drives effective rearrangement (sensitively depending on thermodynamical properties of the flow) and deceleration of the SL, which ultimately becomes transonic and susceptible to regular Kelvin–Helmholtz instability. We interpret this evolution in terms of the global structure of the SL and suggest that mixing of the SL material with the underlying stellar fluid should become effective only at intermediate latitudes on the accreting object's surface, where the flow has decelerated appreciably. In the near-equatorial regions the transport is dominated by acoustic waves and mixing is less efficient. We speculate that this latitudinal nonuniformity of mixing in accreting WDs may be linked to the observed bipolar morphology of classical nova ejecta.

  2. A spin-down mechanism for accreting neutron stars

    Illarionov, A.F.; AN SSSR, Moscow. Fizicheskij Inst.); Kompaneets, D.A.

    1990-01-01

    We propose a new spin-down mechanism for accreting neutron stars that explains the existence of a number of long-period (p≅100-1000 s) X-ray pulsars in wide binaries with OB-stars. The spin-down is a result of efficient angular momentum transfer from the rotating magnetosphere of the accreting star to an outflowing stream of magnetized matter. The outflow is formed within a limited solid angle, and the outflow rate is less than the accretion rate. The outflow formation is connected with the anisotropy and intensity of the hard X-ray emission of the neutron star. X-rays from the pulsar heat through Compton scattering the accreting matter anisotropically. The heated matter has a lower density than the surrounding accreting matter and flows up by the action of the buoyancy force. We find the criterion for the outflow to form deep in the accretion flow (i.e., close to the neutron star magnetosphere). The neutron star loses angular momentum when the outflow forms so deep as to capture the magnetic field lines from the rotating magnetosphere. The balance between angular momentum gain by accreting gas and loss by outflowing matter takes place at a particular value of the period of the spinning neutron star. (orig.)

  3. Tidal disruption of stars in a supermassive black hole binary system: the influence of orbital properties on fallback and accretion rates

    Vigneron, Quentin; Lodato, Giuseppe; Guidarelli, Alessio

    2018-06-01

    The disruption of a star by a supermassive black hole generates a sudden bright flare. Previous studies have focused on the disruption by single black holes, for which the fallback rate decays as ∝ t-5/3. In this paper, we generalize the study to the case of a supermassive black hole binary (SMBHB), using both analytical estimates and hydrodynamical simulations, looking for specific observable signatures. The range of binary separation for which it is possible to distinguish between the disruption created by a single or a binary black hole concerns typically separations of the order of a few milliparsecs for a primary of mass ˜106 M⊙. When the fallback rate is affected by the secondary, it undergoes two types interruptions, depending on the initial inclination θ of the orbit of the star relative to the plane of the SMBHB. For θ ≲ 70°, periodic sharp interruptions occur and the time of first interruption depends on the distance of the secondary black hole with the debris. If θ ≳ 70°, a first smooth interruption occurs, but not always followed by a further recovery of the fallback rate. This implies that most of the TDEs around a SMBHB will undergo periodic sharp interruptions of their light curve.

  4. Snow accretion on overhead wires

    Sakamoto, Y. [Meteorological Research Inst. for Technology Co. Ltd., Tokyo (Japan); Tachizaki, S.; Sudo, N. [Tohoku Electric Power Co. Ltd., Miyagi (Japan)

    2005-07-01

    Wet snow accretion can cause extensive damage to transmission systems. This paper reviewed some of the difficulties faced by researchers in the study of wet snow accretion on overhead lines in Japan. The study of snow accretion phenomena is complicated by the range of phase changes in water. Snowflakes produced in an upper atmospheric layer with a temperature below freezing do not melt when they go through a lower atmospheric layer with a temperature above freezing, but are in a mixed state of solid and liquid due to the latent heat of melting. The complicated properties of water make studies of snow accretion difficult, as well as the fact that snow changes its physical properties rapidly, due to the effects of ambient temperature, rainfall, and solar radiation. The adhesive forces that cause snow accretion include freezing; bonding through freezing; sintering; condensation and freezing of vapor in the air; mechanical intertwining of snowflakes; capillary action due to liquids; coherent forces between ice particles and water formed through the metamorphosis of snowflakes. In addition to these complexities, differences in laboratory room environments and natural snow environments can also pose difficulties for researchers. Equations describing the relationship between the density of accreted snow and the meteorological parameters involved were presented, as well as empirical equations which suggested that snow accretion efficiency has a dependency on air temperature. An empirical model for estimating snow loads in Japan was outlined, as well as various experiments observing show shedding. Correlations for wet snow accretion included precipitation intensity; duration of precipitation; air temperature; wind speed and wind direction in relation to the overhead line. Issues concerning topography and wet snow accretion were reviewed. It was concluded that studies of snow accretion will benefit by the collection of data in each matrix of the relevant parameters. 12 refs

  5. A COMMON SOURCE OF ACCRETION DISK TILT

    Montgomery, M. M.; Martin, E. L.

    2010-01-01

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source that causes and maintains disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through the disk's center of mass. The disk responds to lift by pitching around the disk's line of nodes. If the gas stream flow ebbs, then lift also ebbs and the disk attempts to return to its original orientation. To first approximation, lift does not depend on magnetic fields or radiation sources but does depend on the mass and the surface area of the disk. Also, for disk tilt to be initiated, a minimum mass transfer rate must be exceeded. For example, a 10 -11 M sun disk around a 0.8 M sun compact central object requires a mass transfer rate greater than ∼ 8 x 10 -11 M sun yr -1 , a value well below the known mass transfer rates in cataclysmic variable dwarf novae systems that retrogradely precess and exhibit negative superhumps in their light curves and a value well below mass transfer rates in protostellar-forming systems.

  6. EARTH, MOON, SUN, AND CV ACCRETION DISKS

    Montgomery, M. M.

    2009-01-01

    accretion disks are present or not. Our results suggest that the accretion disk's geometric shape directly affects the disk's precession rate.

  7. Chaotic cold accretion on to black holes in rotating atmospheres

    Gaspari, M.; Brighenti, F.; Temi, P.

    2015-07-01

    The fueling of black holes is one key problem in the evolution of baryons in the universe. Chaotic cold accretion (CCA) profoundly differs from classic accretion models, as Bondi and thin disc theories. Using 3D high-resolution hydrodynamic simulations, we now probe the impact of rotation on the hot and cold accretion flow in a typical massive galaxy. In the hot mode, with or without turbulence, the pressure-dominated flow forms a geometrically thick rotational barrier, suppressing the black hole accretion rate to ~1/3 of the spherical case value. When radiative cooling is dominant, the gas loses pressure support and quickly circularizes in a cold thin disk; the accretion rate is decoupled from the cooling rate, although it is higher than that of the hot mode. In the more common state of a turbulent and heated atmosphere, CCA drives the dynamics if the gas velocity dispersion exceeds the rotational velocity, i.e., turbulent Taylor number Tat 1), the broadening of the distribution and the efficiency of collisions diminish, damping the accretion rate ∝ Tat-1, until the cold disk drives the dynamics. This is exacerbated by the increased difficulty to grow TI in a rotating halo. The simulated sub-Eddington accretion rates cover the range inferred from AGN cavity observations. CCA predicts inner flat X-ray temperature and r-1 density profiles, as recently discovered in M 87 and NGC 3115. The synthetic Hα images reproduce the main features of cold gas observations in massive ellipticals, as the line fluxes and the filaments versus disk morphology. Such dichotomy is key for the long-term AGN feedback cycle. As gas cools, filamentary CCA develops and boosts AGN heating; the cold mode is thus reduced and the rotating disk remains the sole cold structure. Its consumption leaves the atmosphere in hot mode with suppressed accretion and feedback, reloading the cycle.

  8. Global Incidence and Mortality Rates of Stomach Cancer and the Human Development Index: an Ecological Study.

    Khazaei, Salman; Rezaeian, Shahab; Soheylizad, Mokhtar; Khazaei, Somayeh; Biderafsh, Azam

    2016-01-01

    Stomach cancer (SC) is the second leading cause of cancer death with the rate of 10.4% in the world. The correlation between the incidence and mortality rates of SC and human development index (HDI) has not been globally determined. Therefore, this study aimed to determine the association between the incidence and mortality rates of SC and HDI in various regions. In this global ecological study, we used the data about the incidence and mortality rate of SC and HDI from the global cancer project and the United Nations Development Programme database, respectively. In 2012, SCs were estimated to have affected a total of 951,594 individuals (crude rate: 13.5 per 100,000 individuals) with a male/female ratio of 1.97, and caused 723,073 deaths worldwide (crude rate: 10.2 per 100,000 individuals). There was a positive correlation between the HDI and both incidence (r=0.28, countries with high and very high HDI is remarkable which should be the top priority of interventions for global health policymakers. In addition, health programs should be provided to reduce the burden of this disease in the regions with high incidence and mortality rates of SC.

  9. Accretion of a ghost condensate by black holes

    Frolov, Andrei V.

    2004-01-01

    The intent of this paper is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as a tenth of a solar mass per second for 10 MeV scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model

  10. Thin accretion disks in stationary axisymmetric wormhole spacetimes

    Harko, Tiberiu; Kovacs, Zoltan; Lobo, Francisco S. N.

    2009-01-01

    In this paper, we study the physical properties and the equilibrium thermal radiation emission characteristics of matter forming thin accretion disks in stationary axially symmetric wormhole spacetimes. The thin disk models are constructed by taking different values of the wormhole's angular velocity, and the time averaged energy flux, the disk temperature, and the emission spectra of the accretion disks are obtained. Comparing the mass accretion in a rotating wormhole geometry with the one of a Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for wormholes than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating wormholes provide a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Therefore specific signatures appear in the electromagnetic spectrum of thin disks around rotating wormholes, thus leading to the possibility of distinguishing wormhole geometries by using astrophysical observations of the emission spectra from accretion disks.

  11. Observational diagnostics of accretion on young stars and brown dwarfs

    Stelzer, Beate; Argiroffi, Costanza

    I present a summary of recent observational constraints on the accretion properties of young stars and brown dwarfs with focus on the high-energy emission. In their T Tauri phase young stars assemble a few percent of their mass by accretion from a disk. Various observational signatures of disks around pre-main sequence stars and the ensuing accretion process are found in the IR and optical regime: e.g. excess emission above the stellar photosphere, strong and broad emission lines, optical veiling. At high energies evidence for accretion is less obvious, and the X-ray emission from stars has historically been ascribed to magnetically confined coronal plasmas. While being true for the bulk of the emission, new insight obtained from XMM-Newton and Chandra observations has unveiled contributions from accretion and outflow processes to the X-ray emission from young stars. Their smaller siblings, the brown dwarfs, have been shown to undergo a T Tauri phase on the basis of optical/IR observations of disks and measurements of accretion rates. Most re-cently, first evidence was found for X-rays produced by accretion in a young brown dwarf, complementing the suspected analogy between stars and substellar objects.

  12. Gravity signatures of terrane accretion

    Franco, Heather; Abbott, Dallas

    1999-01-01

    In modern collisional environments, accreted terranes are bracketed by forearc gravity lows, a gravitational feature which results from the abandonment of the original trench and the initiation of a new trench seaward of the accreted terrane. The size and shape of the gravity low depends on the type of accreted feature and the strength of the formerly subducting plate. Along the Central American trench, the accretion of Gorgona Island caused a seaward trench jump of 48 to 66 km. The relict trench axes show up as gravity lows behind the trench with minimum values of -78 mgal (N of Gorgona) and -49 mgal (S of Gorgona) respectively. These forearc gravity lows have little or no topographic expression. The active trench immediately seaward of these forearc gravity lows has minimum gravity values of -59 mgal (N of Gorgona) and -58 mgal (S of Gorgona), respectively. In the north, the active trench has a less pronounced gravity low than the sediment covered forearc. In the Mariana arc, two Cretaceous seamounts have been accreted to the Eocene arc. The northern seamount is most likely a large block, the southern seamount may be a thrust slice. These more recent accretion events have produced modest forearc topographic and gravity lows in comparison with the topographic and gravity lows within the active trench. However, the minimum values of the Mariana forearc gravity lows are modest only by comparison to the Mariana Trench (-216 mgal); their absolute values are more negative than at Gorgona Island (-145 to -146 mgal). We speculate that the forearc gravity lows and seaward trench jumps near Gorgona Island were produced by the accretion of a hotspot island from a strong plate. The Mariana gravity lows and seaward trench jumps (or thrust slices) were the result of breaking a relatively weak plate close to the seamount edifice. These gravity lows resulting from accretion events should be preserved in older accreted terranes.

  13. WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS

    Perets, Hagai B. [Technion-Israel Institute of Technology, Haifa (Israel); Kenyon, Scott J., E-mail: hperets@physics.technion.ac.il [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-02-20

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10{sup -5}-10{sup -3} M {sub Sun }, with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M {sub Sun }. When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  14. WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS

    Perets, Hagai B.; Kenyon, Scott J.

    2013-01-01

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10 –5 -10 –3 M ☉ , with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M ☉ . When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  15. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2012-01-01

    We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  16. THE BIMODALITY OF ACCRETION IN T TAURI STARS AND BROWN DWARFS

    Vorobyov, E. I.; Basu, Shantanu

    2009-01-01

    We present numerical solutions of the collapse of prestellar cores that lead to the formation and evolution of circumstellar disks. The disk evolution is then followed for up to three million years. A variety of models of different initial masses and rotation rates allow us to study disk accretion around brown dwarfs and low-mass T Tauri stars (TTSs), with central object mass M * sun , as well as intermediate- and upper-mass TTSs (0.2 M sun * sun ). Our models include self-gravity and allow for nonaxisymmetric motions. In addition to the self-consistently generated gravitational torques, we introduce an effective turbulent α-viscosity with α = 0.01, which allows us particularly to model accretion in the low-mass regime where disk self-gravity is diminishing. A range of models with observationally motivated values of the initial ratio of rotational-to-gravitational energy yield a correlation between mass accretion rate M-dot and M * that is relatively steep, as observed. Additionally, our modeling reveals evidence for a bimodality in the M-dot - M * correlation, with a steeper slope at lower masses and a shallower slope at intermediate and upper masses, as also implied by observations. Furthermore, we show that the neglect of disk self-gravity leads to a much steeper M-dot - M * relation for intermediate- and upper-mass TTSs. This demonstrates that an accurate treatment of global self-gravity is essential to understanding observations of circumstellar disks.

  17. Hot accreting white dwarfs in the quasi-static approximation

    Iben, I. Jr.

    1982-01-01

    Properties of white dwarfs which are accreting hydrogen-rich matter at rates in the range 1.5 x 10 -9 to 2.5 x 10 -7 M/sub sun/ yr -1 are investigated in several approximations. Steady-burning models, in which matter is processed through nuclear-burning shells as rapidly as it is accreted, provide a framework for understanding the properties of models in which thermal pulses induced by hydrogen burning and helium burning are allowed to occur. In these latter models, the underlying carbon-oxygen core is chosen to be in a cycle-averaged steady state with regard to compressional heating and neutrino losses. Several of these models are evolved in the quasi-static approximation. Combining results obtained in the steady-burning approximation with those obtained in the quasi-static approximation, expressions are obtained for estimating, as functions of accretion rate and white dwarf mass, the thermal pulse recurrence period and the duration of hydrogen-burning phases. The time spent by an accreting model burning hydrogen as a large star of giant dimensions versus time spent burning hydrogen as a hot dwarf is also estimated as a function of model mass and accretion rate. Finally, suggestions for detecting observational counterparts of the theoretical models and suggestions for further theoretical investigations are offered. Subject headings: stars: accretion: stars: interiors: stars: novae: stars: symbiotic: stars: white dwarfs

  18. Synchrotron radiation from spherically accreting black holes

    Ipser, J.R.; Price, R.H.

    1982-01-01

    Spherical accretion onto a Schwartzchild black hole, of gas with frozen-in magnetic field, is studied numerically and analytically for a range of hole masses and accretion rates in which synchrotron emission is the dominant radiative mechanism. At small radii the equipartition of magnetic, kinetic, and gravitational energy is assumed to apply, and the gas is heated by dissipation of infalling magnetic energy, turbulent energy, etc. The models can be classified into three types: (a) synchrotron cooling negligible, (b) synchrotron cooling important but synchrotron self-absorption negligible, (c) synchrotron cooling and self-absorption important. In the first case gas temperatures become very high near the horizon but luminosity efficiencies (luminosity/mass-energy accretion rate) are low. In cases (b) and (c) the gas flow near the horizon is essentially isothermal and luminosity efficiencies are fairly high. The analysis and results for the isothermal cases (b) and (c) are valid only for moderate dissipative heating and synchrotron self-absorption. If self-absorption is very strong or if dissipated energy is comparable to infall energy, Comptonization effects, not included in the analysis, become important

  19. Hyper-Eddington accretion in GRB

    Janiuk, A.; Czerny, B.; Perna, R.; Di Matteo, T.

    2005-01-01

    Popular models of the GRB origin associate this event with a cosmic explosion, birth of a stellar mass black ho le and jet ejection. Due to the shock collisions that happen in the jet, the gamma rays are produced and we detect a burst of duration up to several tens of seconds. This burst duration is determined by the lifetime of the central engine, which may be different in various scenarios. Characteristically, the observed bursts have a bimodal distribution and constitute the two classes: short (t < 2 s) and long bursts. Theoretical models invoke the mergers of two neutron stars or a neutron star with a black hole, or, on the other hand, a massive star explosion (collapsar). In any of these models we have a phase of disc accretion onto a newly born black hole: the di se is formed from the disrupted neutron star or fed by the material fallback from the ejected collapsar envelope. The disc is extremely hot and dense, and the accretion rate is orders of magnitude higher than the Eddington rate. In such physical conditions the main cooling mechanism is neutrino emission, and one of possible ways of energy extraction from the accretion disc is the neutrino-antineutrino annihilation

  20. Thermal Comptonization in standard accretion disks

    Maraschi, L.; Molendi, S.

    1990-01-01

    The standard model of an accretion disk is considered. The temperature in the inner region is computed assuming that the radiated power derives from Comptonized photons, produced in a homogeneous single-temperature plasma, supported by radiation pressure. The photon production mechanisms are purely thermal, including ion-electron bremsstrahlung, bound-free and bound-bound processes, and e-e bremsstrahlung. Pair production is not included, which limits the validity of the treatment to kT less than 60 keV. Three different approximations for the effects of Comptonization on the energy loss are used, yielding temperatures which agree within 50 percent. The maximum temperature is very sensitive to the accretion rate and viscosity parameters, ranging, for a 10 to the 8th solar mass black hole, between 0.1 and 50 keV for m between 0.1 and 1 and alpha between 0.1 and 1 and, for a 10-solar-mass black hole, between 0.6 and 60 keV for m between 0.1 and 0.9 and alpha between 0.1 and 0.5. For high viscosity and accretion rates, the emission spectra show a flat component following a peak corresponding to the temperature of the innermost optically thick annulus. 28 refs

  1. Simulation of the Universal-Time Diurnal Variation of the Global Electric Circuit Charging Rate

    Mackerras, D.; Darvenzia, M.; Orville, R. E.; Williams, E. R.; Goodman, S. J.

    1999-01-01

    A global lightning model that includes diurnal and annual lightning variation, and total flash density versus latitude for each major land and ocean, has been used as the basis for simulating the global electric circuit charging rate. A particular objective has been to reconcile the difference in amplitude ratios [AR=(max-min)/mean] between global lightning diurnal variation (AR approx. = 0.8) and the diurnal variation of typical atmospheric potential gradient curves (AR approx. = 0.35). A constraint on the simulation is that the annual mean charging current should be about 1000 A. The global lightning model shows that negative ground flashes can contribute, at most, about 10-15% of the required current. For the purpose of the charging rate simulation, it was assumed that each ground flash contributes 5 C to the charging process. It was necessary to assume that all electrified clouds contribute to charging by means other than lightning, that the total flash rate can serve as an indirect indicator of the rate of charge transfer, and that oceanic electrified clouds contribute to charging even though they are relatively inefficient in producing lightning. It was also found necessary to add a diurnally invariant charging current component. By trial and error it was found that charging rate diurnal variation curves in Universal time (UT) could be produced with amplitude ratios and general shapes similar to those of the potential gradient diurnal variation curves measured over ocean and arctic regions during voyages of the Carnegie Institute research vessels.

  2. Fate of accreting white dwarfs: Type I supernovae vs collapse

    Nomoto, Ken'ichi.

    1986-01-01

    The final fate of accreting C + O white dwarfs is either thermonuclear explosion or collapse, if the white dwarf mass grows to the Chandrasekhar mass. We discuss how the fate depends on the initial mass, age, composition of the white dwarf and the mass accretion rate. Relatively fast accretion leads to a carbon deflagration at low central density that gives rise to a Type Ia supernova. Slower accretion induces a helium detonation that could be observed as a Type Ib supernova. If the initial mass of the C + O white dwarf is larger than 1.2 Msub solar, a carbon deflagration starts at high central density and induces a collapse of the white dwarf to form a neutron star. We examine the critical condition for which a carbon deflagration leads to collapse, not explosion. For the case of explosion, we discuss to what extent the nucleosynthesis models are consistent with spectra of Type Ia and Ib supernovae. 61 refs., 18 figs

  3. Validity Evidence for the Interpretation and Use of Essential Elements of Communication Global Rating Scale Scores

    Schneider, Nancy Rhoda

    2015-01-01

    Purpose. Clinical communication influences health outcomes, so medical schools are charged to prepare future physicians with the skills they need to interact effectively with patients. Communication leaders at The University of New Mexico School of Medicine (UNMSOM) developed The Essential Elements of Communication-Global Rating Scale (EEC-GRS) to…

  4. Domain-Specific Ratings of Importance and Global Self-Worth of Children with Visual Impairments

    Shapiro, Deborah R.; Moffett, Aaron; Lieberman, Lauren; Dummer, Gail M.

    2008-01-01

    This study examined perceived competence; ratings of importance of physical appearance, athletic competence, and social acceptance; discrepancy scores; and global self-worth of 43 children with visual impairments. The findings revealed that the children discounted the importance of physical appearance, athletic competence, and social acceptance…

  5. Modeling exchange rate volatility in CEEC countries: Impact of global financial and European sovereign debt crisis

    Miletić Siniša

    2015-01-01

    Full Text Available The aim of this study is to envisage the impact of global financial (GFC and European sovereign debt crisis (ESDC on foreign exchange markets of emerg- ing countries in Central and Eastern Europe CEEC countries (Czech Republic, Hungary, Romania, poland and Serbia. The daily returns of exchange rates on Czech Republic koruna (CZK, Hungarian forint (HuF, Romanian lea (RoL, polish zloty (pLZ and Serbian dinar (RSD, all against the Euro are analyzed during the period from 3rd January 2000 to15th April 2013, in respect. To examine the impact of global financial crisis and European sovereign debt crisis, dummy variables were adopted. overall results imply that global financial crisis has no impact on exchange rate returns in selected CEEC countries, while European sovereign debt crisis inf luencing in depreciation of polish zloty by 8% and Roma- nian lea by 6%. obtained results by our calculation, imply that global financial crisis increased enhanced volatility on exchange rate returns of Czech koruna, Romanian lea and polish zloty. Moreover, results of empirical analysis imply that this impact has the strongest inf luence in volatility on exchange rate returns of polish zloty.

  6. No Evidence that Infection Alters Global Recombination Rate in House Mice.

    Beth L Dumont

    Full Text Available Recombination rate is a complex trait, with genetic and environmental factors shaping observed patterns of variation. Although recent studies have begun to unravel the genetic basis of recombination rate differences between organisms, less attention has focused on the environmental determinants of crossover rates. Here, we test the effect of one ubiquitous environmental pressure-bacterial infection-on global recombination frequency in mammals. We applied MLH1 mapping to assay global crossover rates in male mice infected with the pathogenic bacterium Borrelia burgdorferi, the causative agent of Lyme Disease, and uninfected control animals. Despite ample statistical power to identify biologically relevant differences between infected and uninfected animals, we find no evidence for a global recombination rate response to bacterial infection. Moreover, broad-scale patterns of crossover distribution, including the number of achiasmate bivalents, are not affected by infection status. Although pathogen exposure can plastically increase recombination in some species, our findings suggest that recombination rates in house mice may be resilient to at least some forms of infection stress. This negative result motivates future experiments with alternative house mouse pathogens to evaluate the generality of this conclusion.

  7. Marine denitrification rates determined from a global 3-D inverse model

    T. DeVries

    2013-04-01

    Full Text Available A major impediment to understanding long-term changes in the marine nitrogen (N cycle is the persistent uncertainty about the rates, distribution, and sensitivity of its largest fluxes in the modern ocean. We use a global ocean circulation model to obtain the first 3-D estimate of marine denitrification rates that is maximally consistent with available observations of nitrate deficits and the nitrogen isotopic ratio of oceanic nitrate. We find a global rate of marine denitrification in suboxic waters and sediments of 120–240 Tg N yr−1, which is lower than many other recent estimates. The difference stems from the ability to represent the 3-D spatial structure of suboxic zones, where denitrification rates of 50–77 Tg N yr−1 result in up to 50% depletion of nitrate. This depletion reduces the effect of local isotopic enrichment on the rest of the ocean, allowing the N isotope ratio of oceanic nitrate to be achieved with a sedimentary denitrification rate about 1.3–2.3 times that of suboxic zones. This balance of N losses between sediments and suboxic zones is shown to obey a simple relationship between isotope fractionation and the degree of nitrate consumption in the core of the suboxic zones. The global denitrification rates derived here suggest that the marine nitrogen budget is likely close to balanced.

  8. A global reference for caesarean section rates (C-Model): a multicountry cross-sectional study.

    Souza, J P; Betran, A P; Dumont, A; de Mucio, B; Gibbs Pickens, C M; Deneux-Tharaux, C; Ortiz-Panozo, E; Sullivan, E; Ota, E; Togoobaatar, G; Carroli, G; Knight, H; Zhang, J; Cecatti, J G; Vogel, J P; Jayaratne, K; Leal, M C; Gissler, M; Morisaki, N; Lack, N; Oladapo, O T; Tunçalp, Ö; Lumbiganon, P; Mori, R; Quintana, S; Costa Passos, A D; Marcolin, A C; Zongo, A; Blondel, B; Hernández, B; Hogue, C J; Prunet, C; Landman, C; Ochir, C; Cuesta, C; Pileggi-Castro, C; Walker, D; Alves, D; Abalos, E; Moises, Ecd; Vieira, E M; Duarte, G; Perdona, G; Gurol-Urganci, I; Takahiko, K; Moscovici, L; Campodonico, L; Oliveira-Ciabati, L; Laopaiboon, M; Danansuriya, M; Nakamura-Pereira, M; Costa, M L; Torloni, M R; Kramer, M R; Borges, P; Olkhanud, P B; Pérez-Cuevas, R; Agampodi, S B; Mittal, S; Serruya, S; Bataglia, V; Li, Z; Temmerman, M; Gülmezoglu, A M

    2016-02-01

    To generate a global reference for caesarean section (CS) rates at health facilities. Cross-sectional study. Health facilities from 43 countries. Thirty eight thousand three hundred and twenty-four women giving birth from 22 countries for model building and 10,045,875 women giving birth from 43 countries for model testing. We hypothesised that mathematical models could determine the relationship between clinical-obstetric characteristics and CS. These models generated probabilities of CS that could be compared with the observed CS rates. We devised a three-step approach to generate the global benchmark of CS rates at health facilities: creation of a multi-country reference population, building mathematical models, and testing these models. Area under the ROC curves, diagnostic odds ratio, expected CS rate, observed CS rate. According to the different versions of the model, areas under the ROC curves suggested a good discriminatory capacity of C-Model, with summary estimates ranging from 0.832 to 0.844. The C-Model was able to generate expected CS rates adjusted for the case-mix of the obstetric population. We have also prepared an e-calculator to facilitate use of C-Model (www.who.int/reproductivehealth/publications/maternal_perinatal_health/c-model/en/). This article describes the development of a global reference for CS rates. Based on maternal characteristics, this tool was able to generate an individualised expected CS rate for health facilities or groups of health facilities. With C-Model, obstetric teams, health system managers, health facilities, health insurance companies, and governments can produce a customised reference CS rate for assessing use (and overuse) of CS. The C-Model provides a customized benchmark for caesarean section rates in health facilities and systems. © 2015 World Health Organization; licensed by John Wiley & Sons Ltd on behalf of Royal College of Obstetricians and Gynaecologists.

  9. 210Pb and 137Cs as chronometers for salt marsh accretion in the Venice Lagoon - links to flooding frequency and climate change

    Bellucci, L.G.; Frignani, M.; Cochran, J.K.; Albertazzi, S.; Zaggia, L.; Cecconi, G.; Hopkins, H.

    2007-01-01

    Five salt marsh sediment cores from different parts of the Venice Lagoon were studied to determine their depositional history and its relationship with the environmental changes occurred during the past ∼100 years. X-radiographs of the cores show no disturbance related to particle mixing. Accretion rates were calculated using a constant flux model applied to excess 210 Pb distributions in the cores. The record of 137 Cs fluxes to the sites, determined from 137 Cs profiles and the 210 Pb chronologies, shows inputs from the global fallout of 137 Cs in the late 1950s to early 1960s and the Chernobyl accident in 1986. Average accretion rates in the cores are comparable to the long-term average rate of mean sea level rise in the Venice Lagoon (∼0.25 cm y -1 ) except for a core collected in a marsh presumably affected by inputs from the Dese River. Short-term variations in accretion rate are correlated with the cumulative frequency of flooding, as determined by records of Acqua Alta, in four of the five cores, suggesting that variations in the phenomena causing flooding (such as wind patterns, storm frequency and NAO) are short-term driving forces for variations in marsh accretion rate

  10. 210Pb and 137Cs as chronometers for salt marsh accretion in the Venice Lagoon - links to flooding frequency and climate change.

    Bellucci, L G; Frignani, M; Cochran, J K; Albertazzi, S; Zaggia, L; Cecconi, G; Hopkins, H

    2007-01-01

    Five salt marsh sediment cores from different parts of the Venice Lagoon were studied to determine their depositional history and its relationship with the environmental changes occurred during the past approximately 100 years. X-radiographs of the cores show no disturbance related to particle mixing. Accretion rates were calculated using a constant flux model applied to excess (210)Pb distributions in the cores. The record of (137)Cs fluxes to the sites, determined from (137)Cs profiles and the (210)Pb chronologies, shows inputs from the global fallout of (137)Cs in the late 1950s to early 1960s and the Chernobyl accident in 1986. Average accretion rates in the cores are comparable to the long-term average rate of mean sea level rise in the Venice Lagoon ( approximately 0.25 cm y(-1)) except for a core collected in a marsh presumably affected by inputs from the Dese River. Short-term variations in accretion rate are correlated with the cumulative frequency of flooding, as determined by records of Acqua Alta, in four of the five cores, suggesting that variations in the phenomena causing flooding (such as wind patterns, storm frequency and NAO) are short-term driving forces for variations in marsh accretion rate.

  11. {sup 210}Pb and {sup 137}Cs as chronometers for salt marsh accretion in the Venice Lagoon - links to flooding frequency and climate change

    Bellucci, L.G. [Istituto di Scienze Marine - Sede di Bologna - Geologia Marina, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna (Italy)], E-mail: luca.bellucci@ismar.cnr.it; Frignani, M. [Istituto di Scienze Marine - Sede di Bologna - Geologia Marina, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna (Italy); Cochran, J.K. [Marine Sciences Research Center, Stony Brook University, Stony Brook, New York 11794-5000, NY (United States); Albertazzi, S. [Istituto di Scienze Marine - Sede di Bologna - Geologia Marina, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna (Italy); Zaggia, L. [Istituto di Scienze Marine, Consiglio Nazionale delle Ricerche - S. Polo 1364, 30125 Venezia (Italy); Cecconi, G. [Consorzio Venezia Nuova - S. Croce 505, 30135 Venezia (Italy); Hopkins, H. [Marine Sciences Research Center, Stony Brook University, Stony Brook, New York 11794-5000, NY (United States)

    2007-10-15

    Five salt marsh sediment cores from different parts of the Venice Lagoon were studied to determine their depositional history and its relationship with the environmental changes occurred during the past {approx}100 years. X-radiographs of the cores show no disturbance related to particle mixing. Accretion rates were calculated using a constant flux model applied to excess {sup 210}Pb distributions in the cores. The record of {sup 137}Cs fluxes to the sites, determined from {sup 137}Cs profiles and the {sup 210}Pb chronologies, shows inputs from the global fallout of {sup 137}Cs in the late 1950s to early 1960s and the Chernobyl accident in 1986. Average accretion rates in the cores are comparable to the long-term average rate of mean sea level rise in the Venice Lagoon ({approx}0.25 cm y{sup -1}) except for a core collected in a marsh presumably affected by inputs from the Dese River. Short-term variations in accretion rate are correlated with the cumulative frequency of flooding, as determined by records of Acqua Alta, in four of the five cores, suggesting that variations in the phenomena causing flooding (such as wind patterns, storm frequency and NAO) are short-term driving forces for variations in marsh accretion rate.

  12. FILAMENTARY ACCRETION FLOWS IN THE EMBEDDED SERPENS SOUTH PROTOCLUSTER

    Kirk, Helen; Myers, Philip C.; Bourke, Tyler L. [Radio and Geoastronomy Division, Harvard Smithsonian Center for Astrophysics, MS-42, Cambridge, MA, 02138 (United States); Gutermuth, Robert A.; Wilson, Grant W. [Department of Astronomy, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Hedden, Abigail, E-mail: kirkh@mcmaster.ca [Army Research Labs, Adelphi, MD 20783 (United States)

    2013-04-01

    One puzzle in understanding how stars form in clusters is the source of mass-is all of the mass in place before the first stars are born, or is there an extended period when the cluster accretes material which can continuously fuel the star formation process? We use a multi-line spectral survey of the southern filament associated with the Serpens South embedded cluster-forming region in order to determine if mass is accreting from the filament onto the cluster, and whether the accretion rate is significant. Our analysis suggests that material is flowing along the filament's long axis at a rate of {approx}30 M{sub Sun} Myr{sup -1} (inferred from the N{sub 2}H{sup +} velocity gradient along the filament), and radially contracting onto the filament at {approx}130 M{sub Sun} Myr{sup -1} (inferred from HNC self-absorption). These accretion rates are sufficient to supply mass to the central cluster at a similar rate to the current star formation rate in the cluster. Filamentary accretion flows may therefore be very important in the ongoing evolution of this cluster.

  13. FILAMENTARY ACCRETION FLOWS IN THE EMBEDDED SERPENS SOUTH PROTOCLUSTER

    Kirk, Helen; Myers, Philip C.; Bourke, Tyler L.; Gutermuth, Robert A.; Wilson, Grant W.; Hedden, Abigail

    2013-01-01

    One puzzle in understanding how stars form in clusters is the source of mass—is all of the mass in place before the first stars are born, or is there an extended period when the cluster accretes material which can continuously fuel the star formation process? We use a multi-line spectral survey of the southern filament associated with the Serpens South embedded cluster-forming region in order to determine if mass is accreting from the filament onto the cluster, and whether the accretion rate is significant. Our analysis suggests that material is flowing along the filament's long axis at a rate of ∼30 M ☉ Myr –1 (inferred from the N 2 H + velocity gradient along the filament), and radially contracting onto the filament at ∼130 M ☉ Myr –1 (inferred from HNC self-absorption). These accretion rates are sufficient to supply mass to the central cluster at a similar rate to the current star formation rate in the cluster. Filamentary accretion flows may therefore be very important in the ongoing evolution of this cluster.

  14. Credit Rating As a Factor of Stability in the Global Capital Market

    Ismail Musabegović

    2014-12-01

    Full Text Available Credit rating has an outstanding importance on the capital market. Opinions and assessments of rating agencies help us to improve growth, stability and efficiency of international and domestic markets, which now include over 80 trillion dollars of rated bonds and other securities with the fixed income. The contribution of the credit agencies to the market stability and efficiency is reflected in their ability to provide accurate, clear and reliable assessments of the solvency of participants on the financial markets. An adequate and proper risk assessment of securities contributes to stability. In order to achieve a given goal and to satisfy its purpose, the assessments should be based on a fundamental understanding of the key components of the credit risk. Also, in order to ensure a reliable framework for making investment decisions, the rating agencies are obliged to offer and to provide a wide range of securities, which are based on a global comparability of rating symbols and onthe support given by the credit rating assignment committee and by the other relevant decision making bodies. Markets for structured products could not have developed without the quality assurance provided by CRAs. When analyzing a securitization program CRAs examine legal and structural protections provided to investors. Since the globalization is an inevitable phenomenon in today’s world the importance of the credit rating becomes more noticeable. On the other hand, the rating agencies have an obligation to reanalyze their decision making models in order to contribute tothe reliability of the evaluation.

  15. THE EFFECT OF TRANSIENT ACCRETION ON THE SPIN-UP OF MILLISECOND PULSARS

    Bhattacharyya, Sudip; Chakrabarty, Deepto, E-mail: sudip@tifr.res.in [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400005 (India)

    2017-01-20

    A millisecond pulsar is a neutron star that has been substantially spun up by accretion from a binary companion. A previously unrecognized factor governing the spin evolution of such pulsars is the crucial effect of nonsteady or transient accretion. We numerically compute the evolution of accreting neutron stars through a series of outburst and quiescent phases, considering the drastic variation of the accretion rate and the standard disk–magnetosphere interaction. We find that, for the same long-term average accretion rate, X-ray transients can spin up pulsars to rates several times higher than can persistent accretors, even when the spin-down due to electromagnetic radiation during quiescence is included. We also compute an analytical expression for the equilibrium spin frequency in transients, by taking spin equilibrium to mean that no net angular momentum is transferred to the neutron star in each outburst cycle. We find that the equilibrium spin rate for transients, which depends on the peak accretion rate during outbursts, can be much higher than that for persistent sources. This explains our numerical finding. This finding implies that any meaningful study of neutron star spin and magnetic field distributions requires the inclusion of the transient accretion effect, since most accreting neutron star sources are transients. Our finding also implies the existence of a submillisecond pulsar population, which is not observed. This may point to the need for a competing spin-down mechanism for the fastest-rotating accreting pulsars, such as gravitational radiation.

  16. The Physics of Wind-Fed Accretion

    Mauche, Christopher W.; Liedahl, Duane A.; Akiyama, Shizuka; Plewa, Tomasz

    2008-01-01

    We provide a brief review of the physical processes behind the radiative driving of the winds of OB stars and the Bondi-Hoyle-Lyttleton capture and accretion of a fraction of the stellar wind by a compact object, typically a neutron star, in detached high-mass X-ray binaries (HMXBs). In addition, we describe a program to develop global models of the radiatively-driven photoionized winds and accretion flows of HMXBs, with particular attention to the prototypical system Vela X-l. The models combine XSTAR photoionization calculations, HULLAC emission models appropriate to X-ray photoionized plasmas, improved models of the radiative driving of photoionized winds, FLASH time-dependent adaptive-mesh hydrodynamics calculations, and Monte Carlo radiation transport. We present two- and three-dimensional maps of the density, temperature, velocity, ionization parameter, and emissivity distributions of representative X-ray emission lines, as well as synthetic global Monte Carlo X-ray spectra. Such models help to better constrain the properties of the winds of HMXBs, which bear on such fundamental questions as the long-term evolution of these binaries and the chemical enrichment of the interstellar medium.

  17. Hot accretion disks with electron-positron pairs

    White, T.R.; Lightman, A.P.

