Sample records for global 3d simulations

  1. Global 3D MHD Simulations of Waves in Accretion Discs

    Romanova M.M.


    Full Text Available We discuss results of the first global 3D MHD simulations of warp and density waves in accretion disks excited by a rotating star with a misaligned dipole magnetic field. A wide range of cases are considered. We find for example that if the star’s magnetosphere corotates approximately with the inner disk, then a strong one-arm bending wave or warp forms. The warp corotates with the star and has a maximum amplitude (|zw|/r ~ 0.3 between the corotation radius and the radius of the vertical resonance. If the magnetosphere rotates more slowly than the inner disk, then a bending wave is excited at the disk-magnetosphere boundary, but it does not form a large-scale warp. In this case the angular rotation of the disk [Ω(r] has a maximum as a function of r so that there is an inner region where dΩ/dr > 0. In this region we observe radially trapped density waves in approximate agreement with the theoretical prediction of a Rossby wave instability in this region.

  2. Unstable Disk Accretion to Magnetized Stars: First Global 3D MHD Simulations

    Romanova, Marina M; Lovelace, Richard V E


    We report the first global three-dimensional (3D) MHD simulations of disk accretion onto a rotating magnetized star through the Rayleigh-Taylor instability. In this regime, the accreting matter typically forms 2 to 7 vertically elongated "tongues" which penetrate deep into the magnetosphere, until they are stopped by the strong field. Subsequently, the matter is channeled along the field lines to the surface of the star, forming hot spots. The number, position and shape of the hot spots vary with time, so that the light-curves associated with the hot spots are stochastic. A magnetized star may be in the stable (with funnel streams) or unstable (with random tongues) regime of accretion, and consequently have significantly different observational properties. A star may switch between these two regimes depending on the accretion rate.

  3. Interplay between plasma turbulence and particle injection in 3D global simulations

    Tamain, P.; Baudoin, C.; Ciraolo, G.; Futtersack, R.; Ghendrih, P.; Nace, N. [Association Euratom-CEA, Institut de Recherche sur la Fusion Magnetique, CEA Cadarache, St. Paul-lez-Durance (France); Bufferand, H.; Carbajal, L.; Marandet, Y. [Aix-Marseille Universite, CNRS, PIIM, UMR 7345, Marseille (France); Colin, C.; Galassi, D.; Schwander, F.; Serre, E. [Aix-Marseille Universite, CNRS, Ecole Centrale Marseille, M2P2, Marseille (France)


    The impact of a 3D localized particle source on the edge plasma in 3D global turbulence simulations is investigated using the TOKAM3X fluid code. Results apply to advanced fueling methods such as Supersonic Molecular Beam Injection (SMBI) or pellets injection. The fueling source is imposed as a volumetric particle source in the simulations so that the physics leading to the ionization of particles and its localization are not taken into account. As already observed in experiments, the localized particle source strongly perturbs both turbulence and the large scale organization of the edge plasma. The localized increase of the pressure generated by the source drives sonic parallel flows in the plasma, leading to a poloidal redistribution of the particles on the time scale of the source duration. However, the particle deposition also drives localized transverse pressure gradients which impacts the stability of the plasma with respect to interchange processes. The resulting radial transport occurs on a sufficiently fast time scale to compete with the parallel redistribution of particles, leading to immediate radial losses of a significant proportion of the injected particles. Low Field Side (LFS) and High Field Side (HFS) injections exhibit different dynamics due to their interaction with curvature. In particular, HFS particle deposition drives an inward flux leading to differences in the particle deposition efficiency (higher for HFS than LFS). These results demonstrate the importance of taking into account plasma transport in a self-consistent manner when investigating fueling methods. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. 3D Surgical Simulation

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael


    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  5. Double-cusp simulation during northward IMF using 3D PIC global code

    Esmaeili, Amin; Kalaee, Mohammad Javad


    The cusp has important effects on the transportation of particles and their energy from the solar wind to the magnetosphere, and ionosphere, and high-altitude atmosphere. The cusp can be considered to be a part of the magnetospheric boundary layer with weaker magnetic fields. It has been studied since 1971 by different satellite observations. Despite many years of investigation, some problems, such as the boundaries, shapes, and method of construction, remain to be solved. The double cusp was first reported by Wing using the observation of the DMSP satellite. He also compared the results of observations with the results of a 2D MHD simulation. In this study, by performing simulations and analyzing the results, we report the observation of a V-shaped double-cusp structure under the northward Interplanetary Magnetic Field (IMF). In our simulation, the double cusp was seen only for electrons, although a weak double cusp was observed for ions as well. We showed that this double cusp occurred because of electron precipitation from different sources of solar wind and magnetosphere with different magnetic field strengths. In previous studies of the double cusp, there were debates on its spatial structure or on its temporal behavior due to the cusp movement caused by the sharp solar wind effects on the magnetosphere shape. Here we report the spatial detection of the double cusp similar to the one observed by the DMSP satellite, but for the northward IMF case. Also, we investigate the asymmetry along the dawn-dusk side of the magnetosphere using our 3D PIC simulation code.


    Passos, Dário [CENTRA, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); Charbonneau, Paul [Départment de Physique, Université de Montréal, C.P. 6128, Centre-ville, Montréal, QC H3C 3J7 (Canada); Miesch, Mark, E-mail: [High Altitude Observatory, NCAR, Boulder CO 80301-2252 (United States)


    The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone at mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 R{sub ⊙}). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.

  7. Formation and transport of entropy structures in the magnetotail simulated with a 3-D global hybrid code

    Lin, Y.; Wing, S.; Johnson, J. R.; Wang, X. Y.; Perez, J. D.; Cheng, L.


    Global structure and evolution of flux tube entropy S, integrated over closed field lines, associated with magnetic reconnection in the magnetotail are investigated using the AuburN Global hybrId codE in three dimensions (3-D), ANGIE3D. Flux tubes with decreased entropy, or "bubbles," are found to be generated due to the sudden change of flux tube topology and thus volume in reconnection. By tracking the propagation of the entropy-depleted flux tubes, the roles of the entropy structure in plasma transport to the inner magnetosphere is examined with a self-consistent global hybrid simulation for the first time. The value of S first decreases due to the shortening of flux tubes and then increases due to local ion heating as the bubbles are injected earthward by interchange-ballooning instability, finally oscillating around an equilibrium radial distance where S is nearly the same as the ambient value. The pressure remains anisotropic and not constant along the flux tubes during their propagation with a nonzero heat flux along the field line throughout the duration of the simulation. The correlation of these bubbles with earthward fast flows and specific entropy s is also studied.

  8. Global ice volume variations through the last glacial cycle simulated by a 3-D ice-dynamical model

    Bintanja, R.; Wal, R.S.W. van de; Oerlemans, J.


    A coupled ice sheet—ice shelf—bedrock model was run at 20km resolution to simulate the evolution of global ice cover during the last glacial cycle. The mass balance model uses monthly mean temperature and precipitation as input and incorporates the albedo—mass balance feedback. The model is forced b

  9. First simulation results of Titan's atmosphere dynamics with a global 3-D non-hydrostatic circulation model

    I. V. Mingalev


    Full Text Available We present the first results of a 3-D General Circulation Model of Titan's atmosphere which differs from traditional models in that the hydrostatic equation is not used and all three components of the neutral gas velocity are obtained from the numerical solution of the Navier-Stokes equation. The current version of our GCM is, however, a simplified version, as it uses a predescribed temperature field in the model region thereby avoiding the complex simulation of radiative transfer based on the energy equation. We present the first simulation results and compare them to the results of existing GCMs and direct wind observations. The wind speeds obtained from our GCM correspond well with data obtained during the Huygens probe descent through Titan's atmosphere. We interpret the most unexpected feature of these data which consist of the presence of a non-monotonicity of the altitude profile of the zonal wind speed between 60 and 75 km.

  10. Impact of the Interplanetary Magnetic Field rotation from North to South on the Alfven Transition Layer: 3D Global PIC Simulation

    Cai, DongSheng; Lembege, Bertrand; Nishikawa, Ken-ichi


    Using a global 3D PIC simulation, the solar-terrestrial magnetosphere interaction has been analyzed focusing on the 3D magnetic cusp region. Our recent global simulation results (Cai et al., JGR 2015) have reproduced the main features of the magnetic cusp under a northward IMF configuration comparing with the three-year statistical observations of Cluster satellites (Lavraud et al., JGR, 2005). One of the most important features found in our simulation is the existence of the Alfven Transition Layer (ATL) where Alfven Mach number is nearly zero almost adjacent to the upper stagnant exterior cusp (SEC). Its width measured near the SEC within the meridian plane varies from 1 to 4 Re. From the magnetosheath to SEC, the plasma flows transit from super to sub-Alfvenic regime. Striking features observed in the simulation is the unique depleted funnel shape ATL starting from the high altitude dusk to low altitude dawn above the magnetic cusp in a northward IMF. Both the ion and electron flux enter and spiral into the cups region through this depleted ATL with possibly a curvature drift. Varying IMF from north to south through dusk-dawn direction, this ATL persists although it drastically shrinks. Especially, in the southward IMF, the ion flux enters into the cusp region through the complicated ATL and bounce back to the magnetosheath. ATL can help us to investigate the complex structures of the magnetic cusp.

  11. 3D Printing and Global Value Chains

    Rehnberg, Märtha; Ponte, Stefano

    From the birth of industrialization, access to new technology has been a decisive factor in how value added is created and distributed across networks of global production. This article provides a balanced assessment of the potential impact that one of these technologies (3D printing, or 3DP) may......-produced using traditional technology and organization; and a substitution scenario, where 3DP partially replaces traditional manufacturing. These two are likely to co-exist for a period of time, but each has distinctive implications in terms of distribution of value added along GVCs and geographically....

  12. 3D Printing and Global Value Chains

    Rehnberg, Märtha; Ponte, Stefano

    From the birth of industrialization, access to new technology has been a decisive factor in how value added is created and distributed across networks of global production. This article provides a balanced assessment of the potential impact that one of these technologies (3D printing, or 3DP) may......-produced using traditional technology and organization; and a substitution scenario, where 3DP partially replaces traditional manufacturing. These two are likely to co-exist for a period of time, but each has distinctive implications in terms of distribution of value added along GVCs and geographically....


    Hou-de Han; Xin Wen


    We consider the numerical approximations of the three-dimensional steady potential flow around a body moving in a liquid of finite constant depth at constant speed and distance below a free surface in a channel. One vertical side is introduced as the upstream artificial boundary and two vertical sides are introduced as the downstream artificial boundaries. On the artificial boundaries, a sequence of high-order global artificial boundary conditions are given. Then the original problem is reduced to a problem defined on a finite computational domain, which is equivalent to a variational problem. After solving the variational problem by the finite element method, we obtain the numerical approximation of the original problem. The numerical examples show that the artificial boundary conditions given in this paper are very effective.


    Steven R Prescott; Curtis Smith


    Through continued advancement in computational resources, development that was previously done by trial and error production is now performed through computer simulation. These virtual physical representations have the potential to provide accurate and valid modeling results and are being used in many different technical fields. Risk assessment now has the opportunity to use 3D simulation to improve analysis results and insights, especially for external event analysis. By using simulations, the modeler only has to determine the likelihood of an event without having to also predict the results of that event. The 3D simulation automatically determines not only the outcome of the event, but when those failures occur. How can we effectively incorporate 3D simulation into traditional PRA? Most PRA plant modeling is made up of components with different failure modes, probabilities, and rates. Typically, these components are grouped into various systems and then are modeled together (in different combinations) as a “system” with logic structures to form fault trees. Applicable fault trees are combined through scenarios, typically represented by event tree models. Though this method gives us failure results for a given model, it has limitations when it comes to time-based dependencies or dependencies that are coupled to physical processes which may themselves be space- or time-dependent. Since, failures from a 3D simulation are naturally time related, they should be used in that manner. In our simulation approach, traditional static models are converted into an equivalent state diagram representation with start states, probabilistic driven movements between states and terminal states. As the state model is run repeatedly, it converges to the same results as the PRA model in cases where time-related factors are not important. In cases where timing considerations are important (e.g., when events are dependent upon each other), then the simulation approach will typically

  15. Simulation of 3D diamond detectors

    Forcolin, G. T.; Oh, A.; Murphy, S. A.


    3D diamond detectors present an interesting prospect for future Particle Physics experiments. They have been studied in detail at beam tests with 120 GeV protons and 4 MeV protons. To understand the observations that have been made, simulations have been carried out using Synopsys TCAD in order to explain the movement of charge carriers within the sample, as well as the effects of charge sharing. Reasonable agreement has been observed between simulation and experiment.

  16. 3D MHD Simulations of Tokamak Disruptions

    Woodruff, Simon; Stuber, James


    Two disruption scenarios are modeled numerically by use of the CORSICA 2D equilibrium and NIMROD 3D MHD codes. The work follows the simulations of pressure-driven modes in DIII-D and VDEs in ITER. The aim of the work is to provide starting points for simulation of tokamak disruption mitigation techniques currently in the CDR phase for ITER. Pressure-driven instability growth rates previously observed in simulations of DIIID are verified; Halo and Hiro currents produced during vertical displacements are observed in simulations of ITER with implementation of resistive walls in NIMROD. We discuss plans to exercise new code capabilities and validation.

  17. A degradation approach to accelerate simulations to steady-state in a 3-D tracer transport model of the global ocean

    Aumont, O.; Orr, J.C.; Marti, O. [CEA Saclay, Gif-sur-Yvette (France). Lab. de Modelisation du Climat et de l`Environnement; Jamous, D.; Monfray, P. [Centre des Faibles Radioactivites, Laboratoire mixte CNRS-CEA, L`Orme des Merisiers, Bt. 709/LMCE, CE Saclay, F-91191 Gif sur Yvette Cedex (France); Madec, G. [Laboratoire d`Oceanographie Dynamique et de Climatologie, (CNRS/ORSTOM/UPMC) Universite Paris VI, 4 place Jussieu, Paris (France)


    We have developed a new method to accelerate tracer simulations to steady-state in a 3D global ocean model, run off-line. Using this technique, our simulations for natural {sup 14}C ran 17 times faster when compared to those made with the standard nonaccelerated approach. For maximum acceleration we wish to initialize the model with tracer fields that are as close as possible to the final equilibrium solution. Our initial tracer fields were derived by judiciously constructing a much faster, lower-resolution (degraded), off-line model from advective and turbulent fields predicted from the parent on-line model, an ocean general circulation model (OGCM). No on-line version of the degraded model exists; it is based entirely on results from the parent OGCM. Degradation was made horizontally over sets of four adjacent grid-cell squares for each vertical layer of the parent model. However, final resolution did not suffer because as a second step, after allowing the degraded model to reach equilibrium, we used its tracer output to reinitialize the parent model (at the original resolution). After reinitialization, the parent model must then be integrated only to a few hundred years before reaching equilibrium. To validate our degradation-integration technique (DEGINT), we compared {sup 14}C results from runs with and without this approach. Differences are less than 10 permille throughout 98.5% of the ocean volume. Predicted natural {sup 14}C appears reasonable over most of the ocean. In the Atlantic, modeled {Delta}{sup 14}C indicates that as observed, the North Atlantic Deep Water (NADW) fills the deep North Atlantic, and Antartic Intermediate Water (AAIW) infiltrates northward. (orig.) With 12 figs., 1 tab., 42 refs.

  18. Global impact of 3D cloud-radiation interactions

    Schäfer, Sophia; Hogan, Robin; Fielding, Mark; Chiu, Christine


    Clouds have a decisive impact on the Earth's radiation budget and on the temperature of the atmosphere and surface. However, in global weather and climate models, cloud-radiation interaction is treated in only the vertical dimension using several non-realistic assumptions, which contributes to the large uncertainty on the climatic role of clouds. We provide a first systematic investigation into the impact of horizontal radiative transport for both shortwave and longwave radiation on a global, long-term scale. For this purpose, we have developed and validated the SPARTACUS radiation scheme, a method for including three-dimensional radiative transfer effects approximately in a one-dimensional radiation calculation that is numerically efficient enough for global calculations, allowing us to conduct 1D and quasi-3D radiation calculations for a year of global of ERA-Interim re-analysis atmospheric data and compare the results of various radiation treatments. SPARTACUS includes the effects of cloud internal inhomogeneity, horizontal in-region transport and the spatial distribution of in-cloud radiative fluxes.The impact of varying three-dimensional cloud geometry can be described by one parameter, the effective cloud scale, which has a characteristic value for each cloud type. We find that both the 3D effects of cloud-side transport and of horizontal in-cloud radiative transport in the shortwave are significant. Overall, 3D cloud effects warm the Earth by about 4 W m -2 , with warming effects in both the shortwave and the longwave. The dominant 3D cloud effect is the previously rarely investigated in-region horizontal transfer effect in the shortwave, which significantly decreases cloud reflectance and warms the Earth system by 5 W m -2 , partly counteracted by the cooling effect of shortwave 3D cloud-side transport. Longwave heating and cooling at various heights is strengthened by up to 0.2 K d ^{-1} and -0.3 K d ^{-1} respectively. These 3D effects, neglected by

  19. Radiative Transfer in 3D Numerical Simulations

    Stein, R; Stein, Robert; Nordlund, Aake


    We simulate convection near the solar surface, where the continuum optical depth is of order unity. Hence, to determine the radiative heating and cooling in the energy conservation equation, we must solve the radiative transfer equation (instead of using the diffusion or optically thin cooling approximations). A method efficient enough to calculate the radiation for thousands of time steps is needed. We assume LTE and a non-gray opacity grouped into 4 bins according to strength. We perform a formal solution of the Feautrier equation along a vertical and four straight, slanted, rays (at four azimuthal angles which are rotated 15 deg. every time step). We present details of our method. We also give some results: comparing simulated and observed line profiles for the Sun, showing the importance of 3D transfer for the structure of the mean atmosphere and the eigenfrequencies of p-modes, illustrating Stokes profiles for micropores, and analyzing the effect of radiation on p-mode asymmetries.

  20. Non-isothermal 3D SDPD Simulations

    Yang, Jun; Potami, Raffaele; Gatsonis, Nikolaos


    The study of fluids at micro and nanoscale requires new modeling and computational approaches. Smooth Particle Dissipative Dynamics (SDPD) is a mesh-free method that provides a bridge between the continuum equations of hydrodynamics embedded in the Smooth Particle Hydrodynamics approach and the molecular nature embedded in the DPD approach. SDPD is thermodynamically consistent, does not rely on arbitrary coefficients for its thermostat, involves realistic transport coefficients, and includes fluctuation terms. SDPD is implemented in our work for arbitrary 3D geometries with a methodology to model solid wall boundary conditions. We present simulations for isothermal flows for verification of our approach. The entropy equation is implemented with a velocity-entropy Verlet integration algorithm Flows with heat transfer are simulated for verification of the SDPD. We present also the self-diffusion coefficient derived from SDPD simulations for gases and liquids. Results show the scale dependence of self-diffusion coefficient on SDPD particle size. Computational Mathematics Program of the Air Force Office of Scientific Research under grant/contract number FA9550-06-1-0236.

  1. R3D Align: global pairwise alignment of RNA 3D structures using local superpositions

    Rahrig, Ryan R.; Leontis, Neocles B.; Zirbel, Craig L.


    Motivation: Comparing 3D structures of homologous RNA molecules yields information about sequence and structural variability. To compare large RNA 3D structures, accurate automatic comparison tools are needed. In this article, we introduce a new algorithm and web server to align large homologous RNA structures nucleotide by nucleotide using local superpositions that accommodate the flexibility of RNA molecules. Local alignments are merged to form a global alignment by employing a maximum clique algorithm on a specially defined graph that we call the ‘local alignment’ graph. Results: The algorithm is implemented in a program suite and web server called ‘R3D Align’. The R3D Align alignment of homologous 3D structures of 5S, 16S and 23S rRNA was compared to a high-quality hand alignment. A full comparison of the 16S alignment with the other state-of-the-art methods is also provided. The R3D Align program suite includes new diagnostic tools for the structural evaluation of RNA alignments. The R3D Align alignments were compared to those produced by other programs and were found to be the most accurate, in comparison with a high quality hand-crafted alignment and in conjunction with a series of other diagnostics presented. The number of aligned base pairs as well as measures of geometric similarity are used to evaluate the accuracy of the alignments. Availability: R3D Align is freely available through a web server The MATLAB source code of the program suite is also freely available for download at that location. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: PMID:20929913

  2. 3D Model Optimization of Four-Facet Drill for 3D Drilling Simulation

    Buranský Ivan


    Full Text Available The article is focused on optimization of four-facet drill for 3D drilling numerical modelling. For optimization, the process of reverse engineering by PowerShape software was used. The design of four-facet drill was created in NumrotoPlus software. The modified 3D model of the drill was used in the numerical analysis of cutting forces. Verification of the accuracy of 3D models for reverse engineering was implemented using the colour deviation maps. The CAD model was in the STEP format. For simulation software, 3D model in the STEP format is ideal. STEP is a solid model. Simulation software automatically splits the 3D model into finite elements. The STEP model was therefore more suitable than the STL model.

  3. Comparative visual analysis of 3D urban wind simulations

    Röber, Niklas; Salim, Mohamed; Grawe, David; Leitl, Bernd; Böttinger, Michael; Schlünzen, Heinke


    Climate simulations are conducted in large quantity for a variety of different applications. Many of these simulations focus on global developments and study the Earth's climate system using a coupled atmosphere ocean model. Other simulations are performed on much smaller regional scales, to study very small fine grained climatic effects. These microscale climate simulations pose similar, yet also different, challenges for the visualization and the analysis of the simulation data. Modern interactive visualization and data analysis techniques are very powerful tools to assist the researcher in answering and communicating complex research questions. This presentation discusses comparative visualization for several different wind simulations, which were created using the microscale climate model MITRAS. The simulations differ in wind direction and speed, but are all centered on the same simulation domain: An area of Hamburg-Wilhelmsburg that hosted the IGA/IBA exhibition in 2013. The experiments contain a scenario case to analyze the effects of single buildings, as well as examine the impact of the Coriolis force within the simulation. The scenario case is additionally compared with real measurements from a wind tunnel experiment to ascertain the accuracy of the simulation and the model itself. We also compare different approaches for tree modeling and evaluate the stability of the model. In this presentation, we describe not only our workflow to efficiently and effectively visualize microscale climate simulation data using common 3D visualization and data analysis techniques, but also discuss how to compare variations of a simulation and how to highlight the subtle differences in between them. For the visualizations we use a range of different 3D tools that feature techniques for statistical data analysis, data selection, as well as linking and brushing.

  4. Global Value Chains from a 3D Printing Perspective

    Laplume, André O; Petersen, Bent; Pearce, Joshua M.


    This article outlines the evolution of additive manufacturing technology, culminating in 3D printing and presents a vision of how this evolution is affecting existing global value chains (GVCs) in production. In particular, we bring up questions about how this new technology can affect...... of whether in some industries diffusion of 3D printing technologies may change the role of multinational enterprises as coordinators of GVCs by inducing the engagement of a wider variety of firms, even households....

  5. Global Value Chains from a 3D Printing Perspective

    Laplume, André O; Petersen, Bent; Pearce, Joshua M.


    This article outlines the evolution of additive manufacturing technology, culminating in 3D printing and presents a vision of how this evolution is affecting existing global value chains (GVCs) in production. In particular, we bring up questions about how this new technology can affect...... of whether in some industries diffusion of 3D printing technologies may change the role of multinational enterprises as coordinators of GVCs by inducing the engagement of a wider variety of firms, even households....

  6. 3D Convection-pulsation Simulations with the HERACLES Code

    Felix, S.; Audit, E.; Dintrans, B.


    We present 3D simulations of the coupling between surface convection and pulsations due to the κ-mechanism in classical Cepheids of the red edge of Hertzsprung-Russell diagram's instability strip. We show that 3D convection is less powerful than 2D convection and does not quench the radiative pulsations, leading to an efficient 3D κ-mechanism. Thus, the 3D instability strip is closer to the observed one than the 1D or 2D were.

  7. Charge collection characterization of a 3D silicon radiation detector by using 3D simulations

    Kalliopuska, J; Orava, R


    In 3D detectors, the electrodes are processed within the bulk of the sensor material. Therefore, the signal charge is collected independently of the wafer thickness and the collection process is faster due to shorter distances between the charge collection electrodes as compared to a planar detector structure. In this paper, 3D simulations are used to assess the performance of a 3D detector structure in terms of charge sharing, efficiency and speed of charge collection, surface charge, location of the primary interaction and the bias voltage. The measured current pulse is proposed to be delayed due to the resistance–capacitance (RC) product induced by the variation of the serial resistance of the pixel electrode depending on the depth of the primary interaction. Extensive simulations are carried out to characterize the 3D detector structures and to verify the proposed explanation for the delay of the current pulse. A method for testing the hypothesis experimentally is suggested.

  8. BUSICO 3D: building simulation and control in unity 3D

    Fürst, Jonathan; Fierro, Gabe; Bonnet, Philippe


    with simulations and easier transferring of schedules and configurations from the simulated virtual environment to a real-world deployment. We provide an implementation using a widely used game engine (Unity 3D) and sMAP (Simple Measurement and Actuation Profile), a developed time series database and metadata...

  9. Composite manufacturing: Simulation of 3-D resin transfer molding

    Tan, Cheng Ping


    A technique was developed for simulating the resin transfer molding (RTM) process. The major feature of the technique is a computational steering system that enables the user to make changes during the simulation. Specifically, at any instance, the user can inspect the progress of the resin front. On the basis of the observed resin front position, the user can, as needed, change the port and vent locations, open and close ports and vents, adjust the inlet and exit pressures or flow rates, and reorient the mold with respect to the gravitational field. Additionally, the user can "rewind" the simulator to any previous time in the mold filling process, make any of the above changes and then continue the simulation. The technique is augmented by a computer code which has three main components, the Simulator, the Graphics User Interface (GUI), and the Global Data Storage. The Simulator is a finite element code that calculates the resin flow inside the fiber preform. The GUI serves as the interface between the user and the Simulator; it provides the commands to the Simulator and displays the results. The Global Data Storage is the module that manages the exchange of data between the GUI and the Simulator. The computer code (designated as SUPERTMsb-3D) is suitable for simulating the resin flow inside two-dimensional as well as three-dimensional fiber preforms of arbitrary shapes. The use of this computer code is illustrated through sample problems. These problems demonstrate how (with this code) the designer can establish the port and vent locations, opening and closing sequences of ports and vents such that the fiber preform is filled completely in the shortest time with the fewest number of vents.

  10. 3D visualization of port simulation.

    Horsthemke, W. H.; Macal, C. M.; Nevins, M. R.


    Affordable and realistic three dimensional visualization technology can be applied to large scale constructive simulations such as the port simulation model, PORTSIM. These visualization tools enhance the experienced planner's ability to form mental models of how seaport operations will unfold when the simulation model is implemented and executed. They also offer unique opportunities to train new planners not only in the use of the simulation model but on the layout and design of seaports. Simulation visualization capabilities are enhanced by borrowing from work on interface design, camera control, and data presentation. Using selective fidelity, the designers of these visualization systems can reduce their time and efforts by concentrating on those features which yield the most value for their simulation. Offering the user various observational tools allows the freedom to simply watch or engage in the simulation without getting lost. Identifying the underlying infrastructure or cargo items with labels can provide useful information at the risk of some visual clutter. The PortVis visualization expands the PORTSIM user base which can benefit from the results provided by this capability, especially in strategic planning, mission rehearsal, and training. Strategic planners will immediately reap the benefits of seeing the impact of increased throughput visually without keeping track of statistical data. Mission rehearsal and training users will have an effective training tool to supplement their operational training exercises which are limited in number because of their high costs. Having another effective training modality in this visualization system allows more training to take place and more personnel to gain an understanding of seaport operations. This simulation and visualization training can be accomplished at lower cost than would be possible for the operational training exercises alone. The application of PORTSIM and PortVis will lead to more efficient

  11. Interactive 3D display simulator for autostereoscopic smart pad

    Choe, Yeong-Seon; Lee, Ho-Dong; Park, Min-Chul; Son, Jung-Young; Park, Gwi-Tae


    There is growing interest of displaying 3D images on a smart pad for entertainments and information services. Designing and realizing various types of 3D displays on the smart pad is not easy for costs and given time. Software simulation can be an alternative method to save and shorten the development. In this paper, we propose a 3D display simulator for autostereoscopic smart pad. It simulates light intensity of each view and crosstalk for smart pad display panels. Designers of 3D display for smart pad can interactively simulate many kinds of autostereoscopic displays interactively by changing parameters required for panel design. Crosstalk to reduce leakage of one eye's image into the image of the other eye, and light intensity for computing visual comfort zone are important factors in designing autostereoscopic display for smart pad. Interaction enables intuitive designs. This paper describes an interactive 3D display simulator for autostereoscopic smart pad.

  12. Estimates of mercury flux into the United States from non-local and global sources: results from a 3-D CTM simulation

    B. A. Drewniak


    Full Text Available The sensitivity of Hg concentration and deposition in the United States to emissions in China was investigated by using a global chemical transport model: Model for Ozone and Related Chemical Tracers (MOZART. Two forms of gaseous Hg were included in the model: elemental Hg (HG(0 and oxidized or reactive Hg (HGO. We simulated three different emission scenarios to evaluate the model's sensitivity. One scenario included no emissions from China, while the others were based on different estimates of Hg emissions in China. The results indicated, in general, that when Hg emissions were included, HG(0 concentrations increased both locally and globally. Increases in Hg concentrations in the United States were greatest during spring and summer, by as much as 7%. Ratios of calculated concentrations of Hg and CO near the source region in eastern Asia agreed well with ratios based on measurements. Increases similar to those observed for HG(0 were also calculated for deposition of HGO. Calculated increases in wet and dry deposition in the United States were 5–7% and 5–9%, respectively. The results indicate that long-range transcontinental transport of Hg has a non-negligible impact on Hg deposition levels in the United States.

  13. Estimates of mercury flux into the United States from non-local and global sources : results from a 3-D CTM simulation.

    Drewniak, B. A.; Kotamarthi, V. R.; Streets, D.; Kim, M.; Crist, K.; Ohio Univ.


    The sensitivity of Hg concentration and deposition in the United States to emissions in China was investigated by using a global chemical transport model: Model for Ozone and Related Chemical Tracers (MOZART). Two forms of gaseous Hg were included in the model: elemental Hg (HG(0)) and oxidized or reactive Hg (HGO). We simulated three different emission scenarios to evaluate the model's sensitivity. One scenario included no emissions from China, while the others were based on different estimates of Hg emissions in China. The results indicated, in general, that when Hg emissions were included, HG(0) concentrations increased both locally and globally. Increases in Hg concentrations in the United States were greatest during spring and summer, by as much as 7%. Ratios of calculated concentrations of Hg and CO near the source region in eastern Asia agreed well with ratios based on measurements. Increases similar to those observed for HG(0) were also calculated for deposition of HGO. Calculated increases in wet and dry deposition in the United States were 5-7% and 5-9%, respectively. The results indicate that long-range transcontinental transport of Hg has a non-negligible impact on Hg deposition levels in the United States.


    Ork Nilay


    Full Text Available Leather is a luxury garment. Design, material, labor, fitting and time costs are very effective on the production cost of the consumer leather good. 3D visualization and simulation programs which are getting popular in textile industry can be used for material, labor and time saving in leather apparel. However these programs have a very limited use in leather industry because leather material databases are not sufficient as in textile industry. In this research, firstly material properties of leather and textile fabric were determined by using both textile and leather physical test methods, and interpreted and introduced in the program. Detailed measures of an experimental human body were measured from a 3D body scanner. An avatar was designed according to these measurements. Then a prototype dress was made by using Computer Aided Design-CAD program for designing the patterns. After the pattern making, OptiTex 3D visualization and simulation program was used to visualize and simulate the dresses. Additionally the leather and cotton fabric dresses were sewn in real life. Then the visual and real life dresses were compared and discussed. 3D virtual prototyping seems a promising potential in future manufacturing technologies by evaluating the fitting of garments in a simple and quick way, filling the gap between 3D pattern design and manufacturing, providing virtual demonstrations to customers.

  15. 3D MHD Simulations of Spheromak Compression

    Stuber, James E.; Woodruff, Simon; O'Bryan, John; Romero-Talamas, Carlos A.; Darpa Spheromak Team


    The adiabatic compression of compact tori could lead to a compact and hence low cost fusion energy system. The critical scientific issues in spheromak compression relate both to confinement properties and to the stability of the configuration undergoing compression. We present results from the NIMROD code modified with the addition of magnetic field coils that allow us to examine the role of rotation on the stability and confinement of the spheromak (extending prior work for the FRC). We present results from a scan in initial rotation, from 0 to 100km/s. We show that strong rotational shear (10km/s over 1cm) occurs. We compare the simulation results with analytic scaling relations for adiabatic compression. Work performed under DARPA grant N66001-14-1-4044.

  16. Surviving sepsis--a 3D integrative educational simulator.

    Ježek, Filip; Tribula, Martin; Kulhánek, Tomáš; Mateják, Marek; Privitzer, Pavol; Šilar, Jan; Kofránek, Jiří; Lhotská, Lenka


    Computer technology offers greater educational possibilities, notably simulation and virtual reality. This paper presents a technology which serves to integrate multiple modalities, namely 3D virtual reality, node-based simulator, Physiomodel explorer and explanatory physiological simulators employing Modelica language and Unity3D platform. This emerging tool chain should allow the authors to concentrate more on educational content instead of application development. The technology is demonstrated through Surviving sepsis educational scenario, targeted on Microsoft Windows Store platform.

  17. 3D simulation for solitons used in optical fibers

    Vasile, F.; Tebeica, C. M.; Schiopu, P.; Vladescu, M.


    In this paper is described 3D simulation for solitions used in optical fibers. In the scientific works is started from nonlinear propagation equation and the solitons represents its solutions. This paper presents the simulation of the fundamental soliton in 3D together with simulation of the second order soliton in 3D. These simulations help in the study of the optical fibers for long distances and in the interactions between the solitons. This study helps the understanding of the nonlinear propagation equation and for nonlinear waves. These 3D simulations are obtained using MATLAB programming language, and we can observe fundamental difference between the soliton and the second order/higher order soliton and in their evolution.

  18. 3-D template simulation system in Total Hip Arthroplasty

    Tanaka, Nobuhiko [Nagoya City Univ. (Japan). Medical School


    In Total Hip Arthroplastry, 2D template on Plain X-ray is usually used for preoperative planning. But deformity and contracture can cause malposition and measurement error. To reduce those problems, a 3D preoperative simulation system was developed. Three methods were compared in this study. One is to create very accurate AP and ML images which can use for standard 2D template. One is fully 3D preoperative template system using computer graphics. Last one is substantial simulation using stereo-lithography model. 3D geometry data of the bone was made from Helical 3-D CT data. AP and ML surface cutting 3D images of the femur were created using workstation (Advantage Workstation; GE Medical Systems). The extracted 3D geometry was displayed on personal computer using Magics (STL data visualization software), then 3D geometry of the stem was superimposed in it. The full 3D simulation system made it possible to observe the bone and stem geometry from any direction and by any section view. Stereo-lithography model was useful for detailed observation of the femur anatomy. (author)

  19. Simulations on 3D shape tracking with fibre Bragg gratings

    Hooft 't, G.W.; Tirard-Gâtel, A.


    This report deals with the development of a reconstruction algorithm of 3D optical shape sensing. The theoretical frame work is established and simulations are performed for a multicore fiber system without torque.

  20. Numerical Relativity Towards Simulations of 3D Black Hole Coalescence

    Seidel, E


    I review recent developments in numerical relativity, focussing on progress made in 3D black hole evolution. Progress in development of black hole initial data, apparent horizon boundary conditions, adaptive mesh refinement, and characteristic evolution is highlighted, as well as full 3D simulations of colliding and distorted black holes. For true 3D distorted holes, with Cauchy evolution techniques, it is now possible to extract highly accurate, nonaxisymmetric waveforms from fully nonlinear simulations, which are verified by comparison to pertubration theory, and with characteristic techniques extremely long term evolutions of 3D black holes are now possible. I also discuss a new code designed for 3D numerical relativity, called Cactus, that will be made public.

  1. Design of 3D simulation engine for oilfield safety training

    Li, Hua-Ming; Kang, Bao-Sheng


    Aiming at the demand for rapid custom development of 3D simulation system for oilfield safety training, this paper designs and implements a 3D simulation engine based on script-driven method, multi-layer structure, pre-defined entity objects and high-level tools such as scene editor, script editor, program loader. A scripting language been defined to control the system's progress, events and operating results. Training teacher can use this engine to edit 3D virtual scenes, set the properties of entity objects, define the logic script of task, and produce a 3D simulation training system without any skills of programming. Through expanding entity class, this engine can be quickly applied to other virtual training areas.

  2. An Evaluative Review of Simulated Dynamic Smart 3d Objects

    Romeijn, H.; Sheth, F.; Pettit, C. J.


    Three-dimensional (3D) modelling of plants can be an asset for creating agricultural based visualisation products. The continuum of 3D plants models ranges from static to dynamic objects, also known as smart 3D objects. There is an increasing requirement for smarter simulated 3D objects that are attributed mathematically and/or from biological inputs. A systematic approach to plant simulation offers significant advantages to applications in agricultural research, particularly in simulating plant behaviour and the influences of external environmental factors. This approach of 3D plant object visualisation is primarily evident from the visualisation of plants using photographed billboarded images, to more advanced procedural models that come closer to simulating realistic virtual plants. However, few programs model physical reactions of plants to external factors and even fewer are able to grow plants based on mathematical and/or biological parameters. In this paper, we undertake an evaluation of plant-based object simulation programs currently available, with a focus upon the components and techniques involved in producing these objects. Through an analytical review process we consider the strengths and weaknesses of several program packages, the features and use of these programs and the possible opportunities in deploying these for creating smart 3D plant-based objects to support agricultural research and natural resource management. In creating smart 3D objects the model needs to be informed by both plant physiology and phenology. Expert knowledge will frame the parameters and procedures that will attribute the object and allow the simulation of dynamic virtual plants. Ultimately, biologically smart 3D virtual plants that react to changes within an environment could be an effective medium to visually represent landscapes and communicate land management scenarios and practices to planners and decision-makers.

  3. Preliminary investigations on 3D PIC simulation of DPHC structure using NEPTUNE3D code

    Zhao, Hailong; Dong, Ye; Zhou, Haijing; Zou, Wenkang; Wang, Qiang


    Cubic region (34cm × 34cm × 18cm) including the double post-hole convolute (DPHC) structure was chosen to perform a series of fully 3D PIC simulations using NEPTUNE3D codes, massive data ( 200GB) could be acquired and solved in less than 5 hours. Cold-chamber tests were performed during which only cathode electron emission was considered without temperature rise or ion emission, current loss efficiency was estimated by comparisons between output magnetic field profiles with or without electron emission. PIC simulation results showed three stages of current transforming process with election emission in DPHC structure, the maximum ( 20%) current loss was 437kA at 15ns, while only 0.46% 0.48% was lost when driving current reached its peak. DPHC structure proved valuable functions during energy transform process in PTS facility, and NEPTUNE3D provided tools to explore this sophisticated physics. Project supported by the National Natural Science Foundation of China, Grant No. 11571293, 11505172.

  4. A gravimetric 3D global inversion for cavity detection

    Camacho, A.G.; Vieira, R.; Montesinos, F.G. (Inst. de Astronomia y Geodesia, Madrid (Spain). Faculty de CC. Matematicas); Cuellar, V. (Lab. de Geotecnia del Centro de Estudios y Experimentacion de Obras Publicas, Madrid (Spain))


    A gravimetric survey, covering a site 200 m square, was carried out in order to locate karstic cavities. After eliminating the regional trend using a polynomial fit, the residual is modeled by least-squares prediction. Correlated signals for several wavelengths are detected. The inversion of these anomalies is performed by a global 3D adjustment using spherical bodies as models. The adjustment is repeated in order to obtain a stable configuration. The results show the probable presence of a system of cavities and galleries. Data collected from boreholes and the subsequent appearance of sink-holes are consistent with the results.

  5. 3D mapping and simulation of Geneva Lake environmental data

    Villard, Roch; Maignan, Michel; Kanevski, Mikhail; Rapin, Francois; Klein, Audrey


    The Geneva Lake is the biggest alpine and subalpine lake in central Europe. The depth of this lake is 309 meters and its total volume of water is 89 billions m3. It takes, on average, around twelve years so that waters of the lake are completely brewed. Furthermore the Geneva lake waters are rich in dissolved substances as carbonate, sulfate. The quantity of particles in suspension in the lake, which mainly arrived from the Rhône, is nowadays around height million of tones. The International Commission for the Leman Lake (CIPEL) works about the improvement of the quality of this lake since 1962. In the present study three dimensional environmental data (temperature, oxygen and nitrate) which cover the period from 1954 to 2008, for a total of 27'500 cases are investigated. We are interested to study the evolution of the temperature of the lake because there is an impact on the reproduction of fishes and also because the winter brewing of the water makes the re-oxygenation of deep-water. In order that biological balance is maintained in a lake, there must be enough oxygen in the water. Moreover, we work on nitrate distribution and evolution because contributions in fertilizers cause eutrophication of lake. The data are very numerous when we consider the time series, some of them with more than 300 occurrences, but there are between 2 and 15 data available for spatial cartography. The basic methodology used for the analysis, mapping and simulations of 3D patterns of environmental data is based on geostatistical predictions (family of kriging models) and conditional stochastic simulations. Spatial and temporal variability, 3D monitoring networks changing over time, make this study challenging. An important problem is also to make interpolation/simulations over a long period of time, like ten years. One way used to overcome this problem, consists in using a weighted average of ten variograms during this period. 3D mapping was carried out using environment data for

  6. Simulation and test of 3D silicon radiation detectors

    Fleta, C. [Department of Physics and Astronomy, University of Glasgow, Glasgow, Scotland (United Kingdom)], E-mail:; Pennicard, D.; Bates, R.; Parkes, C. [Department of Physics and Astronomy, University of Glasgow, Glasgow, Scotland (United Kingdom); Pellegrini, G.; Lozano, M. [Centro Nacional de Microelectronica, (CNM-IMB, CSIC), Barcelona (Spain); Wright, V. [Diamond Light Source, Oxfordshire (United Kingdom); Boscardin, M.; Dalla Betta, G.-F.; Piemonte, C.; Pozza, A.; Ronchin, S.; Zorzi, N. [ITC-IRST, Trento (Italy)


    The work presented here is the result of the collaborative effort between the University of Glasgow, ITC-IRST (Trento) and IMB-CNM (Barcelona) in the framework of the CERN-RD50 Collaboration to produce 3D silicon radiation detectors and study their performance. This paper reports on two sets of 3D devices. IRST and CNM have fabricated a set of single-type column 3D detectors, which have columnar electrodes of the same doping type and an ohmic contact located at the backplane. Simulations of the device behaviour and electrical test results are presented. In particular, current-voltage, capacitance-voltage and charge collection efficiency measurements are reported. Other types of structures called double-sided 3D detectors are currently being fabricated at CNM. In these detectors the sets of n and p columns are made on opposite sides of the device. Electrical and technological simulations and first processing results are presented.

  7. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.


    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  8. M3D project for simulation studies of plasmas

    Park, W.; Belova, E.V.; Fu, G.Y. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Strauss, H.R. [New York Univ., NY (United States); Sugiyama, L.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States)


    The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes.

  9. Statistical 3D damage accumulation model for ion implant simulators

    Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M


    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  10. Statistical 3D damage accumulation model for ion implant simulators

    Hernandez-Mangas, J.M. E-mail:; Lazaro, J.; Enriquez, L.; Bailon, L.; Barbolla, J.; Jaraiz, M


    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  11. Simulating nanoparticle transport in 3D geometries with MNM3D

    Bianco, Carlo; Tosco, Tiziana; Sethi, Rajandrea


    The application of NP transport to real cases, such as the design of a field-scale injection or the prediction of the long term fate of nanoparticles (NPs) in the environment, requires the support of mathematical tools to effectively assess the expected NP mobility at the field scale. In general, micro- and nanoparticle transport in porous media is controlled by particle-particle and particle-porous media interactions, which are in turn affected by flow velocity and pore water chemistry. During the injection, a strong perturbation of the flow field is induced around the well, and the NP transport is mainly controlled by the consequent sharp variation of pore-water velocity. Conversely, when the injection is stopped, the particles are transported solely due to the natural flow, and the influence of groundwater geochemistry (ionic strength, IS, in particular) on the particle behaviour becomes predominant. Pore-water velocity and IS are therefore important parameters influencing particle transport in groundwater, and have to be taken into account by the numerical codes used to simulate NP transport. Several analytical and numerical tools have been developed in recent years to model the transport of colloidal particles in simplified geometry and boundary conditions. For instance, the numerical tool MNMs was developed by the authors of this work to simulate colloidal transport in 1D Cartesian and radial coordinates. Only few simulation tools are instead available for 3D colloid transport, and none of them implements direct correlations accounting for variations of groundwater IS and flow velocity. In this work a new modelling tool, MNM3D (Micro and Nanoparticle transport Model in 3D geometries), is proposed for the simulation of injection and transport of nanoparticle suspensions in generic complex scenarios. MNM3D implements a new formulation to account for the simultaneous dependency of the attachment and detachment kinetic coefficients on groundwater IS and velocity

  12. Simulátor 3D tiskárny

    Čillo, Vladimír


    Tato bakalářská práce se zabýva návrhem a implementací simulátoru 3D tiskárny v jazyce C++ s využitím knihovny Qt. Simulátor předpokládá tiskárnu založenou na nejrozšířenější metodě 3D tisku - Fused Deposition Modeling. Vstupem simulátoru je 3D model ve formátu STL. Pro daný 3D model simulátor poskytuje odhad celkové doby tisku. Součástí simulace je také vizualizace procesu 3D tisku. Výsledkem práce je přenositelný program testovaný pod operačními systémy Linux a Windows. Funkčnost simulátoru...

  13. 3d visualization of atomistic simulations on every desktop

    Peled, Dan; Silverman, Amihai; Adler, Joan


    Once upon a time, after making simulations, one had to go to a visualization center with fancy SGI machines to run a GL visualization and make a movie. More recently, OpenGL and its mesa clone have let us create 3D on simple desktops (or laptops), whether or not a Z-buffer card is present. Today, 3D a la Avatar is a commodity technique, presented in cinemas and sold for home TV. However, only a few special research centers have systems large enough for entire classes to view 3D, or special immersive facilities like visualization CAVEs or walls, and not everyone finds 3D immersion easy to view. For maximum physics with minimum effort a 3D system must come to each researcher and student. So how do we create 3D visualization cheaply on every desktop for atomistic simulations? After several months of attempts to select commodity equipment for a whole room system, we selected an approach that goes back a long time, even predating GL. The old concept of anaglyphic stereo relies on two images, slightly displaced, and viewed through colored glasses, or two squares of cellophane from a regular screen/projector or poster. We have added this capability to our AViz atomistic visualization code in its new, 6.1 version, which is RedHat, CentOS and Ubuntu compatible. Examples using data from our own research and that of other groups will be given.

  14. Efficient global wave propagation adapted to 3-D structural complexity: a pseudospectral/spectral-element approach

    Leng, Kuangdai; Nissen-Meyer, Tarje; van Driel, Martin


    We present a new, computationally efficient numerical method to simulate global seismic wave propagation in realistic 3-D Earth models. We characterize the azimuthal dependence of 3-D wavefields in terms of Fourier series, such that the 3-D equations of motion reduce to an algebraic system of coupled 2-D meridian equations, which is then solved by a 2-D spectral element method (SEM). Computational efficiency of such a hybrid method stems from lateral smoothness of 3-D Earth models and axial singularity of seismic point sources, which jointly confine the Fourier modes of wavefields to a few lower orders. We show novel benchmarks for global wave solutions in 3-D structures between our method and an independent, fully discretized 3-D SEM with remarkable agreement. Performance comparisons are carried out on three state-of-the-art tomography models, with seismic period ranging from 34 s down to 11 s. It turns out that our method has run up to two orders of magnitude faster than the 3-D SEM, featured by a computational advantage expanding with seismic frequency.

  15. 3D two-fluid simulations of turbulence in LAPD

    Fisher, Dustin M.

    The Large Plasma Device (LAPD) is modeled using a modified version of the 3D Global Braginskii Solver code (GBS) for a nominal Helium plasma. The unbiased low-flow regime is explored in simulations where there is an intrinsic E x B rotation of the plasma. In the simulations this rotation is caused primarily by sheath effects with the Reynolds stress and J x B torque due to a cross-field Pederson conductivity having little effect. Explicit biasing simulations are also explored for the first time where the intrinsic rotation of the plasma is modified through boundary conditions that mimic the biasable limiter used in LAPD. Comparisons to experimental measurements in the unbiased case show strong qualitative agreement with the data, particularly the radial dependence of the density fluctuations, cross-correlation lengths, radial flux dependence outside of the cathode edge, and camera imagery. Kelvin Helmholtz (KH) turbulence at relatively large scales is the dominant driver of cross-field transport in these simulations with smaller-scale drift waves and sheath modes playing a secondary role. Plasma holes and blobs arising from KH vortices are consistent with the scale sizes and overall appearance of those in LAPD camera images. The addition of ion-neutral collisions in the unbiased simulations at previously theorized values reduces the radial particle flux due to a modest stabilizing contribution of the collisions on the KH-modes driving the turbulent transport. In the biased runs the ion-neutral collisions have a much smaller effect due to the modification of the potential from sheath terms. In biasing the plasma to increase the intrinsic rotation, simulations show the emergence of a nonlinearly saturated coherent mode of order m = 6. In addition, the plasma inside of the cathode edge becomes quiescent due to the strong influence of the wall bias in setting up the equilibrium plasma potential. Biasing in the direction opposite to the intrinsic flow reduces the

  16. 3D Field Simulation of Magnetic Thin Film Inductor

    FUJIWARA, Toshiyasu; CHOI, Kyung-Ku; SATO, SHIGEKI


    The 3D magnetic field simulations with FEM (finite element method) have been performed to predictand understand the performance of Magnetic Thin Film Inductor (MTFl). Inductor structures of planar electroplated Cu spiralcoil, which are sandwiched and underlaid with magnetic thin films, are considered as the simulation models. The inductance increment of 300% compared to air-core inductor was predicted when the sandwiched 5μm thickness magnetic thin film with relative permeability of 600 was a...

  17. 3D numerical simulation of transient processes in hydraulic turbines

    Cherny, S; Chirkov, D; Lapin, V; Eshkunova, I [Institute of Computational Technologies SB RAS Acad. Lavrentjev avenue 6, Novosibirsk, 630090 (Russian Federation); Bannikov, D; Avdushenko, A [Department of Mechanics and Mathematics, Novosibirsk State University Pirogov st. 2, Novosibirsk, 630090 (Russian Federation); Skorospelov, V, E-mail: chirkov@ict.nsc.r [Institute of Mathematics SB RAS Acad. Koptug avenue 4, Novosibirsk, 630090 (Russian Federation)


    An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.

  18. 3D numerical simulation of transient processes in hydraulic turbines

    Cherny, S.; Chirkov, D.; Bannikov, D.; Lapin, V.; Skorospelov, V.; Eshkunova, I.; Avdushenko, A.


    An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.

  19. VISRAD, 3-D Target Design and Radiation Simulation Code

    Golovkin, Igor; Macfarlane, Joseph; Golovkina, Viktoriya


    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.