    1989-01-01

    The hot thermal accretion disks of the 1970s are studied and consideration is given to the effects of electron-positron pairs, which were originally neglected. It is found that disks cooled by internally produced photons have a critical accretion rate above which equilibrium is not possible in a radial annulus centered around r = 10 GM/c-squared, where M is the mass of the central object. This confirms and extends previous work by Kusunose and Takahara. Above the critical rate, pairs are created more rapidly than they can be destroyed. Below the critical rate, there are two solutions to the disk structure, one with a high pair density and one with a low pair density. Depending on the strength of the viscosity, the critical accretion rate corresponds to a critical luminosity of about 3-10 percent of the Eddington limit. 32 refs

  18. Evidence for large temperature fluctuations in quasar accretion disks from spectral variability

    Ruan, John J.; Anderson, Scott F.; Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Dexter, Jason, E-mail: jruan@astro.washington.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2014-03-10

    The well-known bluer-when-brighter trend observed in quasar variability is a signature of the complex processes in the accretion disk and can be a probe of the quasar variability mechanism. Using a sample of 604 variable quasars with repeat spectra in the Sloan Digital Sky Survey-I/II (SDSS), we construct difference spectra to investigate the physical causes of this bluer-when-brighter trend. The continuum of our composite difference spectrum is well fit by a power law, with a spectral index in excellent agreement with previous results. We measure the spectral variability relative to the underlying spectra of the quasars, which is independent of any extinction, and compare to model predictions. We show that our SDSS spectral variability results cannot be produced by global accretion rate fluctuations in a thin disk alone. However, we find that a simple model of an inhomogeneous disk with localized temperature fluctuations will produce power-law spectral variability over optical wavelengths. We show that the inhomogeneous disk will provide good fits to our observed spectral variability if the disk has large temperature fluctuations in many independently varying zones, in excellent agreement with independent constraints from quasar microlensing disk sizes, their strong UV spectral continuum, and single-band variability amplitudes. Our results provide an independent constraint on quasar variability models and add to the mounting evidence that quasar accretion disks have large localized temperature fluctuations.

  19. Phylogeographic variation in recombination rates within a global clone of Methicillin-Resistant Staphylococcus aureus (MRSA)

    Castillo-Ramirez, Santiago; Corander, Jukka; Marttinen, Pekka

    2012-01-01

    by employing a recently developed Bayesian approach, BRATNextGen, for detecting recombination on an expanded NGS dataset of the globally disseminated methicillin-resistant Staphylococcus aureus (MRSA) clone ST239. RESULTS: The data confirm strong geographical clustering at continental, national and city scales...... that the rapid global dissemination of a single pathogenic bacterial clone results in local variation in measured recombination rates. Possible explanatory variables include the size and time since emergence of each defined sub-population (as determined by the sampling frame), variation in transmission dynamics...

  20. Estimate of the global-scale joule heating rates in the thermosphere due to time mean currents

    Roble, R.G.; Matsushita, S.

    1975-01-01

    An estimate of the global-scale joule heating rates in the thermosphere is made based on derived global equivalent overhead electric current systems in the dynamo region during geomagnetically quiet and disturbed periods. The equivalent total electric field distribution is calculated from Ohm's law. The global-scale joule heating rates are calculated for various monthly average periods in 1965. The calculated joule heating rates maximize at high latitudes in the early evening and postmidnight sectors. During geomagnetically quiet times the daytime joule heating rates are considerably lower than heating by solar EUV radiation. However, during geomagnetically disturbed periods the estimated joule heating rates increase by an order of magnitude and can locally exceed the solar EUV heating rates. The results show that joule heating is an important and at times the dominant energy source at high latitudes. However, the global mean joule heating rates calculated near solar minimum are generally small compared to the global mean solar EUV heating rates. (auth)

  1. TEMPERATURE STRUCTURE OF PROTOPLANETARY DISKS UNDERGOING LAYERED ACCRETION

    Lesniak, M. V.; Desch, S. J.

    2011-01-01

    We calculate the temperature structures of protoplanetary disks (PPDs) around T Tauri stars heated by both incident starlight and viscous dissipation. We present a new algorithm for calculating the temperatures in disks in hydrostatic and radiative equilibrium, based on Rybicki's method for iteratively calculating the vertical temperature structure within an annulus. At each iteration, the method solves for the temperature at all locations simultaneously, and converges rapidly even at high (>>10 4 ) optical depth. The method retains the full frequency dependence of the radiation field. We use this algorithm to study for the first time disks evolving via the magnetorotational instability. Because PPD midplanes are weakly ionized, this instability operates preferentially in their surface layers, and disks will undergo layered accretion. We find that the midplane temperatures T mid are strongly affected by the column density Σ a of the active layers, even for fixed mass accretion rate M-dot . Models assuming uniform accretion predict midplane temperatures in the terrestrial planet forming region several x 10 2 K higher than our layered accretion models do. For M-dot -7 M sun yr -1 and the column densities Σ a -2 associated with layered accretion, disk temperatures are indistinguishable from those of a passively heated disk. We find emergent spectra are insensitive to Σ a , making it difficult to observationally identify disks undergoing layered versus uniform accretion.

  2. Hydrodynamic simulations of accretion disks in cataclysmic variables

    Hirose, Masahito; Osaki, Yoji

    1990-01-01

    The tidal effects of secondary stars on accretion disks in cataclysmic variables are studied by two-dimensional hydrodynamical simulations. The time evolution of an accretion disk under a constant mass supply rate from the secondary is followed until it reaches a quasi-steady state. We have examined various cases of different mass ratios of binary systems. It is found that the accretion disk settles into a steady state of an elongated disk fixed in the rotating frame of the binary in a binary system with comparable masses of component stars. On the other hand, in the case of a low-mass secondary, the accretion disk develops a non-axisymmetric (eccentric) structure and finally settles into a periodically oscillating state in which a non-axisymmetric eccentric disk rotates in the opposite direction to the orbital motion of the binary in the rotating frame of the binary. The period of oscillation is a few percent longer than the orbital period of the binary, and it offers a natural explanation for the ''superhump'' periodicity of SU UMa stars. Our results thus confirm basically those of Whitehurst (1988, AAA 45.064.032) who discovered the tidal instability of an accretion disk in the case of a low-mass secondary. We then discuss the cause of the tidal instability. It is shown that the tidal instability of accretion disks is caused by a parametric resonance between particle orbits and an orbiting secondary star with a 1:3 period ratio. (author)

  3. Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms

    Nomoto, K.

    1982-01-01

    The evolution of carbon-oxygen white dwarfs accreting helium in binary systems has been investigated from the onset of accretion up to the point at which a thermonuclear explosion occurs as a plausible explosion model for a Type I supernova. Although the accreted material has been assumed to be helium, our results should also be applicable to the more general case of accretion of hydrogen-rich material, since hydrogen shell burning leads to the development of a helium zone. Several cases with different accretion rates of helium and different initial masses of the white dwarf have been studied. The relationship between the conditions in the binary system and the triggering mechanism for the supernova explosion is discussed, especially for the cases with relatively slow accretion rate. It is found that the growth of a helium zone on the carbon-oxygen core leads to a supernova explosion which is triggered either by the off-center helium detonation for slow and intermediate accretion rates, or by the carbon deflagration for slow and rapid accretion rates. Both helium detonation and carbon deflagration are possible for the case for the slow accretion since, in this case, the initial mass of the white dwarf is an important parameter for determining the mode of ignition. Finally, various modes of building up the helium zone on the white dwarf, namely, direct transfer of helium from the companion star and the various types and strength of the hydrogen shell flashes are discussed in some detail

  4. Estimates of global HIV/AIDS mortality, prevalence and incidence rates, and their association with the Human Development Index

    Kamyar Mansori; Erfan Ayubi; Fatemeh Khosravi Shadmani; Shiva Mansouri Hanis; Somayeh Khazaei; Mohadeseh Sani; Yousef Moradi; Salman Khazaei; Abolfazl Mohammadbeigi

    2017-01-01

    Background: HIV/AIDS is one of greatest global public health concerns today due to the high incidence, prevalence and mortality rates. The aim of this research was investigate and estimate the global HIV/AIDS mortality, prevalence and incidence rates, and explore their associations with the Human Development Index. Methods: The global age-standardized rates of mortality, prevalence and incidence of HIV/AIDS were obtained from the UNAIDS for different countries in 2015. The human developm...

  5. Accretion onto a moving Reissner-Nordström black hole

    Jiao, Lei; Yang, Rongjia, E-mail: jiaoleizhijia@163.com, E-mail: yangrongjia@tsinghua.org.cn [College of Physical Science and Technology, Hebei University, No. 180, Wusi east road, Baoding 071002 (China)

    2017-09-01

    We obtain an analytic solution for accretion of a gaseous medium with a adiabatic equation of state ( P =ρ) onto a Reissner-Nordström black hole which moves at a constant velocity through the medium. We obtain the specific expression for each component of the velocity and present the mass accretion rate which depends on the mass and the electric charge. The result we obtained may be helpful to understand the physical mechanism of accretion onto a moving black hole.

  6. Evolution of accretion disks in tidal disruption events

    Shen, Rong-Feng [Current address: Racah Institute of Physics, Hebrew University of Jerusalem, Israel. (Israel); Matzner, Christopher D., E-mail: rf.shen@mail.huji.ac.il, E-mail: matzner@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, M5S 3H4 (Canada)

    2014-04-01

    During a stellar tidal disruption event (TDE), an accretion disk forms as stellar debris returns to the disruption site and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. A spreading disk is a source of matter for re-accretion at rates that may exceed the later stellar fallback rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history or, at longer wavelengths, by its own emission. We model the evolution of TDE disk size and accretion rate by accounting for the time-dependent fallback rate, for the influence of wind losses in the early advective stage, and for the possibility of thermal instability for accretion rates intermediate between the advection-dominated and gas-pressure-dominated states. The model provides a dynamic basis for modeling TDE light curves. All or part of a young TDE disk will precess as a solid body because of the Lense-Thirring effect, and precession may manifest itself as a quasi-periodic modulation of the light curve. The precession period increases with time. Applying our results to the jetted TDE candidate Swift J1644+57, whose X-ray light curve shows numerous quasi-periodic dips, we argue that the data best fit a scenario in which a main-sequence star was fully disrupted by an intermediate mass black hole on an orbit significantly inclined from the black hole equator, with the apparent jet shutoff at t = 500 days corresponding to a disk transition from the advective state to the gas-pressure-dominated state.

  7. Organic carbon burial rates in mangrove sediments: Strengthening the global budget

    Breithaupt, Joshua L.; Smoak, Joseph M.; Smith, Thomas J., III; Sanders, Christian J.; Hoare, Armando

    2012-09-01

    Mangrove wetlands exist in the transition zone between terrestrial and marine environments and as such were historically overlooked in discussions of terrestrial and marine carbon cycling. In recent decades, mangroves have increasingly been credited with producing and burying large quantities of organic carbon (OC). The amount of available data regarding OC burial in mangrove soils has more than doubled since the last primary literature review (2003). This includes data from some of the largest, most developed mangrove forests in the world, providing an opportunity to strengthen the global estimate. First-time representation is now included for mangroves in Brazil, Colombia, Malaysia, Indonesia, China, Japan, Vietnam, and Thailand, along with additional data from Mexico and the United States. Our objective is to recalculate the centennial-scale burial rate of OC at both the local and global scales. Quantification of this rate enables better understanding of the current carbon sink capacity of mangroves as well as helps to quantify and/or validate the other aspects of the mangrove carbon budget such as import, export, and remineralization. Statistical analysis of the data supports use of the geometric mean as the most reliable central tendency measurement. Our estimate is that mangrove systems bury 163 (+40; -31) g OC m-2 yr-1 (95% C.I.). Globally, the 95% confidence interval for the annual burial rate is 26.1 (+6.3; -5.1) Tg OC. This equates to a burial fraction that is 42% larger than that of the most recent mangrove carbon budget (2008), and represents 10-15% of estimated annual mangrove production. This global rate supports previous conclusions that, on a centennial time scale, 8-15% of all OC burial in marine settings occurs in mangrove systems.

  8. The adaptation rate of terrestrial ecosystems as a critical factor in global climate dynamics

    Fuessler, J S; Gassmann, F [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    A conceptual climate model describing regional two-way atmosphere-vegetation interaction has been extended by a simple qualitative scheme of ecosystem adaptation to drought stress. The results of this explorative study indicate that the role of terrestrial vegetation under different forcing scenarios depends crucially on the rate of the ecosystems adaptation to drought stress. The faster the adaptation of important ecosystems such as forests the better global climate is protected from abrupt climate changes. (author) 1 fig., 3 refs.

  9. Organic carbon burial rates in mangrove sediments: strengthening the global budget

    Breithaupt, J.; Smoak, Joseph M.; Smith, Thomas J.; Sanders, Christian J.; Hoare, Armando

    2012-01-01

    Mangrove wetlands exist in the transition zone between terrestrial and marine environments and as such were historically overlooked in discussions of terrestrial and marine carbon cycling. In recent decades, mangroves have increasingly been credited with producing and burying large quantities of organic carbon (OC). The amount of available data regarding OC burial in mangrove soils has more than doubled since the last primary literature review (2003). This includes data from some of the largest, most developed mangrove forests in the world, providing an opportunity to strengthen the global estimate. First-time representation is now included for mangroves in Brazil, Colombia, Malaysia, Indonesia, China, Japan, Vietnam, and Thailand, along with additional data from Mexico and the United States. Our objective is to recalculate the centennial-scale burial rate of OC at both the local and global scales. Quantification of this rate enables better understanding of the current carbon sink capacity of mangroves as well as helps to quantify and/or validate the other aspects of the mangrove carbon budget such as import, export, and remineralization. Statistical analysis of the data supports use of the geometric mean as the most reliable central tendency measurement. Our estimate is that mangrove systems bury 163 (+40; -31) g OC m-2 yr-1 (95% C.I.). Globally, the 95% confidence interval for the annual burial rate is 26.1 (+6.3; -5.1) Tg OC. This equates to a burial fraction that is 42% larger than that of the most recent mangrove carbon budget (2008), and represents 10–15% of estimated annual mangrove production. This global rate supports previous conclusions that, on a centennial time scale, 8–15% of all OC burial in marine settings occurs in mangrove systems.

  10. Intergenic DNA sequences from the human X chromosome reveal high rates of global gene flow

    Wall Jeffrey D

    2008-11-01

    Full Text Available Abstract Background Despite intensive efforts devoted to collecting human polymorphism data, little is known about the role of gene flow in the ancestry of human populations. This is partly because most analyses have applied one of two simple models of population structure, the island model or the splitting model, which make unrealistic biological assumptions. Results Here, we analyze 98-kb of DNA sequence from 20 independently evolving intergenic regions on the X chromosome in a sample of 90 humans from six globally diverse populations. We employ an isolation-with-migration (IM model, which assumes that populations split and subsequently exchange migrants, to independently estimate effective population sizes and migration rates. While the maximum effective size of modern humans is estimated at ~10,000, individual populations vary substantially in size, with African populations tending to be larger (2,300–9,000 than non-African populations (300–3,300. We estimate mean rates of bidirectional gene flow at 4.8 × 10-4/generation. Bidirectional migration rates are ~5-fold higher among non-African populations (1.5 × 10-3 than among African populations (2.7 × 10-4. Interestingly, because effective sizes and migration rates are inversely related in African and non-African populations, population migration rates are similar within Africa and Eurasia (e.g., global mean Nm = 2.4. Conclusion We conclude that gene flow has played an important role in structuring global human populations and that migration rates should be incorporated as critical parameters in models of human demography.

  11. Parents' global rating of mental health correlates with SF-36 scores and health services satisfaction.

    Mah, Jean K; Tough, Suzanne; Fung, Thomas; Douglas-England, Kathleen; Verhoef, Marja

    2006-10-01

    Patient satisfaction surveys are often used to measure quality of care. However, patient satisfaction may not be a reliable indicator of service quality because satisfaction can be influenced by clients' characteristics such as their health status. Parents of children attending a pediatric neurology clinic completed the Short Form Health Survey (SF-36) and global ratings of their physical and mental health. They also completed the Client Satisfaction Questionnaire (CSQ), the Measure of Processes of Care (MPOC), and the Family-Centered Care Survey (FCCS). 104 parents completed the survey. The correlation between the global rating of physical or mental health and their corresponding SF-36 scores was high. The majority (88%) of parents were satisfied, with a median CSQ score of 28 (IQR, 24 to 31) and a FCCS score of 4.7 (IQR, 4.2 to 4.9). Logistic regression identified parents' mental health as a significant predictor of client satisfaction (OR, 1.07; 95% CI, 1.01 to 1.14). Given the positive association between parents' mental health and satisfaction with care, it is important to consider mental status as a covariate in interpreting satisfaction surveys. Parents' global rating of mental health appears to be a reasonable indicator of their SF-36 mental scores.

  12. Global observation of Omori-law decay in the rate of triggered earthquakes

    Parsons, T.

    2001-12-01

    Triggered earthquakes can be large, damaging, and lethal as evidenced by the 1999 shocks in Turkey and the 2001 events in El Salvador. In this study, earthquakes with M greater than 7.0 from the Harvard CMT catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occurred near the main shocks are associated with calculated shear stress increases, while ~39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, triggered earthquakes obey an Omori-law rate decay that lasts between ~7-11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main-shock centroid. Earthquakes triggered by smaller quakes (foreshocks) also obey Omori's law, which is one of the few time-predictable patterns evident in the global occurrence of earthquakes. These observations indicate that earthquake probability calculations which include interactions from previous shocks should incorporate a transient Omori-law decay with time. In addition, a very simple model using the observed global rate change with time and spatial distribution of triggered earthquakes can be applied to immediately assess the likelihood of triggered earthquakes following large events, and can be in place until more sophisticated analyses are conducted.

  13. Radiation-driven Turbulent Accretion onto Massive Black Holes

    Park, KwangHo; Wise, John H.; Bogdanović, Tamara, E-mail: kwangho.park@physics.gatech.edu [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2017-09-20

    Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo , equipped with adaptive ray-tracing module Moray , to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findings from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ∼2–3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.

  14. Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.

    2017-06-01

    Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.

  15. Changes in the metallicity of gas giant planets due to pebble accretion

    Humphries, R. J.; Nayakshin, S.

    2018-06-01

    We run numerical simulations to study the accretion of gas and dust grains on to gas giant planets embedded into massive protoplanetary discs. The outcome is found to depend on the disc cooling rate, planet mass, grain size, and irradiative feedback from the planet. If radiative cooling is efficient, planets accrete both gas and pebbles rapidly, open a gap, and usually become massive brown dwarfs. In the inefficient cooling case, gas is too hot to accrete on to the planet but pebble accretion continues and the planets migrate inward rapidly. Radiative feedback from the planet tends to suppress gas accretion. Our simulations predict that metal enrichment of planets by dust grain accretion inversely correlates with the final planet mass, in accordance with the observed trend in the inferred bulk composition of Solar system and exosolar giant planets. To account for observations, however, as many as ˜30-50 per cent of the dust mass should be in the form of large grains.

  16. Protostellar accretion traced with chemistry

    Frimann, Søren; Jørgensen, Jes Kristian; Dunham, Michael M.

    2017-01-01

    . Our aim is to characterise protostellar accretion histories towards individual sources by utilising sublimation and freeze-out chemistry of CO. Methods. A sample of 24 embedded protostars are observed with the Submillimeter Array (SMA) in context of the large program "Mass Assembly of Stellar Systems...

  17. Accretion disk emission from a BL Lacertae object

    Wandel, A.; Urry, C.M.

    1991-01-01

    It is suggested here that the UV and X-ray emission of BL Lac objects may originate in an accretion disk. Using detailed calculations of accretion disk spectra, the best-measured ultraviolet and soft X-ray spectra of the BL Lac object PKS 2155-304 are fitted, and the mass and accretion rate required is determined. The ultraviolet through soft X-ray continuum is well fitted by the spectrum of an accretion disk, but near-Eddington accretion rates are required to produce the soft X-ray excess. A hot disk or corona could Comptonize soft photons from the cool disk and produce the observed power-law spectrum in the 1-10 keV range. The dynamic time scale in the disk regions that contribute most of the observed ultraviolet and soft X-ray photons are consistent with the respective time scales for intensity variations observed in these two wave bands; the mass derived from fitting the continuum spectrum is consistent with the limit derived from the fastest hard X-ray variability. 37 refs

  18. Accretion in Radiative Equipartition (AiRE) Disks

    Yazdi, Yasaman K.; Afshordi, Niayesh, E-mail: yyazdi@pitp.ca, E-mail: nafshordi@pitp.ca [Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, ON N2L 2Y5 (Canada)

    2017-07-01

    Standard accretion disk theory predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability timescale, our accretion models in the radiation-pressure-dominated regime (i.e., inner disk) need to be modified. Here, we present a modification to the Shakura and Sunyaev model, where the radiation pressure is in equipartition with the gas pressure in the inner region. We call these flows accretion in radiative equipartition (AiRE) disks. We introduce the basic features of AiRE disks and show how they modify disk properties such as the Toomre parameter and the central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a function of cosmic time (and spin), while the latter could explain the transition between hard and soft states of X-ray binaries.

  19. Constraining jet physics in weakly accreting black holes

    Markoff, Sera

    2007-04-01

    Outflowing jets are observed in a variety of astronomical objects such as accreting compact objects from X-ray binaries (XRBs) to active galactic nuclei (AGN), as well as at stellar birth and death. Yet we still do not know exactly what they are comprised of, why and how they form, or their exact relationship with the accretion flow. In this talk I will focus on jets in black hole systems, which provide the ideal test population for studying the relationship between inflow and outflow over an extreme range in mass and accretion rate. I will present several recent results from coordinated multi-wavelength studies of low-luminosity sources. These results not only support similar trends in weakly accreting black hole behavior across the mass scale, but also suggest that the same underlying physical model can explain their broadband spectra. I will discuss how comparisons between small- and large-scale systems are revealing new information about the regions nearest the black hole, providing clues about the creation of these weakest of jets. Furthermore, comparisons between our Galactic center nucleus Sgr A* and other sources at slightly higher accretion rates can illucidate the processes which drive central activity, and pave the way for new tests with upcoming instruments.

  20. A global gas flaring black carbon emission rate dataset from 1994 to 2012

    Huang, Kan; Fu, Joshua S.

    2016-11-01

    Global flaring of associated petroleum gas is a potential emission source of particulate matters (PM) and could be notable in some specific regions that are in urgent need of mitigation. PM emitted from gas flaring is mainly in the form of black carbon (BC), which is a strong short-lived climate forcer. However, BC from gas flaring has been neglected in most global/regional emission inventories and is rarely considered in climate modeling. Here we present a global gas flaring BC emission rate dataset for the period 1994-2012 in a machine-readable format. We develop a region-dependent gas flaring BC emission factor database based on the chemical compositions of associated petroleum gas at various oil fields. Gas flaring BC emission rates are estimated using this emission factor database and flaring volumes retrieved from satellite imagery. Evaluation using a chemical transport model suggests that consideration of gas flaring emissions can improve model performance. This dataset will benefit and inform a broad range of research topics, e.g., carbon budget, air quality/climate modeling, and environmental/human exposure.

  1. On the Maximum Mass of Accreting Primordial Supermassive Stars

    Woods, T. E.; Heger, Alexander [Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800 (Australia); Whalen, Daniel J. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX (United Kingdom); Haemmerlé, Lionel; Klessen, Ralf S. [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische. Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2017-06-10

    Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z ∼ 6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution, and collapse of accreting, non-rotating supermassive stars under accretion rates of 0.01–10 M {sub ⊙} yr{sup −1} using the stellar evolution code Kepler . Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000–330,000 M {sub ⊙} for accretion rates of 0.1–10 M {sub ⊙} yr{sup −1}, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.

  2. Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates

    Y.-W. Luo

    2012-08-01

    Full Text Available Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2 to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (52–73 Tg N yr−1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 2.1 (1.4–3.1 Tg C from cell counts and to 89 (43–150 Tg C from nifH-based abundances. Reporting the arithmetic mean and one standard error instead, these three global estimates are 140 ± 9.2 Tg N yr−1, 18 ± 1.8 Tg C and 590 ± 70 Tg C, respectively. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. It was recently established that the most commonly applied method used to measure N2

  3. Global environmental ratings as an instrument of environmental policies: what factors determine the rank of Russia?

    Alekseeva, Nina; Arshinova, Marina; Milanova, Elena

    2017-04-01

    Systems of global environmental rankings have emerged as a result of the escalating need for revealing the trends of ecological development for the world and for certain countries and regions. Both the environmental indicators and indexes and the ratings made on their basis are important for the assessment and forecast of the ecological situation in order to tackle the global and regional problems of sustainable development and help to translate the research findings into policy developments. Data sources for the global environmental ratings are most often the statistical information accumulated in databases of the international organizations (World Bank, World Resources Institute, FAO, WHO, etc.) These data are highly reliable and well-comparable that makes the ratings very objective. There are also good examples of using data of sociological polls, information from social networks, etc. The global environmental ratings are produced by the international organizations (World Bank, World Resources Institute, the UN Environment Program), non-governmental associations (WWF, Climate Action Network Europe (CAN-E), Germanwatch Nord-Süd-Initiative, Friends of the Earth, World Development Movement), research structures (scientific centers of the Yale and Colombian universities, the Oak-Ridge National Laboratory, the New Economic Foundation), and also individual experts, news agencies, etc. Thematic (sectoral) ratings cover various spheres from availability of resources and anthropogenic impact on environment components to nature protection policies and perception of environmental problems. The environmental indicators cover all parameters important for understanding the current ecological situation and the trajectories of its development (the DPSIR model, i.e. drivers, pressures, state, impact and response). Complex (integral) ratings are based on environmental indexes which are combined measurement tools using a complex of aggregated indicators based on a wide range of

  4. Global distribution of moisture, evaporation-precipitation, and diabatic heating rates

    Christy, John R.

    1989-01-01

    Global archives were established for ECMWF 12-hour, multilevel analysis beginning 1 January 1985; day and night IR temperatures, and solar incoming and solar absorbed. Routines were written to access these data conveniently from NASA/MSFC MASSTOR facility for diagnostic analysis. Calculations of diabatic heating rates were performed from the ECMWF data using 4-day intervals. Calculations of precipitable water (W) from 1 May 1985 were carried out using the ECMWF data. Because a major operational change on 1 May 1985 had a significant impact on the moisture field, values prior to that date are incompatible with subsequent analyses.

  5. Global water cycle amplifying at less than the Clausius-Clapeyron rate

    Skliris, Nikolaos; Zika, Jan D.; Nurser, George; Josey, Simon A.; Marsh, Robert

    2016-01-01

    A change in the cycle of water from dry to wet regions of the globe would have far reaching impact on humanity. As air warms, its capacity to hold water increases at the Clausius-Clapeyron rate (CC, approximately 7%?°C?1). Surface ocean salinity observations have suggested the water cycle has amplified at close to CC following recent global warming, a result that was found to be at odds with state-of the art climate models. Here we employ a method based on water mass transformation theory for...

  6. Tempo of Diversification of Global Amphibians: One-Constant Rate, One-Continuous Shift or Multiple-Discrete Shifts?

    Youhua Chen

    2014-01-01

    In this brief report, alternative time-varying diversification rate models were fitted onto the phylogeny of global amphibians by considering one-constant-rate (OCR), one-continuous-shift (OCS) and multiplediscrete- shifts (MDS) situations. The OCS diversification model was rejected by γ statistic (γ=-5.556, p⁄ 0.001), implying the existence of shifting diversification rates for global amphibian phylogeny. Through model selection, MDS diversification model outperformed OCS and OCR...

  7. Radiatively-suppressed spherical accretion under relativistic radiative transfer

    Fukue, Jun

    2018-03-01

    We numerically examine radiatively-suppressed relativistic spherical accretion flows on to a central object with mass M under Newtonian gravity and special relativity. We simultaneously solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double iteration process in the case of the intermediate optical depth. We find that the accretion flow is suppressed, compared with the freefall case in the nonrelativistic regime. For example, in the case of accretion on to a luminous core with accretion luminosity L*, the freefall velocity v normalized by the speed of light c under the radiative force in the nonrelativistic regime is β (\\hat{r}) = v/c = -√{(1-Γ _*)/(\\hat{r}+1-Γ _*)}, where Γ* (≡ L*/LE, LE being the Eddington luminosity) is the Eddington parameter and \\hat{r} (= r/rS, rS being the Schwarzschild radius) the normalized radius, whereas the infall speed at the central core is ˜0.7β(1), irrespective of the mass-accretion rate. This is due to the relativistic effect; the comoving flux is enhanced by the advective flux. We briefly examine and discuss an isothermal case, where the emission takes place in the entire space.

  8. Hydrogen and helium shell burning during white dwarf accretion

    Cui, Xiao; Meng, Xiang-Cun; Han, Zhan-Wen

    2018-05-01

    Type Ia supernovae (SNe Ia) are believed to be thermonuclear explosions of carbon oxygen (CO) white dwarfs (WDs) with masses close to the Chandrasekhar mass limit. How a CO WD accretes matter and grows in mass to this limit is not well understood, hindering our understanding of SN Ia explosions and the reliability of using SNe Ia as a cosmological distance indicator. In this work, we employed the stellar evolution code MESA to simulate the accretion process of hydrogen-rich material onto a 1.0 M ⊙ CO WD at a high rate (over the Eddington limit) of 4.3 × 10‑7 M ⊙ yr‑1. The simulation demonstrates the characteristics of the double shell burning on top of the WD, with a hydrogen shell burning on top of a helium burning shell. The results show that helium shell burning is not steady (i.e. it flashes). Flashes from the helium shell are weaker than those in the case of accretion of helium-rich material onto a CO WD. The carbon to oxygen mass ratio resulting from the helium shell burning is higher than what was previously thought. Interestingly, the CO WD growing due to accretion has an outer part containing a small fraction of helium in addition to carbon and oxygen. The flashes become weaker and weaker as the accretion continues.

  9. Solar neutrinos and solar accretion of interstellar matter

    Newman, M.J.; Talbot, R.J. Jr.

    1976-01-01

    It is argued that if the Hoyle-Lyttleton mass accretion rate applies (Proc. Camb. Phil. Soc., Math. Phys. Sci. 35: 405 (1939)) the accretion of interstellar matter by the Sun is sufficient to enhance the surface heavy element abundances. This will also apply to other solar-type stars. The enhancement may be sufficient to allow the construction of consistent solar models with an interior heavy element abundance significantly lower than the observed surface abundance. This state of affairs lowers the predicted solar neutrino flux. It has been suggested that a similar enhancement of surface abundances might occur due to accretion of 'planetesimals' left over after formation of the solar system, and both processes may occur, thereby increasing the effect. The simple accretion model of Hoyle and Lyttleton is discussed mathematically. A crucial question to be answered by future research, however, is whether or not accretion on to the solar surface actually occurs. One of the most obvious obstacles is the outward flowing solar wind, and this is discussed. It appears that the outward flow can be reversed to an inward flow for certain interstellar cloud densities. (U.K.)

  10. The formation of stars by gravitational collapse rather than competitive accretion

    Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.

    2005-11-01

    There are two dominant models of how stars form. Under gravitational collapse, star-forming molecular clumps, of typically hundreds to thousands of solar masses (Msolar), fragment into gaseous cores that subsequently collapse to make individual stars or small multiple systems. In contrast, competitive accretion theory suggests that at birth all stars are much smaller than the typical stellar mass (~0.5Msolar), and that final stellar masses are determined by the subsequent accretion of unbound gas from the clump. Competitive accretion models interpret brown dwarfs and free-floating planets as protostars ejected from star-forming clumps before they have accreted much mass; key predictions of this model are that such objects should lack disks, have high velocity dispersions, form more frequently in denser clumps, and that the mean stellar mass should vary within the Galaxy. Here we derive the rate of competitive accretion as a function of the star-forming environment, based partly on simulation, and determine in what types of environments competitive accretion can occur. We show that no observed star-forming region can undergo significant competitive accretion, and that the simulations that show competitive accretion do so because the assumed properties differ from those determined by observation. Our result shows that stars form by gravitational collapse, and explains why observations have failed to confirm predictions of the competitive accretion model.

  11. Accretion onto some well-known regular black holes

    Jawad, Abdul; Shahzad, M.U.

    2016-01-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)

  12. Accretion onto some well-known regular black holes

    Jawad, Abdul; Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)

  13. Accretion onto some well-known regular black holes

    Jawad, Abdul; Shahzad, M. Umair

    2016-03-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.

  14. A Globally Stable Lyapunov Pointing and Rate Controller for the Magnetospheric MultiScale Mission (MMS)

    Shah, Neerav

    2011-01-01

    The Magnetospheric MultiScale Mission (MMS) is scheduled to launch in late 2014. Its primary goal is to discover the fundamental plasma physics processes of reconnection in the Earth's magnetosphere. Each of the four MMS spacecraft is spin-stabilized at a nominal rate of 3 RPM. Traditional spin-stabilized spacecraft have used a number of separate modes to control nutation, spin rate, and precession. To reduce the number of modes and simplify operations, the Delta-H control mode is designed to accomplish nutation control, spin rate control, and precession control simultaneously. A nonlinear design technique, Lyapunov's method, is used to design the Delta-H control mode. A global spin rate controller selected as the baseline controller for MMS, proved to be insufficient due to an ambiguity in the attitude. Lyapunov's design method was used to solve this ambiguity, resulting in a controller that meets the design goals. Simulation results show the advantage of the pointing and rate controller for maneuvers larger than 90 deg and provide insight into the performance of this controller.

  15. Spectral and Timing Diagnostics of Accretion in XRBs

    Nowak, M. N.

    One of the truly great advantages of the Rossi X-ray Timing Explorer has been its flexible scheduling coupled with the presence of the All Sky Monitor. This has allowed mutliple observations of given objects over a wide range of luminosities that, thanks to the ASM, can be placed within the context of the overall behavior of the source. This has begun to allow us to develop theories of how the accretion flow in black hole candidates changes as a function of state and accretion rate. A number of spectral and temporal correlations have been seen, others have merely been suggested as being probably or possible. In this talk I will review some of these suggestions, and outline those correlations that I think are firm and contrast them to those that I believe are still very speculative. I will discuss these observations in the context of suggested models for the structure, size scale, and dynamics of the accretion flow.

  16. Accretion onto a noncommutative-inspired Schwarzschild black hole

    Gangopadhyay, Sunandan; Paik, Biplab; Mandal, Rituparna

    2018-05-01

    In this paper, we investigate the problem of ordinary baryonic matter accretion onto the noncommutative (NC) geometry-inspired Schwarzschild black hole. The fundamental equations governing the spherically symmetric steady state matter accretion are deduced. These equations are seen to be modified due to the presence of noncommutativity. The matter accretion rate is computed and is found to increase rapidly with the increase in strength of the NC parameter. The sonic radius reduces while the sound speed at the sonic point increases with the increase in the strength of noncommutativity. The profile of the thermal environment is finally investigated below the sonic radius and at the event horizon and is found to be affected by noncommutativity.

  17. Relativistic sonic geometry for isothermal accretion in the Kerr metric

    Arif Shaikh, Md

    2018-03-01

    We linearly perturb advective isothermal transonic accretion onto rotating astrophysical black holes to study the emergence of the relativistic acoustic spacetime and to investigate how the salient features of this spacetime is influenced by the spin angular momentum of the black hole. We have perturbed three different quantities—the velocity potential, the mass accretion rate and the relativistic Bernoulli’s constant to show that the acoustic metric obtained for these three cases are the same up to a conformal factor. By constructing the required causal structures, it has been demonstrated that the acoustic black holes are formed at the transonic points of the flow and the acoustic white holes are formed at the shock location. The corresponding acoustic surface gravity has been computed in terms of the relevant accretion variables and the background metric elements. We have performed a linear stability analysis of the background stationary flow.

  18. Dissipative advective accretion disc solutions with variable adiabatic index around black holes

    Kumar, Rajiv; Chattopadhyay, Indranil

    2014-10-01

    We investigated accretion on to black holes in presence of viscosity and cooling, by employing an equation of state with variable adiabatic index and multispecies fluid. We obtained the expression of generalized Bernoulli parameter which is a constant of motion for an accretion flow in presence of viscosity and cooling. We obtained all possible transonic solutions for a variety of boundary conditions, viscosity parameters and accretion rates. We identified the solutions with their positions in the parameter space of generalized Bernoulli parameter and the angular momentum on the horizon. We showed that a shocked solution is more luminous than a shock-free one. For particular energies and viscosity parameters, we obtained accretion disc luminosities in the range of 10- 4 - 1.2 times Eddington luminosity, and the radiative efficiency seemed to increase with the mass accretion rate too. We found steady state shock solutions even for high-viscosity parameters, high accretion rates and for wide range of composition of the flow, starting from purely electron-proton to lepton-dominated accretion flow. However, similar to earlier studies of inviscid flow, accretion shock was not obtained for electron-positron pair plasma.

  19. Extinction of fish-shaped marine reptiles associated with reduced evolutionary rates and global environmental volatility.

    Fischer, Valentin; Bardet, Nathalie; Benson, Roger B J; Arkhangelsky, Maxim S; Friedman, Matt

    2016-03-08

    Despite their profound adaptations to the aquatic realm and their apparent success throughout the Triassic and the Jurassic, ichthyosaurs became extinct roughly 30 million years before the end-Cretaceous mass extinction. Current hypotheses for this early demise involve relatively minor biotic events, but are at odds with recent understanding of the ichthyosaur fossil record. Here, we show that ichthyosaurs maintained high but diminishing richness and disparity throughout the Early Cretaceous. The last ichthyosaurs are characterized by reduced rates of origination and phenotypic evolution and their elevated extinction rates correlate with increased environmental volatility. In addition, we find that ichthyosaurs suffered from a profound Early Cenomanian extinction that reduced their ecological diversity, likely contributing to their final extinction at the end of the Cenomanian. Our results support a growing body of evidence revealing that global environmental change resulted in a major, temporally staggered turnover event that profoundly reorganized marine ecosystems during the Cenomanian.

  20. Extraction of elementary rate constants from global network analysis of E. coli central metabolism

    Broderick Gordon

    2008-05-01

    Full Text Available Abstract Background As computational performance steadily increases, so does interest in extending one-particle-per-molecule models to larger physiological problems. Such models however require elementary rate constants to calculate time-dependent rate coefficients under physiological conditions. Unfortunately, even when in vivo kinetic data is available, it is often in the form of aggregated rate laws (ARL that do not specify the required elementary rate constants corresponding to mass-action rate laws (MRL. There is therefore a need to develop a method which is capable of automatically transforming ARL kinetic information into more detailed MRL rate constants. Results By incorporating proteomic data related to enzyme abundance into an MRL modelling framework, here we present an efficient method operating at a global network level for extracting elementary rate constants from experiment-based aggregated rate law (ARL models. The method combines two techniques that can be used to overcome the difficult properties in parameterization. The first, a hybrid MRL/ARL modelling technique, is used to divide the parameter estimation problem into sub-problems, so that the parameters of the mass action rate laws for each enzyme are estimated in separate steps. This reduces the number of parameters that have to be optimized simultaneously. The second, a hybrid algebraic-numerical simulation and optimization approach, is used to render some rate constants identifiable, as well as to greatly narrow the bounds of the other rate constants that remain unidentifiable. This is done by incorporating equality constraints derived from the King-Altman and Cleland method into the simulated annealing algorithm. We apply these two techniques to estimate the rate constants of a model of E. coli glycolytic pathways. The simulation and statistical results show that our innovative method performs well in dealing with the issues of high computation cost, stiffness, local

  1. Extraction of elementary rate constants from global network analysis of E. coli central metabolism

    Zhao, Jiao; Ridgway, Douglas; Broderick, Gordon; Kovalenko, Andriy; Ellison, Michael

    2008-01-01

    Background As computational performance steadily increases, so does interest in extending one-particle-per-molecule models to larger physiological problems. Such models however require elementary rate constants to calculate time-dependent rate coefficients under physiological conditions. Unfortunately, even when in vivo kinetic data is available, it is often in the form of aggregated rate laws (ARL) that do not specify the required elementary rate constants corresponding to mass-action rate laws (MRL). There is therefore a need to develop a method which is capable of automatically transforming ARL kinetic information into more detailed MRL rate constants. Results By incorporating proteomic data related to enzyme abundance into an MRL modelling framework, here we present an efficient method operating at a global network level for extracting elementary rate constants from experiment-based aggregated rate law (ARL) models. The method combines two techniques that can be used to overcome the difficult properties in parameterization. The first, a hybrid MRL/ARL modelling technique, is used to divide the parameter estimation problem into sub-problems, so that the parameters of the mass action rate laws for each enzyme are estimated in separate steps. This reduces the number of parameters that have to be optimized simultaneously. The second, a hybrid algebraic-numerical simulation and optimization approach, is used to render some rate constants identifiable, as well as to greatly narrow the bounds of the other rate constants that remain unidentifiable. This is done by incorporating equality constraints derived from the King-Altman and Cleland method into the simulated annealing algorithm. We apply these two techniques to estimate the rate constants of a model of E. coli glycolytic pathways. The simulation and statistical results show that our innovative method performs well in dealing with the issues of high computation cost, stiffness, local minima and uncertainty

  2. The Effects of Time Lag and Cure Rate on the Global Dynamics of HIV-1 Model

    Nigar Ali

    2017-01-01

    Full Text Available In this research article, a new mathematical model of delayed differential equations is developed which discusses the interaction among CD4 T cells, human immunodeficiency virus (HIV, and recombinant virus with cure rate. The model has two distributed intracellular delays. These delays denote the time needed for the infection of a cell. The dynamics of the model are completely described by the basic reproduction numbers represented by R0, R1, and R2. It is shown that if R0<1, then the infection-free equilibrium is locally as well as globally stable. Similarly, it is proved that the recombinant absent equilibrium is locally as well as globally asymptotically stable if 1rate have a positive role in the reduction of infected cells and the increasing of uninfected cells due to which the infection is reduced.

  3. A parsimonious characterization of change in global age-specific and total fertility rates

    2018-01-01

    This study aims to understand trends in global fertility from 1950-2010 though the analysis of age-specific fertility rates. This approach incorporates both the overall level, as when the total fertility rate is modeled, and different patterns of age-specific fertility to examine the relationship between changes in age-specific fertility and fertility decline. Singular value decomposition is used to capture the variation in age-specific fertility curves while reducing the number of dimensions, allowing curves to be described nearly fully with three parameters. Regional patterns and trends over time are evident in parameter values, suggesting this method provides a useful tool for considering fertility decline globally. The second and third parameters were analyzed using model-based clustering to examine patterns of age-specific fertility over time and place; four clusters were obtained. A country’s demographic transition can be traced through time by membership in the different clusters, and regional patterns in the trajectories through time and with fertility decline are identified. PMID:29377899

  4. Effect of accretion on primordial black holes in Brans-Dicke theory

    Nayak, B.; Singh, L. P.; Majumdar, A. S.

    2009-01-01

    We consider the effect of accretion of radiation in the early Universe on primordial black holes in Brans-Dicke theory. The rate of growth of a primordial black hole due to accretion of radiation in Brans-Dicke theory is considerably smaller than the rate of growth of the cosmological horizon, thus making available sufficient radiation density for the black hole to accrete causally. We show that accretion of radiation by Brans-Dicke black holes overrides the effect of Hawking evaporation during the radiation dominated era. The subsequent evaporation of the black holes in later eras is further modified due to the variable gravitational 'constant', and they could survive up to longer times compared to the case of standard cosmology. We estimate the impact of accretion on modification of the constraint on their initial mass fraction obtained from the γ-ray background limit from presently evaporating primordial black holes.

  5. Accreting neutron stars by QFT

    Chen, Shao-Guang

    I deduce the new gravitational formula from the variance in mass of QFT and GR (H05-0029-08, E15-0039 -08, E14-0032-08, D31-0054-10) in the partial differential: f (QFT) = f (GR) = delta∂ (m v)/delta∂ t = f _{P} + f _{C} , f _{P} = m delta∂ v / delta∂ t = - ( G m M /r (2) ) r / r, f _{C} = v delta∂ m / delta∂ t = - ( G mM / r (2) ) v / c (1). f (QFT) is the quasi-Casimir pressure of net virtual neutrinos nuν _{0} flux (after counteract contrary direction nuν _{0}). f (GR) is equivalent to Einstein’s equation as a new version of GR. GR can be inferred from Eq.(1) thereby from QFT, but QFT cannot be inferred from Eq.(1) or GR. f (QFT) is essential but f (GR) is phenomenological. Eq.(1) is obtained just by to absorb the essence of corpuscule collided gravitation origin ism proposed by Fatio in 1690 and 1920 Majorana’s experiment concept about gravitational shield effect again fuse with QFT. Its core content is that the gravity produced by particles collide cannot linear addition, i.e., Eq.(1) with the adding nonlinearity caused by the variable mass to replace the nonlinearity of Einstein’s equation. The nonlinear gravitation problems can be solved using the classical gradual approximation of alone f _{P} and alone f _{C}. Such as the calculation of advance of the perihelion of QFT, let the gravitational potential U = - G M /r which is just the distribution density of net nuν _{0} flux. From SR we again get Eq.(1): f (QFT) = f _{P} + f _{C}, f _{P} = - m ( delta∂ U / delta∂ r) r / r, f _{C} = - m ( delta∂U / delta∂ r) v / c , U = (1 - betaβ (2) )V, V is the Newtonian gravitational potential. f_{ P} correspond the change rate of three-dimensional momentum p, f_{C} correspond the change rate of fourth dimensional momentum i m c which show directly as a dissipative force of mass change. In my paper ‘To cross the great gap between the modern physics and classic physics, China Science &Technology Overview 129 85-91 (2011)’ with the

  6. Globalization

    Tulio Rosembuj

    2006-12-01

    Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  7. Globalization

    Tulio Rosembuj

    2006-01-01

    There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  8. MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion

    Lii Patrick

    2014-01-01

    Full Text Available Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and inhibits matter accretion onto the rapidly rotating star. Instead, the matter accreting through the disc accumulates at the disc-magnetosphere interface where it picks up angular momentum and is ejected from the system as a wide-angled outflow which gradually collimates at larger distances from the star. If the ejection rate is lower than the accretion rate, the matter will accumulate at the boundary faster than it can be ejected; in this case, accretion onto the star proceeds through an episodic accretion instability in which the episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion of matter onto the star. In addition to the matter dominated wind component, the propeller outflow also exhibits a well-collimated, magnetically-dominated Poynting jet which transports energy and angular momentum away from the star. The propeller mechanism may explain some of the weakly-collimated jets and winds observed around some T Tauri stars as well as the episodic variability present in their light curves. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.

  9. Probing thermonuclear burning on accreting neutron stars

    Keek, L.

    2008-12-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes thermonuclear burning in the neutron star envelope, creating carbon and heavier elements. The fusion process may proceed in an unstable manner, resulting in a thermonuclear runaway. Within one second the entire surface is burned, which is observable as a sharp rise in the emitted X-ray flux: a type I X-ray burst. Afterwards the neutron star surface cools down on a timescale of ten to one hundred seconds. During these bursts the surface of an accreting neutron star can be observed directly, which makes them instrumental for studying this type of stars. We have studied rare kinds of X-ray bursts. One such rare burst is the superburst, which lasts a thousand times longer than an ordinary burst. Superbursts are thought to result from the explosive burning of a thick carbon layer, which lies deeper inside the neutron star, close to a layer known as the crust. A prerequisite for the occurrence of a superburst is a high enough temperature, which is set by the temperature of the crust and the heat conductivity of the envelope. The latter is lowered by the presence of heavy elements that are produced during normal X-ray bursts. Using a large set of observations from the Wide Field Camera's onboard the BeppoSAX satellite, we find that, at high accretion rate, sources which do not exhibit normal bursts likely have a longer superburst recurrence time, than the observed superburst recurrence time of one burster. We analyze in detail the first superburst from a transient source, which went into outburst only 55 days before the superburst. Recent models of the neutron star crust predict that this is too small a time to heat the crust sufficiently for superburst ignition, indicating

  10. Global radiation damage at 300 and 260 K with dose rates approaching 1 MGy s{sup −1}

    Warkentin, Matthew; Badeau, Ryan; Hopkins, Jesse B. [Cornell University, Ithaca, NY 14853 (United States); Mulichak, Anne M.; Keefe, Lisa J. [Argonne National Laboratory, Argonne, IL 60439 (United States); Thorne, Robert E., E-mail: ret6@cornell.edu [Cornell University, Ithaca, NY 14853 (United States)

    2012-02-01

    Approximately half of global radiation damage to thaumatin crystals can be outrun at 260 K if data are collected in less than 1 s. Global radiation damage to 19 thaumatin crystals has been measured using dose rates from 3 to 680 kGy s{sup −1}. At room temperature damage per unit dose appears to be roughly independent of dose rate, suggesting that the timescales for important damage processes are less than ∼1 s. However, at T = 260 K approximately half of the global damage manifested at dose rates of ∼10 kGy s{sup −1} can be outrun by collecting data at 680 kGy s{sup −1}. Appreciable sample-to-sample variability in global radiation sensitivity at fixed dose rate is observed. This variability cannot be accounted for by errors in dose calculation, crystal slippage or the size of the data sets in the assay.

  11. Parsec-Scale Accretion and Winds Irradiated by a Quasar

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2016-01-01

    We present numerical simulations of properties of a parsec-scale torus exposed to illumination by the central black hole in an active galactic nucleus (AGN). Our physical model allows to investigate the balance between the formation of winds and accretion simultaneously. Radiation-driven winds are allowed by taking into account radiation pressure due to UV and IR radiation along with X-ray heating and dust sublimation. Accretion is allowed through angular momentum transport and the solution of the equations of radiative, viscous radiation hydrodynamics. Our methods adopt flux-limited diffusion radiation hydrodynamics for the dusty, infrared pressure driven part of the flow, along with X-ray heating and cooling. Angular momentum transport in the accreting part of the flow is modeled using effective viscosity. Our results demonstrate that radiation pressure on dust can play an important role in shaping AGN obscuration. For example, when the luminosity illuminating the torus exceeds L greater than 0.01 L(sub Edd), where L(sub Edd) is the Eddington luminosity, we find no episodes of sustained disk accretion because radiation pressure does not allow a disk to form. Despite the absence of the disk accretion, the flow of gas to smaller radii still proceeds at a rate 10(exp -4)-10(exp -1)M dot yr(exp -1) through the capturing of the gas from the hot evaporative flow, thus providing a mechanism to deliver gas from a radiation-pressure dominated torus to the inner accretion disk. As L L(sub edd) increases, larger radiation input leads to larger torus aspect ratios and increased obscuration of the central black hole. We also find the important role of the X-ray heated gas in shaping the obscuring torus.

  12. [Association between the decline in global fertility rate and the incorporation of women to the workforce].

    Stefanelli, María de Los Ángeles; Valenzuela, María Teresa; Cárcamo, Marcela; Urquidi, Cinthya; Cavada, Gabriel; San Martín P, Pamela

    2016-05-01

    The global fertility rate (GFR) is defined as the mean number of children that a woman could have in a hypothetical cohort, not exposed to death during the fertile period. GFR has fallen from 3.4 to 1.9 children per women in the period 1970-2010. To explore the relationship between the fall in GFR and the incorporation of women to work in the period 1960-2011. Data from the National Statistics Institute was used. GRF was calculated using specific fertility rates for each year considering women aged 15 to 49 years. Work rates were obtained from yearly vital statistics reports. Between 1960 and 2011, GRF decreased from 5.5 to 1.9 in Chile. The first inflection occurred in 1970. In the same period, female workforce increased from 22.4 to 40.2%. To motivate the participation of female work-force without decrease the GRF allowing population replacement, it is suggested the need to create new public policies with benefits and support from the state.

  13. Global Carrier Rates of Rare Inherited Disorders Using Population Exome Sequences.

    Kohei Fujikura

    Full Text Available Exome sequencing has revealed the causative mutations behind numerous rare, inherited disorders, but it is challenging to find reliable epidemiological values for rare disorders. Here, I provide a genetic epidemiology method to identify the causative mutations behind rare, inherited disorders using two population exome sequences (1000 Genomes and NHLBI. I created global maps of carrier rate distribution for 18 recessive disorders in 16 diverse ethnic populations. Out of a total of 161 mutations associated with 18 recessive disorders, I detected 24 mutations in either or both exome studies. The genetic mapping revealed strong international spatial heterogeneities in the carrier patterns of the inherited disorders. I next validated this methodology by statistically evaluating the carrier rate of one well-understood disorder, sickle cell anemia (SCA. The population exome-based epidemiology of SCA [African (allele frequency (AF = 0.0454, N = 2447, Asian (AF = 0, N = 286, European (AF = 0.000214, N = 4677, and Hispanic (AF = 0.0111, N = 362] was not significantly different from that obtained from a clinical prevalence survey. A pair-wise proportion test revealed no significant differences between the two exome projects in terms of AF (46/48 cases; P > 0.05. I conclude that population exome-based carrier rates can form the foundation for a prospectively maintained database of use to clinical geneticists. Similar modeling methods can be applied to many inherited disorders.

  14. Natural gas fugitive emissions rates constrained by global atmospheric methane and ethane.

    Schwietzke, Stefan; Griffin, W Michael; Matthews, H Scott; Bruhwiler, Lori M P

    2014-07-15

    The amount of methane emissions released by the natural gas (NG) industry is a critical and uncertain value for various industry and policy decisions, such as for determining the climate implications of using NG over coal. Previous studies have estimated fugitive emissions rates (FER)--the fraction of produced NG (mainly methane and ethane) escaped to the atmosphere--between 1 and 9%. Most of these studies rely on few and outdated measurements, and some may represent only temporal/regional NG industry snapshots. This study estimates NG industry representative FER using global atmospheric methane and ethane measurements over three decades, and literature ranges of (i) tracer gas atmospheric lifetimes, (ii) non-NG source estimates, and (iii) fossil fuel fugitive gas hydrocarbon compositions. The modeling suggests an upper bound global average FER of 5% during 2006-2011, and a most likely FER of 2-4% since 2000, trending downward. These results do not account for highly uncertain natural hydrocarbon seepage, which could lower the FER. Further emissions reductions by the NG industry may be needed to ensure climate benefits over coal during the next few decades.

  15. Globalization

    Andru?cã Maria Carmen

    2013-01-01

    The field of globalization has highlighted an interdependence implied by a more harmonious understanding determined by the daily interaction between nations through the inducement of peace and the management of streamlining and the effectiveness of the global economy. For the functioning of the globalization, the developing countries that can be helped by the developed ones must be involved. The international community can contribute to the institution of the development environment of the gl...

  16. MN Lup: X-RAYS FROM A WEAKLY ACCRETING T TAURI STAR

    Günther, H. M.; Wolk, S. J.; Wolter, U.; Robrade, J.

    2013-01-01

    Young T Tauri stars (TTS) are surrounded by an accretion disk, which over time disperses due to photoevaporation, accretion, and possibly planet formation. The accretion shock on the central star produces an UV/optical veiling continuum, line emission, and X-ray signatures. As the accretion rate decreases, the impact on the central star must change. In this article we study MN Lup, a young star where no indications of a disk are seen in IR observations. We present XMM-Newton and VLT/UVES observations, some of them taken simultaneously. The X-ray data show that MN Lup is an active star with L X /L bol close to the saturation limit. However, we find high densities (n e > 3 × 10 10 cm –3 ) in the X-ray grating spectrum. This can be well fitted using an accretion shock model with an accretion rate of 2 × 10 –11 M ☉ yr –1 . Despite the simple Hα line profile which has a broad component, but no absorption signatures as typically seen on accreting TTS, we find rotational modulation in Ca II K and in photospheric absorption lines. These line profile modulations do not clearly indicate the presence of a localized hot accretion spot on the star. In the Hα line we see a prominence in absorption about 2R * above the stellar surface—the first of its kind on a TTS. MN Lup is also the only TTS where accretion is seen, but no dust disk is detected that could fuel it. We suggest that MN Lup presents a unique and short-lived state in the disk evolution. It may have lost its dust disk only recently and is now accreting the remaining gas at a very low rate.

  17. Persistent fluctuations in synchronization rate in globally coupled oscillators with periodic external forcing

    Atsumi, Yu; Nakao, Hiroya

    2012-05-01

    A system of phase oscillators with repulsive global coupling and periodic external forcing undergoing asynchronous rotation is considered. The synchronization rate of the system can exhibit persistent fluctuations depending on parameters and initial phase distributions, and the amplitude of the fluctuations scales with the system size for uniformly random initial phase distributions. Using the Watanabe-Strogatz transformation that reduces the original system to low-dimensional macroscopic equations, we show that the fluctuations are collective dynamics of the system corresponding to low-dimensional trajectories of the reduced equations. It is argued that the amplitude of the fluctuations is determined by the inhomogeneity of the initial phase distribution, resulting in system-size scaling for the random case.

  18. Global existence of solutions to a tear film model with locally elevated evaporation rates

    Gao, Yuan; Ji, Hangjie; Liu, Jian-Guo; Witelski, Thomas P.

    2017-07-01

    Motivated by a model proposed by Peng et al. (2014) for break-up of tear films on human eyes, we study the dynamics of a generalized thin film model. The governing equations form a fourth-order coupled system of nonlinear parabolic PDEs for the film thickness and salt concentration subject to non-conservative effects representing evaporation. We analytically prove the global existence of solutions to this model with mobility exponents in several different ranges and present numerical simulations that are in agreement with the analytic results. We also numerically capture other interesting dynamics of the model, including finite-time rupture-shock phenomenon due to the instabilities caused by locally elevated evaporation rates, convergence to equilibrium and infinite-time thinning.

  19. A Globally Convergent Matrix-Free Method for Constrained Equations and Its Linear Convergence Rate

    Min Sun

    2014-01-01

    Full Text Available A matrix-free method for constrained equations is proposed, which is a combination of the well-known PRP (Polak-Ribière-Polyak conjugate gradient method and the famous hyperplane projection method. The new method is not only derivative-free, but also completely matrix-free, and consequently, it can be applied to solve large-scale constrained equations. We obtain global convergence of the new method without any differentiability requirement on the constrained equations. Compared with the existing gradient methods for solving such problem, the new method possesses linear convergence rate under standard conditions, and a relax factor γ is attached in the update step to accelerate convergence. Preliminary numerical results show that it is promising in practice.

  20. The use of global rating scales for OSCEs in veterinary medicine.

    Emma K Read

    Full Text Available OSCEs (Objective Structured Clinical Examinations are widely used in health professions to assess clinical skills competence. Raters use standardized binary checklists (CL or multi-dimensional global rating scales (GRS to score candidates performing specific tasks. This study assessed the reliability of CL and GRS scores in the assessment of veterinary students, and is the first study to demonstrate the reliability of GRS within veterinary medical education. Twelve raters from two different schools (6 from University of Calgary [UCVM] and 6 from Royal (Dick School of Veterinary Studies [R(DSVS] were asked to score 12 students (6 from each school. All raters assessed all students (video recordings during 4 OSCE stations (bovine haltering, gowning and gloving, equine bandaging and skin suturing. Raters scored students using a CL, followed by the GRS. Novice raters (6 R(DSVS were assessed independently of expert raters (6 UCVM. Generalizability theory (G theory, analysis of variance (ANOVA and t-tests were used to determine the reliability of rater scores, assess any between school differences (by student, by rater, and determine if there were differences between CL and GRS scores. There was no significant difference in rater performance with use of the CL or the GRS. Scores from the CL were significantly higher than scores from the GRS. The reliability of checklist scores were .42 and .76 for novice and expert raters respectively. The reliability of the global rating scale scores were .7 and .86 for novice and expert raters respectively. A decision study (D-study showed that once trained using CL, GRS could be utilized to reliably score clinical skills in veterinary medicine with both novice and experienced raters.

  1. Combined Versus Detailed Evaluation Components in Medical Student Global Rating Indexes

    Kim L. Askew

    2015-11-01

    Full Text Available Introduction: To determine if there is any correlation between any of the 10 individual components of a global rating index on an emergency medicine (EM student clerkship evaluation form. If there is correlation, to determine if a weighted average of highly correlated components loses predictive value for the final clerkship grade. Methods: This study reviewed medical student evaluations collected over two years of a required fourth-year rotation in EM. Evaluation cards, comprised of a detailed 10-part evaluation, were completed after each shift. We used a correlation matrix between evaluation category average scores, using Spearman’s rho, to determine if there was any correlation of the grades between any of the 10 items on the evaluation form. Results: A total of 233 students completed the rotation over the two-year period of the study. There were strong correlations (>0.80 between assessment components of medical knowledge, history taking, physical exam, and differential diagnosis. There were also strong correlations between assessment components of team rapport, patient rapport, and motivation. When these highly correlated were combined to produce a four-component model, linear regression demonstrated similar predictive power in terms of final clerkship grade (R2 =0.71, CI95=0.65–0.77 and R2 =0.69, CI95=0.63–0.76 for the full and reduced models respectively. Conclusion: This study revealed that several components of the evaluation card had a high degree of correlation. Combining the correlated items, a reduced model containing four items (clinical skills, interpersonal skills, procedural skills, and documentation was as predictive of the student’s clinical grade as the full 10-item evaluation. Clerkship directors should be aware of the performance of their individual global rating scales when assessing medical student performance, especially if attempting to measure greater than four components.

  2. Holocene reef accretion: southwest Molokai, Hawaii, U.S.A.

    Engels, Mary S.; Fletcher, Charles H.; Field, Michael E.; Storlazzi, Curt D.; Grossman, Eric E.; Rooney, John J.B.; Conger, Christopher L.; Glenn, Craig

    2004-01-01

    extension across Hawaii in general, is controlled by wave-induced near-bed shear stress related to refracted North Pacific swell. Holocene accretion patterns here also reflect the long-term influence of wave-induced near-bed shear stress from north swell during late Holocene time. This finding is consistent with other studies (e.g., Grigg 1998; Cabioch et al. 1999) that reflect the dominance of swell energy and sea level in controlling modern and late Holocene accretion elsewhere in Hawaii and across the Pacific and Indian oceans. Notably, however, this result is refined and clarified for Hawaii in the hypothesis of Rooney et al. (2003) stating that enhancement of the El Niño Southern Oscillation beginning approximately 5000 years ago led to increased north swell energy and signaled the end to net accretion along exposed coastlines in Hawaii. The exposure of Hale O Lono to north swell and the age of sea floor there (ca. 4,800 cal yr BP), coupled with the lack of north swell incidence at Hikauhi and the continuous accretion that has occurred there over the last millennium, strongly supports the ENSO reef hypothesis as outlined by Rooney et al. (2003). Other factors controlling Holocene reef accretion at the study site are relative sea-level position and rate of rise, and wave sheltering by Laau Point. Habitat suitable for reef accretion on the southwest shore of Molokai has shrunk throughout the Holocene.

  3. Jet launching radius in low-power radio-loud AGNs in advection-dominated accretion flows

    Le, Truong; Newman, William; Edge, Brinkley

    2018-06-01

    Using our theory for the production of relativistic outflows, we estimate the jet launching radius and the inferred mass accretion rate for 52 low-power radio-loud AGNs based on the observed jet powers. Our analysis indicates that (1) a significant fraction of the accreted energy is required to convert the accreted mass to relativistic energy particles for the production of the jets near the event horizon, (2) the jet's launching radius moves radially towards the horizon as the mass accretion rate or jet's power increases, and (3) no jet/outflow formation is possible beyond 44 gravitational radii.

  4. Disk tides and accretion runaway

    Ward, William R.; Hahn, Joseph M.

    1995-01-01

    It is suggested that tidal interaction of an accreting planetary embryo with the gaseous preplanetary disk may provide a mechanism to breach the so-called runaway limit during the formation of the giant planet cores. The disk tidal torque converts a would-be shepherding object into a 'predator,' which can continue to cannibalize the planetesimal disk. This is more likely to occur in the giant planet region than in the terrestrial zone, providing a natural cause for Jupiter to predate the inner planets and form within the O(10(exp 7) yr) lifetime of the nebula.

  5. Theory of Disk Accretion onto Magnetic Stars

    Lai Dong

    2014-01-01

    Full Text Available Disk accretion onto magnetic stars occurs in a variety of systems, including accreting neutron stars (with both high and low magnetic fields, white dwarfs, and protostars. We review some of the key physical processes in magnetosphere-disk interaction, highlighting the theoretical uncertainties. We also discuss some applications to the observations of accreting neutron star and protostellar systems, as well as possible connections to protoplanetary disks and exoplanets.

  6. New Measurements of Methyl Ethyl Ketone (MEK) Photolysis Rates and Their Relevance to Global Oxidative Capacity

    Brewer, J.; Ravishankara, A. R.; Mellouki, A.; Fischer, E. V.; Kukui, A.; Véronique, D.; Ait-helal, W.; Leglise, J.; Ren, Y.

    2017-12-01

    Methyl ethyl ketone (MEK) is one of the most abundant ketones in the atmosphere. MEK can be emitted directly into the atmosphere from both anthropogenic and natural sources, and it is also formed during the gas-phase oxidation of volatile organic compounds (VOCs). MEK is lost via reaction with OH, photolysis and deposition to the surface. Similar to the other atmospheric ketones, the photolysis of MEK may represent a source of HOx (OH + HO2) radicals in the upper troposphere. The degradation of MEK also leads to the atmospheric formation of acetaldehyde and formaldehyde. This work presents a new analysis of the temperature dependence of MEK photolysis cross-sections and a quantification of MEK photolysis rates under surface pressures using the CNRS HELIOS outdoor atmospheric chamber (Chambre de simulation atmosphérique à irradiation naturelle d'Orléans; http://www.era-orleans.org/ERA-TOOLS/helios-project.html). Additionally, we use the GEOS-Chem 3-D CTM (version 10-01, www.geos-chem.org) to investigate the impact of these newly measured rates and cross-sections on the global distribution and seasonality of MEK, as well as its importance to the tropospheric oxidative capacity.

  7. Association between Global Life Satisfaction and Self-Rated Oral Health Conditions among Adolescents in Lithuania.

    Kavaliauskienė, Aistė; Šidlauskas, Antanas; Zaborskis, Apolinaras

    2017-11-03

    Background : This study aims to explore the extent to which the perceived oral conditions predict adolescent global life satisfaction (GLS); Methods : The sample in a cross-sectional survey consisted of 1510 Lithuanian adolescents (41.7% boys) aged 11-18. The survey was conducted by means of self-report questionnaires that were administrated in school classrooms ensuring confidentiality and anonymity of the participants. The schoolchildren rated their GLS and answered the questions about perceptions of their oral health. The relationship between GLS and oral health variables was estimated using unadjusted and adjusted binary logistic regression and nonparametric correlation analyses; Results : The research showed that the majority of adolescents rated their GLS highly; however, girls, older adolescents and adolescents from less affluent families were less likely to report high scores. GLS was significantly associated with subjective overall oral health assessment. The odds of reporting low GLS were 50% higher for adolescents with good oral health (OR = 1.51; p Child Perceptions Questionnaire (.

  8. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  9. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales.

    Hilley, George E; Porder, Stephen

    2008-11-04

    Global silicate weathering drives long-time-scale fluctuations in atmospheric CO(2). While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 x 10(13) mols of Si weathered globally per year, within a factor of 4-10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4-18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01-0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO(2), 1.5-3.3 x 10(8) tons/year of CO(2) is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales.

  10. An Efficient Approximation of the Coronal Heating Rate for use in Global Sun-Heliosphere Simulations

    Cranmer, Steven R.

    2010-02-01

    The origins of the hot solar corona and the supersonically expanding solar wind are still the subject of debate. A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a physically motivated way of specifying the coronal heating rate. Recent one-dimensional models have been found to reproduce many observed features of the solar wind by assuming the energy comes from Alfvén waves that are partially reflected, then dissipated by magnetohydrodynamic turbulence. However, the nonlocal physics of wave reflection has made it difficult to apply these processes to more sophisticated (three-dimensional) models. This paper presents a set of robust approximations to the solutions of the linear Alfvén wave reflection equations. A key ingredient of the turbulent heating rate is the ratio of inward-to-outward wave power, and the approximations developed here allow this to be written explicitly in terms of local plasma properties at any given location. The coronal heating also depends on the frequency spectrum of Alfvén waves in the open-field corona, which has not yet been measured directly. A model-based assumption is used here for the spectrum, but the results of future measurements can be incorporated easily. The resulting expression for the coronal heating rate is self-contained, computationally efficient, and applicable directly to global models of the corona and heliosphere. This paper tests and validates the approximations by comparing the results to exact solutions of the wave transport equations in several cases relevant to the fast and slow solar wind.

  11. Timing of cochlear implantation and parents' global ratings of children's health and development.

    Clark, James H; Wang, Nae-Yuh; Riley, Anne W; Carson, Christine M; Meserole, Rachel L; Lin, Frank R; Eisenberg, Laurie S; Tobey, Emily A; Quittner, Alexandra L; Francis, Howard W; Niparko, John K

    2012-06-01

    To assess children's health-related quality of life (HRQL) and development after cochlear implant (CI) surgery and compare improvements between different age of implantation categories. Prospective, longitudinal study comparing outcomes of deaf children post-CI with hearing controls. Six US CI centers. Deaf children who received CI (n = 188) and hearing children of comparable ages (n = 97). CI before 5 years of age. Parental ratings of global HRQL and development, as assessed over the first 4 years of follow-up using visual analog scales. Development scores assess parental views of children's growth and development, motor skills, ability to express themselves and communicate with others, and learning abilities. Associations of baseline child and family characteristics with post-CI HRQL and development were investigated using multivariable analysis, controlling for factors that influence post-CI language learning. Baseline deficits of CI candidates relative to hearing controls were larger in development than HRQL. Development scores improved significantly by 4 years after CI, particularly in the youngest CI recipients. Developmental deficits of older CI recipients with early, extended hearing aid use were only partially remediated by CI. Overall, no significant health deficits were observed in CI children after 4 years. Cognition and speech recognition were positively associated with both HRQL and development. Parental perspectives on quality of their child's life and development provide practical insight into the optimal timing of interventions for early-onset deafness. Validity of parental global assessments is supported by clinical measures of speech perception and language learning and comparison with a well-validated health status instrument.

  12. Simulations of small solid accretion on to planetesimals in the presence of gas

    Hughes, A. G.; Boley, A. C.

    2017-12-01

    The growth and migration of planetesimals in a young protoplanetary disc are fundamental to planet formation. In all models of early growth, there are several processes that can inhibit grains from reaching larger sizes. Nevertheless, observations suggest that growth of planetesimals must be rapid. If a small number of 100 km sized planetesimals do manage to form in the disc, then gas drag effects could enable them to efficiently accrete small solids from beyond their gravitationally focused cross-section. This gas-drag-enhanced accretion can allow planetesimals to grow at rapid rates, in principle. We present self-consistent hydrodynamics simulations with direct particle integration and gas-drag coupling to estimate the rate of planetesimal growth due to pebble accretion. Wind tunnel simulations are used to explore a range of particle sizes and disc conditions. We also explore analytic estimates of planetesimal growth and numerically integrate planetesimal drift due to the accretion of small solids. Our results show that, for almost every case that we consider, there is a clearly preferred particle size for accretion that depends on the properties of the accreting planetesimal and the local disc conditions. For solids much smaller than the preferred particle size, accretion rates are significantly reduced as the particles are entrained in the gas and flow around the planetesimal. Solids much larger than the preferred size accrete at rates consistent with gravitational focusing. Our analytic estimates for pebble accretion highlight the time-scales that are needed for the growth of large objects under different disc conditions and initial planetesimal sizes.

  13. WIND-DRIVEN ACCRETION IN PROTOPLANETARY DISKS. I. SUPPRESSION OF THE MAGNETOROTATIONAL INSTABILITY AND LAUNCHING OF THE MAGNETOCENTRIFUGAL WIND

    Bai Xuening; Stone, James M.

    2013-01-01

    We perform local, vertically stratified shearing-box MHD simulations of protoplanetary disks (PPDs) at a fiducial radius of 1 AU that take into account the effects of both Ohmic resistivity and ambipolar diffusion (AD). The magnetic diffusion coefficients are evaluated self-consistently from a look-up table based on equilibrium chemistry. We first show that the inclusion of AD dramatically changes the conventional picture of layered accretion. Without net vertical magnetic field, the system evolves into a toroidal field dominated configuration with extremely weak turbulence in the far-UV ionization layer that is far too inefficient to drive rapid accretion. In the presence of a weak net vertical field (plasma β ∼ 10 5 at midplane), we find that the magnetorotational instability (MRI) is completely suppressed, resulting in a fully laminar flow throughout the vertical extent of the disk. A strong magnetocentrifugal wind is launched that efficiently carries away disk angular momentum and easily accounts for the observed accretion rate in PPDs. Moreover, under a physical disk wind geometry, all the accretion flow proceeds through a strong current layer with a thickness of ∼0.3H that is offset from disk midplane with radial velocity of up to 0.4 times the sound speed. Both Ohmic resistivity and AD are essential for the suppression of the MRI and wind launching. The efficiency of wind transport increases with increasing net vertical magnetic flux and the penetration depth of the FUV ionization. Our laminar wind solution has important implications on planet formation and global evolution of PPDs.

  14. Studies of accreting and non-accreting neutron stars

    Stollman, G.M.

    1987-01-01

    This thesis is divided into three parts. Part A is devoted to the statistical study of radio pulsars, in which the observations of nearly all known pulsars are used to study their properties such as magnetic field strengths, rotation periods, space velocities as well as their evolution in time. Part B is devoted to the modelling and understanding of quasi-periodic oscillations (QPO) in low-mass X-ray binaries. But, this study is mainly concerned with the accretion process in these sources, and one may hope to learn more about the neutron stars in these systems when the understanding of QPO is improved. In Part C the problem of 'super-Eddington luminosities' in X-ray burst sources is treated. The idea is that a good understanding of the burst process, which takes place directly at the surface of the neutron star, will eventually improve our understanding of the neutron stars themselves. (Auth.)

  15. WIND-DRIVEN ACCRETION IN TRANSITIONAL PROTOSTELLAR DISKS

    Wang, Lile; Goodman, Jeremy J. [Princeton University Observatory, Princeton, NJ 08544 (United States)

    2017-01-20

    Transitional protostellar disks have inner cavities that are heavily depleted in dust and gas, yet most of them show signs of ongoing accretion, often at rates comparable to full disks. We show that recent constraints on the gas surface density in a few well-studied disk cavities suggest that the accretion speed is at least transsonic. We propose that this is the natural result of accretion driven by magnetized winds. Typical physical conditions of the gas inside these cavities are estimated for plausible X-ray and FUV radiation fields. The gas near the midplane is molecular and predominantly neutral, with a dimensionless ambipolar parameter in the right general range for wind solutions of the type developed by Königl, Wardle, and others. That is to say, the density of ions and electrons is sufficient for moderately good coupling to the magnetic field, but it is not so good that the magnetic flux needs to be dragged inward by the accreting neutrals.

  16. An Accretion Model for Anomalous X-Ray Pulsars

    Chatterjee, Pinaki; Hernquist, Lars; Narayan, Ramesh

    2000-05-01

    We present a model for the anomalous X-ray pulsars (AXPs) in which the emission is powered by accretion from a fossil disk, established from matter falling back onto the neutron star following its birth. The time-dependent accretion drives the neutron star toward a ``tracking'' solution in which the rotation period of the star increases slowly, in tandem with the declining accretion rate. For appropriate choices of disk mass, neutron star magnetic field strength, and initial spin period, we demonstrate that a rapidly rotating neutron star can be spun down to periods characteristic of AXPs on timescales comparable to the estimated ages of these sources. In other cases, accretion onto the neutron star switches off after a short time and the star becomes an ordinary radio pulsar. Thus, in our picture, radio pulsars and AXPs are drawn from the same underlying population, in contrast to the situation in models involving neutron stars with ultrastrong magnetic fields, which require a new population of stars with very different properties.

  17. Shocks in the relativistic transonic accretion with low angular momentum

    Suková, P.; Charzyński, S.; Janiuk, A.

    2017-12-01

    We perform 1D/2D/3D relativistic hydrodynamical simulations of accretion flows with low angular momentum, filling the gap between spherically symmetric Bondi accretion and disc-like accretion flows. Scenarios with different directional distributions of angular momentum of falling matter and varying values of key parameters such as spin of central black hole, energy and angular momentum of matter are considered. In some of the scenarios the shock front is formed. We identify ranges of parameters for which the shock after formation moves towards or outwards the central black hole or the long-lasting oscillating shock is observed. The frequencies of oscillations of shock positions which can cause flaring in mass accretion rate are extracted. The results are scalable with mass of central black hole and can be compared to the quasi-periodic oscillations of selected microquasars (such as GRS 1915+105, XTE J1550-564 or IGR J17091-3624), as well as to the supermassive black holes in the centres of weakly active galaxies, such as Sgr A*.

  18. Rotation and Accretion Powered Pulsars

    Kaspi, V M [Department of Physics, McGill University, 3600 University St, Montreal, QC H3A 2T8 (Canada)

    2008-03-07

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly

  19. Rotation and Accretion Powered Pulsars

    Kaspi, V M

    2008-01-01

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you

  20. ACCRETION AND MAGNETIC RECONNECTION IN THE CLASSICAL T TAURI BINARY DQ TAU

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Johns-Krull, Christopher; Herczeg, Gregory J.; Quijano-Vodniza, Alberto

    2017-01-01

    The theory of binary star formation predicts that close binaries ( a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (∼daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres near periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.

  1. ACCRETION AND MAGNETIC RECONNECTION IN THE CLASSICAL T TAURI BINARY DQ TAU

    Tofflemire, Benjamin M.; Mathieu, Robert D. [Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53706 (United States); Ardila, David R. [The Aerospace Corporation, M2-266, El Segundo, CA 90245 (United States); Akeson, Rachel L.; Ciardi, David R. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States); Johns-Krull, Christopher [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Herczeg, Gregory J. [The Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Quijano-Vodniza, Alberto [University of Nariño Observatory, Pasto, Nariño (Colombia)

    2017-01-20

    The theory of binary star formation predicts that close binaries ( a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (∼daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres near periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.

  2. Foundations of Black Hole Accretion Disk Theory.

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  3. Foundations of Black Hole Accretion Disk Theory

    Marek A. Abramowicz

    2013-01-01

    Full Text Available This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks, Shakura-Sunyaev (thin disks, slim disks, and advection-dominated accretion flows (ADAFs. After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs.

  4. Accretion, primordial black holes and standard cosmology

    Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes ...

  5. The Accretion-Ejection Mechanisms in X-ray Binaries: an Unified View

    Petrucci, P. O.; Foellmi, C.; Ferreira, J.; Henri, G.; Cabanac, C.; Belmont, R.; Malzac, J.

    2009-01-01

    We present a new keplerian accretion disc solution, the so-called Jet Emitting Disc (JED hereafter), which is part of global self-consistent disc-jet MHD structure. In our framework, a large scale, organized vertical magnetic field is threading the JED giving birth, when conditions are met, to stationnary self-collimated non relativistic jets. The main condition is that the magnetic pressure P mag must be of the order of the total pressure P tot in the JED and a direct consequence is a jet torque largely dominating the viscuous torque. This in turn implies an accretion velocity of the order of the sound speed and then a density much lower than a standard accretion disc. Moreover, most of the accretion power P acc being extracted by the jet, only part of it (<50%) is liberated in the JED as heating power.