  20. 3-D Simulation of Vertical-Axial Tidal Current Turbine

    Zhiyang Zhang


    Full Text Available Vertical-axial tidal current turbine is the key for the energy converter, which has the advantages of simple structure, adaptability to flow and uncomplex convection device. It has become the hot point for research and application recently. At present, the study on the hydrodynamic performance of vertical-axial tidal current turbine is almost on 2-D numerical simulation, without the consideration of 3-D effect. CFD (Computational Fluid Dynamics method and blade optimal control technique are used to improve accuracy in the prediction of tidal current turbine hydrodynamic performance. Numerical simulation of vertical-axial tidal current turbine is validated. Fixed and variable deflection angle turbine are comparatively studied to analysis the influence of 3-D effect and the character of fluid field and pressure field. The method, put the plate on the end of blade, of reduce the energy loss caused by 3-D effect is proposed. The 3-D CFD numerical model of vertical-axial tidal current turbine hydrodynamic performance in this study may provide theoretical, methodical and technical reference for the optimal design of turbine.

  1. A FLOSS Visual EM Simulator for 3D Antennas

    Koutsos, Christos A; Zimourtopoulos, Petros E


    This paper introduces the FLOSS Free Libre Open Source Software [VEMSA3D], a contraction of "Visual Electromagnetic Simulator for 3D Antennas", which are geometrically modeled, either exactly or approximately, as thin wire polygonal structures; presents its GUI Graphical User Interface capabilities, in interactive mode and/or in handling suitable formed antenna data files; demonstrates the effectiveness of its use in a number of practical antenna applications, with direct comparison to experimental measurements and other freeware results; and provides the inexperienced user with a specific list of instructions to successfully build the given source code by using only freely available IDE Integrated Development Environment tools-including a cross-platform one. The unrestricted access to source code, beyond the ability for immediate software improvement, offers to independent users and volunteer groups an expandable, in any way, visual antenna simulator, for a genuine research and development work in the field ...

  2. Advances in the numerical simulation of 3D FSW processes

    Agelet de Saracibar Bosch, Carlos; Chiumenti, Michèle; Cervera Ruiz, Miguel; Dialami, Narges; Santiago, Diego de; Lombera, Guillermo


    This work deals with the computational modeling and numerical simulation of 3D Friction Stir Welding (FSW) processes. Eulerian and ALE formulations have been used to solve the quasi-static thermal transient governing equations. Mixed P2/P1/P2+SUPG and subgrid-scale stabilized P1/P1/P1 velocity/pressure/temperature elements have been implemented. Norton-Hoff and Sheppard-Wright rigid thermoplastic material models have been considered. Computational visualization techniques using tracers have b...

  3. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    Junk, S.


    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  4. Simulation of human ischemic stroke in realistic 3D geometry

    Dumont, Thierry; Duarte, Max; Descombes, Stéphane; Dronne, Marie-Aimée; Massot, Marc; Louvet, Violaine


    In silico research in medicine is thought to reduce the need for expensive clinical trials under the condition of reliable mathematical models and accurate and efficient numerical methods. In the present work, we tackle the numerical simulation of reaction-diffusion equations modeling human ischemic stroke. This problem induces peculiar difficulties like potentially large stiffness which stems from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of steep spatial gradients in the reaction fronts, spatially very localized. Furthermore, simulations on realistic 3D geometries are mandatory in order to describe correctly this type of phenomenon. The main goal of this article is to obtain, for the first time, 3D simulations on realistic geometries and to show that the simulation results are consistent with those obtain in experimental studies or observed on MRI images in stroke patients. For this purpose, we introduce a new resolution strategy based mainly on time operator splitting that takes into account complex geometry coupled with a well-conceived parallelization strategy for shared memory architectures. We consider then a high order implicit time integration for the reaction and an explicit one for the diffusion term in order to build a time operator splitting scheme that exploits efficiently the special features of each problem. Thus, we aim at solving complete and realistic models including all time and space scales with conventional computing resources, that is on a reasonably powerful workstation. Consequently and as expected, 2D and also fully 3D numerical simulations of ischemic strokes for a realistic brain geometry, are conducted for the first time and shown to reproduce the dynamics observed on MRI images in stroke patients. Beyond this major step, in order to improve accuracy and computational efficiency of the simulations, we indicate how the present numerical strategy can be coupled with spatial

  5. 3D simulation of the Cluster-Cluster Aggregation model

    Li, Chao; Xiong, Hailing


    We write a program to implement the Cluster-Cluster Aggregation (CCA) model with java programming language. By using the simulation program, the fractal aggregation growth process can be displayed dynamically in the form of a three-dimensional (3D) figure. Meanwhile, the related kinetics data of aggregation simulation can be also recorded dynamically. Compared to the traditional programs, the program has better real-time performance and is more helpful to observe the fractal growth process, which contributes to the scientific study in fractal aggregation. Besides, because of adopting java programming language, the program has very good cross-platform performance.

  6. Optimization of a fully 3D single scatter simulation algorithm for 3D PET

    Accorsi, Roberto [Division of Nuclear Medicine, Department of Radiology, Children' s Hospital of Philadelphia, 34th and Civic Center Blvd, Philadelphia, PA 19104 (United States); Adam, Lars-Eric [Department of Radiology, University of Pennsylvania School of Medicine, 423 Guardian Dr, Philadelphia, PA 19104 (United States); Werner, Matthew E [Philips Medical Systems, 3619 Market St, Philadelphia, PA 19104 (United States); Karp, Joel S [Department of Radiology, University of Pennsylvania School of Medicine, 423 Guardian Dr, Philadelphia, PA 19104 (United States)


    We describe a new implementation of a single scatter simulation (SSS) algorithm for the prediction and correction of scatter in 3D PET. In this implementation, out of field of view (FoV) scatter and activity, side shields and oblique tilts are explicitly modelled. Comparison of SSS predictions with Monte Carlo simulations and experimental data from uniform, line and cold-bar phantoms showed that the code is accurate for uniform as well as asymmetric objects and can model different energy resolution crystals and low level discriminator (LLD) settings. Absolute quantitation studies show that for most applications, the code provides a better scatter estimate than the tail-fitting scatter correction method currently in use at our institution. Several parameters such as the density of scatter points, the number of scatter distribution sampling points and the axial extent of the FoV were optimized to minimize execution time, with particular emphasis on patient studies. Development and optimization were carried out in the case of GSO-based scanners, which enjoy relatively good energy resolution. SSS estimates for scanners with lower energy resolution may result in different agreement, especially because of a higher fraction of multiple scatter events. The algorithm was applied to a brain phantom as well as to clinical whole-body studies. It proved robust in the case of large patients, where the scatter fraction increases. The execution time, inclusive of interpolation, is typically under 5 min for a whole-body study (axial FoV: 81 cm) of a 100 kg patient.

  7. Simulation of AIMS measurements using rigorous mask 3D modeling

    Chou, Chih-Shiang; Huang, Hsu-Ting; Chu, Fu-Sheng; Chu, Yuan-Chih; Huang, Wen-Chun; Liu, Ru-Gun; Gau, Tsai-Sheng


    Aerial image measurement system (AIMSTM) has been widely used for wafer level inspection of mask defects. Reported inspection flows include die-to-die (D2D) and die-to-database (D2DB) methods. For patterns that do not repeat in another die, only the D2DB approach is applicable. The D2DB method requires accurate simulation of AIMS measurements for a mask pattern. An optical vectorial model is needed to depict the mask diffraction effect in this simulation. To accurately simulate the imaging results, a rigorous electro-magnetic field (EMF) model is essential to correctly take account of the EMF scattering induced by the mask topography, which is usually called the mask 3D effect. In this study, the mask 3D model we use is rigorous coupled-wave analysis (RCWA), which calculates the diffraction fields from a single plane wave incidence. A hybrid Hopkins-Abbe method with RCWA is used to calculate the EMF diffraction at a desired accuracy level while keeping the computation time practical. We will compare the speed of the hybrid Hopkins-Abbe method to the rigorous Abbe method. The matching between simulation and experiment is more challenging for AIMS than CD-SEM because its measurements provide full intensity information. Parameters in the mask 3D model such as film stack thickness or film optical properties, is optimized during the fitting process. We will report the fitting results of AIMS images for twodimensional structures with various pitches. By accurately simulating the AIMS measurements, it provides a necessary tool to perform the mask inspection using the D2DB approach and to accurately predict the mask defects.

  8. Using 3D Voronoi grids in radiative transfer simulations

    Camps, Peter; Saftly, Waad


    Probing the structure of complex astrophysical objects requires effective three-dimensional (3D) numerical simulation of the relevant radiative transfer (RT) processes. As with any numerical simulation code, the choice of an appropriate discretization is crucial. Adaptive grids with cuboidal cells such as octrees have proven very popular, however several recently introduced hydrodynamical and RT codes are based on a Voronoi tessellation of the spatial domain. Such an unstructured grid poses new challenges in laying down the rays (straight paths) needed in RT codes. We show that it is straightforward to implement accurate and efficient RT on 3D Voronoi grids. We present a method for computing straight paths between two arbitrary points through a 3D Voronoi grid in the context of a RT code. We implement such a grid in our RT code SKIRT, using the open source library Voro++ to obtain the relevant properties of the Voronoi grid cells based solely on the generating points. We compare the results obtained through t...

  9. USM3D Simulations for Second Sonic Boom Workshop

    Elmiligui, Alaa; Carter, Melissa B.; Nayani, Sudheer N.; Cliff, Susan; Pearl, Jason M.


    The NASA Tetrahedral Unstructured Software System with the USM3D flow solver was used to compute test cases for the Second AIAA Sonic Boom Prediction Workshop. The intent of this report is to document the USM3D results for SBPW2 test cases. The test cases included an axisymmetric equivalent area body, a JAXA wing body, a NASA low boom supersonic configuration modeled with flow through nacelles and engine boundary conditions. All simulations were conducted for a free stream Mach number of 1.6, zero degrees angle of attack, and a Reynolds number of 5.7 million per meter. Simulations were conducted on tetrahedral grids provided by the workshop committee, as well as a family of grids generated by an in-house approach for sonic boom analyses known as BoomGrid using current best practices. The near-field pressure signatures were extracted and propagated to the ground with the atmospheric propagation code, sBOOM. The USM3D near-field pressure signatures, corresponding sBOOM ground signatures, and loudness levels on the ground are compared with mean values from other workshop participants.

  10. 3D Simulation of Nano-Imprint Lithography

    Román Marín, José Manuel; Rasmussen, Henrik K.; Hassager, Ole


    A proof of concept study of the feasibility of fully three-dimensional (3D) time-dependent simulation of nano-imprint lithography of polymer melt, where the polymer is treated as a structured liquid, has been presented. Considering the flow physics of the polymer as a structured liquid, we have...... followed the line initiated by de Gennes, using a Molecular Stress Function model of the Doi and Edwards type. We have used a 3D Lagrangian Galerkin finite element methods implemented on a parallel computer architecture. In a Lagrangian techniques, the node point follows the particle movement, allowing...... for the movement of free surfaces or interfaces. We have extended the method to handle the dynamic movement of the contact line between the polymer melt and stamp during mold filling....

  11. Acoustic simulation in realistic 3D virtual scenes

    Gozard, Patrick; Le Goff, Alain; Naz, Pierre; Cathala, Thierry; Latger, Jean


    The simulation workshop CHORALE developed in collaboration with OKTAL SE company for the French MoD is used by government services and industrial companies for weapon system validation and qualification trials in the infrared domain. The main operational reference for CHORALE is the assessment of the infrared guidance system of the Storm Shadow missile French version, called Scalp. The use of CHORALE workshop is now extended to the acoustic domain. The main objective is the simulation of the detection of moving vehicles in realistic 3D virtual scenes. This article briefly describes the acoustic model in CHORALE. The 3D scene is described by a set of polygons. Each polygon is characterized by its acoustic resistivity or its complex impedance. Sound sources are associated with moving vehicles and are characterized by their spectra and directivities. A microphone sensor is defined by its position, its frequency band and its sensitivity. The purpose of the acoustic simulation is to calculate the incoming acoustic pressure on microphone sensors. CHORALE is based on a generic ray tracing kernel. This kernel possesses original capabilities: computation time is nearly independent on the scene complexity, especially the number of polygons, databases are enhanced with precise physical data, special mechanisms of antialiasing have been developed that enable to manage very accurate details. The ray tracer takes into account the wave geometrical divergence and the atmospheric transmission. The sound wave refraction is simulated and rays cast in the 3D scene are curved according to air temperature gradient. Finally, sound diffraction by edges (hill, wall,...) is also taken into account.

  12. Development of Advanced Models for 3D Photocathode PIC Simulations

    Dimitrov, Dimitre; Cary, John R; Feldman, Donald; Jensen, Kevin; Messmer, Peter; Stoltz, Peter


    Codes for simulating photocathode electron guns invariably assume the emission of an idealized electron distribution from the cathode, regardless of the particular particle emission model that is implemented. The output of such simulations, a relatively clean and smooth distribution with very little variation as a function of the azimuthal angle, is inconsistent with the highly irregular and asymmetric electron bunches seen in experimental diagnostics. To address this problem, we have implemented a recently proposed theoretical model* that takes into account detailed solid-state physics of photocathode materials in the VORPAL particle-in-cell code.** Initial results from 3D simulations with this model and future research directions will be presented and discussed.

  13. 3D hydrodynamic simulations of carbon burning in massive stars

    Cristini, A.; Meakin, C.; Hirschi, R.; Arnett, D.; Georgy, C.; Viallet, M.; Walkington, I.


    We present the first detailed 3D hydrodynamic implicit large eddy simulations of turbulent convection of carbon burning in massive stars. Simulations begin with radial profiles mapped from a carbon-burning shell within a 15 M⊙ 1D stellar evolution model. We consider models with 1283, 2563, 5123, and 10243 zones. The turbulent flow properties of these carbon-burning simulations are very similar to the oxygen-burning case. We performed a mean field analysis of the kinetic energy budgets within the Reynolds-averaged Navier-Stokes framework. For the upper convective boundary region, we find that the numerical dissipation is insensitive to resolution for linear mesh resolutions above 512 grid points. For the stiffer, more stratified lower boundary, our highest resolution model still shows signs of decreasing sub-grid dissipation suggesting it is not yet numerically converged. We find that the widths of the upper and lower boundaries are roughly 30 per cent and 10 per cent of the local pressure scaleheights, respectively. The shape of the boundaries is significantly different from those used in stellar evolution models. As in past oxygen-shell-burning simulations, we observe entrainment at both boundaries in our carbon-shell-burning simulations. In the large Péclet number regime found in the advanced phases, the entrainment rate is roughly inversely proportional to the bulk Richardson number, RiB (∝RiB-α, 0.5 ≲ α ≲ 1.0). We thus suggest the use of RiB as a means to take into account the results of 3D hydrodynamics simulations in new 1D prescriptions of convective boundary mixing.

  14. Simulation of current generation in a 3-D plasma model

    Tsung, F.S.; Dawson, J.M. [Univ. of California, Los Angeles, CA (United States)


    Two wires carrying current in the same direction will attract each other, and two wires carrying current in the opposite direction will repel each other. Now, consider a test charge in a plasma. If the test charge carries current parallel to the plasma, then it will be pulled toward the plasma core, and if the test charge carries current anti-parallel to the plasma, then it will be pushed to the edge. The electromagnetic coupling between the plasma and a test charge (i.e., the A{sub {parallel}} {circ} v{sub {parallel}} term in the test charge`s Hamiltonian) breaks the symmetry in the parallel direction, and gives rise to a diffusion coefficient which is dependent on the particle`s parallel velocity. This is the basis for the {open_quotes}preferential loss{close_quotes} mechanism described in the work by Nunan et al. In our previous 2+{1/2}D work, in both cylindrical and toroidal geometries, showed that if the plasma column is centrally fueled, then an initial current increases steadily. The results in straight, cylindrical plasmas showed that self generated parallel current arises without trapped particle or neoclassical diffusion, as assumed by the bootstrap theory. It suggests that the fundamental mechanism seems to be the conservation of particles canonical momenta in the direction of the ignorable coordinate. We have extended the simulation to 3D to verify the model put forth. A scalable 3D EM-PIC code, with a localized field-solver, has been implemented to run on a large class of parallel computers. On the 512-node SP2 at Cornell Theory Center, we have benchmarked the 2+{1/2}D calculations using 32 grids in the previously ignored direction, and a 100-fold increase in the number of particles. Our preliminary results show good agreements between the 2+{1/2}D and the 3D calculations. We will present our 3D results at the meeting.

  15. 3-D elastic wave propagation on regional to global scales using an ADER-DG method

    Wenk, S.; Pelties, C.; Igel, H.


    The complex 3-D material property distributions inside the Earth and detailed information on the physical dynamics of an earthquake require robust numerical methods to generate accurate results in form of seismograms. Furthermore, these simulations must be highly scalable on HPC infrastructures for realistic simulations. Possible applications are regional forward modeling studies for hazard assessment or seismic tomography on a global scale to illuminate the deep Earth's interior. The Arbitrary high-order DERivative Discontinuous Galerkin (ADER-DG) method is well suited to simulate 3-D elastic wave propagation to capture the high frequency content of the wavefield over long propagation distances. It is able to incorporate fine-scale Earth structures on a regional to global scale using flexible tetrahedral meshing and features like h-p adaptivity and local time stepping (Dumbser et al. 2007). We were able to successfully benchmark seismograms originating from simpler 1-D layered Earth models with synthetics of the well-tested spectral-element method. The verification towards 3-D models is carried out on a regional model of Europe taking the topography of the Earth's surface and Mohorovicic discontinuity into account using the EPcrust model of Molinari et al. (2011) on top of the AK135 model of Kennett et al. (1995). For the L'Aquila earthquake (Italy) in 2009 we compare synthetic seismograms of our ADER-DG solver with real data up to 20s period and can show a very good fit between the signals.

  16. Compilation of 3D global conductivity model of the Earth for space weather applications

    Alekseev, Dmitry; Kuvshinov, Alexey; Palshin, Nikolay


    We have compiled a global three-dimensional (3D) conductivity model of the Earth with an ultimate goal to be used for realistic simulation of geomagnetically induced currents (GIC), posing a potential threat to man-made electric systems. Bearing in mind the intrinsic frequency range of the most intense disturbances (magnetospheric substorms) with typical periods ranging from a few minutes to a few hours, the compiled 3D model represents the structure in depth range of 0-100 km, including seawater, sediments, earth crust, and partly the lithosphere/asthenosphere. More explicitly, the model consists of a series of spherical layers, whose vertical and lateral boundaries are established based on available data. To compile a model, global maps of bathymetry, sediment thickness, and upper and lower crust thicknesses as well as lithosphere thickness are utilized. All maps are re-interpolated on a common grid of 0.25×0.25 degree lateral spacing. Once the geometry of different structures is specified, each element of the structure is assigned either a certain conductivity value or conductivity versus depth distribution, according to available laboratory data and conversion laws. A numerical formalism developed for compilation of the model, allows for its further refinement by incorporation of regional 3D conductivity distributions inferred from the real electromagnetic data. So far we included into our model four regional conductivity models, available from recent publications, namely, surface conductance model of Russia, and 3D conductivity models of Fennoscandia, Australia, and northwest of the United States.

  17. Advanced system for 3D dental anatomy reconstruction and 3D tooth movement simulation during orthodontic treatment

    Monserrat, Carlos; Alcaniz-Raya, Mariano L.; Juan, M. Carmen; Grau Colomer, Vincente; Albalat, Salvador E.


    This paper describes a new method for 3D orthodontics treatment simulation developed for an orthodontics planning system (MAGALLANES). We develop an original system for 3D capturing and reconstruction of dental anatomy that avoid use of dental casts in orthodontic treatments. Two original techniques are presented, one direct in which data are acquired directly form patient's mouth by mean of low cost 3D digitizers, and one mixed in which data are obtained by 3D digitizing of hydrocollids molds. FOr this purpose we have designed and manufactured an optimized optical measuring system based on laser structured light. We apply these 3D dental models to simulate 3D movement of teeth, including rotations, during orthodontic treatment. The proposed algorithms enable to quantify the effect of orthodontic appliance on tooth movement. The developed techniques has been integrated in a system named MAGALLANES. This original system present several tools for 3D simulation and planning of orthodontic treatments. The prototype system has been tested in several orthodontic clinic with very good results.

  18. 3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics

    Li, Simon


    Technology computer-aided design, or TCAD, is critical to today’s semiconductor technology and anybody working in this industry needs to know something about TCAD.  This book is about how to use computer software to manufacture and test virtually semiconductor devices in 3D.  It brings to life the topic of semiconductor device physics, with a hands-on, tutorial approach that de-emphasizes abstract physics and equations and emphasizes real practice and extensive illustrations.  Coverage includes a comprehensive library of devices, representing the state of the art technology, such as SuperJunction LDMOS, GaN LED devices, etc. Provides a vivid, internal view of semiconductor devices, through 3D TCAD simulation; Includes comprehensive coverage of  TCAD simulations for both optic and electronic devices, from nano-scale to high-voltage high-power devices; Presents material in a hands-on, tutorial fashion so that industry practitioners will find maximum utility; Includes a comprehensive library of devices, re...

  19. Reconciling measured scattering response of 3D metamaterials with simulation

    Adomanis Bryan M.


    Full Text Available Membrane projection lithography is used to create 3-dimensional unit cells in a silicon matrix decorated with metallic inclusions. The structures show pronounced resonances in the 4–16 µm wavelength range and demonstrate direct coupling to the magnetic field of a normally incident transverse electromagnetic (TEM wave, a behavior only possible for vertically oriented resonators. Qualitative agreement between rigorous coupled wave analysis (RCWA simulation and measured scattering response is shown. COMSOL simulations show that slight variations in both metallic inclusion and silicon unit cell physical dimensions can have large impact in the scattering response, so that design for manufacture of 3D metamaterial structures for applications should be done with care.

  20. 3D numerical simulation and analysis of railgun gouging mechanism

    Jin-guo WU; Bo TANG; Qing-hua LIN; Hai-yuan LI; Bao-ming LI


    A gouging phenomenon with a hypervelocity sliding electrical contact in railgun not only shortens the rail lifetime but also affects the interior ballistic performance. In this paper, a 3-D numerical model was introduced to simulate and analyze the generation mechanism and evolution of the rail gouging phenomenon. The results show that a rail surface bulge is an important factor to induce gouging. High density and high pressure material flow on the contact surface, obliquely extruded into the rail when accelerating the armature to a high velocity, can produce gouging. Both controlling the bulge size to a certain range and selecting suitable materials for rail surface coating will suppress the formation of gouging. The numerical simulation had a good agreement with experiments, which validated the computing model and methodology are reliable.

  1. Coniferous Canopy BRF Simulation Based on 3-D Realistic Scene

    Wang, Xin-yun; Guo, Zhi-feng; Qin, Wen-han; Sun, Guo-qing


    It is difficulties for the computer simulation method to study radiation regime at large-scale. Simplified coniferous model was investigate d in the present study. It makes the computer simulation methods such as L-systems and radiosity-graphics combined method (RGM) more powerf ul in remote sensing of heterogeneous coniferous forests over a large -scale region. L-systems is applied to render 3-D coniferous forest scenarios: and RGM model was used to calculate BRF (bidirectional refle ctance factor) in visible and near-infrared regions. Results in this study show that in most cases both agreed well. Meanwhiie at a tree and forest level. the results are also good.

  2. 3-D hydrodynamic simulations of convection in A stars

    Kochukhov, O; Piskunov, N; Steffen, M


    Broadening and asymmetry of spectral lines in slowly rotating late A-type stars provide evidence for high-amplitude convective motions. The properties of turbulence observed in the A-star atmospheres are not understood theoretically and contradict results of previous numerical simulations of convection. Here we describe an ongoing effort to understand the puzzling convection signatures of A stars with the help of 3-D hydrodynamic simulations. Our approach combines realistic spectrum synthesis and non-grey hydrodynamic models computed with the CO5BOLD code. We discuss these theoretical predictions and confront them with high-resolution spectra of A stars. Our models have, for the first time, succeeded in reproducing the observed profiles of weak spectral lines without introducing fudge broadening parameters.

  3. 3D numerical simulation and analysis of railgun gouging mechanism

    Jin-guo Wu


    Full Text Available A gouging phenomenon with a hypervelocity sliding electrical contact in railgun not only shortens the rail lifetime but also affects the interior ballistic performance. In this paper, a 3-D numerical model was introduced to simulate and analyze the generation mechanism and evolution of the rail gouging phenomenon. The results show that a rail surface bulge is an important factor to induce gouging. High density and high pressure material flow on the contact surface, obliquely extruded into the rail when accelerating the armature to a high velocity, can produce gouging. Both controlling the bulge size to a certain range and selecting suitable materials for rail surface coating will suppress the formation of gouging. The numerical simulation had a good agreement with experiments, which validated the computing model and methodology are reliable.

  4. Bioavailable atmospheric phosphorous supply to the global ocean: a 3-D global modeling study

    Myriokefalitakis, Stelios; Nenes, Athanasios; Baker, Alex R.; Mihalopoulos, Nikolaos; Kanakidou, Maria


    The atmospheric cycle of phosphorus (P) is parameterized here in a state-of-the-art global 3-D chemistry transport model, taking into account primary emissions of total P (TP) and soluble P (DP) associated with mineral dust, combustion particles from natural and anthropogenic sources, bioaerosols, sea spray and volcanic aerosols. For the present day, global TP emissions are calculated to be roughly 1.33 Tg-P yr-1, with the mineral sources contributing more than 80 % to these emissions. The P solubilization from mineral dust under acidic atmospheric conditions is also parameterized in the model and is calculated to contribute about one-third (0.14 Tg-P yr-1) of the global DP atmospheric source. To our knowledge, a unique aspect of our global study is the explicit modeling of the evolution of phosphorus speciation in the atmosphere. The simulated present-day global annual DP deposition flux is 0.45 Tg-P yr-1 (about 40 % over oceans), showing a strong spatial and temporal variability. Present-day simulations of atmospheric P aerosol concentrations and deposition fluxes are satisfactory compared with available observations, indicating however an underestimate of about 70 % on current knowledge of the sources that drive the P atmospheric cycle. Sensitivity simulations using preindustrial (year 1850) anthropogenic and biomass burning emission scenarios showed a present-day increase of 75 % in the P solubilization flux from mineral dust, i.e., the rate at which P is converted into soluble forms, compared to preindustrial times, due to increasing atmospheric acidity over the last 150 years. Future reductions in air pollutants due to the implementation of air-quality regulations are expected to decrease the P solubilization flux from mineral dust by about 30 % in the year 2100 compared to the present day. Considering, however, that all the P contained in bioaerosols is readily available for uptake by marine organisms, and also accounting for all other DP sources, a total

  5. Study, simulation and design of a 3D clinostat

    Pavone, Valentina; Guarnieri, Vincenzo; Lobascio, Cesare; Soma, Aurelio; Bosso, Nicola; Lamantea, Matteo Maria

    High cost and limited number of physically executable experiments in space have introduced the need for ground simulation systems that enable preparing experiments to be carried out on board, identifying phenomena associated with the altered gravity conditions, and taking advantage of these conditions, as in Biotechnology. Among systems developed to simulate microgravity, especially for life sciences experiments, different types of clinostats were realized. This work deals with mechanical design of a three-dimensional clinostat and simulation of the dynamic behavior of the system by varying the operating parameters. The design and simulation phase was preceded by a careful analysis of the state of art and by the review of the most recent results, in particular from the major investigators of Life Sciences in Space. The mechanical design is quite innovative by adoption of a structure entirely in aluminum, which allows robustness while reducing the overall weight. The transmission system of motion has been optimized by means of brushless DC micro motors, light and compact, which helped to reduce weight, dimensions, power consumption and increase the reliability and durability of the system. The study of the dynamic behavior using SIMPACK, a multibody simulation software, led to results in line with those found in the most important and recent scientific publications. This model was also appropriately configured to represent any desired operating condition, and for eventual system scalability. It would be interesting to generate simulated hypogravity - e.g.: 0.38-g (Mars) or 0.17-g (Moon). This would allow to investigate how terrestrial life forms can grow in other planetary habitats, or to determine the gravity threshold response of different organisms. At the moment, such a system can only be achieved by centrifuges in real microgravity. We are confident that simulation and associated tests with our 3D clinostat can help adjusting the parameters allowing variable g

  6. 3D Simulation Modeling of the Tooth Wear Process.

    Dai, Ning; Hu, Jian; Liu, Hao


    Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function) implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation.

  7. 3D Simulation Modeling of the Tooth Wear Process.

    Ning Dai

    Full Text Available Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation.

  8. Massive parallel 3D PIC simulation of negative ion extraction

    Revel, Adrien; Mochalskyy, Serhiy; Montellano, Ivar Mauricio; Wünderlich, Dirk; Fantz, Ursel; Minea, Tiberiu


    The 3D PIC-MCC code ONIX is dedicated to modeling Negative hydrogen/deuterium Ion (NI) extraction and co-extraction of electrons from radio-frequency driven, low pressure plasma sources. It provides valuable insight on the complex phenomena involved in the extraction process. In previous calculations, a mesh size larger than the Debye length was used, implying numerical electron heating. Important steps have been achieved in terms of computation performance and parallelization efficiency allowing successful massive parallel calculations (4096 cores), imperative to resolve the Debye length. In addition, the numerical algorithms have been improved in terms of grid treatment, i.e., the electric field near the complex geometry boundaries (plasma grid) is calculated more accurately. The revised model preserves the full 3D treatment, but can take advantage of a highly refined mesh. ONIX was used to investigate the role of the mesh size, the re-injection scheme for lost particles (extracted or wall absorbed), and the electron thermalization process on the calculated extracted current and plasma characteristics. It is demonstrated that all numerical schemes give the same NI current distribution for extracted ions. Concerning the electrons, the pair-injection technique is found well-adapted to simulate the sheath in front of the plasma grid.

  9. 3D-Simulation Studies of SNS Ring Doublet Magnets

    Wang, J.G.; Tsoupas N.; Venturini, M.


    The accumulator ring of the Spallation Neutron Source (SNS) at ORNL employs in its straight sections closely packed quadrupole doublemagnets with large aperture of R=15.1 cm an relatively short iron-to-iron distance of 51.4 cm. These quads have much extended fringe field, and magnetic interferences among them in the doublet assemblies is not avoidable. Though each magnet in the assemblies has been individually mapped to high accuracy of lower than 0.01 percent level, the experimental data including the magnetic interference effect will not be available. We have performed 3D computing simulations on a quadrupole doublet model in order to assess the degree of the interference and to obtain relevant data for the SNS commissioning and operation.

  10. 3D MHD disruptions simulations of tokamaks plasmas

    Paccagnella, Roberto; Strauss, Hank; Breslau, Joshua


    Tokamaks Vertical Displacement Events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model, implemented in the M3D code [1], is completed with the presence of a 2D homogeneous wall with finite resistivity. This allows the study of the relatively slowly growing magneto-hydro-dynamical perturbation, the resistive wall mode (RWM), which is, in this work, the main drive of the disruptions. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given. [1] W. Park, E.V. Belova, G.Y. Fu, X.Z. Tang, H.R. Strauss, L.E. Sugiyama, Phys. Plasmas 6 (1999) 1796.

  11. 3D Simulations of Galactic Winds in Dwarf Galaxies

    Marcolini, A; D'Ercole, A; Marcolini, Andrea; Brighenti, Fabrizio; Ercole, Annibale D'


    We present 3D hydrodynamical simulations of galactic winds in dwarf, gas-rich galaxies. The galaxy is moving through the ICM of a small galaxy group at v=200 km/s. The ram pressure removes the galactic gas at large radii, but does not strongly influence the ISM near the center. A starburst generates a galactic wind. The newly produced metals are expelled in the ICM and carried to large distance from the galaxy by the ram pressure. 500 Myr after the starburst only a few percent of the heavy elements produced are present in the central region of the dwarf galaxy. A large collection of ram pressure + wind models will be presented in a forthcoming paper.

  12. Photon Scattering in 3D Radiative MHD Simulations

    Hayek, Wolfgang


    Recent results from 3D time-dependent radiative hydrodynamic simulations of stellar atmospheres are presented, which include the effects of coherent scattering in the radiative transfer treatment. Rayleigh scattering and electron scattering are accounted for in the source function, requiring an iterative solution of the transfer equation. Opacities and scattering coefficients are treated in the multigroup opacity approximation. The impact of scattering on the horizontal mean temperature structure is investigated, which is an important diagnostic for model atmospheres, with implications for line formation and stellar abundance measurements. We find that continuum scattering is not important for the atmosphere of a metal-poor Sun with metailicity [Fe/H] = -3.0, similar to the previously investigated photosphere at solar metallicity.

  13. Validation of 3D simulations of reverse osmosis membrane biofouling.

    Pintelon, Thomas R R; Creber, Sarah A; von der Schulenburg, Daniel A Graf; Johns, Michael L


    The increasing demand for drinking water and its stricter quality requirements have resulted in an exponentially expanding industry of membrane filtration processes. Currently, reverse osmosis (RO) is the most common method of desalination, able to produce water that is virtually free of pollutants and pathogenic micro-organisms. Biofouling of these devices however is a significant limitation. Here we present a 3D simulation of RO membrane biofouling based on a lattice Boltzmann (LB) platform that we subsequently favorably compare with experimental data. This data consists of temporally (and spatially) resolved velocity measurements acquired for a RO membrane using magnetic resonance techniques. The effect of biofilm cohesive strength on system pressure drop is then explored; weaker biomass is observed to have a reduced impact on pressure drop (per unit biomass accumulated).

  14. Spicules and Jets: 3D flux emergence simulations

    Martínez-Sykora, Juan; Moreno-Insertis, Fernando


    Recent high temporal and spatial resolution observations of the chromosphere have forced the definition of a new type of spicule, ``type II's", that are characterized by rising rapidly, having short lives, and by fading away at the end of their lifetimes. Here, we report on features found in realistic 3D simulations of the outer solar atmosphere that resemble the observed type II spicules. These features evolve naturally from the simulations as a consequence of the magnetohydrodynamical evolution of the model atmosphere. The simulations span from the upper layer of the convection zone to the lower corona and include the emergence of horizontal magnetic flux. The state-of-art Oslo Staggered Code (OSC) is used to solve the full MHD equations with non-grey and non-LTE radiative transfer and thermal conduction along the magnetic field lines. We describe in detail the physics involved in a process which we consider a possible candidate as a driver mechanism to produce type II spicules. The model spicule is compose...

  15. 3D Hydrodynamic Simulations of Carbon Burning in Massive Stars

    Cristini, Andrea; Hirschi, Raphael; Arnett, David; Georgy, Cyril; Viallet, Maxime


    We present the first detailed three-dimensional (3D) hydrodynamic implicit large eddy simulations of turbulent convection of carbon burning in massive stars. The simulations start with initial radial profiles mapped from a carbon burning shell within a 15$\\,\\textrm{M}_\\odot$ 1D stellar evolution model. We consider 4 resolutions from $128^3$ to $1024^3$ zones. The turbulent flow properties of these carbon burning simulations are very similar to the oxygen burning case. We performed a mean field analysis of the kinetic energy budgets within the Reynolds-averaged Navier-Stokes framework. For the upper convective boundary region, we find that the inferred numerical dissipation is insensitive to resolution for linear mesh resolutions between 512 and 1,024 grid points. For the stiffer and more stratified lower boundary, our highest resolution model still shows signs of decreasing dissipation suggesting that it is not yet fully resolved numerically. We estimate the widths of the upper and lower boundaries to be roug...

  16. Plasma environment of Titan: a 3-D hybrid simulation study

    S. Simon


    Full Text Available Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.

  17. 3D global estimation and augmented reality visualization of intra-operative X-ray dose.

    Rodas, Nicolas Loy; Padoy, Nicolas


    The growing use of image-guided minimally-invasive surgical procedures is confronting clinicians and surgical staff with new radiation exposure risks from X-ray imaging devices. The accurate estimation of intra-operative radiation exposure can increase staff awareness of radiation exposure risks and enable the implementation of well-adapted safety measures. The current surgical practice of wearing a single dosimeter at chest level to measure radiation exposure does not provide a sufficiently accurate estimation of radiation absorption throughout the body. In this paper, we propose an approach that combines data from wireless dosimeters with the simulation of radiation propagation in order to provide a global radiation risk map in the area near the X-ray device. We use a multi-camera RGBD system to obtain a 3D point cloud reconstruction of the room. The positions of the table, C-arm and clinician are then used 1) to simulate the propagation of radiation in a real-world setup and 2) to overlay the resulting 3D risk-map onto the scene in an augmented reality manner. By using real-time wireless dosimeters in our system, we can both calibrate the simulation and validate its accuracy at specific locations in real-time. We demonstrate our system in an operating room equipped with a robotised X-ray imaging device and validate the radiation simulation on several X-ray acquisition setups.

  18. Simulated Photoevaporative Mass Loss from Hot Jupiters in 3D

    Tripathi, Anjali; Murray-Clay, Ruth A; Krumholz, Mark R


    Ionizing stellar photons heat the upper regions of planetary atmospheres, driving atmospheric mass loss. Gas escaping from several hot, hydrogen-rich planets has been detected using UV and X-ray transmission spectroscopy. Because these planets are tidally locked, and thus asymmetrically irradiated, escaping gas is unlikely to be spherically symmetric. In this paper, we focus on the effects of asymmetric heating on local outflow structure. We use the Athena code for hydrodynamics to produce 3D simulations of hot Jupiter mass loss that jointly model wind launching and stellar heating via photoionization. Our fiducial planet is an inflated, hot Jupiter with radius $R_p=2.14 R_{\\rm Jup}$ and mass $M_p = 0.53 M_{\\rm Jup}$. We irradiate the initially neutral, atomic hydrogen atmosphere with 13.6 eV photons and compute the outflow's ionization structure. There are clear asymmetries in the atmospheric outflow, including a neutral shadow on the planet's nightside. Given an incident ionizing UV flux comparable to that ...

  19. 3-D simulation of posterior fossa reduction in Chiari I

    Yvens Barbosa Fernandes


    Full Text Available ABSTRACT We proposed a 3D model to evaluate the role of platybasia and clivus length in the development of Chiari I (CI. Using a computer aided design software, two DICOM files of a normal CT scan and MR were used to simulate different clivus lengths (CL and also different basal angles (BA. The final posterior fossa volume (PFV was obtained for each variation and the percentage of the volumetric change was acquired with the same method. The initial normal values of CL and BA were 35.65 mm and 112.66º respectively, with a total PFV of 209 ml. Ranging the CL from 34.65 to 29.65 – 24.65 – 19.65, there was a PFV decrease of 0.47% – 1.12% – 1.69%, respectively. Ranging the BA from 122.66º to 127.66º – 142.66º, the PFV decreased 0.69% – 3.23%, respectively. Our model highlights the importance of the basal angle and clivus length to the development of CI.

  20. Identification of coronal heating events in 3D simulations

    Kanella, Charalambos; Gudiksen, Boris V.


    Context. The solar coronal heating problem has been an open question in the science community since 1939. One of the proposed models for the transport and release of mechanical energy generated in the sub-photospheric layers and photosphere is the magnetic reconnection model that incorporates Ohmic heating, which releases a part of the energy stored in the magnetic field. In this model many unresolved flaring events occur in the solar corona, releasing enough energy to heat the corona. Aims: The problem with the verification and quantification of this model is that we cannot resolve small scale events due to limitations of the current observational instrumentation. Flaring events have scaling behavior extending from large X-class flares down to the so far unobserved nanoflares. Histograms of observable characteristics of flares show powerlaw behavior for energy release rate, size, and total energy. Depending on the powerlaw index of the energy release, nanoflares might be an important candidate for coronal heating; we seek to find that index. Methods: In this paper we employ a numerical three-dimensional (3D)-magnetohydrodynamic (MHD) simulation produced by the numerical code Bifrost, which enables us to look into smaller structures, and a new technique to identify the 3D heating events at a specific instant. The quantity we explore is the Joule heating, a term calculated directly by the code, which is explicitly correlated with the magnetic reconnection because it depends on the curl of the magnetic field. Results: We are able to identify 4136 events in a volume 24 × 24 × 9.5 Mm3 (i.e., 768 × 786 × 331 grid cells) of a specific snapshot. We find a powerlaw slope of the released energy per second equal to αP = 1.5 ± 0.02, and two powerlaw slopes of the identified volume equal to αV = 1.53 ± 0.03 and αV = 2.53 ± 0.22. The identified energy events do not represent all the released energy, but of the identified events, the total energy of the largest events

  1. Global stability analysis of turbulent 3D wakes

    Rigas, Georgios; Sipp, Denis; Juniper, Matthew


    At low Reynolds numbers, corresponding to laminar and transitional regimes, hydrodynamic stability theory has aided the understanding of the dynamics of bluff body wake-flows and the application of effective control strategies. However, flows of fundamental importance to many industries, in particular the transport industry, involve high Reynolds numbers and turbulent wakes. Despite their turbulence, such wake flows exhibit organisation which is manifested as coherent structures. Recent work has shown that the turbulent coherent structures retain the shape of the symmetry-breaking laminar instabilities and only those manifest as large-scale structures in the near wake (Rigas et al., JFM vol. 750:R5 2014, JFM vol. 778:R2 2015). Based on the findings of the persistence of the laminar instabilities at high Reynolds numbers, we investigate the global stability characteristics of a turbulent wake generated behind a bluff three-dimensional axisymmetric body. We perform a linear global stability analysis on the experimentally obtained mean flow and we recover the dynamic characteristics and spatial structure of the coherent structures, which are linked to the transitional instabilities. A detailed comparison of the predictions with the experimental measurements will be provided.

  2. 3-D numerical simulations of volcanic ash transport and deposition

    Suzuki, Y. J.; Koyaguchi, T.


    During an explosive volcanic eruption, volcanic gas and pyroclasts are ejected from the volcanic vent. The pyroclasts are carried up within a convective plume, advected by the surrounding wind field, and sediment on the ground depending on their terminal velocity. The fine ash are expected to have atmospheric residence, whereas the coarser particles form fall deposits. Accurate modeling of particle transport and deposition is of critical importance from the viewpoint of disaster prevention. Previously, some particle-tracking models (e.g., PUFF) and advection-diffusion models (e.g., TEPHRA2 and FALL3D) tried to forecast particle concentration in the atmosphere and particle loading at ground level. However, these models assumed source conditions (the grain-size distribution, plume height, and mass release location) based on the simple 1-D model of convective plume. In this study, we aim to develop a new 3-D model which reproduces both of the dynamics of convective plume and the ash transport. The model is designed to describe the injection of eruption cloud and marker particles from a circular vent above a flat surface into the stratified atmosphere. Because the advection is the predominant mechanism of particle transport near the volcano, the diffusive process is not taken into account in this model. The distribution of wind velocity is given as an initial condition. The model of the eruption cloud dynamics is based on the 3-D time-dependent model of Suzuki et al. (2005). We apply a pseudo-gas model to calculate the eruption cloud dynamics: the effect of particle separation on the cloud dynamics is not considered. In order to reproduce the drastic change of eruption cloud density, we change the effective gas constant and heat capacity of the mixture in the equation of state for ideal gases with the mixing ratio between the ejected material and entrained air. In order to calculate the location and movement of ash particles, the present model employs Lagrangian marker

  3. Effective solutions to a global 3D visual system in networking environments

    ZHANG; Liqiang; ZHANG; Yan; YANG; Chongjun; LIU; Suhong; R


    The development of Web-based global 3D visual system has made progresses. However, there exist few mature and effective ways for managing, transmitting and visualizing massive spatial data. Based on the related work, the paper illustrates the ellipsoidal quadtree technique for rapid access multi-scale and multiple level geographical data, integrates the streaming with level-of-detail rendering method for transmitting the data on the network, and implements large-scale terrain surface simplification using M-band wavelet transforms and multiresolution triangulations. We fulfil a web-based global terrain visual system using COM components on the basis of the above techniques. The system has a good prospect in the military simulation and city plans.

  4. Simulation analysis of turbine blade in 3D printing aquarium

    Chen Dyi-Cheng


    Full Text Available 3D printing of the flexibility is the most admirable place, no matter when or where, as long as the machine can make the abstract design of finished products or difficult to process the finished product printed out as a sample. And in the product design, through the 3D print out the entity, to more specific observation of the advantages and disadvantages of finished products, which shorten the time of many creative research and development, but also relatively reduce the defective factors. As in recent years, 3D printing technology is progressing, material adhesion, precision and parts of the degree of cooperation has increased, coupled with many parts taking into account the cost, production and other issues, and then let a lot of light load small parts or special parts choose to use 3D to print the finished product to replace. This study focuses on the plastic turbine blades that drive water in the aquarium, but the 3D printing is done by stacking. However, the general stress analysis software can set the material to analyze the deformation results of the force, nor the 3D to analyze the software. Therefore, this study first analyzes the deformation of turbine blade by software, and then verifies the situation of 3D printing turbine blade, and then compares the actual results of software analysis and 3D printing. The results can provide the future of 3D product consider the strength factor. The study found that the spiral blade design allows the force points to be dispersed to avoid hard focus.

  5. Towards implementing plate tectonics in 3D mantle convection simulations

    Bollada, Peter; Davies, Huw


    One of the great challenges in numerical mantle convection simulations is to achieve models that naturally develop plate tectonic like behaviour at the surface. In this work we are looking to achieve such models by investigating the set of models where a single consistent rheology is used for the whole model. We have started by investigating a viscoelastic rheology, related to the Oldroyd-B model from the field of polymers. The goal will be to have the parameter that controls the relaxation between elastic and viscous behaviour to depend upon temperature, pressure and strain-rate. With an appropriate choice of this dependence we have, on the near surface, high viscous/elastic regions interfaced with lower, pure viscous, regions of high strain-rate; while it also becomes more viscous at depth in the interior. In this way we hope to obtain plate like behaviour at the surface which naturally progresses to viscous convective behaviour in the interior. We have started to implement this model in the established mantle 3D finite element spherical mantle convection code TERRA (Baumgardner, 1984). Some parts of the model have been implemented as a force (to be combined with the gravitational body force) on the right hand side. The work has required us to develop and code in TERRA: (i) methods to overcome the continuity problem of the stress field stemming from the fact that the velocity field is represented by linear finite elements; (ii) new operators to handle stress and its gradients; (iii) methods to analyse plate-like behaviour at the surface (iv) the necessary functional dependence of viscosity and elastic relaxation time on temperature, strain-rate and pressure We will present the background to the work, its implementation and results.

  6. Extracting 3D layout from a single image using global image structures.

    Lou, Zhongyu; Gevers, Theo; Hu, Ninghang


    Extracting the pixel-level 3D layout from a single image is important for different applications, such as object localization, image, and video categorization. Traditionally, the 3D layout is derived by solving a pixel-level classification problem. However, the image-level 3D structure can be very beneficial for extracting pixel-level 3D layout since it implies the way how pixels in the image are organized. In this paper, we propose an approach that first predicts the global image structure, and then we use the global structure for fine-grained pixel-level 3D layout extraction. In particular, image features are extracted based on multiple layout templates. We then learn a discriminative model for classifying the global layout at the image-level. Using latent variables, we implicitly model the sublevel semantics of the image, which enrich the expressiveness of our model. After the image-level structure is obtained, it is used as the prior knowledge to infer pixel-wise 3D layout. Experiments show that the results of our model outperform the state-of-the-art methods by 11.7% for 3D structure classification. Moreover, we show that employing the 3D structure prior information yields accurate 3D scene layout segmentation.

  7. 3D Rigorous simulation of mask induced polarization

    Wei, X.; Urbach, H.P.; Wachters, A.; Aksenov, Y.


    The polarization induced by the mask is studied by using a 3D rigorous model, wich solves Maxwell equations using the finite element method. Teh aerial image depends strongly on the change of polarization induced by the materials, thickness of the layer and pitch of the periodic masks.

  8. Interdisciplinary Collaboration through Designing 3D Simulation Case Studies

    Bai, Xin; 10.5121/ijma.2011.3109


    Interdisciplinary collaboration is essential for the advance of research. As domain subjects become more and more specialized, researchers need to cross disciplines for insights from peers in other areas to have a broader and deeper understand of a topic at micro- and macro-levels. We developed a 3D virtual learning environment that served as a platform for faculty to plan curriculum, share educational beliefs, and conduct cross-discipline research for effective learning. Based upon the scripts designed by faculty from five disciplines, virtual doctors, nurses, or patients interact in a 3D virtual hospital. The teaching vignettes were then converted to video clips, allowing users to view, pause, replay, or comment on the videos individually or in groups. Unlike many existing platforms, we anticipated a value-added by adding a social networking capacity to this virtual environment. The focus of this paper is on the cost-efficiency and system design of the virtual learning environment.

  9. DREAM3D simulations of inner-belt dynamics

    Cunningham, Gregory Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere, where the loss to the atmosphere is enabled by pitch-angle scattering from Coulomb and wave-particle interactions. In the 1973 paper, equilibrium solutions to a decoupled set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium two-belt structure. Each 1D radial diffusion equation incorporated an L-and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This decoupling of the problem is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering. However, for some values of μ and L the lifetime associated with pitch-angle scattering is comparable to the timescale associated with radial diffusion, suggesting that the true equilibrium solutions might reflect `coupled modes' involving pitch-angle scattering and radial diffusion and thus requiring a 3D diffusion model. In the work we show here, we have computed the equilibrium solutions using our 3D diffusion model, DREAM3D, that allows for such coupling. We find that the 3D equilibrium solutions are quite similar to the solutions shown in the 1973 paper when we use the same physical models for radial diffusion and pitch-angle scattering from hiss. However, we show that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to understand the two-belt structure.

  10. Using 3-D Numerical Weather Data in Piloted Simulations

    Daniels, Taumi S.


    This report describes the process of acquiring and using 3-D numerical model weather data sets in NASA Langley's Research Flight Deck (RFD). A set of software tools implement the process and can be used for other purposes as well. Given time and location information of a weather phenomenon of interest, the user can download associated numerical weather model data. These data are created by the National Oceanic and Atmospheric Administration (NOAA) High Resolution Rapid Refresh (HRRR) model, and are then processed using a set of Mathworks' Matlab(TradeMark) scripts to create the usable 3-D weather data sets. Each data set includes radar re ectivity, water vapor, component winds, temperature, supercooled liquid water, turbulence, pressure, altitude, land elevation, relative humidity, and water phases. An open-source data processing program, wgrib2, is available from NOAA online, and is used along with Matlab scripts. These scripts are described with sucient detail to make future modi cations. These software tools have been used to generate 3-D weather data for various RFD experiments.

  11. A global 3-D CTM evaluation of black carbon in the Tibetan Plateau

    C. He


    Full Text Available We evaluate the black carbon (BC simulations for 2006 over the Tibetan Plateau by a global 3-D chemical transport model using surface observations of BC in surface air and in snow and BC absorption aerosol optical depth (AAOD. Using updated Asian anthropogenic BC emissions (Lu et al., 2011; Zhang et al., 2009 and global biomass burning emissions (Randerson et al., 2012; van der Werf et al., 2010, model results of both surface BC and BC in snow are statistically in good agreement with observations (biases < 15%. Model results capture the seasonal variation of surface BC concentration, but the observed wintertime high values at rural sites in the Indo-Gangetic Plain are absent in the model. Model results are in general agreement with observations (within a factor of two at remote sites. Model simulated BC concentrations in snow are spatiotemporally consistent with observations at most sites. We find that modeled BC AAOD are significantly lower than observations to the northwest of the Plateau and along the southern slopes of the Himalayas during winter and spring, reflecting model deficiencies in emissions, topography and BC mixing state. We find that anthropogenic emissions strongly affect surface BC concentration and AAOD, while the BC aging mainly affects BC in snow over the Plateau.