  6. The endoscopy Global Rating Scale – Canada: Development and implementation of a quality improvement tool

    MacIntosh, Donald; Dubé, Catherine; Hollingworth, Roger; van Zanten, Sander Veldhuyzen; Daniels, Sandra; Ghattas, George

    2013-01-01

    BACKGROUND: Increasing use of gastrointestinal endoscopy, particularly for colorectal cancer screening, and increasing emphasis on health care quality highlight the need for endoscopy facilities to review the quality of the service they offer. OBJECTIVE: To adapt the United Kingdom Global Rating Scale (UK-GRS) to develop a web-based and patient-centred tool to assess and improve the quality of endoscopy services provided. METHODS: Based on feedback from 22 sites across Canada that completed the UK endoscopy GRS, and integrating results of the Canadian consensus on safety and quality indicators in endoscopy and other Canadian consensus reports, a working group of endoscopists experienced with the GRS developed the GRS-Canada (GRS-C). RESULTS: The GRS-C mirrors the two dimensions (clinical quality and quality of the patient experience) and 12 patient-centred items of the UK-GRS, but was modified to apply to Canadian health care infrastructure, language and current practice. Each item is assessed by a yes/no response to eight to 12 statements that are divided into levels graded D (basic) through A (advanced). A core team consisting of a booking clerk, charge nurse and the physician responsible for the unit is recommended to complete the GRS-C twice yearly. CONCLUSION: The GRS-C is intended to improve endoscopic services in Canada by providing endoscopy units with a straightforward process to review the quality of the service they provide. PMID:23472242

  7. The endoscopy Global Rating Scale-Canada: development and implementation of a quality improvement tool.

    MacIntosh, Donald; Dubé, Catherine; Hollingworth, Roger; Veldhuyzen van Zanten, Sander; Daniels, Sandra; Ghattas, George

    2013-02-01

    Increasing use of gastrointestinal endoscopy, particularly for colorectal cancer screening, and increasing emphasis on health care quality highlight the need for endoscopy facilities to review the quality of the service they offer. To adapt the United Kingdom Global Rating Scale (UK-GRS) to develop a web-based and patient-centred tool to assess and improve the quality of endoscopy services provided. Based on feedback from 22 sites across Canada that completed the UK endoscopy GRS, and integrating results of the Canadian consensus on safety and quality indicators in endoscopy and other Canadian consensus reports, a working group of endoscopists experienced with the GRS developed the GRS-Canada (GRS-C). The GRS-C mirrors the two dimensions (clinical quality and quality of the patient experience) and 12 patient-centred items of the UK-GRS, but was modified to apply to Canadian health care infrastructure, language and current practice. Each item is assessed by a yes⁄no response to eight to 12 statements that are divided into levels graded D (basic) through A (advanced). A core team consisting of a booking clerk, charge nurse and the physician responsible for the unit is recommended to complete the GRS-C twice yearly. The GRS-C is intended to improve endoscopic services in Canada by providing endoscopy units with a straightforward process to review the quality of the service they provide.

  8. Globalization

    Plum, Maja

    Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA...

  9. Globalization

    F. Gerard Adams

    2008-01-01

    The rapid globalization of the world economy is causing fundamental changes in patterns of trade and finance. Some economists have argued that globalization has arrived and that the world is “flat†. While the geographic scope of markets has increased, the author argues that new patterns of trade and finance are a result of the discrepancies between “old†countries and “new†. As the differences are gradually wiped out, particularly if knowledge and technology spread worldwide, the t...

  10. MAGNETOROTATIONAL-INSTABILITY-DRIVEN ACCRETION IN PROTOPLANETARY DISKS

    Bai Xuening

    2011-01-01

    Non-ideal MHD effects play an important role in the gas dynamics in protoplanetary disks (PPDs). This paper addresses the influence of non-ideal MHD effects on the magnetorotational instability (MRI) and angular momentum transport in PPDs using the most up-to-date results from numerical simulations. We perform chemistry calculations using a complex reaction network with standard prescriptions for X-ray and cosmic-ray ionizations. We first show that whether or not grains are included, the recombination time is at least one order of magnitude less than the orbital time within five disk scale heights, justifying the validity of local ionization equilibrium and strong coupling limit in PPDs. The full conductivity tensor at different disk radii and heights is evaluated, with the MRI active region determined by requiring that (1) the Ohmic Elsasser number Λ be greater than 1 and (2) the ratio of gas to magnetic pressure β be greater than β min (Am) as identified in the recent study by Bai and Stone, where Am is the Elsasser number for ambipolar diffusion. With full flexibility as to the magnetic field strength, we provide a general framework for estimating the MRI-driven accretion rate M-dot and the magnetic field strength in the MRI active layer. We find that the MRI active layer always exists at any disk radius as long as the magnetic field in PPDs is sufficiently weak. However, the optimistically predicted M-dot in the inner disk (r = 1-10 AU) appears insufficient to account for the observed range of accretion rates in PPDs (around 10 -8 M sun yr -1 ) even in the grain-free calculation, and the presence of solar abundance sub-micron grains further reduces M-dot by one to two orders of magnitude. Moreover, we find that the predicted M-dot increases with radius in the inner disk where accretion is layered, which would lead to runaway mass accumulation if disk accretion is solely driven by the MRI. Our results suggest that stronger sources of ionization and

  11. Symbiotic stars - a binary model with super-critical accretion

    Bath, G T [National Radio Astronomy Observatory, Charlottesville, Va. (USA)

    1977-01-01

    The structure of symbiotic variables is discussed in terms of a binary model. Disc accretion by a main sequence star or white dwarf at rates close to the Eddington limit produces an ultraviolet continuum source near the accreting star surface. This generates a variable, radiatively-driven, out-flowing wind. The wind is optically thick and the disc luminosity is absorbed and scattered and thus degraded into the optical region. Variations in the rate of mass loss in the wind lead to optical eruptions through shifts in the position of, and conditions in, the last scattering surface. The behaviour of Z And determined by Boyarchuk is shown to be in agreement with such a model. The conditions in the out-flowing wind are discussed. Limits on the mass loss rate are derived from conditions at the surface of the accreting star. It is suggested that variable out-flow in the wind is generated by fluctuations in disc luminosity produced by changes in the giant companions rate of mass transfer. The relation between symbiotic variables and classical and dwarf novae is discussed.

  12. Stunted accretion growth of black holes by combined effect of the flow angular momentum and radiation feedback

    Sugimura, Kazuyuki; Hosokawa, Takashi; Yajima, Hidenobu; Inayoshi, Kohei; Omukai, Kazuyuki

    2018-05-01

    Accretion on to seed black holes (BHs) is believed to play a crucial role in formation of supermassive BHs observed at high-redshift (z > 6). Here, we investigate the combined effect of gas angular momentum and radiation feedback on the accretion flow, by performing 2D axially symmetric radiation hydrodynamics simulations that solve the flow structure across the Bondi radius and the outer part of the accretion disc simultaneously. The accreting gas with finite angular momentum forms a rotationally-supported disc inside the Bondi radius, where the accretion proceeds by the angular momentum transport due to assumed α-type viscosity. We find that the interplay of radiation and angular momentum significantly suppresses accretion even if the radiative feedback is weakened in an equatorial shadowing region. The accretion rate is O(α) ˜ O(0.01 - 0.1) times the Bondi value, where α is the viscosity parameter. By developing an analytical model, we show that such a great reduction of the accretion rate persists unless the angular momentum is so small that the corresponding centrifugal radius is ≲ 0.04 times the Bondi radius. We argue that BHs are hard to grow quickly via rapid mass accretion considering the angular momentum barrier presented in this paper.

  13. Final stages of evolution of cold, mass-accreting white dwarfs

    Hernanz, M.; Isern, J.; Canal, R.; Labay, J.; Mochkovitch, R.

    1988-01-01

    The evolution of solid C + O white dwarf models upon mass accretion is calculated up to the point of either explosive thermonuclear ignition or gravitational collapse. It is shown that both explosions and quiet collapses to a neutron star are possible for each of two different phase diagrams for high-density C + O mixtures. The ranges of initial masses and temperatures and of accretion rates leading to the different outcomes are determined. Problems concerning the chemical composition of the accreted matter and the effects of tidal dissipation are discussed. 68 references

  14. Spectral energy distributions of T Tauri stars - disk flaring and limits on accretion

    Kenyon, S.J.; Hartmann, L.

    1987-01-01

    The Adams et al. (1987) conclusion that much of the IR excess emission in the spectral energy distribution of T Tauri stars arises from reprocessing of stellar radiation by a dusty circumstellar disk is presently supported by analyses conducted in light of various models of these stars' spectra. A low mass reprocessing disk can, however, produce these spectra as well as a massive accretion disk. The detection of possible boundary layer radiation in the optical and near-UV regions poses the strongest limits on accretion rates. Disk accretion in the T Tauri phase does not significantly modify stellar evolution. 85 references

  15. COMPETITIVE ACCRETION IN A SHEET GEOMETRY AND THE STELLAR IMF

    Hsu, Wen-Hsin; Hartmann, Lee; Heitsch, Fabian; Gomez, Gilberto C.

    2010-01-01

    We report a set of numerical experiments aimed at addressing the applicability of competitive accretion to explain the high-mass end of the stellar initial mass function in a sheet geometry with shallow gravitational potential, in contrast to most previous simulations which have assumed formation in a cluster gravitational potential. Our flat cloud geometry is motivated by models of molecular cloud formation due to large-scale flows in the interstellar medium. The experiments consisted of smoothed particle hydrodynamics simulations of gas accretion onto sink particles formed rapidly from Jeans-unstable dense clumps placed randomly in the finite sheet. These simplifications allow us to study accretion with a minimum of free parameters and to develop better statistics on the resulting mass spectra. We considered both clumps of equal mass and Gaussian distributions of masses and either uniform or spatially varying gas densities. In all cases, the sink mass function develops a power-law tail at high masses, with dN/dlog M ∝ M -Γ . The accretion rates of individual sinks follow M-dot ∝M 2 at high masses; this results in a continual flattening of the slope of the mass function toward an asymptotic form Γ ∼ 1 (where the Salpeter slope is Γ = 1.35). The asymptotic limit is most rapidly reached when starting from a relatively broad distribution of initial sink masses. In general, the resulting upper mass slope is correlated with the maximum sink mass; higher sink masses are found in simulations with flatter upper mass slopes. Although these simulations are of a highly idealized situation, the results suggest that competitive accretion may be relevant in a wider variety of environments than previously considered, and in particular that the upper mass distribution may generally evolve toward a limiting value of Γ ∼ 1.

  16. Planet population synthesis driven by pebble accretion in cluster environments

    Ndugu, N.; Bitsch, B.; Jurua, E.

    2018-02-01

    The evolution of protoplanetary discs embedded in stellar clusters depends on the age and the stellar density in which they are embedded. Stellar clusters of young age and high stellar surface density destroy protoplanetary discs by external photoevaporation and stellar encounters. Here, we consider the effect of background heating from newly formed stellar clusters on the structure of protoplanetary discs and how it affects the formation of planets in these discs. Our planet formation model is built on the core accretion scenario, where we take the reduction of the core growth time-scale due to pebble accretion into account. We synthesize planet populations that we compare to observations obtained by radial velocity measurements. The giant planets in our simulations migrate over large distances due to the fast type-II migration regime induced by a high disc viscosity (α = 5.4 × 10-3). Cold Jupiters (rp > 1 au) originate preferably from the outer disc, due to the large-scale planetary migration, while hot Jupiters (rp meaning that more gas giants are formed at larger metallicity. However, our synthetic population of isolated stars host a significant amount of giant planets even at low metallicity, in contradiction to observations where giant planets are preferably found around high metallicity stars, indicating that pebble accretion is very efficient in the standard pebble accretion framework. On the other hand, discs around stars embedded in cluster environments hardly form any giant planets at low metallicity in agreement with observations, where these changes originate from the increased temperature in the outer parts of the disc, which prolongs the core accretion time-scale of the planet. We therefore conclude that the outer disc structure and the planet's formation location determines the giant planet occurrence rate and the formation efficiency of cold and hot Jupiters.

  17. Impact of Exchange Rate Movements, Global Economic Activity, and the BDI Volatility on Loaded Port Cargo Throughput in South Korea

    Chang Beom Kim

    2016-12-01

    Full Text Available This study examines the effects of exchange rate movements, global economic activity, and the volatility of the Baltic Dry Index (BDI on South Korea's loaded port cargo throughput, based on monthly data for the period from January 2000 to October 2014. The results indicate that the BDI volatility has a negative effect on the loaded cargo throughput, while increases in the nominal exchange rate and in global economy activity have a positive effect. In addition, the error correction model results show that the error correction term is statistically significant with the negative sign.

  18. The freezer defrosting: global warming and litter decomposition rates in cold biomes. Essay review.

    Aerts, R.

    2006-01-01

    1 Decomposition of plant litter, a key component of the global carbon budget, is hierarchically controlled by the triad: climate > litter quality > soil organisms. Given the sensitivity of decomposition to temperature, especially in cold biomes, it has been hypothesized that global warming will lead

  19. Helium flashes on accreting white dwarfs: consequences for type 1 supernova and nova abundances

    Hillebrandt, W.; Ziegert, W.; Thielemann, F.K.

    1986-01-01

    Helium flashes on an accreting 1 Solar mass carbon-oxygen white dwarf are investigated. It is demonstrated that the outer layers of a white dwarf growing towards the Chandrasekhar limit will be significantly enriched in elements like Mg, Al, Si and S provided the mass accretion rate is of the order of a few times 10 -8 to 10 -7 Solar mass per year. Since these stars are believed to explode as type I supernovae the abundances being ejected will depend also upon the accretion history of the white dwarfs. In addition this matter will have a rather non-solar isotopic composition. Finally, our results may help to explain abundances of heavy elements observed in certain novae if the white dwarf in those binary systems has gone through a high accretion rate phase once in the past before becoming a normal cataclysmic variable

  20. Global and regional annual brain volume loss rates in physiological aging.

    Schippling, Sven; Ostwaldt, Ann-Christin; Suppa, Per; Spies, Lothar; Manogaran, Praveena; Gocke, Carola; Huppertz, Hans-Jürgen; Opfer, Roland

    2017-03-01

    The objective is to estimate average global and regional percentage brain volume loss per year (BVL/year) of the physiologically ageing brain. Two independent, cross-sectional single scanner cohorts of healthy subjects were included. The first cohort (n = 248) was acquired at the Medical Prevention Center (MPCH) in Hamburg, Germany. The second cohort (n = 316) was taken from the Open Access Series of Imaging Studies (OASIS). Brain parenchyma (BP), grey matter (GM), white matter (WM), corpus callosum (CC), and thalamus volumes were calculated. A non-parametric technique was applied to fit the resulting age-volume data. For each age, the BVL/year was derived from the age-volume curves. The resulting BVL/year curves were compared between the two cohorts. For the MPCH cohort, the BVL/year curve of the BP was an increasing function starting from 0.20% at the age of 35 years increasing to 0.52% at 70 years (corresponding values for GM ranged from 0.32 to 0.55%, WM from 0.02 to 0.47%, CC from 0.07 to 0.48%, and thalamus from 0.25 to 0.54%). Mean absolute difference between BVL/year trajectories across the age range of 35-70 years was 0.02% for BP, 0.04% for GM, 0.04% for WM, 0.11% for CC, and 0.02% for the thalamus. Physiological BVL/year rates were remarkably consistent between the two cohorts and independent from the scanner applied. Average BVL/year was clearly age and compartment dependent. These results need to be taken into account when defining cut-off values for pathological annual brain volume loss in disease models, such as multiple sclerosis.

  1. Source Anonymity in WSNs against Global Adversary Utilizing Low Transmission Rates with Delay Constraints

    Anas Bushnag

    2016-06-01

    Full Text Available Wireless sensor networks (WSN are deployed for many applications such as tracking and monitoring of endangered species, military applications, etc. which require anonymity of the origin, known as Source Location Privacy (SLP. The aim in SLP is to prevent unauthorized observers from tracing the source of a real event by analyzing the traffic in the network. Previous approaches to SLP such as Fortified Anonymous Communication Protocol (FACP employ transmission of real or fake packets in every time slot, which is inefficient. To overcome this shortcoming, we developed three different techniques presented in this paper. Dummy Uniform Distribution (DUD, Dummy Adaptive Distribution (DAD and Controlled Dummy Adaptive Distribution (CAD were developed to overcome the anonymity problem against a global adversary (which has the capability of analyzing and monitoring the entire network. Most of the current techniques try to prevent the adversary from perceiving the location and time of the real event whereas our proposed techniques confuse the adversary about the existence of the real event by introducing low rate fake messages, which subsequently lead to location and time privacy. Simulation results demonstrate that the proposed techniques provide reasonable delivery ratio, delay, and overhead of a real event's packets while keeping a high level of anonymity. Three different analysis models are conducted to verify the performance of our techniques. A visualization of the simulation data is performed to confirm anonymity. Further, neural network models are developed to ensure that the introduced techniques preserve SLP. Finally, a steganography model based on probability is implemented to prove the anonymity of the techniques.

  2. Global parameter optimization for maximizing radioisotope detection probabilities at fixed false alarm rates

    Portnoy, David, E-mail: david.portnoy@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Feuerbach, Robert; Heimberg, Jennifer [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States)

    2011-10-01

    Today there is a tremendous amount of interest in systems that can detect radiological or nuclear threats. Many of these systems operate in extremely high throughput situations where delays caused by false alarms can have a significant negative impact. Thus, calculating the tradeoff between detection rates and false alarm rates is critical for their successful operation. Receiver operating characteristic (ROC) curves have long been used to depict this tradeoff. The methodology was first developed in the field of signal detection. In recent years it has been used increasingly in machine learning and data mining applications. It follows that this methodology could be applied to radiological/nuclear threat detection systems. However many of these systems do not fit into the classic principles of statistical detection theory because they tend to lack tractable likelihood functions and have many parameters, which, in general, do not have a one-to-one correspondence with the detection classes. This work proposes a strategy to overcome these problems by empirically finding parameter values that maximize the probability of detection for a selected number of probabilities of false alarm. To find these parameter values a statistical global optimization technique that seeks to estimate portions of a ROC curve is proposed. The optimization combines elements of simulated annealing with elements of genetic algorithms. Genetic algorithms were chosen because they can reduce the risk of getting stuck in local minima. However classic genetic algorithms operate on arrays of Booleans values or bit strings, so simulated annealing is employed to perform mutation in the genetic algorithm. The presented initial results were generated using an isotope identification algorithm developed at Johns Hopkins University Applied Physics Laboratory. The algorithm has 12 parameters: 4 real-valued and 8 Boolean. A simulated dataset was used for the optimization study; the 'threat' set of

  3. Global parameter optimization for maximizing radioisotope detection probabilities at fixed false alarm rates

    Portnoy, David; Feuerbach, Robert; Heimberg, Jennifer

    2011-01-01

    Today there is a tremendous amount of interest in systems that can detect radiological or nuclear threats. Many of these systems operate in extremely high throughput situations where delays caused by false alarms can have a significant negative impact. Thus, calculating the tradeoff between detection rates and false alarm rates is critical for their successful operation. Receiver operating characteristic (ROC) curves have long been used to depict this tradeoff. The methodology was first developed in the field of signal detection. In recent years it has been used increasingly in machine learning and data mining applications. It follows that this methodology could be applied to radiological/nuclear threat detection systems. However many of these systems do not fit into the classic principles of statistical detection theory because they tend to lack tractable likelihood functions and have many parameters, which, in general, do not have a one-to-one correspondence with the detection classes. This work proposes a strategy to overcome these problems by empirically finding parameter values that maximize the probability of detection for a selected number of probabilities of false alarm. To find these parameter values a statistical global optimization technique that seeks to estimate portions of a ROC curve is proposed. The optimization combines elements of simulated annealing with elements of genetic algorithms. Genetic algorithms were chosen because they can reduce the risk of getting stuck in local minima. However classic genetic algorithms operate on arrays of Booleans values or bit strings, so simulated annealing is employed to perform mutation in the genetic algorithm. The presented initial results were generated using an isotope identification algorithm developed at Johns Hopkins University Applied Physics Laboratory. The algorithm has 12 parameters: 4 real-valued and 8 Boolean. A simulated dataset was used for the optimization study; the 'threat' set of spectra

  4. Magma addition rates in continental arcs: New methods of calculation and global implications

    Ratschbacher, B. C.; Paterson, S. R.

    2017-12-01

    The transport of mass, heat and geochemical constituents (elements and volatiles) from the mantle to the atmosphere occurs via magma addition to the lithosphere. Calculation of magma addition rates (MARs) in continental arcs based on exposed proportions of igneous arc rocks is complex and rarely consistently determined. Multiple factors influence MAR calculations such as crust versus mantle contributions to magmas, a change in MARs across the arc and with depths throughout the arc crustal column, `arc tempos' with periods of high and low magmatic activity, the loss of previous emplaced arc rocks by subsequent magmatism and return to the mantle, arc migration, variations in the intrusive versus extrusive additions and evolving arc widths and thicknesses during tectonism. All of these factors need to be considered when calculating MARs.This study makes a new attempt to calculate MARs in continental arcs by studying three arc sections: the Famatinian arc, Argentina, the Sierra Nevada batholith, California and the Coast Mountain batholith, Washington and British Columbia. Arcs are divided into fore-arc, main arc and back arc sections and `boxes' with a defined width, length and thickness spanning upper middle and lower crustal levels are assigned to each section. Representative exposed crustal slices for each depth are then used to calculate MARs based on outcrop proportions for each box. Geochemical data is used to infer crustal recycling percentages and total thickness of the arc. Preliminary results show a correlation between MARs, crustal thicknesses and magmatic flare-up durations. For instance, the Famatinian arc shows a strong decrease in MARs between the main arc section (9.4 km3/Ma/arc-km) and the fore-arc (0.61 km3/Ma/arc-km) and back-arc (1.52 km3/Ma/arc-km) regions and an increase in the amount of magmatism with depth.Global MARs over geologic timescales have the potential to investigate mantle melt generation rates and the volatile outgassing contribution

  5. Global parameter optimization for maximizing radioisotope detection probabilities at fixed false alarm rates

    Portnoy, David; Feuerbach, Robert; Heimberg, Jennifer

    2011-10-01

    Today there is a tremendous amount of interest in systems that can detect radiological or nuclear threats. Many of these systems operate in extremely high throughput situations where delays caused by false alarms can have a significant negative impact. Thus, calculating the tradeoff between detection rates and false alarm rates is critical for their successful operation. Receiver operating characteristic (ROC) curves have long been used to depict this tradeoff. The methodology was first developed in the field of signal detection. In recent years it has been used increasingly in machine learning and data mining applications. It follows that this methodology could be applied to radiological/nuclear threat detection systems. However many of these systems do not fit into the classic principles of statistical detection theory because they tend to lack tractable likelihood functions and have many parameters, which, in general, do not have a one-to-one correspondence with the detection classes. This work proposes a strategy to overcome these problems by empirically finding parameter values that maximize the probability of detection for a selected number of probabilities of false alarm. To find these parameter values a statistical global optimization technique that seeks to estimate portions of a ROC curve is proposed. The optimization combines elements of simulated annealing with elements of genetic algorithms. Genetic algorithms were chosen because they can reduce the risk of getting stuck in local minima. However classic genetic algorithms operate on arrays of Booleans values or bit strings, so simulated annealing is employed to perform mutation in the genetic algorithm. The presented initial results were generated using an isotope identification algorithm developed at Johns Hopkins University Applied Physics Laboratory. The algorithm has 12 parameters: 4 real-valued and 8 Boolean. A simulated dataset was used for the optimization study; the "threat" set of spectra

  6. Accretion onto hot white dwarfs in relation to symbiotic novae

    Livio, M.; Prialnik, D.; Regev, O.

    1989-01-01

    Numerical calculations are used to study the hydrodynamic evolution of a hot white dwarf with 1 solar mass accreting hydrogen-rich matter at rates between 10 to the -8th and 10 to the -6th solar masses/yr. It is found that for accretion at a rate of about 10 to the -8th solar masses/yr, nova-type outbursts of long duration occur at intervals of about 1500 yr. About half of the accreted envelope is ejected during these outbursts. At a rate of about 10 to the -7th solar masses/yr, the star alternates between comparable periods at a high plateau luminosity and giant dimensions and periods at a low luminosity and white dwarf dimension. At 10 to the -6th solar masses/yr, equilibrium is achieved with a typical red giant luminosity supported by steady hydrogen burning. It is concluded that symbiotic novae are more likely to occur in detached systems involving wind accretors. Thus, the contribution of symbiotic stars to the frequency of type I supernovae is severely constrained. 39 refs

  7. Tempo of Diversification of Global Amphibians: One-Constant Rate, One-Continuous Shift or Multiple-Discrete Shifts?

    Youhua Chen

    2014-01-01

    Full Text Available In this brief report, alternative time-varying diversification rate models were fitted onto the phylogeny of global amphibians by considering one-constant-rate (OCR, one-continuous-shift (OCS and multiplediscrete- shifts (MDS situations. The OCS diversification model was rejected by γ statistic (γ=-5.556, p⁄ 0.001, implying the existence of shifting diversification rates for global amphibian phylogeny. Through model selection, MDS diversification model outperformed OCS and OCR models using “laser” package under R environment. Moreover, MDS models, implemented using another R package “MEDUSA”, indicated that there were sixteen shifts over the internal nodes for amphibian phylogeny. Conclusively, both OCS and MDS models are recommended to compare so as to better quantify rate-shifting trends of species diversification. MDS diversification models should be preferential for large phylogenies using “MEDUSA” package in which any arbitrary numbers of shifts are allowed to model.

  8. Accretion in Saturn's F Ring

    Meinke, B. K.; Esposito, L. W.; Stewart, G.

    2012-12-01

    Saturn's F ring is the solar system's principal natural laboratory for direct observation of accretion and disruption processes. The ring resides in the Roche zone, where tidal disruption competes with self-gravity, which allows us to observe the lifecycle of moonlets. Just as nearby moons create structure at the B ring edge (Esposito et al. 2012) and the Keeler gap (Murray 2007), the F ring "shepherding" moons Prometheus and Pandora stir up ring material and create observably changing structures on timescales of days to decades. In fact, Beurle et al (2010) show that Prometheus makes it possible for "distended, yet gravitationally coherent clumps" to form in the F ring, and Barbara and Esposito (2002) predicted a population of ~1 km bodies in the ring. In addition to the observations over the last three decades, the Cassini Ultraviolet Imaging Spectrograph (UVIS) has detected 27 statistically significant features in 101 occultations by Saturn's F ring since July 2004. Seventeen of those 27 features are associated with clumps of ring material. Two features are opaque in occultation, which makes them candidates for solid objects, which we refer to as Moonlets. The 15 other features partially block stellar signal for 22 m to just over 3.7 km along the radial expanse of the occultation. Upon visual inspection of the occultation profile, these features resemble Icicles, thus we will refer to them as such here. The density enhancements responsible for such signal attenuations are likely due to transient clumping of material, evidence that aggregations of material are ubiquitous in the F ring. Our lengthy observing campaign reveals that Icicles are likely transient clumps, while Moonlets are possible solid objects. Optical depth is an indicator of clumping because more-densely aggregated material blocks more light; therefore, it is natural to imagine moonlets as later evolutionary stage of icicle, when looser clumps of material compact to form a feature that appears

  9. Accreting planets as dust dams in 'transition' disks

    Owen, James E.

    2014-01-01

    We investigate under what circumstances an embedded planet in a protoplanetary disk may sculpt the dust distribution such that it observationally presents as a 'transition' disk. We concern ourselves with 'transition' disks that have large holes (≳ 10 AU) and high accretion rates (∼10 –9 -10 –8 M ☉ yr –1 ), particularly, those disks which photoevaporative models struggle to explain. Adopting the observed accretion rates in 'transition' disks, we find that the accretion luminosity from the forming planet is significant, and can dominate over the stellar luminosity at the gap edge. This planetary accretion luminosity can apply a significant radiation pressure to small (s ≲ 1 μm) dust particles provided they are suitably decoupled from the gas. Secular evolution calculations that account for the evolution of the gas and dust components in a disk with an embedded, accreting planet, show that only with the addition of the radiation pressure can we explain the full observed characteristics of a 'transition' disk (NIR dip in the spectral energy distribution (SED), millimeter cavity, and high accretion rate). At suitably high planet masses (≳ 3-4 M J ), radiation pressure from the accreting planet is able to hold back the small dust particles, producing a heavily dust-depleted inner disk that is optically thin to infrared radiation. The planet-disk system will present as a 'transition' disk with a dip in the SED only when the planet mass and planetary accretion rate are high enough. At other times, it will present as a disk with a primordial SED, but with a cavity in the millimeter, as observed in a handful of protoplanetary disks.

  10. Cyclotron Lines in Accreting Neutron Star Spectra

    Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo

    2009-05-01

    Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.

  11. Overall scores as an alternative to global ratings in patient experience surveys : A comparison of four methods

    Krol, M.W.; de Boer, D.; Rademakers, J.J.D.J.M.; Delnoij, D.

    2013-01-01

    Background Global ratings of healthcare by patients are a popular way of summarizing patients’ experiences. Summary scores can be used for comparing healthcare provider performance and provider rankings. As an alternative, overall scores from actual patient experiences can be constructed as summary

  12. New perspectives on the accretion and internal evolution of Venus

    O'Rourke, J. G.

    2017-12-01

    Dichotomous conditions on Earth and Venus present one of the most compelling mysteries in our Solar System. Ongoing debate centers on how the internal dynamics of Venus have shaped its atmospheric composition, surface features, and even habitability over geologic time. In particular, Venus may have resembled Earth for billions of years before suffering catastrophic transformation, or perhaps some accretionary process set these twin planets on divergent paths from the beginning. Unfortunately, the limited quality of decades-old data—particularly the low resolution of radar imagery and global topography from NASA's Magellan mission—harms our ability to draw definite conclusions. But some progress is possible given recent advances in modeling techniques and improved topography derived from stereo images that are available for roughly twenty percent of the surface. Here I present simulations of the interior evolution of Venus consistent with all available constraints and, more importantly, identify future measurements that would dramatically narrow the range of acceptable scenarios. Obtaining high-resolution imagery and topography, along with any information about the temporal history of a magnetic field, is extremely important. Deformation of geologic features constrains the surface heat flow and lithospheric rheology during their formation. Determining whether craters with radar-dark floors (which comprise 80% of the population) are actually embayed by lava flows would finally settle the controversy over catastrophic versus equilibrium resurfacing. If the core of Venus has completely solidified, then the lack of an internally generated magnetic field today is unsurprising. We might expect dynamo action in the past since relatively high mantle temperatures may increase the rate of core cooling—unless a lack of giant impacts during accretion permitted chemical stratification that resists convection. In any case, uncertainty about our celestial cousin reveals a

  13. Reduce growth rate of light-duty vehicle travel to meet 2050 global climate goals

    Sager, Jalel; Apte, Joshua S; Lemoine, Derek M; Kammen, Daniel M, E-mail: jalel.sager@berkeley.edu, E-mail: japte@berkeley.edu, E-mail: dlemoine@berkeley.edu, E-mail: daniel.kammen@gmail.com [Energy and Resources Group, University of California, Berkeley, CA (United States)

    2011-04-15

    Strong policies to constrain increasing global use of light-duty vehicles (cars and light trucks) should complement fuel efficiency and carbon intensity improvements in order to meet international greenhouse gas emission and climate targets for the year 2050.

  14. Peat accretion and phosphorus accumulation along a eutrophication gradient in the northern Everglades

    Craft, C.B.; Richardson, C.J.

    1993-01-01

    Recent rates of peat accretion (as determined by Cs-137) and N, P, organic C, Ca and Na accumulation were measured along a 10 km eutrophication gradient in the northern Everglades area of Water Conservation Area 2A (WCA 2A) that has received agricultural drainage from the Hillsboro canal for the past 25-30 yrs. Rates of peat accretion were highest at sampling locations closest to the Hillsboro canal. Phosphorus and Na accumulation were a function of both peat accretion and soil P and Na concentrations. Although sodium enrichment of the peat was limited to 1.6 km downstream of the Hillsboro canal, increased rates of Na accumulation penetrated 5.2 km downstream of the Hillsboro canal, the extent of the area of enhanced peat accretion. In contrast to P and Na, there was no difference in the concentration of soil organic C, N and Ca along the eutrophication gradient. However, there was a gradient of organic C, N and Ca accumulation corresponding to the area of enhanced peat accretion. The areal extent of enhanced peat accretion and organic C, N, Ca and Na accumulation encompasses approximately 7700 ha of the northern part of WCA 2A. The area of enhanced P accumulation is larger, covering 11,500 ha or 26% of the total area of WCA 2A. The findings suggest that P accumulation is dependent on the P concentration in the water column and that decreasing P loadings per unit area result in less P storage per unit area

  15. Parametric study of flow patterns behind the standing accretion shock wave for core-collapse supernovae

    Iwakami, Wakana; Nagakura, Hiroki [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Yamada, Shoichi, E-mail: wakana@heap.phys.waseda.ac.jp [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2014-05-10

    In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshing motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.

  16. Self-gravity in Magnetized Neutrino-dominated Accretion Disks

    Shahamat, Narjes; Abbassi, Shahram, E-mail: abbassi@um.ac.ir [Department of Physics, School of Science, Ferdowsi University of Mashhad, Mashhad, P.O. Box 91775-1436 (Iran, Islamic Republic of)

    2017-08-10

    In the present work we study self-gravity effects on the vertical structure of a magnetized neutrino-dominated accretion disk as a central engine for gamma-ray bursts (GRBs). Some of the disk physical timescales that are supposed to play a pivotal role in the late-time evolutions of the disk, such as viscous, cooling, and diffusion timescales, have been studied. We are interested in investigating the possibility of the occurrence of X-ray flares, observed in late-time GRBs’ extended emission through the “magnetic barrier” and “fragmentation” processes in our model. The results lead us to interpret self-gravity as an amplifier for Blandford–Payne luminosity (BP power) and the generated magnetic field, but a suppressor for neutrino luminosity and magnetic barrier processes via highlighting the fragmentation mechanism in the outer disk, especially for the higher mass accretion rates.

  17. Conditions for accretion-induced collapse of white dwarfs

    Nomoto, Kenichi; Kondo, Yoji

    1991-01-01

    Recent discovery of an unexpectedly large number of low-mass binary pulsars (LMBPs) in globular clusters has instigated active discussions on the evolutionary origin of binary pulsars. Prompted by the possibility that at least some of LMBPs originate from accretion-induced collapse (AIC) of white dwarfs, a reexamination is conducted as to whether or not AIC occurs for the new models of O + Ne + Mg white dwarfs and solid C + O white dwarfs that can ignite explosive nuclear burning at significantly lower central densities than in the previous models. Even with low critical densities, AIC is still much more likely than explosion for both types of white dwarfs. Possible regions for AIC are presented in a diagram of mass accretion rate vs initial mass of the white dwarfs. 42 refs

  18. Quasistationary solutions of scalar fields around accreting black holes

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Izquierdo, Paula; Font, José A.; Montero, Pedro J.

    2016-08-01

    Massive scalar fields can form long-lived configurations around black holes. These configurations, dubbed quasibound states, have been studied both in the linear and nonlinear regimes. In this paper, we show that quasibound states can form in a dynamical scenario in which the mass of the black hole grows significantly due to the capture of infalling matter. We solve the Klein-Gordon equation numerically in spherical symmetry, mimicking the evolution of the spacetime through a sequence of analytic Schwarzschild black hole solutions of increasing mass. It is found that the frequency of oscillation of the quasibound states decreases as the mass of the black hole increases. In addition, accretion leads to an increase of the exponential decay of the scalar field energy. We compare the black hole mass growth rates used in our study with estimates from observational surveys and extrapolate our results to values of the scalar field masses consistent with models that propose scalar fields as dark matter in the universe. We show that, even for unrealistically large mass accretion rates, quasibound states around accreting black holes can survive for cosmological time scales. Our results provide further support to the intriguing possibility of the existence of dark matter halos based on (ultralight) scalar fields surrounding supermassive black holes in galactic centers.

  19. Two-temperature accretion disks in pair equilibrium

    Kusunose, Masaaki; Takahara, Fumio.

    1989-01-01

    We investigate two-temperature accretion disks with electron-positron pair production, taking account of the bremsstrahlung and Comptonization of soft photons produced by the cyclotron higher harmonics. The properties of the disks are qualitatively the same as those of disks in which bremsstrahlung is the only photon source. For an accretion rate higher than a critical value, M cr , no steady solutions exist for a certain range of radial distance from a central black hole. The critical value increases only slightly with the input of soft photons; the increment is 45%, i.e., M cr ∼ 0.43 M Edd , for the viscosity parameter α = 0.1, where M Edd ≡ L Edd /c 2 = 4πGM BH m p /(σ T c) with M BH being the mass of the central black hole. Furthermore, the disks are unstable against perturbations of the proton temperature. For α ∼ 0.1, the equipartition magnetic field, and a range of accretion rates, emission spectra obey the power law with a spectral index of -0.7 to -0.6, which coincides with the observed universal X-ray spectra of Seyfert galaxies. Brief comments on the model of the γ-ray flare of Cyg X-1 are also given. (author)

  20. Steepest descent approximations for accretive operator equations

    Chidume, C.E.

    1993-03-01

    A necessary and sufficient condition is established for the strong convergence of the steepest descent approximation to a solution of equations involving quasi-accretive operators defined on a uniformly smooth Banach space. (author). 49 refs

  1. Gravitomagnetic acceleration from black hole accretion disks

    Poirier, J; Mathews, G J

    2016-01-01

    We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet. (note)

  2. Gravitomagnetic acceleration from black hole accretion disks

    Poirier, J.; Mathews, G. J.

    2016-05-01

    We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  3. Review of gravitomagnetic acceleration from accretion disks

    Poirier, J.; Mathews, G. J.

    2015-11-01

    We review the development of the equations of gravitoelectromagnetism and summarize how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near the accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism to produce collimated jets, it is a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  4. Radio Loud AGN Unification: Connecting Jets and Accretion

    Meyer Eileen T.

    2013-12-01

    Full Text Available While only a fraction of Active Galactic Nuclei are observed to host a powerful relativistic jet, a cohesive picture is emerging that radio-loud AGN may represent an important phase in the evolution of galaxies and the growth of the central super-massive black hole. I will review my own recent observational work in radio-loud AGN unification in the context of understanding how and why jets form and their the connection to different kinds of accretion and growing the black hole, along with a brief discussion of possible connections to recent modeling work in jet formation. Starting from the significant observational advances in our understanding of jetted AGN as a population over the last decade thanks to new, more sensitive instruments such as Fermi and Swift as well as all-sky surveys at all frequencies, I will lay out the case for a dichotomy in the jetted AGN population connected to accretion mode onto the black hole. In recent work, we have identified two sub-populations of radio-loud AGN which appear to be distinguished by jet structure, where low-efficiency accreting systems produce ‘weak’ jets which decelerate more rapidly than the ’strong’ jets of black holes accreting near the Eddington limit. The two classes are comprised of: (1The weak jet sources, corresponding to the less collimated, edge-darkened FR Is, with a decelerating or spine-sheath jet with velocity gradients, and (2 The strong jet sources, having fast, collimated jets, and typically displaying strong emission lines. The dichotomy in the vp-Lp plane can be understood as a "broken power sequence" in which jets exist on one branch or the other based on the particular accretion mode (Georganopolous 2011.We suggest that the intrinsic kinetic power (as measured by low-frequency, isotropic radio emission, the orientation, and the accretion rate of the SMBH system are the the fundamental axes needed for unification of radio-loud AGN by studying a well-characterized sample

  5. Rapid growth of seed black holes in the early universe by supra-exponential accretion.

    Alexander, Tal; Natarajan, Priyamvada

    2014-09-12

    Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang. Copyright © 2014, American Association for the Advancement of Science.

  6. Optical veiling, disk accretion, and the evolution of T Tauri stars

    Hartmann, L.W.; Kenyon, S.J.