  12. 3-D numerical simulations of coronal loops oscillations

    M. Selwa


    Full Text Available We present numerical results of 3-D MHD model of a dipole active region field containing a loop with a higher density than its surroundings. We study different ways of excitation of vertical kink oscillations by velocity perturbation: as an initial condition, and as an impulsive excitation with a pulse of a given position, duration, and amplitude. These properties are varied in the parametric studies. We find that the amplitude of vertical kink oscillations is significantly amplified in comparison to horizontal kink oscillations for exciters located centrally (symmetrically below the loop, but not if the exciter is located a significant distance to the side of the loop. This explains why the pure vertical kink mode is so rarely observed in comparison to the horizontally polarized one. We discuss the role of curved magnetic field lines and the pulse overlapping at one of the loop's footpoints in 3-D active regions (AR's on the excitation and the damping of slow standing waves. We find that footpoint excitation becomes more efficient in 3-D curved loops than in 2-D curved arcades and that slow waves can be excited within an interval of time that is comparable to the observed one wave-period due to the combined effect of the pulse inside and outside the loop. Additionally, we study the effect of AR topology on the excitation and trapping of loop oscillations. We find that a perturbation acting directly on a single loop excites oscillations, but results in an increased leakage compared to excitation of oscillations in an AR field by an external source.

  13. 3d particle simulations on ultra short laser interaction

    Nishihara, Katsunobu; Okamoto, Takashi; Yasui, Hidekazu [Osaka Univ., Suita (Japan). Inst. of Laser Engineering


    Two topics related to ultra short laser interaction with matter, linear and nonlinear high frequency conductivity of a solid density hydrogen plasma and anisotropic self-focusing of an intense laser in an overdense plasma, have been investigated with the use of 3-d particle codes. Frequency dependence of linear conductivity in a dense plasma is obtained, which shows anomalous conductivity near plasma frequency. Since nonlinear conductivity decreases with v{sub o}{sup -3}, where v{sub o} is a quivering velocity, an optimum amplitude exists leading to a maximum electron heating. Anisotropic self-focusing of a linear polarized intense laser is observed in an overdense plasma. (author)

  14. 3D Numerical Simulation of Projectile Penetration into Concrete Target


    Basing on the explicit instantaneous dynamics software MSC-Dytran and the general coupling arithmetic, the process of the projectile penetration into concrete target was simulated with the point-line-surface-body modeling method. Simulation results are in agreement with experimental results. The simulated data could provide design reference for the defense engineering construction and penetrator design.

  15. Mesh Resolution Effect on 3D RANS Turbomachinery Flow Simulations

    Yershov, Sergiy


    The paper presents the study of the effect of a mesh refinement on numerical results of 3D RANS computations of turbomachinery flows. The CFD solver F, which based on the second-order accurate ENO scheme, is used in this study. The simplified multigrid algorithm and local time stepping permit decreasing computational time. The flow computations are performed for a number of turbine and compressor cascades and stages. In all flow cases, the successively refined meshes of H-type with an approximate orthogonalization near the solid walls were generated. The results obtained are compared in order to estimate their both mesh convergence and ability to resolve the transonic flow pattern. It is concluded that for thorough studying the fine phenomena of the 3D turbomachinery flows, it makes sense to use the computational meshes with the number of cells from several millions up to several hundred millions per a single turbomachinery blade channel, while for industrial computations, a mesh of about or less than one mil...

  16. Parallel Simulation of 3-D Turbulent Flow Through Hydraulic Machinery

    徐宇; 吴玉林


    Parallel calculational methods were used to analyze incompressible turbulent flow through hydraulic machinery. Two parallel methods were used to simulate the complex flow field. The space decomposition method divides the computational domain into several sub-ranges. Parallel discrete event simulation divides the whole task into several parts according to their functions. The simulation results were compared with the serial simulation results and particle image velocimetry (PIV) experimental results. The results give the distribution and configuration of the complex vortices and illustrate the effectiveness of the parallel algorithms for numerical simulation of turbulent flows.

  17. Tela global e oceano azul: cinema 3D, o caso Brasil

    Andre Gatti


    Full Text Available A exibição de filmes de longa-metragem em 3D é a nova onda da indústria cinematográfica global. O que está acontecendo no Brasil? Quais problemas da implantação do 3D no país? Tudo ainda é muito recente, mas os resultados desta onda já podem ser percebidos.

  18. Ground Signatures of EMIC Waves obtained From a 3D Global Wave Model

    Rankin, R.; Sydorenko, D.; Zong, Q.; Zhang, L.


    EMIC waves generated in the inner magnetosphere are important drivers of radiation belt particle loss. Van Allen Probes and ground observations of EMIC waves suggest that localized magnetospheric sources inject waves that are guided along geomagnetic field lines and then reflected and refracted in the low altitude magnetosphere [Kim, E.-H., and J. R. Johnson (2016), Geophys. Res. Lett., 43, 13-21, doi:10.1002/2015GL066978] before entering the ionosphere. The waves then spread horizontally within the F-region waveguide and propagate to the ground. To understand the observed properties of EMIC waves, a global 3D model of ULF waves in Earth's magnetosphere, ionosphere, and neutral atmosphere has been developed. The simulation domain extends from Earth's surface to a spherical boundary a few tens of thousands of km in radius. The model uses spherical coordinates and incorporates an overset Yin-Yang grid that eliminates the singularity at the polar axis and improves uniformity of the grid in the polar areas [Kageyama, A., and T. Sato (2004), Geochem. Geophys. Geosyst., 5, Q09005, doi:10.1029/2004GC000734]. The geomagnetic field in the model is general, but is dipole in this study. The plasma is described as a set of electron and multiple species ion conducting fluids. Realistic 3D density profiles of various ion species as well as thermospheric parameters are provided by the Canadian Ionosphere Atmosphere Model (C-IAM) [Martynenko O.V. et al. (2014), J. Atmos. Solar-Terr. Phys., 120, 51-61, doi:10.1016/j.jastp.2014.08.014]. The global ULF wave model is applied to study propagation of EMIC waves excited in the equatorial plane near L=7. Wave propagation along field lines, reflection and refraction in the zone of critical frequencies, and further propagation through the ionosphere to the ground are discussed.

  19. Building a 3D Virtual Liver: Methods for Simulating Blood Flow and Hepatic Clearance on 3D Structures

    Rezania, Vahid; Tuszynski, Jack


    In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver. PMID:27649537

  20. Assessment of the CATHARE 3-D module for LBLOCA simulation

    Pascal Bazin; Isabelle Dor; Christophe Morel [Commissariat a l' Energie Atomique, CEA - GRENOBLE, 17 rue des Martyrs, 38054 GRENOBLE cedex 9 (France)


    Full text of publication follows: CATHARE is a best-estimate system code developed by CEA, EDF, FRAMATOME-ANP and IRSN for PWR safety analysis, accident management, definition of plant operating procedure and for research and development. It is also used to quantify conservative margins and for licensing. In the framework of Pressurized Water Reactor (PWR) safety studies, Large Break Loss-Of-Coolant Accident (LB LOCA) prediction is still one of the most important and one of the most difficult problem. The three main phases of a LB LOCA are respectively the blowdown, the refilling and the reflooding phases. During the blowdown, the lower plenum voiding results in water entrainment towards the break by steam flowing from the core. Because of the core radial profile, critical heat flux occur but a nonuniform quenching may take place, which results in a 3-D repartition of the energy stored in the core at the beginning of the reflooding. The refilling phase which starts at the accumulator discharge encounters very complex thermalhydraulic phenomena: very strong condensation which induces instabilities, presence of nitrogen degassing from accumulator water which may have an important effect on the transient, countercurrent flow limitation which occurs in the complex geometry of the annular downcomer. The reflooding phase initial conditions in the core are therefore very non-uniform. The presence of buoyancy driven transverse flows below the quench front assures a very efficient mixing between the fuel assemblies. The quench front progression in the hot assemblies is accelerated by pre-cooling due to water cross-flows just above the quench front. Therefore the clad temperature excursion is moderated in the hot assemblies by an increased water carry-over coming partially from colder assemblies. All these multi-dimensional aspects create a very challenging problem for the CATHARE 3-D module. A good prediction of the lower plenum voiding altogether with the amount of

  1. Numerical Simulation of Effective Properties of 3D Piezoelectric Composites

    Ri-Song Qin


    Full Text Available The prediction of the overall effective properties of fibre-reinforced piezocomposites has drawn much interest from investigators recently. In this work, an algorithm used in two-dimensional (2D analysis for calculating transversely isotropic material properties is developed. Since the finite element (FE meshing patterns on the opposite areas are the same, constraint equations can be applied directly to generate appropriate load. The numerical results derived using this model have found a good agreement with those in the literature. The 2D algorithm is then modified and improved in such a way that it is valid for three-dimensional (3D analysis in the case of random distributed shorts and inclusions. Linear interpolation of displacement field is employed to establish constraint equations of nodal displacements between two adjacent elements.

  2. A 3-D Global History from a Glober Identity ina Noncentric and Holistic Perspective


    In modern times, global and world history has been understood, writtenand taught from either a national perspective or a regional/cultural/ideological one in the light of centrism such as West/Eurocentrism eversince it was created. The author argues, in a noncentric and holisticperspective, that nationalized global or world histories are nothingbut distorting mirrors full of pride and prejudice. It is argued that bothobjective global history and subjective global history are contingentresultants in a certain special and temporal context. In the early 21stcentury, the author heralds a globalization of global history and "GlobalHistorians of All Countries Unite!" He also suggests that it is necessaryfor a global historian to develop a glober identity beyond her/hisnational identity and that a reasonable and intelligible global historywhich is closer to the objective global history should be a 3-D globalhistory of the glober, by the glober, for the glober.

  3. 3D FEM Simulations of a shape rolling process

    Wisselink, H.H.; Huetink, J.; Dijk, van M.H.H.; Leeuwen, van A.J.


    A finite element model has been developed for the simulation of the shape rolling of stator vanes. These simulations should support the design of rolling tools for new vane types. For the time being only straight vanes (vanes with a constant cross-section over the length) are studied. In that case t

  4. The MHD simulations of 3D magnetic reconnection near null point of magnetic configurations

    Bulanov, S.V. [Institute of General Physics, Russian Academy of Sciences, Moscow (Russian Federation); Echkina, E.Yu; Inovenkov, I.N.; Pichushkin, V.V. [Moscow State University, Moscow (Russian Federation); Pegoraro, F. [Dipartimento di Fisica dell' Universit' a di Pisa and INFM (Italy)


    We investigate 3D plasma flow in the vicinities of critical points of magnetic configurations. The study is based on the analysis of exact self-similar solution of the MHD equations and 3D computer simulations. Both the analytical solution and 3D MHD simulations demonstrate appearance of singular distribution of the electric current density near the magnetic field separatrix surfaces of the form of the current and vortex sheets. (author)

  5. Simple 3-D stimulus for motion parallax and its simulation.

    Ono, Hiroshi; Chornenkyy, Yevgen; D'Amour, Sarah


    Simulation of a given stimulus situation should produce the same perception as the original. Rogers et al (2009 Perception 38 907-911) simulated Wheeler's (1982, PhD thesis, Rutgers University, NJ) motion parallax stimulus and obtained quite different perceptions. Wheeler's observers were unable to reliably report the correct direction of depth, whereas Rogers's were. With three experiments we explored the possible reasons for the discrepancy. Our results suggest that Rogers was able to see depth from the simulation partly due to his experience seeing depth with random dot surfaces.

  6. 3D Modeling and Simulation of Dendritic Growth during Solidification

    Zuojian LIANG; Qingyan XU; Baicheng LIU


    A mathematical model for the three-dimensional simulation of free dendritic growth and microstructure evolutionwas developed based on the growth mechanism of crystal grains and basic transfer equations such as heat, massand momentum transfer equations. Ma

  7. Local-global alignment for finding 3D similarities in protein structures

    Zemla, Adam T.


    A method of finding 3D similarities in protein structures of a first molecule and a second molecule. The method comprises providing preselected information regarding the first molecule and the second molecule. Comparing the first molecule and the second molecule using Longest Continuous Segments (LCS) analysis. Comparing the first molecule and the second molecule using Global Distance Test (GDT) analysis. Comparing the first molecule and the second molecule using Local Global Alignment Scoring function (LGA_S) analysis. Verifying constructed alignment and repeating the steps to find the regions of 3D similarities in protein structures.

  8. Cooperative 3D Path Optimization (C3PO) Simulation


    knowledge, the group would elect a leader, plan a path using Rapidly-Exploring Random Trees (RRTs), and move to the goal using Artificial Potential... Field . The simulation was created in the MASON multi-agent simulation framework, and we were able to show that RRTs are a viable solution for do so without a home base for communication. Starting out with full map knowledge, the group would elect a leader, plan a path using Rapidly

  9. 3D Hydrodynamic Simulation of Classical Novae Explosions

    Kendrick, Coleman J.


    This project investigates the formation and lifecycle of classical novae and determines how parameters such as: white dwarf mass, star mass and separation affect the evolution of the rotating binary system. These parameters affect the accretion rate, frequency of the nova explosions and light curves. Each particle in the simulation represents a volume of hydrogen gas and are initialized randomly in the outer shell of the companion star. The forces on each particle include: gravity, centrifugal, coriolis, friction, and Langevin. The friction and Langevin forces are used to model the viscosity and internal pressure of the gas. A velocity Verlet method with a one second time step is used to compute velocities and positions of the particles. A new particle recycling method was developed which was critical for computing an accurate and stable accretion rate and keeping the particle count reasonable. I used C++ and OpenCL to create my simulations and ran them on two Nvidia GTX580s. My simulations used up to 1 million particles and required up to 10 hours to complete. My simulation results for novae U Scorpii and DD Circinus are consistent with professional hydrodynamic simulations and observed experimental data (light curves and outburst frequencies). When the white dwarf mass is increased, the time between explosions decreases dramatically. My model was used to make the first prediction for the next outburst of nova DD Circinus. My simulations also show that the companion star blocks the expanding gas shell leading to an asymmetrical expanding shell.

  10. Enhancing Pre-Service Teachers' Awareness to Pupils' Test-Anxiety with 3D Immersive Simulation

    Passig, David; Moshe, Ronit


    This study investigated whether participating in a 3D immersive virtual reality world simulating the experience of test-anxiety would affect preservice teachers' awareness to the phenomenon. Ninety subjects participated in this study, and were divided into three groups. The experimental group experienced a 3D immersive simulation which made…

  11. Single-sided sheet-to-tube spot welding investigated by 3D numerical simulations

    Nielsen, Chris Valentin; Chergui, Azeddine; Zhang, Wenqi

    The single-sided resistance spot welding process is analyzed by a 3D numerical study of sheet-to-tube joining. Finite element simulations are carried out in SORPAS® 3D. Two levels of electrode force and five levels of welding current are simulated. The overall effects of changing current and force...

  12. Tensor3D: A computer graphics program to simulate 3D real-time deformation and visualization of geometric bodies

    Pallozzi Lavorante, Luca; Dirk Ebert, Hans


    Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities.

  13. SIERRA - A 3-D device simulator for reliability modeling

    Chern, Jue-Hsien; Arledge, Lawrence A., Jr.; Yang, Ping; Maeda, John T.


    SIERRA is a three-dimensional general-purpose semiconductor-device simulation program which serves as a foundation for investigating integrated-circuit (IC) device and reliability issues. This program solves the Poisson and continuity equations in silicon under dc, transient, and small-signal conditions. Executing on a vector/parallel minisupercomputer, SIERRA utilizes a matrix solver which uses an incomplete LU (ILU) preconditioned conjugate gradient square (CGS, BCG) method. The ILU-CGS method provides a good compromise between memory size and convergence rate. The authors have observed a 5x to 7x speedup over standard direct methods in simulations of transient problems containing highly coupled Poisson and continuity equations such as those found in reliability-oriented simulations. The application of SIERRA to parasitic CMOS latchup and dynamic random-access memory single-event-upset studies is described.

  14. Humanoid Robot 3 -D Motion Simulation for Hardware Realization

    CAO Xi; ZHAO Qun-fei; MA Pei-sun


    In this paper, three dimensions kinematics andkinetics simulation arc discussed for hardware realization ofa physical biped walking-chair robot. The direct and inverseclose-form kinematics solution of the biped walking-chairis deduced. Several gaits are realized with thekinematics solution, including walking straight on levelfloor, going up stair, squatting down and standing up. ZeroMoment Point(ZMP) equation is analyzed considering themovement of the crew. The simulated biped walking-chairrobot is used for mechanical design, gaits development andvalidation before they are tested on real robot.

  15. 3D Simulations of methane convective storms on Titan's atmosphere

    Hueso, R.; Sánchez-Lavega, A.


    The arrival of the Cassini/Huygens mission to Titan has opened an unprecedented opportunity to study the atmosphere of this satellite. Under the pressure-temperature conditions on Titan, methane, a large atmospheric component amounting perhaps to a 3-5% of the atmosphere, is close to its triple point, potentially playing a similar role as water on Earth. The Huygens probe has shown a terrain shaped by erosion of probably liquid origin, suggestive of past rain. On the other hand, Voyager IRIS spectroscopic observations of Titan imply a saturated atmosphere of methane (amounting perhaps to 150 covered by methane clouds, if we think on Earth meteorology. However, observations from Earth and Cassini have shown that clouds are localized, transient and fast evolving, in particular in the South Pole (currently in its summer season). This might imply a lack of widespread presence on Titan of nuclei where methane could initiate condensation and particle growth with subsequent precipitation. We investigate different scenarios of moist convective storms on Titan using a complete 3D atmospheric model that incorporates a full microphysics treatment required to study cloud formation processes under a saturated atmosphere with low concentration of condensation nuclei. We study local convective development under a variety of atmospheric conditions: sub-saturation, super-saturation, abundances of condensation nuclei fall, condensation nuclei lifted from the ground or gently falling from the stratosphere. We show that under the appropriate circumstances, precipitation rates comparable to typical tropical storms on Earth can be found. Acknowledgements: This work has been funded by Spanish MCYT PNAYA2003-03216, fondos FEDER and Grupos UPV 15946/2004. R. Hueso acknowledges a post-doc fellowship from Gobierno Vasco.

  16. 3-D Simulations of MHD Jets - The Stability Problem

    Nakamura, M; Nakamura, Masanori; Meier, David L.


    Non-relativistic three-dimensional magnetohydrodynamic simulations of Poynting-flux-dominated (PFD) jets are presented. Our study focuses on the propagation of strongly magnetized hypersonic but sub-Alfv\\'enic flow ($C_{\\rm s}^2 1$), driven in large part by the radial component of the Lorentz force.

  17. Simulation of 3D-CRT treatment for lung cancer

    Thalhofer, Jardel L.; Silva, Ademir X. da; Junior, Juraci R.P., E-mail: [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Rebello, Wilson F., E-mail: [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear; Correa, Samanda C.A., E-mail: [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Souza, Edmilson M., E-mail: [Centro Universitario da Zona Oeste (UEZO), Rio de Janeiro, RJ (Brazil). Colegiado de Comutacao e Matematica; Batista, Delano V.S., E-mail: [Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ (Brazil)


    In radiotherapy treatment for lung cancer, occurs doses deposition in healthy organs. During the treatment planning are calculated some doses due to photons. This dose deposition in healthy organs could induce to the appearance of new cancers foci. The aim of this study was to analyze the equivalent doses in healthy organs of a patient treated by radiotherapy for lung cancer. In order to calculate the doses, was done a computer simulation of radiotherapy treatment for lung cancer, adopting database of the treatment performed by INCA. To perform the simulation was used several tools, among them, the radiation transport code MCNPX, in which was shaped the radiotherapy room and the head from the linear accelerator Varian 2300 C / D, the patient was simulated by Voxel male phantom in Rex,and the treatment protocol adopted considers a beam with energy of 6 MV focusing on three gantry tilt angles (0 deg, 180 deg and 45 deg). In addition, there was variation in the opening of the radiation field according to the angle of inclination. The results of this study point to the organs close to the irradiated area are predominantly affected by the dose due to photons, affecting organs from different body systems, such as esophagus, heart, thymus, spine and lymph nodes. The calculated values demonstrating that the angle of 0 deg was the most responsible for the deposit of unwanted dose. The results showed that the simulations in this paper is developed in accordance with the planning data described in different studies and literature. (author)


    A. L. S. Araújo

    Full Text Available Abstract In the last decade, unstructured grids have been a very important step in the development of petroleum reservoir simulators. In fact, the so-called third generation simulators are based on Perpendicular Bisection (PEBI unstructured grids. Nevertheless, the use of PEBI grids is not very general when full anisotropic reservoirs are modeled. Another possibility is the use of the Element based Finite Volume Method (EbFVM. This approach has been tested for several reservoir types and in principle has no limitation in application. In this paper, we implement this approach in an in-house simulator called UTCOMP using four element types: hexahedron, tetrahedron, prism, and pyramid. UTCOMP is a compositional, multiphase/multi-component simulator based on an Implicit Pressure Explicit Composition (IMPEC approach designed to handle several hydrocarbon recovery processes. All properties, except permeability and porosity, are evaluated in each grid vertex. In this work, four case studies were selected to evaluate the implementation, two of them involving irregular geometries. Results are shown in terms of oil and gas rates and saturated gas field.

  19. 3D General Relativistic Simulations of Coalescing Binary Neutron Stars

    Oohara, K I; Nakamura, Takashi; Oohara, Ken-ichi


    We develop a 3 dimensional computer code to study a coalescing neutron star binary. The code can currently follow the evolution up to two stars begin to merge from two spherical stars of mass 1 solar mass and radius 8.9km with separation 35.4km. As for coordinate conditions, we use conformal slicing and pseudo-minimal distortion conditions. The evolution equations for the metric is integrated using the CIP method while the van Leer's scheme is used to integrate the equations for the matter. We present a few results of our simulations including gravitational radiation.

  20. 3D MHD simulation of polarized emission in SN 1006

    Schneiter, E M; Reynoso, E M; Esquivel, A; De Colle, F


    We use three dimensional magnetohydrodynamic (MHD) simulations to model the supernova remnant SN 1006. From our numerical results, we have carried out a polarization study, obtaining synthetic maps of the polarized intensity, the Stokes parameter $Q$, and the polar-referenced angle, which can be compared with observational results. Synthetic maps were computed considering two possible particle acceleration mechanisms: quasi-parallel and quasi-perpendicular. The comparison of synthetic maps of the Stokes parameter $Q$ maps with observations proves to be a valuable tool to discern unambiguously which mechanism is taking place in the remnant of SN 1006, giving strong support to the quasi-parallel model.

  1. Photorealistic 3D omni-directional stereo simulator

    Reiners, Dirk; Cruz-Neira, Carolina; Neumann, Carsten


    While a lot of areas in VR have made significant advances, visual rendering in VR is often not quite keeping up with the state of the art. There are many reasons for this, but one way to alleviate some of the issues is by using ray tracing instead of rasterization for image generation. Contrary to popular belief, ray tracing is a realistic, competitive technology nowadays. This paper looks at the pros and cons of using ray tracing and demonstrates the feasibility of employing it using the example of a helicopter flight simulator image generator.

  2. 3D vesicle dynamics simulations with a linearly triangulated surface

    Boedec, G.; Leonetti, M.; Jaeger, M.


    Simulations of biomembranes have gained an increasing interest in the past years. Specificities of these membranes propose new challenges for the numerics. In particular, vesicle dynamics are governed by bending forces as well as a surface incompressibility constraint. A method to compute the bending force density resultant onto piecewise linearly triangulated surface meshes is described. This method is coupled with a boundary element method solver for inner and outer fluids, to compute vesicle dynamics under external flows. The surface incompressibility constraint is satisfied by the construction of a projection operator.

  3. A 3-d simulation of the atmospheric neutrinos

    Favier, Jean; Vialle, J P


    The first AMS flight in June 1998 on board of the space shuttle Discovery at an altitude of approximately 380 km unveiled unexpected features of the cosmic rays spectra below the Earth geomagnetic cut-off. In addition to a secondary flux of particles at all latitude, a ring of high energy particles (up to 6 GeV) and an anomalous ratio e+/e- as high as 4 was observed near the geomagnetic equator. This paper describes a simulation of the interaction of primary cosmic rays with atmosphere in which the effect of the Earth magnetic field is included . Using the GEANT3 package for the tracking of particles with the GFLUKA associated package for the physics of interactions, this simulation reproduces quite well the AMS experimental results and the CAPRICE muon data at ground level. The predictions of this model for the flux of atmospheric neutrino are compared with the Super-Kamiokande results and with the results of other atmospheric neutrino models.

  4. Plasma boundaries at Mars: a 3-D simulation study

    A. Bößwetter


    Full Text Available The interaction of the solar wind with the ionosphere of planet Mars is studied using a three-dimensional hybrid model. Mars has only a weak intrinsic magnetic field, and consequently its ionosphere is directly affected by the solar wind. The gyroradii of the solar wind protons are in the range of several hundred kilometers and therefore comparable with the characteristic scales of the interaction region. Different boundaries emerge from the interaction of the solar wind with the continuously produced ionospheric heavy-ion plasma, which could be identified as a bow shock (BS, ion composition boundary (ICB and magnetic pile up boundary (MPB, where the latter both turn out to coincide. The simulation results regarding the shape and position of these boundaries are in good agreement with the measurements made by Phobos-2 and MGS spacecraft. It is shown that the positions of these boundaries depend essentially on the ionospheric production rate, the solar wind ram pressure, and the often unconsidered electron temperature of the ionospheric heavy ion plasma. Other consequences are rays of planetary plasma in the tail and heavy ion plasma clouds, which are stripped off from the dayside ICB region by some instability.

    Key words. Magnetospheric physics (solar wind interactions with unmagnetized bodies – Space plasma physics (discontinuities; numerical simulation studies

  5. 3D Simulation of a Medium scale Pool Fire

    Naveen S


    Full Text Available Pool fires represent the most frequently encountered accidents of the different types of fires that are known to occur in the Chemical Process Industry (CPI. Exhaustive analysis of the history of past accidents in CPI's that have occurred across the world since early 1900's reveal that pool fires are major threats to industrial safety, and result in huge losses of life and property. Studies have been going on to study the interaction mechanisms of the fire and models have been developed which were mostly empirical, zone models and field models developed according to and based on the conditions available for the experiment. The experiment considered consisted of a 2-m-diameter methanol pool in an unconfined area with a cross-wind velocity of 13 m/s. Steady state simulations with uniform time step were done using computational fluid dynamics and the simulations showed sensitivity to the grid refinement, size of the pool and wind profiles.Comparison between calculated and experimental results are also made.Turbulence models were also investigated, and was observed that RNG model gave more predictable results for the test cases to the accuracy of almost 80%.

  6. 3D Computational Simulation of Calcium Leaching in Cement Matrices

    Gaitero, J. J.


    Full Text Available Calcium leaching is a degradation process consisting in progressive dissolution of the cement paste by migration of calcium atoms to the aggressive solution. It is therefore, a complex phenomenon involving several phases and dissolution and diffusion processes simultaneously. Along this work, a new computational scheme for the simulation of the degradation process in three dimensions was developed and tested. The toolkit was used to simulate accelerated calcium leaching by a 6M ammonium nitrate solution in cement matrices. The obtained outputs were the three dimensional representation of the matrix and the physicochemical properties of individual phases as a consequence of the degradation process. This not only makes it possible to study the evolution of such properties as a function of time but also as a function of the position within the matrix. The obtained results are in good agreement with experimental values of the elastic modulus in degraded and undegraded samples.El lixiviado de calcio es un proceso de degradación consistente en la disolución progresiva de la pasta de cemento por la migración de los átomos de calcio a la disolución agresiva. Se trata por tanto de un fenómeno complejo que involucra simultáneamente diferentes fases y procesos de disolución y difusión. En este trabajo se desarrolló y probó una nueva herramienta computacional para la simulación del proceso de degradación en tres dimensiones. Para ello se simuló el lixiviado de calcio acelerado provocado por una disolución de nitrato amónico 6M en matrices de cemento. Como resultado se obtuvieron la representación tridimensional de la matriz y las propiedades físico-químicas sus fases a lo largo del tiempo. Esto permitió estudiar la evolución de dichas propiedades a lo largo del proceso de degradación así como en función de su posición dentro de la matriz. Los resultados obtenidos coinciden con los valores experimentales del módulo elástico tanto

  7. Microbial Enhanced Oil Recovery: 3D Simulation with Gravity Effects

    Nielsen, Sidsel Marie; Jessen, K.; Shapiro, Alexander


    , with all the relevant physical processes included. We have developed a mathematical model describing the process of MEOR, where reactive transport is combined with a simple compositional approach. The model describes the displacement of oil by water containing bacteria, substrate, and the produced......Microbial enhanced oil recovery (MEOR) utilizes the activity of microorganisms, where microorganisms simultaneously grow in a reservoir and convert substrate into recovery enhancing products (usually, surfactants). In order to predict the performance of a MEOR process, a simulation tool is required...... metabolite, surfactant. The metabolite is allowed to partition between the oil and water phases according to a distribution coefficient. Production of surfactant decreases the oil/water interfacial tension, reduces the residual oil saturation, and provides additional oil recovery. In this work, we have...

  8. Simulation of Fully Nonlinear 3-D Numerical Wave Tank

    张晓兔; 滕斌; 宁德志


    A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order boundary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simply Rankine source, the resulting boundary integral equation is repeatedly solved at each time step and the fully nonlinear free surface boundary conditions are integrated with time to update its position and boundary values. A smooth technique is also adopted in order to eliminate the possible saw-tooth numerical instabilities. The incident wave at the uptank is given as theoretical wave in this paper. The outgoing waves are absorbed inside a damping zone by spatially varying artificial damping on the free surface at the wave tank end. The numerical results show that the NWT developed by these approaches has a high accuracy and good numerical stability.

  9. Development of 3D beam-beam simulation for the Tevatron

    Stern, E.; Amundson, J.; Spentzouris, P.; Valishev, A.; /Fermilab; Qiang, J.; Ryne, R.; /LBL, Berkeley


    We present status of development of a 3D Beam-Beam simulation code for simulating the Fermilab Tevatron collider. The essential features of the code are 3D particle-in-cell Poisson solver for calculating the Beam-Beam electromagnetic interactions with additional modules for linear optics, machine impedance and chromaticity, and multiple bunch tracking. The simulations match synchrobetatron oscillations measured at the VEPP-2M collider. The impedance calculations show beam instability development consistent with analytic expressions.

  10. 3D numerical simulations of vesicle and inextensible capsule dynamics

    Farutin, Alexander; Biben, Thierry; Misbah, Chaouqi


    Vesicles are locally-inextensible fluid membranes, capsules are endowed with in-plane shear elasticity mimicking the cytoskeleton of red blood cells (RBCs), but are extensible, while RBCs are inextensible. We use boundary integral (BI) methods based on the Green function techniques to model and solve numerically their dynamics. We regularize the single layer integral by subtraction of exact identities for the terms involving the normal and the tangential components of the force. The stability and precision of BI calculation is enhanced by taking advantage of additional quadrature nodes located in vertices of an auxiliary mesh, constructed by a standard refinement procedure from the main mesh. We extend the partition of unity technique to boundary integral calculation on triangular meshes. The proposed algorithm offers the same treatment of near-singular integration regardless whether the source and the target points belong to the same surface or not. Bending forces are calculated by using expressions derived from differential geometry. Membrane incompressibility is handled by using two penalization parameters per suspended entity: one for deviation of the global area from prescribed value and another for the sum of squares of local strains defined on each vertex. Extensible or inextensible capsules, a model of RBC, are studied by storing the position in the reference configuration for each vertex. The elastic force is then calculated by direct variation of the elastic energy. Various nonequilibrium physical examples on vesicles and capsules will be presented and the convergence and precision tests highlighted. Overall, a good convergence is observed with numerical error inversely proportional to the number of vertices used for surface discretization, the highest order of convergence allowed by piece-wise linear interpolation of the surface.

  11. 3D Design & Simulation of Printed Dipole Antenna

    Protap Mollick


    Full Text Available This paper represents design of a printed dipole antenna with both lambda by 2 & half dipole. In this research paper the impedance increases with combined design on the FR-4 substrate and ground plane. The main feature of printed dipole antenna is there is a feeder between the radiant elements. Average impedance about 73 ohm, which is very large form other antenna. For vertical earth position impedance decreases about 36 ohm. Applied AC voltage forwarding bias dipole antenna gains are high but when reverse bias condition gains are low. Between ropes to station there is need extra insulator that abate high impedance current flow to dipole antenna. Feed lines are approximately 75 ohm and the main length between two poles are 143 meter. The radius of two pole line is very thin it’s about 2.06 meter. Transmission lines are added in the last portion of feed lines, which situated apposite of two poles. Designs are simulated by hfss and solving equations are done my matlab.

  12. Current systems of coronal loops in 3D MHD simulations

    Warnecke, Jörn; Bingert, Sven; Peter, Hardi


    We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down. We analyse a three-dimensional MHD model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux a coronal loop formes self-consistently. We investigate the current density along magnetic field lines inside (and outside) this loop and study the magnetic and plasma properties in and around this loop. The loop is defined as the bundle of field lines that coincides with enhanced emission in extreme UV. We find that the total current along the emerging loop changes its sign from being antiparallel to parallel to the magnetic field. Around the loop the currents form a complex non-force-free helical structure. This is directly related to a bipola...

  13. Fast globally optimal segmentation of 3D prostate MRI with axial symmetry prior.

    Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron


    We propose a novel global optimization approach to segmenting a given 3D prostate T2w magnetic resonance (MR) image, which enforces the inherent axial symmetry of the prostate shape and simultaneously performs a sequence of 2D axial slice-wise segmentations with a global 3D coherence prior. We show that the proposed challenging combinatorial optimization problem can be solved globally and exactly by means of convex relaxation. With this regard, we introduce a novel coupled continuous max-flow model, which is dual to the studied convex relaxed optimization formulation and leads to an efficient multiplier augmented algorithm based on the modern convex optimization theory. Moreover, the new continuous max-flow based algorithm was implemented on GPUs to achieve a substantial improvement in computation. Experimental results using public and in-house datasets demonstrate great advantages of the proposed method in terms of both accuracy and efficiency.

  14. Simulated square kilometre array maps from Galactic 3D-emission models

    Sun, X. H.; Reich, W.


    Context: Planning of the Square Kilometre Array (SKA) requires simulations of the expected sky emission at arcsec angular resolution to evaluate its scientific potential, to constrain its technical realization in the best possible way, and to guide the observing strategy. Aims: We simulate high-resolution total intensity, polarization, and rotation measure (RM) maps of selected fields based on our recent global 3D-model of Galactic emission. Methods: Simulations of diffuse Galactic emission were conducted using the hammurabi code modified for arcsec angular resolution patches towards various Galactic directions. The random magnetic field components are set to follow a Kolmogorov-like power-law spectrum. We analysed the simulated maps in terms of their probability density functions (PDFs) and structure functions. Results: We present maps for various Galactic longitudes and latitudes at 1.4 GHz, which is the frequency where deep SKA surveys are proposed. The maps are about 1.5 ° in size and have an angular resolution of about 1.6 °. Total intensity emission is smoother in the plane than at high latitudes because of the different contributions from the regular and random magnetic field. The high-latitude fields show more extended polarized emission and RM structures than those in the plane, where patchy emission structures dominate on very small scales. The RM PDFs in the plane are close to Gaussians, but clearly deviate from that at high latitudes. The RM structure functions show smaller amplitudes and steeper slopes towards high latitudes. These results emerge from much more turbulent cells being passed through by the line-of-sights in the plane. Although the simulated random magnetic field components distribute in 3D, the magnetic field spectrum extracted from the structure functions of RMs conforms to 2D in the plane and approaches 3D at high latitudes. This is partly related to the outer scale of the turbulent magnetic field, but mainly to the different lengths

  15. Seismic Wave Amplification in 3D Alluvial Basins: 3D/1D Amplification Ratios from Fast Multipole BEM Simulations

    Fajardo, Kristel C Meza; Chaillat, Stéphanie; Lenti, Luca


    In this work, we study seismic wave amplification in alluvial basins having 3D standard geometries through the Fast Multipole Boundary Element Method in the frequency domain. We investigate how much 3D amplification differs from the 1D (horizontal layering) case. Considering incident fields of plane harmonic waves, we examine the relationships between the amplification level and the most relevant physical parameters of the problem (impedance contrast, 3D aspect ratio, vertical and oblique incidence of plane waves). The FMBEM results show that the most important parameters for wave amplification are the impedance contrast and the so-called equivalent shape ratio. Using these two parameters, we derive simple rules to compute the fundamental frequency for various 3D basin shapes and the corresponding 3D/1D amplification factor for 5% damping. Effects on amplification due to 3D basin asymmetry are also studied and incorporated in the derived rules.

  16. Particle image velocimetry on simulated 3D ultrafast ultrasound from pediatric matrix TEE transducers

    Voorneveld, J. D.; Bera, D.; van der Steen, A. F. W.; de Jong, N.; Bosch, J. G.


    Ultrafast 3D transesophageal echocardiographic (TEE) imaging, combined with 3D echo particle image velocimetry (ePIV), would be ideal for tracking the complex blood flow patterns in the heart. We are developing a miniature pediatric matrix TEE transducer that employs micro-beamforming (μBF) and allows high framerate in 3D. In this paper, we assess the feasibility of 3D ePIV with a high frame rate, small aperture transducer and the influence of the micro-beamforming technique. We compare the results of 3D ePIV on simulated images using the μBF transducer and an idealized, fully sampled (FS) matrix transducer. For the two transducers, we have simulated high-framerate imaging of an 8.4mm diameter artery having a known 4D velocity field. The simulations were performed in FieldII. 1000 3D volumes, at a rate of 1000 volumes/sec, were created using a single diverging transmission per volume. The error in the 3D velocity estimation was measured by comparing the ePIV results of both transducers to the ground truth. The results on the simulated volumes show that ePIV can estimate the 4D velocity field of the arterial phantom using these small-aperture transducers suitable for pediatric 3D TEE. The μBF transducer (RMSE 44.0%) achieved comparable ePIV accuracy to that of the FS transducer (RMSE 42.6%).

  17. Dense 3d Point Cloud Generation from Uav Images from Image Matching and Global Optimazation

    Rhee, S.; Kim, T.


    3D spatial information from unmanned aerial vehicles (UAV) images is usually provided in the form of 3D point clouds. For various UAV applications, it is important to generate dense 3D point clouds automatically from over the entire extent of UAV images. In this paper, we aim to apply image matching for generation of local point clouds over a pair or group of images and global optimization to combine local point clouds over the whole region of interest. We tried to apply two types of image matching, an object space-based matching technique and an image space-based matching technique, and to compare the performance of the two techniques. The object space-based matching used here sets a list of candidate height values for a fixed horizontal position in the object space. For each height, its corresponding image point is calculated and similarity is measured by grey-level correlation. The image space-based matching used here is a modified relaxation matching. We devised a global optimization scheme for finding optimal pairs (or groups) to apply image matching, defining local match region in image- or object- space, and merging local point clouds into a global one. For optimal pair selection, tiepoints among images were extracted and stereo coverage network was defined by forming a maximum spanning tree using the tiepoints. From experiments, we confirmed that through image matching and global optimization, 3D point clouds were generated successfully. However, results also revealed some limitations. In case of image-based matching results, we observed some blanks in 3D point clouds. In case of object space-based matching results, we observed more blunders than image-based matching ones and noisy local height variations. We suspect these might be due to inaccurate orientation parameters. The work in this paper is still ongoing. We will further test our approach with more precise orientation parameters.

  18. Computer-assisted three-dimensional surgical planning and simulation: 3D virtual osteotomy.

    Xia, J; Ip, H H; Samman, N; Wang, D; Kot, C S; Yeung, R W; Tideman, H


    A computer-assisted three-dimensional virtual osteotomy system for orthognathic surgery (CAVOS) is presented. The virtual reality workbench is used for surgical planning. The surgeon immerses in a virtual reality environment with stereo eyewear, holds a virtual "scalpel" (3D Mouse) and operates on a "real" patient (3D visualization) to obtain pre-surgical prediction (3D bony segment movements). Virtual surgery on a computer-generated 3D head model is simulated and can be visualized from any arbitrary viewing point in a personal computer system.

  19. Full 3D Simulation of the New Closed Shell-Electrode Detector

    Feng Mingfu


    Full Text Available A new structure of 3D detectors has been proposed. In order to separate it from the non-etch-through 3D-Trench electrode detectors, we call it as the Closed Shell-Electrode Detector (CSED, Chinese Patent #ZL201620361767.1. The detector concept of the CSED will be described in detail here. Full 3D simulations of the performance behavior of the CSED will be carried out and presented. These simulations include detector potential, electric field, and electron (or hole concentration profiles, as well as detector leakage current, capacitance, and charge collection properties. Comprehensive comparisons between the CSED and the non-etch-through 3D-Trench electrode detectors will be made. The novel CSED has much better electric field profiles near the backside and are much better isolated from neighboring cells than that in non-etch-through 3D-Trench electrode detectors.

  20. Simulação 3D de movimento ortodôntico 3D simulation of orthodontic tooth movement

    Norman Duque Penedo


    Full Text Available OBJETIVO: desenvolver e validar, através do Método dos Elementos Finitos (MEF, um modelo numérico tridimensional (3D de um incisivo central superior para simular o movimento dentário. MÉTODOS: esse modelo contempla a unidade dentária, o osso alveolar e o ligamento periodontal. Permite a simulação dos diferentes movimentos dentários e a determinação dos centros de rotação e de resistência. Limita o movimento ao espaço periodontal, registrando a direção, quantificando o deslocamento dentário e as tensões iniciais no ligamento periodontal. RESULTADOS: a análise dos deslocamentos dentários e das áreas que recebem tensões iniciais possibilita determinar os tipos de movimentos dentários. Com base nas forças ortodônticas, é possível quantificar a intensidade das tensões em cada região do dente, do ligamento periodontal ou do osso alveolar. Com base nas tensões axiais ao longo do ligamento periodontal e da tensão capilar, é possível predizer, teoricamente, as regiões em que deve ocorrer a remodelação óssea. CONCLUSÃO: o modelo foi validado pela determinação do módulo de elasticidade do ligamento periodontal de forma compatível com dados experimentais existentes na literatura. Os métodos utilizados na construção do modelo permitiram a criação de um modelo completo para uma arcada dentária, o qual possibilita realizar variadas simulações que envolvem a mecânica ortodôntica.OBJECTIVE: To develop and validate a three-dimensional (3D numerical model of a maxillary central incisor to simulate tooth movement using the Finite Element Method (FEM. METHODS: This model encompasses the tooth, alveolar bone and periodontal ligament. It allows the simulation of different tooth movements and the establishment of centers of rotation and resistance. It limits the movement into the periodontal space, recording the direction, quantifying tooth displacement and initial stress in the periodontal ligament. RESULTS: By

  1. Numerical simulation of 3D backward facing step flows at various Reynolds numbers

    Louda Petr


    Full Text Available The work deals with the numerical simulation of 3D turbulent flow over backward facing step in a narrow channel. The mathematical model is based on the RANS equations with an explicit algebraic Reynolds stress model (EARSM. The numerical method uses implicit finite volume upwind discretization. While the eddy viscosity models fail in predicting complex 3D flows, the EARSM model is shown to provide results which agree well with experimental PIV data. The reference experimental data provide the 3D flow field. The simulations are compared with experiment for 3 values of Reynolds number.

  2. The 3-D global spatial data model foundation of the spatial data infrastructure

    Burkholder, Earl F


    Traditional methods for handling spatial data are encumbered by the assumption of separate origins for horizontal and vertical measurements. Modern measurement systems operate in a 3-D spatial environment. The 3-D Global Spatial Data Model: Foundation of the Spatial Data Infrastructure offers a new model for handling digital spatial data, the global spatial data model or GSDM. The GSDM preserves the integrity of three-dimensional spatial data while also providing additional benefits such as simpler equations, worldwide standardization, and the ability to track spatial data accuracy with greater specificity and convenience. This groundbreaking spatial model incorporates both a functional model and a stochastic model to connect the physical world to the ECEF rectangular system. Combining horizontal and vertical data into a single, three-dimensional database, this authoritative monograph provides a logical development of theoretical concepts and practical tools that can be used to handle spatial data mo...

  3. Global and 3D Spatial Assessment of Neuroinflammation in Rodent Models of Multiple Sclerosis

    Gupta, Shashank; Utoft, Regine Egeholm; Hasseldam, Henrik


    Multiple Sclerosis (MS) is a progressive autoimmune inflammatory and demyelinating disease of the central nervous system (CNS). T cells play a key role in the progression of neuroinflammation in MS and also in the experimental autoimmune encephalomyelitis (EAE) animal models for the disease....... A technology for quantitative and 3 dimensional (3D) spatial assessment of inflammation in this and other CNS inflammatory conditions is much needed. Here we present a procedure for 3D spatial assessment and global quantification of the development of neuroinflammation based on Optical Projection Tomography...... (OPT). Applying this approach to the analysis of rodent models of MS, we provide global quantitative data of the major inflammatory component as a function of the clinical course. Our data demonstrates a strong correlation between the development and progression of neuroinflammation and clinical...

  4. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution

    Hu, Peijun; Wu, Fa; Peng, Jialin; Liang, Ping; Kong, Dexing


    The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of 80.3+/- 4.5 , yielding a mean Dice similarity coefficient of 97.25+/- 0.65 % , and an average symmetric surface distance of 0.84+/- 0.25 mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application.

  5. The anthropogenic influence on Iron deposition over the oceans: a 3-D global modeling

    Myriokefalitakis, Stelios; Mihalopoulos, Nikos; Baker, Alex; Kanakidou, Maria


    Iron (Fe) deposition over oceans is directly linked to the marine biological productivity and consequently to atmospheric CO2 concentrations. Experimental and modeling results support that both inorganic (sulphate, ammonium and nitrate) and organic (e.g. oxalate) ligands can increase the Fe mobilization. Mineral dust deposition is considered as the most important supply of bioavailable Fe in the oceans. Although, due to the low soil soluble iron fractions, atmospheric processes which are also related to anthropogenic emissions, can convert iron to more soluble forms in the atmosphere. Recent studies also support that anthropogenic emissions of Fe from combustion sources also significantly contribute to the dissolved Fe atmospheric pool. The evaluation of the impact of humans on atmospheric soluble or bioavailable Fe deposition remains challenging, since Fe mobilization due to changes in anthropogenic emissions is largely uncertain. In the present study, the global atmospheric Fe cycle is parameterized in the 3-D chemical transport global model TM4-ECPL and the model is used to calculate the Fe deposition over the oceans. The model considers explicitly organic, sulfur and nitrogen gas-phase chemistry, aqueous-phase organic chemistry, including oxalate and all major aerosol constituents. TM4-ECPL simulates the organic and inorganic ligand-promoted mineral Fe dissolution and also aqueous-phase photochemical reactions between different forms of Fe (III/II). Primary emissions of Fe associated with dust and soluble Fe from combustion processes as well as atmospheric processing of the emitted Fe is taken into account in the model Sensitivity simulations are performed to study the impact of anthropogenic emissions on Fe deposition. For this preindustrial, present and future emission scenarios are used in the model in order to examine the response of chemical composition of iron-containing aerosols to environmental changes. The release of soluble iron associated with

  6. Compressible magma/mantle dynamics: 3-D, adaptive simulations in ASPECT

    Dannberg, Juliane; Heister, Timo


    Melt generation and migration are an important link between surface processes and the thermal and chemical evolution of the Earth's interior. However, their vastly different timescales make it difficult to study mantle convection and melt migration in a unified framework, especially for 3-D global models. And although experiments suggest an increase in melt volume of up to 20 per cent from the depth of melt generation to the surface, previous computations have neglected the individual compressibilities of the solid and the fluid phase. Here, we describe our extension of the finite element mantle convection code ASPECT that adds melt generation and migration. We use the original compressible formulation of the McKenzie equations, augmented by an equation for the conservation of energy. Applying adaptive mesh refinement to this type of problems is particularly advantageous, as the resolution can be increased in areas where melt is present and viscosity gradients are high, whereas a lower resolution is sufficient in regions without melt. Together with a high-performance, massively parallel implementation, this allows for high-resolution, 3-D, compressible, global mantle convection simulations coupled with melt migration. We evaluate the functionality and potential of this method using a series of benchmarks and model setups, compare results of the compressible and incompressible formulation, and show the effectiveness of adaptive mesh refinement when applied to melt migration. Our model of magma dynamics provides a framework for modelling processes on different scales and investigating links between processes occurring in the deep mantle and melt generation and migration. This approach could prove particularly useful applied to modelling the generation of komatiites or other melts originating in greater depths. The implementation is available in the Open Source ASPECT repository.

  7. External force back-projective composition and globally deformable optimization for 3-D coronary artery reconstruction.

    Yang, Jian; Cong, Weijian; Chen, Yang; Fan, Jingfan; Liu, Yue; Wang, Yongtian


    The clinical value of the 3D reconstruction of a coronary artery is important for the diagnosis and intervention of cardiovascular diseases. This work proposes a method based on a deformable model for reconstructing coronary arteries from two monoplane angiographic images acquired from different angles. First, an external force back-projective composition model is developed to determine the external force, for which the force distributions in different views are back-projected to the 3D space and composited in the same coordinate system based on the perspective projection principle of x-ray imaging. The elasticity and bending forces are composited as an internal force to maintain the smoothness of the deformable curve. Second, the deformable curve evolves rapidly toward the true vascular centerlines in 3D space and angiographic images under the combination of internal and external forces. Third, densely matched correspondence among vessel centerlines is constructed using a curve alignment method. The bundle adjustment method is then utilized for the global optimization of the projection parameters and the 3D structures. The proposed method is validated on phantom data and routine angiographic images with consideration for space and re-projection image errors. Experimental results demonstrate the effectiveness and robustness of the proposed method for the reconstruction of coronary arteries from two monoplane angiographic images. The proposed method can achieve a mean space error of 0.564 mm and a mean re-projection error of 0.349 mm.

  8. Probabilistic intra-retinal layer segmentation in 3-D OCT images using global shape regularization.

    Rathke, Fabian; Schmidt, Stefan; Schnörr, Christoph


    With the introduction of spectral-domain optical coherence tomography (OCT), resulting in a significant increase in acquisition speed, the fast and accurate segmentation of 3-D OCT scans has become evermore important. This paper presents a novel probabilistic approach, that models the appearance of retinal layers as well as the global shape variations of layer boundaries. Given an OCT scan, the full posterior distribution over segmentations is approximately inferred using a variational method enabling efficient probabilistic inference in terms of computationally tractable model components: Segmenting a full 3-D volume takes around a minute. Accurate segmentations demonstrate the benefit of using global shape regularization: We segmented 35 fovea-centered 3-D volumes with an average unsigned error of 2.46 ± 0.22 μm as well as 80 normal and 66 glaucomatous 2-D circular scans with errors of 2.92 ± 0.5 μm and 4.09 ± 0.98 μm respectively. Furthermore, we utilized the inferred posterior distribution to rate the quality of the segmentation, point out potentially erroneous regions and discriminate normal from pathological scans. No pre- or postprocessing was required and we used the same set of parameters for all data sets, underlining the robustness and out-of-the-box nature of our approach.

  9. 3-D carotid multi-region MRI segmentation by globally optimal evolution of coupled surfaces.

    Ukwatta, Eranga; Yuan, Jing; Rajchl, Martin; Qiu, Wu; Tessier, David; Fenster, Aaron


    In this paper, we propose a novel global optimization based 3-D multi-region segmentation algorithm for T1-weighted black-blood carotid magnetic resonance (MR) images. The proposed algorithm partitions a 3-D carotid MR image into three regions: wall, lumen, and background. The algorithm performs such partitioning by simultaneously evolving two coupled 3-D surfaces of carotid artery adventitia boundary (AB) and lumen-intima boundary (LIB) while preserving their anatomical inter-surface consistency such that the LIB is always located within the AB. In particular, we show that the proposed algorithm results in a fully time implicit scheme that propagates the two linearly ordered surfaces of the AB and LIB to their globally optimal positions during each discrete time frame by convex relaxation. In this regard, we introduce the continuous max-flow model and prove its duality/equivalence to the convex relaxed optimization problem with respect to each evolution step. We then propose a fully parallelized continuous max-flow-based algorithm, which can be readily implemented on a GPU to achieve high computational efficiency. Extensive experiments, with four users using 12 3T MR and 26 1.5T MR images, demonstrate that the proposed algorithm yields high accuracy and low operator variability in computing vessel wall volume. In addition, we show the algorithm outperforms previous methods in terms of high computational efficiency and robustness with fewer user interactions.

  10. Center-to-Limb Variation of Solar 3-D Hydrodynamical Simulations

    Koesterke, L; Lambert, D L


    We examine closely the solar Center-to-Limb variation of continua and lines and compare observations with predictions from both a 3-D hydrodynamic simulation of the solar surface (provided by M. Asplund and collaborators) and 1-D model atmospheres. Intensities from the 3-D time series are derived by means of the new synthesis code ASSET, which overcomes limitations of previously available codes by including a consistent treatment of scattering and allowing for arbitrarily complex line and continuum opacities. In the continuum, we find very similar discrepancies between synthesis and observation for both types of model atmospheres. This is in contrast to previous studies that used a ``horizontally'' and time averaged representation of the 3-D model and found a significantly larger disagreement with observations. The presence of temperature and velocity fields in the 3-D simulation provides a significant advantage when it comes to reproduce solar spectral line shapes. Nonetheless, a comparison of observed and s...

  11. Three-dimensional (3D) printed endovascular simulation models: a feasibility study

    Nesbitt, Craig; McCaslin, James; Bagnall, Alan; Davey, Philip; Bose, Pentop; Williams, Rob


    Background Three-dimensional (3D) printing is a manufacturing process in which an object is created by specialist printers designed to print in additive layers to create a 3D object. Whilst there are initial promising medical applications of 3D printing, a lack of evidence to support its use remains a barrier for larger scale adoption into clinical practice. Endovascular virtual reality (VR) simulation plays an important role in the safe training of future endovascular practitioners, but existing VR models have disadvantages including cost and accessibility which could be addressed with 3D printing. Methods This study sought to evaluate the feasibility of 3D printing an anatomically accurate human aorta for the purposes of endovascular training. Results A 3D printed model was successfully designed and printed and used for endovascular simulation. The stages of development and practical applications are described. Feedback from 96 physicians who answered a series of questions using a 5 point Likert scale is presented. Conclusions Initial data supports the value of 3D printed endovascular models although further educational validation is required. PMID:28251121

  12. The Application of the Technology of 3D Satellite Cloud Imaging in Virtual Reality Simulation

    Xiao-fang Xie


    Full Text Available Using satellite cloud images to simulate clouds is one of the new visual simulation technologies in Virtual Reality (VR. Taking the original data of satellite cloud images as the source, this paper depicts specifically the technology of 3D satellite cloud imaging through the transforming of coordinates and projection, creating a DEM (Digital Elevation Model of cloud imaging and 3D simulation. A Mercator projection was introduced to create a cloud image DEM, while solutions for geodetic problems were introduced to calculate distances, and the outer-trajectory science of rockets was introduced to obtain the elevation of clouds. For demonstration, we report on a computer program to simulate the 3D satellite cloud images.

  13. 3D Simulation of External Flooding Events for the RISMC Pathway

    Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sampath, Ramprasad [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lin, Linyu [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    Incorporating 3D simulations as part of the Risk-Informed Safety Margins Characterization (RISMIC) Toolkit allows analysts to obtain a more complete picture of complex system behavior for events including external plant hazards. External events such as flooding have become more important recently – however these can be analyzed with existing and validated simulated physics toolkits. In this report, we describe these approaches specific to flooding-based analysis using an approach called Smoothed Particle Hydrodynamics. The theory, validation, and example applications of the 3D flooding simulation are described. Integrating these 3D simulation methods into computational risk analysis provides a spatial/visual aspect to the design, improves the realism of results, and can prove visual understanding to validate the analysis of flooding.

  14. Prototype Development Capabilities of 3D Spatial Interactions and Failures During Scenario Simulation

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Tony Koonce


    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This report addressed the methods, techniques, and resources used to develop a prototype for using 3D modeling and simulation engine to improve risk analysis and evaluate reactor structures and components for a given scenario. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  15. Application of 3-D numerical simulation software SRIFCAST to produce ductile iron castings


    Based on a method using numerical simulation equations and their solution schemes for liquid metal flows and heat transfer during mold filling and the solidification process of casting, 3-D numerical simulation software SRIFCAST was created. This includes enmeshment of casting; velocity and temperature fields calculation; displaying iso-temperature lines;velocity vectors and 3-D temperature fields on a Windows 9x operating system. SRIFCAST was applied to produce sound castings of automobile and diesel engines, and also to connect with microstructure simulation for ductile iron castings.

  16. Statistical Analysis of Detailed 3-D CFD LES Simulations with Regard to CCV Modeling

    Vítek Oldřich


    Full Text Available The paper deals with statistical analysis of large amount of detailed 3-D CFD data in terms of cycle-to-cycle variations (CCVs. These data were obtained by means of LES calculations of many consecutive cycles. Due to non-linear nature of Navier-Stokes equation set, there is a relatively significant CCV. Hence, every cycle is slightly different – this leads to requirement to perform statistical analysis based on ensemble averaging procedure which enables better understanding of CCV in ICE including its quantification. The data obtained from the averaging procedure provides results on different space resolution levels. The procedure is applied locally, i.e., in every cell of the mesh. Hence there is detailed CCV information on local level – such information can be compared with RANS simulations. Next, volume/mass averaging provides information at specific locations – e.g., gap between electrodes of a spark plug. Finally, volume/mass averaging of the whole combustion chamber leads to global information which can be compared with experimental data or results of system simulation tools (which are based on 0-D/1-D approach.

  17. Marine denitrification rates determined from a global 3-D inverse model

    T. DeVries


    Full Text Available A major impediment to understanding long-term changes in the marine nitrogen (N cycle is the persistent uncertainty about the rates, distribution, and sensitivity of its largest fluxes in the modern ocean. We use a global ocean circulation model to obtain the first 3-D estimate of marine denitrification rates that is maximally consistent with available observations of nitrate deficits and the nitrogen isotopic ratio of oceanic nitrate. We find a global rate of marine denitrification in suboxic waters and sediments of 120–240 Tg N yr−1, which is lower than many other recent estimates. The difference stems from the ability to represent the 3-D spatial structure of suboxic zones, where denitrification rates of 50–77 Tg N yr−1 result in up to 50% depletion of nitrate. This depletion reduces the effect of local isotopic enrichment on the rest of the ocean, allowing the N isotope ratio of oceanic nitrate to be achieved with a sedimentary denitrification rate about 1.3–2.3 times that of suboxic zones. This balance of N losses between sediments and suboxic zones is shown to obey a simple relationship between isotope fractionation and the degree of nitrate consumption in the core of the suboxic zones. The global denitrification rates derived here suggest that the marine nitrogen budget is likely close to balanced.

  18. Existence and uniqueness of global solutions for the modified anisotropic 3D Navier−Stokes equations

    Bessaih, Hakima


    We study a modified three-dimensional incompressible anisotropic Navier−Stokes equations. The modification consists in the addition of a power term to the nonlinear convective one. This modification appears naturally in porous media when a fluid obeys the Darcy−Forchheimer law instead of the classical Darcy law. We prove global in time existence and uniqueness of solutions without assuming the smallness condition on the initial data. This improves the result obtained for the classical 3D incompressible anisotropic Navier−Stokes equations.

  19. Cerebral Aneurysm Clipping Surgery Simulation Using Patient-Specific 3D Printing and Silicone Casting.

    Ryan, Justin R; Almefty, Kaith K; Nakaji, Peter; Frakes, David H


    Neurosurgery simulator development is growing as practitioners recognize the need for improved instructional and rehearsal platforms to improve procedural skills and patient care. In addition, changes in practice patterns have decreased the volume of specific cases, such as aneurysm clippings, which reduces the opportunity for operating room experience. The authors developed a hands-on, dimensionally accurate model for aneurysm clipping using patient-derived anatomic data and three-dimensional (3D) printing. Design of the model focused on reproducibility as well as adaptability to new patient geometry. A modular, reproducible, and patient-derived medical simulacrum was developed for medical learners to practice aneurysmal clipping procedures. Various forms of 3D printing were used to develop a geometrically accurate cranium and vascular tree featuring 9 patient-derived aneurysms. 3D printing in conjunction with elastomeric casting was leveraged to achieve a patient-derived brain model with tactile properties not yet available from commercial 3D printing technology. An educational pilot study was performed to gauge simulation efficacy. Through the novel manufacturing process, a patient-derived simulacrum was developed for neurovascular surgical simulation. A follow-up qualitative study suggests potential to enhance current educational programs; assessments support the efficacy of the simulacrum. The proposed aneurysm clipping simulator has the potential to improve learning experiences in surgical environment. 3D printing and elastomeric casting can produce patient-derived models for a dynamic learning environment that add value to surgical training and preparation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Calculation of residual stresses by means of a 3D numerical weld simulation

    Nicak, Tomas; Huemmer, Matthias [AREVA NP GmbH, Postfach 1109 (Germany)


    The numerical weld simulation has developed very fast in recent years. The problem complexity has increased from simple 2D models to full 3D models, which can describe the entire welding process more realistically. As recent research projects indicate, a quantitative assessment of the residual stresses by means of a 3D analysis is possible. The structure integrity can be assessed based on the weld simulation results superimposed with the operating load. Moreover, to support the qualification of welded components parametric studies for optimization of the residual stress distribution in the weld region can be performed. In this paper a full 3D numerical weld simulation for a man-hole drainage nozzle in a steam generator will be presented. The residual stresses are calculated by means of an uncoupled transient thermal and mechanical FE analysis. The paper will present a robust procedure allowing reasonable predictions of the residual stresses for complex structures in industrial practice. (authors)

  1. 3D-printed pediatric endoscopic ear surgery simulator for surgical training.

    Barber, Samuel R; Kozin, Elliott D; Dedmon, Matthew; Lin, Brian M; Lee, Kyuwon; Sinha, Sumi; Black, Nicole; Remenschneider, Aaron K; Lee, Daniel J


    Surgical simulators are designed to improve operative skills and patient safety. Transcanal Endoscopic Ear Surgery (TEES) is a relatively new surgical approach with a slow learning curve due to one-handed dissection. A reusable and customizable 3-dimensional (3D)-printed endoscopic ear surgery simulator may facilitate the development of surgical skills with high fidelity and low cost. Herein, we aim to design, fabricate, and test a low-cost and reusable 3D-printed TEES simulator. The TEES simulator was designed in computer-aided design (CAD) software using anatomic measurements taken from anthropometric studies. Cross sections from external auditory canal samples were traced as vectors and serially combined into a mesh construct. A modified tympanic cavity with a modular testing platform for simulator tasks was incorporated. Components were fabricated using calcium sulfate hemihydrate powder and multiple colored infiltrants via a commercial inkjet 3D-printing service. All components of a left-sided ear were printed to scale. Six right-handed trainees completed three trials each. Mean trial time (n = 3) ranged from 23.03 to 62.77 s using the dominant hand for all dissection. Statistically significant differences between first and last completion time with the dominant hand (p < 0.05) and average completion time for junior and senior residents (p < 0.05) suggest construct validity. A 3D-printed simulator is feasible for TEES simulation. Otolaryngology training programs with access to a 3D printer may readily fabricate a TEES simulator, resulting in inexpensive yet high-fidelity surgical simulation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Simulation of 3D Needle-Tissue Interaction with Application to Image Guided Prostate Brachytherapy

    姜杉; HATA; Nobuhiko; 肖渤瀚; 安蔚瑾


    To improve global control of disease and reduce global toxicity, a complex seed distribution pattern should be achieved with great accuracy during brachytherapy.However, the interaction between the needle and prostate will cause large deformation of soft tissue.As a result, seeds will be misplaced, sharp demarcation between irradiated volume and healthy structures is unavailable and this will cause side effects such as impotence and urinary incontinence.In this paper, a 3D nonlinear dynamic finite element s...

  3. Mixed reality orthognathic surgical simulation by entity model manipulation and 3D-image display

    Shimonagayoshi, Tatsunari; Aoki, Yoshimitsu; Fushima, Kenji; Kobayashi, Masaru


    In orthognathic surgery, the framing of 3D-surgical planning that considers the balance between the front and back positions and the symmetry of the jawbone, as well as the dental occlusion of teeth, is essential. In this study, a support system for orthodontic surgery to visualize the changes in the mandible and the occlusal condition and to determine the optimum position in mandibular osteotomy has been developed. By integrating the operating portion of a tooth model that is to determine the optimum occlusal position by manipulating the entity tooth model and the 3D-CT skeletal images (3D image display portion) that are simultaneously displayed in real-time, the determination of the mandibular position and posture in which the improvement of skeletal morphology and occlusal condition is considered, is possible. The realistic operation of the entity model and the virtual 3D image display enabled the construction of a surgical simulation system that involves augmented reality.

  4. Simulating receptive fields of human visual cortex for 3D image quality prediction.

    Shao, Feng; Chen, Wanting; Lin, Wenchong; Jiang, Qiuping; Jiang, Gangyi


    Quality assessment of 3D images presents many challenges when attempting to gain better understanding of the human visual system. In this paper, we propose a new 3D image quality prediction approach by simulating receptive fields (RFs) of human visual cortex. To be more specific, we extract the RFs from a complete visual pathway, and calculate their similarity indices between the reference and distorted 3D images. The final quality score is obtained by determining their connections via support vector regression. Experimental results on three 3D image quality assessment databases demonstrate that in comparison with the most relevant existing methods, the devised algorithm achieves high consistency alignment with subjective assessment, especially for asymmetrically distorted stereoscopic images.

  5. 3D Printing Meets Computational Astrophysics: Deciphering the Structure of Eta Carinae’s Colliding Winds Using 3D Prints of Smoothed Particle Hydrodynamics Simulations

    Madura, Thomas; Gull, Theodore R.; Clementel, Nicola; Paardekooper, Jan-Pieter; Kruip, Chael; Corcoran, Michael F.; Hamaguchi, Kenji; Teodoro, Mairan


    We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (>120 MSun), highly eccentric (e ~ 0.9) binary Eta Carinae. Using a consumer-grade 3D printer (Makerbot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics simulations of Eta Carinae's inner (r ~110 AU) wind-wind collision interface at multiple orbital phases. These 3D prints reveal important, previously unknown 'finger-like' structures at orbital phases shortly after periastron (φ ~1.045) that protrude radially outward from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. Rayleigh-Taylor) that arise at the interface between the radiatively-cooled layer of dense post-shock primary-star wind and the hot, adiabatic post-shock companion-star wind. The success of our work and easy identification of previously unknown physical features highlight the important role 3D printing can play in the visualization and understanding of complex 3D time-dependent numerical simulations of astrophysical phenomena.

  6. Detached eddy simulation of unsteady cavitation and pressure fluctuation around 3-D NACA66 hydrofoil

    Zhang De-Sheng


    Full Text Available The unsteady cavitating flow and pressure fluctuation around the 3-D NACA66 hydrofoil were simulated and validated based on detached eddy simulation turbulence model and a homogeneous cavitation model. Numerical results show that detached eddy simulation can predict the evolution of cavity inception, sheet cavitation growth, cloud cavitation shedding, and breakup, as well as the pressure fluctuation on the surface of hydrofoil. The sheet cavitation growth, detachment, cloud cavitation shedding are responsible for the features of the pressure fluctuation.

  7. Study of 3-D Numerical Simulation for Gas Transfer in the Goaf of the Coal Mining

    WU Zheng-yan; JIANG Shu-guang; HE Xin-jian; WANG Lan-yun; LIN Bai-quan


    In order to simulate field distribution rules, mathematical models for 3-D air flows and gas transfer in the goaf of the coal mining are established, based on theories of permeability and dynamic dispersion through porous media. A gas dispersion equation in a 3-D field is calculated by use of numerical method on a weighted upstream multi-element balance. Based on data of an example with a U type ventilation mode, surface charts of air pressure distribution and gas concentration are drawn by Graphtool software. Finally, a comparison between actually measured results in the model test and the numerical simulation results is made to proves the numerical implementation feasible.

  8. Global Vegetation 3-D Structure Sampling with Full-Waveform Laser Altimetry

    Blair, B.; Ranson, J.; Dubayah, R.; Knox, R.; Imhoff, M.


    Waveform-based laser altimetry has been established as an excellent source of vegetation 3-D structure data for assessing above-ground biomass and habitat. Recent efforts to mature the needed laser and waveform digitizer technologies have progressed significantly and a space-based mission would now be considered a medium-low risk venture. A multi-beam lidar system would be able to sufficiently sample global vegetation height and structure to estimate the above-ground biomass at unprecedented accuracy as well as contributing to a variety of other Earth Science goals. We will present the high-level instrument specifications and results of technology maturation and testing efforts. We will also present statistical studies on the global sampling approach and potential fusion with long-wavelength Synthetic Aperture Radar (SAR), and multi-angle and hyperspectral sensors.

  9. Accurate load prediction by BEM with airfoil data from 3D RANS simulations

    Schneider, Marc S.; Nitzsche, Jens; Hennings, Holger


    In this paper, two methods for the extraction of airfoil coefficients from 3D CFD simulations of a wind turbine rotor are investigated, and these coefficients are used to improve the load prediction of a BEM code. The coefficients are extracted from a number of steady RANS simulations, using either averaging of velocities in annular sections, or an inverse BEM approach for determination of the induction factors in the rotor plane. It is shown that these 3D rotor polars are able to capture the rotational augmentation at the inner part of the blade as well as the load reduction by 3D effects close to the blade tip. They are used as input to a simple BEM code and the results of this BEM with 3D rotor polars are compared to the predictions of BEM with 2D airfoil coefficients plus common empirical corrections for stall delay and tip loss. While BEM with 2D airfoil coefficients produces a very different radial distribution of loads than the RANS simulation, the BEM with 3D rotor polars manages to reproduce the loads from RANS very accurately for a variety of load cases, as long as the blade pitch angle is not too different from the cases from which the polars were extracted.

  10. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.


    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  11. A 3-D RBF-FD elliptic solver for irregular boundaries: modeling the atmospheric global electric circuit with topography

    V. Bayona


    Full Text Available A numerical model based on Radial Basis Function-generated Finite Differences (RBF-FD is developed for simulating the Global Electric Circuit (GEC within the Earth's atmosphere, represented by a 3-D variable coefficient linear elliptic PDE in a spherically-shaped volume with the lower boundary being the Earth's topography and the upper boundary a sphere at 60 km. To our knowledge, this is (1 the first numerical model of the GEC to combine the Earth's topography with directly approximating the differential operators in 3-D space, and related to this (2 the first RBF-FD method to use irregular 3-D stencils for discretization to handle the topography. It benefits from the mesh-free nature of RBF-FD, which is especially suitable for modeling high-dimensional problems with irregular boundaries. The RBF-FD elliptic solver proposed here makes no limiting assumptions on the spatial variability of the coefficients in the PDE (i.e. the conductivity profile, the right hand side forcing term of the PDE (i.e. distribution of current sources or the geometry of the lower boundary.

  12. Global and 3D spatial assessment of neuroinflammation in rodent models of Multiple Sclerosis.

    Shashank Gupta

    Full Text Available Multiple Sclerosis (MS is a progressive autoimmune inflammatory and demyelinating disease of the central nervous system (CNS. T cells play a key role in the progression of neuroinflammation in MS and also in the experimental autoimmune encephalomyelitis (EAE animal models for the disease. A technology for quantitative and 3 dimensional (3D spatial assessment of inflammation in this and other CNS inflammatory conditions is much needed. Here we present a procedure for 3D spatial assessment and global quantification of the development of neuroinflammation based on Optical Projection Tomography (OPT. Applying this approach to the analysis of rodent models of MS, we provide global quantitative data of the major inflammatory component as a function of the clinical course. Our data demonstrates a strong correlation between the development and progression of neuroinflammation and clinical disease in several mouse and a rat model of MS refining the information regarding the spatial dynamics of the inflammatory component in EAE. This method provides a powerful tool to investigate the effect of environmental and genetic forces and for assessing the therapeutic effects of drug therapy in animal models of MS and other neuroinflammatory/neurodegenerative disorders.

  13. A Novel Temporal Bone Simulation Model Using 3D Printing Techniques.

    Mowry, Sarah E; Jammal, Hachem; Myer, Charles; Solares, Clementino Arturo; Weinberger, Paul


    An inexpensive temporal bone model for use in a temporal bone dissection laboratory setting can be made using a commercially available, consumer-grade 3D printer. Several models for a simulated temporal bone have been described but use commercial-grade printers and materials to produce these models. The goal of this project was to produce a plastic simulated temporal bone on an inexpensive 3D printer that recreates the visual and haptic experience associated with drilling a human temporal bone. Images from a high-resolution CT of a normal temporal bone were converted into stereolithography files via commercially available software, with image conversion and print settings adjusted to achieve optimal print quality. The temporal bone model was printed using acrylonitrile butadiene styrene (ABS) plastic filament on a MakerBot 2x 3D printer. Simulated temporal bones were drilled by seven expert temporal bone surgeons, assessing the fidelity of the model as compared with a human cadaveric temporal bone. Using a four-point scale, the simulated bones were assessed for haptic experience and recreation of the temporal bone anatomy. The created model was felt to be an accurate representation of a human temporal bone. All raters felt strongly this would be a good training model for junior residents or to simulate difficult surgical anatomy. Material cost for each model was $1.92. A realistic, inexpensive, and easily reproducible temporal bone model can be created on a consumer-grade desktop 3D printer.

  14. Flexible simulation framework to couple processes in complex 3D models for subsurface utilization assessment

    Kempka, Thomas; Nakaten, Benjamin; De Lucia, Marco; Nakaten, Natalie; Otto, Christopher; Pohl, Maik; Tillner, Elena; Kühn, Michael


    Utilization of the geological subsurface for production and storage of hydrocarbons, chemical energy and heat as well as for waste disposal requires the quantification and mitigation of environmental impacts as well as the improvement of georesources utilization in terms of efficiency and sustainability. The development of tools for coupled process simulations is essential to tackle these challenges, since reliable assessments are only feasible by integrative numerical computations. Coupled processes at reservoir to regional scale determine the behaviour of reservoirs, faults and caprocks, generally demanding for complex 3D geological models to be considered besides available monitoring and experimenting data in coupled numerical simulations. We have been developing a flexible numerical simulation framework that provides efficient workflows for integrating the required data and software packages to carry out coupled process simulations considering, e.g., multiphase fluid flow, geomechanics, geochemistry and heat. Simulation results are stored in structured data formats to allow for an integrated 3D visualization and result interpretation as well as data archiving and its provision to collaborators. The main benefits in using the flexible simulation framework are the integration of data geological and grid data from any third party software package as well as data export to generic 3D visualization tools and archiving formats. The coupling of the required process simulators in time and space is feasible, while different spatial dimensions in the coupled simulations can be integrated, e.g., 0D batch with 3D dynamic simulations. User interaction is established via high-level programming languages, while computational efficiency is achieved by using low-level programming languages. We present three case studies on the assessment of geological subsurface utilization based on different process coupling approaches and numerical simulations.

  15. 3D numerical simulation analysis of passive drag near free surface in swimming

    Zhan, Jie-min; Li, Tian-zeng; Chen, Xue-bin; Li, Yok-sheung; Wai, Wing-hong Onyx


    The aim of this work is to build a 3D numerical model to study the characteristics of passive drag on competitive swimmers taking into account the impact of the free surface. This model solves the 3D incompressible Navier-Stokes equations using RNG k- ɛ turbulence closure. The volume of fluid (VOF) method is used to locate the free surface. The 3D virtual model is created by Computer Aided Industrial Design (CAID) software, Rhinoceros. Firstly, a specific posture of swimming is studied. The simulation results are in good agreement with the data from mannequin towing experiments. The effects of a swimmer's arms and legs positions on swimming performance are then studied. Finally, it is demonstrated that the present method is capable of simulating gliding near the free surface.

  16. Stochastic microstructure modeling and electrochemical simulation of lithium-ion cell anodes in 3D

    Hein, Simon; Feinauer, Julian; Westhoff, Daniel; Manke, Ingo; Schmidt, Volker; Latz, Arnulf


    Thermodynamically consistent transport theory is used to compare 3D images of real anode microstructures from lithium-ion batteries to virtual ones created by a parametric stochastic 3D microstructure model. Half-cell simulations in 3D with spatially resolved microstructures at different applied currents show that for low currents the deviations between various electrochemical quantities like current density or overpotential are negligibly small. For larger currents small differences become more pronounced. Qualitative and quantitative differences of these features are discussed with respect to the microstructure and it is shown that the real and virtual structures behave similar during electrochemical simulations. Extensions of the stochastic microstructure model, which overcome small differences in electrochemical behavior, are proposed.

  17. GRASIL-3D: an Implemention of Dust Effects in the SEDs of Simulated Galaxies

    Domínguez-Tenreiro, R; Granato, G L; Schurer, A; Alpresa, P; Silva, L; Brook, C B; Serna, A


    We introduce a new model for the spectral energy distribution of galaxies, GRASIL-3D, which includes a careful modelling of the dust component of the interstellar medium. GRASIL-3D is an entirely new model based on the formalism of an existing and widely applied spectrophotometric model, GRASIL, but specifically designed to be interfaced with galaxies with any arbitrarily given geometry, such as galaxies calculated by theoretical hydrodynamical galaxy formation codes. GRASIL-3D is designed to separately treat radiative transfer in molecular clouds and in the diffuse cirrus component. The code has a general applicability to the outputs of simulated galaxies, either from Lagrangian or Eulerian hydrodynamic codes. As an application, the new model has been interfaced to the P-DEVA and GASOLINE smoothed-particle hydrodynamic codes, and has been used to calculate the spectral energy distribution for a variety of simulated galaxies from UV to sub-millimeter wavelengths, whose comparison with observational data gives...

  18. 3D Numerical Simulation Analysis of Passive Drag near Free Surface in Swimming

    詹杰民; 李天赠; 陈学彬; 李毓湘; 韦永康


    The aim of this work is to build a 3D numerical model to study the characteristics of passive drag on competitive swimmers taking into account the impact of the free surface. This model solves the 3D incompressible Navier-Stokes equations using RNG k-εturbulence closure. The volume of fluid (VOF) method is used to locate the free surface. The 3D virtual model is created by Computer Aided Industrial Design (CAID) software, Rhinoceros. Firstly, a specific posture of swimming is studied. The simulation results are in good agreement with the data from mannequin towing experiments. The effects of a swimmer’s arms and legs positions on swimming performance are then studied. Finally, it is demonstrated that the present method is capable of simulating gliding near the free surface.

  19. A Jones matrix formalism for simulating 3D Polarised Light Imaging of brain tissue

    Menzel, Miriam; De Raedt, Hans; Reckfort, Julia; Amunts, Katrin; Axer, Markus


    The neuroimaging technique 3D Polarised Light Imaging (3D-PLI) provides a high-resolution reconstruction of nerve fibres in human post-mortem brains. The orientations of the fibres are derived from birefringence measurements of histological brain sections assuming that the nerve fibres - consisting of an axon and a surrounding myelin sheath - are uniaxial birefringent and that the measured optic axis is oriented in direction of the nerve fibres (macroscopic model). Although experimental studies support this assumption, the molecular structure of the myelin sheath suggests that the birefringence of a nerve fibre can be described more precisely by multiple optic axes oriented radially around the fibre axis (microscopic model). In this paper, we compare the use of the macroscopic and the microscopic model for simulating 3D-PLI by means of the Jones matrix formalism. The simulations show that the macroscopic model ensures a reliable estimation of the fibre orientations as long as the polarimeter does not resolve ...

  20. 3D simulations of fluctuation spectra in the hall-MHD plasma.

    Shaikh, Dastgeer; Shukla, P K


    Turbulent spectral cascades are investigated by means of fully three-dimensional (3D) simulations of a compressible Hall-magnetohydrodynamic (H-MHD) plasma in order to understand the observed spectral break in the solar wind turbulence spectra in the regime where the characteristic length scales associated with electromagnetic fluctuations are smaller than the ion gyroradius. In this regime, the results of our 3D simulations exhibit that turbulent spectral cascades in the presence of a mean magnetic field follow an omnidirectional anisotropic inertial-range spectrum close to k(-7/3). The latter is associated with the Hall current arising from nonequal electron and ion fluid velocities in our 3D H-MHD plasma model.

  1. Flattening simulations of 3D thick sheets made of fiber composite materials

    Kotaro Morioka


    Full Text Available Recently, fiber composite materials have been attracting attention from industry because of their remarkable material characteristics, including light weight and high stiffness. However, the costs of products composed of fiber materials remain high because of the lack of effective manufacturing and designing technologies. To improve the relevant design technology, this paper proposes a novel simulation method for deforming fiber materials. Specifically, given a 3D model with constant thickness and known fiber orientation, the proposed method simulates the deformation of a model made of thick fiber-material. The method separates a 3D sheet model into two surfaces and then flattens these surfaces into two dimensional planes by a parameterization method with involves cross vector fields. The cross vector fields are generated by propagating the given fiber orientations specified at several important points on the 3D model. Integration of the cross vector fields gives parameterization with low-stretch and low-distortion.

  2. Simulation System Design of 3-D Panorama of Ship Motions in Wave

    LIU; Ya-dong; LI; Ji-de; LI; Zhen


    In this paper a 3-D panoramic simulation system of a ship is described which is developed with the MAXSCRIPT language and VC++ as programming tools on the platform of 3Dsmax. The strip theory method is applied to the motion prediction of the mono-hull. The time history solutions of heave and pitch are obtained in the condition of head sea to provide the primary data on panoramic simulation. The simulation system has following functions: 1)digital simulation;2) panoramic simulation; 3) environmental set-up; 4) render preview and output.

  3. "Just-In-Time" Simulation Training Using 3-D Printed Cardiac Models After Congenital Cardiac Surgery.

    Olivieri, Laura J; Su, Lillian; Hynes, Conor F; Krieger, Axel; Alfares, Fahad A; Ramakrishnan, Karthik; Zurakowski, David; Marshall, M Blair; Kim, Peter C W; Jonas, Richard A; Nath, Dilip S


    High-fidelity simulation using patient-specific three-dimensional (3D) models may be effective in facilitating pediatric cardiac intensive care unit (PCICU) provider training for clinical management of congenital cardiac surgery patients. The 3D-printed heart models were rendered from preoperative cross-sectional cardiac imaging for 10 patients undergoing congenital cardiac surgery. Immediately following surgical repair, a congenital cardiac surgeon and an intensive care physician conducted a simulation training session regarding postoperative care utilizing the patient-specific 3D model for the PCICU team. After the simulation, Likert-type 0 to 10 scale questionnaire assessed participant perception of impact of the training session. Seventy clinicians participated in training sessions, including 22 physicians, 38 nurses, and 10 ancillary care providers. Average response to whether 3D models were more helpful than standard hand off was 8.4 of 10. Questions regarding enhancement of understanding and clinical ability received average responses of 9.0 or greater, and 90% of participants scored 8 of 10 or higher. Nurses scored significantly higher than other clinicians on self-reported familiarity with the surgery (7.1 vs. 5.8; P = .04), clinical management ability (8.6 vs. 7.7; P = .02), and ability enhancement (9.5 vs. 8.7; P = .02). Compared to physicians, nurses and ancillary providers were more likely to consider 3D models more helpful than standard hand off (8.7 vs. 7.7; P = .05). Higher case complexity predicted greater enhancement of understanding of surgery (P = .04). The 3D heart models can be used to enhance congenital cardiac critical care via simulation training of multidisciplinary intensive care teams. Benefit may be dependent on provider type and case complexity. © The Author(s) 2016.

  4. Simulation of engine cooling with coupled 1D and 3D flow computation; Simulation der Motorkuehlung mit Hilfe gekoppelter 1D- und 3D-Stroemungsberechnung

    Grafenberger, P.; Klinner, P.; Nefischer, P. [BMW Motoren GmbH, Steyr (Austria); Klingebiel, F. [AMSTRAL Engineering fuer Stroemungsmechanik GmbH, Idstein (Germany)


    Shorting the development time for new engines and vehicles is leading to the increasing use of computational design and simulation methods in the automotive industry. For several years now, both one-dimensional and three-dimensional flow computation have been used successfully in the development of cooling systems. However, the fact that less hardware is used in the early development stages makes new demands on the quality and quantity of these simulation results. BMW's diesel development division has been able to improve the quality of the results and to reduce the processing time by improving the model quality and by coupling existing 1D and 3D computational fluid dynamic programmes. (orig.) [German] Die Verkuerzung der Entwicklungszeit neuer Motoren und Automobile fuehrt zu einem verstaerkten Einsatz von rechnergestuetzten Konstruktions- und Simulationsmethoden in der Fahrzeugindustrie. Sowohl eindimensionale als auch dreidimensionale Stroemungsberechnungen werden seit Jahren erfolgreich bei der Entwicklung von Kuehlsystemen eingesetzt. Der Entfall von Hardware-Baugruppen in der fruehen Entwicklungsphase stellt jedoch neue Anforderungen an die Qualitaet und Quantitaet dieser Simulationsergebnisse. Durch Verbesserung der Modellqualitaet und durch Kopplung vorhandener 1D- und 3D-Stroemungsberechnungsprogramme konnten in der Dieselmotorenentwicklung von BMW die Qualitaet der Ergebnisse und die Bearbeitungsgeschwindigkeit deutlich gesteigert werden. (orig.)

  5. Recent US Activities Toward Development of a Global Tropospheric 3D Wind Profiling System

    Gentry, B. M.; Atlas, R.; Baker, W.; Emmitt, G. D.; Hardesty, R. M.; Kakar, R. K.; Kavaya, M. J.; Mango, S.; Miller, K.; Riishojgaard, L. P.


    The wind field plays a unique dynamical role in forcing the mass field to adjust to it at all scales in the tropics, and at small scales in the extra-tropics. Because of this unique role, knowledge of the wind field is required to accurately specify the global initial conditions for numerical weather forecasting. In addition to improving numerical weather prediction, there is also a need for improved accuracy of wind fields to assess long term sensitivity of the general circulation to climate change and to improve horizontal and vertical transport estimates of important atmospheric constituents. In spite of the significance, the 3-D structure of the wind field remains largely unobserved on a global scale. A new satellite mission to accurately measure the global wind field would fill this important gap in the Global Observing System. Space-based Doppler wind lidar has been identified as the key technology necessary to meet the global wind profiling requirement. The 2007 NRC Decadal Survey for Earth Science lists a Global Tropospheric 3-D Wind mission as one of the 15 priority missions recommended for NASA in the next decade. The NRC survey recommended a two phase approach to achieving an operational global wind measurement capability. The first recommended step is for NASA to develop the technology and fly a pre-operational mission to demonstrate the technology and measurement concept and establish the performance standards for an operational wind mission. Phase two would be to develop and fly an operational wind system in the 2025 timeframe. The technology approach recommended is a hybrid Doppler wind lidar (HDWL). The HDWL takes advantage of the complementary capabilities of two Doppler lidar technologies, a coherent Doppler lidar sensing winds from the aerosol backscattered laser signal at a wavelength of 2 microns and a direct detection Doppler lidar sensing winds from the molecular backscattered laser signal at 355 nm. The direct detection Doppler system

  6. Renal Tumor Cryoablation Planning. The Efficiency of Simulation on Reconstructed 3D CT Scan

    Ciprian Valerian LUCAN


    Full Text Available Introduction & Objective: Nephron-sparing surgical techniques risks are related to tumor relationships with adjacent anatomic structures. Complexity of the renal anatomy drives the interest to develop tools for 3D reconstruction and surgery simulation. The aim of the article was to assess the simulation on reconstructed 3D CT scan used for planning the cryoablation. Material & Method: A prospective randomized study was performed between Jan. 2007 and July 2009 on 27 patients who underwent retroperitoneoscopic T1a renal tumors cryoablation (RC. All patients were assessed preoperatively by CT scan, also used for 3D volume rendering. In the Gr.A, the patients underwent surgery planning by simulation on 3D CT scan. In the Gr.B., patients underwent standard RC. The two groups were compared in terms of surgical time, bleeding, postoperative drainage, analgesics requirement, hospital stay, time to socio-professional reintegration. Results: Fourteen patients underwent preoperative cryoablation planning (Gr.A and 13 patients underwent standard CR (Gr.B. All parameters analyzed were shorter in the Gr.A. On multivariate logistic regression, only shortens of the surgical time (138.79±5.51 min. in Gr.A. vs. 140.92±5.54 min in Gr.B. and bleeding (164.29±60.22 mL in Gr.A. vs. 215.38±100.80 mL in Gr.B. achieved statistical significance (p<0.05. The number of cryoneedles assessed by simulation had a 92.52% accuracy when compared with those effectively used. Conclusions: Simulation of the cryoablation using reconstructed 3D CT scan improves the surgical results. The application used for simulation was able to accurately assess the number of cryoneedles required for tumor ablation, their direction and approach.

  7. Coniferous Canopy BRF Simulation Based on 3-D Realistic Scene%Coniferous Canopy BRF Simulation Based on3-D Realistic Scene

    WANG Xin-yun; GUO Zhi-feng; QINWen-hans; SUN Guo-qing


    It is difficulties for the computer simulation method to study radiation regime at large-scale.Simplified coniferous model was investigated in the present study.It makes the computer simulation methods such as L-systems and radiosity-graphics combined method (RGM) more powerful in remote sensing of heterogeneous coniferous forests over a large-scale region.L-systems is applied to render 3-D coniferous forest scenarios,and RGM model was used to calculate BRF (bidirectional reflectance factor) in visible and near-infrared regions.Results in this study show that in most cases both agreed well Meanwhile at a tree and forest level,the results are also good.

  8. Numerical Simulation of Transient Flows around a 3D Pitching Hydrofoil

    Qin Wu


    Full Text Available The objective of this paper is to investigate the hydrodynamic characteristics of the transient flows around a 3D pitching hydrofoil via numerical studies, where the effects of tunnel wall boundary layer and gap flows are considered. Simulations are performed using an unsteady Reynolds Average Navier-Stokes solver and the k-ω SST turbulence model, coupled with a two-equation γ-Reθ transition model. Hydrodynamic forces and flow structures are compared to the results with the equivalent 2D computations. During the upward pitching stage, the transition phenomenon is accurately captured by both the 2D and 3D simulations. The slightly lower lift and suction side loading coefficients predicted by the 3D simulation are due to the pressure effects caused by the tip gap flow. During the dynamic stall stage, the 2D case exhibits a clear overshoot on the hydrodynamic force coefficients and the 3D simulation results better agree with the experimental results. During the downward pitching stage, the flow transitions back to laminar. As for the effect of gap flow and the wall boundary condition, the gap flow causes disturbances to the formation and development of the vortex structures, resulting in the complex distribution of the three-dimensional streamlines and the particle path.

  9. Simulation of free surfaces in 3-D with the arbitrary Lagrange-Euler method

    Szabo, Peter; Hassager, Ole


    The arbitrary Lagrange-Euler (ALE) kinematic description has been implemented in a 3-D transient finite element program so as to simulate multiple fluid flows with Surfaces and interfaces of general shapes. The description of fluid interfaces includes continuity of velocity and a discontinuous...

  10. Learning Patterns as Criterion for Forming Work Groups in 3D Simulation Learning Environments

    Maria Cela-Ranilla, Jose; Molías, Luis Marqués; Cervera, Mercè Gisbert


    This study analyzes the relationship between the use of learning patterns as a grouping criterion to develop learning activities in the 3D simulation environment at University. Participants included 72 Spanish students from the Education and Marketing disciplines. Descriptive statistics and non-parametric tests were conducted. The process was…

  11. An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System

    Saeed Seyyedi


    Full Text Available Digital breast tomosynthesis (DBT is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART and total variation regularized reconstruction techniques (ART+TV are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM values.

  12. [Pre-surgical simulation of microvascular decompression for hemifacial spasm using 3D-models].

    Mashiko, Toshihiro; Yang, Qiang; Kaneko, Naoki; Konno, Takehiko; Yamaguchi, Takashi; Watanabe, Eiju


    We have been performing pre-surgical simulations using custom-built patient-specific 3D-models. Here we report the advantageous use of 3D-models for simulating microvascular decompression(MVD)for hemifacial spasms. Seven cases of MVD surgery were performed. Two types of 3D-printers were used to fabricate the 3D-models:one using plaster as the modeling material(Z Printer®450, 3D systems, Rock Hill, SC, USA)and the other using acrylonitrile butadiene styrene(ABS)(UP! Plus 3D printer®, Beijing Tiertime Technology, Beijing). We tested three types of models. Type 1 was a plaster model of the brainstem, cerebellum, facial nerve, and the artery compressing the root exit zone of the facial nerve. Part of the cerebellum was digitally trimmed off to observe "the compressing point" from the same angle as that used during actual surgery. Type 2 was a modified Type 1 in which part of the skull was opened digitally to mimic a craniectomy. Type 3 was a combined model in which the cerebellum and the artery of the Type 2 model were replaced by a soft retractable cerebellum and an elastic artery. The cerebellum was made from polyurethane and cast from a plaster prototype. To fabricate elastic arteries, liquid silicone was painted onto the surface of an ABS artery and the inner ABS model was dissolved away using solvent. In all cases, the 3D-models were very useful. Although each type has advantages, the Type-3 model was judged extremely useful for training junior surgeons in microsurgical approaches.

  13. A global 3-D CTM evaluation of black carbon in the Tibetan Plateau

    He, C.; Li, Q. B.; Liou, K. N.; Zhang, J.; Qi, L.; Mao, Y.; Gao, M.; Lu, Z.; Streets, D. G.; Zhang, Q.; Sarin, M. M.; Ram, K.


    We systematically evaluate the black carbon (BC) simulations for 2006 over the Tibetan Plateau by a global 3-D chemical transport model (CTM) (GEOS-Chem) driven by GEOS-5 assimilated meteorological fields, using in situ measurements of BC in surface air, BC in snow, and BC absorption aerosol optical depth (AAOD). Using improved anthropogenic BC emission inventories for Asia that account for rapid technology renewal and energy consumption growth (Zhang et al., 2009; Lu et al., 2011) and improved global biomass burning emission inventories that account for small fires (van der Werf et al., 2010; Randerson et al., 2012), we find that model results of both BC in surface air and in snow are statistically in good agreement with observations (biases factor of 2 of the observations at remote sites. Part of the discrepancy is explained by the deficiencies of the meteorological fields over the complex Tibetan terrain. We find that BC concentrations in snow computed from modeled BC deposition and GEOS-5 precipitation are spatiotemporally consistent with observations (r = 0.85). The computed BC concentrations in snow are a factor of 2-4 higher than the observations at several Himalayan sites because of excessive BC deposition. The BC concentrations in snow are biased low by a factor of 2 in the central plateau, which we attribute to the absence of snow aging in the CTM and strong local emissions unaccounted for in the emission inventories. Modeled BC AAOD is more than a factor of 2 lower than observations at most sites, particularly to the northwest of the plateau and along the southern slopes of the Himalayas in winter and spring, which is attributable in large part to underestimated emissions and the assumption of external mixing of BC aerosols in the model. We find that assuming a 50% increase of BC absorption associated with internal mixing reduces the bias in modeled BC AAOD by 57% in the Indo-Gangetic Plain and the northeastern plateau and to the northeast of the plateau

  14. The Vajont disaster: a 3D numerical simulation for the slide and the waves

    Rubino, Angelo; Androsov, Alexey; Vacondio, Renato; Zanchettin, Davide; Voltzinger, Naum


    A very high resolution O(5 m), 3D hydrostatic nonlinear numerical model was used to simulate the dynamics of both the slide and the surface waves produced during the Vajont disaster (north Italy, 1963), one of the major landslide-induced tsunamis ever documented. Different simulated wave phenomena like, e.g., maximum run-up on the opposite shore, maximum height, and water velocity were analyzed and compared with data available in literature, including the results of a fully 3D simulation obtained with a Smoothed Particle Hydrodynamic code. The difference between measured and simulated after-slide bathymetries was calculated and used in an attempt to quantify the relative magnitude and extension of rigid and fluid motion components during the event.

  15. The computer simulation of 3d gas dynamics in a gas centrifuge

    Borman, V. D.; Bogovalov, S. V.; Borisevich, V. D.; Tronin, I. V.; Tronin, V. N.


    We argue on the basis of the results of 2D analysis of the gas flow in gas centrifuges that a reliable calculation of the circulation of the gas and gas content in the gas centrifuge is possible only in frameworks of 3D numerical simulation of gas dynamics in the gas centrifuge (hereafter GC). The group from National research nuclear university, MEPhI, has created a computer code for 3D simulation of the gas flow in GC. The results of the computer simulations of the gas flows in GC are presented. A model Iguassu centrifuge is explored for the simulations. A nonaxisymmetric gas flow is produced due to interaction of the hypersonic rotating flow with the scoops for extraction of the product and waste flows from the GC. The scoops produce shock waves penetrating into a working camera of the GC and form spiral waves there.

  16. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.


    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in Eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in Eta Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for Eta Car.

  17. Rise time of proton cut-off energy in 2D and 3D PIC simulations

    Babaei, J.; Gizzi, L. A.; Londrillo, P.; Mirzanejad, S.; Rovelli, T.; Sinigardi, S.; Turchetti, G.


    The Target Normal Sheath Acceleration regime for proton acceleration by laser pulses is experimentally consolidated and fairly well understood. However, uncertainties remain in the analysis of particle-in-cell simulation results. The energy spectrum is exponential with a cut-off, but the maximum energy depends on the simulation time, following different laws in two and three dimensional (2D, 3D) PIC simulations so that the determination of an asymptotic value has some arbitrariness. We propose two empirical laws for the rise time of the cut-off energy in 2D and 3D PIC simulations, suggested by a model in which the proton acceleration is due to a surface charge distribution on the target rear side. The kinetic energy of the protons that we obtain follows two distinct laws, which appear to be nicely satisfied by PIC simulations, for a model target given by a uniform foil plus a contaminant layer that is hydrogen-rich. The laws depend on two parameters: the scaling time, at which the energy starts to rise, and the asymptotic cut-off energy. The values of the cut-off energy, obtained by fitting 2D and 3D simulations for the same target and laser pulse configuration, are comparable. This suggests that parametric scans can be performed with 2D simulations since 3D ones are computationally very expensive, delegating their role only to a correspondence check. In this paper, the simulations are carried out with the PIC code ALaDyn by changing the target thickness L and the incidence angle α, with a fixed a0 = 3. A monotonic dependence, on L for normal incidence and on α for fixed L, is found, as in the experimental results for high temporal contrast pulses.

  18. Magneto Hydrodynamic Simulations of a Magnetic Flux Compression Generator Using ALE3D


    ARL-TR-8055 ● JULY 2017 US Army Research Laboratory Magneto-Hydrodynamic Simulations of a Magnetic Flux Compression Generator...Simulations of a Magnetic Flux Compression Generator Using ALE3D by George B Vunni Weapons and Materials Research Directorate, ARL... a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1

  19. VITASCOPE: Extensible and Scalable 3D Visualization of Simulated Construction Operations

    Kamat, Vineet Rajendra


    In the domain of operations design and analysis, the ability to see a 3D animation of processes that have been simulated allows for three very important things: 1) The developer of a simulation model can ascertain that there are no errors in the coding (Verification); 2) The experts, field personnel, and decision makers can discover differences between the way they understand the operation and the way the model developer understands it (Validation); and 3) A model can be communicated effectiv...

  20. 3D Printing of Preoperative Simulation Models of a Splenic Artery Aneurysm: Precision and Accuracy.

    Takao, Hidemasa; Amemiya, Shiori; Shibata, Eisuke; Ohtomo, Kuni


    Three-dimensional (3D) printing is attracting increasing attention in the medical field. This study aimed to apply 3D printing to the production of hollow splenic artery aneurysm models for use in the simulation of endovascular treatment, and to evaluate the precision and accuracy of the simulation model. From 3D computed tomography (CT) angiography data of a splenic artery aneurysm, 10 hollow models reproducing the vascular lumen were created using a fused deposition modeling-type desktop 3D printer. After filling with water, each model was scanned using T2-weighted magnetic resonance imaging for the evaluation of the lumen. All images were coregistered, binarized, and then combined to create an overlap map. The cross-sectional area of the splenic artery aneurysm and its standard deviation (SD) were calculated perpendicular to the x- and y-axes. Most voxels overlapped among the models. The cross-sectional areas were similar among the models, with SDs <0.05 cm(2). The mean cross-sectional areas of the splenic artery aneurysm were slightly smaller than those calculated from the original mask images. The maximum mean cross-sectional areas calculated perpendicular to the x- and y-axes were 3.90 cm(2) (SD, 0.02) and 4.33 cm(2) (SD, 0.02), whereas those calculated from the original mask images were 4.14 cm(2) and 4.66 cm(2), respectively. The mean cross-sectional areas of the afferent artery were, however, almost the same as those calculated from the original mask images. The results suggest that 3D simulation modeling of a visceral artery aneurysm using a fused deposition modeling-type desktop 3D printer and computed tomography angiography data is highly precise and accurate. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  1. 3D range-modulator for scanned particle therapy: development, Monte Carlo simulations and experimental evaluation

    Simeonov, Yuri; Weber, Uli; Penchev, Petar; Printz Ringbæk, Toke; Schuy, Christoph; Brons, Stephan; Engenhart-Cabillic, Rita; Bliedtner, Jens; Zink, Klemens


    The purpose of this work was to design and manufacture a 3D range-modulator for scanned particle therapy. The modulator is intended to create a highly conformal dose distribution with only one fixed energy, simultaneously reducing considerably the treatment time. As a proof of concept, a 3D range-modulator was developed for a spherical target volume with a diameter of 5 cm, placed at a depth of 25 cm in a water phantom. It consists of a large number of thin pins with a well-defined shape and different lengths to modulate the necessary shift of the Bragg peak. The 3D range-modulator was manufactured with a rapid prototyping technique. The FLUKA Monte Carlo package was used to simulate the modulating effect of the 3D range-modulator and the resulting dose distribution. For that purpose, a special user routine was implemented to handle its complex geometrical contour. Additionally, FLUKA was extended with the capability of intensity modulated scanning. To validate the simulation results, dose measurements were carried out at the Heidelberg Ion Beam Therapy Center with a 400.41 MeV/u 12C beam. The high resolution dosimetric measurements show a good agreement between simulated and measured dose distributions. Irradiation of the monoenergetic raster plan took 3 s, which is approximately 20 times shorter than a comparable plan with 16 different energies. The combination of only one energy and a 3D range-modulator leads to a tremendous decrease in irradiation time. ‘Interplay effects’, typical for moving targets and pencil beam scanning, can be immensely reduced or disappear completely, making the delivery of a homogeneous dose to moving targets more reliable. Combining high dose conformity, very good homogeneity and extremely short irradiation times, the 3D range-modulator is considered to become a clinically applicable method for very fast treatment of lung tumours.