    1990-01-01

    High-resolution spectra of 31 K7-M1 T Tauri stars (TTs) in the Taurus-Auriga molecular cloud demonstrate that most of these objects exhibit substantial excess emission at 5200 A. Extrapolations of these data consistent with low-resolution spectrophotometry indicate that the extra emission is comparable to the stellar luminosity in many cases. If this continuum emission arises in the boundary layers of accreting disks, more than about 30 percent of all TTs may be accreting material at a rate which is sufficiently rapid to alter their evolution from standard Hayashi tracks. It is estimated that roughly 10 percent of the final stellar mass is accreted in the TT phase. This amount of material is comparable to the minimum gravitationally unstable disk mass estimated by Larson and it is speculated that the TT phase represents the final stages of disk accretion driven by gravitational instabilities. 40 refs

  7. Coastal erosion and accretion in Pak Phanang, Thailand by GIS analysis of maps and satellite imagery

    Sayedur Rahman Chowdhury

    2013-12-01

    Full Text Available Coastal erosion and accretion in Pak Phanang of southern Thailand between 1973 and 2003 was measured using multi-temporal topographic maps and Landsat satellite imageries. Within a GIS environment landward and seaward movements of shoreline was estimated by a transect-based analysis, and amounts of land accretion and erosion were estimated by a parcel-based geoprocessing. The whole longitudinal extent of the 58 kilometer coast was classified based on the erosion and accretion trends during this period using agglomerative hierarchical clustering approach. Erosion and accretion were found variable over time and space, and periodic reversal of status was also noticed in many places. Estimates of erosion were evaluated against field-survey based data, and found reasonably accurate where the rates were relatively great. Smoothing of shoreline datasets was found desirable as its impacts on the estimates remained within tolerable limits.

  8. Numerical study of nonspherical black hole accretion

    Hawley, J.F.

    1984-01-01

    This thesis describes in detail a two-dimensional, axisymmetric computer code for calculating fully relativistic ideal gas hydrodynamics around a Kerr black hole. The aim is to study fully dynamic inviscid fluid accretion onto black holes, as well as to study the evolution and development of nonlinear instabilities in pressure supported accretion disks. In order to fully calibrate and document the code, certain analytic solutions for shock tubes and special accretion flows are derived; these solutions form the basis for code testing. The numerical techniques used are developed and discussed. A variety of alternate differencing schemes are compared on an analytic test bed. Some discussion is devoted to general issues in finite differencing. The working code is calibrated using analytically solvable accretion problems, including the radial accretion of dust and of fluid with pressure (Bondi accretion). Two dimensional test problems include the spiraling infall of low angular momentum fluid, the formation of a pressure supported torus, and the stable evolution of a torus. A series of numerical models are discussed and illustrated with selected plots

  9. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades

    Breithaupt, Joshua L.; Smoak, Joseph M.; Smith, Thomas J.; Sanders, Christian J.

    2014-10-01

    The objective of this research was to measure temporal variability in accretion and mass sedimentation rates (including organic carbon (OC), total nitrogen (TN), and total phosphorous (TP)) from the past century in a mangrove forest on the Shark River in Everglades National Park, USA. The 210Pb Constant Rate of Supply model was applied to six soil cores to calculate annual rates over the most recent 10, 50, and 100 year time spans. Our results show that rates integrated over longer timeframes are lower than those for shorter, recent periods of observation. Additionally, the substantial spatial variability between cores over the 10 year period is diminished over the 100 year record, raising two important implications. First, a multiple-decade assessment of soil accretion and OC burial provides a more conservative estimate and is likely to be most relevant for forecasting these rates relative to long-term processes of sea level rise and climate change mitigation. Second, a small number of sampling locations are better able to account for spatial variability over the longer periods than for the shorter periods. The site average 100 year OC burial rate, 123 ± 19 (standard deviation) g m-2 yr-1, is low compared with global mangrove values. High TN and TP burial rates in recent decades may lead to increased soil carbon remineralization, contributing to the low carbon burial rates. Finally, the strong correlation between OC burial and accretion across this site signals the substantial contribution of OC to soil building in addition to the ecosystem service of CO2 sequestration.

  10. Two-temperature accretion disks with electron-positron pairs - Effects of Comptonized external soft photons

    Kusunose, Masaaki; Takahara, Fumio

    1990-01-01

    The present account of the effects of soft photons from external sources on two-temperature accretion disks in electron-positron pair equilibrium solves the energy-balance equation for a given radial distribution of the input rate of soft photons, taking into account their bremsstrahlung and Comptonization. Critical rate behavior is investigated as a function of the ratio of the energy flux of incident soft photons and the energy-generation rate. As in a previous study, the existence of a critical accretion rate is established.

  11. Inclusion of TCAF model in XSPEC to study accretion flow dynamics around black hole candidates

    Debnath, Dipak; Chakrabarti, Sandip Kumar; Mondal, Santanu

    Spectral and Temporal properties of black hole candidates can be well understood with the Chakrabarti-Titarchuk solution of two component advective flow (TCAF). This model requires two accretion rates, namely, the Keplerian disk accretion rate and the sub-Keplerian halo accretion rate, the latter being composed of a low angular momentum flow which may or may not develop a shock. In this solution, the relevant parameter is the relative importance of the halo (which creates the Compton cloud region) rate with respect to the Keplerian disk rate (soft photon source). Though this model has been used earlier to manually fit data of several black hole candidates quite satisfactorily, for the first time we are able to create a user friendly version by implementing additive Table model FITS file into GSFC/NASA's spectral analysis software package XSPEC. This enables any user to extract physical parameters of accretion flows, such as two accretion rates, shock location, shock strength etc. for any black hole candidate. Most importantly, unlike any other theoretical model, we show that TCAF is capable of predicting timing properties from spectral fits, since in TCAF, a shock is responsible for deciding spectral slopes as well as QPO frequencies.

  12. Is Episodic Accretion Necessary to Resolve the Luminosity Problem in Low-Mass Protostars?

    Sevrinsky, Raymond Andrew; Dunham, Michael

    2017-01-01

    In this contribution, we compare the results of protostellar accretion simulations for scenarios both containing and lacking episodic accretion activity. We determine synthetic observational signatures for collapsing protostars by taking hydrodynamical simulations predicting highly variable episodic accretion events, filtering out the stochastic behavior by applying power law fits to the mass accretion rates onto the disk and central star, and using the filtered rates as inputs to two-dimensional radiative transfer calculations. The spectral energy distributions generated by these calculations are used to calculate standard observational signatures of Lbol and Tbol, and compared directly to a sample of 230 embedded protostars. We explore the degree to which these continually declining accretion models successfully reproduce the observed spread of protostellar luminosities, and examine their consistency with the prior variable models to investigate the degree to which episodic accretion bursts are necessary in protostellar formation theories to match observations of field protostars. The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  13. Time-Dependent Variations of Accretion Disk

    Hye-Weon Na

    1987-06-01

    Full Text Available In dward nova we assume the primary star as a white dwarf and the secondary as the late type star which filled Roche lobe. Mass flow from the secondary star leads to the formation of thin accretion disk around the white dwarf. We use the α parameter as viscosity to maintain the disk form and propose that the outburst in dwarf nova cause the steep increase of source term. With these assumptions we solve the basic equations of stellar structure using Newton-Raphson method. We show the physical parameters like temperature, density, pressure, opacity, surface density, height and flux to the radius of disk. Changing the value of α, we compare several parameters when mass flow rate is constant with those of when luminosity of disk is brightest. At the same time, we obtain time-dependent variations of luminosity and mass of disk. We propose the suitable range of α is 0.15-0.18 to the difference of luminosity. We compare several parameters of disk with those of the normal late type stars which have the same molecular weight of disk is lower. Maybe the outburst in dwarf nova is due to the variation of the α value instead of increment of mass flow from the secondary star.

  14. General Relativistic Radiation MHD Simulations of Supercritical Accretion onto a Magnetized Neutron Star: Modeling of Ultraluminous X-Ray Pulsars

    Takahashi, Hiroyuki R. [Center for Computational Astrophysics, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan); Ohsuga, Ken, E-mail: takahashi@cfca.jp, E-mail: ken.ohsuga@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan)

    2017-08-10

    By performing 2.5-dimensional general relativistic radiation magnetohydrodynamic simulations, we demonstrate supercritical accretion onto a non-rotating, magnetized neutron star, where the magnetic field strength of dipole fields is 10{sup 10} G on the star surface. We found the supercritical accretion flow consists of two parts: the accretion columns and the truncated accretion disk. The supercritical accretion disk, which appears far from the neutron star, is truncated at around ≃3 R {sub *} ( R {sub *} = 10{sup 6} cm is the neutron star radius), where the magnetic pressure via the dipole magnetic fields balances with the radiation pressure of the disks. The angular momentum of the disk around the truncation radius is effectively transported inward through magnetic torque by dipole fields, inducing the spin up of a neutron star. The evaluated spin-up rate, ∼−10{sup −11} s s{sup −1}, is consistent with the recent observations of the ultraluminous X-ray pulsars. Within the truncation radius, the gas falls onto a neutron star along the dipole fields, which results in a formation of accretion columns onto the northern and southern hemispheres. The net accretion rate and the luminosity of the column are ≃66 L {sub Edd}/ c {sup 2} and ≲10 L {sub Edd}, where L {sub Edd} is the Eddington luminosity and c is the light speed. Our simulations support a hypothesis whereby the ultraluminous X-ray pulsars are powered by the supercritical accretion onto the magnetized neutron stars.

  15. Two-dimensional structure of the MAAS-Global rating list for consultation skills of doctors

    van Es, Judy M.; Schrijver, Charles J. W.; Oberink, Riëtta H. H.; Visser, Mechteld R. M.

    2012-01-01

    Background: The MAAS-Global (MG) is widely used to assess doctor-patient communication skills. Reliability and validity have been investigated, but little is known about its dimensionality. Assuming physicians tend to adopt certain styles or preferences in their communication with patients, a

  16. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes.

    Cornelissen, J.H.C.; van Bodegom, P.M.; Aerts, R.; Gallaghan, T.V.; van Logtestijn, R.S.P; Alatalo, J.; Chapin, F.S. III; Gerdol, R.; Gudmundsson, J.; Gwynn-Jones, D.; Hartley, A.E.; Hik, D.S.; Hofgaard, A.; Jonsdottir, I.S.; Karlsson, S.; Klein, J.A.; Laundre, J.; Magnusson, B.; Michelsel, A.; Molau, U.; Onipchenko, V.G.; Quested, H.M.; Sandvik, S.M.; Schmidt, I.K.; Shaver, G.R.; Solhleim, B.; Soudzilovskaia, N.A.; Stenstrom, A.; Tolvanen, A.; Totland, O.; Wada, N.; Welker, J.M.; Zhao, X.; Team, M.O.L.

    2007-01-01

    Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition.

  17. Structures formation through self-organized accretion on cosmic strings

    Murdzek, R.

    2009-01-01

    In this paper, we shall show that the formation of structures through accretion by a cosmic string is driven by a natural feed-back mechanism: a part of the energy radiated by accretions creates a pressure on the accretion disk itself. This phenomenon leads to a nonlinear evolution of the accretion process. Thus, the formation of structures results as a consequence of a self-organized growth of the accreting central object.

  18. The Correlation of Human Development Index on Fertility and Mortality Rate: a Global Ecological Study

    Amir Almasi-Hashiani

    2016-12-01

    Full Text Available BackgroundSeveral studies have examined the relationship between Human Development Index (HDI and various health outcomes. The aim of this study was to investigate the relationship between HDI, and infant mortality rate, mortality rate of children under one year and under 5 years, maternal mortality rate, and total fertility rate.Materials and MethodsIn this ecologic study, data on HDI, total fertility rate (TFR, maternal mortality rate (MMR, neonatal mortality rate (NMR, infant mortality rate (IMR and mortality rate in children under 5 years of age (< 5MR, were extracted from 188 countries in 2014 in the world. The data required in this study was obtained from the World Bank. Data analysis was performed using Pearson correlation in Stata version 12.0 software. ResultsIn this study, a negative significant correlation was observed between HDI and IMR (r = -0.878, P = 0.001, NMR (r = -0.870, 95% CI: -0.902, -0.828, P = 0.001, ConclusionIMR, children under one year old and under 5 years, and MMR mostly occur in developing countries. There was a correlation between HDI and its components, and the neonatal, infants, children under 5 years, maternal mortality rate and total fertility. The average annual percentage change of HDI also had a correlation with neonatal, infants, children under 5- year mortality rate, total fertility and maternal deaths.

  19. Reductions in soil surface albedo as a function of biochar application rate: implications for global radiative forcing

    Verheijen, Frank G A; Bastos, Ana Catarina; Keizer, Jan Jacob; Jeffery, Simon; Van der Velde, Marijn; Penížek, Vít; Beland, Martin

    2013-01-01

    Biochar can be defined as pyrolysed (charred) biomass produced for application to soils with the aim of mitigating global climate change while improving soil functions. Sustainable biochar application to soils has been estimated to reduce global greenhouse gas emissions by 71–130 Pg CO 2 -C e over 100 years, indicating an important potential to mitigate climate change. However, these estimates ignored changes in soil surface reflection by the application of dark-coloured biochar. Through a laboratory experiment we show a strong tendency for soil surface albedo to decrease as a power decay function with increasing biochar application rate, depending on soil moisture content, biochar application method and land use. Surface application of biochar resulted in strong reductions in soil surface albedo even at relatively low application rates. As a first assessment of the implications for climate change mitigation of these biochar–albedo relationships, we applied a first order global energy balance model to compare negative radiative forcings (from avoided CO 2 emissions) with positive radiative forcings (from reduced soil surface albedos). For a global-scale biochar application equivalent to 120 t ha −1 , we obtained reductions in negative radiative forcings of 5 and 11% for croplands and 11 and 23% for grasslands, when incorporating biochar into the topsoil or applying it to the soil surface, respectively. For a lower global biochar application rate (equivalent to 10 t ha −1 ), these reductions amounted to 13 and 44% for croplands and 28 and 94% for grasslands. Thus, our findings revealed the importance of including changes in soil surface albedo in studies assessing the net climate change mitigation potential of biochar, and we discuss the urgent need for field studies and more detailed spatiotemporal modelling. (letter)

  20. Disk accretion onto a black hole at subcritical luminosity

    Bisnovatyi-Kogan, G.S.; Blinnikov, S.I.

    1977-01-01

    The influence of radiation pressure on the structure of an accretion disk is considered when the total luminosity L approaches the Eddington limit Lsub(c). The motion of particles in the disk radiation field and gravitational field of a nonrotating black hole is investigated. It is shown that the disk accretion is destroyed when L approximately equal to (0.6 / 1.0) Lsub(c). Matter outflow from the central parts of the disk to infinity then sets in. We conclude that the luminosity cannot significantly exceed the Eddington limit. We show that for L > approximately 0.1 Lsub(c) the plasma in the upper layers of the central region of the disk is heated up to temperatures T approximately 10 9 K and the disk becomes thicker as compared with the standard theory. It is shown that the radiative force can generate magnetic fields B approximately 100 G. We find that convection is the main energy transfer mechanism along z-coordinate in the central parts of the disk. The convection generates an acoustic flux which dissipates in the upper, optically thin layers of the disk and heats them. The comptonization of soft photons going from layers to the hot upper layers and variable accretion rate may explain the spectrum and variations of X-ray emission of the CygX-1. (orig.) [de

  1. HYPERCRITICAL ACCRETION, INDUCED GRAVITATIONAL COLLAPSE, AND BINARY-DRIVEN HYPERNOVAE

    Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Rueda, Jorge A.; Ruffini, Remo [ICRANet, Piazza della Repubblica 10, I-65122 Pescara (Italy)

    2014-10-01

    The induced gravitational collapse (IGC) paradigm has been successfully applied to the explanation of the concomitance of gamma-ray bursts (GRBs) with supernovae (SNe) Ic. The progenitor is a tight binary system composed of a carbon-oxygen (CO) core and a neutron star (NS) companion. The explosion of the SN leads to hypercritical accretion onto the NS companion, which reaches the critical mass, hence inducing its gravitational collapse to a black hole (BH) with consequent emission of the GRB. The first estimates of this process were based on a simplified model of the binary parameters and the Bondi-Hoyle-Lyttleton accretion rate. We present here the first full numerical simulations of the IGC phenomenon. We simulate the core-collapse and SN explosion of CO stars to obtain the density and ejection velocity of the SN ejecta. We follow the hydrodynamic evolution of the accreting material falling into the Bondi-Hoyle surface of the NS all the way up to its incorporation in the NS surface. The simulations go up to BH formation when the NS reaches the critical mass. For appropriate binary parameters, the IGC occurs in short timescales ∼10{sup 2}-10{sup 3} s owing to the combined effective action of the photon trapping and the neutrino cooling near the NS surface. We also show that the IGC scenario leads to a natural explanation for why GRBs are associated only with SNe Ic with totally absent or very little helium.

  2. Comptonization effects in spherical accretion onto black holes

    Ipser, J.R.; Price, R.H.

    1983-01-01

    For spherical accretion of gas onto a black hole, dissipative heating (from magnetic reconnection), dissipation of turbulence, etc.) leads at high accretion rates to densities and temperatures at which Comptonization unavoidably plays an important role, both in determining gas temperature and in forming the emergent spectrum. A careful and reliable treatment of the interaction of the gas with the radiation field is greatly complicated by the necessity of dealing with the essentially nonlocal nature of Comptonization. We limit ourselves here to finding approximate descriptions of some observational features of such astrophysical objects with a simple, yet justifiable, Ansatz that evades the complexities of nonlocality. The results for accretion spectra are of interest, e.g., in connection with galactic halo objects (1--10 5 M/sub sun/). High mass (10 7 --10 10 M/sub sun/) cases are of interest as models for active galactic nuclei. In particular, a very natural connection between the ratio of luminosity to Eddington luminosity and the hardness of X-ray spectra emerges, suggesting that the observed X-ray hardness ratios of luminous sources are a consequence of those sources being more or less Eddington limited

  3. Anchoring Polar Magnetic Field in a Stationary Thick Accretion Disk

    Samadi, Maryam; Abbassi, Shahram, E-mail: samadimojarad@um.ac.ir [Department of Physics, School of Sciences, Ferdowsi University of Mashhad, Mashhad, 91775-1436 (Iran, Islamic Republic of)

    2017-08-20

    We investigate the properties of a hot accretion flow bathed in a poloidal magnetic field. We consider an axisymmetric viscous-resistive flow in the steady-state configuration. We assume that the dominant mechanism of energy dissipation is due to turbulence viscosity and magnetic diffusivity. A certain fraction of that energy can be advected toward the central compact object. We employ the self-similar method in the radial direction to find a system of ODEs with just one varible, θ in the spherical coordinates. For the existence and maintenance of a purely poloidal magnetic field in a rotating thick disk, we find that the necessary condition is a constant value of angular velocity along a magnetic field line. We obtain an analytical solution for the poloidal magnetic flux. We explore possible changes in the vertical structure of the disk under the influences of symmetric and asymmetric magnetic fields. Our results reveal that a polar magnetic field with even symmetry about the equatorial plane makes the disk vertically thin. Moreover, the accretion rate decreases when we consider a strong magnetic field. Finally, we notice that hot magnetized accretion flows can be fully advected even in a slim shape.

  4. Measuring the spins of accreting black holes

    McClintock, Jeffrey E; Narayan, Ramesh; Gou, Lijun; Kulkarni, Akshay; Penna, Robert F; Steiner, James F; Davis, Shane W; Orosz, Jerome A; Remillard, Ronald A

    2011-01-01

    A typical galaxy is thought to contain tens of millions of stellar-mass black holes, the collapsed remnants of once massive stars, and a single nuclear supermassive black hole. Both classes of black holes accrete gas from their environments. The accreting gas forms a flattened orbiting structure known as an accretion disk. During the past several years, it has become possible to obtain measurements of the spins of the two classes of black holes by modeling the x-ray emission from their accretion disks. Two methods are employed, both of which depend upon identifying the inner radius of the accretion disk with the innermost stable circular orbit, whose radius depends only on the mass and spin of the black hole. In the Fe Kα method, which applies to both classes of black holes, one models the profile of the relativistically broadened iron line with a special focus on the gravitationally redshifted red wing of the line. In the continuum-fitting (CF) method, which has so far only been applied to stellar-mass black holes, one models the thermal x-ray continuum spectrum of the accretion disk. We discuss both methods, with a strong emphasis on the CF method and its application to stellar-mass black holes. Spin results for eight stellar-mass black holes are summarized. These data are used to argue that the high spins of at least some of these black holes are natal, and that the presence or absence of relativistic jets in accreting black holes is not entirely determined by the spin of the black hole.

  5. Using the global positioning satellite system to determine attitude rates using doppler effects

    Campbell, Charles E. (Inventor)

    2003-01-01

    In the absence of a gyroscope, the attitude and attitude rate of a receiver can be determined using signals received by antennae on the receiver. Based on the signals received by the antennae, the Doppler difference between the signals is calculated. The Doppler difference may then be used to determine the attitude rate. With signals received from two signal sources by three antennae pairs, the three-dimensional attitude rate is determined.

  6. Exploring similarities and differences in hospital adverse event rates between Norway and Sweden using Global Trigger Tool

    Deilk?s, Ellen Tveter; Risberg, Madeleine Borgstedt; Haugen, Marion; Lindstr?m, Jonas Christoffer; Nyl?n, Urban; Rutberg, Hans; Michael, Soop

    2017-01-01

    Objectives: In this paper, we explore similarities and differences in hospital adverse event (AE) rates between Norway and Sweden by reviewing medical records with the Global Trigger Tool (GTT). Design: All acute care hospitals in both countries performed medical record reviews, except one in Norway. Records were randomly selected from all eligible admissions in 2013. Eligible admissions were patients 18 years of age or older, undergoing care with an in-hospital stay of at least 24 hours, exc...

  7. Theory of quasi-spherical accretion in X-ray pulsars

    Shakura, N.; Postnov, K.; Kochetkova, A.; Hjalmarsdotter, L.

    2012-02-01

    A theoretical model for quasi-spherical subsonic accretion on to slowly rotating magnetized neutron stars is constructed. In this model, the accreting matter subsonically settles down on to the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere. The settling regime of accretion can be realized for moderate accretion rates ? g s-1. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of the spin-up/spin-down rates (the angular rotation frequency derivative ?, and ? near the torque reversal) of X-ray pulsars with known orbital periods, it is possible to determine the main dimensionless parameters of the model, as well as to estimate the magnetic field of the neutron star. We illustrate the model by determining these parameters for three wind-fed X-ray pulsars GX 301-2, Vela X-1 and GX 1+4. The model explains both the spin-up/spin-down of the pulsar frequency on large time-scales and the irregular short-term frequency fluctuations, which can correlate or anticorrelate with the X-ray flux fluctuations in different systems. It is shown that in real pulsars an almost iso-angular-momentum rotation law with ω˜ 1/R2, due to strongly anisotropic radial turbulent motions sustained by large-scale convection, is preferred.

  8. Calcification rates of crustose coralline algae (CCA) derived from Calcification Accretion Units (CAUs) deployed at coral reef sites in Batangas, Philippines in 2012 and recovered in 2015 (NCEI Accession 0162831)

    National Oceanic and Atmospheric Administration, Department of Commerce — Laboratory experiments reveal calcification rates of crustose coralline algae (CCA) are strongly correlated to seawater aragonite saturation state. Predictions of...

  9. Calcification Rates of Crustose Coralline Algae derived from Calcification Accretion Units (CAUs) deployed across American Samoa and the Pacific Remote Island Areas in 2010 and recovered in 2012 (NCEI Accession 0137093)

    National Oceanic and Atmospheric Administration, Department of Commerce — Laboratory experiments reveal calcification rates of crustose coralline algae are strongly correlated to seawater aragonite saturation state. Predictions of reduced...

  10. FORMING AN O STAR VIA DISK ACCRETION?

    Qiu Keping; Zhang Qizhou; Beuther, Henrik; Fallscheer, Cassandra

    2012-01-01

    We present a study of outflow, infall, and rotation in a ∼10 5 L ☉ star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of ∼80 M ☉ and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 ± 50 K and a mass of ∼13 M ☉ . The outflow has a gas mass of 54 M ☉ and a dynamical timescale of 8 × 10 3 yr. The kinematics of the HMC are probed by high-excitation CH 3 OH and CH 3 CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 × 10 –3 M ☉ yr –1 , is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the 13 CO and C 18 O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass ∼10 M ☉ embedded within MM1 will develop into an O star via disk accretion and envelope infall.

  11. Rain rate measurements over global oceans from IRS-P4 MSMR

    In this paper rain estimation capability of MSMR is explored. MSMR brightness temperature data of six channels corresponding to three frequencies of 10, 18 and 21 GHz are colocated with the TRMM Microwave Imager (TMI) derived rain rates to find a new empirical algorithm for rain rate by multiple regression. Multiple ...

  12. Does global warning increase establishment rates of invasive alien species? A centurial time series analysis

    Dingcheng Huang; Robert A. Haack; Runzhi. Zhang

    2011-01-01

    The establishment rate of invasive alien insect species has been increasing worldwide during the past century. This trend has been widely attributed to increased rates of international trade and associated species introductions, but rarely linked to environmental change. To better understand and manage the bioinvasion process, it is crucial to understand the...

  13. The antecedents and consequences of restrictive age-based ratings in the global motion picture industry

    Leenders, M.A.A.M.; Eliashberg, J.

    2011-01-01

    This article analyzes one key characteristic shared by a growing number of industries. Specifically, their products and services are continuously monitored and evaluated by local third-party ratings systems. In this study, we focus on understanding the local drivers of restrictive age-based ratings

  14. Rain rate measurements over global oceans from IRS-P4 MSMR

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    This algorithm explained about 82 per cent correlation (r) with rain rate, and 1.61 mm h−1 of error of estimation. ... MSMR derived monthly averaged rain rates are compared with similar estimates from. TRMM Precipitation Radar (PR), and it .... A second order polynomial fit explains corre- lation for 10 GHz vertically polarized ...

  15. The global financial crisis and the behavior of short-term interest rates: International and Serbian aspects

    Đukić Đorđe

    2009-01-01

    Full Text Available Throughout the current global financial crisis the market has continued to fall due to a lack of confidence of those banks that are not yet prepared to lend on the interbank money market. For instance, the negative repercussions of the crisis onto the Serbian financial sector have created a number of issues including a significant increase in lending rates, a difficulty, or impossibility, for the corporate sector to use cheap cross-border loans and a reduction in the supply of foreign exchange on that basis. The inability of the National Bank of Serbia to follow the aggressive reduction of the key interest rate that has been implemented by central banks in developed countries, partly explains the lack of a decline in short-term interest rates by the Serbian banking industry. The first section of the paper focuses on the effects of the financial crisis through the behavior of short-term interest rates in the US and Europe, while the second section gives an estimation of the effects of the global financial crisis on interest rates in the banking industry in Serbia.

  16. Development and validation of a new global well-being outcomes rating scale for integrative medicine research

    Bell Iris R

    2004-01-01

    Full Text Available Abstract Background Researchers are finding limitations of currently available disease-focused questionnaire tools for outcome studies in complementary and alternative medicine/integrative medicine (CAM/IM. Methods Three substudies investigated the new one-item visual analogue Arizona Integrative Outcomes Scale (AIOS, which assesses self-rated global sense of spiritual, social, mental, emotional, and physical well-being over the past 24 hours and the past month. The first study tested the scale's ability to discriminate unhealthy individuals (n = 50 from healthy individuals (n = 50 in a rehabilitation outpatient clinic sample. The second study examined the concurrent validity of the AIOS by comparing ratings of global well-being to degree of psychological distress as measured by the Brief Symptom Inventory (BSI in undergraduate college students (N = 458. The third study evaluated the relationships between the AIOS and positively- and negatively-valenced tools (Positive and Negative Affect Scale and the Positive States of Mind Scale in a different sample of undergraduate students (N = 62. Results Substudy (i Rehabilitation patients scored significantly lower than the healthy controls on both forms of the AIOS and a current global health rating. The AIOS 24-hours correlated moderately and significantly with global health (patients r = 0.50; controls r = 0.45. AIOS 1-month correlations with global health were stronger within the controls (patients r = 0.36; controls r = 0.50. Controls (r = 0.64 had a higher correlation between the AIOS 24-hour and 1-month forms than did the patients (r = 0.33, which is consistent with the presumptive improvement in the patients' condition over the previous 30 days in rehabilitation. Substudy (ii In undergraduate students, AIOS scores were inversely related to distress ratings, as measured by the global severity index on the BSI (rAIOS24h = -0.42, rAIOS1month = -0.40. Substudy (iii AIOS scores were significantly

  17. Thin accretion disk signatures of slowly rotating black holes in Horava gravity

    Harko, Tiberiu; Kovacs, Zoltan; Lobo, Francisco S N

    2011-01-01

    In this work, we consider the possibility of observationally testing Horava gravity by using the accretion disk properties around slowly rotating black holes of the Kehagias-Sfetsos (KS) solution in asymptotically flat spacetimes. The energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and compared to the standard slowly rotating general relativistic Kerr solution. Comparing the mass accretion in a slowly rotating KS geometry in Horava gravity with the one of a slowly rotating Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for the slowly rotating Kehagias-Sfetsos solution than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating KS solution provides a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Thus, distinct signatures appear in the electromagnetic spectrum, leading to the possibility of directly testing Horava gravity models by using astrophysical observations of the emission spectra from accretion disks.

  18. Thin accretion disk signatures of slowly rotating black holes in Horava gravity

    Harko, Tiberiu; Kovacs, Zoltan [Department of Physics and Center for Theoretical and Computational Physics, University of Hong Kong, Pok Fu Lam Road (Hong Kong); Lobo, Francisco S N, E-mail: harko@hkucc.hku.hk, E-mail: zkovacs@hku.hk, E-mail: flobo@cii.fc.ul.pt [Centro de Astronomia e Astrofisica da Universidade de Lisboa, Campo Grande, Ed. C8 1749-016 Lisboa (Portugal)

    2011-08-21

    In this work, we consider the possibility of observationally testing Horava gravity by using the accretion disk properties around slowly rotating black holes of the Kehagias-Sfetsos (KS) solution in asymptotically flat spacetimes. The energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and compared to the standard slowly rotating general relativistic Kerr solution. Comparing the mass accretion in a slowly rotating KS geometry in Horava gravity with the one of a slowly rotating Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for the slowly rotating Kehagias-Sfetsos solution than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating KS solution provides a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Thus, distinct signatures appear in the electromagnetic spectrum, leading to the possibility of directly testing Horava gravity models by using astrophysical observations of the emission spectra from accretion disks.

  19. Isothermal Bondi Accretion in Jaffe and Hernquist Galaxies with a Central Black Hole: Fully Analytical Solutions

    Ciotti, Luca; Pellegrini, Silvia, E-mail: luca.ciotti@unibo.it [Department of Physics and Astronomy, University of Bologna, via Piero Gobetti 93/2, I-40129 Bologna (Italy)

    2017-10-10

    One of the most active fields of research of modern-day astrophysics is that of massive black hole formation and coevolution with the host galaxy. In these investigations, ranging from cosmological simulations, to semi-analytical modeling, to observational studies, the Bondi solution for accretion on a central point-mass is widely adopted. In this work we generalize the classical Bondi accretion theory to take into account the effects of the gravitational potential of the host galaxy, and of radiation pressure in the optically thin limit. Then, we present the fully analytical solution, in terms of the Lambert–Euler W -function, for isothermal accretion in Jaffe and Hernquist galaxies with a central black hole. The flow structure is found to be sensitive to the shape of the mass profile of the host galaxy. These results and the formulae that are provided, most importantly, the one for the critical accretion parameter, allow for a direct evaluation of all flow properties, and are then useful for the abovementioned studies. As an application, we examine the departure from the true mass accretion rate of estimates obtained using the gas properties at various distances from the black hole, under the hypothesis of classical Bondi accretion. An overestimate is obtained from regions close to the black hole, and an underestimate outside a few Bondi radii; the exact position of the transition between the two kinds of departure depends on the galaxy model.

  20. Radiative, two-temperature simulations of low-luminosity black hole accretion flows in general relativity

    Sądowski, Aleksander; Wielgus, Maciek; Narayan, Ramesh; Abarca, David; McKinney, Jonathan C.; Chael, Andrew

    2017-04-01

    We present a numerical method that evolves a two-temperature, magnetized, radiative, accretion flow around a black hole, within the framework of general relativistic radiation magnetohydrodynamics. As implemented in the code KORAL, the gas consists of two sub-components - ions and electrons - which share the same dynamics but experience independent, relativistically consistent, thermodynamical evolution. The electrons and ions are heated independently according to a prescription from the literature for magnetohydrodynamical turbulent dissipation. Energy exchange between the particle species via Coulomb collisions is included. In addition, electrons gain and lose energy and momentum by absorbing and emitting synchrotron and bremsstrahlung radiation and through Compton scattering. All evolution equations are handled within a fully covariant framework in the relativistic fixed-metric space-time of the black hole. Numerical results are presented for five models of low-luminosity black hole accretion. In the case of a model with a mass accretion rate dot{M}˜ 4× 10^{-8} dot{M}_Edd, we find that radiation has a negligible effect on either the dynamics or the thermodynamics of the accreting gas. In contrast, a model with a larger dot{M}˜ 4× 10^{-4} dot{M}_Edd behaves very differently. The accreting gas is much cooler and the flow is geometrically less thick, though it is not quite a thin accretion disc.

  1. Swings between rotation and accretion power in a binary millisecond pulsar.

    Papitto, A; Ferrigno, C; Bozzo, E; Rea, N; Pavan, L; Burderi, L; Burgay, M; Campana, S; Di Salvo, T; Falanga, M; Filipović, M D; Freire, P C C; Hessels, J W T; Possenti, A; Ransom, S M; Riggio, A; Romano, P; Sarkissian, J M; Stairs, I H; Stella, L; Torres, D F; Wieringa, M H; Wong, G F

    2013-09-26

    It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.

  2. Brightening of an accretion disk due to viscous dissipation of gravitational waves during the coalescence of supermassive black holes.

    Kocsis, Bence; Loeb, Abraham

    2008-07-25

    Mergers of supermassive black hole binaries release peak power of up to approximately 10(57) erg s(-1) in gravitational waves (GWs). As the GWs propagate through ambient gas, they induce shear and a small fraction of their power is dissipated through viscosity. The dissipated heat appears as electromagnetic (EM) radiation, providing a prompt EM counterpart to the GW signal. For thin accretion disks, the GW heating rate exceeds the accretion power at distances farther than approximately 10(3) Schwarzschild radii, independently of the accretion rate and viscosity coefficient.

  3. PLANETESIMAL ACCRETION IN BINARY SYSTEMS: ROLE OF THE COMPANION'S ORBITAL INCLINATION

    Xie Jiwei; Zhou Jilin

    2009-01-01

    Recent observations show that planets can reside in close binary systems with stellar separation of only ∼20 AU. However, planet formation in such close binary systems is a challenge to current theory. One of the major theoretical problems occurs in the intermediate stage-planetesimals accretion into planetary embryos-during which the companion's perturbations can stir up the relative velocities (utriV) of planetesimals and thus slow down or even cease their growth. Recent studies have shown that conditions could be even worse for accretion if the gas-disk evolution was included. However, all previous studies assumed a two-dimensional disk and a coplanar binary orbit. Extending previous studies by including a three-dimensional gas disk and an inclined binary orbit with small relative inclination of i B = 0. 0 1-5 0 , we numerically investigate the conditions for planetesimal accretion at 1-2 AU, an extension of the habitable zone (∼1-1.3 AU), around α Centauri A in this paper. Inclusion of the binary inclination leads to the following: (1) differential orbital phasing is realized in the three-dimensional space, and thus different-sized bodies are separated from each other, (2) total impact rate is lower, and impacts mainly occur between similar-sized bodies, (3) accretion is more favored, but the balance between accretion and erosion remains uncertain, and the 'possible accretion region' extends up to 2 AU when assuming an optimistic Q* (critical specific energy that leads to catastrophic fragmentation), and (4) impact velocities (utriV) are significantly reduced but still much larger than their escape velocities, which infers that planetesimals grow by means of type II runaway mode. As a conclusion, the inclusion of a small binary inclination is a promising mechanism that favors accretion, opening a possibility that planet formation in close binary systems can go through the difficult stage of planetesimals accretion into planetary embryos.

  4. Magnetically gated accretion in an accreting 'non-magnetic' white dwarf.

    Scaringi, S; Maccarone, T J; D'Angelo, C; Knigge, C; Groot, P J

    2017-12-13

    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 10 6 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as 'non-magnetic', because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the 'non-magnetic' accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 10 4 gauss and 1 × 10 5 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  5. SURFACE LAYER ACCRETION IN CONVENTIONAL AND TRANSITIONAL DISKS DRIVEN BY FAR-ULTRAVIOLET IONIZATION

    Perez-Becker, Daniel; Chiang, Eugene

    2011-01-01

    Whether protoplanetary disks accrete at observationally significant rates by the magnetorotational instability (MRI) depends on how well ionized they are. Disk surface layers ionized by stellar X-rays are susceptible to charge neutralization by small condensates, ranging from ∼0.01 μm sized grains to angstrom-sized polycyclic aromatic hydrocarbons (PAHs). Ion densities in X-ray-irradiated surfaces are so low that ambipolar diffusion weakens the MRI. Here we show that ionization by stellar far-ultraviolet (FUV) radiation enables full-blown MRI turbulence in disk surface layers. Far-UV ionization of atomic carbon and sulfur produces a plasma so dense that it is immune to ion recombination on grains and PAHs. The FUV-ionized layer, of thickness 0.01-0.1 g cm -2 , behaves in the ideal magnetohydrodynamic limit and can accrete at observationally significant rates at radii ∼> 1-10 AU. Surface layer accretion driven by FUV ionization can reproduce the trend of increasing accretion rate with increasing hole size seen in transitional disks. At radii ∼<1-10 AU, FUV-ionized surface layers cannot sustain the accretion rates generated at larger distance, and unless turbulent mixing of plasma can thicken the MRI-active layer, an additional means of transport is needed. In the case of transitional disks, it could be provided by planets.

  6. X-ray pulsars: accretion flow deceleration

    Miller, G.S.

    1987-01-01

    X-ray pulsars are thought to be neutron stars that derive the energy for their x-ray emission by accreting material onto their magnetic polar caps. The accreting material and the x-ray pulsar atmospheres were idealized as fully ionized plasmas consisting only of electrons and protons. A high magnetic field (∼ 5 x 10 12 Gauss) permeates the atmospheric plasma, and causes the motion of atmospheric electrons perpendicular to the field to be quantized into discrete Landau levels. All atmospheric electrons initially lie in the Landau ground state, but in the author's calculations of Coulomb collisions between atmospheric electrons and accreting protons, he allows for processes that leave the electrons in the first excited Landau level. He also considers interactions between accreting protons and the collective modes of the atmospheric plasma. Division of the electromagnetic interaction of a fast proton with a magnetized plasma into single particle and collective effects is described in detail in Chapter 2. Deceleration of the accretion flow due to Coulomb collisions with atmospheric electrons and collective plasma effects was studied in a number of computer simulations. These simulations, along with a discussion of the physical state of the atmospheric plasma and its interactions with a past proton, are presented in Chapter 3. Details of the atmospheric model and a description of the results of the simulations are given in Chapter 4. Chapter 5 contains some brief concluding remarks, and some thoughts on future research

  7. Theories of magnetospheres around accreting compact objects

    Vasyliunas, V.M.

    1979-01-01

    A wide class of galactic X-ray sources are believed to be binary systems where mass is flowing from a normal star to a companion that is a compact object, such as a neutron star. The strong magnetic fields of the compact object create a magnetosphere around it. We review the theoretical models developed to describe the properties of magnetospheres in such accreting binary systems. The size of the magnetosphere can be estimated from pressure balance arguments and is found to be small compared to the over-all size of the accretion region but large compared object if the latter is a neutron star. In the early models the magnetosphere was assumed to have open funnels in the polar regions, through which accreting plasma could pour in. Later, magnetically closed models were developed, with plasma entry made possible by instabilities at the magnetosphere boundary. The theory of plasma flow inside the magnetosphere has been formulated in analogy to a stellar wind with reversed flow; a complicating factor is the instability of the Alfven critical point for inflow. In the case of accretion via a well-defined disk, new problems if magnetospheric structure appear, in particular the question to what extent and by what process the magnetic fields from the compact object can penetrate into the acretion disk. Since the X-ray emission is powered by the gravitational energy released in the accretion process, mass transfer into the magnetosphere is of fundamental importance; the various proposed mechanisms are critically examined. (orig.)