  2. Retrieval of cloud microphysical parameters from INSAT-3D: a feasibility study using radiative transfer simulations

    Jinya, John; Bipasha, Paul S.


    Clouds strongly modulate the Earths energy balance and its atmosphere through their interaction with the solar and terrestrial radiation. They interact with radiation in various ways like scattering, emission and absorption. By observing these changes in radiation at different wavelength, cloud properties can be estimated. Cloud properties are of utmost importance in studying different weather and climate phenomena. At present, no satellite provides cloud microphysical parameters over the Indian region with high temporal resolution. INSAT-3D imager observations in 6 spectral channels from geostationary platform offer opportunity to study continuous cloud properties over Indian region. Visible (0.65 μm) and shortwave-infrared (1.67 μm) channel radiances can be used to retrieve cloud microphysical parameters such as cloud optical thickness (COT) and cloud effective radius (CER). In this paper, we have carried out a feasibility study with the objective of cloud microphysics retrieval. For this, an inter-comparison of 15 globally available radiative transfer models (RTM) were carried out with the aim of generating a Look-up- Table (LUT). SBDART model was chosen for the simulations. The sensitivity of each spectral channel to different cloud properties was investigated. The inputs to the RT model were configured over our study region (50°S - 50°N and 20°E - 130°E) and a large number of simulations were carried out using random input vectors to generate the LUT. The determination of cloud optical thickness and cloud effective radius from spectral reflectance measurements constitutes the inverse problem and is typically solved by comparing the measured reflectances with entries in LUT and searching for the combination of COT and CER that gives the best fit. The products are available on the website

  3. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    Duru, Kenneth, E-mail: [Department of Geophysics, Stanford University, Stanford, CA (United States); Dunham, Eric M. [Department of Geophysics, Stanford University, Stanford, CA (United States); Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA (United States)


    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge–Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture

  4. Albedo and heat transport in 3-D model simulations of the early Archean climate

    H. Kienert


    Full Text Available At the beginning of the Archean eon (ca. 3.8 billion years ago, the Earth's climate state was significantly different from today due to the lower solar luminosity, smaller continental fraction, higher rotation rate and, presumably, significantly larger greenhouse gas concentrations. All these aspects play a role in solutions to the "faint young Sun paradox" which must explain why the ocean surface was not fully frozen at that time. Here, we present 3-D model simulations of climate states that are consistent with early Archean boundary conditions and have different CO2 concentrations, aiming at an understanding of the fundamental characteristics of the early Archean climate system. In order to do so, we have appropriately modified an intermediate complexity climate model that couples a statistical-dynamical atmosphere model (involving parameterizations of the dynamics to an ocean general circulation model and a thermodynamic-dynamic sea-ice model. We focus on three states: one of them is ice-free, one has the same mean surface air temperature of 288 K as today's Earth and the third one is the coldest stable state in which there is still an area with liquid surface water (i.e. the critical state at the transition to a "snowball Earth". We find a reduction in meridional heat transport compared to today, which leads to a steeper latitudinal temperature profile and has atmospheric as well as oceanic contributions. Ocean surface velocities are largely zonal, and the strength of the atmospheric meridional circulation is significantly reduced in all three states. These aspects contribute to the observed relation between global mean temperature and albedo, which we suggest as a parameterization of the ice-albedo feedback for 1-D model simulations of the early Archean and thus the faint young Sun problem.

  5. GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method

    Gong, Chunye; Liu, Jie; Chi, Lihua; Huang, Haowei; Fang, Jingyue; Gong, Zhenghu


    Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates ( Sn) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

  6. Parallel implementation of 3D FFT with volumetric decomposition schemes for efficient molecular dynamics simulations

    Jung, Jaewoon; Kobayashi, Chigusa; Imamura, Toshiyuki; Sugita, Yuji


    Three-dimensional Fast Fourier Transform (3D FFT) plays an important role in a wide variety of computer simulations and data analyses, including molecular dynamics (MD) simulations. In this study, we develop hybrid (MPI+OpenMP) parallelization schemes of 3D FFT based on two new volumetric decompositions, mainly for the particle mesh Ewald (PME) calculation in MD simulations. In one scheme, (1d_Alltoall), five all-to-all communications in one dimension are carried out, and in the other, (2d_Alltoall), one two-dimensional all-to-all communication is combined with two all-to-all communications in one dimension. 2d_Alltoall is similar to the conventional volumetric decomposition scheme. We performed benchmark tests of 3D FFT for the systems with different grid sizes using a large number of processors on the K computer in RIKEN AICS. The two schemes show comparable performances, and are better than existing 3D FFTs. The performances of 1d_Alltoall and 2d_Alltoall depend on the supercomputer network system and number of processors in each dimension. There is enough leeway for users to optimize performance for their conditions. In the PME method, short-range real-space interactions as well as long-range reciprocal-space interactions are calculated. Our volumetric decomposition schemes are particularly useful when used in conjunction with the recently developed midpoint cell method for short-range interactions, due to the same decompositions of real and reciprocal spaces. The 1d_Alltoall scheme of 3D FFT takes 4.7 ms to simulate one MD cycle for a virus system containing more than 1 million atoms using 32,768 cores on the K computer.

  7. Simulations of 3D-Si sensors for the innermost layer of the ATLAS pixel upgrade

    Baselga, Marta


    The LHC is expected to reach luminosities up to 3000fb-1 and the innermost layer of the ATLAS upgrade plans to cope with higher occupancy and to decrease the pixel size. 3D-Si sensors are a good candidate for the innermost layer of the ATLAS pixel upgrade since they exhibit good performance under high fluences and the new designs will have smaller pixel size to fulfill the electronics expectations. This paper reports TCAD simulations of the 3D-Si sensors designed at IMB-CNM with non passing-through columns that are being fabricated for the next innermost layer of the ATLAS pixel upgrade, shows the charge collection response before and after irradiation, and the response of 3D-Si sensors located at large $\\eta$ angles.

  8. DOMINO: A fast 3D cartesian discrete ordinates solver for reference PWR simulations and SPN validation

    Courau, T.; Moustafa, S.; Plagne, L.; Poncot, A. [EDF R and D, 1, Av du General de Gaulle, F92141 Clamart cedex (France)


    As part of its activity, EDF R and D is developing a new nuclear core simulation code named COCAGNE. This code relies on DIABOLO, a Simplified PN (SPN) method to compute the neutron flux inside the core for eigenvalue calculations. In order to assess the accuracy of SPN calculations, we have developed DOMINO, a new 3D Cartesian SN solver. The parallel implementation of DOMINO is very efficient and allows to complete an eigenvalue calculation involving around 300 x 10{sup 9} degrees of freedom within a few hours on a single shared-memory supercomputing node. This computation corresponds to a 26-group S{sub 8} 3D PWR core model used to assess the SPN accuracy. At the pin level, the maximal error for the SP{sub 5} DIABOLO fission production rate is lower than 0.2% compared to the S{sub 8} DOMINO reference for this 3D PWR core model. (authors)

  9. Simulations of 3D-Si sensors for the innermost layer of the ATLAS pixel upgrade

    Baselga, M.; Pellegrini, G.; Quirion, D.


    The LHC is expected to reach luminosities up to 3000 fb-1 and the innermost layer of the ATLAS upgrade plans to cope with higher occupancy and to decrease the pixel size. 3D-Si sensors are a good candidate for the innermost layer of the ATLAS pixel upgrade since they exhibit good performance under high fluences and the new designs will have smaller pixel size to fulfill the electronics expectations. This paper reports TCAD simulations of the 3D-Si sensors designed at IMB-CNM with non-passing-through columns that are being fabricated for the next innermost layer of the ATLAS pixel upgrade. It shows the charge collection response before and after irradiation, and the response of 3D-Si sensors located at large η angles.

  10. Global 3D-QSAR methods: MS-WHIM and autocorrelation

    Gancia, Emanuela; Bravi, Gianpaolo; Mascagni, Paolo; Zaliani, Andrea


    The recently proposed MS-WHIM indices, a set of theoretical descriptors containing information about size, shape and electrostatic distribution of a molecule, have been further investigated. The main objectives of this work were: (i) to confirm the descriptive power of MS-WHIM in modelling specific biological interactions, (ii) to analyse the dependence of MS-WHIM on the type of atomic charges used for computing electrostatic potential and (iii) to compare the performances of MS-WHIM with those provided by other global 3D molecular descriptors. The spatial autocorrelation of atomic and molecular surface properties were selected for comparison purposes. WHIM-based and autocorrelation-based vectors were calculated for two molecular sets from the literature, namely a series of 18 HIV-1 reverse transcriptase inhibitors and a set of 36 sulphonamide endothelin inhibitors. PLS was adopted to derive statistical predictive models that were validated by means of cross-validation. The reported results confirmed that MS-WHIM indices are able to provide meaningful statistical correlations with biological activity. MS-WHIM descriptors are sensitive to the type of partial atomic charges applied and improved models were obtained using more accurate charges. Moreover for both the datasets, MS-WHIM results, in terms of fitting and predictive power of PLS models, were superior to those from autocorrelation. Finally, the strengths/weaknesses of global 3D-QSAR descriptors over local CoMFA-like methods, as well as the main differences between WHIM-based and autocorrelation-based vectors, are discussed.

  11. Numerical Simulation of Injection Molding Cooling Process Based on 3D Surface Model

    CUIShu-biao; ZHOUHua-min; LIDe-qun


    The design of the coohng system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality of design can be improved greatly. At the same time, it is helpful to confirm the cooling system structure and optimize the process conditions. In this paper, the 3D surface model of mold cavity is used to replace the middle-plane model in the simulation by Boundary Element Method, which break the bottleneck of the application of the injection molding simulation softwares base on the middle-plane model. With the improvements of this paper, a practical and commercial simulation software of injection molding cooling process named as HsCAE3D6.0 is developed.

  12. Digital simulation of 3D turbulence wind field of Sutong Bridge based on measured wind spectra

    Hao WANG; Zhou-hong ZONG; Ai-qun LI; Teng TONG; Jie NIU; Wen-ping DENG


    Time domain analysis is an essential implement to study the buffeting behavior of long-span bridges for it can consider the non-linear effect which is significant in long-span bridges.The prerequisite of time domain analysis is the accurate description of 3D turbulence winds.In this paper,some hypotheses for simplifying the 3D turbulence simulation of long-span cable-stayed bridges are conducted,considering the structural characteristics.The turbulence wind which is a 3D multivariate stochastic vector process is converted into four independent ID univariate stochastic processes.Based on recorded wind data from structural health monitoring system (SHMS) of the Sutong Bridge,China,the measured spectra expressions are then presented using the nonlinear least-squares fitting method.Turbulence winds at the Sutong Bridge site are simulated based on the spectral representation method and the Fast Fourier transform (FFT) technique,and the relevant results derived from target spectra including measured spectra and recommended spectra are compared.The reliability and accuracy of the presented turbulence simulation method are validated through comparisons between simulated and target spectra (measured and recommended spectra).The obtained turbulence simulations can not only serve further analysis of the buffeting behavior of the Sutong Bridge,but references for structural anti-wind design in adjacent regions.

  13. Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks

    Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.


    We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing-Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing-Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.

  14. Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows

    Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.


    The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.

  15. Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices.

    Lei, Junjun; Hill, Martyn; Glynne-Jones, Peter


    This article discusses three-dimensional (3D) boundary-driven streaming in acoustofluidic devices. Firstly, the 3D Rayleigh streaming pattern in a microchannel is simulated and its effect on the movement of microparticles of various sizes is demonstrated. The results obtained from this model show good comparisons with 3D experimental visualisations and demonstrate the fully 3D nature of the acoustic streaming field and the associated acoustophoretic motion of microparticles in acoustofluidic devices. This method is then applied to another acoustofluidic device in order to gain insights into an unusual in-plane streaming pattern. The origin of this streaming has not been fully described and its characteristics cannot be explained from the classical theory of Rayleigh streaming. The simulated in-plane streaming pattern was in good agreement with the experimental visualisation. The mechanism behind it is shown to be related to the active sound intensity field, which supports our previous findings on the mechanism of the in-plane acoustic streaming pattern visualised and modelled in a thin-layered capillary device.

  16. A fast convolution-based methodology to simulate 2-D/3-D cardiac ultrasound images.

    Gao, Hang; Choi, Hon Fai; Claus, Piet; Boonen, Steven; Jaecques, Siegfried; Van Lenthe, G Harry; Van der Perre, Georges; Lauriks, Walter; D'hooge, Jan


    This paper describes a fast convolution-based methodology for simulating ultrasound images in a 2-D/3-D sector format as typically used in cardiac ultrasound. The conventional convolution model is based on the assumption of a space-invariant point spread function (PSF) and typically results in linear images. These characteristics are not representative for cardiac data sets. The spatial impulse response method (IRM) has excellent accuracy in the linear domain; however, calculation time can become an issue when scatterer numbers become significant and when 3-D volumetric data sets need to be computed. As a solution to these problems, the current manuscript proposes a new convolution-based methodology in which the data sets are produced by reducing the conventional 2-D/3-D convolution model to multiple 1-D convolutions (one for each image line). As an example, simulated 2-D/3-D phantom images are presented along with their gray scale histogram statistics. In addition, the computation time is recorded and contrasted to a commonly used implementation of IRM (Field II). It is shown that COLE can produce anatomically plausible images with local Rayleigh statistics but at improved calculation time (1200 times faster than the reference method).

  17. 3D thermal modeling of TRISO fuel coupled with neutronic simulation

    Hu, Jianwei [Los Alamos National Laboratory; Uddin, Rizwan [UNIV OF ILLINIOS


    The Very High Temperature Gas Reactor (VHTR) is widely considered as one of the top candidates identified in the Next Generation Nuclear Power-plant (NGNP) Technology Roadmap under the U.S . Depanment of Energy's Generation IV program. TRlSO particle is a common element among different VHTR designs and its performance is critical to the safety and reliability of the whole reactor. A TRISO particle experiences complex thermo-mechanical changes during reactor operation in high temperature and high burnup conditions. TRISO fuel performance analysis requires evaluation of these changes on micro scale. Since most of these changes are temperature dependent, 3D thermal modeling of TRISO fuel is a crucial step of the whole analysis package. In this paper, a 3D numerical thermal model was developed to calculate temperature distribution inside TRISO and pebble under different scenarios. 3D simulation is required because pebbles or TRISOs are always subjected to asymmetric thermal conditions since they are randomly packed together. The numerical model was developed using finite difference method and it was benchmarked against ID analytical results and also results reported from literature. Monte-Carlo models were set up to calculate radial power density profile. Complex convective boundary condition was applied on the pebble outer surface. Three reactors were simulated using this model to calculate temperature distribution under different power levels. Two asymmetric boundary conditions were applied to the pebble to test the 3D capabilities. A gas bubble was hypothesized inside the TRISO kernel and 3D simulation was also carried out under this scenario. Intuition-coherent results were obtained and reported in this paper.

  18. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments.

    Szőke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K


    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation's lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers.IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry.This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors.

  19. The Surface of Stellar Models - Now with more 3D simulations!

    Trampedach Regner


    Full Text Available We have constructed a grid of 3D hydrodynamic simulations of deep convective and line-blanketed atmospheres. We have developed a new consistent method for computing and employing T(τ relations from these simulations, as surface boundary conditions for 1D stellar structure models. These 1D models have, in turn, had their mixing-length, α, calibrated against the averaged structure of each of the simulations. Both α and T(τ vary significantly with Teff and log g.

  20. Reactive Flow Modeling of Liquid Explosives via ALE3D/Cheetah Simulations

    Kuo, I W; Bastea, S; Fried, L E


    We carried out reactive flow simulations of liquid explosives such as nitromethane using the hydrodynamic code ALE3D coupled with equations of state and reaction kinetics modeled by the thermochemical code Cheetah. The simulation set-up was chosen to mimic cylinder experiments. For pure unconfined nitromethane we find that the failure diameter and detonation velocity dependence on charge diameter are in agreement with available experimental results. Such simulations are likely to be useful for determining detonability and failure behavior for a wide range of experimental conditions and explosive compounds.

  1. 3D Radiative Transfer in $\\eta$ Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    Clementel, N; Kruip, C J H; Icke, V; Gull, T R


    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in $\\eta$ Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in $\\eta$ Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidde...

  2. A global 3-D MHD model of the solar wind with Alfven waves

    Usmanov, A. V.


    A fully three-dimensional solar wind model that incorporates momentum and heat addition from Alfven waves is developed. The proposed model upgrades the previous one by considering self-consistently the total system consisting of Alfven waves propagating outward from the Sun and the mean polytropic solar wind flow. The simulation region extends from the coronal base (1 R(sub s) out to beyond 1 AU. The fully 3-D MHD equations written in spherical coordinates are solved in the frame of reference corotating with the Sun. At the inner boundary, the photospheric magnetic field observations are taken as boundary condition and wave energy influx is prescribed to be proportional to the magnetic field strength. The results of the model application for several time intervals are presented.

  3. A roadmap to global illumination in 3D scenes: solutions for GPU object recognition applications

    Picos, Kenia; Díaz-Ramírez, Victor H.; Tapia, Juan J.


    Light interactions with matter is of remarkable complexity. An adequate modeling of global illumination is a vastly studied topic since the beginning of computer graphics, and still is an unsolved problem. The rendering equation for global illumination is based of refraction and reflection of light in interaction with matter within an environment. This physical process possesses a high computational complexity when implemented in a digital computer. The appearance of an object depends on light interactions with the surface of the material, such as emission, scattering, and absorption. Several image-synthesis methods have been used to realistically render the appearance of light incidence on an object. Recent global illumination algorithms employ mathematical models and computational strategies that improve the efficiency of the simulation solution. This work presents a review the state of the art of global illumination algorithms and focuses on the efficiency of the solution in a computational implementation in a graphics processing unit. A reliable system is developed to simulate realistics scenes in the context of real-time object recognition under different lighting conditions. Computer simulations results are presented and discussed in terms of discrimination capability, and robustness to additive noise, when considering several lighting model reflections and multiple light sources.

  4. 3D Radiation Nonideal Magnetohydrodynamical Simulations of the Inner Rim in Protoplanetary Disks

    Flock, M.; Fromang, S.; Turner, N. J.; Benisty, M.


    Many planets orbit within 1 au of their stars, raising questions about their origins. Particularly puzzling are the planets found near the silicate sublimation front. We investigate conditions near the front in the protostellar disk around a young intermediate-mass star, using the first global 3D radiation nonideal MHD simulations in this context. We treat the starlight heating; the silicate grains’ sublimation and deposition at the local, time-varying temperature and density; temperature-dependent ohmic dissipation; and various initial magnetic fields. The results show magnetorotational turbulence around the sublimation front at 0.5 au. The disk interior to 0.8 au is turbulent, with velocities exceeding 10% of the sound speed. Beyond 0.8 au is the dead zone, cooler than 1000 K and with turbulence orders of magnitude weaker. A local pressure maximum just inside the dead zone concentrates solid particles, favoring their growth. Over many orbits, a vortex develops at the dead zone’s inner edge, increasing the disk’s thickness locally by around 10%. We synthetically observe the results using Monte Carlo transfer calculations, finding that the sublimation front is near-infrared bright. The models with net vertical magnetic fields develop extended, magnetically supported atmospheres that reprocess extra starlight, raising the near-infrared flux 20%. The vortex throws a nonaxisymmetric shadow on the outer disk. At wavelengths > 2 μ {{m}}, the flux varies several percent on monthly timescales. The variations are more regular when the vortex is present. The vortex is directly visible as an arc at ultraviolet through near-infrared wavelengths, given sub-au spatial resolution.

  5. Optimized 3-D simulation method for modeling out-of-plane radiation in silicon photonic integrated circuits

    Westerveld, W.J.; Urbach, H.P.; Yousefi, M.


    We present an accurate and fast 3-D simulation scheme for out-of-plane grating couplers, based on 2-D rigorous [finite difference time domain (FDTD)] grating simulations, the effective index method, and the RayleighSommerfeld diffraction formula. In comparison with full 3-D FDTD simulations, the rms

  6. The Idea and Concept of Metos3D: A Marine Ecosystem Toolkit for Optimization and Simulation in 3D

    Piwonski, Jaroslaw


    The simulation and parameter optimization of coupled ocean circulation and ecosystem models in three space dimensions is one of the most challenging tasks in numerical climate research. Here we present a scientific toolkit that aims at supporting researchers by defining clear coupling interfaces, providing state-of-the-art numerical methods for simulation, parallelization and optimization while using only freely available and (to a great extend) platform-independent software. Besides defining a user-friendly coupling interface (API) for marine ecosystem or biogeochemical models, we heavily rely on the Portable, Extensible Toolkit for Scientific computation (PETSc) developed at Argonne Nat. Lab. for a wide variety of parallel linear and non-linear solvers and optimizers. We specifically focus on the usage of matrix-free Newton-Krylov methods for the fast computation of steady periodic solutions, and make use of the Transport Matrix Method (TMM) introduced by Khatiwala et al.

  7. Extracting 3D Layout From a Single Image Using Global Image Structures

    Lou, Z.; Gevers, T.; Hu, N.


    Extracting the pixel-level 3D layout from a single image is important for different applications, such as object localization, image, and video categorization. Traditionally, the 3D layout is derived by solving a pixel-level classification problem. However, the image-level 3D structure can be very

  8. Extracting 3D Layout From a Single Image Using Global Image Structures

    Lou, Z.; Gevers, T.; Hu, N.


    Extracting the pixel-level 3D layout from a single image is important for different applications, such as object localization, image, and video categorization. Traditionally, the 3D layout is derived by solving a pixel-level classification problem. However, the image-level 3D structure can be very b

  9. Confocal 3D DNA Cytometry: Assessment of Required Coefficient of Variation by Computer Simulation

    Lennert S. Ploeger


    Full Text Available Background: Confocal Laser Scanning Microscopy (CLSM provides the opportunity to perform 3D DNA content measurements on intact cells in thick histological sections. So far, sample size has been limited by the time consuming nature of the technology. Since the power of DNA histograms to resolve different stemlines depends on both the sample size and the coefficient of variation (CV of histogram peaks, interpretation of 3D CLSM DNA histograms might be hampered by both a small sample size and a large CV. The aim of this study was to analyze the required CV for 3D CLSM DNA histograms given a realistic sample size. Methods: By computer simulation, virtual histograms were composed for sample sizes of 20000, 10000, 5000, 1000, and 273 cells and CVs of 30, 25, 20, 15, 10 and 5%. By visual inspection, the histogram quality with respect to resolution of G0/1 and G2/M peaks of a diploid stemline was assessed. Results: As expected, the interpretability of DNA histograms deteriorated with decreasing sample sizes and higher CVs. For CVs of 15% and lower, a clearly bimodal peak pattern with well distinguishable G0/1 and G2/M peaks were still seen at a sample size of 273 cells, which is our current average sample size with 3D CLSM DNA cytometry. Conclusions: For unambiguous interpretation of DNA histograms obtained using 3D CLSM, a CV of at most 15% is tolerable at currently achievable sample sizes. To resolve smaller near diploid stemlines, a CV of 10% or better should be aimed at. With currently available 3D imaging technology, this CV is achievable.

  10. 3D Finite Element Simulation of Tunnel Boring Machine Construction Processes in Deep Water Conveyance Tunnel

    ZHONG Denghua; TONG Dawei


    Applying stiffness migration method, a 3D finite element mechanical model is established to simulate the excavation and advance processes. By using 3D nonlinear finite element method, the tunnel boring machine (TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment. The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution. The stress increases slightly and limitedly in the course of excavation. The maxi-mum and minimum displacements of segment, manifesting as zonal distribution, distribute in arch bottom and vault respectively. The displacements slightly increase with the advance of TBM and gradually tend to stability.

  11. On 3D simulation of moving objects in a digital earth system


    "How do the rescue helicopters find out an optimized path to arrive at the site of a disaster as soon as possible?" or "How are the flight procedures over mountains and plateaus simulated?" and so on.In this paper a script language on spatial moving objects is presented by abstracting 3D spatial moving objects’ behavior when implementing moving objects simulation in 3D digital Earth scene,which is based on a platform of digital China named "ChinaStar".The definition of this script language,its morphology and syntax,its compiling and mediate language generating,and the behavior and state control of spatial moving objects are discussed emphatically.In addition,the language’s applications and implementation are also discussed.



    A pioneer research work was carried out by investigators engaged in surveying and mapping for describing ancient Chinese timber buildings by 3D frame graphs w ith a computer.Users can know the structural layers and the assembly process of the se buildings if the frame graphs are processed further with a computer model.Th is can be implemented by computer simulation technique.This technique display t he raw data on the screen of a computer and interactively manage them by combini ng technologies from computer graphics and image processing,multi-media technol ogy,artificial intelligence,highly parallel real-time computation technique an d human behavior science.This paper presents the implementing procedure of ligni fi cation simulation for large-sized wooden buildings as well as 3D dynamic assembl y of these buildings under the 3DS MAX environment.The results from computer sim ulation are also shown in the paper.

  13. 3D Kinetic Simulation of Plasma Jet Penetration in Magnetic Field

    Galkin, Sergei A.; Bogatu, I. N.; Kim, J. S.


    A high velocity plasmoid penetration through a magnetic barrier is a problem of a great experimental and theoretical interest. Our LSP PIC code 3D fully kinetic numerical simulations of high density (10^16 cm-3) high velocity (30-140 km/sec) plasma jet/bullet, penetrating through the transversal magnetic field, demonstrate three different regimes: reflection by field, penetration by magnetic field expulsion and penetration by magnetic self-polarization. The behavior depends on plasma jet parameters and its composition: hydrogen, carbon (A=12) and C60-fullerene (A=720) plasmas were investigated. The 3D simulation of two plasmoid head-on injections along uniform magnetic field lines is analyzed. Mini rail plasma gun (accelerator) modeling is also presented and discussed.

  14. The 3D numerical simulation of waste heat inside the end-pumped DPAL

    Hua, Weihong; Yang, Zining; Wang, Hongyan


    The thermal effect produced by quantum defect is an important factor that affects the performance of DPAL. We report on 3D simulation results of temperature distribution inside the alkali gain medium. The results show a high and non-uniform temperature rise under CW pumped condition, and the current models that assume uniform alkali density distribution needs to be modified. A convective cooling scheme should be applied for high power DPALs.

  15. Depth of field simulation for still digital images using a 3D camera

    Omar Alejandro Rodríguez Rosas


    Full Text Available In a world where digital photography is almost ubiquitous, the size of image capturing devices and their lenses limit their capabilities to achieve shallower depths of field for aesthetic purposes. This work proposes a novel approach to simulate this effect using the color and depth images from a 3D camera. Comparative tests yielded results similar to those of a regular lens.

  16. hp-finite element method for simulating light scattering from complex 3D structures

    Burger, S; Pomplun, J; Herrmann, S; Schmidt, F


    Methods for solving Maxwell's equations are integral part of optical metrology and computational lithography setups. Applications require accurate geometrical resolution, high numerical accuracy and/or low computation times. We present a finite-element based electromagnetic field solver relying on unstructured 3D meshes and adaptive hp-refinement. We apply the method for simulating light scattering off arrays of high aspect-ratio nano-posts and FinFETs.

  17. Modeling and 3-D Simulation of Biofilm Dynamics in Aqueous Environment

    Wang, Qi


    We present a complex fluid model for biofilms growing in an aqueous environment. The modeling approach represents a new paradigm to develop models for biofilm-environment interaction that can be used to systematically incorporate refined chemical and physiological mechanisms. Special solutions of the model are presented and analyzed. 3-D numerical simulations in aqueous environment with emphasis on biofilm- ambient fluid interaction will be discussed in detail.

  18. Prototyping Novel Instruments for Fetal Surgery through Virtual Reality Simulation and 3D Printing


    Designing novel medical devices is a complex matter. Involving clinicians as early as possible into the development process is of crucial importance; it helps to shorten the development cycle and increases the likelihood of later acceptance by clinicians. In this paper we show how through a combination of 3D printing and Virtual Reality simulation it is possible to involve clinicians in a very early stage, yet receive concrete quantitative and qualitative information that can shift the design...

  19. Simulation of a true-triaxial deformation test on anisotropic gneiss using FLAC3D

    Ye, Shenghua; Sehizadeh, Mehdi; Nasseri, Mohammad; Young, Paul


    A series of true-triaxial experiments have been carried out at the University of Toronto's Rock Fracture Dynamics Laboratory. Isotropic pegmatite and gneiss have been used to systematically study the effect of anisotropy on the strength, behaviour and seismic response. Samples were loaded under true-triaxial stress conditions and subjected to complex loading and unloading histories associated with rock deformation around underground openings. The results show expected patterns of weakness from preferentially oriented samples and highlight the importance of unloading history under true-triaxial conditions on the deformation and seismic response of the samples. These tests have been used to validate a synthetic simulation using the Itasca FLAC3D numerical code. The paper describes the FLAC3D simulations of the complex true-triaxial loading and unloading history of the different anisotropic samples. Various parameters were created to describe the physico-mechanical properties of the synthetic rock samples. Foliation planes of preferential orientations with respect to the primary loading direction were added to the synthetic rock samples to reflect the anisotropy of the gneiss. These synthetic rock samples were subjected to the same loading and unloading paths as the real rock samples, and failed in the same mechanism as what was observed from the experiments, and thus it proved the validity of this numerical simulation with FLAC3D.

  20. Meso-Scale Damage Simulation of 3D Braided Composites under Quasi-Static Axial Tension

    Zhang, Chao; Mao, Chunjian; Zhou, Yexin


    The microstructure of 3D braided composites is composed of three phases: braiding yarn, matrix and interface. In this paper, a representative unit-cell (RUC) model including these three phases is established. Coupling with the periodical boundary condition, the damage behavior of 3D braided composites under quasi-static axial tension is simulated by using finite element method based on this RUC model. An anisotropic damage model based on Murakami damage theory is proposed to predict the damage evolution of yarns and matrix; a damage-friction combination interface constitutive model is adopted to predict the interface debonding behavior. A user material subroutine (VUMAT) involving these damage models is developed and implemented in the finite element software ABAQUS/Explicit. The whole process of damage evolution of 3D braided composites under quasi-static axial tension with typical braiding angles is simulated, and the damage mechanisms are revealed in detail in the simulation process. The tensile strength properties of the braided composites are predicted from the calculated stress-strain curves. Numerical results agree with the available experiment data and thus validates the proposed damage analysis model. The effects of certain material parameters on the predicted stress-strain responses are also discussed by numerical parameter study.

  1. Understanding the mixing process in 3D microfluidic nozzle/diffuser systems: simulations and experiments

    Sayah, Abdeljalil; Gijs, Martin A. M.


    We characterise computationally and experimentally a three-dimensional (3D) microfluidic passive mixer for various Reynolds numbers ranging from 1 to 100, corresponding to primary flow rates of 10-870 µl min-1. The 3D mixing channel is composed of multiple curved segments: circular arcs situated in the substrate plane and curved nozzle/diffuser elements normal to the substrate plane. Numerical simulation provides a detailed understanding of the mixing mechanism resulting from the geometrical topology of the mixer. These Comsol software-based simulations reveal the development of two secondary flows perpendicular to the primary flow: a swirling flow resulting from tangential injection of the flow into the nozzle holes and Dean vortices present in the circular arcs. These phenomena are particularly important at a Reynolds number larger than 30, where mixing occurs by chaotic advection. Experimentally, the 3D mixer is fabricated in a monolithic glass substrate by powder blasting machining, exploiting eroding powder beams at various angles of impact with respect to the substrate plane. Experimental mixing was characterised using two coloured dyes, showing nearly perfect mixing for a microfluidic footprint of the order of a few mm2, in good agreement with the simulations.

  2. SSV3D: Simulador de Sombras Vectoriales por Radiación Solar sobre Objetos Tridimensionales SSV3D: Simulator of Vectorial Shadows by Solar Radiation on 3D Computerized Objects

    S. Gómez


    Full Text Available Se presenta un simulador de sombras vectoriales por radiación solar sobre objetos tridimensionales, SSV3D, una herramienta de computación gráfica desarrollada sobre la plataforma tridimensional del AUTOCAD 2004. El software simula vectorialmente la radiación solar directa, calculando y trazando los contornos de sombra sobre los planos iluminados del modelo 3D evaluado. En el desarrollo de la herramienta se comprobaron los resultados analíticos mediante su comparación con los obtenidos en las fórmulas de una hoja de cálculo, y de los resultados gráficos mediante comparación con las sombras arrojadas por simulación con un heliodón de tecnología francesa y por el Render de AUTOCAD. El simulador SSV3D respondió satisfactoriamente a las necesidades de estudio de sistemas de protección solar en investigaciones desarrolladas anteriormente.SSV3D is presented as a graphic computer tool developed on the three-dimensional platform of AUTOCAD 2004, which simulates direct solar radiation by measuring and vectorial tracing of shadow outlines on illuminated plans of the 3D model evaluated. The analytical results of this tool were tested during its' development by comparing its' results with those obtained in the formula of a calculus sheet, and graphic results were checked comparing these to the shadows obtained by simulation using physical models in a heliodon (French technology and by the Render of AUTOCAD. The SSV3D simulator responded satisfactorily to the requirements for the study of solar protection systems which had been determined in previous research.

  3. In-cloud oxalate formation in the global troposphere: a 3-D modeling study

    S. Myriokefalitakis


    Full Text Available Organic acids attract increasing attention as contributors to atmospheric acidity, secondary organic aerosol mass and aerosol hygroscopicity. Oxalic acid is globally the most abundant dicarboxylic acid, formed via chemical oxidation of gas-phase precursors in the aqueous phase of aerosols and droplets. Its lifecycle and atmospheric global distribution remain highly uncertain and are the focus of this study. The first global spatial and temporal distribution of oxalate, simulated using a state-of-the-art aqueous phase chemical scheme embedded within the global 3-dimensional chemistry/transport model TM4-ECPL, is here presented. The model accounts for comprehensive gas-phase chemistry and its coupling with major aerosol constituents (including secondary organic aerosol. Model results are consistent with ambient observations of oxalate at rural and remote locations (slope = 0.83 ± 0.06, r2 = 0.67, N = 106 and suggest that aqueous phase chemistry contributes significantly to the global atmospheric burden of secondary organic aerosol. In TM4-ECPL most oxalate is formed in-clouds and less than 10% is produced in aerosol water. About 61% of the oxalate is removed via wet deposition, 35% by in-cloud reaction with hydroxyl radical and 4% by dry deposition. The global oxalate net chemical production is calculated to be about 17–27 Tg yr−1 with almost 91% originating from biogenic hydrocarbons, mainly isoprene. This condensed phase net source of oxalate in conjunction with a global mean turnover time against deposition of about 5 days, maintain oxalate's global tropospheric burden of 0.24–0.39 Tg that is about 13–19% of calculated total organic aerosol burden.

  4. In-cloud oxalate formation in the global troposphere: a 3-D modeling study

    S. Myriokefalitakis


    Full Text Available Organic acids attract increasing attention as contributors to atmospheric acidity, secondary organic aerosol mass and aerosol hygroscopicity. Oxalic acid is globally the most abundant dicarboxylic acid, formed via chemical oxidation of gas-phase precursors in the aqueous phase of aerosols and droplets. Its lifecycle and atmospheric global distribution remain highly uncertain and are the focus of this study. The first global spatial and temporal distribution of oxalate, simulated using a state-of-the-art aqueous-phase chemical scheme embedded within the global 3-dimensional chemistry/transport model TM4-ECPL, is here presented. The model accounts for comprehensive gas-phase chemistry and its coupling with major aerosol constituents (including secondary organic aerosol. Model results are consistent with ambient observations of oxalate at rural and remote locations (slope = 1.16 ± 0.14, r2 = 0.36, N = 114 and suggest that aqueous-phase chemistry contributes significantly to the global atmospheric burden of secondary organic aerosol. In TM4-ECPL most oxalate is formed in-cloud and less than 5 % is produced in aerosol water. About 62 % of the oxalate is removed via wet deposition, 30 % by in-cloud reaction with hydroxyl radical, 4 % by in-cloud reaction with nitrate radical and 4 % by dry deposition. The in-cloud global oxalate net chemical production is calculated to be about 21–37 Tg yr−1 with almost 79 % originating from biogenic hydrocarbons, mainly isoprene. This condensed phase net source of oxalate in conjunction with a global mean turnover time against deposition of about 5 days, maintain oxalate's global tropospheric burden of 0.2–0.3 Tg, i.e. 0.05–0.1 Tg-C that is about 5–9 % of model-calculated water soluble organic carbon burden.

  5. Metos3D: the Marine Ecosystem Toolkit for Optimization and Simulation in 3-D - Part 1: Simulation Package v0.3.2

    Piwonski, Jaroslaw; Slawig, Thomas


    We designed and implemented a modular software framework for the offline simulation of steady cycles of 3-D marine ecosystem models based on the transport matrix approach. It is intended for parameter optimization and model assessment experiments. We defined a software interface for the coupling of a general class of water column-based biogeochemical models, with six models being part of the package. The framework offers both spin-up/fixed-point iteration and a Jacobian-free Newton method for the computation of steady states. The simulation package has been tested with all six models. The Newton method converged for four models when using standard settings, and for two more complex models after alteration of a solver parameter or the initial guess. Both methods delivered the same steady states (within a reasonable precision) on convergence for all models employed, with the Newton iteration generally operating 6 times faster. The effects on performance of both the biogeochemical and the Newton solver parameters were investigated for one model. A profiling analysis was performed for all models used in this work, demonstrating that the number of tracers had a dominant impact on overall performance. We also implemented a geometry-adapted load balancing procedure which showed close to optimal scalability up to a high number of parallel processors.

  6. Understanding fiber mixture by simulation in 3D Polarized Light Imaging.

    Dohmen, Melanie; Menzel, Miriam; Wiese, Hendrik; Reckfort, Julia; Hanke, Frederike; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus


    3D Polarized Light Imaging (3D-PLI) is a neuroimaging technique that has opened up new avenues to study the complex architecture of nerve fibers in postmortem brains. The spatial orientations of the fibers are derived from birefringence measurements of unstained histological brain sections that are interpreted by a voxel-based analysis. This, however, implies that a single fiber orientation vector is obtained for each voxel and reflects the net effect of all comprised fibers. The mixture of various fiber orientations within an individual voxel is a priori not accessible by a standard 3D-PLI measurement. In order to better understand the effects of fiber mixture on the measured 3D-PLI signal and to improve the interpretation of real data, we have developed a simulation method referred to as SimPLI. By means of SimPLI, it is possible to reproduce the entire 3D-PLI analysis starting from synthetic fiber models in user-defined arrangements and ending with measurement-like tissue images. For the simulation, each synthetic fiber is considered as an optical retarder, i.e., multiple fibers within one voxel are described by multiple retarder elements. The investigation of different synthetic crossing fiber arrangements generated with SimPLI demonstrated that the derived fiber orientations are strongly influenced by the relative mixture of crossing fibers. In case of perpendicularly crossing fibers, for example, the derived fiber direction corresponds to the predominant fiber direction. The derived fiber inclination turned out to be not only influenced by myelin density but also systematically overestimated due to signal attenuation. Similar observations were made for synthetic models of optic chiasms of a human and a hooded seal which were opposed to experimental 3D-PLI data sets obtained from the chiasms of both species. Our study showed that SimPLI is a powerful method able to test hypotheses on the underlying fiber structure of brain tissue and, therefore, to improve the


    张映辉; 吴国春


    We investigate the global existence and asymptotic behavior of classical solutions for the 3D compressible non-isentropic damped Euler equations on a periodic domain. The global existence and uniqueness of classical solutions are obtained when the initial data is near an equilibrium. Furthermore, the exponential convergence rates of the pressure and velocity are also proved by delicate energy methods.

  8. 3D CFD Simulations of MOCVD Synthesis System of Titanium Dioxide Nanoparticles

    Siti Hajar Othman


    Full Text Available This paper presents the 3-dimensional (3D computational fluid dynamics (CFD simulation study of metal organic chemical vapor deposition (MOCVD producing photocatalytic titanium dioxide (TiO2 nanoparticles. It aims to provide better understanding of the MOCVD synthesis system especially of deposition process of TiO2 nanoparticles as well as fluid dynamics inside the reactor. The simulated model predicts temperature, velocity, gas streamline, mass fraction of reactants and products, kinetic rate of reaction, and surface deposition rate profiles. It was found that temperature distribution, flow pattern, and thermophoretic force considerably affected the deposition behavior of TiO2 nanoparticles. Good mixing of nitrogen (N2 carrier gas and oxygen (O2 feed gas is important to ensure uniform deposition and the quality of the nanoparticles produced. Simulation results are verified by experiment where possible due to limited available experimental data. Good agreement between experimental and simulation results supports the reliability of simulation work.

  9. The Impact of 3D Data Quality on Improving GNSS Performance Using City Models Initial Simulations

    Ellul, C.; Adjrad, M.; Groves, P.


    There is an increasing demand for highly accurate positioning information in urban areas, to support applications such as people and vehicle tracking, real-time air quality detection and navigation. However systems such as GPS typically perform poorly in dense urban areas. A number of authors have made use of 3D city models to enhance accuracy, obtaining good results, but to date the influence of the quality of the 3D city model on these results has not been tested. This paper addresses the following question: how does the quality, and in particular the variation in height, level of generalization and completeness and currency of a 3D dataset, impact the results obtained for the preliminary calculations in a process known as Shadow Matching, which takes into account not only where satellite signals are visible on the street but also where they are predicted to be absent. We describe initial simulations to address this issue, examining the variation in elevation angle - i.e. the angle above which the satellite is visible, for three 3D city models in a test area in London, and note that even within one dataset using different available height values could cause a difference in elevation angle of up to 29°. Missing or extra buildings result in an elevation variation of around 85°. Variations such as these can significantly influence the predicted satellite visibility which will then not correspond to that experienced on the ground, reducing the accuracy of the resulting Shadow Matching process.

  10. An inexpensive underwater mine countermeasures simulator with real-time 3D after action review

    Robert Stone


    Full Text Available This paper presents the results of a concept capability demonstration pilot study, the aim of which was to investigate how inexpensive gaming software and hardware technologies could be exploited in the development and evaluation of a simulator prototype for training Royal Navy mine clearance divers, specifically focusing on the detection and accurate reporting of the location and condition of underwater ordnance. The simulator was constructed using the Blender open source 3D modelling toolkit and game engine, and featured not only an interactive 3D editor for underwater scenario generation by instructors, but also a real-time, 3D After Action Review (AAR system for formative assessment and feedback. The simulated scenarios and AAR architecture were based on early human factors observations and briefings conducted at the UK's Defence Diving School (DDS, an organisation that provides basic military diving training for all Royal Navy and Army (Royal Engineers divers. An experimental pilot study was undertaken to determine whether or not basic navigational and mine detection components of diver performance could be improved as a result of exposing participants to the AAR system, delivered between simulated diving scenarios. The results suggest that the provision of AAR was accompanied by significant performance improvements in the positive identification of simulated underwater ordnance (in contrast to non-ordnance objects and on participants' description of their location, their immediate in-water or seabed context and their structural condition. Only marginal improvements were found with participants' navigational performance in terms of their deviation accuracies from a pre-programmed expert search path. Overall, this project contributes to the growing corpus of evidence supporting the development of simulators that demonstrate the value of exploiting open source gaming software and the significance of adopting established games design

  11. Sedimentary basin effects in Seattle, Washington: Ground-motion observations and 3D simulations

    Frankel, Arthur; Stephenson, William; Carver, David


    Seismograms of local earthquakes recorded in Seattle exhibit surface waves in the Seattle basin and basin-edge focusing of S waves. Spectral ratios of Swaves and later arrivals at 1 Hz for stiff-soil sites in the Seattle basin show a dependence on the direction to the earthquake, with earthquakes to the south and southwest producing higher average amplification. Earthquakes to the southwest typically produce larger basin surface waves relative to S waves than earthquakes to the north and northwest, probably because of the velocity contrast across the Seattle fault along the southern margin of the Seattle basin. S to P conversions are observed for some events and are likely converted at the bottom of the Seattle basin. We model five earthquakes, including the M 6.8 Nisqually earthquake, using 3D finite-difference simulations accurate up to 1 Hz. The simulations reproduce the observed dependence of amplification on the direction to the earthquake. The simulations generally match the timing and character of basin surface waves observed for many events. The 3D simulation for the Nisqually earth-quake produces focusing of S waves along the southern margin of the Seattle basin near the area in west Seattle that experienced increased chimney damage from the earthquake, similar to the results of the higher-frequency 2D simulation reported by Stephenson et al. (2006). Waveforms from the 3D simulations show reasonable agreement with the data at low frequencies (0.2-0.4 Hz) for the Nisqually earthquake and an M 4.8 deep earthquake west of Seattle.

  12. SALSA3D - A Global 3D P-Velocity Model of the Earth's Crust and Mantle for Improved Event Location

    Ballard, S.; Begnaud, M. L.; Young, C. J.; Hipp, J. R.; Chang, M.; Encarnacao, A. V.; Rowe, C. A.; Phillips, W. S.; Steck, L.


    To test the hypothesis that high quality 3D Earth models will produce seismic event locations which are more accurate and more precise, we are developing a global 3D P wave velocity model of the Earth’s crust and mantle using seismic tomography. In this paper, we present the most recent version of our model, SALSA3D version 1.5, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth events. Our model is derived from the latest version of the Ground Truth (GT) catalog of P and Pn travel time picks assembled by Los Alamos National Laboratory. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays to produce representative rays. Reduction in the total number of ray paths is ~50%. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions.. For our starting model, we use a simplified two layer crustal model derived from the Crust 2.0 model over a uniform AK135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only around areas with significant velocity changes from the starting model. At each grid refinement level except the last one we limit the number of iterations to prevent convergence thereby preserving aspects of broad features resolved at coarser resolutions. Our approach produces a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. This scheme is computationally expensive, so we use a distributed computing framework based on the Java Parallel Processing Framework, providing us with ~400 processors. Resolution of our model is assessed using a

  13. Global fully kinetic models of planetary magnetospheres with iPic3D

    Gonzalez, D.; Sanna, L.; Amaya, J.; Zitz, A.; Lembege, B.; Markidis, S.; Schriver, D.; Walker, R. J.; Berchem, J.; Peng, I. B.; Travnicek, P. M.; Lapenta, G.


    We report on the latest developments of our approach to model planetary magnetospheres, mini magnetospheres and the Earth's magnetosphere with the fully kinetic, electromagnetic particle in cell code iPic3D. The code treats electrons and multiple species of ions as full kinetic particles. We review: 1) Why a fully kinetic model and in particular why kinetic electrons are needed for capturing some of the most important aspects of the physics processes of planetary magnetospheres. 2) Why the energy conserving implicit method (ECIM) in its newest implementation [1] is the right approach to reach this goal. We consider the different electron scales and study how the new IECIM can be tuned to resolve only the electron scales of interest while averaging over the unresolved scales preserving their contribution to the evolution. 3) How with modern computing planetary magnetospheres, mini magnetosphere and eventually Earth's magnetosphere can be modeled with fully kinetic electrons. The path from petascale to exascale for iPiC3D is outlined based on the DEEP-ER project [2], using dynamic allocation of different processor architectures (Xeon and Xeon Phi) and innovative I/O technologies.Specifically results from models of Mercury are presented and compared with MESSENGER observations and with previous hybrid (fluid electrons and kinetic ions) simulations. The plasma convection around the planets includes the development of hydrodynamic instabilities at the flanks, the presence of the collisionless shocks, the magnetosheath, the magnetopause, reconnection zones, the formation of the plasma sheet and the magnetotail, and the variation of ion/electron plasma flows when crossing these frontiers. Given the full kinetic nature of our approach we focus on detailed particle dynamics and distribution at locations that can be used for comparison with satellite data. [1] Lapenta, G. (2016). Exactly Energy Conserving Implicit Moment Particle in Cell Formulation. arXiv preprint ar

  14. Implementation of Headtracking and 3D Stereo with Unity and VRPN for Computer Simulations

    Noyes, Matthew A.


    This paper explores low-cost hardware and software methods to provide depth cues traditionally absent in monocular displays. The use of a VRPN server in conjunction with a Microsoft Kinect and/or Nintendo Wiimote to provide head tracking information to a Unity application, and NVIDIA 3D Vision for retinal disparity support, is discussed. Methods are suggested to implement this technology with NASA's EDGE simulation graphics package, along with potential caveats. Finally, future applications of this technology to astronaut crew training, particularly when combined with an omnidirectional treadmill for virtual locomotion and NASA's ARGOS system for reduced gravity simulation, are discussed.

  15. Connecting Global Measures of 3D Magnetic Reconnection to Local Kinetic Physics

    Daughton, William Scott [Los Alamos National Laboratory


    After giving the motivation for the work, slides present the topic under the following headings: Description of LAPD experiment; Actual simulation setup; Simple kinetic theory of ined-tied tearing; Diagnostics to characterizing 3D reconnection; Example #1 - short-tied system; and Example #2 - long line-tied system. Colorful simulations are shown for quasipotential vs field line exponentiation, field line integrated Ohms Law, and correlation with agyrotopy & energy conversion for example #1; and evolution of current density for largest case, field exponentiation vs quasi-potential, and time evolution of magnetic field lines for example #2. To satisfy line-tied boundary conditions, there is need for superposition of oblique modes--the simple two-mode approximation works surprisingly well. For force-free layers with bg >1, the fastest growing periodic modes are oblique with kxλ ~0.5. This implies a minimum length of Ly > 2πλbg. There are strong correlations between σ → Ξ → A0e (observable with spacecraft). Electron pressure tensor is the dominant non-ideal term.

  16. Simulation of the impact of 3-D porosity distribution in metallic U-10Zr fuels

    Yun, Di; Yacout, Abdellatif M.; Stan, Marius; Bauer, Theodore H.; Wright, Arthur E.


    Evolution of porosity generated in metallic U-Zr fuel irradiated in fast spectrum reactors leads to changes in fuel properties and impacts important phenomena such as heat transport and constituent redistribution. The porosity is generated as a result of the accumulation of fission gases and is affected by the possible bond sodium infiltration into the fuel. Typically, the impact of porosity development on properties, such as thermal conductivity, is accounted for through empirical correlations that are dependent on porosity and infiltrated sodium fractions. Currently available simulation tools make it possible to take into account fuel 3-D porosity distributions, potentially eliminating the need for such correlations. This development allows for a more realistic representation of the porosity evolution in metallic fuel and creates a framework for truly mechanistic fuel development models. In this work, COMSOL multi-physics simulation platform is used to model 3-D porosity distributions and simulate heat transport in metallic U-10Zr fuel. Available experimental data regarding microstructural evolution of fuel that was irradiated in EBR-II and associated phase stability information are used to guide the simulation. The impact of changes in porosity characteristics on material properties is estimated and the results are compared with calculated temperature distributions. The simulations demonstrate the developed capability and importance of accounting for detailed porosity distribution features for accurate fuel performance evaluation.

  17. Rise time of proton cut-off energy in 2D and 3D PIC simulations

    Babaei, Javad; Londrillo, Pasquale; Mirzanejad, Saeed; Rovelli, Tiziano; Sinigardi, Stefano; Turchetti, Giorgio


    The Target Normal Sheath Acceleration (TNSA) regime for proton acceleration by laser pulses is experimentally consolidated and fairly well understood. However, uncertainties remain in the analysis of particle-in-cell (PIC) simulation results. The energy spectrum is exponential with a cut-off, but the maximum energy depends on the simulation time, following different laws in two and three dimensional (2D, 3D) PIC simulations, so that the determination of an asymptotic value has some arbitrariness. We propose two empirical laws for rise time of the cut-off energy in 2D and 3D PIC simulations, suggested by a model in which the proton acceleration is due to a surface charge distribution on the target rear side. The kinetic energy of the protons that we obtain follows two distinct laws, which appear to be nicely satisfied by PIC simulations. The laws depend on two parameters: the scaling time, at which the energy starts to rise, and the asymptotic cut-off energy. The values of the cut-off energy, obtained by fitti...

  18. 3D printing of microtube in solid phantom to simulate tissue oxygenation and perfusion (Conference Presentation)

    Lv, Xiang; Xue, Yue; Wang, Haili; Shen, Shu Wei; Zhou, Ximing; Liu, Guangli; Dong, Erbao; Xu, Ronald X.


    Tissue-simulating phantoms with interior vascular network may facilitate traceable calibration and quantitative validation of many medical optical devices. However, a solid phantom that reliably simulates tissue oxygenation and blood perfusion is still not available. This paper presents a new method to fabricate hollow microtubes for blood vessel simulation in solid phantoms. The fabrication process combines ultraviolet (UV) rapid prototyping technique with fluid mechanics of a coaxial jet flow. Polydimethylsiloxane (PDMS) and a UV-curable polymer are mixed at the designated ratio and extruded through a coaxial needle device to produce a coaxial jet flow. The extruded jet flow is quickly photo-polymerized by ultraviolet (UV) light to form vessel-simulating solid structures at different sizes ranging from 700 μm to 1000 μm. Microtube structures with adequate mechanical properties can be fabricated by adjusting material compositions and illumination intensity. Curved, straight and stretched microtubes can be formed by adjusting the extrusion speed of the materials and the speed of the 3D printing platform. To simulate vascular structures in biologic tissue, we embed vessel-simulating microtubes in a gel wax phantom of 10 cm x10 cm x 5 cm at the depth from 1 to 2 mm. Bloods at different oxygenation and hemoglobin concentration levels are circulated through the microtubes at different flow rates in order to simulate different oxygenation and perfusion conditions. The simulated physiologic parameters are detected by a tissue oximeter and a laser speckle blood flow meter respectively and compared with the actual values. Our experiments demonstrate that the proposed 3D printing process is able to produce solid phantoms with simulated vascular networks for potential applications in medical device calibration and drug delivery studies.

  19. Simulations of Aperture Synthesis Imaging Radar for the EISCAT_3D Project

    La Hoz, C.; Belyey, V.


    EISCAT_3D is a project to build the next generation of incoherent scatter radars endowed with multiple 3-dimensional capabilities that will replace the current EISCAT radars in Northern Scandinavia. Aperture Synthesis Imaging Radar (ASIR) is one of the technologies adopted by the EISCAT_3D project to endow it with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. This ability will open new research opportunities to map small structures associated with non-homogeneous, unstable processes such as aurora, summer and winter polar radar echoes (PMSE and PMWE), Natural Enhanced Ion Acoustic Lines (NEIALs), structures excited by HF ionospheric heating, meteors, space debris, and others. To demonstrate the feasibility of the antenna configurations and the imaging inversion algorithms a simulation of synthetic incoherent scattering data has been performed. The simulation algorithm incorporates the ability to control the background plasma parameters with non-homogeneous, non-stationary components over an extended 3-dimensional space. Control over the positions of a number of separated receiving antennas, their signal-to-noise-ratios and arriving phases allows realistic simulation of a multi-baseline interferometric imaging radar system. The resulting simulated data is fed into various inversion algorithms. This simulation package is a powerful tool to evaluate various antenna configurations and inversion algorithms. Results applied to realistic design alternatives of EISCAT_3D will be described.

  20. Full Core 3-D Simulation of a Partial MOX LWR Core

    S. Bays; W. Skerjanc; M. Pope


    A comparative analysis and comparison of results obtained between 2-D lattice calculations and 3-D full core nodal calculations, in the frame of MOX fuel design, was conducted. This study revealed a set of advantages and disadvantages, with respect to each method, which can be used to guide the level of accuracy desired for future fuel and fuel cycle calculations. For the purpose of isotopic generation for fuel cycle analyses, the approach of using a 2-D lattice code (i.e., fuel assembly in infinite lattice) gave reasonable predictions of uranium and plutonium isotope concentrations at the predicted 3-D core simulation batch average discharge burnup. However, it was found that the 2-D lattice calculation can under-predict the power of pins located along a shared edge between MOX and UO2 by as much as 20%. In this analysis, this error did not occur in the peak pin. However, this was a coincidence and does not rule out the possibility that the peak pin could occur in a lattice position with high calculation uncertainty in future un-optimized studies. Another important consideration in realistic fuel design is the prediction of the peak axial burnup and neutron fluence. The use of 3-D core simulation gave peak burnup conditions, at the pellet level, to be approximately 1.4 times greater than what can be predicted using back-of-the-envelope assumptions of average specific power and irradiation time.

  1. Lorentz boosted frame simulation of Laser wakefield acceleration in quasi-3D geometry

    Yu, Peicheng; Davidson, Asher; Tableman, Adam; Dalichaouch, Thamine; Meyers, Michael D; Tsung, Frank S; Decyk, Viktor K; Fiuza, Frederico; Vieira, Jorge; Fonseca, Ricardo A; Lu, Wei; Silva, Luis O; Mori, Warren B


    When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at $\\beta_b c$ towards the laser, which can lead to a computational speedup of $\\sim \\gamma_b^2=(1-\\beta_b^2)^{-1}$. Meanwhile, when LWFA is modeled in the quasi-3D geometry in which the electromagnetic fields and current are decomposed into a limited number of azimuthal harmonics, speedups are achieved by modeling three dimensional problems with the computation load on the order of two dimensional $r-z$ simulations. Here, we describe how to combine the speed ups from the Lorentz boosted frame and quasi-3D algorithms. The key to the combination is the use of a hybrid Yee-FFT solver in the quasi-3D geometry that can be used to effectively eliminate the Numerical Cerenkov Instability (NCI) that inevitably arises in a Lorentz boosted frame due to the unphysical coupling of Langmuir modes and EM modes of the relativistically drifting plasma in these simul...

  2. 3D Monte Carlo simulation of light propagation for laser acupuncture and optimization of illumination parameters

    Zhong, Fulin; Li, Ting; Pan, Boan; Wang, Pengbo


    Laser acupuncture is an effective photochemical and nonthermal stimulation of traditional acupuncture points with lowintensity laser irradiation, which is advantageous in painless, sterile, and safe compared to traditional acupuncture. Laser diode (LD) provides single wavelength and relatively-higher power light for phototherapy. The quantitative effect of illumination parameters of LD in use of laser acupuncture is crucial for practical operation of laser acupuncture. However, this issue is not fully demonstrated, especially since experimental methodologies with animals or human are pretty hard to address to this issue. For example, in order to protect viability of cells and tissue, and get better therapeutic effect, it's necessary to control the output power varied at 5mW 10mW range, while the optimized power is still not clear. This study aimed to quantitatively optimize the laser output power, wavelength, and irradiation direction with highly realistic modeling of light transport in acupunctured tissue. A Monte Carlo Simulation software for 3D vowelized media and the highest-precision human anatomical model Visible Chinese Human (VCH) were employed. Our 3D simulation results showed that longer wavelength/higher illumination power, larger absorption in laser acupuncture; the vertical direction emission of the acupuncture laser results in higher amount of light absorption in both the acupunctured voxel of tissue and muscle layer. Our 3D light distribution of laser acupuncture within VCH tissue model is potential to be used in optimization and real time guidance in clinical manipulation of laser acupuncture.

  3. Feasibility of the integration of CRONOS, a 3-D neutronics code, into real-time simulators

    Ragusa, J.C. [CEA Saclay, Dept. de Mecanique et de Technologie, 91 - Gif-sur-Yvette (France)


    In its effort to contribute to nuclear power plant safety, CEA proposes the integration of an engineering grade 3-D neutronics code into a real-time plant analyser. This paper describes the capabilities of the neutronics code CRONOS to achieve a fast running performance. First, we will present current core models in simulators and explain their drawbacks. Secondly, the mean features of CRONOS's spatial-kinetics methods will be reviewed. We will then present an optimum core representation with respect to mesh size, choice of finite elements (FE) basis and execution time, for accurate results as well as the multi 1-D thermal-hydraulics (T/H) model developed to take into account 3-D effects in updating the cross-sections. A Main Steam Line Break (MSLB) End-of-Life (EOL) Hot-Zero-Power (HZP) accident will be used as an example, before we conclude with the perspectives of integrating CRONOS's 3-D core model into real-time simulators. (author)

  4. A hand-held 3D laser scanning with global positioning system of subvoxel precision

    Arias, Nestor [GOM, Departamento de Fisica y Geologia, Universidad de Pamplona (Colombia); Meneses, Nestor; Meneses, Jaime [GOTS-CENM, Escuela de Fisica, UIS, Bucaramanga (Colombia); Gharbi, Tijani, E-mail: [Departement D' Optique, FEMTO-ST, 16 Route de Gray, 25030 Besancon (France)


    In this paper we propose a hand-held 3D laser scanner composed of an optical head device to extract 3D local surface information and a stereo vision system with subvoxel precision to measure the position and orientation of the 3D optical head. The optical head is manually scanned over the surface object by the operator. The orientation and position of the 3D optical head is determined by a phase-sensitive method using a 2D regular intensity pattern. This phase reference pattern is rigidly fixed to the optical head and allows their 3D location with subvoxel precision in the observation field of the stereo vision system. The 3D resolution achieved by the stereo vision system is about 33 microns at 1.8 m with an observation field of 60cm x 60cm.

  5. Global Existence and Asymptotic Behavior of Affine Motion of 3D Ideal Fluids Surrounded by Vacuum

    Sideris, Thomas C.


    The 3D compressible and incompressible Euler equations with a physical vacuum free boundary condition and affine initial conditions reduce to a globally solvable Hamiltonian system of ordinary differential equations for the deformation gradient in {GL^+(3, R)}. The evolution of the fluid domain is described by a family of ellipsoids whose diameter grows at a rate proportional to time. Upon rescaling to a fixed diameter, the asymptotic limit of the fluid ellipsoid is determined by a positive semi-definite quadratic form of rank r = 1, 2, or 3, corresponding to the asymptotic degeneration of the ellipsoid along 3- r of its principal axes. In the compressible case, the asymptotic limit has rank r = 3, and asymptotic completeness holds, when the adiabatic index {γ} satisfies {4/3 adiabatic index {γ}. In the incompressible case, affine motion reduces to geodesic flow in {SL(3, R)} with the Euclidean metric. For incompressible affine swirling flow, there is a structural instability. Generically, when the vorticity is nonzero, the domains degenerate along only one axis, but the physical vacuum boundary condition fails over a finite time interval. The rescaled fluid domains of irrotational motion can collapse along two axes.

  6. Scale Effect Features During Simulation Tests of 3D Printer-Made Vane Pump Models

    A. I. Petrov


    Full Text Available The article "Scale effect features during simulation tests of 3D printer-made vane pump models" discusses the influence of scale effect on translation of pump parameters from models, made with 3D-prototyping methods, to full-scale pumps. Widely spread now 3D-printer production of pump model parts or entire layouts can be considered to be the main direction of vane pumps modeling. This is due to the widespread development of pumps in different CAD-systems and the significant cost reduction in manufacturing such layouts, as compared to casting and other traditional methods.The phenomenon of scale effect in vane hydraulic machines, i.e. violation of similarity conditions when translating pump parameters from model to full-scale pumps is studied in detail in the theory of similarity. However, as the experience in the 3d-printer manufacturing of models and their testing gains it becomes clear that accounting large-scale effect for such models has a number of differences from the conventional techniques. The reason for this is the features of micro and macro geometry of parts made in different kinds of 3D-printers (extrusive, and powder sintering methods, ultraviolet light, etc..The article considers the converting features of external and internal mechanical losses, leakages, and hydraulic losses, as well as the specifics of the balance tests for such models. It also presents the basic conversion formulas describing the factors affecting the value of these losses. It shows photographs of part surfaces of models, manufactured by 3D-printer and subjected to subsequent machining. The paper shows results of translation from several pump models (layouts to the full-scale ones, using the techniques described, and it also shows that the error in translation efficiency does not exceed 1.15%. The conclusion emphasizes the importance of the balance tests of models to accumulate statistical data on the scale effect for pump layouts made by different 3D

  7. PEPT: An invaluable tool for 3-D particle tracking and CFD simulation verification in hydrocyclone studies

    Hoffmann Alex C.


    Full Text Available Particle tracks in a hydrocyclone generated both experimentally by positron emission particle tracking (PEPT and numerically with Eulerian-Lagranian CFD have been studied and compared. A hydrocyclone with a cylinder-on-cone design was used in this study, the geometries used in the CFD simulations and in the experiments being identical. It is shown that it is possible to track a fast-moving particle in a hydrocyclone using PEPT with high temporal and spatial resolutions. The numerical 3-D particle trajectories were generated using the Large Eddy Simulation (LES turbulence model for the fluid and Lagrangian particle tracking for the particles. The behaviors of the particles were analyzed in detail and were found to be consistent between experiments and CFD simulations. The tracks of the particles are discussed and related to the fluid flow field visualized in the CFD simulations using the cross-sectional static pressure distribution.

  8. Lattice Boltzmann Method Simulation of 3-D Melting Using Double MRT Model with Interfacial Tracking Method

    Li, Zheng; Zhang, Yuwen


    Three-dimensional melting problems are investigated numerically with Lattice Boltzmann method (LBM). Regarding algorithm's accuracy and stability, Multiple-Relaxation-Time (MRT) models are employed to simplify the collision term in LBM. Temperature and velocity fields are solved with double distribution functions, respectively. 3-D melting problems are solved with double MRT models for the first time in this article. The key point for the numerical simulation of a melting problem is the methods to obtain the location of the melting front and this article uses interfacial tracking method. The interfacial tracking method combines advantages of both deforming and fixed grid approaches. The location of the melting front was obtained by calculating the energy balance at the solid-liquid interface. Various 3-D conduction controlled melting problems are solved firstly to verify the numerical method. Liquid fraction tendency and temperature distribution obtained from numerical methods agree with the analytical result...

  9. An innovative 3-D numerical modelling procedure for simulating repository-scale excavations in rock - SAFETI

    Young, R. P.; Collins, D.; Hazzard, J.; Heath, A. [Department of Earth Sciences, Liverpool University, 4 Brownlow street, UK-0 L69 3GP Liverpool (United Kingdom); Pettitt, W.; Baker, C. [Applied Seismology Consultants LTD, 10 Belmont, Shropshire, UK-S41 ITE Shrewsbury (United Kingdom); Billaux, D.; Cundall, P.; Potyondy, D.; Dedecker, F. [Itasca Consultants S.A., Centre Scientifique A. Moiroux, 64, chemin des Mouilles, F69130 Ecully (France); Svemar, C. [Svensk Karnbranslemantering AB, SKB, Aspo Hard Rock Laboratory, PL 300, S-57295 Figeholm (Sweden); Lebon, P. [ANDRA, Parc de la Croix Blanche, 7, rue Jean Monnet, F-92298 Chatenay-Malabry (France)


    This paper presents current results from work performed within the European Commission project SAFETI. The main objective of SAFETI is to develop and test an innovative 3D numerical modelling procedure that will enable the 3-D simulation of nuclear waste repositories in rock. The modelling code is called AC/DC (Adaptive Continuum/ Dis-Continuum) and is partially based on Itasca Consulting Group's Particle Flow Code (PFC). Results are presented from the laboratory validation study where algorithms and procedures have been developed and tested to allow accurate 'Models for Rock' to be produced. Preliminary results are also presented on the use of AC/DC with parallel processors and adaptive logic. During the final year of the project a detailed model of the Prototype Repository Experiment at SKB's Hard Rock Laboratory will be produced using up to 128 processors on the parallel super computing facility at Liverpool University. (authors)

  10. The current status of the development of the technology on 3D computer simulation in Japan

    Kim, Hee Reyoung; Park, Seung Kook; Chung, Un Soo; Jung, Ki Jung


    The development background and property of the COSIDA, which is the 3D computer simulation system for the analysis on the dismantling procedure of the nuclear facilities in Japan was reviewed. The function of the visualization on the work area, Kinematics analysis and dismantling scenario analysis, which are the sub systems of the COSIDA, has been investigated. The physical, geometrical and radiological properties were modelled in 2D or 3D in the sub system of the visualization of the work area. In the sub system of the kinematics analysis, the command set on the basic work procedure for the control of the motion of the models at a cyber space was driven. The suitability of the command set was estimated by the application of COSIDA to the programming on the motion of the remote dismantling tools for dismantling the components of the nuclear facilities at cyber space.

  11. Application of FUN3D Solver for Aeroacoustics Simulation of a Nose Landing Gear Configuration

    Vatsa, Veer N.; Lockard, David P.; Khorrami, Mehdi R.


    Numerical simulations have been performed for a nose landing gear configuration corresponding to the experimental tests conducted in the Basic Aerodynamic Research Tunnel at NASA Langley Research Center. A widely used unstructured grid code, FUN3D, is examined for solving the unsteady flow field associated with this configuration. A series of successively finer unstructured grids has been generated to assess the effect of grid refinement. Solutions have been obtained on purely tetrahedral grids as well as mixed element grids using hybrid RANS/LES turbulence models. The agreement of FUN3D solutions with experimental data on the same size mesh is better on mixed element grids compared to pure tetrahedral grids, and in general improves with grid refinement.

  12. Numerical simulations of self-propelled swimming of 3D bionic fish school


    Numerical simulations of self-propelled swimming of a three dimensional bionic fish and fish school in a viscous fluid are carried out. This is done with the assistance of a parallel software package produced for 3D moving boundary problems. This computational fluid dynamics package combines the adaptive multi-grid finite volume method, the immersed boundary method and VOF (volume of fluid) method. By using the package results of the self-propelled swimming of a 3D bionic fish and fish school in a vis- cous fluid are obtained. With comparison to the existing experimental measurements of living fishes, the predicted structure of vortical wakes is in good agreement with the measurements.

  13. Simulation of 3D chip shaping of aluminum alloy 7075 in milling processes

    DONG Hui-yue; KE Ying-lin


    By adopting an equivalent geometry model of machining process and considering thermo-plastic properties of the work material, a finite element method(FEM) to study oblique milling process of aluminum alloy with a double-edge tool was presented. In the FEM, shear flow stress was determined by material test. Re-meshing technology was used to represent chip separation process. Comparing the predicted cutting forces with the measured forces shows the 3D FEM is reasonable. Using this FEM, chip forming process and temperature distribution were predicted. Chips obtained by the 3D FEM are in spiral shape and are similar to the experimental ones. Distribution and change trend of temperature in the tool and chip indicate that contact length between tool rake face and chip is extending as tool moving forward. These results confirm the capability of FEM simulation in predicting chip flow and selecting optimal tool.

  14. 3D anisotropy simulation of dendrites growth with phase field method


    The anisotropy problem of 3D phase-field model was studied,and various degrees of anisotropy were simulated by numerical calculation method.The results show that with the change of interface anisotropy coefficients,from smooth transition to the appearance of angle,equilibrium crystals shape morphology has a critical value,and 3D critical value is 0.3.The growth of dendrites is stable and the interface is smooth when it is less than critical value;the interface is unstable,rolling edge appears and the growth is discontinuous when it is more than critical value.With the increase of anisotropy coefficients,the dendrites grow faster under the same condition.

  15. 3D Finite Volume Simulation of Accretion Discs with Spiral Shocks

    Makita, M; Makita, Makoto; Matsuda, Takuya


    We perform 2D and 3D numerical simulations of an accretion disc in a close binary system using the Simplified Flux vector Splitting (SFS) finite volume method. In our calculations, gas is assumed to be the ideal one, and we calculate the cases with gamma=1.01, 1.05, 1.1 and 1.2. The mass ratio of the mass losing star to the mass accreting star is unity. Our results show that spiral shocks are formed on the accretion disc in all cases. In 2D calculations we find that the smaller gamma is, the more tightly the spiral winds. We observe this trend in 3D calculations as well in somewhat weaker sense.

  16. Anomalous Surface Deformation of Sapphire Clarified by 3D-FEM Simulation of the Nanoindentation

    Nowak, Roman; Manninen, Timo; Li, Chunliang; Heiskanen, Kari; Hannula, Simo-Pekka; Lindroos, Veikko; Soga, Tetsuo; Yoshida, Fusahito

    This work clarifies the origin of anomalous surface deformation reflected by peculiar surface patterns around indentation impressions on various crystallographic planes of sapphire. The three-dimensional finite element simulation (3D-FEM) of nanoindentation in Al2O3 crystal allowed the authors to localize the regions in which various kinds of twinning and slip are most prone to be activated. The work provides a novel approach to the “hardness anisotropy”, which was modeled so far using a modified uniaxial-stress approximation of this essentially 3D, non-isotropic contact problem. The calculated results enabled the authors to unravel the asymmetric surface deformation detected on prismatic planes by the high-resolution microscopy, which cannot be explained using simple crystallographic considerations.

  17. 3D-MHD simulations of the evolution of magnetic fields in FR II radio sources

    Huarte-Espinosa, Martin; Alexander, Paul


    3D-MHD numerical simulations of bipolar, hypersonic, weakly magnetized jets and synthetic synchrotron observations are presented to study the structure and evolution of magnetic fields in FR II radio sources. The magnetic field setup in the jet is initially random. The power of the jets as well as the observational viewing angle are investigated. We find that synthetic polarization maps agree with observations and show that magnetic fields inside the sources are shaped by the jets' backflow. Polarimetry statistics correlates with time, the viewing angle and the jet-to-ambient density contrast. The magnetic structure inside thin elongated sources is more uniform than for ones with fatter cocoons. Jets increase the magnetic energy in cocoons, in proportion to the jet velocity. Both, filaments in synthetic emission maps and 3D magnetic power spectra suggest that turbulence develops in evolved sources.

  18. Water flow prediction for Membranes using 3D simulations with detailed morphology

    Shi, Meixia


    The membrane morphology significantly influences membrane performance. For osmotically driven membrane processes, the morphology strongly affects the internal concentration polarization. Different membrane morphologies were generated by simulation and their influence on membrane performance was studied, using a 3D model. The simulation results were experimentally validated for two classical phase-inversion membrane morphologies: sponge- and finger-like structures. Membrane porosity and scanning electron microscopy image information were used as model input. The permeance results from the simulation fit well the experimentally measured permeances. Water permeances were predicted for different kinds of finger-like cavity membranes with different finger-like cavity lengths and various finger-like cavity sets, as well as for membranes with cylindrical cavities. The results provide realistic information on how to increase water permeance, and also illustrate that membrane’s complete morphology is important for the accurate water permeance evaluation. Evaluations only based on porosity might be misleading, and the new 3D simulation approach gives a more realistic representation.

  19. Multiple-mode Lamb wave scattering simulations using 3D elastodynamic finite integration technique.

    Leckey, Cara A C; Rogge, Matthew D; Miller, Corey A; Hinders, Mark K


    We have implemented three-dimensional (3D) elastodynamic finite integration technique (EFIT) simulations to model Lamb wave scattering for two flaw-types in an aircraft-grade aluminum plate, a rounded rectangle flat-bottom hole and a disbond of the same shape. The plate thickness and flaws explored in this work include frequency-thickness regions where several Lamb wave modes exist and sometimes overlap in phase and/or group velocity. For the case of the flat-bottom hole the depth was incrementally increased to explore progressive changes in multiple-mode Lamb wave scattering due to the damage. The flat-bottom hole simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining unexpected results in experimental waveforms. For the rounded rectangle disbond flaw, which would be difficult to implement experimentally, we found that Lamb wave behavior differed significantly from the flat-bottom hole flaw. Most of the literature in this field is restricted to low frequency-thickness regions due to difficulties in interpreting data when multiple modes exist. We found that benchmarked 3D EFIT simulations can yield an understanding of scattering behavior for these higher frequency-thickness regions and in cases that would be difficult to set up experimentally. Additionally, our results show that 2D simulations would not have been sufficient for modeling the complicated scattering that occurred.

  20. Magnetospheric Magnetic Reconnection with Southward IMF by a 3D EMPM Simulation

    Nishikawa, K.-I.; Yan, X. Y.; Cai, D. S.; Lembege, B.


    We report our new simulation results on magnetospheric magnetic reconnection with southward IMF using a 3D EMPM model, with greater resolution and more particles using the parallelized 3D HPF TRISTAN code on VPP5000 supercomputer. Main parameters used in the new simulation are: domain size is 215 x 145 x 145, grid size = 0.5 Earth radius, initial particle number is 16 per cell, the IMF is southward. Arrival of southward IMF will cause reconnection in the magnetopause, thus allowing particles to enter into the inner magnetosphere. Sunward and tailward high particle flow are observed by satellites, and these phenomena are also observed in the simulation near the neutral line (X line) of the near-Earth magnetotail. This high particle flow goes along with the reconnected island. The magnetic reconnection process contributes to direct plasma entry between the magnetosheath to the inner magnetosphere and plasma sheet, in which the entry process eats the magnetosheath plasma to plasma sheet temperatures. We investigate magnetic, electric fields, density, and current during this magnetic reconnection with southward IMF. Further investigation with this simulation will provide insight into unsolved problems, such as the triggering of storms and substorms, and the storm-substorm relationship. New results will be presented at the meeting.

  1. Novel 3D/VR interactive environment for MD simulations, visualization and analysis.

    Doblack, Benjamin N; Allis, Tim; Dávila, Lilian P


    The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced.

  2. 3D Simulation of Dam-break effect on a Solid Wall using Smoothed Particle Hydrodynamics

    Suprijadi,; Naa, Christian; Putra, Anggy Trisnawan


    Dam is built for water supply, water flow or flooding control and electricity energy storage, but in other hand, dam is one of the most dangerous natural disaster in many countries including in Indonesia. The impact of dam break in neighbour area and is huge and many flooding in remote area, as happen in Dam Situ Gintung in Tangerang (close to Jakarta) in 2009. Smoothed Particle Hydrodynamics (SPH), is one of numerical method based on Lagrangian grid which is ap- plied in astrophysical simulation may be used to solve the simulation on dam break effect. The development of SPH methods become alternative methods to solving Navier Stokes equation, which is main key in fluid dynamic simulation. In this paper, SPH is developed for supporting solid par- ticles in use for 3D dam break effect (3D-DBE) simulation. Solid particle have been treated same as fluid particles with additional calculation for converting gained position became translation and rotation of solid object in a whole body. With this capability, the r...

  3. Fast thermal simulations and temperature optimization for hyperthermia treatment planning, including realistic 3D vessel networks.

    Kok, H P; van den Berg, C A T; Bel, A; Crezee, J


    Accurate thermal simulations in hyperthermia treatment planning require discrete modeling of large blood vessels. The very long computation time of the finite difference based DIscrete VAsculature model (DIVA) developed for this purpose is impractical for clinical applications. In this work, a fast steady-state thermal solver was developed for simulations with realistic 3D vessel networks. Additionally, an efficient temperature-based optimization method including the thermal effect of discrete vasculature was developed. The steady-state energy balance for vasculature and tissue was described by a linear system, which was solved with an iterative method on the graphical processing unit. Temperature calculations during optimization were performed by superposition of several precomputed temperature distributions, calculated with the developed thermal solver. The thermal solver and optimization were applied to a human anatomy, with the prostate being the target region, heated with the eight waveguide 70 MHz AMC-8 system. Realistic 3D pelvic vasculature was obtained from angiography. Both the arterial and venous vessel networks consisted of 174 segments and 93 endpoints with a diameter of 1.2 mm. Calculation of the steady-state temperature distribution lasted about 3.3 h with the original DIVA model, while the newly developed method took only ≈ 1-1.5 min. Temperature-based optimization with and without taking the vasculature into account showed differences in optimized waveguide power of more than a factor 2 and optimized tumor T90 differed up to ≈ 0.5°C. This shows the necessity to take discrete vasculature into account during optimization. A very fast method was developed for thermal simulations with realistic 3D vessel networks. The short simulation time allows online calculations and makes temperature optimization with realistic vasculature feasible, which is an important step forward in hyperthermia treatment planning.

  4. Modeling simulation and visualization of conformal 3D lung tumor dosimetry

    Santhanam, Anand; Willoughby, Twyla R; Meeks, Sanford L; Kupelian, Patrick A [Department of Radiation Oncology, M D Anderson Cancer Center Orlando, 1400S Orange Ave., Orlando, FL 32806 (United States); Rolland, Jannick P [College of Optics and Photonics, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816 (United States)


    Lung tumors move during breathing depending on the patient's patho-physiological condition and orientation, thereby compromising the accurate deposition of the radiation dose during radiotherapy. In this paper, we present and validate a computer-based simulation framework to calculate the delivered dose to a 3D moving tumor and its surrounding normal tissues. The computer-based simulation framework models a 3D volumetric lung tumor and its surrounding tissues, simulates the tumor motion during a simulated dose delivery both as a self-reproducible motion and a random motion using the dose extracted from a treatment plan, and predicts the amount and location of radiation doses deposited. A radiation treatment plan of a small lung tumor (1-3 cm diameter) was developed in a commercial planning system (iPlan software, BrainLab, Munich, Germany) to simulate the radiation dose delivered. The dose for each radiation field was extracted from the software. The tumor motion was simulated for varying values of its rate, amplitude and direction within a single breath as well as from one breath to another. Such variations represent the variations in tumor motion induced by breathing variations. During the simulation of dose delivery, the dose on the target was summed to generate the real-time dose to the tumor for each beam independently. The simulation results show that the dose accumulated on the tumor varies significantly with both the tumor size and the tumor's motion rate, amplitude and direction. For a given tumor motion rate, amplitude and direction, the smaller the tumor size the smaller is the percentage of the radiation dose accumulated. The simulation results are validated by comparing the center plane of the 3D tumor with 2D film dosimetry measurements using a programmable 4D motion phantom moving in a self-reproducible pattern. The results also show the real-time capability of the framework at 40 discrete tumor motion steps per breath, which is higher than

  5. Nanoelectronic Modeling (NEMO): Moving from commercial grade 1-D simulation to prototype 3-D simulation

    Klimeck, Gerhard


    The quantum mechanical functionality of commercially pursued heterostructure devices such as resonant tunneling diodes (RTDs), quantum well infrared photodetectors, and quantum well lasers are enabled by material variations on an atomic scale. The creation of these heterostructure devices is realized in a vast design space of material compositions, layer thicknesses and doping profiles. The full experimental exploration of this design space is unfeasible and a reliable design tool is needed. The Nanoelectronic Modeling tool (NEMO) is one of the first commercial grade attempts for such a modeling tool. NEMO was developed as a general-purpose quantum mechanics-based 1-D device design and analysis tool from 1993-97 by the Central Research Laboratory of Texas Instruments (later Raytheon Systems). NEMO enables(R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, J. Appl. Phys. 81), 7845 (1997). the fundamentally sound inclusion of the required(G. Klimeck et al.), in the 1997 55th Annual Device Research Conference Digest, (IEEE, NJ, 1997), p. 92^,(R. C. Bowen et al.), J. Appl. Phys 81, 3207 (1997). physics: bandstructure, scattering, and charge self-consistency based on the non-equilibrium Green function approach. A new class of devices which require full 3-D quantum mechanics based models is starting to emerge: quantum dots, or in general semiconductor based deca-nano devices. We are currently building a 3-D modeling tool based on NEMO to include the important physics to understand electronic stated in such superscaled structures. This presentation will overview various facets of the NEMO 1-D tool such electron transport physics in RTDs, numerical technology, software engineering and graphical user interface. The lessons learned from that work are now entering the NEMO 3-D development and first results using the NEMO 3-D prototype will be shown. More information about the publically available NEMO 1-D executables can be found at PEP/gekco/nemo

  6. Computer Simulation of Robotic Device Components in 3D Printer Manufacturing

    M. A. Kiselev


    Full Text Available The paper considers a relevant problem "Computer simulation of robotic device components in manufacturing on a 3D printer" and highlights the problem of computer simulation based on the cognitive programming technology of robotic device components. The paper subject is urgent because computer simulation of force-torque and accuracy characteristics of robot components in terms of their manufacturing properties and conditions from polymeric and metallic materials is of paramount importance for programming and manufacturing on the 3D printers. Two types of additive manufacturing technologies were used:1. FDM (Fused deposition modeling - layered growth of products from molten plastic strands;2. SLM (Selective laser melting - selective laser sintering of metal powders, which, in turn, create:• conditions for reducing the use of expensive equipment;• reducing weight and increasing strength through optimization of  the lattice structures when using a bionic design;• a capability to implement mathematical modeling of individual components of robotic and other devices in terms of appropriate characteristics;• a 3D printing capability to create unique items, which cannot be made by other known methods.The paper aim was to confirm the possibility of ensuring the strength and accuracy characteristics of cases when printing from polymeric and metallic materials on a 3D printer. The investigation emphasis is on mathematical modeling based on the cognitive programming technology using the additive technologies in their studies since it is, generally, impossible to make the obtained optimized structures on the modern CNC machines.The latter allows us to create a program code to be clear to other developers without cost, additional time for development, adaptation and implementation.Year by year Russian companies increasingly use a 3D-print system in mechanical engineering, aerospace industry, and for scientific purposes. Machines for the additive

  7. Comparison between the 3D numerical simulation and experiment of the bubble near different boundaries


    Based on the potential flow theory, the vortex ring is introduced to simulate the toroidal bubble, and the boundary element method is applied to simulate the evo- lution of the bubble. Elastic-plasticity of structure being taken into account, the interaction between the bubble and the elastic-plastic structure is computed by combining the boundary element method (BEM) and the finite element method (FEM), and a corresponding 3D computing program is developed. This program is used to simulate the three-dimensional bubble dynamics in free field, near wall and near the elastic-plastic structure, and the numerical results are compared with the existing experimental results. The error is within 10%. The effects of different boundaries upon the bubble dynamics are presented by studying the bubble dy- namics near different boundaries.

  8. 3D simulations of gyrosynchrotron emission from mildly anisotropic nonuniform electron distributions in symmetric magnetic loops

    Kuznetsov, Alexey A; Fleishman, Gregory D


    Microwave emission of solar flares is formed primarily by incoherent gyrosynchrotron radiation generated by accelerated electrons in coronal magnetic loops. The resulting emission depends on many factors, including pitch-angle distribution of the emitting electrons and the source geometry. In this work, we perform systematic simulations of solar microwave emission using recently developed tools (GS Simulator and fast gyrosynchrotron codes) capable of simulating maps of radio brightness and polarization as well as spatially resolved emission spectra. A 3D model of a symmetric dipole magnetic loop is used. We compare the emission from isotropic and anisotropic (of loss-cone type) electron distributions. We also investigate effects caused by inhomogeneous distribution of the emitting particles along the loop. It is found that effect of the adopted moderate electron anisotropy is the most pronounced near the footpoints and it also depends strongly on the loop orientation. Concentration of the emitting particles a...

  9. hp-HGS strategy for inverse 3D DC resistivity logging measurement simulations

    Gajda-Zaǵorska, Ewa


    In this paper we present a twin adaptive strategy hp-HGS for solving inverse problems related to 3D DC borehole resistivity measurement simulations. The term “simulation of measurements” is widely used by the geophysical community. A quantity of interest, voltage, is measured at a receiver electrode located in the logging instrument. We use the self-adaptive goal-oriented hp-Finite Element Method (hp-FEM) computer simulations of the process of measurements in deviated wells (when the angle between the borehole and formation layers are < 90 deg). We also employ the hierarchical genetic search (HGS) algorithm to solve the inverse problem. Each individual in the population represents a single configuration of the formation layers. The evaluation of the individual is performed by solving the direct problem by means of the hp-FEM algorithm and by comparison with measured logging curve. We conclude the paper with some discussion on the parallelization of the algorithm.

  10. pF3D Simulations of SBS and SRS in NIF Hohlraum Experiments

    Langer, Steven; Strozzi, David; Amendt, Peter; Chapman, Thomas; Hopkins, Laura; Kritcher, Andrea; Sepke, Scott


    We present simulations of stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) for NIF experiments using high foot pulses in cylindrical hohlraums and for low foot pulses in rugby-shaped hohlraums. We use pF3D, a massively-parallel, paraxial-envelope laser plasma interaction code, with plasma profiles obtained from the radiation-hydrodynamics codes Lasnex and HYDRA. We compare the simulations to experimental data for SBS and SRS power and spectrum. We also show simulated SRS and SBS intensities at the target chamber wall and report the fraction of the backscattered light that passes through and misses the lenses. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Release number LLNL-ABS-697482.

  11. Detecting drug use in adolescents using a 3D simulation program

    Luis Iribarne


    Full Text Available This work presents a new 3D simulation program, called MiiSchool, and its application to the detection of problem behaviours appearing in school settings. We begin by describing some of the main features of the Mii School program. Then, we present the results of a study in which adolescents responded to Mii School simulations involving the consumption of alcoholic drinks, cigarettes, cannabis, cocaine, and MDMA (ecstasy. We established a“risk profile” based on the observed response patterns. We also present results concerning user satisfaction with the program and the extent to which users felt that the simulated scenes were realistic. Lastly, we discuss the usefulness of Mii School as a tool for assessing drug use in school settings.

  12. Numerical Simulations of Flow in a 3-D Supersonic Intake at High Mach Numbers

    R. Sivakumar


    Full Text Available Numerical simulations of the compressible, 3-D non reacting flow in the engine inlet sectionof a concept hypersonic air-breathing vehicle are presented. These simulations have been carriedout using FLUENT. For all the results reported, the mesh has been refined to achieve areaaveragedwall y+ about 105. Mass flow rate through the intake and stagnation pressure recoveryare used to compare the performance at various angles of attack. The calculations are able topredict the mode of air-intake operation (critical and subcritical for different angles of attack.Flow distortion at the intake for various angles of attack is also calculated and discussed. Thenumerical results are validated by simulating the flow through a 2-D mixed compression hypersonicintake model and comparing with the experimental data.

  13. Fabrication of cerebral aneurysm simulator with a desktop 3D printer.

    Liu, Yu; Gao, Qing; Du, Song; Chen, ZiChen; Fu, JianZhong; Chen, Bing; Liu, ZhenJie; He, Yong


    Now, more and more patients are suffering cerebral aneurysm. However, long training time limits the rapid growth of cerebrovascular neurosurgeons. Here we developed a novel cerebral aneurysm simulator which can be better represented the dynamic bulging process of cerebral aneurysm The proposed simulator features the integration of a hollow elastic vascular model, a skull model and a brain model, which can be affordably fabricated at the clinic (Fab@Clinic), under $25.00 each with the help of a low-cost desktop 3D printer. Moreover, the clinical blood flow and pulsation pressure similar to the human can be well simulated, which can be used to train the neurosurgical residents how to clip aneurysms more effectively.

  14. Spectra of Full 3-D PIC Simulations of Finite Meteor Trails

    Tarnecki, L. K.; Oppenheim, M. M.


    Radars detect plasma trails created by the billions of small meteors that impact the Earth's atmosphere daily, returning data used to infer characteristics of the meteoroid population and upper atmosphere. Researchers use models to investigate the dynamic evolution of the trails. Previously, all models assumed a trail of infinite length, due to the constraints of simulation techniques. We present the first simulations of 3D meteor trails of finite length. This change more accurately captures the physics of the trails. We characterize the turbulence that develops as the trail evolves and study the effects of varying the external electric field, altitude, and initial density. The simulations show that turbulence develops in all cases, and that trails travel with the neutral wind rather than electric field. Our results will allow us to draw more detailed and accurate information from non-specular radar observations of meteors.

  15. Simulating Growth Kinetics in a Data-Parallel 3D Lattice Photobioreactor

    A. V. Husselmann


    Full Text Available Though there have been many attempts to address growth kinetics in algal photobioreactors, surprisingly little have attempted an agent-based modelling (ABM approach. ABM has been heralded as a method of practical scientific inquiry into systems of a complex nature and has been applied liberally in a range of disciplines including ecology, physics, social science, and microbiology with special emphasis on pathogenic bacterial growth. We bring together agent-based simulation with the Photosynthetic Factory (PSF model, as well as certain key bioreactor characteristics in a visual 3D, parallel computing fashion. Despite being at small scale, the simulation gives excellent visual cues on the dynamics of such a reactor, and we further investigate the model in a variety of ways. Our parallel implementation on graphical processing units of the simulation provides key advantages, which we also briefly discuss. We also provide some performance data, along with particular effort in visualisation, using volumetric and isosurface rendering.

  16. Fabrication of cerebral aneurysm simulator with a desktop 3D printer

    Liu, Yu; Gao, Qing; Du, Song; Chen, Zichen; Fu, Jianzhong; Chen, Bing; Liu, Zhenjie; He, Yong


    Now, more and more patients are suffering cerebral aneurysm. However, long training time limits the rapid growth of cerebrovascular neurosurgeons. Here we developed a novel cerebral aneurysm simulator which can be better represented the dynamic bulging process of cerebral aneurysm The proposed simulator features the integration of a hollow elastic vascular model, a skull model and a brain model, which can be affordably fabricated at the clinic (Fab@Clinic), under $25.00 each with the help of a low-cost desktop 3D printer. Moreover, the clinical blood flow and pulsation pressure similar to the human can be well simulated, which can be used to train the neurosurgical residents how to clip aneurysms more effectively.

  17. 3-D Simulations of Plasma Wakefield Acceleration with Non-Idealized Plasmas and Beams

    Deng, S.; Katsouleas, T.; Lee, S.; Muggli, P.; /Southern California U.; Mori, W.B.; Hemker, R.; Ren, C.; Huang, C.; Dodd, E.; Blue, B.E.; Clayton, C.E.; Joshi, C.; Wang,; /UCLA; Decker, F.J.; Hogan, M.J.; Iverson, R.H.; O' Connell, C.; Raimondi, P.; Walz, D.; /SLAC


    3-D Particle-in-cell OSIRIS simulations of the current E-162 Plasma Wakefield Accelerator Experiment are presented in which a number of non-ideal conditions are modeled simultaneously. These include tilts on the beam in both planes, asymmetric beam emittance, beam energy spread and plasma inhomogeneities both longitudinally and transverse to the beam axis. The relative importance of the non-ideal conditions is discussed and a worst case estimate of the effect of these on energy gain is obtained. The simulation output is then propagated through the downstream optics, drift spaces and apertures leading to the experimental diagnostics to provide insight into the differences between actual beam conditions and what is measured. The work represents a milestone in the level of detail of simulation comparisons to plasma experiments.

  18. Virtual experimentation through 3D full-loop simulation of a circulating fluidized bed


    Eulerian granular multiphase model with a drag coefficient correction based on the energy-minimization multi-male (EMMS) model was used to simulate a semi-industry scale circulating fiuidized bed (CFB).Three-dimensional(3D), time-dependent simulation of a full-loop CFB revealed that the axial profiles of cross-sectionally averaged solid volume fraction,and the radial profiles of solid axial velocity and solid volume fraction were in reasonable agreement with experimental data.Based on this agreement,database derived from experiments not yet accomplished was replenished with such simulations, and fluid regime diagrams and pressure balance around the CFB loop were derived accordingly. This work presents an integrated viewpoint on CFB and unfolds a fresh paradigm fur CFB modeling, which can be expected to help resolve certain issues long in dispute but hard for experiments.

  19. Characterizing the propagation of gravity waves in 3D nonlinear simulations of solar-like stars

    Alvan, L; Brun, A S; Mathis, S; Garcia, R A


    The revolution of helio- and asteroseismology provides access to the detailed properties of stellar interiors by studying the star's oscillation modes. Among them, gravity (g) modes are formed by constructive interferences between progressive internal gravity waves (IGWs), propagating in stellar radiative zones. Our new 3D nonlinear simulations of the interior of a solar-like star allows us to study the excitation, propagation, and dissipation of these waves. The aim of this article is to clarify our understanding of the behavior of IGWs in a 3D radiative zone and to provide a clear overview of their properties. We use a method of frequency filtering that reveals the path of {individual} gravity waves of different frequencies in the radiative zone. We are able to identify the region of propagation of different waves in 2D and 3D, to compare them to the linear raytracing theory and to distinguish between propagative and standing waves (g modes). We also show that the energy carried by waves is distributed in d...

  20. Recent Developments in the VISRAD 3-D Target Design and Radiation Simulation Code

    Macfarlane, Joseph; Woodruff, P.; Golovkin, I.


    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e . g . , that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. VISRAD includes a variety of user-friendly graphics for setting up targets and displaying results, can readily display views from any point in space, and can be used to generate image sequences for animations. We will discuss recent improvements to the software package and plans for future developments.

  1. High-resolution 3D simulations of NIF ignition targets performed on Sequoia with HYDRA

    Marinak, M. M.; Clark, D. S.; Jones, O. S.; Kerbel, G. D.; Sepke, S.; Patel, M. V.; Koning, J. M.; Schroeder, C. R.


    Developments in the multiphysics ICF code HYDRA enable it to perform large-scale simulations on the Sequoia machine at LLNL. With an aggregate computing power of 20 Petaflops, Sequoia offers an unprecedented capability to resolve the physical processes in NIF ignition targets for a more complete, consistent treatment of the sources of asymmetry. We describe modifications to HYDRA that enable it to scale to over one million processes on Sequoia. These include new options for replicating parts of the mesh over a subset of the processes, to avoid strong scaling limits. We consider results from a 3D full ignition capsule-only simulation performed using over one billion zones run on 262,000 processors which resolves surface perturbations through modes l = 200. We also report progress towards a high-resolution 3D integrated hohlraum simulation performed using 262,000 processors which resolves surface perturbations on the ignition capsule through modes l = 70. These aim for the most complete calculations yet of the interactions and overall impact of the various sources of asymmetry for NIF ignition targets. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  2. 3D printing of tissue-simulating phantoms for calibration of biomedical optical devices

    Zhao, Zuhua; Zhou, Ximing; Shen, Shuwei; Liu, Guangli; Yuan, Li; Meng, Yuquan; Lv, Xiang; Shao, Pengfei; Dong, Erbao; Xu, Ronald X.


    Clinical utility of many biomedical optical devices is limited by the lack of effective and traceable calibration methods. Optical phantoms that simulate biological tissues used for optical device calibration have been explored. However, these phantoms can hardly simulate both structural and optical properties of multi-layered biological tissue. To address this limitation, we develop a 3D printing production line that integrates spin coating, light-cured 3D printing and Fused Deposition Modeling (FDM) for freeform fabrication of optical phantoms with mechanical and optical heterogeneities. With the gel wax Polydimethylsiloxane (PDMS), and colorless light-curable ink as matrix materials, titanium dioxide (TiO2) powder as the scattering ingredient, graphite powder and black carbon as the absorption ingredient, a multilayer phantom with high-precision is fabricated. The absorption and scattering coefficients of each layer are measured by a double integrating sphere system. The results demonstrate that the system has the potential to fabricate reliable tissue-simulating phantoms to calibrate optical imaging devices.

  3. Integrated ray tracing simulation of spectral bio-signatures from full 3D earth model

    Ryu, Dongok; Seong, Sehyun; Lee, Jae-Min; Hong, Jinsuk; Jeong, Soomin; Jeong, Yukyeong; Kim, Sug-Whan


    Accurate identification and understanding of spectral bio-signatures from possible extra terrestrial planets have received an ever increasing attention from both astronomy and space science communities in recent years. In pursuance of this subject, one of the most important scientific breakthroughs would be to obtain the detailed understanding on spectral biosignatures of the Earth, as it serves as a reference datum for accurate interpretation of collapsed (in temporal and spatial domains) information from the spectral measurement using TPF instruments. We report a new Integrated Ray Tracing (IRT) model capable of computing various spectral bio-signatures as they are observed from the Earth surface. The model includes the Sun, the full 3-D Earth, and an optical instrument, all combined into single ray tracing environment in real scale. In particular, the full 3-D Earth surface is constructed from high resolution coastal line data and defined with realistic reflectance and BSDF characteristics depending on wavelength, vegetation types and their distributions. We first examined the model validity by confirming the imaging and radiometric performance of the AmonRa visible channel camera, simulating the Earth observation from the L1 halo orbit. We then computed disk averaged spectra, light curves and NDVI indexes, leading to the construction of the observed disk averaged spectra at the AmonRa instrument detector plane. The model, computational procedure and the simulation results are presented. The future plan for the detailed spectral signature simulation runs for various input conditions including seasonal vegetation changes and variable cloud covers is discussed.

  4. 3D Simulation of Storm Surge Disaster Based on Scenario Analysis

    王晓玲; 孙小沛; 张胜利; 孙蕊蕊; 李瑞金; 朱泽彪


    The occurrence of storm surge disaster is often accompanied with floodplain, overflow, dike breach and other complex phenomena, while current studies on storm surge flooding are more concentrated on the 1D/2D numerical simulation of single disaster scenario (floodplain, overflow or dike breach), ignoring the composite ef-fects of various phenomena. Therefore, considering the uncertainty in the disaster process of storm surge, scenario analysis was firstly proposed to identify the composite disaster scenario including multiple phenomena by analyzing key driving forces, building scenario matrix and deducing situation logic. Secondly, by combining the advantages of k-ωand k-εmodels in the wall treatment, a shear stress transmission k-ωmodel coupled with VOF was proposed to simulate the 3D flood routing for storm surge disaster. Thirdly, risk degree was introduced to make the risk analysis of storm surge disaster. Finally, based on the scenario analysis, four scenarios with different storm surge intensity (100-year and 200-year frequency) were identified in Tianjin Binhai New Area. Then, 3D numerical simulation and risk map were made for the case.

  5. 3-D-numerical approach to simulate an avalanche impact into a reservoir

    R. Gabl


    Full Text Available The impact of an avalanche into a reservoir induces an impulse wave, which poses a threat to population and infrastructure. For a good approximation of the generated wave height and length as well as the resulting outflow volume over structures and dams, formulas, which base on different simplifying assumptions, can be used. Further project-specific investigations by means of a scale model test or numerical simulations are advisable for complex reservoirs as well as the inclusion of hydraulic structures such as spillways. The paper presents a new approach for a 3-D-numerical simulation of an avalanche impact into a reservoir. In this model concept the energy and mass of the avalanche are represented by accelerated water on the real hill slope. Instead of snow, only water and air are used to simulate the moving avalanche with the software FLOW-3D. A significant advantage of this assumption is the self-adaptation of the model avalanche onto the terrain. In order to reach good comparability of the results with existing research at the ETH Zürich, a simplified reservoir geometry is investigated. Thus, a reference case has been analysed including a variation of three geometry parameters (still water depth in the reservoir, freeboard of the dam and reservoir width.

  6. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.


    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  7. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Rimjaem, S., E-mail: [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand); Kusoljariyakul, K.; Thongbai, C. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand)


    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012{sup ©}. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  8. 3D numerical simulation of the evolutionary process of aeolian downsized crescent-shaped dunes

    Zhou, Xiaosi; Zhang, Yang; Wang, Yuan; Li, Min


    A dune constitutive model was coupled with a large eddy simulation (LES) with the Smagorinsky subgrid-scale (SGS) model to accurately describe the evolutionary process of dunes from the macroscopic perspective of morphological dynamics. A 3D numerical simulation of the evolution of aeolian downsized crescent-shaped dunes was then performed. The evolution of the 3D structure of Gaussian-shaped dunes was simulated under the influence of gravity modulation, which was the same with the vertical oscillation of the sand bed to adjust the threshold of sand grain liftoff in wind tunnel experiments under the same wind speed. The influence of gravity modulation intensity on the characteristic scale parameter of the dune was discussed. Results indicated that the crescent shape of the dune was reproduced with the action of gravity during regulation of the saturation of wind-sand flow at specific times. The crescent shape was not dynamically maintained as time passed, and the dunes dwindled until they reached final decomposition because of wind erosion. The height of the dunes decreased over time, and the height-time curve converged as the intensity of modulation increased linearly. The results qualitatively agreed with those obtained from wind tunnel experiments.