  8. Focused Wind Mass Accretion in Mira AB

    Karovska, Margarita; de Val-Borro, M.; Hack, W.; Raymond, J.; Sasselov, D.; Lee, N. P.

    2011-05-01

    At a distance of about only 100pc, Mira AB is the nearest symbiotic system containing an Asymptotic Giant Branch (AGB) star (Mira A), and a compact accreting companion (Mira B) at about 0.5" from Mira A. Symbiotic systems are interacting binaries with a key evolutionary importance as potential progenitors of a fraction of asymmetric Planetary Nebulae, and SN type Ia, cosmological distance indicators. The region of interaction has been studied using high-angular resolution, multiwavelength observations ranging from radio to X-ray wavelengths. Our results, including high-angular resolution Chandra imaging, show a "bridge" between Mira A and Mira B, indicating gravitational focusing of the Mira A wind, whereby components exchange matter directly in addition to the wind accretion. We carried out a study using 2-D hydrodynamical models of focused wind mass accretion to determine the region of wind acceleration and the characteristics of the accretion in Mira AB. We highlight some of our results and discuss the impact on our understanding of accretion processes in symbiotic systems and other detached and semidetached interacting systems.

  9. A global database of nitrogen and phosphorus excretion rates of aquatic animals

    Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Met...

  10. Challenges in forming the solar system's giant planet cores via pebble accretion

    Kretke, K. A.; Levison, H. F.

    2014-01-01

    Though ∼10 M ⊕ mass rocky/icy cores are commonly held as a prerequisite for the formation of gas giants, theoretical models still struggle to explain how these embryos can form within the lifetimes of gaseous circumstellar disks. In recent years, aerodynamic-aided accretion of 'pebbles', objects ranging from centimeters to meters in size, has been suggested as a potential solution to this long-standing problem. While pebble accretion has been demonstrated to be extremely effective in local simulations that look at the detailed behavior of these pebbles in the vicinity of a single planetary embryo, to date there have been no global simulations demonstrating the effectiveness of pebble accretion in a more complicated, multi-planet environment. Therefore, we have incorporated the aerodynamic-aided accretion physics into LIPAD, a Lagrangian code that can follow the collisional/accretional/dynamical evolution of a protoplanetary system, to investigate how pebble accretion manifests itself in the larger planet formation picture. We find that under generic circumstances, pebble accretion naturally leads to an 'oligarchic' type of growth in which a large number of planetesimals grow to similar-sized planets. In particular, our simulations tend to form hundreds of Mars- and Earth-mass objects between 4 and 10 AU. While merging of some oligarchs may grow massive enough to form giant planet cores, leftover oligarchs lead to planetary systems that cannot be consistent with our own solar system. We investigate various ideas presented in the literature (including evaporation fronts and planet traps) and find that none easily overcome this tendency toward oligarchic growth.

  11. Global Prostate Cancer Incidence and Mortality Rates According to the Human Development Index.

    Khazaei, Salman; Rezaeian, Shahab; Ayubi, Erfan; Gholamaliee, Behzad; Pishkuhi, Mahin Ahmadi; Khazaei, Somayeh; Mansori, Kamyar; Nematollahi, Shahrzad; Sani, Mohadeseh; Hanis, Shiva Mansouri

    2016-01-01

    Prostate cancer (PC) is one of the leading causes of death, especially in developed countries. The human development index (HDI) and its dimensions seem correlated with incidence and mortality rates of PC. This study aimed to assess the association of the specific components of HDI (life expectancy at birth, education, gross national income per 1000 capita, health, and living standards) with burden indicators of PC worldwide. Information of the incidence and mortality rates of PC was obtained from the GLOBOCAN cancer project in year 2012 and data about the HDI 2013 were obtained from the World Bank database. The correlation between incidence, mortality rates, and the HDI parameters were assessed using STATA software. A significant inequality of PC incidence rates was observed according to concentration indexes=0.25 with 95% CI (0.22, 0.34) and a negative mortality concentration index of -0.04 with 95% CI (-0.09, 0.01) was observed. A positive significant correlation was detected between the incidence rates of PC and the HDI and its dimensions including life expectancy at birth, education, income, urbanization level and obesity. However, there was a negative significant correlation between the standardized mortality rates and the life expectancy, income and HDI.

  12. Global synchronization of complex dynamical networks through digital communication with limited data rate.

    Wang, Yan-Wu; Bian, Tao; Xiao, Jiang-Wen; Wen, Changyun

    2015-10-01

    This paper studies the global synchronization of complex dynamical network (CDN) under digital communication with limited bandwidth. To realize the digital communication, the so-called uniform-quantizer-sets are introduced to quantize the states of nodes, which are then encoded and decoded by newly designed encoders and decoders. To meet the requirement of the bandwidth constraint, a scaling function is utilized to guarantee the quantizers having bounded inputs and thus achieving bounded real-time quantization levels. Moreover, a new type of vector norm is introduced to simplify the expression of the bandwidth limit. Through mathematical induction, a sufficient condition is derived to ensure global synchronization of the CDNs. The lower bound on the sum of the real-time quantization levels is analyzed for different cases. Optimization method is employed to relax the requirements on the network topology and to determine the minimum of such lower bound for each case, respectively. Simulation examples are also presented to illustrate the established results.

  13. Continuum Reverberation Mapping of AGN Accretion Disks

    Fausnaugh, Michael M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA (United States); Peterson, Bradley M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH (United States); Space Telescope Science Institute, Baltimore, MD (United States); Starkey, David A. [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Horne, Keith, E-mail: faus@mit.edu [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Collaboration: the AGN STORM Collaboration

    2017-12-05

    We show recent detections of inter-band continuum lags in three AGN (NGC 5548, NGC 2617, and MCG+08-11-011), which provide new constraints on the temperature profiles and absolute sizes of the accretion disks. We find lags larger than would be predicted for standard geometrically thin, optically thick accretion disks by factors of 2.3–3.3. For NGC 5548, the data span UV through optical/near-IR wavelengths, and we are able to discern a steeper temperature profile than the T ~ R{sup −3/4} expected for a standard thin disk. Using a physical model, we are also able to estimate the inclinations of the disks for two objects. These results are similar to those found from gravitational microlensing of strongly lensed quasars, and provide a complementary approach for investigating the accretion disk structure in local, low luminosity AGN.

  14. Accretion disks in active galactic nuclei

    Shields, G.A.

    1989-01-01

    Active galactic nuclei (AGN) have taunted astrophysicists for a quarter century. How do these objects produce huge luminosities---in some cases, far outshining our galaxy---from a region perhaps no larger than the solar system? Accretion onto supermassive black holes has been widely considered the best buy in theories of AGN. Much work has gone into accretion disk theory, searches for black holes in galactic nuclei, and observational tests. These efforts have not proved the disk model, but there is progress. Evidence for black holes in the nuclei of nearby galaxies is provided by observations of stellar velocities, and radiation from the disk's hot surface may be observed in the ultraviolet (UV) and neighboring spectral bands. In the review, the author describe some of the recent work on accretion disks in AGN, with an emphasis on points of contact between theory and observation

  15. Thin accretion disk around regular black hole

    QIU Tianqi

    2014-08-01

    Full Text Available The Penrose′s cosmic censorship conjecture says that naked singularities do not exist in nature.So,it seems reasonable to further conjecture that not even a singularity exists in nature.In this paper,a regular black hole without singularity is studied in detail,especially on its thin accretion disk,energy flux,radiation temperature and accretion efficiency.It is found that the interaction of regular black hole is stronger than that of the Schwarzschild black hole. Furthermore,the thin accretion will be more efficiency to lost energy while the mass of black hole decreased. These particular properties may be used to distinguish between black holes.

  16. Magnetohydrodynamic Simulations of Black Hole Accretion

    Avara, Mark J.

    Black holes embody one of the few, simple, solutions to the Einstein field equations that describe our modern understanding of gravitation. In isolation they are small, dark, and elusive. However, when a gas cloud or star wanders too close, they light up our universe in a way no other cosmic object can. The processes of magnetohydrodynamics which describe the accretion inflow and outflows of plasma around black holes are highly coupled and nonlinear and so require numerical experiments for elucidation. These processes are at the heart of astrophysics since black holes, once they somehow reach super-massive status, influence the evolution of the largest structures in the universe. It has been my goal, with the body of work comprising this thesis, to explore the ways in which the influence of black holes on their surroundings differs from the predictions of standard accretion models. I have especially focused on how magnetization of the greater black hole environment can impact accretion systems.

  17. Accretion by rotating magnetic neutron stars. III. Accretion torques and period changes in pulsating X-ray sources

    Ghosh, P.; Lamb, F.K.

    1979-01-01

    We use the solutions of the two-dimensional hydromagnetic equations obtained previously to calculate the torque on a magnetic neutron star accreting from a Keplerian disk. We find that the magnetic coupling between the star and the plasma outside the inner edge of the disk is appreciable. As a result of this coupling the spin-up torque on fast rotators is substantially less than that on slow rotators; for sufficiently high stellar angular velocities or sufficiently low accretion rates this coupling dominates that de to the plasma and the magnetic field at the inner edge of the disk, braking the star's rotation even while accretion, and hence X-ray emission, continues.We apply these results to pulsating X-ray sources, and show that the observed secular spin-up rates of all the sources in which this rate has been measured can be accounted for quantitatively if one assumes that these sources are accreting from Keplerian disks and have magnetic moments approx.10 29 --10 32 gauss cm 3 . The reduction of the torque on fast rotators provides a natural explanation of the spin-up rate of Her X-1, which is much below that expected for slow rotators. We show further that a simple relation between the secular spin-up rate : P and the quantity PL/sup 3/7/ adequately represents almost all the observational data, P and L being the pulse period and the luminosity of the source, respectively. This ''universal'' relation enables one to estimate any one of the parameters P, P, and L for a given source if the other two are known. We show that the short-term period fluctuations observed in Her X-1, Cen X-3, Vela X-1, and X Per can be accounted for quite naturally as consequences of torque variations caused by fluctuations in the mass transfer rate. We also indicate how the spin-down torque at low luminosities found here may account for the paradoxical existence of a large number of long-period sources with short spin-up time scales

  18. Large-Scale Variation in Forest Carbon Turnover Rate and its Relation to Climate - Remote Sensing vs. Global Vegetation Models

    Carvalhais, N.; Thurner, M.; Beer, C.; Forkel, M.; Rademacher, T. T.; Santoro, M.; Tum, M.; Schmullius, C.

    2015-12-01

    While vegetation productivity is known to be strongly correlated to climate, there is a need for an improved understanding of the underlying processes of vegetation carbon turnover and their importance at a global scale. This shortcoming has been due to the lack of spatially extensive information on vegetation carbon stocks, which we recently have been able to overcome by a biomass dataset covering northern boreal and temperate forests originating from radar remote sensing. Based on state-of-the-art products on biomass and NPP, we are for the first time able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests. The implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current global vegetation models. In contrast to our observation-based findings, investigated models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well to observation-based NPP, simulated vegetation carbon stocks are severely biased compared to our biomass dataset. Current limitations lead to considerable uncertainties in the estimated vegetation carbon turnover, contributing substantially to the forest feedback to climate change. Our results are the basis for improving mortality concepts in global vegetation models and estimating their impact on the land carbon balance.

  19. Relativistic jets from accreting black holes

    Coriat, Mickael

    2010-01-01

    Matter ejection processes, more commonly called jets, are among the most ubiquitous phenomena of the universe at ail scales of size and energy and are inseparable from accretion process. This intimate link, still poorly understood, is the main focus of this thesis. Through multi-wavelength observations of X-ray binary Systems hosting a black hole, I will try to bring new constraints on the physics of relativistic jets and the accretion - ejection coupling. We strive first to compare the simultaneous infrared, optical and X-ray emissions of the binary GX 339-4 over a period of five years. We study the nature of the central accretion flow, one of the least understood emission components of X-ray binaries, both in its geometry and in term of the physical processes that take place. This component is fundamental since it is could be the jets launching area or be highly connected to it. Then we focus on the infrared emission of the jets to investigate the physical conditions close to the jets base. We finally study the influence of irradiation of the outer accretion disc by the central X-ray source. Then, we present the results of a long-term radio and X-ray study of the micro-quasar H1743- 322. This System belongs to a population of accreting black holes that display, for a given X-ray luminosity, a radio emission fainter than expected. We make several assumptions about the physical origin of this phenomenon and show in particular that these sources could have a radiatively efficient central accretion flow. We finally explore the phases of return to the hard state of GX 339-4. We follow the re-emergence of the compact jets emission and try to bring new constraints on the physics of jet formation. (author) [fr

  20. Determinants of global left ventricular peak diastolic filling rate during rest and exercise in normal volunteers

    Filiberti, A.W.; Bianco, J.A.; Baker, S.P.; Doherty; Nalivaika, L.A.; King, M.A.; Alpert, J.S.

    1984-01-01

    Early peak diastolic filling rate (PFR) of the left ventricle (LV) is said to be a sensitive index of LV dysfunction in patients with coronary disease, hypertension and hypertrophic cardiomyopathy. Radionuclide (RN0 multigated PFR was measured in 20 normal volunteers (13 males, 7 females, mean age 31 yrs., range 20-43) at rest and during supine bicycle exercise conducted to a symptomatic end-point. At rest, RN PFR was 3.4 +- SD 0.4 end-diastolic vols./sec (range 3.1 - 3.6). During exercise all normal volunteers had a progressive and numerically and statistically significant increase in PFR. Stepwise multiple linear regression (BMPD2R) was applied to the rest and exercise PFR data to develop a linear model describing the main determinants of the RN PFR. The potential independent variables which were included in the model were heart rate (HR), ejection fraction (EF), systolic arterial pressure, systolic ejection rate and exercise stage. Ranking of variables for prediction of RN PFR, and exclusion of less important variables, was done by F value criteria. The final multivariate equation was: LVPFR = -3.84437 + 0.03834 HR + 0.07537 LVEF. The model fit was highly significant (p<0.001), and accounted for 89 per cent of variability in the PFR. The authors conclude that the left ventricular peak filling rate is critically determined by heart rate and by ejection fraction at rest and during exercise

  1. Topics in the physics of accretion onto black holes

    Stoeger, W.R.

    1977-06-01

    The subject is covered in chapters, entitled: introduction and overview; boundary-condition modification of accretion-disk models; standard assumptions and nonkeplerian inner-disk models; the 'inner edge' of accretion disks and spiral orbits; a review of comptonization in accretion disks and a criterion for Lightman-Eardley stability; the thickening of accretion disks and flows; radial pressure gradients and low-angular-momentum accretion; accretion-disk scenarios for X-ray transient and burst sources; photon pair-creation processes in transrelativistic plasmas; and the astrophysical consequences of Rosen's bi-metric theory of gravity. (U.K.)

  2. The Evolution of a Supermassive Retrograde Binary Embedded in an Accretion Disk

    Ivanov P. B.

    2015-06-01

    Full Text Available In this note we discuss the main results of a study of a massive binary with unequal mass ratio, q, embedded in an accretion disk, with its orbital rotation being opposed to that of the disk. When the mass ratio is sufficiently large, a gap opens in the disk, but the mechanism of gap formation is very different from the prograde case. Inward migration occurs on a timescale of tev ~ Mp/Ṁ, where Mp is the mass of the less massive component (the perturber, and Ṁ is the accretion rate. When q ≪ 1, the accretion takes place mostly onto the more massive component, with the accretion rate onto the perturber being smaller than, or of order of, q1/3 Ṁ. However, this rate increases when supermassive binary black holes are considered and gravitational wave emission is important. We estimate a typical duration of time for which the accretion onto the perturber and gravitational waves could be detected.

  3. Gravitational Waves from Accreting Neutron Stars Undergoing Common-envelope Inspiral

    Holgado, A. Miguel; Ricker, Paul M.; Huerta, E. A.

    2018-04-01

    The common-envelope phase is a likely formation channel for close binary systems containing compact objects. Neutron stars in common envelopes accrete at a fraction of the Bondi–Hoyle–Lyttleton accretion rate, since the stellar envelope is inhomogeneous, but they may still be able to accrete at hypercritical rates (though not enough to become black holes). We show that common-envelope systems consisting of a neutron star with a massive primary may be gravitational-wave (GW) sources detectable in the Advanced LIGO band as far away as the Magellanic Clouds. To characterize their evolution, we perform orbital integrations using 1D models of 12 M ⊙ and 20 M ⊙ primaries, considering the effects of density gradient on the accretion onto the NS and spin evolution. From the range of possible accretion rates relevant to common-envelope evolution, we find that these systems may be louder GW sources than low-mass X-ray binaries like Sco X-1, which are currently the target of directed searches for continuous GWs. We also find that their strain amplitude signal may allow for novel constraints on the orbital separation and inspiral timescale in common envelopes when combined with pre-common-envelope electromagnetic observations.

  4. Undergoing spherically symmetric steady-state accretion stability of white dwarfs

    Sienkiewicz, R [Polska Akademia Nauk, Warsaw. N. Copernicus Astronomical Center

    1980-01-01

    Thermal and vibrational stabilities of accreting white dwarfs with steady-state nuclear burning were considered, assuming spherically symmetric accretion of the hydrogen-rich matter and using linear stability analysis. Almost all models with masses 0.2 M(sun) - 1.39 M(sun) were found to be unstable in some way. The type of instability expected to dominate is given as a function of the accretion rate. For most accretion rates it is the thermal instability. Oscillation periods are given for the models in which the vibrational instability is the most violent one. These periods are of the order of seconds or minutes. We expect that our stability analysis may suggest the cause of the variabilities of the hot components of some symbiotic stars, for a wide range of the accretion rates. In this case our models may serve as the initial conditions for evolutionary computations. The results predict that short-period oscillations should be observed in some hot nuclei of planetary nebulae.

  5. Integrated Strategic Planning of Global Production Networks and Financial Hedging under Uncertain Demands and Exchange Rates

    Achim Koberstein

    2013-11-01

    Full Text Available In this paper, we present a multi-stage stochastic programming model that integrates financial hedging decisions into the planning of strategic production networks under uncertain exchange rates and product demands. This model considers the expenses of production plants and the revenues of markets in different currency areas. Financial portfolio planning decisions for two types of financial instruments, forward contracts and options, are represented explicitly by multi-period decision variables and a multi-stage scenario tree. Using an illustrative example, we analyze the impact of exchange-rate and demand volatility, the level of investment expenses and interest rate spreads on capacity location and dimensioning decisions. In particular, we show that, in the illustrative example, the exchange-rate uncertainty cannot be completely eliminated by financial hedging in the presence of demand uncertainty. In this situation, we find that the integrated model can result in better strategic planning decisions for a risk-averse decision maker compared to traditional modeling approaches.

  6. The impact of varicella vaccination on varicella-related hospitalization rates: global data review.

    Hirose, Maki; Gilio, Alfredo Elias; Ferronato, Angela Esposito; Ragazzi, Selma Lopes Betta

    2016-09-01

    to describe the impact of varicella vaccination on varicella-related hospitalization rates in countries that implemented universal vaccination against the disease. we identified countries that implemented universal vaccination against varicella at the http://apps.who.int/immunization_monitoring/globalsummary/schedules site of the World Health Organization and selected articles in Pubmed describing the changes (pre/post-vaccination) in the varicella-related hospitalization rates in these countries, using the Keywords "varicella", "vaccination/vaccine" and "children" (or) "hospitalization". Publications in English published between January 1995 and May 2015 were included. 24 countries with universal vaccination against varicella and 28 articles describing the impact of the vaccine on varicella-associated hospitalizations rates in seven countries were identified. The US had 81.4% -99.2% reduction in hospitalization rates in children younger than four years after 6-14 years after the onset of universal vaccination (1995), with vaccination coverage of 90%; Uruguay: 94% decrease (children aged 1-4 years) in six years, vaccination coverage of 90%; Canada: 93% decrease (age 1-4 years) in 10 years, coverage of 93%; Germany: 62.4% decrease (age 1-4 years) in 8 years, coverage of 78.2%; Australia: 76.8% decrease (age 1-4 years) in 5 years, coverage of 90%; Spain: 83.5% decrease (age <5 years) in four years, coverage of 77.2% and Italy 69.7% -73.8% decrease (general population), coverage of 60%-95%. The publications showed variations in the percentage of decrease in varicella-related hospitalization rates after universal vaccination in the assessed countries; the results probably depend on the time since the implementation of universal vaccination, differences in the studied age group, hospital admission criteria, vaccination coverage and strategy, which does not allow direct comparison between data. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por

  7. The impact of varicella vaccination on varicella-related hospitalization rates: global data review

    Maki Hirose

    Full Text Available Abstract Objective: To describe the impact of varicella vaccination on varicella-related hospitalization rates in countries that implemented universal vaccination against the disease. Data source: We identified countries that implemented universal vaccination against varicella at the http://apps.who.int/immunization_monitoring/globalsummary/schedules site of the World Health Organization and selected articles in Pubmed describing the changes (pre/post-vaccination in the varicella-related hospitalization rates in these countries, using the Keywords "varicella", "vaccination/vaccine" and "children" (or "hospitalization". Publications in English published between January 1995 and May 2015 were included. Data synthesis: 24 countries with universal vaccination against varicella and 28 articles describing the impact of the vaccine on varicella-associated hospitalizations rates in seven countries were identified. The US had 81.4%–99.2% reduction in hospitalization rates in children younger than four years, 6–14 years after the onset of universal vaccination (1995, with vaccination coverage of 90%; Uruguay: 94% decrease (children aged 1–4 years in six years, vaccination coverage of 90%; Canada: 93% decrease (age 1–4 years in 10 years, coverage of 93%; Germany: 62.4% decrease (age 1–4 years in 8 years, coverage of 78.2%; Australia: 76.8% decrease (age 1–4 years in 5 years, coverage of 90%; Spain: 83.5% decrease (age <5 years in four years, coverage of 77.2% and Italy 69.7%–73.8% decrease (general population, coverage of 60%–95%. Conclusions: The publications showed variations in the percentage of decrease in varicella-related hospitalization rates after universal vaccination in the assessed countries; the results probably depend on the time since the implementation of universal vaccination, differences in the studied age group, hospital admission criteria, vaccination coverage and strategy, which does not allow direct comparison between

  8. Hydrodynamic Simulations of Classical Novae: Accretion onto CO White Dwarfs as SN Ia Progenitors

    Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William R.; José, Jordi; Hernanz, Margarita

    2017-06-01

    We have continued our studies of accretion onto white dwarfs by following the evolution of thermonuclear runaways on Carbon Oxygen (CO) white dwarfs. We have varied the mass of the white dwarf and the composition of the accreted material but chosen to keep the mass accretion rate at 2 x 10^{-10} solar masses per year to obtain the largest amount of accreted material possible with rates near to those observed. We assume either 25% core material or 50% core material has been mixed into the accreting material prior to the explosion. We use our 1D, lagrangian, hydrodynamic code: NOVA. We will report on the results of these simulations and compare the ejecta abundances to those measured in pre-solar grains that are thought to arise from classical nova explosions. These results will also be compared to recent results with SHIVA (Jose and Hernanz). We find that in all cases and for all white dwarf masses that less mass is ejected than accreted and, therefore, the white dwarf is growing in mass as a result of the accretion and resulting explosion.This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA, NSF, and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics. The results reported herein benefitted from collaborations and/or information exchange within NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate.

  9. Global determination of rating curves in the Amazon basin from satellite altimetry

    Paris, Adrien; Paiva, Rodrigo C. D.; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Calmant, Stéphane; Collischonn, Walter; Bonnet, Marie-Paule; Seyler, Frédérique

    2014-05-01

    The Amazonian basin is the largest hydrological basin all over the world. Over the past few years, it has experienced an unusual succession of extreme droughts and floods, which origin is still a matter of debate. One of the major issues in understanding such events is to get discharge series distributed over the entire basin. Satellite altimetry can be used to improve our knowledge of the hydrological stream flow conditions in the basin, through rating curves. Rating curves are mathematical relationships between stage and discharge at a given place. The common way to determine the parameters of the relationship is to compute the non-linear regression between the discharge and stage series. In this study, the discharge data was obtained by simulation through the entire basin using the MGB-IPH model with TRMM Merge input rainfall data and assimilation of gage data, run from 1998 to 2009. The stage dataset is made of ~900 altimetry series at ENVISAT and Jason-2 virtual stations, sampling the stages over more than a hundred of rivers in the basin. Altimetry series span between 2002 and 2011. In the present work we present the benefits of using stochastic methods instead of probabilistic ones to determine a dataset of rating curve parameters which are hydrologicaly meaningful throughout the entire Amazon basin. The rating curve parameters have been computed using an optimization technique based on Markov Chain Monte Carlo sampler and Bayesian inference scheme. This technique provides an estimate of the best value for the parameters together with their posterior probability distribution, allowing the determination of a credibility interval for calculated discharge. Also the error over discharges estimates from the MGB-IPH model is included in the rating curve determination. These MGB-IPH errors come from either errors in the discharge derived from the gage readings or errors in the satellite rainfall estimates. The present experiment shows that the stochastic approach

  10. Comparison of global storm activity rate calculated from Schumann resonance background components to electric field intensity E0 Z

    Nieckarz, Zenon; Kułak, Andrzej; Zięba, Stanisław; Kubicki, Marek; Michnowski, Stanisław; Barański, Piotr

    2009-02-01

    This work presents the results of a comparison between the global storm activity rate IRS and electric field intensity E0 Z. The permanent analysis of the IRS may become an important tool for testing Global Electric Circuit models. IRS is determined by a new method that uses the background component of the first 7 Schumann resonances (SR). The rate calculations are based on ELF observations carried out in 2005 and 2006 in the observatory station "Hylaty" of the Jagiellonian University in the Eastern Carpathians (Kułak, A., Zięba, S., Micek, S., Nieckarz, Z., 2003. Solar variations in extremely low frequency propagation parameters: I. A two-dimensional telegraph equation (TDTE) model of ELF propagation and fundamental parameters of Schumann resonances, J. Geophys. Res., 108, 1270, doi:10.1029/2002JA009304). Diurnal runs of the IRS rate were compared with diurnal runs of E0 Z amplitudes registered at the Earth's surface in the Geophysical Observatory of the Polish Academy of Sciences in Świder (Kubicki, M., 2005. Results of Atmospheric Electricity and Meteorological Observations, S. Kalinowski Geophysical Observatory at Świder 2004, Pub. Inst. Geophysics Polish Academy of Sciences, D-68 (383), Warszawa.). The days with the highest values of the correlation coefficient ( R) between amplitudes of both observed parameters characterizing atmosphere electric activity are shown. The seasonal changes of R, IRS and E0 Z are also presented.

  11. Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro kcat measurements

    Davidi, Dan; Noor, Elad; Liebermeister, Wolfram; Bar-Even, Arren; Flamholz, Avi; Tummler, Katja; Barenholz, Uri; Goldenfeld, Miki; Shlomi, Tomer; Milo, Ron

    2016-01-01

    Turnover numbers, also known as kcat values, are fundamental properties of enzymes. However, kcat data are scarce and measured in vitro, thus may not faithfully represent the in vivo situation. A basic question that awaits elucidation is: how representative are kcat values for the maximal catalytic rates of enzymes in vivo? Here, we harness omics data to calculate kmaxvivo, the observed maximal catalytic rate of an enzyme inside cells. Comparison with kcat values from Escherichia coli, yields a correlation of r2= 0.62 in log scale (p enzymes and the backward flux dictated by thermodynamics, we further refine the correspondence between kmaxvivo and kcat values. The approach we present here characterizes the quantitative relationship between enzymatic catalysis in vitro and in vivo and offers a high-throughput method for extracting enzyme kinetic constants from omics data. PMID:26951675

  12. Cooling of Accretion-Heated Neutron Stars

    Wijnands, Rudy; Degenaar, Nathalie; Page, Dany

    2017-09-01

    We present a brief, observational review about the study of the cooling behaviour of accretion-heated neutron stars and the inferences about the neutron-star crust and core that have been obtained from these studies. Accretion of matter during outbursts can heat the crust out of thermal equilibrium with the core and after the accretion episodes are over, the crust will cool down until crust-core equilibrium is restored. We discuss the observed properties of the crust cooling sources and what has been learned about the physics of neutron-star crusts. We also briefly discuss those systems that have been observed long after their outbursts were over, i.e, during times when the crust and core are expected to be in thermal equilibrium. The surface temperature is then a direct probe for the core temperature. By comparing the expected temperatures based on estimates of the accretion history of the targets with the observed ones, the physics of neutron-star cores can be investigated. Finally, we discuss similar studies performed for strongly magnetized neutron stars in which the magnetic field might play an important role in the heating and cooling of the neutron stars.

  13. VARIABLE ACCRETION OUTBURSTS IN PROTOSTELLAR EVOLUTION

    Bae, Jaehan; Hartmann, Lee; Zhu, Zhaohuan; Gammie, Charles

    2013-01-01

    We extend the one-dimensional, two-zone models of long-term protostellar disk evolution with infall of Zhu et al. to consider the potential effects of a finite viscosity in regions where the ionization is too low for the magnetorotational instability (MRI) to operate (the d ead zone ) . We find that the presence of a small but finite dead zone viscosity, as suggested by simulations of stratified disks with MRI-active outer layers, can trigger inside-out bursts of accretion, starting at or near the inner edge of the disk, instead of the previously found outside-in bursts with zero dead zone viscosity, which originate at a few AU in radius. These inside-out bursts of accretion bear a qualitative resemblance to the outburst behavior of one FU Ori object, V1515 Cyg, in contrast to the outside-in burst models, which more closely resemble the accretion events in FU Ori and V1057 Cyg. Our results suggest that the type and frequency of outbursts are potentially a probe of transport efficiency in the dead zone. Simulations must treat the inner disk regions, R ∼< 0.5 AU, to show the detailed time evolution of accretion outbursts in general and to observe the inside-out bursts in particular.

  14. VARIABLE ACCRETION OUTBURSTS IN PROTOSTELLAR EVOLUTION

    Bae, Jaehan; Hartmann, Lee [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48105 (United States); Zhu, Zhaohuan [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Gammie, Charles, E-mail: jaehbae@umich.edu, E-mail: lhartm@umich.edu, E-mail: zhuzh@astro.princeton.edu, E-mail: gammie@illinois.edu [Department of Astronomy, University of Illinois Urbana-Champaign, 1002 W. Green St., Urbana, IL 61801 (United States)

    2013-02-20

    We extend the one-dimensional, two-zone models of long-term protostellar disk evolution with infall of Zhu et al. to consider the potential effects of a finite viscosity in regions where the ionization is too low for the magnetorotational instability (MRI) to operate (the {sup d}ead zone{sup )}. We find that the presence of a small but finite dead zone viscosity, as suggested by simulations of stratified disks with MRI-active outer layers, can trigger inside-out bursts of accretion, starting at or near the inner edge of the disk, instead of the previously found outside-in bursts with zero dead zone viscosity, which originate at a few AU in radius. These inside-out bursts of accretion bear a qualitative resemblance to the outburst behavior of one FU Ori object, V1515 Cyg, in contrast to the outside-in burst models, which more closely resemble the accretion events in FU Ori and V1057 Cyg. Our results suggest that the type and frequency of outbursts are potentially a probe of transport efficiency in the dead zone. Simulations must treat the inner disk regions, R {approx}< 0.5 AU, to show the detailed time evolution of accretion outbursts in general and to observe the inside-out bursts in particular.

  15. QPOs and Resonance in Accretion Disks

    Kluzniak, W.; Abramowicz, M. A.; Bursa, Michal; Török, G.

    2007-01-01

    Roč. 27, Marzo 2007 (2007), s. 18-25 ISSN 1405-2059 R&D Projects: GA AV ČR IAA300030510 Institutional research plan: CEZ:AV0Z10030501 Keywords : quasi-periodic oscillations * accretion disks * general relativity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  16. Cooling of Accretion-Heated Neutron Stars

    Rudy Wijnands

    2017-09-12

    Sep 12, 2017 ... the magnetic field might play an important role in the heating and cooling of the neutron stars. .... Source near Sgr A ..... marked the start of the research field that uses the cool- ... This curve is just to guide the eye for the individual sources and it is clear ..... Not all accretion-induced nuclear reactions might.

  17. On the resonant behavior of longitudinally vibrating accreting rods

    Shatalov, M

    2012-09-01

    Full Text Available The theory of accreting structures is a new and fast developing branch of analytical mechanics basing on the theory of partial differential and integral equations. In the present paper the authors analyze qualitative properties of accreting rods...

  18. Electron-positron pair production in a hot accretion plasma around a massive black hole

    Takahara, Fumio; Kusunose, Masaaki.

    1985-01-01

    We investigate the electron-positron pair production in a hot accretion plasma around a supermassive black hole in connection with active galactic nuclei. Assuming that an optically thin two-temperature plasma is produced in the vicinity of the central black hole, we examine the condition for the significant pair production by comparing relevant time scales. Since the pair production is dominated by collisions between hard photons, the conditions for significant pair production depend on the production rate of hard photons. We examine the case where the unsaturated Comptonization of soft photons produces hard photons as well as that of bremsstrahlung. We show that significant pair production occurs for a moderately high accretion rate with relatively slow accretion flow as compared to the free fall velocity in both cases. Possible consequences of pair production are briefly discussed. (author)

  19. Modeling and Detection of Ice Particle Accretion in Aircraft Engine Compression Systems

    May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei

    2012-01-01

    The accretion of ice particles in the core of commercial aircraft engines has been an ongoing aviation safety challenge. While no accidents have resulted from this phenomenon to date, numerous engine power loss events ranging from uneventful recoveries to forced landings have been recorded. As a first step to enabling mitigation strategies during ice accretion, a detection scheme must be developed that is capable of being implemented on board modern engines. In this paper, a simple detection scheme is developed and tested using a realistic engine simulation with approximate ice accretion models based on data from a compressor design tool. These accretion models are implemented as modified Low Pressure Compressor maps and have the capability to shift engine performance based on a specified level of ice blockage. Based on results from this model, it is possible to detect the accretion of ice in the engine core by observing shifts in the typical sensed engine outputs. Results are presented in which, for a 0.1 percent false positive rate, a true positive detection rate of 98 percent is achieved.

  20. EFFECTS OF BIASES IN VIRIAL MASS ESTIMATION ON COSMIC SYNCHRONIZATION OF QUASAR ACCRETION

    Steinhardt, Charles L.

    2011-01-01

    Recent work using virial mass estimates and the quasar mass-luminosity plane has yielded several new puzzles regarding quasar accretion, including a sub-Eddington boundary (SEB) on most quasar accretion, near-independence of the accretion rate from properties of the host galaxy, and a cosmic synchronization of accretion among black holes of a common mass. We consider how these puzzles might change if virial mass estimation turns out to have a systematic bias. As examples, we consider two recent claims of mass-dependent biases in Mg II masses. Under any such correction, the surprising cosmic synchronization of quasar accretion rates and independence from the host galaxy remain. The slope and location of the SEB are very sensitive to biases in virial mass estimation, and various mass calibrations appear to favor different possible physical explanations for feedback between the central black hole and its environment. The alternative mass estimators considered do not simply remove puzzling quasar behavior, but rather replace it with new puzzles that may be more difficult to solve than those using current virial mass estimators and the Shen et al. catalog.

  1. Optically thin core accretion: how planets get their gas in nearly gas-free discs

    Lee, Eve J.; Chiang, Eugene; Ferguson, Jason W.

    2018-05-01

    Models of core accretion assume that in the radiative zones of accreting gas envelopes, radiation diffuses. But super-Earths/sub-Neptunes (1-4 R⊕, 2-20 M⊕) point to formation conditions that are optically thin: their modest gas masses are accreted from short-lived and gas-poor nebulae reminiscent of the transparent cavities of transitional discs. Planetary atmospheres born in such environments can be optically thin to both incident starlight and internally generated thermal radiation. We construct time-dependent models of such atmospheres, showing that super-Earths/sub-Neptunes can accrete their ˜1 per cent-by-mass gas envelopes, and super-puffs/sub-Saturns their ˜20 per cent-by-mass envelopes, over a wide range of nebular depletion histories requiring no fine tuning. Although nascent atmospheres can exhibit stratospheric temperature inversions affected by atomic Fe and various oxides that absorb strongly at visible wavelengths, the rate of gas accretion remains controlled by the radiative-convective boundary (rcb) at much greater pressures. For dusty envelopes, the temperature at the rcb Trcb ≃ 2500 K is still set by H2 dissociation; for dust-depleted envelopes, Trcb tracks the temperature of the visible or thermal photosphere, whichever is deeper, out to at least ˜5 au. The rate of envelope growth remains largely unchanged between the old radiative diffusion models and the new optically thin models, reinforcing how robustly super-Earths form as part of the endgame chapter in disc evolution.

  2. GLOBAL STAR FORMATION RATES AND DUST EMISSION OVER THE GALAXY INTERACTION SEQUENCE

    Lanz, Lauranne; Zezas, Andreas; Smith, Howard A.; Ashby, Matthew L. N.; Fazio, Giovanni G.; Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Brassington, Nicola [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom); Da Cunha, Elisabete [Max Planck Institute for Astronomy (MPIA), Koenigstuhl 17, D-69117, Heidelberg (Germany); Hayward, Christopher C. [Heidelberger Institut fuer Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118, Heidelberg (Germany); Jonsson, Patrik, E-mail: llanz@head.cfa.harvard.edu [Space Exploration Technologies, 1 Rocket Road, Hawthorne, CA 90250 (United States)

    2013-05-01

    We measured and modeled spectral energy distributions (SEDs) in 28 bands from the ultraviolet to the far-infrared (FIR) for 31 interacting galaxies in 14 systems. The sample is drawn from the Spitzer Interacting Galaxy Survey, which probes a range of galaxy interaction parameters at multiple wavelengths with an emphasis on the infrared bands. The subset presented in this paper consists of all galaxies for which FIR Herschel SPIRE observations are publicly available. Our SEDs combine the Herschel photometry with multi-wavelength data from Spitzer, GALEX, Swift UVOT, and 2MASS. While the shapes of the SEDs are broadly similar across our sample, strongly interacting galaxies typically have more mid-infrared emission relative to their near-infrared and FIR emission than weakly or moderately interacting galaxies. We modeled the full SEDs to derive host galaxy star formation rates (SFRs), specific star formation rates (sSFRs), stellar masses, dust temperatures, dust luminosities, and dust masses. We find increases in the dust luminosity and mass, SFR, and cold (15-25 K) dust temperature as the interaction progresses from moderately to strongly interacting and between non-interacting and strongly interacting galaxies. We also find increases in the SFR between weakly and strongly interacting galaxies. In contrast, the sSFR remains unchanged across all the interaction stages. The ultraviolet photometry is crucial for constraining the age of the stellar population and the SFR, while dust mass is primarily determined by SPIRE photometry. The SFR derived from the SED modeling agrees well with rates estimated by proportionality relations that depend on infrared emission.

  3. Collecting Information for Rating Global Assessment of Functioning (GAF): Sources of Information and Methods for Information Collection.

    I H, Monrad Aas

    2014-11-01

    Global Assessment of Functioning (GAF) is an assessment instrument that is known worldwide. It is widely used for rating the severity of illness. Results from evaluations in psychiatry should characterize the patients. Rating of GAF is based on collected information. The aim of the study is to identify the factors involved in collecting information that is relevant for rating GAF, and gaps in knowledge where it is likely that further development would play a role for improved scoring. A literature search was conducted with a combination of thorough hand search and search in the bibliographic databases PubMed, PsycINFO, Google Scholar, and Campbell Collaboration Library of Systematic Reviews. Collection of information for rating GAF depends on two fundamental factors: the sources of information and the methods for information collection. Sources of information are patients, informants, health personnel, medical records, letters of referral and police records about violence and substance abuse. Methods for information collection include the many different types of interview - unstructured, semi-structured, structured, interviews for Axis I and II disorders, semistructured interviews for rating GAF, and interviews of informants - as well as instruments for rating symptoms and functioning, and observation. The different sources of information, and methods for collection, frequently result in inconsistencies in the information collected. The variation in collected information, and lack of a generally accepted algorithm for combining collected information, is likely to be important for rated GAF values, but there is a fundamental lack of knowledge about the degree of importance. Research to improve GAF has not reached a high level. Rated GAF values are likely to be influenced by both the sources of information used and the methods employed for information collection, but the lack of research-based information about these influences is fundamental. Further development of

  4. Plasma Protein Turnover Rates in Rats Using Stable Isotope Labeling, Global Proteomics, and Activity-Based Protein Profiling

    Smith, Jordan N.; Tyrrell, Kimberly J.; Hansen, Joshua R.; Thomas, Dennis G.; Murphree, Taylor A.; Shukla, Anil K.; Luders, Teresa; Madden, James M.; Li, Yunying; Wright, Aaron T.; Piehowski, Paul D.