  9. Numerical Simulation of the Protective Effect of Complex Boundaries Toward Shock Waves in a 3D Explosive Field

    吴开腾; 宁建国


    A numerical method is presented that simulates 3D explosive field problems. A code MMIC3D using this method can be used to simulate the propagation and reflected effects of all kinds of rigid boundaries to shock waves produced by an explosive source. These numerical results indicate that the code MMIC3D has the ability in computing cases such as 3D shock waves produced by air explosion, vortex region of the shock wave, the Mach wave, and reflected waves behind rigid boundaries.



    The 3-D complex turbulent flow fields in aplunge pool with arciform bottom are simulated by using thek-ε model in body-fitted coordinates. The calculated results re-veal the flow characteristics in the arciform plunge pool underthe different flood discharge conditions, which can not be easi-ly obtained in the physical model test because the measure-ment of the complex velocity is very difficult. The calculatedflow fields are helpful to understand in depth the hydrauliccharacteristics of plunge pool. The calculated and the meas-ured pressure distributions on the pool bottom are comparedand in good agreement.

  11. Numerical simulation of a combined oxidation ditch flow using 3D k-εturbulence model

    LUO Lin; LI Wei-min; DENG Yong-sen; WANG Tao


    The standard three dimensional(3D) k-ε turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Comparison of the computed and the measured data is acceptable. A vertical reverse flow zone in the ditch was found, and it played a very important role in the ditch flow behavior. The flow pattern in the ditch is discussed in detail, and approaches are suggested to improve the hydrodynamic performance in the ditch.

  12. Coupling Magnetic Fields and ALE Hydrodynamics for 3D Simulations of MFCG's

    White, D; Rieben, R; Wallin, B


    We review the development of a full 3D multiphysics code for the simulation of explosively driven Magnetic Flux Compression Generators (MFCG) and related pulse power devices. In a typical MFCG the device is seeded with an initial electric current and the device is then detonated. The detonation compresses the magnetic field and amplifies the current. This is a multiphysics problem in that detonation kinetics, electromagnetic diffusion and induction, material deformation, and thermal effects are all important. This is a tightly coupled problem in that the different physical quantities have comparable spatial and temporal variation, and hence should be solved simultaneously on the same computational mesh.

  13. Calibrating the Micromechanical Parameters of the PFC2D(3D Models Using the Improved Simulated Annealing Algorithm

    Min Wang


    Full Text Available PFC2D(3D is commercial software, which is commonly used to model the crack initiation of rock and rock-like materials. For the PFC2D(3D numerical simulation, a proper set of microparameters need to be determined before the numerical simulation. To obtain a proper set of microparameters for PFC2D(3D model based on the macroparameters obtained from physical experiments, a novel technique has been carried out in this paper. The improved simulated annealing algorithm was employed to calibrate the microparameters of the numerical simulation model of PFC2D(3D. A Python script completely controls the calibration process, which can terminate automatically based on a termination criterion. The microparameter calibration process is not based on establishing the relationship between microparameters and macroparameters; instead, the microparameters are calibrated according to the improved simulated annealing algorithm. By using the proposed approach, the microparameters of both the contact-bond model and parallel-bond model in PFC2D(3D can be determined. To verify the validity of calibrating the microparameters of PFC2D(3D via the improved simulated annealing algorithm, some examples were selected from the literature. The corresponding numerical simulations were performed, and the numerical simulation results indicated that the proposed method is reliable for calibrating the microparameters of PFC2D(3D model.

  14. Uncertainty analysis in 3D global models: Aerosol representation in MOZART-4

    Gasore, J.; Prinn, R. G.


    The Probabilistic Collocation Method (PCM) has been proven to be an efficient general method of uncertainty analysis in atmospheric models (Tatang et al 1997, Cohen&Prinn 2011). However, its application has been mainly limited to urban- and regional-scale models and chemical source-sink models, because of the drastic increase in computational cost when the dimension of uncertain parameters increases. Moreover, the high-dimensional output of global models has to be reduced to allow a computationally reasonable number of polynomials to be generated. This dimensional reduction has been mainly achieved by grouping the model grids into a few regions based on prior knowledge and expectations; urban versus rural for instance. As the model output is used to estimate the coefficients of the polynomial chaos expansion (PCE), the arbitrariness in the regional aggregation can generate problems in estimating uncertainties. To address these issues in a complex model, we apply the probabilistic collocation method of uncertainty analysis to the aerosol representation in MOZART-4, which is a 3D global chemical transport model (Emmons et al., 2010). Thereafter, we deterministically delineate the model output surface into regions of homogeneous response using the method of Principal Component Analysis. This allows the quantification of the uncertainty associated with the dimensional reduction. Because only a bulk mass is calculated online in Mozart-4, a lognormal number distribution is assumed with a priori fixed scale and location parameters, to calculate the surface area for heterogeneous reactions involving tropospheric oxidants. We have applied the PCM to the six parameters of the lognormal number distributions of Black Carbon, Organic Carbon and Sulfate. We have carried out a Monte-Carlo sampling from the probability density functions of the six uncertain parameters, using the reduced PCE model. The global mean concentration of major tropospheric oxidants did not show a

  15. Terascale direct numerical simulations of turbulent combustion using S3D.

    Sankaran, Ramanan; Mellor-Crummy, J.; DeVries, M.; Yoo, Chun Sang; Ma, K. L.; Podhorski, N.; Liao, W. K.; Klasky, S.; de Supinski, B.; Choudhary, A.; Hawkes, Evatt R.; Chen, Jacqueline H.; Shende, Sameer


    Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air co-flow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory

  16. Terascale direct numerical simulations of turbulent combustion using S3D

    Chen, J. H.; Choudhary, A.; de Supinski, B.; DeVries, M.; Hawkes, E. R.; Klasky, S.; Liao, W. K.; Ma, K. L.; Mellor-Crummey, J.; Podhorszki, N.; Sankaran, R.; Shende, S.; Yoo, C. S.


    Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory

  17. Large-scale 3D simulations of ICF and HEDP targets

    Marinak, Michael M.


    The radiation hydrodynamics code HYDRA continues to be developed and applied to 3D simulations of a variety of targets for both inertial confinement fusion (ICF) and high energy density physics. Several packages have been added enabling this code to perform ICF target simulations with similar accuracy as two-dimensional codes of long-time historical use. These include a laser ray trace and deposition package, a heavy ion deposition package, implicit Monte Carlo photonics, and non-LTE opacities, derived from XSN or the linearized response matrix approach.(R. More, T. Kato, Phys. Rev. Lett. 81, 814 (1998), S. Libby, F. Graziani, R. More, T. Kato, Proceedings of the 13th International Conference on Laser Interactions and Related Plasma Phenomena, (AIP, New York, 1997).) LTE opacities can also be calculated for arbitrary mixtures online by combining tabular values generated by different opacity codes. Thermonuclear burn, charged particle transport, neutron energy deposition, electron-ion coupling and conduction, and multigroup radiation diffusion packages are also installed. HYDRA can employ ALE hydrodynamics; a number of grid motion algorithms are available. Multi-material flows are resolved using material interface reconstruction. Results from large-scale simulations run on up to 1680 processors, using a combination of massively parallel processing and symmetric multiprocessing, will be described. A large solid angle simulation of Rayleigh-Taylor instability growth in a NIF ignition capsule has resolved simultaneously the full spectrum of the most dangerous modes that grow from surface roughness. Simulations of a NIF hohlraum illuminated with the initial 96 beam configuration have also been performed. The effect of the hohlraum’s 3D intrinsic drive asymmetry on the capsule implosion will be considered. We will also discuss results from a Nova experiment in which a copper sphere is crushed by a planar shock. Several interacting hydrodynamic instabilities, including

  18. Insights from 3D numerical simulations on the dynamics of the India-Asia collision zone

    Pusok, A. E.; Kaus, B.; Popov, A.


    The dynamics of the India-Asia collision zone remains one of the most remarkable topics of the current research interest: the transition from subduction to collision and uplift, followed by the rise of the abnormally thick Tibetan plateau, and the deformation at its Eastern and Western syntaxes, are processes still not fully understood. Models that have addressed this topic include wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model for lateral extrusion or lower crustal flow models for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. Of these, the thin-sheet model has successfully illustrated some of the basic physics of continental collision and has the advantage of a 3D model being reduced to 2D, but one of its major shortcomings is that it cannot simultaneously represent channel flow and gravitational collapse of the mantle lithosphere, since these mechanisms require the lithosphere to interact with the underlying mantle, or to have a vertically non-homogeneous rheology. As a consequence, 3D models are emerging as powerful tools to understand the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continent collision zones have relied on certain explicit assumptions, such as replacing part of the asthenosphere with various types of boundary conditions that mimic the effect of mantle flow, in order to focus on the lithospheric/crustal deformation. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We present qualitative results on lithospheric and upper-mantle scale simulations in which the Indian lithosphere is subducted and

  19. Fully kinetic 3D simulations of the Hermean magnetosphere under realistic conditions: a new approach

    Amaya, Jorge; Gonzalez-Herrero, Diego; Lembège, Bertrand; Lapenta, Giovanni


    Simulations of the magnetosphere of planets are usually performed using the MHD and the hybrid approaches. However, these two methods still rely on approximations for the computation of the pressure tensor, and require the neutrality of the plasma at every point of the domain by construction. These approximations undermine the role of electrons on the emergence of plasma features in the magnetosphere of planets. The high mobility of electrons, their characteristic time and space scales, and the lack of perfect neutrality, are the source of many observed phenomena in the magnetospheres, including the turbulence energy cascade, the magnetic reconnection, the particle acceleration in the shock front and the formation of current systems around the magnetosphere. Fully kinetic codes are extremely demanding of computing time, and have been unable to perform simulations of the full magnetosphere at the real scales of a planet with realistic plasma conditions. This is caused by two main reasons: 1) explicit codes must resolve the electron scales limiting the time and space discretisation, and 2) current versions of semi-implicit codes are unstable for cell sizes larger than a few Debye lengths. In this work we present new simulations performed with ECsim, an Energy Conserving semi-implicit method [1], that can overcome these two barriers. We compare the solutions obtained with ECsim with the solutions obtained by the classic semi-implicit code iPic3D [2]. The new simulations with ECsim demand a larger computational effort, but the time and space discretisations are larger than those in iPic3D allowing for a faster simulation time of the full planetary environment. The new code, ECsim, can reach a resolution allowing the capture of significant large scale physics without loosing kinetic electron information, such as wave-electron interaction and non-Maxwellian electron velocity distributions [3]. The code is able to better capture the thickness of the different boundary

  20. A 3-D nonisothermal flow simulation and pulling force model for injection pultrusion processes

    Mustafa, Ibrahim


    Injected Pultrusion (IP) is an efficient way of producing high quality, low cost, high volume and constant cross-section polymeric composites. This process has been developed recently, and the efforts to optimize it are still underway. This work is related to the development of a 3-D non-isothermal flow model for the IP processes. The governing equations for transport of mass, momentum and, energy are formulated by using a local volume averaging approach, and the Finite Element/Control Volume method is used to solve the system of equations numerically. The chemical species balance equation is solved in the Lagrangian frame of reference whereas the energy equation is solved using Galerkin, SU (Streamline Upwind), and SUPG (Streamline Upwind Petrov Galerkin) approaches. By varying degrees of freedom and the flow rates of the resin, it is shown that at high Peclet numbers the SUPG formulation performs better than the SU and the Galerkin methods in all cases. The 3-D model predictions for degree of cure and temperature are compared with a one dimensional analytical solution and the results are found satisfactory. Moreover, by varying the Brinkman Number, it is shown that the effect of viscous dissipation is insignificant. The 3-D flow simulations have been carried out for both thin and thick parts and the results are compared with the 2-D model. It is shown that for thick parts 2-D simulations render erroneous results. The effect of changing permeability on the flow fronts is also addressed. The effect of increasing taper angle on the model prediction is also investigated. A parametric study is conducted to isolate optimum conditions for both isothermal and non-isothermal cases using a straight rectangular die and a die with a tapered inlet. Finally, a simple pulling force model is developed and the pulling force required to pull the carbon-epoxy fiber resin system is estimated for dies of varying tapered inlet.

  1. Development of Mould of Rheology Test Sample via CadMould 3D-F Simulation

    Othman, M. H.; Yusof, M. A. M.; Hasan, S.; Ibrahim, M. H. I.; Amin, S. Y. M.; Marwah, O. M. F.; Shaari, M. F.; Johar, M. A.; Shahbudin, S. N. A.


    This research was about the development of mould for rheology test sample via simulation. The development work concerned with stages of design, simulation, analysis, and fabrication of the mould to produce good quality samples. In the design stage, three mould concepts have been prepared via Solid Works software. The simulation of injection moulding was conducted by using CadMould 3D-F software. Then, in the analysis stage, the main factor that has been studied were the cavity system, runner system and the gating system. For each design, different type of systems were applied to compare different simulation result. Through the simulation software, it was rectified that the parameter such as the number of cavities, filling time, shear stress were the main factors to contribute good rheological properties of the sample. The final result shows that Design 2 was chosen as the suitable mould due to number of cavities and good results in the analysis, as compare to other mould design. Finally, Design 2 have been fabricated and undergo fitting test to see whether the dimension had been done correctly. Based on this research findings, it was proven that to develop a mould suitable for rheology sample, the mould design selection should be made based on the type of system in simulations.

  2. 3D simulations on output power fluctuation in a short bunch rf-linac FEL

    Sentoku, Y.; Furukawa, H.; Mima, K.; Taguchi, T.; Kuruma, S.; Yasuda, H.; Yamanaka, C.; Nakai, S.


    A space-time dependent 3D simulation code has been developed in order to analyze the RF-linac FEL oscillator dynamics. Our simulation code employed both the transverse mode spectral method and the longitudinal finite difference method. The electron beam is modeled by a group of super particles which have a density profile in the time domain. In this model the electron beam is able to determine the energy spread and the finite emittance. This simulation code enables us to describe the transverse mode competition and the slippage effects in the resonator cavity. In this paper, a high power infrared FEL with a short bunch electron beam is investigated. The output power fluctuation with cavity desynchronism is simulated with this code. Especially, we investigated the effects of the transverse mode competition, energy spread, and the finite emittance of the electron beam on the output fluctuation. Using FELIX parameters, the FEL oscillator is simulated for 300 passes. The output power oscillates periodically in the case of single transverse mode and not in the case of multi-transverse modes. In a warm beam with multi-transverse modes, the emission is higher than that with a single mode, and the optical pulse shape is almost the after 100 passes. Furthermore, the phase space motion of the laser field is periodic and stable. As a result of the simulation, we recommend that high power infrared FEL operation should include multi-transverse modes in order to get higher emission and a more stable optical pulse.

  3. 3-D GRMHD Simulations of Disk-Jet Coupling and Emission

    Nishikawa, K I; Fuerst, S; Wu, K; Hardee, P; Richardson, G; Koide, S; Shibata, K; Kudoh, T; Fishman, G J


    We have performed a fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation of jet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity nearly 0.3c) is created as shown by previous two-dimensional axisymmetric simulations with mirror symmetry at the equator. The 3-D simulation ran over one hundred light-crossing time units which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted due in part to magnetic pressure from the twisting the initially uniform magnetic field and from gas pressure associated with shock formation in the region around r = 3r_S. At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface of the thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isol...

  4. Global strong solution to the 3D incompressible magnetohydrodynamic system in the scaling invariant Besov-Sobolev-type spaces

    Ma, Haitao; Zhai, Xiaoping; Yan, Wei; Li, Yongsheng


    In this paper, we study the global well posedness of the 3D incompressible magnetohydrodynamic system with horizontal dissipation and horizontal magnetic diffusion in the scaling invariant Besov-Sobolev-type spaces. We first get a unique global solution to this system with small initial data by the classical Friedrich's regularization method. Then using a weighted Chemin-Lerner-type norm, we prove the system also can generate a global solution if the horizontal components of the initial data are small enough compared to the vertical components. In particular, our results imply the global large solutions with highly oscillating initial data.

  5. Quasi 3D refined simulation of flow and pollutant transport in a meandering River Reach

    Li-ren Yu


    Full Text Available This paper reports a quasi 3D numerical simulation in a meandering river reach of the Yellow River, aiming to develop a tool for modeling turbulent flows and pollutant transport in complex natural waters. The recently built depth-averaged two-equation turbulence model, together with and models, were used to close non-simplified quasi 3D hydrodynamic fundamental governing equations. The discretized equations were solved by advanced multi-grid iterative method under non-orthogonal body-fitted coarse and fine two-levels’ grids with collocated variable arrangement. Except for steady flow and transport computation, the processes of contaminant inpouring and plume development, caused by the side-discharge from a tribytary, also have been investigated numerically. The used three closure approaches are suitable for modeling strong mixing turbulence. The established model with higher order of magnitude of transported variable provides a possibility to elevate the computational precision. Based on the developed mathematical model, a CFD (Computational Fluid Dynamics software, namely Q3drm1.0, was developed. This numerical tool focuses on the refined simulations of the steady and unsteady problems of flow and temperature/contaminant transports in complicated computational domains with the strong ability to deal with different discharge situations: side-discharge, point-source discharge/point-sink, and area-source discharge from the slope along bank. In this article, the study of side-discharge is presented only.

  6. 3-D electromagnetic plasma particle simulations on the Intel Delta parallel computer

    Wang, J.; Liewer, P.C. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.; Decyk, V.K. [Univ. of California, Los Angeles, CA (United States)


    A three-dimensional electromagnetic PIC code has been developed on the 512 node Intel Touchstone Delta MIMD parallel computer. This code is based on the General Concurrent PIC algorithm which uses a domain decomposition to divide the computation among the processors. The 3D simulation domain can be partitioned into 1-, 2-, or 3-dimensional sub-domains. Particles must be exchanged between processors as they move among the subdomains. The Intel Delta allows one to use this code for very-large-scale simulations (i.e. over 10{sup 8} particles and 10{sup 6} grid cells). The parallel efficiency of this code is measured, and the overall code performance on the Delta is compared with that on Cray supercomputers. It is shown that their code runs with a high parallel efficiency of {ge} 95% for large size problems. The particle push time achieved is 115 nsecs/particle/time step for 162 million particles on 512 nodes. Comparing with the performance on a single processor Cray C90, this represents a factor of 58 speedup. The code uses a finite-difference leap frog method for field solve which is significantly more efficient than fast fourier transforms on parallel computers. The performance of this code on the 128 node Cray T3D will also be discussed.

  7. 3D Simulation of the Gas Dynamics in the Central Parsec of the Galaxy

    Coker, R F


    It is thought that many characteristics of the gaseous features within the central parsec of our Galaxy, are associated with the accretion of ambient plasma by a central concentration of mass. Using a 3D hydrodynamical code, we have been simulating this process in order to realistically model the gaseous flows in the center of our Galaxy. In the most recent simulation, we have taken into account the multi-point-like distribution of stellar wind sources, as well as the magnetic heating and radiative cooling of these stellar winds. As expected, we find that the structure of the flow is significantly different from that due to a uniform medium. We also investigate the possibility that Sgr A* is due to a distributed mass concentration instead of the canonical point mass of a black hole. We discuss the physical state of the accreting gas and how our results suggest that Sgr A* is unlikely to be associated with a ``dark cluster''.

  8. 3-D transient numerical simulation on the process of laser cladding by powder feeding

    Yanlu Huang; Gongying Liang; Junyi Su


    A 3-D transient mathematical model for laser cladding by powder feeding was developed to examine the macroscopic heat and momentum transport during the process, based on which a novel method for determining the configuration and thickness of cladding layer was presented. By using Lambert-Beer theorem and Mie′s theory, the interaction between powder stream and laser beam was treated to evoke their subtle effects on heat transfer and fluid flow in laser molten pool. The numerical study was performed in a co-ordinate system moving with the laser at a constant scanning speed. A fixed grid enthalpy-porosity approach was used,which predicted the evolutionary development of the laser molten pool. The commercial software PHOENICS, to which several modules were appended, was used to accomplish the simulation. The results obtained by the simulation were coincident with those measured in experiment basically.

  9. 3-d resistive MHD simulations of magnetic reconnection and the tearing mode instability in current sheets

    Murphy, G C; Pelletier, Guy


    Magnetic reconnection plays a critical role in many astrophysical processes where high energy emission is observed, e.g. particle acceleration, relativistic accretion powered outflows, pulsar winds and probably in dissipation of Poynting flux in GRBs. The magnetic field acts as a reservoir of energy and can dissipate its energy to thermal and kinetic energy via the tearing mode instability. We have performed 3d nonlinear MHD simulations of the tearing mode instability in a current sheet. Results from a temporal stability analysis in both the linear regime and weakly nonlinear (Rutherford) regime are compared to the numerical simulations. We observe magnetic island formation, island merging and oscillation once the instability has saturated. The growth in the linear regime is exponential in agreement with linear theory. In the second, Rutherford regime the island width grows linearly with time. We find that thermal energy produced in the current sheet strongly dominates the kinetic energy. Finally preliminary ...


    ZHANG Jin-feng; YUAN Shou-qi; FU Yong-hong; FANG Yu-jian


    Numerical simulation of 3-D inner flow between Up-stream Pumping Mechanical Face Seals (UPMFS) faces was initially done by CFD software, which made the flow visualization come true.Simulation results directly discover the action of hydrodynamic lubrication, and by comparison with that of Conventional Mechanic Face Seals (CMFS), the advantage over bigger bearing capability, less friction and much less leakage are explained clearly.Otherwise there are also some different ideas and results from precedent analysis and computational research results: dynamic and static pressure profiles can be obtained respectively instead of the analytic total pressure distribution only, pressure distribution is nonlinear, while always be solved as linear, lower pressure is observed at the area of inner diameter caused by the grooves, but its possible cavitations effects to the performance of UPMFS still need further study.

  11. Radiative transfer with scattering for domain-decomposed 3D MHD simulations of cool stellar atmospheres

    Hayek, W; Carlsson, M; Trampedach, R; Collet, R; Gudiksen, B V; Hansteen, V H; Leenaarts, J


    We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with bo...

  12. [A rapid prototype fabrication method of dental splint based on 3D simulation and technology].

    Lin, Yanping; Chen, Xiaojun; Zhang, Shilei; Wang, Chengtao


    The conventional design and fabrication of the dental splint (in orthognathic surgery) is based on the preoperative planning and model surgery so this process is of low precision and efficiency. In order to solve the problems and be up to the trend of computer-assisted surgery, we have developed a novel method to design and fabricate the dental splint--computer-generated dental splint, which is based on three-dimensional model simulation and rapid prototype technology. After the surgical planning and simulation of 3D model, we can modify the model to be superior in chewing action (functional) and overall facial appearance (aesthetic). Then, through the Boolean operation of the dental splint blank and the maxillofacial bone model the model of dental splint is formed. At last, the dental splint model is fabricated through rapid prototype machine and applied in clinic. The result indicates that, with the use of this method, the surgical precision and efficiency are improved.

  13. Chromospheric heating and structure as determined from high resolution 3D simulations

    Carlsson, Mats; Gudiksen, Boris V


    We have performed 3D radiation MHD simulations extending from the convection zone to the corona covering a box 16 Mm$^3$ at 32 km spatial resolution. The simulations show very fine structure in the chromosphere with acoustic shocks interacting with the magnetic field. Magnetic flux concentrations have a temperature lower than the surroundings in the photosphere but higher in the low chromosphere. The heating is there mostly through ohmic dissipation preferentially at the edges of the flux concentrations. The magnetic field is often wound up around the flux concentrations. When acoustic waves travel up along the field this topology leads to swirling motions seen in chromospheric diagnostic lines such as the calcium infrared triplet.

  14. Casting directly from a computer model by using advanced simulation software FLOW-3D Cast ®

    M. Sirviö


    Full Text Available ConiferRob - A patternless casting technique, originally conceived at VTT Technical Research Centre of Finland and furtherdeveloped at its spin-off company, Simtech Systems, offers up to 40% savings in product development costs, and up to two months shorterdevelopment times compared to conventional techniques. Savings of this order can be very valuable on today's highly competitivemarkets. Casting simulation is commonly used for designing of casting systems. However, most of the software are today old fashioned and predicting just shrinkage porosity. Flow Science, VTT and Simtech have developed new software called FLOW-3D Cast ® , whichcan simulate surface defects, air entrainment, filters, core gas problems and even a cavitation.

  15. Global Existence and Asymptotic Behavior of Cylindrically Symmetric Solutions for the 3D Infrarelativistic Model with Radiation

    Qin, Yuming; Zhang, Jianlin


    In this paper, we establish the global existence, uniqueness and asymptotic behavior of cylindrically symmetric solutions for the 3D infrarelativistic model with radiation in H^i× (H^i)^3× H^i× H^{i+1}(i=1,2,4) . The key point is that the smallness of initial data is not needed.

  16. Daily hydro- and morphodynamic simulations at Duck, NC, USA using Delft3D

    Penko, Allison; Veeramony, Jay; Palmsten, Margaret; Bak, Spicer; Brodie, Katherine; Hesser, Tyler


    Operational forecasting of the coastal nearshore has wide ranging societal and humanitarian benefits, specifically for the prediction of natural hazards due to extreme storm events. However, understanding the model limitations and uncertainty is as equally important as the predictions themselves. By comparing and contrasting the predictions of multiple high-resolution models in a location with near real-time collection of observations, we are able to perform a vigorous analysis of the model results in order to achieve more robust and certain predictions. In collaboration with the U.S. Army Corps of Engineers Field Research Facility (USACE FRF) as part of the Coastal Model Test Bed (CMTB) project, we have set up Delft3D at Duck, NC, USA to run in near-real time, driven by measured wave data at the boundary. The CMTB at the USACE FRF allows for the unique integration of operational wave, circulation, and morphology models with real-time observations. The FRF has an extensive array of in-situ and remotely sensed oceanographic, bathymetric, and meteorological data that is broadcast in near-real time onto a publically accessible server. Wave, current, and bed elevation instruments are permanently installed across the model domain including 2 waverider buoys in 17-m and 26-m water depths at 3.5-km and 17-km offshore, respectively, that record directional wave data every 30-min. Here, we present the workflow and output of the Delft3D hydro- and morphodynamic simulations at Duck, and show the tactical benefits and operational potential of such a system. A nested Delft3D simulation runs a parent grid that extends 12-km in the along-shore and 3.5-km in the cross-shore with 50-m resolution and a maximum depth of approximately 17-m. The bathymetry for the parent grid was obtained from a regional digital elevation model (DEM) generated by the Federal Emergency Management Agency (FEMA). The inner nested grid extends 1.8-km in the along-shore and 1-km in the cross-shore with 5-m

  17. Influences of 3D PET scanner components on increased scatter evaluated by a Monte Carlo simulation

    Hirano, Yoshiyuki; Koshino, Kazuhiro; Iida, Hidehiro


    Monte Carlo simulation is widely applied to evaluate the performance of three-dimensional positron emission tomography (3D-PET). For accurate scatter simulations, all components that generate scatter need to be taken into account. The aim of this work was to identify the components that influence scatter. The simulated geometries of a PET scanner were: a precisely reproduced configuration including all of the components; a configuration with the bed, the tunnel and shields; a configuration with the bed and shields; and the simplest geometry with only the bed. We measured and simulated the scatter fraction using two different set-ups: (1) as prescribed by NEMA-NU 2007 and (2) a similar set-up but with a shorter line source, so that all activity was contained only inside the field-of-view (FOV), in order to reduce influences of components outside the FOV. The scatter fractions for the two experimental set-ups were, respectively, 45% and 38%. Regarding the geometrical configurations, the former two configurations gave simulation results in good agreement with the experimental results, but simulation results of the simplest geometry were significantly different at the edge of the FOV. From the simulation of the precise configuration, the object (scatter phantom) was the source of more than 90% of the scatter. This was also confirmed by visualization of photon trajectories. Then, the bed and the tunnel were mainly the sources of the rest of the scatter. From the simulation results, we concluded that the precise construction was not needed; the shields, the tunnel, the bed and the object were sufficient for accurate scatter simulations.

  18. Changes in dissolved iron deposition to the oceans driven by human activity: a 3-D global modelling study

    S. Myriokefalitakis


    Full Text Available The global atmospheric iron (Fe cycle is parameterized in the global 3-D chemical transport model TM4-ECPL to simulate the proton- and the organic ligand-promoted mineral Fe dissolution as well as the aqueous-phase photochemical reactions between the oxidative states of Fe(III/II. Primary emissions of total (TFe and dissolved (DFe Fe associated with dust and combustion processes are also taken into account. TFe emissions are calculated to amount to ~35 Tg Fe yr−1. The model reasonably simulates the available Fe observations, supporting the reliability of the results of this study. Accounting for proton- and organic ligand-promoted Fe-dissolution in present-day TM4-ECPL simulations, the total Fe-dissolution is calculated to be ~0.163 Tg Fe yr−1 that accounts for up to ~50% of the calculated total DFe emissions. The atmospheric burden of DFe is calculated to be ~0.012 Tg Fe. DFe deposition presents strong spatial and temporal variability with an annual deposition flux ~0.489 Tg Fe yr−1 from which about 25% (~0.124 Tg Fe yr−1 are deposited over the ocean. The impact of air-quality on Fe deposition is studied by performing sensitivity simulations using preindustrial (year 1850, present (year 2008 and future (year 2100 emission scenarios. These simulations indicate that an increase (~2 times in Fe-dissolution may have occurred in the past 150 years due to increasing anthropogenic emissions and thus atmospheric acidity. On the opposite, a decrease (~2 times of Fe-dissolution is projected for near future, since atmospheric acidity is expected to be lower than present-day due to air-quality regulations of anthropogenic emissions. The organic ligand contribution to Fe dissolution shows inverse relationship to the atmospheric acidity thus its importance has decreased since the preindustrial period but is projected to increase in the future. The calculated changes also show that the atmospheric DFe supply to High-Nutrient-Low-Chlorophyll oceanic

  19. A simulation technique for 3D MR-guided acoustic radiation force imaging

    Payne, Allison, E-mail: [Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah 84112 (United States); Bever, Josh de [Department of Computer Science, University of Utah, Salt Lake City, Utah 84112 (United States); Farrer, Alexis [Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 (United States); Coats, Brittany [Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Parker, Dennis L. [Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah 84108 (United States); Christensen, Douglas A. [Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 and Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)


    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  20. GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments

    Hernandez-Bennetts, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier


    This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment. PMID:28644375

  1. GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments

    Javier Monroy


    Full Text Available This work presents a simulation framework developed under the widely used Robot Operating System (ROS to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.. Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment.

  2. 3D Multistage Simulation of Each Component of the GE90 Turbofan Engine

    Turner, Mark; Topp, Dave; Veres, Joe


    A 3D multistage simulation of each component of the GE90 Turbofan engine has been made. This includes 49 blade rows. A coupled simulation of all blade rows will be made very soon. The simulation is running using two levels of parallelism. The first level is on a blade row basis with information shared using files. The second level is using a grid domain decomposition with information shared using MPI. Timings will be shown for running on the SP2, an SGI Origin and a distributed system of HP workstations. On the HP workstations, the CHIMP version of MPI is used, with queuing supplied by LSF (Load Sharing Facility). A script-based control system is used to ensure reliability. An MPEG movie illustrating the flow simulation of the engine has been created using PV3, a parallel visualization library created by Bob Haimes of MIT. PVM is used to create a virtual machine from 10 HP workstations and display on an SGI workstation. A representative component simulation will be compared to rig data to demonstrate its usefulness in turbomachinery design and analysis.

  3. GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments.

    Monroy, Javier; Hernandez-Bennets, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier


    This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment.

  4. Parallel computing simulation of electrical excitation and conduction in the 3D human heart.

    Di Yu; Dongping Du; Hui Yang; Yicheng Tu


    A correctly beating heart is important to ensure adequate circulation of blood throughout the body. Normal heart rhythm is produced by the orchestrated conduction of electrical signals throughout the heart. Cardiac electrical activity is the resulted function of a series of complex biochemical-mechanical reactions, which involves transportation and bio-distribution of ionic flows through a variety of biological ion channels. Cardiac arrhythmias are caused by the direct alteration of ion channel activity that results in changes in the AP waveform. In this work, we developed a whole-heart simulation model with the use of massive parallel computing with GPGPU and OpenGL. The simulation algorithm was implemented under several different versions for the purpose of comparisons, including one conventional CPU version and two GPU versions based on Nvidia CUDA platform. OpenGL was utilized for the visualization / interaction platform because it is open source, light weight and universally supported by various operating systems. The experimental results show that the GPU-based simulation outperforms the conventional CPU-based approach and significantly improves the speed of simulation. By adopting modern computer architecture, this present investigation enables real-time simulation and visualization of electrical excitation and conduction in the large and complicated 3D geometry of a real-world human heart.

  5. BlazeDEM3D-GPU A Large Scale DEM simulation code for GPUs

    Govender, Nicolin; Wilke, Daniel; Pizette, Patrick; Khinast, Johannes


    Accurately predicting the dynamics of particulate materials is of importance to numerous scientific and industrial areas with applications ranging across particle scales from powder flow to ore crushing. Computational discrete element simulations is a viable option to aid in the understanding of particulate dynamics and design of devices such as mixers, silos and ball mills, as laboratory scale tests comes at a significant cost. However, the computational time required to simulate an industrial scale simulation which consists of tens of millions of particles can take months to complete on large CPU clusters, making the Discrete Element Method (DEM) unfeasible for industrial applications. Simulations are therefore typically restricted to tens of thousands of particles with highly detailed particle shapes or a few million of particles with often oversimplified particle shapes. However, a number of applications require accurate representation of the particle shape to capture the macroscopic behaviour of the particulate system. In this paper we give an overview of the recent extensions to the open source GPU based DEM code, BlazeDEM3D-GPU, that can simulate millions of polyhedra and tens of millions of spheres on a desktop computer with a single or multiple GPUs.

  6. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    Shaheen, Eman, E-mail:; De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van [Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); Dance, David R.; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom)


    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  7. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis.

    Shaheen, Eman; De Keyzer, Frederik; Bosmans, Hilde; Dance, David R; Young, Kenneth C; Van Ongeval, Chantal


    This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly suggestive for malignancy (BIRADS 5

  8. Transient 3D numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius

    Esposti Ongaro, T.; Neri, A.; Menconi, G.; de'Michieli Vitturi, M.; Marianelli, P.; Cavazzoni, C.; Erbacci, G.; Baxter, P. J.


    Numerical simulations of column collapse and pyroclastic density current (PDC) scenarios at Vesuvius were carried out using a transient 3D flow model based on multiphase transport laws. The model describes the dynamics of the collapse as well as the effects of the 3D topography of the volcano on PDC propagation. Source conditions refer to a medium-scale sub-Plinian event and consider a pressure-balanced jet. Simulation results provide new insights into the complex dynamics of these phenomena. In particular: 1) column collapse can be characterized by different regimes, from incipient collapse to partial or nearly total collapse, thus confirming the possibility of a transitional field of behaviour of the column characterized by the contemporaneous and/or intermittent occurrence of ash fallout and PDCs; 2) the collapse regime can be characterized by its fraction of eruptive mass reaching the ground and generating PDCs; 3) within the range of the investigated source conditions, the propagation and hazard potential of PDCs appear to be directly correlated with the flow-rate of the mass collapsing to the ground, rather than to the collapse height of the column (this finding is in contrast with predictions based on the energy-line concept, which simply correlates the PDC runout and kinetic energy with the collapse height of the column); 4) first-order values of hazard variables associated with PDCs (i.e., dynamic pressure, temperature, airborne ash concentration) can be derived from simulation results, thereby providing initial estimates for the quantification of damage scenarios; 5) for scenarios assuming a location of the central vent coinciding with that of the present Gran Cono, Mount Somma significantly influences the propagation of PDCs, largely reducing their propagation in the northern sector, and diverting mass toward the west and southeast, accentuating runouts and hazard variables for these sectors; 6) the 2D modelling approximation can force an artificial

  9. Analysis, Adaptive Control and Adaptive Synchronization of a Nine-Term Novel 3-D Chaotic System with Four Quadratic Nonlinearities and its Circuit Simulation

    S. Vaidyanathan


    Full Text Available This research work describes a nine-term novel 3-D chaotic system with four quadratic nonlinearities and details its qualitative properties. The phase portraits of the 3-D novel chaotic system simulated using MATLAB, depict the strange chaotic attractor of the system. For the parameter values chosen in this work, the Lyapunov exponents of the novel chaotic system are obtained as L1 = 6.8548, L2 = 0 and L3 = −32.8779. Also, the Kaplan-Yorke dimension of the novel chaotic system is obtained as DKY = 2.2085. Next, an adaptive controller is design to achieve global stabilization of the 3-D novel chaotic system with unknown system parameters. Moreover, an adaptive controller is designed to achieve global chaos synchronization of two identical novel chaotic systems with unknown system parameters. Finally, an electronic circuit realization of the novel chaotic system is presented using SPICE to confirm the feasibility of the theoretical model.

  10. Augmented reality intravenous injection simulator based 3D medical imaging for veterinary medicine.

    Lee, S; Lee, J; Lee, A; Park, N; Lee, S; Song, S; Seo, A; Lee, H; Kim, J-I; Eom, K


    Augmented reality (AR) is a technology which enables users to see the real world, with virtual objects superimposed upon or composited with it. AR simulators have been developed and used in human medicine, but not in veterinary medicine. The aim of this study was to develop an AR intravenous (IV) injection simulator to train veterinary and pre-veterinary students to perform canine venipuncture. Computed tomographic (CT) images of a beagle dog were scanned using a 64-channel multidetector. The CT images were transformed into volumetric data sets using an image segmentation method and were converted into a stereolithography format for creating 3D models. An AR-based interface was developed for an AR simulator for IV injection. Veterinary and pre-veterinary student volunteers were randomly assigned to an AR-trained group or a control group trained using more traditional methods (n = 20/group; n = 8 pre-veterinary students and n = 12 veterinary students in each group) and their proficiency at IV injection technique in live dogs was assessed after training was completed. Students were also asked to complete a questionnaire which was administered after using the simulator. The group that was trained using an AR simulator were more proficient at IV injection technique using real dogs than the control group (P ≤ 0.01). The students agreed that they learned the IV injection technique through the AR simulator. Although the system used in this study needs to be modified before it can be adopted for veterinary educational use, AR simulation has been shown to be a very effective tool for training medical personnel. Using the technology reported here, veterinary AR simulators could be developed for future use in veterinary education.

  11. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Kramar, Maxim; Lin, Haosheng


    Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131) to retrieve and analyze the three-dimensional (3D) coronal electron density in the range of heights from $1.5$ to $4\\ \\mathrm{R}_\\odot$ using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 \\AA \\ band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below $\\sim 2.5 \\ \\mathrm{R}_\\odot$. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the a...

  12. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Maxim Kramar


    Full Text Available Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131 to retrieve and analyze the three-dimensional (3D coronal electron density in the range of heights from $1.5$ to $4 R_odot$ using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 AA band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below $sim 2.5 R_odot$. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.

  13. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Kramar, Maxim; Airapetian, Vladimir; Lin, Haosheng


    Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131) to retrieve and analyze the three-dimensional (3D) coronal electron density in the range of heights from 1.5 to 4 R_⊙ using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 Å band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below ˜ 2.5 R_⊙. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.

  14. Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations

    D. B. Millet


    Full Text Available We construct a global atmospheric budget for acetaldehyde using a 3-D model of atmospheric chemistry (GEOS-Chem, and use an ensemble of observations to evaluate present understanding of its sources and sinks. Hydrocarbon oxidation provides the largest acetaldehyde source in the model (128 Tg a−1, a factor of 4 greater than the previous estimate, with alkanes, alkenes, and ethanol the main precursors. There is also a minor source from isoprene oxidation. We use an updated chemical mechanism for GEOS-Chem, and photochemical acetaldehyde yields are consistent with the Master Chemical Mechanism. We present a new approach to quantifying the acetaldehyde air-sea flux based on the global distribution of light absorption due to colored dissolved organic matter (CDOM derived from satellite ocean color observations. The resulting net ocean emission is 57 Tg a−1, the second largest global source of acetaldehyde. A key uncertainty is the acetaldehyde turnover time in the ocean mixed layer, with quantitative model evaluation over the ocean complicated by known measurement artifacts in clean air. Simulated concentrations in surface air over the ocean generally agree well with aircraft measurements, though the model tends to overestimate the vertical gradient. PAN:NOx ratios are well-simulated in the marine boundary layer, providing some support for the modeled ocean source. We introduce the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1 for acetaldehyde and ethanol and use it to quantify their net flux from living terrestrial plants. Including emissions from decaying plants the total direct acetaldehyde source from the land biosphere is 23 Tg a−1. Other terrestrial acetaldehyde sources include biomass burning (3 Tg a−1 and anthropogenic emissions (2 Tg a−1. Simulated concentrations in the continental boundary layer are generally unbiased and capture the spatial

  15. The dark side of photovoltaic — 3D simulation of glare assessing risk and discomfort

    Rose, Thomas; Wollert, Alexander


    Photovoltaic (PV) systems form an important force in the implementation of renewable energies, but as we all know, the force has always its dark side. Besides efficiency considerations and discussions about architectures of power distribution networks, the increasing numbers of installations of PV systems for implementing renewable energies have secondary effects. PV systems can generate glare due to optical reflections and hence might be a serious concern. On the one hand, glare could affect safety, e.g. regarding traffic. On the other hand, glare is a constant source of discomfort in vicinities of PV systems. Hence, assessment of glare is decisive for the success of renewable energies near municipalities and traffic zones for the success of solar power. Several courts decided on the change of PV systems and even on their de-installation because of glare effects. Thus, location-based assessments are required to limit potential reflections and to avoid risks for public infrastructure or discomfort of residents. The question arises on how to calculate reflections accurately according to the environment's topography. Our approach is founded in a 3D-based simulation methodology to calculate and visualize reflections based on the geometry of the environment of PV systems. This computational model is implemented by an interactive tool for simulation and visualization. Hence, project planners receive flexible assistance for adjusting the parameters of solar panels amid the planning process and in particular before the installation of a PV system. - Highlights: • Solar panels cause glare that impacts neighborhoods and traffic infrastructures. • Glare might cause disability and discomfort. • 3D environment for the calculation of glare • Interactive tool to simulate and visualize reflections • Impact assessment of solar power plant farms.

  16. A GIS-Based 3D Simulation for Occupant Evacuation in a Building

    TANG Fangqin; ZHANG Xin


    The evacuation efficiency of building plans is of obvious importance to the public safety.The cem- plexity of building plans,however,makes it difficult for the efficiency evaluation.This paper presents a com- putational model AutoEscape,which can simulate the evacuation process for any given occupant distribu. Uon in buildings.Designed as an extensible multi-level structure, the model constructs the geometry level and occupant level and establishes the interactions between levels.The GIS-based environmental analysis is realized to automatically generate the geometric representation and formulate the cognition of agents. The multi-agent based technology is employed to simulate the crowd behaviom with autonomously acting individuals.A visualization component,which provides 3D free observations for the simulation process,is developed on the platform of OGRE and integrated into the system interface in form of ActiveX control.Fi- nally,a case study has been conducted and the results have been compared with the results of an existing model to show the reliability and capacity of AutoEscape simulation.

  17. 3D Simulation of Flow with Free Surface Based on Adaptive Octree Mesh System

    Li Shaowu; Zhuang Qian; Huang Xiaoyun; Wang Dong


    The technique of adaptive tree mesh is an effective way to reduce computational cost through automatic adjustment of cell size according to necessity. In the present study, the 2D numerical N-S solver based on the adaptive quadtree mesh system was extended to a 3D one, in which a spatially adaptive octree mesh system and multiple parti-cle level set method were adopted for the convenience to deal with the air-water-structure multiple-medium coexisting domain. The stretching process of a dumbbell was simulated and the results indicate that the meshes are well adaptable to the free surface. The collapsing process of water column impinging a circle cylinder was simulated and from the results, it can be seen that the processes of fluid splitting and merging are properly simulated. The interaction of sec-ond-order Stokes waves with a square cylinder was simulated and the obtained drag force is consistent with the result by the Morison’s wave force formula with the coefficient values of the stable drag component and the inertial force component being set as 2.54.

  18. 3D design and electric simulation of a silicon drift detector using a spiral biasing adapter

    Li, Yu-yun; Xiong, Bo; Li, Zheng


    The detector system of combining a spiral biasing adapter (SBA) with a silicon drift detector (SBA-SDD) is largely different from the traditional silicon drift detector (SDD), including the spiral SDD. It has a spiral biasing adapter of the same design as a traditional spiral SDD and an SDD with concentric rings having the same radius. Compared with the traditional spiral SDD, the SBA-SDD separates the spiral's functions of biasing adapter and the p-n junction definition. In this paper, the SBA-SDD is simulated using a Sentaurus TCAD tool, which is a full 3D device simulation tool. The simulated electric characteristics include electric potential, electric field, electron concentration, and single event effect. Because of the special design of the SBA-SDD, the SBA can generate an optimum drift electric field in the SDD, comparable with the conventional spiral SDD, while the SDD can be designed with concentric rings to reduce surface area. Also the current and heat generated in the SBA are separated from the SDD. To study the single event response, we simulated the induced current caused by incident heavy ions (20 and 50 μm penetration length) with different linear energy transfer (LET). The SBA-SDD can be used just like a conventional SDD, such as X-ray detector for energy spectroscopy and imaging, etc.

  19. The Shock Dynamics of Heterogeneous YSO Jets: 3-D Simulations Meet Multi-Epoch Observations

    Hansen, E C; Hartigan, P; Lebedev, S V


    High resolution observations of Young Stellar Object (YSO) jets show them to be composed of many small-scale knots or clumps. In this paper we report results of 3-D numerical simulations designed to study how such clumps interact and create morphologies and kinematic patterns seen in emission line observations. Our simulations focus on clump scale dynamics by imposing velocity differences between spherical, over-dense regions which then lead to the formation of bow shocks as faster clumps overtake slower material. We show that much of the spatial structure apparent in emission line images of jets arises from the dynamics and interactions of these bow shocks. Our simulations show a variety of time-dependent features, including bright knots associated with Mach stems where the shocks intersect, a "frothy" emission structure that arises from the presence of the Non-linear Thin Shell Instability (NTSI) along the surfaces of the bow shocks, and the merging and fragmentation of clumps. Our simulations use a new non...

  20. Simulation of an MSLB scenario using the 3D neutron kinetic core model DYN3D coupled with the CFD software Trio-U

    Grahn, Alexander, E-mail:; Gommlich, André; Kliem, Sören; Bilodid, Yurii; Kozmenkov, Yaroslav


    Highlights: • Improved thermal-hydraulic description of nuclear reactor cores. • Providing reactor dynamics code with realistic thermal-hydraulic boundary conditions. • Possibility of three-dimensional flow phenomena in the core, such as cross flow, flow reversal. • Simulation at higher spatial resolution as compared to system codes. - Abstract: In the framework of the European project NURESAFE, the reactor dynamics code DYN3D, developed at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), was coupled with the Computational Fluid Dynamics (CFD) solver Trio-U, developed at CEA France, in order to replace DYN3D’s one-dimensional hydraulic part with a full three-dimensional description of the coolant flow in the reactor core at higher spatial resolution. The present document gives an introduction into the coupling method and shows results of its application to the simulation of a Main Steamline Break (MSLB) accident of a Pressurised Water Reactor (PWR).

  1. Photospheric Emission of Collapsar Jet in 3D Relativistic Radiation Hydrodynamical Simulation

    Ito, Hirotaka; Nagataki, Shigehiro; Warren, Donald C; Barkov, Maxim V


    We explore the photospheric emission from a relativistic jet breaking out from a massive stellar envelope based on relativistic hydrodynamical simulations and post-process radiation transfer calculations in three dimensions (3D). To investigate the impact of 3D dynamics on the emission, two models of injection conditions are considered for the jet at the center of the progenitor star: one with periodic precession and another without precession. We show that structures developed within the jet due to the interaction with the stellar envelope, as well as due to the precession, have a significant imprint on the resulting emission. Particularly, we find that the signature of precession activity by the central engine is not smeared out and can be directly observed in the light curve as a periodic signal. We also show non-thermal features that can account for observations of gamma-ray bursts are produced in the resulting spectra, even though only thermal photons are injected initially and the effect of non-thermal ...

  2. 3D cut-cell modelling for high-resolution atmospheric simulations

    Yamazaki, H; Nikiforakis, N


    With the recent, rapid development of computer technology, the resolution of atmospheric numerical models has increased substantially. As a result, steep gradients in mountainous terrain are now being resolved in high-resolution models. This results in large truncation errors in those models using terrain-following coordinates. In this study, a new 3D Cartesian coordinate non-hydrostatic atmospheric model is developed. A cut-cell representation of topography based on finite-volume discretization is combined with a cell-merging approach, in which small cut-cells are merged with neighboring cells either vertically or horizontally. In addition, a block-structured mesh-refinement technique achieves a variable resolution on the model grid with the finest resolution occurring close to the terrain surface. The model successfully reproduces a flow over a 3D bell-shaped hill that shows a good agreement with the flow predicted by the linear theory. The ability of the model to simulate flows over steep terrain is demons...

  3. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.


    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice-accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional (3-D) features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-in. chord, two-dimensional (2-D) straight wing with NACA 23012 airfoil section. For six ice-accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 × 10(exp 6) and a Mach number of 0.18 with an 18-in. chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For five of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3 percent with corresponding differences in stall angle of approximately 1 deg or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several

  4. 3D finite element simulation of explosive welding of three-layer plates

    Sui, GuoFa; Li, JinShan; Sun, Feng; Ma, Bei; Li, HongWei


    A 3D finite element model of the explosive welding process of three-layer plates with materials of steel-copper-copper is established. Based on the presented model, the bonding mechanism is simulated and analyzed, different detonation modes are also comparatively studied to indicate the driving force spread in few microseconds. The results show that the three layer plates bond together after many times of impact between the flyers and the base driven by detonation wave, which is damping rapidly at each impact with wavelength decreasing. The pressure at the detonation point is minimal, which induces non-bonding of the plates here. Detonation wave propagates in concentric circle both under side-midpoint detonation mode and under center-point detonation mode, but the movement of the flyer is different, which makes non-bonding easily occur at the end of detonation under side-midpoint detonation and at the center of the plate under center-point detonation.

  5. Investigating the reliability of coronal emission measure distribution diagnostics using 3D radiative MHD simulations

    Testa, Paola; Martinez-Sykora, Juan; Hansteen, Viggo; Carlsson, Mats


    Determining the temperature distribution of coronal plasmas can provide stringent constraints on coronal heating. Current observations with the Extreme ultraviolet Imaging Spectrograph onboard Hinode and the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory provide diagnostics of the emission measure distribution (EMD) of the coronal plasma. Here we test the reliability of temperature diagnostics using 3D radiative MHD simulations. We produce synthetic observables from the models, and apply the Monte Carlo Markov chain EMD diagnostic. By comparing the derived EMDs with the "true" distributions from the model we assess the limitations of the diagnostics, as a function of the plasma parameters and of the signal-to-noise of the data. We find that EMDs derived from EIS synthetic data reproduce some general characteristics of the true distributions, but usually show differences from the true EMDs that are much larger than the estimated uncertainties suggest, especially when structures with signif...