    2017-12-06

    Protein turnover is important for general health on cellular and organism scales providing a strategy to replace old, damaged, or dysfunctional proteins. Protein turnover also informs of biomarker kinetics, as a better understanding of synthesis and degradation of proteins increases the clinical utility of biomarkers. Here, turnover rates of plasma proteins in rats were measured in vivo using a pulse-chase stable isotope labeling experiment. During the pulse, rats (n=5) were fed 13C6-labeled lysine (“heavy”) feed for 23 days to label proteins. During the chase, feed was changed to an unlabeled equivalent feed (“light”), and blood was repeatedly sampled from rats over 10 time points for 28 days. Plasma samples were digested with trypsin, and analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). MaxQuant was used to identify peptides and proteins, and quantify heavy:light lysine ratios. A system of ordinary differential equations was used to calculate protein turnover rates. Using this approach, 273 proteins were identified, and turnover rates were quantified for 157 plasma proteins with half-lives ranging 0.3-103 days. For the ~70 most abundant proteins, variability in turnover rates among rats was low (median coefficient of variation: 0.09). Activity-based protein profiling was applied to pooled plasma samples to enrich serine hydrolases using a fluorophosphonate (FP2) activity-based probe. This enrichment resulted in turnover rates for an additional 17 proteins. This study is the first to measure global plasma protein turnover rates in rats in vivo, measure variability of protein turnover rates in any animal model, and utilize activity-based protein profiling for enhancing measurements of targeted, low-abundant proteins, such as those commonly used as biomarkers. Measured protein turnover rates will be important for understanding of the role of protein turnover in cellular and organism health as well as increasing the utility of protein

  5. An empirical analysis of freight rate and vessel price volatility transmission in global dry bulk shipping market

    Lei Dai

    2015-10-01

    Full Text Available Global dry bulk shipping market is an important element of global economy and trade. Since newbuilding and secondhand vessels are often traded as assets and the freight rate is the key determinant of vessel price, it is important for shipping market participants to understand the market dynamics and price transmission mechanism over time to make suitable strategic decisions. To address this issue, a multi-variate GARCH model was applied in this paper to explore the volatility spillover effects across the vessel markets (including newbuilding and secondhand vessel markets and freight market. Specifically, the BEKK parameterization of the multi-variate GARCH model (BEKK GARCH was proposed to capture the volatility transmission effect from the freight market, newbuilding and secondhand vessel markets in the global dry bulk shipping industry. Empirical results reveal that significant volatility transmission effects exist in each market sector, i.e. capesize, panamax, handymax and handysize. Besides, the market volatility transmission mechanism varies among different vessel types. Moreover, some bilateral effects are found in the dry bulk shipping market, showing that lagged variances could affect the current variance in a counterpart market, regardless of the volatility transmission. A simple ratio is proposed to guide investors optimizing their portfolio allocations. The findings in this paper could provide unique insights for investors to understand the market and hedge their portfolios well.

  6. Global complication rates of type 2 diabetes in Indigenous peoples: A comprehensive review.

    Naqshbandi, Mariam; Harris, Stewart B; Esler, James G; Antwi-Nsiah, Fred

    2008-10-01

    The world's Indigenous peoples are experiencing an unprecedented epidemic of type 2 diabetes [T2DM] but little has been published describing the complications burden. The objective of this paper was to conduct a systematic review of T2DM complications in Indigenous populations worldwide. A literature review was conducted using PubMed and EMBASE to examine available complications data. Country, Indigenous population, authors, publication year, total sample size, Indigenous sample size, age, methodology, and prevalence of nephropathy, end-stage renal disease, retinopathy, neuropathy, lower extremity amputations, cardiovascular disease, hospitalizations and mortality due to diabetes were recorded. One-hundred and eleven studies were selected. Results revealed a disproportionate burden of disease complications among all Indigenous peoples regardless of their geographic location. Complication rates were seen to vary widely across Indigenous groups. Gaps were found in the published literature on complications among Indigenous populations, especially those living in underdeveloped countries. These gaps may be in part due to the challenges caused by varying operational practices, research methodologies, and definitions of the term Indigenous, making documentation of rates among these peoples problematic. Comprehensive surveillance applying standardized definitions and methodologies is needed to design targeted prevention and disease management strategies for Indigenous peoples with T2DM.

  7. Optimal carbon emissions trajectories when damages depend on the rate or level of global warming

    Peck, S.C.; Teisberg, T.J.

    1994-01-01

    The authors extend earlier work with the Carbon Emissions Trajectory Assessment model (CETA) to consider a number of issues relating to the nature of optimal carbon emissions trajectories. They first explore model results when warming costs are associated with the rate of temperature rise, rather than with its level, as in earlier work. It is found that optimal trajectories are more strongly affected by the degree of non-linearity in the warming cost function than by whether the cost function is driven by the warming level or the warming rate. The authors briefly explore the implications of simple uncertainty and risk aversion for optimal emissions trajectories to be somewhat lower, but that the effect is not noticeable in the near term and not dramatic in the long term; the long term effect on the shadow price of carbon is more marked, however. Finally, they experiment with scaling up the warming cost functions until optimal policies are approximately the same as a policy of stabilising emissions at the 1990 level. Based on the results of this experiment, it is concluded that damages would have to be very high to justify anything like a stabilization policy; and even in this case, a policy allowing intertemporal variation in emissions would be better. 18 refs., 15 figs

  8. Partitioning the Outburst Energy of a Low Eddington Accretion Rate AGN at the Center of an Elliptical Galaxy: The Recent 12 Myr History of the Supermassive Black Hole in M87

    Forman, W.; Jones, C.; Kraft, R.; Vikhlinin, A. [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Churazov, E. [MPI für Astrophysik, Karl-Schwarzschild-Strasse 1, D-85740 Garching (Germany); Heinz, S., E-mail: wrf@cfa.harvard.edu [University of Wisconsin, Madison, Wisconsin (United States)

    2017-08-01

    M87, the active galaxy at the center of the Virgo cluster, is ideal for studying the interaction of a supermassive black hole (SMBH) with a hot, gas-rich environment. A deep Chandra observation of M87 exhibits an approximately circular shock front (13 kpc radius, in projection) driven by the expansion of the central cavity (filled by the SMBH with relativistic radio-emitting plasma) with projected radius ∼1.9 kpc. We combine constraints from X-ray and radio observations of M87 with a shock model to derive the properties of the outburst that created the 13 kpc shock. Principal constraints for the model are (1) the measured Mach number ( M ∼ 1.2), (2) the radius of the 13 kpc shock, and (3) the observed size of the central cavity/bubble (the radio-bright cocoon) that serves as the piston to drive the shock. We find that an outburst of ∼5 × 10{sup 57} erg that began about 12 Myr ago and lasted ∼2 Myr matches all the constraints. In this model, ∼22% of the energy is carried by the shock as it expands. The remaining ∼80% of the outburst energy is available to heat the core gas. More than half the total outburst energy initially goes into the enthalpy of the central bubble, the radio cocoon. As the buoyant bubble rises, much of its energy is transferred to the ambient thermal gas. For an outburst repetition rate of about 12 Myr (the age of the outburst), 80% of the outburst energy is sufficient to balance the radiative cooling.

  9. Application of an Artificial Neural Network to the Prediction of OH Radical Reaction Rate Constants for Evaluating Global Warming Potential.

    Allison, Thomas C

    2016-03-03

    Rate constants for reactions of chemical compounds with hydroxyl radical are a key quantity used in evaluating the global warming potential of a substance. Experimental determination of these rate constants is essential, but it can also be difficult and time-consuming to produce. High-level quantum chemistry predictions of the rate constant can suffer from the same issues. Therefore, it is valuable to devise estimation schemes that can give reasonable results on a variety of chemical compounds. In this article, the construction and training of an artificial neural network (ANN) for the prediction of rate constants at 298 K for reactions of hydroxyl radical with a diverse set of molecules is described. Input to the ANN consists of counts of the chemical bonds and bends present in the target molecule. The ANN is trained using 792 (•)OH reaction rate constants taken from the NIST Chemical Kinetics Database. The mean unsigned percent error (MUPE) for the training set is 12%, and the MUPE of the testing set is 51%. It is shown that the present methodology yields rate constants of reasonable accuracy for a diverse set of inputs. The results are compared to high-quality literature values and to another estimation scheme. This ANN methodology is expected to be of use in a wide range of applications for which (•)OH reaction rate constants are required. The model uses only information that can be gathered from a 2D representation of the molecule, making the present approach particularly appealing, especially for screening applications.

  10. Applying a physical continuum model to describe the broadband X-ray spectra of accreting pulsars at high luminosity

    Pottschmidt, Katja; Hemphill, Paul B.; Wolff, Michael T.; Cheatham, Diana M.; Iwakiri, Wataru; Gottlieb, Amy M.; Falkner, Sebastian; Ballhausen, Ralf; Fuerst, Felix; Kuehnel, Matthias; Ferrigno, Carlo; Becker, Peter A.; Wood, Kent S.; Wilms, Joern

    2018-01-01

    A new window for better understanding the accretion onto strongly magnetized neutron stars in X-ray binaries is opening. In these systems the accreted material follows the magnetic field lines as it approaches the neutron star, forming accretion columns above the magnetic poles. The plasma falls toward the neutron star surface at near-relativistic speeds, losing energy by emitting X-rays. The X-ray spectral continua are commonly described using phenomenological models, i.e., power laws with different types of curved cut-offs at higher energies. Here we consider high luminosity pulsars. In these systems the mass transfer rate is high enough that the accreting plasma is thought to be decelerated in a radiation-dominated radiative shock in the accretion columns. While the theory of the emission from such shocks had already been developed by 2007, a model for direct comparison with X-ray continuum spectra in xspec or isis has only recently become available. Characteristic parameters of this model are the accretion column radius and the plasma temperature, among others. Here we analyze the broadband X-ray spectra of the accreting pulsars Centaurus X-3 and 4U 1626-67 obtained with NuSTAR. We present results from traditional empirical modeling as well as successfully apply the radiation-dominated radiative shock model. We also take the opportunity to compare to similar recent analyses of both sources using these and other observations.

  11. Self-similar Hot Accretion Flow onto a Neutron Star

    Medvedev, Mikhail V.; Narayan, Ramesh

    2001-06-01

    We consider hot, two-temperature, viscous accretion onto a rotating, unmagnetized neutron star. We assume Coulomb coupling between the protons and electrons, as well as free-free cooling from the electrons. We show that the accretion flow has an extended settling region that can be described by means of two analytical self-similar solutions: a two-temperature solution that is valid in an inner zone, r~102.5. In both zones the density varies as ρ~r-2 and the angular velocity as Ω~r-3/2. We solve the flow equations numerically and confirm that the analytical solutions are accurate. Except for the radial velocity, all gas properties in the self-similar settling zone, such as density, angular velocity, temperature, luminosity, and angular momentum flux, are independent of the mass accretion rate; these quantities do depend sensitively on the spin of the neutron star. The angular momentum flux is outward under most conditions; therefore, the central star is nearly always spun down. The luminosity of the settling zone arises from the rotational energy that is released as the star is braked by viscosity, and the contribution from gravity is small; hence, the radiative efficiency, η=Lacc/Mc2, is arbitrarily large at low M. For reasonable values of the gas adiabatic index γ, the Bernoulli parameter is negative; therefore, in the absence of dynamically important magnetic fields, a strong outflow or wind is not expected. The flow is also convectively stable but may be thermally unstable. The described solution is not advection dominated; however, when the spin of the star is small enough, the flow transforms smoothly to an advection-dominated branch of solution.

  12. Gas-rich dwarfs and accretion phenomena in early-type galaxies

    Silk, J.; Norman, C.

    1979-01-01

    Recent constraints on intergalactic H I clouds suggest that allowable accretion rates by several luminous early-type galaxies are too low to account for their observed H I content. We have therefore developed an alternative model, wherein gas-rich dwarf galaxies are accreted into galactic halos. This process is significant in groups of galaxies only when a sufficiently high density of gas-rich dwarfs (approx.30 Mpc -3 ) is present. The dwarf galaxy gas content plays a crucial role in enabling the galaxy to be trapped in the halo by interaction with a galactic wind or extensive gaseous corona. Gas stripping occurs, resulting in the formation of dwarf spheroidal systems that populate the outer halos of massive galaxies and in the injection of a system of clouds into the halo. If the clouds are initially confined by the pressure of the ambient halo medium, dissipation and continuing infall enable the clouds to accrete into the central regions of galaxies before becoming gravitationally unstable and presumably forming stars. Consequences of this scenario include the production of a radial abundance gradient and infall of adequate amounts of neutral gas to account for the observations of H I in early-type galaxies. This gas accretion rate is also sufficient to feed active nuclei and radio sources. An important cosmological implication of our model is that, because the characteristic time scale of a gas-rich dwarf galaxy to be accreted and lose its gas is comparable to a Hubble time, there many have been a far more extensive primordial distribution of such systems at earlier epochs. This implies that accretion rates were greatly enhanced at relatively recent epochs (z> or approx. =0.5) and could account both for the rapid cosmological evolution inferred for radio galaxies and quasars, and for the observed frequency of occurrence of quasar absorption-line systems

  13. The close environments of accreting massive black holes are shaped by radiative feedback.

    Ricci, Claudio; Trakhtenbrot, Benny; Koss, Michael J; Ueda, Yoshihiro; Schawinski, Kevin; Oh, Kyuseok; Lamperti, Isabella; Mushotzky, Richard; Treister, Ezequiel; Ho, Luis C; Weigel, Anna; Bauer, Franz E; Paltani, Stephane; Fabian, Andrew C; Xie, Yanxia; Gehrels, Neil

    2017-09-27

    The majority of the accreting supermassive black holes in the Universe are obscured by large columns of gas and dust. The location and evolution of this obscuring material have been the subject of intense research in the past decades, and are still debated. A decrease in the covering factor of the circumnuclear material with increasing accretion rates has been found by studies across the electromagnetic spectrum. The origin of this trend may be driven by the increase in the inner radius of the obscuring material with incident luminosity, which arises from the sublimation of dust; by the gravitational potential of the black hole; by radiative feedback; or by the interplay between outflows and inflows. However, the lack of a large, unbiased and complete sample of accreting black holes, with reliable information on gas column density, luminosity and mass, has left the main physical mechanism that regulates obscuration unclear. Here we report a systematic multi-wavelength survey of hard-X-ray-selected black holes that reveals that radiative feedback on dusty gas is the main physical mechanism that regulates the distribution of the circumnuclear material. Our results imply that the bulk of the obscuring dust and gas is located within a few to tens of parsecs of the accreting supermassive black hole (within the sphere of influence of the black hole), and that it can be swept away even at low radiative output rates. The main physical driver of the differences between obscured and unobscured accreting black holes is therefore their mass-normalized accretion rate.

  14. The evolution of accretion in young stellar objects: Strong accretors at 3-10 Myr

    Ingleby, Laura; Calvet, Nuria; Hartmann, Lee; Miller, Jon; McClure, Melissa [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Hernández, Jesus; Briceno, Cesar [Centro de Investigaciones de Astronomía (CIDA), Mérida, 5101-A (Venezuela, Bolivarian Republic of); Espaillat, Catherine, E-mail: lingleby@umich.edu, E-mail: ncalvet@umich.edu, E-mail: cce@bu.edu [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2014-07-20

    While the rate of accretion onto T Tauri stars is predicted to decline with age, objects with strong accretion have been detected at ages of up to 10 Myr. We analyze a sample of these old accretors, identified by having a significant U band excess and infrared emission from a circumstellar disk. Objects were selected from the ∼3 Myr σ Ori, 4-6 Myr Orion OB1b, and 7-10 Myr Orion OB1a star forming associations. We use high-resolution spectra from the Magellan Inamori Kyocera Echelle to estimate the veiling of absorption lines and calculate extinction for our T Tauri sample. We also use observations obtained with the Magellan Echellette and, in a few cases, the SWIFT Ultraviolet and Optical Telescope to estimate the excess produced in the accretion shock, which is then fit with accretion shock models to estimate the accretion rate. We find that even objects as old as 10 Myr may have high accretion rates, up to ∼10{sup –8} M{sub ☉} yr{sup –1}. These objects cannot be explained by viscous evolution models, which would deplete the disk in shorter timescales unless the initial disk mass is very high, a situation that is unstable. We show that the infrared spectral energy distribution of one object, CVSO 206, does not reveal evidence of significant dust evolution, which would be expected during the 10 Myr lifetime. We compare this object to predictions from photoevaporation and planet formation models and suggest that neither of these processes have had a strong impact on the disk of CVSO 206.

  15. Near-ultraviolet Excess in Slowly Accreting T Tauri Stars: Limits Imposed by Chromospheric Emission

    Ingleby, Laura; Calvet, Nuria; Bergin, Edwin; Herczeg, Gregory; Brown, Alexander; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; France, Kevin; Gregory, Scott G.; Hillenbrand, Lynne; Roueff, Evelyne; Valenti, Jeff; Walter, Frederick; Johns-Krull, Christopher; Brown, Joanna; Linsky, Jeffrey; McClure, Melissa; Ardila, David; Abgrall, Hervé; Bethell, Thomas; Hussain, Gaitee; Yang, Hao

    2011-12-01

    Young stars surrounded by disks with very low mass accretion rates are likely in the final stages of inner disk evolution and therefore particularly interesting to study. We present ultraviolet (UV) observations of the ~5-9 Myr old stars RECX-1 and RECX-11, obtained with the Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph on the Hubble Space Telescope, as well as optical and near-infrared spectroscopic observations. The two stars have similar levels of near-UV emission, although spectroscopic evidence indicates that RECX-11 is accreting and RECX-1 is not. The line profiles of Hα and He I λ10830 in RECX-11 show both broad and narrow redshifted absorption components that vary with time, revealing the complexity of the accretion flows. We show that accretion indicators commonly used to measure mass accretion rates, e.g., U-band excess luminosity or the Ca II triplet line luminosity, are unreliable for low accretors, at least in the middle K spectral range. Using RECX-1 as a template for the intrinsic level of photospheric and chromospheric emission, we determine an upper limit of 3 × 10-10 M ⊙ yr-1 for RECX-11. At this low accretion rate, recent photoevaporation models predict that an inner hole should have developed in the disk. However, the spectral energy distribution of RECX-11 shows fluxes comparable to the median of Taurus in the near-infrared, indicating that substantial dust remains. Fluorescent H2 emission lines formed in the innermost disk are observed in RECX-11, showing that gas is present in the inner disk, along with the dust. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  16. Mixing by shear instabilities in differentially rotating inhomogeneous stars with application to accreting white dwarf models for novae

    MacDonald, J.

    1983-10-01

    The problem of how shear instabilities redistribute matter and angular momentum accreted by a star from a disk is considered. Necessary conditions for stability of the star to nonaxisymmetric perturbations are derived by use of the short wavelength approximation. By considering growth rates, it is shown that freshly accreted material rapidly takes up a quasi-spherical distribution due to dynamical instabilities. However, mixing inward toward the stellar interior occurs on a thermal time scale or longer.

  17. Accretion discs around neutron stars

    Pringle, J.E.

    1982-01-01

    If the central object in the disc is a neutron star, then we do not need the disc itself to produce the X-rays. In other words, the disc structure itself is not important as long as it plays the role of depositing matter on the neutron star at a sufficient rate to produce the X-ray flux. Similarly, in the outer disc regions, the main disc luminosity comes from absorption and reradiation of X-ray photons and not from the intrinsic, viscously-produced, local energy production rate. These two points indicate why in the compact binary X-ray sources confrontation between disc theory and observations is not generally practicable. For this reason I will divide my talk into two parts: one on observational discs in which I discuss what observational evidence there is for discs in the compact X-ray sources and what the evidence can tell the theorist about disc behaviour, and the other on theoretical discs where I consider in what ways theoretical arguments can put limits or cast doubt on some of the empirical models put forward to explain the observations. (orig.)

  18. POPULATION III GAMMA-RAY BURSTS AND BREAKOUT CRITERIA FOR ACCRETION-POWERED JETS

    Nagakura, Hiroki; Suwa, Yudai [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Ioka, Kunihito, E-mail: hiroki@heap.phys.waseda.ac.jp [KEK Theory Center, 1-1 Oho, Tsukuba 305-0801 (Japan)

    2012-08-01

    We investigate the propagation of accretion-powered jets in various types of massive stars such as Wolf-Rayet stars, light Population III (Pop III) stars, and massive Pop III stars, all of which are the progenitor candidates of gamma-ray bursts (GRBs). We perform two-dimensional axisymmetric simulations of relativistic hydrodynamics, taking into account both the envelope collapse and the jet propagation (i.e., the negative feedback of the jet on the accretion). Based on our hydrodynamic simulations, we show for the first time that the accretion-powered jet can potentially break out relativistically from the outer layers of Pop III progenitors. In our simulations, the accretion rate is estimated by the mass flux going through the inner boundary, and the jet is injected with a fixed accretion-to-jet conversion efficiency {eta}. By varying the efficiency {eta} and opening angle {theta}{sub op} for more than 40 models, we find that the jet can make a relativistic breakout from all types of progenitors for GRBs if a simple condition {eta} {approx}> 10{sup -4}({theta}{sub op}/8 Degree-Sign ){sup 2} is satisfied, which is consistent with analytical estimates. Otherwise no explosion or some failed spherical explosions occur.

  19. Galactic Black Holes in the Hard State: A Multi-Wavelength View of Accretion and Ejection

    Kalemci; Tomsick, John A.; Migliari; Corbel; Markoff

    2010-01-01

    The canonical hard state is associated with emission from all three fundamental accretion components: the accretion disk, the hot accretion disk corona and the jet. On top of these, the hard state also hosts very rich temporal variability properties (low frequency QPOs in the PDS, time lags, long time scale evolution). Our group has been working on the major questions of the hard state both observationally (with mult i-wavelength campaigns using RXTE, Swift, Suzaku, Spitzer, VLA, ATCA, SMARTS) and theoretically (through jet models that can fit entire SEDs). Through spectral and temporal analysis we seek to determine the geometry of accretion components, and relate the geometry to the formation and emission from a jet. In this presentation I will review the recent contributions of our group to the field, including the Swift results on the disk geometry at low accretion rates, the jet model fits to the hard state SEDs (including Spitzer data) of GRO J1655-40, and the final results on the evolution of spectral (including X-ray, radio and infrared) and temporal properties of elected black holes in the hard states. I will also talk about impact of ASTROSAT to the science objective of our group.

  20. rHARM: ACCRETION AND EJECTION IN RESISTIVE GR-MHD

    Qian, Qian; Fendt, Christian [Max Planck Institute for Astronomy, Heidelberg (Germany); Noble, Scott [Department of Physics and Engineering Physics, University of Tulsa, Tulsa (United States); Bugli, Matteo, E-mail: qian@mpia.de, E-mail: fendt@mpia.de [Max Planck Institute for Astrophysics, Garching (Germany)

    2017-01-01

    Turbulent magnetic diffusivity plays an important role for accretion disks and the launching of disk winds. We have implemented magnetic diffusivity and respective resistivity in the general relativistic MHD code HARM. This paper describes the theoretical background of our implementation, its numerical realization, our numerical tests, and preliminary applications. The test simulations of the new code rHARM are compared to an analytic solution of the diffusion equation and a classical shock tube problem. We have further investigated the evolution of the magnetorotational instability (MRI) in tori around black holes (BHs) for a range of magnetic diffusivities. We find an indication for a critical magnetic diffusivity (for our setup) beyond which no MRI develops in the linear regime and for which accretion of torus material to the BH is delayed. Preliminary simulations of magnetically diffusive thin accretion disks around Schwarzschild BHs that are threaded by a large-scale poloidal magnetic field show the launching of disk winds with mass fluxes of about 50% of the accretion rate. The disk magnetic diffusivity allows for efficient disk accretion that replenishes the mass reservoir of the inner disk area and thus allows for long-term simulations of wind launching for more than 5000 time units.

  1. Effects of ice accretion on the aerodynamics of bridge cables

    Demartino, C.; Koss, Holger; Georgakis, Christos T.

    2015-01-01

    and stay cables. The aim of this paper is twofold; first, it was investigated the ice accretion process and the final shape of the ice accreted; then the aerodynamics of the ice accreted bridge cables was characterized, and related to the ice shape. Different climatic conditions, i.e. combinations...... of temperature, wind speed and yaw angle of accretion, were reproduced in a climatic wind tunnel, giving rise to different types of accretion. These were chosen such to generate the most common natural ice formations expected to produce bridge cable vibrations. A description of the geometric characteristics...

  2. Early Results from NICER Observations of Accreting Neutron Stars

    Chakrabarty, Deepto; Ozel, Feryal; Arzoumanian, Zaven; Gendreau, Keith C.; Bult, Peter; Cackett, Ed; Chenevez, Jerome; Fabian, Andy; Guillot, Sebastien; Guver, Tolga; Homan, Jeroen; Keek, Laurens; Lamb, Frederick; Ludlam, Renee; Mahmoodifar, Simin; Markwardt, Craig B.; Miller, Jon M.; Psaltis, Dimitrios; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael T.

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) offers significant new capabilities for the study of accreting neuton stars relative to previous X-ray missions including large effective area, low background, and greatly improved low-energy response. The NICER Burst and Accretion Working Group has designed a 2 Ms observation program to study a number of phenomena in accreting neutron stars including type-I X-ray bursts, superbursts, accretion-powered pulsations, quasi-periodic oscillations, and accretion disk reflection spectra. We present some early results from the first six months of the NICER mission.

  3. Exploring similarities and differences in hospital adverse event rates between Norway and Sweden using Global Trigger Tool.

    Deilkås, Ellen Tveter; Risberg, Madeleine Borgstedt; Haugen, Marion; Lindstrøm, Jonas Christoffer; Nylén, Urban; Rutberg, Hans; Michael, Soop

    2017-03-20

    In this paper, we explore similarities and differences in hospital adverse event (AE) rates between Norway and Sweden by reviewing medical records with the Global Trigger Tool (GTT). All acute care hospitals in both countries performed medical record reviews, except one in Norway. Records were randomly selected from all eligible admissions in 2013. Eligible admissions were patients 18 years of age or older, undergoing care with an in-hospital stay of at least 24 hours, excluding psychiatric and care and rehabilitation. Reviews were done according to GTT methodology. Similar contexts for healthcare and similar socioeconomic and demographic characteristics have inspired the Nordic countries to exchange experiences from measuring and monitoring quality and patient safety in healthcare. The co-operation has promoted the use of GTT to monitor national and local rates of AEs in hospital care. 10 986 medical records were reviewed in Norway and 19 141 medical records in Sweden. No significant difference between overall AE rates was found between the two countries. The rate was 13.0% (95% CI 11.7% to 14.3%) in Norway and 14.4% (95% CI 12.6% to 16.3%) in Sweden. There were significantly higher AE rates of surgical complications in Norwegian hospitals compared with Swedish hospitals. Swedish hospitals had significantly higher rates of pressure ulcers, falls and 'other' AEs. Among more severe AEs, Norwegian hospitals had significantly higher rates of surgical complications than Swedish hospitals. Swedish hospitals had significantly higher rates of postpartum AEs. The level of patient safety in acute care hospitals, as assessed by GTT, was essentially the same in both countries. The differences between the countries in the rates of several types of AEs provide new incentives for Norwegian and Swedish governing bodies to address patient safety issues. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please

  4. A numerical study of the stability of radiative shocks. [in accretion flows onto white dwarf stars

    Imamura, J. N.; Wolff, M. T.; Durisen, R. H.

    1984-01-01

    Attention is given to the oscillatory instability of optically thin radiative shocks in time-dependent numerical calculations of accretion flows onto degenerate dwarfs. The present nonlinear calculations yield good quantitative agreement with the linear results obtained for oscillation frequencies, damping rates, and critical alpha-values. The fundamental mode and the first overtone in the shock radius and luminosity variations can be clearly identified, and evidence is sometimes seen for the second overtone. Time-dependent calculations are also performed which include additional physics relevant to degenerate dwarf accretion, such as electron thermal conduction, unequal electron and ion temperatures, Compton cooling, and relativistic corrections to the bremsstrahlung cooling law. All oscillatory modes are found to be damped, and hence stable, in the case of a 1-solar mass white dwarf accreting in spherical symmetry.

  5. The accreting white dwarfs in VY Scl nova-like variables

    Sion, Edward M; Mizusawa, Trisha; Ballouz, Ronald-Louis

    2009-01-01

    Accurate distances for nova-like variables offer the possibility of extracting information on nova-like accretion rates during high states of optical brightness and on their underlying accretion-heated white dwarfs during intermediate and low brightness states. The modeling technique which is employed is discussed and a representative example, the novalike variable KR Aur, is presented. Although KR Aur was in a fainter high state when its far ultraviolet spectrum was obtained, roughly one-half of its FUV radiation is due to the light of an accretion disk and the other half is contributed by a hot white dwarf with T eff = 29, 000±2, 000K. However, this best-fit solution corresponds to a distance of 180 pc which was an early distance estimate due to Patterson (1984).

  6. Pulsed Thermal Emission from the Accreting Pulsar XMMU J054134.7-682550

    Manousakis, Antonis; Walter, Roland; Audard, Marc; Lanz, Thierry

    2009-05-01

    XMMU J054134.7-682550, located in the LMC, featured a type II outburst in August 2007. We analyzed XMM-Newton (EPIC-MOS) and RXTE (PCA) data in order to derive the spectral and temporal characteristics of the system throughout the outburst. Spectral variability, spin period evolution, energy dependent pulse shape are discussed. The outburst (LX~3×1038 erg/s~LEDD) spectrum can be modeled using, cutoff power law, soft X-ray blackbody, disk emission, and cyclotron absorption line. The blackbody component shows a sinusoidal behavior, expected from hard X-ray reprocessing on the inner edge of the accretion disk. The thickness of the inner accretion disk (width of ~75 km) can be constrained. The spin-up of the pulsar during the outburst is the signature of a (huge) accretion rate. Simbol-X will provide similar capabilities as XMM-Newton and RXTE together, for such bright events.

  7. An accreting pulsar with extreme properties drives an ultraluminous x-ray source in NGC 5907.

    Israel, Gian Luca; Belfiore, Andrea; Stella, Luigi; Esposito, Paolo; Casella, Piergiorgio; De Luca, Andrea; Marelli, Martino; Papitto, Alessandro; Perri, Matteo; Puccetti, Simonetta; Castillo, Guillermo A Rodríguez; Salvetti, David; Tiengo, Andrea; Zampieri, Luca; D'Agostino, Daniele; Greiner, Jochen; Haberl, Frank; Novara, Giovanni; Salvaterra, Ruben; Turolla, Roberto; Watson, Mike; Wilms, Joern; Wolter, Anna

    2017-02-24

    Ultraluminous x-ray sources (ULXs) in nearby galaxies shine brighter than any x-ray source in our Galaxy. ULXs are usually modeled as stellar-mass black holes (BHs) accreting at very high rates or intermediate-mass BHs. We present observations showing that NGC 5907 ULX is instead an x-ray accreting neutron star (NS) with a spin period evolving from 1.43 seconds in 2003 to 1.13 seconds in 2014. It has an isotropic peak luminosity of [Formula: see text]1000 times the Eddington limit for a NS at 17.1 megaparsec. Standard accretion models fail to explain its luminosity, even assuming beamed emission, but a strong multipolar magnetic field can describe its properties. These findings suggest that other extreme ULXs (x-ray luminosity [Formula: see text] 10 41 erg second[Formula: see text]) might harbor NSs. Copyright © 2017, American Association for the Advancement of Science.

  8. Collapse of accreting carbon-oxygen white dwarfs induced by carbon deflagration at high density

    Nomoto, K.

    1986-01-01

    A critical condition is obtained for which carbon deflagration induces collapse of an accreting C + O white dwarf, not explosion. If the carbon deflagration is initiated at central density as high as 10 10 g cm -3 and if the propagation of the deflagration wave is slower than ∼ 0.15 υ/sub s/ (υ/sub s/ is the sound speed), electron capture behind the burning front induces collapse to form a neutron star. This is the case for both conductive and convective deflagrations. Such a high central density can be reached if the white dwarf is sufficiently massive and cold at the onset of accretion and if the accretion rate is in the appropriate range. Models for Type Ia and Ib supernovae are also discussed. 66 refs., 8 figs

  9. MOLECULAR CLOUD EVOLUTION. III. ACCRETION VERSUS STELLAR FEEDBACK

    Vazquez-Semadeni, Enrique; ColIn, Pedro; Gomez, Gilberto C.; Ballesteros-Paredes, Javier; Watson, Alan W.

    2010-01-01

    We numerically investigate the effect of feedback from the ionization heating from massive stars on the evolution of giant molecular clouds (GMCs) and their star formation efficiency (SFE), which we treat as an instantaneous, time-dependent quantity. We follow the GMCs' evolution from their formation to advanced star-forming stages. After an initial period of contraction, the collapsing clouds begin forming stars, whose feedback evaporates part of the clouds' mass, opposing the continuing accretion from the infalling gas. Our results are as follows: (1) in the presence of feedback, the clouds attain levels of the SFE that are consistent at all times with observational determinations for regions of comparable star formation rates. (2) However, the dense gas mass is larger in general in the presence of feedback, while the total mass (dense gas + stars) is nearly insensitive to the presence of feedback, suggesting that it is determined mainly by the accretion, while the feedback inhibits mainly the conversion of dense gas to stars, because it acts directly to reheat and disperse the gas that is directly on its way to forming stars. (3) The factor by which the SFE is reduced upon the inclusion of feedback is a decreasing function of the cloud's mass, for clouds of size ∼10 pc. This naturally explains the larger observed SFEs of massive-star-forming regions. (4) The clouds may attain a pseudo-virialized state, with a value of the virial mass very similar to the actual cloud mass. However, this state differs from true virialization in that the clouds, rather than being equilibrium entities, are the centers of a larger-scale collapse, in which accretion replenishes the mass consumed by star formation. (5) The higher-density regions within the clouds are in a similar situation, accreting gas infalling from the less-dense, more extended regions of the clouds. (6) The density probability density functions of the regions containing the clouds in general exhibit a shape

  10. Role of local absorption on the X-ray emission from MHD accretion shocks in classical T Tauri stars

    Bonito

    2014-01-01

    Full Text Available Accretion processes onto classical T Tauri stars (CTTSs are believed to generate shocks at the stellar surface due to the impact of supersonic downflowing plasma. Although current models of accretion streams provide a plausible global picture of this process, several aspects are still unclear. For example, the observed X-ray luminosity in accretion shocks is, in general, well below the predicted value. A possible explanation discussed in the literature is in terms of significant absorption of the emission due to the thick surrounding medium. Here we consider a 2D MHD model describing an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere. The model includes all the relevant physics, namely the gravity, the thermal conduction, and the radiative cooling, and a realistic description of the unperturbed stellar atmosphere (from the chromosphere to the corona. From the model results, we synthesize the X-ray emission emerging from the hot slab produced by the accretion shock, exploring different configurations and strengths of the stellar magnetic field. The synthesis includes the local absorption by the thick surrounding medium and the Doppler shift of lines due to the component of plasma velocity along the line-of-sight. We explore the effects of absorption on the emerging X-ray spectrum, considering different inclinations of the accretion stream with respect to the observer. Finally we compare our results with the observations.

  11. Ice Accretion on Wind Turbine Blades

    Hudecz, Adriána; Koss, Holger; Hansen, Martin Otto Laver

    2013-01-01

    In this paper, both experimental and numerical simulations of the effects of ice accretion on a NACA 64-618 airfoil section with 7° angle of attack are presented. The wind tunnel tests were conducted in a closed-circuit climatic wind tunnel at Force Technology in Denmark. The changes of aerodynamic...... forces were monitored as ice was building up on the airfoil for glaze, rime and mixed ice. In the first part of the numerical analysis, the resulted ice profiles of the wind tunnel tests were compared to profiles estimated by using the 2D ice accretion code TURBICE. In the second part, Ansys Fluent...... of the rime iced ice profile follows the streamlines quite well, disturbing the flow the least. The TURBICE analysis agrees fairly with the profiles produced during the wind tunnel testing....

  12. Volatile accretion history of the Earth.

    Wood, B J; Halliday, A N; Rehkämper, M

    2010-10-28

    It has long been thought that the Earth had a protracted and complex history of volatile accretion and loss. Albarède paints a different picture, proposing that the Earth first formed as a dry planet which, like the Moon, was devoid of volatile constituents. He suggests that the Earth's complement of volatile elements was only established later, by the addition of a small veneer of volatile-rich material at ∼100 Myr (here and elsewhere, ages are relative to the origin of the Solar System). Here we argue that the Earth's mass balance of moderately volatile elements is inconsistent with Albarède's hypothesis but is well explained by the standard model of accretion from partially volatile-depleted material, accompanied by core formation.

  13. Shoreline accretion and sand transport at groynes inside the Port of Richards Bay.

    Schoonees, JS

    2006-01-01

    Full Text Available on the accretion adjacent to two of the groynes and on the sediment transport rates at these groynes. Tides, beach slopes, winds, wave climate, current regime, and sand grain sizes were documented. The one site is “moderately protected” from wave action while...

  14. X-ray luminosity by matter accretion on a neutron star

    Baroni, L [Bologna Univ. (Italy). Ist. di Fisica; Fortini, P L [Instituto di Astronomia, Bologna (Italy); Gualdi, C; Callegari, G [Ferrara Univ. (Italy). Ist. di Fisica

    1980-11-20

    When the accretion rate on a non magnetic neutron star is determined by stellar wind and not by overflowing the Roche lobe, it is shown that X-ray luminosity cannot exceed 10sup(36)-10sup(37) erg/sec. This very low limit is essentially set by radiation pressure which causes an effective braking on the falling matter.

  15. Swift observations of the accreting millisecond pulsar IGR J17498-2921 : From outburst to quiescence

    Linares, M.; Bozzo, E.; Altamirano, D.; Degenaar, N.; Wijnands, R.; Soleri, P.; Belloni, T.; Di Salvo, T.; D'Ai, A.; Papitto, A.; Riggio, A.; Burderi, L.

    Swift has been monitoring the accreting millisecond pulsar IGR J17498-2921 since the start of its outburst in 2011 August 12 (ATels #3551, #3555, #3556). We detected two X-ray bursts on Aug. 18 and 28. During the first ~12 days the average persistent XRT count rate remained approximately constant at

  16. WORKSHOP: Accreting X-ray sources

    Anon.

    1986-09-15

    Earlier this year a workshop on 'High Energy/Ultra High Energy Behaviour of Accreting X-Ray Sources' was held in Vulcano, a small island near Sicily, jointly organized by the Italian Istituto Nazionale di Fisica Nucleare and Consiglio Nazionale delle Ricerche. About 60 astrophysicists and particle physicists attended the meeting which covered the study of galactic cosmic sources emitting in the wide energy range from the optical region to some 10{sup 15} eV.

  17. Accretion onto stellar mass black holes

    Deegan, Patrick

    2009-12-01

    I present work on the accretion onto stellar mass black holes in several scenarios. Due to dynamical friction stellar mass black holes are expected to form high density cusps in the inner parsec of our Galaxy. These compact remnants may be accreting cold dense gas present there, and give rise to potentially observable X-ray emission. I build a simple but detailed time-dependent model of such emission. Future observations of the distribution and orbits of the gas in the inner parsec of Sgr A* will put tighter constraints on the cusp of compact remnants. GRS 1915+105 is an LMXB, whose large orbital period implies a very large accretion disc and explains the extraordinary duration of its current outburst. I present smoothed particle hydrodynamic simulations of the accretion disc. The models includes the thermo-viscous instability, irradiation from the central object and wind loss. I find that the outburst of GRS 1915+105 should last a minimum of 20 years and up to ˜ 100 years if the irradiation is playing a significant role in this system. The predicted recurrence times are of the order of 104 years, making the duty cycle of GRS 1915+105 to be a few 0.1%. I present a simple analytical method to describe the observable behaviour of long period black hole LMXBs, similar to GRS 1915+105. Constructing two simple models for the surface density in the disc, outburst and quiescence times are calculated as a function of orbital period. LMXBs are an important constituent of the X-ray light function (XLF) of giant elliptical galaxies. I find that the duty cycle can vary considerably with orbital period, with implications for modelling the XLF.

  18. Blob accretion in AM Herculis systems

    Litchfield, S.J.; King, A.R.

    1990-01-01

    We calculate self-consistent hydrostatic temperature distributions for the atmosphere of a white dwarf in an AM Herculis system on to which a discrete blob has accreted. We show that the surface derived from this temperature structure does not produce soft X-ray light curves characteristic of the anomalous X-ray state of AM Herculis. We suggest that non-hydrostatic splashes are a more likely origin for the light curves. (author)

  19. Minidisks in Binary Black Hole Accretion

    Ryan, Geoffrey; MacFadyen, Andrew, E-mail: gsr257@nyu.edu [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

    2017-02-01

    Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole (“minidisks”), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using 2D hydrodynamical simulations performed with a new general relativistic version of the moving-mesh code Disco. We introduce a comoving energy variable that enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the innermost stable circular orbit, providing a Reynolds stress that causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov–Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling. We find that the spiral shock structure is in agreement with the relativistic dispersion relation for tightly wound linear waves. We measure the shock-induced dissipation and find outward angular momentum transport corresponding to an effective alpha parameter of order 0.01. We perform ray-tracing image calculations from the simulations to produce theoretical minidisk spectra and viewing-angle-dependent images for comparison with observations.

  20. Accretion on to Magnetic White Dwarfs

    Wickramasinghe Dayal

    2014-01-01

    The polars have no counterparts in neutron star systems and their study provides unique insights into the complex nature of the magnetospheric boundary. The observed properties of accretion shocks at the white dwarf surface such as the anomalous soft-X-ray excess and its time variability provide strong support for the hypothesis that under certain circumstances the field channelled funnel flow is “blobby”. This has been attributed to interchange instabilities such as the Magnetic Rayleigh-Taylor instability in the shocked gas at the stream-magnetosphere boundary where the stream fragments into discrete clumps of gas. As the clumps penetrate into the magnetosphere, they are shredded into smaller mass blobs via the Kelvin-Helmholtz instability that then couple on to field lines over an extended inner transition region in the orbital plane. The more massive blobs penetrate deep into the photosphere of the white dwarf releasing their energy as a reprocessed soft-X-ray black body component. Although similar instabilities are expected in the inner transition region in disced accretion albeit on a different scale there has been no direct observational evidence for blobby accretion in the generally lower field and disced IPs.

  1. Neutron star accretion and the neutrino fireball

    Colgate, S.A.; Herant, M.E.; Benz, W.

    1991-01-01

    The mixing necessary to explain the ''Fe'' line widths and possibly the observed red shifts of 1987A is explained in terms of large scale, entropy conserving, up and down flows (calculated with a smooth particle 2-D code) taking place between the neutron star and the explosion shock wave due to the gravity and neutrino deposition. Depending upon conditions of entropy and mass flux further accretion takes place in single events, similar to relaxation oscillator, fed by the downward flows of low entropy matter. The shock, in turn, is driven by the upflow of the buoyant high entropy bubbles. Some accretion events will reach a temperature high enough to create a neutrino ''fireball,'' a region hot enough, 11 Mev, so as to be partially opaque to its own (neutrino) radiation. The continuing neutrino deposition drives the explosion shock until the entropy of matter flowing downwards onto the neutron star is high enough to prevent further accretion. This process should result in a robust supernova explosion

  2. Accretion and primary differentiation of Mars

    Drake, M.J.

    1988-01-01

    In collecting samples from Mars to address questions such as whether Mars accreted homogeneously or heterogeneously, how Mars segregated into a metallic core and silicate mantle, and whether Mars outgassed catastrophically coincident with accretion or more serenely on a longer timescale, we must be guided by our experience in addressing these questions for the Earth, Moon, and igneous meteorite parent bodies. A key measurement to be made on any sample returned from Mars is its oxygen isotopic composition. A single measurement will suffice to bind the SNC meteorites to Mars or demonstrate that they cannot be samples of that planet. A positive identification of Mars as the SNC parent planet will permit all that has been learned from the SNC meteorites to be applied to Mars with confidence. A negative result will perhaps be more exciting in forcing us to look for another object that has been geologically active in the recent past. If the oxygen isotopic composition of Earth and Mars are established to be distinct, accretion theory must provide for different compositions for two planets now separated by only 0.5 AU

  3. Highly Accreting Quasars at High Redshift

    Mary L. Martínez-Aldama

    2018-01-01

    Full Text Available We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (L/LEdd ~ 1.0 at high redshift, z ~2–3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as Aliiiλ1860, Siiii]λ1892 and Ciii]λ1909. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  4. Highly Accreting Quasars at High Redshift

    Martínez-Aldama, Mary L.; Del Olmo, Ascensión; Marziani, Paola; Sulentic, Jack W.; Negrete, C. Alenka; Dultzin, Deborah; Perea, Jaime; D'Onofrio, Mauro

    2017-12-01

    We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (LLedd>0.2) at high redshift, z 2-3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as AlIII, SiIII and CIII. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  5. Sediment accretion and carbon storage in constructed wetlands receiving water treated with metal-based coagulants

    Stumpner, Elizabeth; Kraus, Tamara; Liang, Yan; Bachand, Sandra M.; Horwath, William R.; Bachand, Philip A.M.

    2018-01-01

    In many regions of the world, subsidence of organic rich soils threatens levee stability and freshwater supply, and continued oxidative loss of organic matter contributes to greenhouse gas production. To counter subsidence in the Sacramento-San Joaquin Delta of northern California, we examined the feasibility of using constructed wetlands receiving drainage water treated with metal-based coagulants to accrete mineral material along with wetland biomass, while also sequestering carbon in wetland sediment. Nine field-scale wetlands were constructed which received local drainage water that was either untreated (control), or treated with polyaluminum chloride (PAC) or iron sulfate (FeSO4) coagulants. After 23 months of flooding and coagulant treatment, sediment samples were collected near the inlet, middle, and outlet of each wetland to determine vertical accretion rates, bulk density, sediment composition, and carbon sequestration rates. Wetlands treated with PAC had the highest and most spatially consistent vertical accretion rates (~6 cm year-1), while the FeSO4 wetlands had similarly high accretion rates near the inlet but rates similar to the untreated wetland (~1.5 cm year-1) at the middle and outlet sites. The composition of the newly accreted sediment in the PAC and FeSO4 treatments was high in the added metal (aluminum and iron, respectively), but the percent metal by weight was similar to native soils of California. As has been observed in other constructed wetlands, the newly accreted sediment material had lower bulk densities than the native soil material (0.04-0.10 g cm-3 versus 0.2-0.3 g cm-3), suggesting these materials will consolidate over time. Finally, this technology accelerated carbon burial, with rates in PAC treated wetland (0.63 kg C m-2 yr-1) over 2-fold greater than the untreated control (0.28 kg C m-2 yr-1). This study demonstrates the feasibility of using constructed wetlands treated with coagulants to reverse subsidence by accreting the

  6. Water Masers and Accretion Disks in Galactic Nuclei

    Greenhill, L. J.

    2005-12-01

    There are over 50 sources of H2O maser emission in type-2 active galactic nuclei, a large fraction discovered in the last two years. Interferometer maps of water masers are presently the only means by which structures ⪉ 1 pc from massive black holes can be mapped directly, which is particularly important for type-2 systems because edge-on orientation and obscuration complicate study by other means. Investigations of several sources have demonstrated convincingly that the maser emission traces warped accretion disks 0.1 to 1 pc from central engines of order 106-108 M⊙. The same may be true for almost half the known (but unmapped) sources, based on spectral characteristics consistent with emission from edge-on accretion disks. Mapping these sources is a high priority. Study of most recently discovered masers requires long baseline arrays that include 100-m class apertures and would benefit from aggregate bit rates on the order of 1 gigabit per second. The Square Kilometer Array should provide an order of magnitude boost in mapping sensitivity, but outrigger antennas will be needed to achieve necesssary angular resolutions, as may be space-borne antennas.

  7. Black Hole Event Horizons and Advection-Dominated Accretion

    McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)

    2002-01-01

    The work supported in part by this grant is part of a larger program on the detection of black hole event horizons, which is also partially supported by NASA grant GO0-1105A. This work has been carried out primarily in collaboration with Dr. M. Garcia and Prof. R. Narayan at the Harvard-Smithsonian Center for Astrophysics and with D. Barret and J. Hameury at Centre d'Etude Spoliate des Rayonnements, France. Our purpose is to confirm the existence of black-hole event horizons by comparing accreting black holes to secreting neutron stars in quiescent X-ray novae. Such a comparison is feasible because black holes and neutron stars are both present in similar environments in X-ray novae. Our second purpose is to assess the nature of accretion flows onto black holes at very low mass transfer rates. Observations of some XMM targets are still pending, whereas most of the Chandra observations have been completed. We anticipate further publications on this work in the future.

  8. ON THE LAMPPOST MODEL OF ACCRETING BLACK HOLES

    Niedźwiecki, Andrzej; Szanecki, Michał [Łódź University, Department of Physics, Pomorska 149/153, 90-236 Łódź (Poland); Zdziarski, Andrzej A. [Centrum Astronomiczne im. M. Kopernika, Bartycka 18, 00-716 Warszawa (Poland)

    2016-04-10

    We study the lamppost model, in which the X-ray source in accreting black hole (BH) systems is located on the rotation axis close to the horizon. We point out a number of inconsistencies in the widely used lamppost model relxilllp, e.g., neglecting the redshift of the photons emitted by the lamppost that are directly observed. They appear to invalidate those model fitting results for which the source distances from the horizon are within several gravitational radii. Furthermore, if those results were correct, most of the photons produced in the lamppost would be trapped by the BH, and the luminosity generated in the source as measured at infinity would be much larger than that observed. This appears to be in conflict with the observed smooth state transitions between the hard and soft states of X-ray binaries. The required increase of the accretion rate and the associated efficiency reduction also present a problem for active galactic nuclei. Then, those models imply the luminosity measured in the local frame is much higher than that produced in the source and measured at infinity, due to the additional effects of time dilation and redshift, and the electron temperature is significantly higher than that observed. We show that these conditions imply that the fitted sources would be out of the e{sup ±} pair equilibrium. On the other hand, the above issues pose relatively minor problems for sources at large distances from the BH, where relxilllp can still be used.

  9. Atmospheric chemistry of (Z)-CF3CH═CHCF3: OH radical reaction rate coefficient and global warming potential.

    Baasandorj, Munkhbayar; Ravishankara, A R; Burkholder, James B

    2011-09-29

    Rate coefficients, k, for the gas-phase reaction of the OH radical with (Z)-CF(3)CH═CHCF(3) (cis-1,1,1,4,4,4-hexafluoro-2-butene) were measured under pseudo-first-order conditions in OH using pulsed laser photolysis (PLP) to produce OH and laser-induced fluorescence (LIF) to detect it. Rate coefficients were measured over a range of temperatures (212-374 K) and bath gas pressures (20-200 Torr; He, N(2)) and found to be independent of pressure over this range of conditions. The rate coefficient has a non-Arrhenius behavior that is well-described by the expression k(1)(T) = (5.73 ± 0.60) × 10(-19) × T(2) × exp[(678 ± 10)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K) was measured to be (4.91 ± 0.50) × 10(-13) cm(3) molecule(-1) s(-1) and the uncertainties are at the 2σ level and include estimated systematic errors. Rate coefficients for the analogous OD radical reaction were determined over a range of temperatures (262-374 K) at 100 Torr (He) to be k(2)(T) = (4.81 ± 0.20) × 10(-19) × T(2) × exp[(776 ± 15)/T], with k(2)(296 K) = (5.73 ± 0.50) × 10(-13) cm(3) molecule(-1) s(-1). OH radical rate coefficients were also measured at 296, 345, and 375 K using a relative rate technique and found to be in good agreement with the PLP-LIF results. A room-temperature rate coefficient for the O(3) + (Z)-CF(3)CH═CHCF(3) reaction was measured using an absolute method with O(3) in excess to be reaction was estimated to be ~20 days. Infrared absorption spectra of (Z)-CF(3)CH═CHCF(3) measured in this work were used to determine a (Z)-CF(3)CH═CHCF(3) global warming potential (GWP) of ~9 for the 100 year time horizon. A comparison of the OH reactivity of (Z)-CF(3)CH═CHCF(3) with other unsaturated fluorinated compounds is presented.

  10. AS ABOVE, SO BELOW: EXPLOITING MASS SCALING IN BLACK HOLE ACCRETION TO BREAK DEGENERACIES IN SPECTRAL INTERPRETATION

    Markoff, Sera; Silva, Catia V.; Nowak, Michael A.; Gallo, Elena; Plotkin, Richard M.; Hynes, Robert; Wilms, Jörn; Maitra, Dipankar; Drappeau, Samia

    2015-01-01

    Over the past decade, evidence has mounted that several aspects of black hole (BH) accretion physics proceed in a mass-invariant way. One of the best examples of this scaling is the empirical “fundamental plane of BH accretion” relation linking mass, radio, and X-ray luminosity over eight orders of magnitude in BH mass. The currently favored theoretical interpretation of this relation is that the physics governing power output in weakly accreting BHs depends more on relative accretion rate than on mass. In order to test this theory, we explore whether a mass-invariant approach can simultaneously explain the broadband spectral energy distributions from two BHs at opposite ends of the mass scale but that are at similar Eddington accretion fractions. We find that the same model, with the same value of several fitted physical parameters expressed in mass-scaling units to enforce self-similarity, can provide a good description of two data sets from V404 Cyg and M81*, a stellar and supermassive BH, respectively. Furthermore, only one of several potential emission scenarios for the X-ray band is successful, suggesting it is the dominant process driving the fundamental plane relation at this accretion rate. This approach thus holds promise for breaking current degeneracies in the interpretation of BH high-energy spectra and for constructing better prescriptions of BH accretion for use in various local and cosmological feedback applications

  11. The Dynamics of Truncated Black Hole Accretion Disks. I. Viscous Hydrodynamic Case

    Hogg, J. Drew; Reynolds, Christopher S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2017-07-10

    Truncated accretion disks are commonly invoked to explain the spectro-temporal variability in accreting black holes in both small systems, i.e., state transitions in galactic black hole binaries (GBHBs), and large systems, i.e., low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the dynamics of truncated disks is lacking. We present a well-resolved viscous, hydrodynamic simulation that uses an ad hoc cooling prescription to drive a thermal instability and, hence, produce the first sustained truncated accretion disk. With this simulation, we perform a study of the dynamics, angular momentum transport, and energetics of a truncated disk. We find that the time variability introduced by the quasi-periodic transition of gas from efficient cooling to inefficient cooling impacts the evolution of the simulated disk. A consequence of the thermal instability is that an outflow is launched from the hot/cold gas interface, which drives large, sub-Keplerian convective cells into the disk atmosphere. The convective cells introduce a viscous θ − ϕ stress that is less than the generic r − ϕ viscous stress component, but greatly influences the evolution of the disk. In the truncated disk, we find that the bulk of the accreted gas is in the hot phase.

  12. Accretion history of mid-Holocene coral reefs from the southeast Florida continental reef tract, USA

    Stathakopoulos, A.; Riegl, B. M.

    2015-03-01

    Sixteen new coral reef cores were collected to better understand the accretion history and composition of submerged relict reefs offshore of continental southeast (SE) Florida. Coral radiometric ages from three sites on the shallow inner reef indicate accretion initiated by 8,050 Cal BP and terminated by 5,640 Cal BP. The reef accreted up to 3.75 m of vertical framework with accretion rates that averaged 2.53 m kyr-1. The reef was composed of a nearly even mixture of Acropora palmata and massive corals. In many cases, cores show an upward transition from massives to A. palmata and may indicate local dominance by this species prior to reef demise. Quantitative macroscopic analyses of reef clasts for various taphonomic and diagenetic features did not correlate well with depth/environmental-related trends established in other studies. The mixed coral framestone reef lacks a classical Caribbean reef zonation and is best described as an immature reef and/or a series of fused patch reefs; a pattern that is evident in both cores and reef morphology. This is in stark contrast to the older and deeper outer reef of the SE Florida continental reef tract. Accretion of the outer reef lasted from 10,695-8,000 Cal BP and resulted in a larger and better developed structure that achieved a distinct reef zonation. The discrepancies in overall reef morphology and size as well as the causes of reef terminations remain elusive without further study, yet they likely point to different climatic/environmental conditions during their respective accretion histories.

  13. A New Model for Thermal and Bulk Comptonization in Accretion-Powered X-ray Pulsars

    Becker, Peter A.; Wolff, Michael T.

    2018-01-01

    The theory of spectral formation in accretion-powered X-ray pulsars has advanced considerably in the past decade, with the development of new models for the continuum and the cyclotron line formation processes. In many sources, the cyclotron line centroid energy is observed to vary as a function of source luminosity (and therefore accretion rate). In some cases, the variations in the luminosity seem to indicate a change in the structure of the accretion column, as the source passes from the sub-critical to the super-critical regime. With the recent launches of NuSTAR and NICER, observations of accreting X-ray pulsars are entering a new era, with large effective areas, broadband energy coverage, and good temporal resolution. These observations are already presenting new challenges to the theory, requiring the development of a new generation of more sophisticated physical models. In this paper, we discuss an improved model for bulk and thermal Comptonization in X-ray pulsars that will allow greater self-consistency in the data analysis process than current models, leading to more rigorous determinations of source parameters such as magnetic field strength, temperature, etc. The model improvements include (1) a more realistic geometry for the accretion column; (2) a more rigorous accretion velocity profile that merges smoothly with Newtonian free-fall as r → ∞ and (3) a more realistic free-streaming radiative boundary condition at the top of the column. This latter improvement means that we can now compute the pencil and fan beam components separately, which is necessary in order to analyze phase-dependent spectral data. We discuss applications of the new model to Her X-1, LMC X-4, and Cen X-3, and also to the Be X-ray binary 4U 0115+63.

  14. Modeling the response of a standard accretion disc to stochastic viscous fluctuations

    Ahmad, Naveel; Misra, Ranjeev; Iqbal, Naseer; Maqbool, Bari; Hamid, Mubashir

    2018-01-01

    The observed variability of X-ray binaries over a wide range of time-scales can be understood in the framework of a stochastic propagation model, where viscous fluctuations at different radii induce accretion rate variability that propagate inwards to the X-ray producing region. The scenario successfully explains the power spectra, the linear rms-flux relation as well as the time-lag between different energy photons. The predictions of this model have been obtained using approximate analytical solutions or empirically motivated models which take into account the effect of these propagating variability on the radiative process of complex accretion flows. Here, we study the variation of the accretion rate due to such viscous fluctuations using a hydro-dynamical code for the standard geometrically thin, gas pressure dominated α-disc with a zero torque boundary condition. Our results confirm earlier findings that the time-lag between a perturbation and the resultant inner accretion rate variation depends on the frequency (or time-period) of the perturbation. Here we have quantified that the time-lag tlag ∝f-0.54 , for time-periods less than the viscous time-scale of the perturbation radius and is nearly constant otherwise. This, coupled with radiative process would produce the observed frequency dependent time-lag between different energy bands. We also confirm that if there are random Gaussian fluctuations of the α-parameter at different radii, the resultant inner accretion rate has a power spectrum which is a power-law.

  15. CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES

    Noble, Scott C.; Mundim, Bruno C.; Nakano, Hiroyuki; Campanelli, Manuela; Zlochower, Yosef [Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); Krolik, Julian H. [Physics and Astronomy Department, Johns Hopkins University, Baltimore, MD 21218 (United States); Yunes, Nicolas, E-mail: scn@astro.rit.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2012-08-10

    We have simulated the magnetohydrodynamic evolution of a circumbinary disk surrounding an equal-mass binary comprising two non-spinning black holes during the period in which the disk inflow time is comparable to the binary evolution time due to gravitational radiation. Both the changing spacetime and the binary orbital evolution are described by an innovative technique utilizing high-order post-Newtonian approximations. Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by extrapolation from Newtonian results: a gap of roughly two binary separation radii is cleared, and matter piles up at the outer edge of this gap as inflow is retarded by torques exerted by the binary; the accretion rate is roughly half its value at large radius. During inspiral, the inner edge of the disk initially moves inward in coordination with the shrinking binary, but-as the orbital evolution accelerates-the inward motion of the disk edge falls behind the rate of binary compression. In this stage, the binary torque falls substantially, but the accretion rate decreases by only 10%-20%. When the binary separation is tens of gravitational radii, the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black holes could be very luminous at this stage of their evolution. Inner disk heating is modulated at a beat frequency comparable to the binary orbital frequency. However, a disk with sufficient surface density to be luminous may be optically thick, suppressing periodic modulation of the luminosity.

  16. Global Bi-ventricular endocardial distribution of activation rate during long duration ventricular fibrillation in normal and heart failure canines.

    Luo, Qingzhi; Jin, Qi; Zhang, Ning; Han, Yanxin; Wang, Yilong; Huang, Shangwei; Lin, Changjian; Ling, Tianyou; Chen, Kang; Pan, Wenqi; Wu, Liqun

    2017-04-13

    The objective of this study was to detect differences in the distribution of the left and right ventricle (LV & RV) activation rate (AR) during short-duration ventricular fibrillation (SDVF, 1 min) in normal and heart failure (HF) canine hearts. Ventricular fibrillation (VF) was electrically induced in six healthy dogs (control group) and six dogs with right ventricular pacing-induced congestive HF (HF group). Two 64-electrode basket catheters deployed in the LV and RV were used for global endocardium electrical mapping. The AR of VF was estimated by fast Fourier transform analysis from each electrode. In the control group, the LV was activated faster than the RV in the first 20 s, after which there was no detectable difference in the AR between them. When analyzing the distribution of the AR within the bi-ventricles at 3 min of LDVF, the posterior LV was activated fastest, while the anterior was slowest. In the HF group, a detectable AR gradient existed between the two ventricles within 3 min of VF, with the LV activating more quickly than the RV. When analyzing the distribution of the AR within the bi-ventricles at 3 min of LDVF, the septum of the LV was activated fastest, while the anterior was activated slowest. A global bi-ventricular endocardial AR gradient existed within the first 20 s of VF but disappeared in the LDVF in healthy hearts. However, the AR gradient was always observed in both SDVF and LDVF in HF hearts. The findings of this study suggest that LDVF in HF hearts can be maintained differently from normal hearts, which accordingly should lead to the development of different management strategies for LDVF resuscitation.

  17. New Insights on the Accretion Disk-Winds Connection in Radio-Loud AGNs from Suzaku

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Cappi, M.; Reynolds, S.; Mushotzky, R. F.

    2011-01-01

    From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ,,approx.0.1 c in three of them, namely 3C III, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C III to monitor its outflow on approx.7 days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disc-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/jets.

  18. Global Rating Scales and Motion Analysis Are Valid Proficiency Metrics in Virtual and Benchtop Knee Arthroscopy Simulators.

    Chang, Justues; Banaszek, Daniel C; Gambrel, Jason; Bardana, Davide

    2016-04-01

    Work-hour restrictions and fatigue management strategies in surgical training programs continue to evolve in an effort to improve the learning environment and promote safer patient care. In response, training programs must reevaluate how various teaching modalities such as simulation can augment the development of surgical competence in trainees. For surgical simulators to be most useful, it is important to determine whether surgical proficiency can be reliably differentiated using them. To our knowledge, performance on both virtual and benchtop arthroscopy simulators has not been concurrently assessed in the same subjects. (1) Do global rating scales and procedure time differentiate arthroscopic expertise in virtual and benchtop knee models? (2) Can commercially available built-in motion analysis metrics differentiate arthroscopic expertise? (3) How well are performance measures on virtual and benchtop simulators correlated? (4) Are these metrics sensitive enough to differentiate by year of training? A cross-sectional study of 19 subjects (four medical students, 12 residents, and three staff) were recruited and divided into 11 novice arthroscopists (student to Postgraduate Year [PGY] 3) and eight proficient arthroscopists (PGY 4 to staff) who completed a diagnostic arthroscopy and loose-body retrieval in both virtual and benchtop knee models. Global rating scales (GRS), procedure times, and motion analysis metrics were used to evaluate performance. The proficient group scored higher on virtual (14 ± 6 [95% confidence interval {CI}, 10-18] versus 36 ± 5 [95% CI, 32-40], p virtual scope (579 ±169 [95% CI, 466-692] versus 358 ± 178 [95% CI, 210-507] seconds, p = 0.02) and benchtop knee scope + probe (480 ± 160 [95% CI, 373-588] versus 277 ± 64 [95% CI, 224-330] seconds, p = 0.002). The built-in motion analysis metrics also distinguished novices from proficient arthroscopists using the self-generated virtual loose body retrieval task scores (4 ± 1 [95% CI, 3

  19. Fundamental Ice Crystal Accretion Physics Studies

    Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan

    2012-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component

  20. Angular momentum transfer in steady disk accretion

    Gorbatskij, V.G.

    1977-01-01

    The conditions of steady disk accretion have been investigated. The disk axisymmetric model is considered. It is shown that the gas is let at the outer boundary of the disk with the azimuthal velocity which is slightly less than the Kepler circular one. Gas possesses the motion quality moment which is transferred from the outer layers of the disk to the surface of the star. The steady state of the disk preserved until the inflow of the moment to the star increases its rotation velocity up to magnitudes close to the critical one

  1. Thermal Comptonization in standard accretion disks

    Maraschi, L.; Molendi, S.

    1990-01-01

    Using the theory of geometrically thin accretion disks (where the effects of viscosity are parametrized in terms of the total pressure, viscosity parameter, α) equations are presented for the innermost region of the disk (where the pressure is due to radiation, and the main source of opacity is Thompson scattering). It is important to stress that the four equations can be solved without making use of an equation for the temperature. This is not true for the other regions of the disk. An equation given is used to determine the temperature, assuming that the disk is homogeneous and isothermal in the vertical direction. (author)

  2. Multi-phase outflows as probes of AGN accretion history

    Nardini, Emanuele; Zubovas, Kastytis

    2018-05-01

    Powerful outflows with a broad range of properties (such as velocity, ionization, radial scale and mass loss rate) represent a key feature of active galactic nuclei (AGN), even more so since they have been simultaneously revealed also in individual objects. Here we revisit in a simple analytical framework the recent remarkable cases of two ultraluminous infrared quasars, IRAS F11119+3257 and Mrk 231, which allow us to investigate the physical connection between multi-phase AGN outflows across the ladder of distance from the central supermassive black hole (SMBH). We argue that any major deviations from the standard outflow propagation models might encode unique information on the past SMBH accretion history, and briefly discuss how this could help address some controversial aspects of the current picture of AGN feedback.

  3. Sociodemographic, disease status, and illness perceptions predictors of global self-ratings of health and quality of life among those with coronary heart disease

    Aalto, Anna-Mari; Aro, Arja R; Weinman, John

    2006-01-01

    This one-year follow-up study (n = 130 at baseline, n =2745 at follow-up, aged 45-74 years) examined the relationship of patients' perceptions of coronary heart disease (CHD) and illness-related factors with global health status and global quality of life (QOL) ratings. The independent variables...... were CHD history (myocardial infarction, revascularisation), CHD severity (use of nitrates, CHD risk factors and co-morbidities) and illness perceptions. In multivariate regression analysis, CHD history and severity explained 13% of variance in global health status and 8% in global QOL ratings...... at the baseline. Illness perceptions increased the share of explained variance by 18% and 16% respectively. In the follow-up, illness perceptions explained a significant but modest share of variance in change in health status and QOL when baseline health status and QOL and CHD severity were adjusted for more...

  4. Quasi-periodic oscillations in accreting magnetic white dwarfs. II. The asset of numerical modelling for interpreting observations

    Busschaert, C.; Falize, É.; Michaut, C.; Bonnet-Bidaud, J.-M.; Mouchet, M.

    2015-07-01

    Context. Magnetic cataclysmic variables are close binary systems containing a strongly magnetized white dwarf that accretes matter coming from an M-dwarf companion. The high magnetic field strength leads to the formation of an accretion column instead of an accretion disk. High-energy radiation coming from those objects is emitted from the column close to the white dwarf photosphere at the impact region. Its properties depend on the characteristics of the white dwarf and an accurate accretion column model allows the properties of the binary system to be inferred, such as the white dwarf mass, its magnetic field, and the accretion rate. Aims: We study the temporal and spectral behaviour of the accretion region and use the tools we developed to accurately connect the simulation results to the X-ray and optical astronomical observations. Methods: The radiation hydrodynamics code Hades was adapted to simulate this specific accretion phenomena. Classical approaches were used to model the radiative losses of the two main radiative processes: bremsstrahlung and cyclotron. Synthetic light curves and X-ray spectra were extracted from numerical simulations. A fast Fourier analysis was performed on the simulated light curves. The oscillation frequencies and amplitudes in the X-ray and optical domains are studied to compare those numerical results to observational ones. Different dimensional formulae were developed to complete the numerical evaluations. Results: The complete characterization of the emitting region is described for the two main radiative regimes: when only the bremsstrahlung losses and when both cyclotron and bremsstrahlung losses are considered. The effect of the non-linear cooling instability regime on the accretion column behaviour is analysed. Variation in luminosity on short timescales (~1 s quasi-periodic oscillations) is an expected consequence of this specific dynamic. The importance of secondary shock instability on the quasi-periodic oscillation

  5. SURFACE LAYER ACCRETION IN TRANSITIONAL AND CONVENTIONAL DISKS: FROM POLYCYCLIC AROMATIC HYDROCARBONS TO PLANETS

    Perez-Becker, Daniel; Chiang, Eugene

    2011-01-01

    'Transitional' T Tauri disks have optically thin holes with radii ∼>10 AU, yet accrete up to the median T Tauri rate. Multiple planets inside the hole can torque the gas to high radial speeds over large distances, reducing the local surface density while maintaining accretion. Thus multi-planet systems, together with reductions in disk opacity due to grain growth, can explain how holes can be simultaneously transparent and accreting. There remains the problem of how outer disk gas diffuses into the hole. Here it has been proposed that the magnetorotational instability (MRI) erodes disk surface layers ionized by stellar X-rays. In contrast to previous work, we find that the extent to which surface layers are MRI-active is limited not by ohmic dissipation but by ambipolar diffusion, the latter measured by Am: the number of times a neutral hydrogen molecule collides with ions in a dynamical time. Simulations by Hawley and Stone showed that Am ∼ 100 is necessary for ions to drive MRI turbulence in neutral gas. We calculate that in X-ray-irradiated surface layers, Am typically varies from ∼10 -3 to 1, depending on the abundance of charge-adsorbing polycyclic aromatic hydrocarbons, whose properties we infer from Spitzer observations. We conclude that ionization of H 2 by X-rays and cosmic rays can sustain, at most, only weak MRI turbulence in surface layers 1-10 g cm -2 thick, and that accretion rates in such layers are too small compared to observed accretion rates for the majority of disks.

  6. Natural and Human-Induced Variations in Accretion of the Roanoke Bay-head Delta

    Jalowska, A.; McKee, B. A.; Rodriguez, A. B.

    2014-12-01

    Bay-head deltas (BHD), along with their adjacent floodplains serve as storage sites for lithogenic and organic material on millennial time scales and are biogeochemically active sites on daily to decadal time scales, contributing to global nutrient and carbon cycles. BHD host unique, highly diverse ecosystems such as the pristine swamp forest and hardwood bottomlands, of the Lower Roanoke River, NC. The global value of ecosystem services provided by wetlands within natural BHD is 2.5 to 2.8 mln 2007$/km2/year. BHD are very sensitive to changes in sedimentation and to changes in the rate of sea-level rise. Core descriptions, 14C geo-chronologies and grain-size analyses show that the Roanoke BHD in North Carolina, USA experienced two episodes of retreat in late Holocene. The first event occurred around ca 3500 cal. yr. BC and is recognized as a prominent flooding surface separating the delta plain environment, below, from interdistributary bay, above. Across the flooding surface rates of sediment accumulation decreased from 1.8-3.3 mm/year to 0.5-0.6 mm/year. That change was associated with increased sediment accommodation. Sedimentation rates were keeping up with the low rates of sea-level rise until 1600-1700 AD. During that time, the delta started to rapidly accrete and the interdistributary bay was buried with delta plain and prodelta sediment. This occurred in response to the low rates of sea-level rise at that time (-0.1 to 0.47 mm/year) and the release of large quantities of sediments associated with the initiation of agriculture by European settlers in the drainage basin. The second episode of retreat was initiated during the 19th century when the rate of sea-level rose to 2.1 mm/year. During that time, agricultural practices improved, decreasing the amount of sediments delivered to the mouth of the Roanoke River. Under these conditions, the delta started backstepping. Analyses of historical maps, aerial photography, and side-scan sonar data show that between

  7. Accretion-Ejection Instability in magnetized accretion disk around compact objects

    Varniere, Peggy

    2002-01-01

    The major problem in accretion physics come from the origin of angular momentum transfer in the disk. My PhD deal with a mechanism (the Accretion-Ejection Instability, AEI) able to explain and link together accretion in the inner region of the disk and ejection. This instability occurs in magnetized accretion disk near equipartition with gas pressure. We first study the impact of some relativistic effects on the instability, particularly on the m = 1 mode. And compared the results with the Quasi-Periodic Oscillation (QPO) observed in micro-quasars. In the second part we study analytically and numerically the Alfven wave emission mechanism which re-emit the angular momentum and energy taken from the inner region of the disk into the corona. The last part deals with MHD numerical simulation. First of all a 2D non-linear disk simulation which contribute to QPO modelization. The last chapter is about a beginning collaboration on 3D simulation in order to study the Alfven wave emission in the corona. (author) [fr

  8. Accretion and evaporation of modified Hayward black hole

    Debnath, Ujjal

    2015-01-01

    We assume the most general static spherically symmetric black hole metric. The accretion of any general kind of fluid flow around the black hole is investigated. The accretion of the fluid flow around the modified Hayward black hole is analyzed, and we then calculate the critical point, the fluid's four-velocity, and the velocity of sound during the accretion process. Also the nature of the dynamical mass of the black hole during accretion of the fluid flow, taking into consideration Hawking radiation from the black hole, i.e., evaporation of the black hole, is analyzed. (orig.)

  9. Accretion onto a charged higher-dimensional black hole

    Sharif, M.; Iftikhar, Sehrish

    2016-01-01

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  10. Accretion onto a charged higher-dimensional black hole

    Sharif, M.; Iftikhar, Sehrish [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  11. Combined Aircraft and Satellite-Derived Storm Electric Current and Lightning Rates Measurements and Implications for the Global Electric Circuit

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2010-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of electrified shower clouds and thunderstorms spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative fields above the storms. The measurements were made with the NASA ER-2 and the Altus-II high altitude aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV/m to 16 kV/m, with a mean value of 0.9 kV/m. The median peak field was 0.29 kV/m. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean storms with lightning is 1.6 A while the mean current for land storms with lightning is 1.0 A. The mean current for oceanic storms without lightning (i.e., electrified shower clouds) is 0.39 A and the mean current for land storms without lightning is 0.13 A. Thus, on average, land storms with or without lightning have about half the mean current as their corresponding oceanic storm counterparts. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal lightning statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie

  12. Uncertainty in the learning rates of energy technologies. An experiment in a global multi-regional energy system model

    Rout, Ullash K.; Blesl, Markus; Fahl, Ulrich; Remme, Uwe; Voss, Alfred

    2009-01-01

    The diffusion of promising energy technologies in the market depends on their future energy production-cost development. When analyzing these technologies in an integrated assessment model using endogenous technological learning, the uncertainty in the assumed learning rates (LRs) plays a crucial role in the production-cost development and model outcomes. This study examines the uncertainty in LRs of some energy technologies under endogenous global learning implementation and presents a floor-cost modeling procedure to systematically regulate the uncertainty in LRs of energy technologies. The article narrates the difficulties of data assimilation, as compatible with mixed integer programming segmentations, and comprehensively presents the causes of uncertainty in LRs. This work is executed using a multi-regional and long-horizon energy system model based on 'TIMES' framework. All regions receive an economic advantage to learn in a common domain, and resource-ample regions obtain a marginal advantage for better exploitation of the learning technologies, due to a lower supply-side fuel-cost development. The lowest learning investment associated with the maximum LR mobilizes more deployment of the learning technologies. The uncertainty in LRs has an impact on the diffusion of energy technologies tested, and therefore this study scrutinizes the role of policy support for some of the technologies investigated. (author)

  13. Bridging the mantle: A comparison of geomagnetic polarity reversal rate, global subduction flux, and true polar wander records

    Biggin, A. J.; Hounslow, M.; Domeier, M.

    2017-12-01

    The long-term variability in average geomagnetic reversal frequency over the Phanerozoic, consisting of superchrons interspersed with periods of hyper-reversal activity, remains one of the most prominent and enigmatic features evident within palaeomagnetic records. This variability is widely expected to reflect mantle convection modifying the pattern and/or magnitude of core-mantle boundary heat flow, and thereby affecting the geodynamo's operation, but actual causal links to surface geological processes remain tenuous. Previous studies have argued that mantle plumes, superplume oscillation, true polar wander, and avalanching of cold slabs into the lower mantle could all be at least partly responsible. Here we will present a re-evaluated reversal frequency record for the Phanerozoic and use it, together with published findings from numerical geodynamo simulations, to push further towards an integrated explanation of how the geomagnetic field has responded to mantle processes over the last few hundreds of million years. Recent work on absolute plate motions back through the Phanerozoic have allowed estimations to be made as to both the global subduction flux and rates of true polar wander through time. When considered alongside the outputs of numerical simulations of the geodynamo process, these can potentially explain long-timescale palaeomagnetic variations over the last few hundreds of million years.

  14. Accretion disc origin of the Earth's water.

    Vattuone, Luca; Smerieri, Marco; Savio, Letizia; Asaduzzaman, Abu Md; Muralidharan, Krishna; Drake, Michael J; Rocca, Mario

    2013-07-13

    Earth's water is conventionally believed to be delivered by comets or wet asteroids after the Earth formed. However, their elemental and isotopic properties are inconsistent with those of the Earth. It was thus proposed that water was introduced by adsorption onto grains in the accretion disc prior to planetary growth, with bonding energies so high as to be stable under high-temperature conditions. Here, we show both by laboratory experiments and numerical simulations that water adsorbs dissociatively on the olivine {100} surface at the temperature (approx. 500-1500 K) and water pressure (approx. 10⁻⁸ bar) expected for the accretion disc, leaving an OH adlayer that is stable at least up to 900 K. This may result in the formation of many Earth oceans, provided that a viable mechanism to produce water from hydroxyl exists. This adsorption process must occur in all disc environments around young stars. The inevitable conclusion is that water should be prevalent on terrestrial planets in the habitable zone around other stars.

  15. NUMERICAL SIMULATION OF ICE ACCRETION ON AIRFOIL

    Nicusor ALEXANDRESCU

    2009-09-01

    Full Text Available This work consists in the simulation of the ice accretion in the leading edge of aerodynamic profiles and our proposed model encompasses: geometry generation, calculation of the potential flow around the body, boundary layer thickness computation, water droplet trajectory computation, heat and mass balances and the consequent modification of the geometry by the ic