  6. Cognitive/emotional models for human behavior representation in 3D avatar simulations

    Peterson, James K.


    Simplified models of human cognition and emotional response are presented which are based on models of auditory/ visual polymodal fusion. At the core of these models is a computational model of Area 37 of the temporal cortex which is based on new isocortex models presented recently by Grossberg. These models are trained using carefully chosen auditory (musical sequences), visual (paintings) and higher level abstract (meta level) data obtained from studies of how optimization strategies are chosen in response to outside managerial inputs. The software modules developed are then used as inputs to character generation codes in standard 3D virtual world simulations. The auditory and visual training data also enable the development of simple music and painting composition generators which significantly enhance one's ability to validate the cognitive model. The cognitive models are handled as interacting software agents implemented as CORBA objects to allow the use of multiple language coding choices (C++, Java, Python etc) and efficient use of legacy code.

  7. 3D Myocardial Contraction Imaging Based on Dynamic Grid Interpolation: Theory and Simulation Analysis

    Bu, Shuhui; Shiina, Tsuyoshi; Yamakawa, Makoto; Takizawa, Hotaka

    Accurate assessment of local myocardial contraction is important for diagnosis of ischemic heart disease, because decreases of myocardial motion often appear in the early stages of the disease. Three-dimensional (3-D) assessment of the stiffness distribution is required for accurate diagnosis of ischemic heart disease. Since myocardium motion occurs radially within the left ventricle wall and the ultrasound beam propagates axially, conventional approaches, such as tissue Doppler imaging and strain-rate imaging techniques, cannot provide us with enough quantitative information about local myocardial contraction. In order to resolve this problem, we propose a novel myocardial contraction imaging system which utilizes the weighted phase gradient method, the extended combined autocorrelation method, and the dynamic grid interpolation (DGI) method. From the simulation results, we conclude that the strain image's accuracy and contrast have been improved by the proposed method.

  8. GPU-advanced 3D electromagnetic simulations of superconductors in the Ginzburg–Landau formalism

    Stošić, Darko; Stošić, Dušan; Ludermir, Teresa [Centro de Informática, Universidade Federal de Pernambuco, Av. Luiz Freire s/n, 50670-901, Recife, PE (Brazil); Stošić, Borko [Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE (Brazil); Milošević, Milorad V., E-mail: [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)


    Ginzburg–Landau theory is one of the most powerful phenomenological theories in physics, with particular predictive value in superconductivity. The formalism solves coupled nonlinear differential equations for both the electronic and magnetic responsiveness of a given superconductor to external electromagnetic excitations. With order parameter varying on the short scale of the coherence length, and the magnetic field being long-range, the numerical handling of 3D simulations becomes extremely challenging and time-consuming for realistic samples. Here we show precisely how one can employ graphics-processing units (GPUs) for this type of calculations, and obtain physics answers of interest in a reasonable time-frame – with speedup of over 100× compared to best available CPU implementations of the theory on a 256{sup 3} grid.

  9. Kinetic Monte Carlo simulation of 3-D growth of NiTi alloy thin films

    Zhu, Yiguo; Pan, Xi


    In this paper, a 3-D Monte Carlo model for NiTi alloy thin film growth on square lattice substrate is presented. The model is based on the description of the phenomenon in terms of adsorption, diffusion and re-evaporation of different atoms on the substrate surface. In this article, multi-body NiTi potential is used to calculate diffusion activation energy. The energy which is related to the types of the atoms is equal to the total energy change of the system before and after the diffusion process happens. The simulations serve the purpose of investigation of the role of diffusion in the determination of the microstructure of the alloy clusters. The effects of the substrate temperature and the deposition rate on the morphology of the island are also presented. The island size distribution and roughness evolution have been computed and compared with our experimental results.

  10. Implementation of 3D Lattice Monte Carlo Simulation on a Cluster of Symmetric Multiprocessors

    雷咏梅; 蒋英; 等


    This paper presents a new approach to parallelize 3D lattice Monte Carlo algorithms used in the numerical simulation of polymer on ZiQiang 2000-a cluster of symmetric multiprocessors(SMPs).The combined load for cell and energy calculations over the time step is balanced together to form a single spatial decomposition.Basic aspects and strategies of running Monte Carlo calculations on parallel computers are studied.Different steps involved in porting the software on a parallel architecture based on ZiQiang 2000 running under Linux and MPI are described briefly.It is found that parallelization becomes more advantageous when either the lattice is very large or the model contains many cells and chains.

  11. GPU-advanced 3D electromagnetic simulations of superconductors in the Ginzburg-Landau formalism

    Stošić, Darko; Stošić, Dušan; Ludermir, Teresa; Stošić, Borko; Milošević, Milorad V.


    Ginzburg-Landau theory is one of the most powerful phenomenological theories in physics, with particular predictive value in superconductivity. The formalism solves coupled nonlinear differential equations for both the electronic and magnetic responsiveness of a given superconductor to external electromagnetic excitations. With order parameter varying on the short scale of the coherence length, and the magnetic field being long-range, the numerical handling of 3D simulations becomes extremely challenging and time-consuming for realistic samples. Here we show precisely how one can employ graphics-processing units (GPUs) for this type of calculations, and obtain physics answers of interest in a reasonable time-frame - with speedup of over 100× compared to best available CPU implementations of the theory on a 2563 grid.

  12. Numerical methods for 3D tokamak simulations using a flux-surface independent grid

    Stegmeir, A.; Coster, D.; Maj, O.; Lackner, K. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany)


    A numerical approach for 3D Tokamak simulations using a flux surface independent grid is presented. The grid consists of few poloidal planes with a Cartesian isotropic grid within each poloidal plane. Perpendicular operators can be discretised within a poloidal plane using standard second order finite difference methods. The discretisation of parallel operators is achieved with a field line following map and an interpolation. The application of the support operator method to the parallel diffusion operator conserves the self-adjointness of the operator on the discrete level and keeps the numerical decay rate at a low level. The developed numerical methods can be applied to geometries where an X-point is present. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)


    JI Sheng Cheng; OUAHSINE Abdellatif; SMAOUI Hassan; SERGENT Philippe


    We consider waves generated by the passing of convoys in a restricted waterway.The magnitude of these waves depends mainly on the geometrical and kinematical parameters of the convoy,such as the speed and the hull geometry.The objective of this study is to predict the relationship between these geometrical and kinematical parameters and the amplitude of ship-generated waves as well as the water plane drawdown.Numerical simulations are conducted by solving the 3-D Navier-Stokes equations along with the standard k-ε model for turbulent processes.The results are compared first with the empirical model and second with experimental measurements performed by the French company Compagnie National du Rh(o)ne (CNR).

  14. Simulation of 3D material flow in friction stir welding of AA6061-T6

    Zhang Zhao; Zhang Hongwu


    This paper reports the numerical simulation of the 3D material flow in friction stir welding process by using finite element methods based on solid mechanics. It is found that the material flow behind the pin is much faster than that in front of the pin. The material in front of the pin moves upwards and then rotates with the pin due to the effect of the rotating tool. Behind of the pin, the material moves downwards. This process of material movement is the real cause to make the friction stir welding process continuing successfully. With the increase of the translational velocity or the rotational velocity of the pin, the material flow becomes faster.

  15. 3D Nonlinear Numerical Simulation of Intact and Debonded Reinforced Concrete Beams

    Chen Quan(陈权); Marcus L.


    To study the behaviour of reinforced concrete (RC) structures with sections of concrete removed and the reinforcement exposed, 3D nonlinear numerical analysis was performed upon both intact and debonded RC beams by using finite element techniques. The deformational characteristics and the ultimate loads were obtained through numerical models, as well as crack and stress distributions. The failure modes can also be deduced from computational results. Compared with intact beams, the normal assumptions of plane section behaviour is not hold true and the patterns of stress and strain are different in debonded RC beams. The numerical results show good consistency with experimental data. This kind of numerical simulation is a supplement to existing codes.

  16. Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation

    Bromberg, Omer


    Relativistic jets naturally occur in astrophysical systems that involve accretion onto compact objects, such as core collapse of massive stars in gamma-ray bursts (GRBs) and accretion onto supermassive black holes in active galactic nuclei (AGN). It is generally accepted that these jets are powered electromagnetically, by the magnetised rotation of a central compact object. However, how they produce the observed emission and survive the propagation for many orders of magnitude in distance without being disrupted by current-driven non-axisymmetric instabilities is the subject of active debate. We carry out time-dependent 3D relativistic magnetohydrodynamic simulations of relativistic, Poynting flux dominated jets. The jets are launched self-consistently by the rotation of a strongly magnetised central compact object. This determines the natural degree of azimuthal magnetic field winding, a crucial factor that controls jet stability. We find that the jets are susceptible to two types of instability: (i) a globa...

  17. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies.

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis


    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI

  18. Compressing an Ensemble with Statistical Models: An Algorithm for Global 3D Spatio-Temporal Temperature

    Castruccio, Stefano


    One of the main challenges when working with modern climate model ensembles is the increasingly larger size of the data produced, and the consequent difficulty in storing large amounts of spatio-temporally resolved information. Many compression algorithms can be used to mitigate this problem, but since they are designed to compress generic scientific data sets, they do not account for the nature of climate model output and they compress only individual simulations. In this work, we propose a different, statistics-based approach that explicitly accounts for the space-time dependence of the data for annual global three-dimensional temperature fields in an initial condition ensemble. The set of estimated parameters is small (compared to the data size) and can be regarded as a summary of the essential structure of the ensemble output; therefore, it can be used to instantaneously reproduce the temperature fields in an ensemble with a substantial saving in storage and time. The statistical model exploits the gridded geometry of the data and parallelization across processors. It is therefore computationally convenient and allows to fit a non-trivial model to a data set of one billion data points with a covariance matrix comprising of 10^18 entries.

  19. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units.

    Fang, Qianqian; Boas, David A


    We report a parallel Monte Carlo algorithm accelerated by graphics processing units (GPU) for modeling time-resolved photon migration in arbitrary 3D turbid media. By taking advantage of the massively parallel threads and low-memory latency, this algorithm allows many photons to be simulated simultaneously in a GPU. To further improve the computational efficiency, we explored two parallel random number generators (RNG), including a floating-point-only RNG based on a chaotic lattice. An efficient scheme for boundary reflection was implemented, along with the functions for time-resolved imaging. For a homogeneous semi-infinite medium, good agreement was observed between the simulation output and the analytical solution from the diffusion theory. The code was implemented with CUDA programming language, and benchmarked under various parameters, such as thread number, selection of RNG and memory access pattern. With a low-cost graphics card, this algorithm has demonstrated an acceleration ratio above 300 when using 1792 parallel threads over conventional CPU computation. The acceleration ratio drops to 75 when using atomic operations. These results render the GPU-based Monte Carlo simulation a practical solution for data analysis in a wide range of diffuse optical imaging applications, such as human brain or small-animal imaging.

  20. The Making of FR Is I. Numerical Hydrodynamic 3D Simulations of Low Power Jets

    Massaglia, S; Rossi, P; Capetti, S; Mignone, A


    Extragalactic radiosources have been classified in two classes, Fanaroff-Riley I and II, which differ in morphology and radio power. Strongly emitting sources belong to the edge brightened FR II class while the weak ones to the edge darkened FR I class. The origin of this dichotomy is not yet fully understood. Numerical simulations are successful in generating FR~II morphologies but they fail to reproduce the diffuse structure of FR Is. By means of hydro-dynamical 3D simulations of supersonic jets, we investigate how the displayed morphologies depend on the jet parameters. Bow shocks and Mach disks at the jet's head, likely responsible for the presence of hot spots in the FR II sources, disappear for a jet kinetic power less than 10^43 erg/s. This threshold compares favorably with the luminosity at which the FR~I/FR~II transition is observed. The problem is addressed by numerical means carrying out three-dimensional HD simulations of supersonic jets that propagate in a non homogeneous medium with the ambient ...

  1. Simulation of water temperature in two reservoirs with Delft3d

    Yang, J. Y.; Zhou, L. Y.


    The proposeled Guanjingkou and Fengdou reservoir will be constructed at Chongqing city and Muling city in China respectively. The water temperature in the reservoir, in the downstream, and the aquatic ecosystem would be altered by the construction of the reservoirs. This paper simulates the water temperature in the two reservoirs by using the Delft3d z-layer model, which uses the fixed elevation for layers. According to the simulation results, the temperature profile in the reservoirs can be divided into three layers: the upmost epilimnion layer, the beneathed thermocline layer, and the constant tepmerature layer at bottom. The temperature effects can be reduced by measurements of stoplogs gates and mutiple gates, respectively. Based on the simulation results in the wet, nomal, and dry year, the temperature of water released from the stoplogs gates at Guanjingkou reservior can be respectively increased by 5.7°C, 6.8°C, 9.6°C, and 5.5°C in the irrigation season from May to August. The temperature of water released from the mutiple gates at Fengdou reservior can be respectively increased by 7.7 °C, 1.9 °C, 9.5 °C, and 10.1 °C from May to August. The negative impacts from the water with lower temperature on the related ecosystem can be significently alleviated.

  2. Numerical simulation of unsteady flow characteristics for cavitation around a 3-D hydrofoil

    Ahn, S. H.; Xiao, Y. X.; Wang, Z. W.


    At present it is possible to predict more accurately by various numerical methods established for cavitation simulation around a hydrofoil. However, for the solution of the complex unsteady cavity flow, it is still marginal. In this paper, numerical method is adopted to simulate cavitation around 3-D NACA0015 hydrofoil with homogeneous two-phase flow calculation using commercial code CFX-solver with two turbulence models, the standard RNG k-epsilon turbulence model and the modified RNG k-epsilon turbulence model respectively. First, pressure coefficient for non-cavitating flow, time averaged values of unsteady cavity flow around a hydrofoil are verified to simulate more closely to an actual cavity flow. And then frequency analysis is performed with Fast Fourier Transform. The results show that the calculation results with modified RNG k-epsilon turbulence model agree with experimental results in terms of mean cavity length and pressure drop, but the unsteady flow characteristics of oscillating cavitation still deviate slightly in terms of unsteady cavity flow.

  3. 3D MHD Simulations of accreting neutron stars: evidence of QPO emission from the surface

    Bachetti, Matteo; Kulkarni, Akshay; Burderi, Luciano; di Salvo, Tiziana; .,


    3D Magnetohydrodynamic simulations show that when matter accretes onto neutron stars, in particular if the misalignment angle is small, it does not constantly fall at a fixed spot. Instead, the location at which matter reaches the star moves. These moving hot spots can be produced both during stable accretion, where matter falls near the magnetic poles of the star, and unstable accretion, characterized by the presence of several tongues of matter which fall on the star near the equator, due to Rayleigh-Taylor instabilities. Precise modeling with Monte Carlo simulations shows that those movements could be observed as high frequency Quasi Periodic Oscillations. We performed a number of new simulation runs with a much wider set of parameters, focusing on neutron stars with a small misalignment angle. In most cases we observe oscillations whose frequency is correlated with the mass accretion rate $\\dot{M}$. Moreover, in some cases double QPOs appear, each of them showing the same correlation with $\\dot{M}$.

  4. 3D simulations of young core-collapse supernova remnants undergoing efficient particle acceleration

    Ferrand, Gilles


    Within our Galaxy, supernova remnants are believed to be the major sources of cosmic rays up to the "knee". However important questions remain regarding the share of the hadronic and leptonic components, and the fraction of the supernova energy channelled into these components. We address such question by the means of numerical simulations that combine a hydrodynamic treatment of the shock wave with a kinetic treatment of particle acceleration. Performing 3D simulations allows us to produce synthetic projected maps and spectra of the thermal and non-thermal emission, that can be compared with multi-wavelength observations (in radio, X-rays, and gamma-rays). Supernovae come in different types, and although their energy budget is of the same order, their remnants have different properties, and so may contribute in different ways to the pool of Galactic cosmic-rays. Our first simulations were focused on thermonuclear supernovae, like Tycho's SNR, that usually occur in a mostly undisturbed medium. Here we present...

  5. 3D optical simulation formalism OPTOS for textured silicon solar cells.

    Tucher, Nico; Eisenlohr, Johannes; Kiefel, Peter; Höhn, Oliver; Hauser, Hubert; Peters, Marius; Müller, Claas; Goldschmidt, Jan Christoph; Bläsi, Benedikt


    In this paper we introduce the three-dimensional formulation of the OPTOS formalism, a matrix-based method that allows for the efficient simulation of non-coherent light propagation and absorption in thick textured sheets. As application examples, we calculate the absorptance of solar cells featuring textures on front and rear side with different feature sizes operating in different optical regimes. A discretization of polar and azimuth angle enables a three-dimensional description of systems with arbitrary surface textures. We present redistribution matrices for 3D surface textures, including pyramidal textures, binary crossed gratings and a Lambertian scatterer. The results of the OPTOS simulations for silicon sheets with different combinations of these surfaces are in accordance with both optical measurements and results based on established simulation methods like ray tracing. Using OPTOS, we show that the integration of a diffractive grating at the rear side of a silicon solar cell featuring a pyramidal front side results in absorption close to the Yablonovitch Limit enhancing the photocurrent density by 0.6 mA/cm2 for a 200 µm thick cell.

  6. 3-D simulation of gases transport under condition of inert gas injection into goaf

    Liu, Mao-Xi; Shi, Guo-Qing; Guo, Zhixiong; Wang, Yan-Ming; Ma, Li-Yang


    To prevent coal spontaneous combustion in mines, it is paramount to understand O2 gas distribution under condition of inert gas injection into goaf. In this study, the goaf was modeled as a 3-D porous medium based on stress distribution. The variation of O2 distribution influenced by CO2 or N2 injection was simulated based on the multi-component gases transport and the Navier-Stokes equations using Fluent. The numerical results without inert gas injection were compared with field measurements to validate the simulation model. Simulations with inert gas injection show that CO2 gas mainly accumulates at the goaf floor level; however, a notable portion of N2 gas moves upward. The evolution of the spontaneous combustion risky zone with continuous inert gas injection can be classified into three phases: slow inerting phase, rapid accelerating inerting phase, and stable inerting phase. The asphyxia zone with CO2 injection is about 1.25-2.4 times larger than that with N2 injection. The efficacy of preventing and putting out mine fires is strongly related with the inert gas injecting position. Ideal injections are located in the oxidation zone or the transitional zone between oxidation zone and heat dissipation zone.

  7. 3-D Parallel Simulation Model of Continuous Beam-Electron Cloud Interactions

    Ghalam, Ali F; Decyk, Viktor K; Huang Cheng Kun; Katsouleas, Thomas C; Mori, Warren; Rumolo, Giovanni; Zimmermann, Frank


    A 3D Particle-In-Cell model for continuous modeling of beam and electron cloud interaction in a circular accelerator is presented. A simple model for lattice structure, mainly the Quadruple and dipole magnets and chromaticity have been added to a plasma PIC code, QuickPIC, used extensively to model plasma wakefield acceleration concept. The code utilizes parallel processing techniques with domain decomposition in both longitudinal and transverse domains to overcome the massive computational costs of continuously modeling the beam-cloud interaction. Through parallel modeling, we have been able to simulate long-term beam propagation in the presence of electron cloud in many existing and future circular machines around the world. The exact dipole lattice structure has been added to the code and the simulation results for CERN-SPS and LHC with the new lattice structure have been studied. Also the simulation results are compared to the results from the two macro-particle modeling for strong head-tail instability. ...

  8. Flux Emergence In The Solar Photosphere - Diagnostics Based On 3-D Rradiation-MHD Simulations

    Yelles Chaouche, L.; Cheung, M.; Lagg, A.; Solanki, S.


    We investigate flux tube emergence in the solar photosphere using a diagnostic procedure based on analyzing Stokes signals from different spectral lines calculated in 3-D radiation-MHD simulations. The simulations include the effects of radiative transport and partial ionization and cover layers both above and below the solar surface. The simulations consider the emergence of a twisted magnetic flux tube through the solar surface. We consider different stages in the emergence process, starting from the early appearance of the flux tube at the solar surface, and following the emergence process until the emerged flux looks similar to a normal bipolar region. At every stage we compute line profiles by numerically solving the Unno-Rachkovsky equations at every horizontal grid point. Then, following observational practice, we apply Milne-Eddington-type inversions to the synthetic spectra in order to retrieve different atmospheric parameters. We include the influence of spatial smearing on the deduced atmospheric parameters to identify signatures of different stages of flux emergence in the solar photosphere.

  9. Multi-million Atom Electronic Structure Simulations using NEMO 3-D

    Klimeck, Gerhard; Oyafuso, Fabiano; Boykin, Timothy B.; Bowen, R. Chris


    The detailed physical understanding of heterostructure interfaces enabled the creation of now well developed devices such as quantum well lasers, quantum well detectors, heterostructure field transistors and resonant tunneling diodes. The design and optimization of these devices and their implementation required the development and utilization of quantitative simulation tools. One such example is the nanoelectronic modeling tool (NEMO 1-D) originally developed by Texas Instruments. The need for such simulation tools is expected to only increase as device feature sizes and experimental characterization capabilities decrease and as manufacturing uncertainties increase. Quantum dot are a proptotypical 3-D nanoelectronic device and they have been studied experimentally and theoretically extensively in the past few years. The presentation will outline our recent developments to model such quantum dots on an atomistic level using the tight-binding method. The parallelization of the software on Intel-based Beowulfs and an SGI Origin, will be discussed. Simulation domains consisting of several million atoms will be analyzed for effects of random particle disorder, interfaces and confinement. More information about the work can be found at this website gekco.

  10. A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in-situ measurements

    Mulet, S.; Rio, M.-H.; Mignot, A.; Guinehut, S.; Morrow, R.


    A new estimate of the Global Ocean 3D geostrophic circulation from the surface down to 1500 m depth (Surcouf3D) has been computed for the 1993-2008 period using an observation-based approach that combines altimetry with temperature and salinity through the thermal wind equation. The validity of this simple approach was tested using a consistent dataset from a model reanalysis. Away from the boundary layers, errors are less than 10% in most places, which indicate that the thermal wind equation is a robust approximation to reconstruct the 3D oceanic circulation in the ocean interior. The Surcouf3D current field was validated in the Atlantic Ocean against in-situ observations. We considered the ANDRO current velocities deduced at 1000 m depth from Argo float displacements as well as velocity measurements at 26.5°N from the RAPID-MOCHA current meter array. The Surcouf3D currents show similar skill to the 3D velocities from the GLORYS Mercator Ocean reanalysis in reproducing the amplitude and variability of the ANDRO currents. In the upper 1000 m, high correlations are also found with in-situ velocities measured by the RAPID-MOCHA current meters. The Surcouf3D current field was then used to compute estimates of the Atlantic Meridional Overturning Circulation (AMOC) through the 25°N section, showing good comparisons with hydrographic sections from 1998 and 2004. Monthly averaged AMOC time series are also consistent with the RAPID-MOCHA array and with the GLORYS Mercator Ocean reanalysis over the April 2004-September 2007 period. Finally a 15 years long time series of monthly estimates of the AMOC was computed. The AMOC strength has a mean value of 16 Sv with an annual (resp. monthly) standard deviation of 2.4 Sv (resp. 7.1 Sv) over the 1993-2008 period. The time series, characterized by a strong variability, shows no significant trend.

  11. 3D multi-cell simulation of tumor growth and angiogenesis.

    Abbas Shirinifard

    Full Text Available We present a 3D multi-cell simulation of a generic simplification of vascular tumor growth which can be easily extended and adapted to describe more specific vascular tumor types and host tissues. Initially, tumor cells proliferate as they take up the oxygen which the pre-existing vasculature supplies. The tumor grows exponentially. When the oxygen level drops below a threshold, the tumor cells become hypoxic and start secreting pro-angiogenic factors. At this stage, the tumor reaches a maximum diameter characteristic of an avascular tumor spheroid. The endothelial cells in the pre-existing vasculature respond to the pro-angiogenic factors both by chemotaxing towards higher concentrations of pro-angiogenic factors and by forming new blood vessels via angiogenesis. The tumor-induced vasculature increases the growth rate of the resulting vascularized solid tumor compared to an avascular tumor, allowing the tumor to grow beyond the spheroid in these linear-growth phases. First, in the linear-spherical phase of growth, the tumor remains spherical while its volume increases. Second, in the linear-cylindrical phase of growth the tumor elongates into a cylinder. Finally, in the linear-sheet phase of growth, tumor growth accelerates as the tumor changes from cylindrical to paddle-shaped. Substantial periods during which the tumor grows slowly or not at all separate the exponential from the linear-spherical and the linear-spherical from the linear-cylindrical growth phases. In contrast to other simulations in which avascular tumors remain spherical, our simulated avascular tumors form cylinders following the blood vessels, leading to a different distribution of hypoxic cells within the tumor. Our simulations cover time periods which are long enough to produce a range of biologically reasonable complex morphologies, allowing us to study how tumor-induced angiogenesis affects the growth rate, size and morphology of simulated tumors.

  12. Real-Time Climate Simulations in the Interactive 3D Game Universe Sandbox ²

    Goldenson, N. L.


    Exploration in an open-ended computer game is an engaging way to explore climate and climate change. Everyone can explore physical models with real-time visualization in the educational simulator Universe Sandbox ² (, which includes basic climate simulations on planets. I have implemented a time-dependent, one-dimensional meridional heat transport energy balance model to run and be adjustable in real time in the midst of a larger simulated system. Universe Sandbox ² is based on the original game - at its core a gravity simulator - with other new physically-based content for stellar evolution, and handling collisions between bodies. Existing users are mostly science enthusiasts in informal settings. We believe that this is the first climate simulation to be implemented in a professionally developed computer game with modern 3D graphical output in real time. The type of simple climate model we've adopted helps us depict the seasonal cycle and the more drastic changes that come from changing the orbit or other external forcings. Users can alter the climate as the simulation is running by altering the star(s) in the simulation, dragging to change orbits and obliquity, adjusting the climate simulation parameters directly or changing other properties like CO2 concentration that affect the model parameters in representative ways. Ongoing visuals of the expansion and contraction of sea ice and snow-cover respond to the temperature calculations, and make it accessible to explore a variety of scenarios and intuitive to understand the output. Variables like temperature can also be graphed in real time. We balance computational constraints with the ability to capture the physical phenomena we wish to visualize, giving everyone access to a simple open-ended meridional energy balance climate simulation to explore and experiment with. The software lends itself to labs at a variety of levels about climate concepts including seasons, the Greenhouse effect

  13. 3D Staggered-Grid Finite-Difference Simulation of Acoustic Waves in Turbulent Moving Media

    Symons, N. P.; Aldridge, D. F.; Marlin, D.; Wilson, D. K.; Sullivan, P.; Ostashev, V.


    Acoustic wave propagation in a three-dimensional heterogeneous moving atmosphere is accurately simulated with a numerical algorithm recently developed under the DOD Common High Performance Computing Software Support Initiative (CHSSI). Sound waves within such a dynamic environment are mathematically described by a set of four, coupled, first-order partial differential equations governing small-amplitude fluctuations in pressure and particle velocity. The system is rigorously derived from fundamental principles of continuum mechanics, ideal-fluid constitutive relations, and reasonable assumptions that the ambient atmospheric motion is adiabatic and divergence-free. An explicit, time-domain, finite-difference (FD) numerical scheme is used to solve the system for both pressure and particle velocity wavefields. The atmosphere is characterized by 3D gridded models of sound speed, mass density, and the three components of the wind velocity vector. Dependent variables are stored on staggered spatial and temporal grids, and centered FD operators possess 2nd-order and 4th-order space/time accuracy. Accurate sound wave simulation is achieved provided grid intervals are chosen appropriately. The gridding must be fine enough to reduce numerical dispersion artifacts to an acceptable level and maintain stability. The algorithm is designed to execute on parallel computational platforms by utilizing a spatial domain-decomposition strategy. Currently, the algorithm has been validated on four different computational platforms, and parallel scalability of approximately 85% has been demonstrated. Comparisons with analytic solutions for uniform and vertically stratified wind models indicate that the FD algorithm generates accurate results with either a vanishing pressure or vanishing vertical-particle velocity boundary condition. Simulations are performed using a kinematic turbulence wind profile developed with the quasi-wavelet method. In addition, preliminary results are presented

  14. Development of a 3D rockfall simulation model for point cloud topography

    Noël, François; Wyser, Emmanuel; Jaboyedoff, Michel; Clouthier, Catherine; Locat, Jacques


    Rockfall simulations are generally used, for example, as input data to generate rockfall susceptibility map, to evaluate the reach probability of an infrastructure or to define input parameter values for mitigation designs. During the simulations, the lateral and vertical deviations of the particle and the change of velocity happening during the impacts have to be evaluated. Numerous factors control rockfall paths and velocities, like the particle's and terrain's shapes and compositions. Some models, especially the ones using discrete element methods, can consider a lot of physical factors. However, a compromise often has to be done between the time needed to produce a sufficient amount of 2D or 3D rockfall trajectories and the level of complexity of the model. In this presentation, the current version of our rockfall model in development is detailed and the compromises that were made are explained. For example, it is hard to predict the sizes and shapes of the components that could fall from a developing rock instability, or if they will break after the first impact or stay as massive blocks. For this reason, we decided for now to simplify the particle's shape to a sphere which can vary in size and to use a cubical shape to compute the 3D rotational inertia. In contrast to the particle's characteristics, the terrain's shape is known and can be acquired in detail using current topographical acquisition methods, e.g. airborne and terrestrial laser scans and aerial based structure from motion. We made no sacrifice on that side and developed our model so it can simulate rockfalls directly on 3D point clouds topographical data. It is also been shown that calibrating velocity weighting factors, often called restitution coefficients, is not an easy task. Divergent results could be obtained by different users using the same simulation program simply because they use different weighting factors, which are hard to evaluate and quantify from field work. Moreover, the normal

  15. Comparison of simulated and experimental 3D laser images using a GmAPD array: application to long range detection

    Coyac, Antoine; Riviere, Nicolas; Hespel, Laurent; Briottet, Xavier


    In this paper, we show the feasibility and the benefit to use a Geiger-mode Avalanche Photo-Diode (GmAPD) array for long range detection, up to several kilometers. A simulation of a Geiger detection sensor is described, which is a part of our end-to-end laser simulator, to generate simulated 3D laser images from synthetic scenes. Resulting 3D point clouds have been compared to experimental acquisitions, performed with our GmAPD 3D camera on similar scenarios. An operational case of long range detection is presented: a copper cable outstretched above the ground, 1 kilometer away the experimental system and with a horizontal line-of-sight (LOS). The detection of such a small object from long distance observation strongly suggests that GmAPD focal plane arrays could be easily used for real-time 3D mapping or surveillance applications from airborne platforms, with good spatial and temporal resolutions.

  16. 3D Simulations of Plasma Filaments in the Scrape Off Layer: A Comparison with Models of Reduced Dimensionality

    Easy, Luke; Omotani, John; Dudson, Benjamin; Havlíčková, Eva; Tamain, Patrick; Naulin, Volker; Nielsen, Anders H


    This paper presents simulations of isolated 3D filaments in a slab geometry obtained using a 3D reduced fluid code. First, systematic scans were performed to investigate how the dynamics of a filament are affected by its amplitude, perpendicular size and parallel extent. The perpendicular size of the filament was found to have a strong influence on its motions, as it determined the relative importance of parallel currents to polarisation and viscous currents, whilst drift-wave instabilities were observed if the initial amplitude of the blob was increased sufficiently. Next, the 3D simulations were compared to 2D simulations using different parallel closures; namely, the sheath dissipation closure, which neglects parallel gradients, and the vorticity advection closure, which neglects the influence of parallel currents. The vorticity advection closure was found to not replicate the 3D perpendicular dynamics and overestimated the initial radial acceleration of all the filaments studied. In contrast, a more satis...

  17. Efficient global optimization based 3D carotid AB-LIB MRI segmentation by simultaneously evolving coupled surfaces.

    Ukwatta, Eranga; Yuan, Jing; Rajchl, Martin; Fenster, Aaron


    Magnetic resonance (MR) imaging of carotid atherosclerosis biomarkers are increasingly being investigated for the risk assessment of vulnerable plaques. A fast and robust 3D segmentation of the carotid adventitia (AB) and lumen-intima (LIB) boundaries can greatly alleviate the measurement burden of generating quantitative imaging biomarkers in clinical research. In this paper, we propose a novel global optimization-based approach to segment the carotid AB and LIB from 3D T1-weighted black blood MR images, by simultaneously evolving two coupled surfaces with enforcement of anatomical consistency of the AB and LIB. We show that the evolution of two surfaces at each discrete time-frame can be optimized exactly and globally by means of convex relaxation. Our continuous max-flow based algorithm is implemented in GPUs to achieve high computational performance. The experiment results from 16 carotid MR images show that the algorithm obtained high agreement with manual segmentations and achieved high repeatability in segmentation.

  18. Roles of initial current carrier in the distribution of field-aligned current in 3-D Hall MHD simulations

    ZHANG XianGuo; PU ZuYin; MA ZhiWei; ZHOU XuZhi


    A three-dimensional (3-D) Hall MHD simulation is carried out to study the roles of initial current carrier in the topology of magnetic field,the generation and distribuering the contribution of ions to the initial current,the topology of the obtained magnetic field turns to be more complex. In some cases,it is found that not only the traditional By quadrupole structure but also a reversal By quadrupole structure appears in the simulation box. This can explain the observational features near the diffusion region,which are inconsistent with the Hall MHD theory with the total initial current carried by electrons. Several other interesting features are also emerged. First,motions of electrons and ions are decoupled from each other in the small plasma region (Hall effect region) with a scale less than or comparable with the ion inertial length or ion skin depth di=c/ωp. In the non-Hall effect region,the global magnetic structure is shifted in +y direction under the influence of ions with initial y directional motion. However,in the Hall effect region,magnetic field lines are bent in -y direction,mainly controlled by the motion of electrons,then By is generated. Second,FACs emerge as a result of the appearance of By. Compared with the prior Hall MHD simulation results,the generated FACs shift in +y direction,

  19. Effects of inhomogeneity at stagnation in 3D simulations of ICF implosions

    Appelbe, Brian


    The stagnation phase of an ICF implosion is characterized by a hotspot and dense fuel layer that are spatially and temporally inhomogeneous. Perturbation growth during the implosion results in significant asymmetry at stagnation while the hotspot size, density and temperature change rapidly, even in non-igniting capsules. Diagnosing these inhomogeneities is necessary to increase yield in ICF experiments. In this work, 3D radiation hydrodynamic simulations of perturbed indirect drive ICF capsules are carried out using the CHIMERA code. During the stagnation phase a suite of novel and computationally efficient simulation tools are used to produce synthetic time-resolved neutron spectra and images. These tools allow a detailed study of the effects of hotspot inhomogeneities on diagnostic signals. Results show that the burn-averaged ion temperature drops rapidly during thermonuclear burn as the hotspot evolves from a localised, shock-heated region to a more massive, non-uniform plasma. Primary DD and DT neutron spectra show that there is significant residual bulk fluid motion at stagnation, complicating the measurement of ion temperature. Different perturbation modes cause different levels of anisotropic spectra shifts and broadening. However, in all cases the discrepancies between the DD and DT spectra are a reliable indicator of residual motion at stagnation. The simulations are used to examine the relationship between neutron scattering and areal density (ρR). Three measures of areal density are simulated: downscattered neutron ratio, attenuated primary neutron yield and nT backscatter edge. Each of these diagnoses the magnitude and anisotropy of the ρR with varying success, with accuracy decreasing for higher mode perturbations. Contributions to the neutron energy spectra from T +T reactions, secondary DT reactions and deuteron break-up are also evaluated.

  20. Ultra-fast hybrid CPU-GPU multiple scatter simulation for 3-D PET.

    Kim, Kyung Sang; Son, Young Don; Cho, Zang Hee; Ra, Jong Beom; Ye, Jong Chul


    Scatter correction is very important in 3-D PET reconstruction due to a large scatter contribution in measurements. Currently, one of the most popular methods is the so-called single scatter simulation (SSS), which considers single Compton scattering contributions from many randomly distributed scatter points. The SSS enables a fast calculation of scattering with a relatively high accuracy; however, the accuracy of SSS is dependent on the accuracy of tail fitting to find a correct scaling factor, which is often difficult in low photon count measurements. To overcome this drawback as well as to improve accuracy of scatter estimation by incorporating multiple scattering contribution, we propose a multiple scatter simulation (MSS) based on a simplified Monte Carlo (MC) simulation that considers photon migration and interactions due to photoelectric absorption and Compton scattering. Unlike the SSS, the MSS calculates a scaling factor by comparing simulated prompt data with the measured data in the whole volume, which enables a more robust estimation of a scaling factor. Even though the proposed MSS is based on MC, a significant acceleration of the computational time is possible by using a virtual detector array with a larger pitch by exploiting that the scatter distribution varies slowly in spatial domain. Furthermore, our MSS implementation is nicely fit to a parallel implementation using graphic processor unit (GPU). In particular, we exploit a hybrid CPU-GPU technique using the open multiprocessing and the compute unified device architecture, which results in 128.3 times faster than using a single CPU. Overall, the computational time of MSS is 9.4 s for a high-resolution research tomograph (HRRT) system. The performance of the proposed MSS is validated through actual experiments using an HRRT.

  1. The thermal regime of the Campi Flegrei magmatic system reconstructed through 3D numerical simulations

    Di Renzo, Valeria; Wohletz, Kenneth; Civetta, Lucia; Moretti, Roberto; Orsi, Giovanni; Gasparini, Paolo


    We illustrate a quantitative conductive/convective thermal model incorporating a wide range of geophysical, petrological, geological, geochemical and isotopical observations that constrain the thermal evolution and present state of the Campi Flegrei caldera (CFc) magmatic system. The proposed model has been computed on the basis of the current knowledge of: (1) the volcanic and magmatic history of the volcano over the last 44 ka, (2) its underlying crustal structure, and (3) the physical properties of the erupted magmas. 3D numerical simulations of heat conduction and convection within heterogeneous rock/magma materials with evolving heat sources and boundary conditions that simulate magma rise from a deep (≥ 8 km depth) to shallow (2-6 km) reservoirs, magma chamber formation, magma extrusion, caldera collapse, and intra-caldera hydrothermal convection, have been carried out. The evolution of the CFc magmatic system through time has been simulated through different steps related to its changes in terms of depth, location and size of magma reservoirs and their replenishment. The thermal modeling results show that both heat conduction and convection have played an important role in the CFc thermal evolution, although with different timing. The simulated present heat distribution is in agreement with the measured geothermal profiles (Agip, 1987), reproduces the thermal gradient peaks at the CFc margins in correspondence to the anomalies in surface gradients (Corrado et al., 1998), and suggests temperatures of 700 °C at depth of 4 km in the central portion of the caldera, in agreement with the estimated temperature for the brittle-ductile transition (Hill, 1992).

  2. Changes in dissolved iron deposition to the oceans driven by human activity: a 3-D global modelling study

    Myriokefalitakis, S.; Daskalakis, N.; Mihalopoulos, N.; Baker, A. R.; Nenes, A.; Kanakidou, M.


    The global atmospheric iron (Fe) cycle is parameterized in the global 3-D chemical transport model TM4-ECPL to simulate the proton- and the organic ligand-promoted mineral-Fe dissolution as well as the aqueous-phase photochemical reactions between the oxidative states of Fe (III/II). Primary emissions of total (TFe) and dissolved (DFe) Fe associated with dust and combustion processes are also taken into account, with TFe mineral emissions calculated to amount to ~ 35 Tg-Fe yr-1 and TFe emissions from combustion sources of ~ 2 Tg-Fe yr-1. The model reasonably simulates the available Fe observations, supporting the reliability of the results of this study. Proton- and organic ligand-promoted Fe dissolution in present-day TM4-ECPL simulations is calculated to be ~ 0.175 Tg-Fe yr-1, approximately half of the calculated total primary DFe emissions from mineral and combustion sources in the model (~ 0.322 Tg-Fe yr-1). The atmospheric burden of DFe is calculated to be ~ 0.024 Tg-Fe. DFe deposition presents strong spatial and temporal variability with an annual flux of ~ 0.496 Tg-Fe yr-1, from which about 40 % (~ 0.191 Tg-Fe yr-1) is deposited over the ocean. The impact of air quality on Fe deposition is studied by performing sensitivity simulations using preindustrial (year 1850), present (year 2008) and future (year 2100) emission scenarios. These simulations indicate that about a 3 times increase in Fe dissolution may have occurred in the past 150 years due to increasing anthropogenic emissions and thus atmospheric acidity. Air-quality regulations of anthropogenic emissions are projected to decrease atmospheric acidity in the near future, reducing to about half the dust-Fe dissolution relative to the present day. The organic ligand contribution to Fe dissolution shows an inverse relationship to the atmospheric acidity, thus its importance has decreased since the preindustrial period but is projected to increase in the future. The calculated changes also show that the

  3. Secondary reconnection, energisation and turbulence in dipolarisation fronts: results of a 3D kinetic simulation campaign

    Lapenta, Giovanni; Goldman, Martin; Newman, David; olshevskyi, Vyacheslav; Markidis, Stefano


    Dipolarization fronts (DF) are formed by reconnection outflows interacting with the pre-existing environment. These regions are host of important energy exchanges [1], particle acceleration [2] and a complex structure and evolution [3]. Our recent work has investigated these regions via fully kinetic 3D simulations [4]. As reported recently on Nature Physics [3], based on 3D fully kinetic simulations started with a well defined x-line, we observe that in the DF reconnection transitions towards a more chaotic regime. In the fronts an instability devel- ops caused by the local gradients of the density and by the unfavourable acceleration and field line curvature. The consequence is the break up of the fronts in a fashion similar to the classical fluid Rayleigh-Taylor instability with the formation of "fingers" of plasma and embedded magnetic fields. These fingers interact and produce secondary reconnection sites. We present several different diagnostics that prove the existence of these secondary reconnection sites. Each site is surrounded by its own electron diffusion region. At the fronts the ions are generally not magnetized and considerable ion slippage is present. The discovery we present is that electrons are also slipping, forming localized diffusion regions near secondary reconnection sites [1]. The consequence of this discovery is twofold. First, the instability in the fronts has strong energetic implications. We observe that the energy transfer locally is very strong, an order of magnitude stronger than in the "X" line. However, this energy transfer is of both signs as it is natural for a wavy rippling with regions of magnetic to kinetic and regions of kinetic to magnetic energy conversion. Second, and most important for this session, is that MMS should not limit the search for electron diffusion regions to the location marked with X in all reconnection cartoons. Our simulations predict more numerous and perhaps more easily measurable electron diffusion

  4. Study on 3D simulation of wave fields in acoustic reflection image logging


    The borehole acoustic reflection imaging logging is a newly developed acoustic logging method that has attracted many interests. These converted and reflected waves for imaging are usually mixed up with borehole guided waves and therefore difficult to be clearly identified. To improve the downhole tool design and develop more sophisticate data processing and interpretation algorithms,studies on precisely numerical modeling of the wave fields in the acoustic reflection imaging logging are neces-sary and critical. This paper developed a parallelized scheme of 3D finite difference (3DFD) with non-uniform staggered grid and PML absorbing boundary to simulate the acoustic wave fields in isotropic and anisotropic formations. Applications of this scheme to the typical cases of isotropic and anisot-ropic formations and comparison with the results from published analytical solutions have demon-strated the validation and efficiency of the scheme. Higher accuracy and lower computation cost (3.5 times faster than the conventional schemes) have been achieved with this scheme for modeling such a complex wave fields of 60 dB dynamic range with higher frequency (10 kHz). This simulating program provides a quantitative analytical means for studying acoustic reflection imaging tool and development of the data processing and interpretation methods.

  5. 3D Simulation of Spindle Gravitational Collapse of a Collisionless Particle System

    Yoo, Chul-Moon; Okawa, Hirotada


    We simulate the spindle gravitational collapse of a collisionless particle system in a 3D numerical relativity code and compare the qualitative results with the old work done by Shapiro and Teukolsky(ST). The simulation starts from the prolate-shaped distribution of particles and a spindle collapse is observed. The peak value and its spatial position of curvature invariants are monitored during the time evolution. We find that the peak value of the Kretschmann invariant takes a maximum at some moment, when there is no apparent horizon, and its value is greater for finer resolution, which is consistent with what is reported in ST. We also find a similar tendency for the Weyl curvature invariant. Therefore, our results lend support to the formation of a naked singularity as a result of the spindle collapse of a collisionless particle system in the limit of infinite resolution. However, unlike in ST, our code does not break down then but go well beyond. We find that the peak values of the curvature invariants st...

  6. 3D simulations of disc-winds extending radially self-similar MHD models

    Stute, Matthias; Vlahakis, Nektarios; Tsinganos, Kanaris; Mignone, Andrea; Massaglia, Silvano


    Disc-winds originating from the inner parts of accretion discs are considered as the basic component of magnetically collimated outflows. The only available analytical MHD solutions to describe disc-driven jets are those characterized by the symmetry of radial self-similarity. However, radially self-similar MHD jet models, in general, have three geometrical shortcomings, (i) a singularity at the jet axis, (ii) the necessary assumption of axisymmetry, and (iii) the non-existence of an intrinsic radial scale, i.e. the jets formally extend to radial infinity. Hence, numerical simulations are necessary to extend the analytical solutions towards the axis, by solving the full three-dimensional equations of MHD and impose a termination radius at finite radial distance. We focus here on studying the effects of relaxing the (ii) assumption of axisymmetry, i.e. of performing full 3D numerical simulations of a disc-wind crossing all magnetohydrodynamic critical surfaces. We compare the results of these runs with previou...

  7. Comparison of plasma data from ASPERA-3/Mars-Express with a 3-D hybrid simulation

    A. Bößwetter


    Full Text Available The ELS and IMA sensors of the ASPERA-3 experiment onboard of Mars-Express (MEX can measure electron as well as ion moments. We compare these measurements for a specific orbit with the simulation results from a 3-D hybrid model. In the hybrid approximation the electrons are modeled as a massless charge-neutralizing fluid, whereas the ions are treated as individual particles. This approach allows gyroradius effects to be included in our model calculations of the Martian plasma environment because the gyroradii of the solar wind protons are in the range of several hundred kilometers and therefore comparable with the characteristic scales of the subsolar ionospheric interaction region. The position of both the bow shock and the Ion Composition Boundary (ICB manifest in the MEX data as well as in the results from the hybrid simulation nearly at the same location. The characteristic features of these boundaries, i.e. an increase of proton density and temperature at the Bow Shock and a transition from solar wind to ionospheric particles at the ICB, are clearly identifiable in the data.

  8. Self-consistent 3D simulations of longitudinal halo in rf -linacs

    Barnard, J J; Lund, S M; Ryne, R D


    In order to prevent activation of the beam pipe walls and components of a high power ion accelera- tor: beam loss must be minimized. Here we present self-consistent, 3D particle-in-cell simulations of longi- tudinally mismatched beams including the effects of rf non-linearities using parameters based on the Acceler- ator Production of Tritium linac design. In particular, we explore the evolution of the longitudinal halo distri- bution, i.e., the distribution of particles in longitudinal phase space with oscillation amplitudes significantly larger than amplitudes of particles in the main body or ''core'' of the beam. When a particle reaches a suf- ficiently large amplitude longitudinally it can he lost from the rf bucket and consequently loses synchro- nism with thr rf wave. Such particles will lose energy and so be poorly matched to the transverse focusing field and consequently can be lost transversely. We compare the present simulations in which all particles contribute self-consistently to the self-field to predic- tions of a core/test particle model in which the core distribution has uniformly distributed charge and does not evolve self-consistently. Effects of self-consistent, non-linear space-charge forces, non-linear rf focusing on envelope mismatch induced beam halo are explored through comparisons of both models.

  9. Assessing soil water storage distribution under sprinkler irrigation by coupling 3D simulations and field observations

    Taha, Uday; Shabeeb, Ahmed; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio


    This work analyzed the variability of sprinkler irrigation application over a bare soil, both in terms of water application efficiency and uniformity, by integrating and comparing the information on the irrigation depth data (ID), as measured by catch cans, soil water storage in the upper root zone, as measured by TDR probes, and a 3D simulations of water flow in soils. Three irrigation tests were performed at three different pressures (2, 3 and 4 bar). A lateral water redistribution was observed and simulated after each irrigation event by comparing spatial distributions of site-specific water application efficiency (AEs), as well as ratios of site-specific actual water storage increase (SWEs) and irrigation depth (IDs) to the water content before irrigation. Because of soil water redistribution processes, distribution uniformity based on soil storages was systematically higher than the catch can uniformity. The obvious consequence of lateral water redistribution processes was that the soil smoothing action on non-uniformity observed at the surface increased both with depth and over time. At a given depth the uniformity of soil water storages always attained the same value, whatever the pressure considered and the catch can-based uniformity coefficient. It was concluded that, for the case of random distribution of ID, the uniformity of water storages is driven by the soil behavior rather than by the irrigation system.

  10. Spicule-like structures observed in 3D realistic MHD simulations

    Martinez-Sykora, J; De Pontieu, B; Carlsson, M


    We analyze features that resemble type i spicules in two different 3D numerical simulations in which we include horizontal magnetic flux emergence in a computational domain spanning the upper layers of the convection zone to the lower corona. The two simulations differ mainly in the preexisting ambient magnetic field strength and in the properties of the inserted flux tube. We use the Oslo Staggered Code (OSC) to solve the full MHD equations with non-grey and non-LTE radiative transfer and thermal conduction along the magnetic field lines. We find a multitude of features that show a spatiotemporal evolution that is similar to that observed in type i spicules, which are characterized by parabolic height vs. time profiles, and are dominated by rapid upward motion at speeds of 10-30 km/s, followed by downward motion at similar velocities. We measured the parameters of the parabolic profile of the spicules and find similar correlations between the parameters as those found in observations. The values for height (...

  11. 3D multiphysics modeling of superconducting cavities with a massively parallel simulation suite

    Oleksiy Kononenko


    Full Text Available Radiofrequency cavities based on superconducting technology are widely used in particle accelerators for various applications. The cavities usually have high quality factors and hence narrow bandwidths, so the field stability is sensitive to detuning from the Lorentz force and external loads, including vibrations and helium pressure variations. If not properly controlled, the detuning can result in a serious performance degradation of a superconducting accelerator, so an understanding of the underlying detuning mechanisms can be very helpful. Recent advances in the simulation suite ace3p have enabled realistic multiphysics characterization of such complex accelerator systems on supercomputers. In this paper, we present the new capabilities in ace3p for large-scale 3D multiphysics modeling of superconducting cavities, in particular, a parallel eigensolver for determining mechanical resonances, a parallel harmonic response solver to calculate the response of a cavity to external vibrations, and a numerical procedure to decompose mechanical loads, such as from the Lorentz force or piezoactuators, into the corresponding mechanical modes. These capabilities have been used to do an extensive rf-mechanical analysis of dressed TESLA-type superconducting cavities. The simulation results and their implications for the operational stability of the Linac Coherent Light Source-II are discussed.

  12. 3D MHD Simulations of Laser Plasma Guiding in Curved Magnetic Field

    Roupassov, S.; Rankin, R.; Tsui, Y.; Capjack, C.; Fedosejevs, R.


    The guiding and confinement of laser produced plasma in a curved magnetic field has been investigated numerically. These studies were motivated by experiments on pulsed laser deposition of diamond-like films [1] in which a 1kG magnetic field in a curved solenoid geometry was utilized to steer a carbon plasma around a curved trajectory and thus to separate it from unwanted macroparticles produced by the laser ablation. The purpose of the modeling was to characterize the plasma dynamics during the propagation through the magnetic guide field and to investigate the effect of different magnetic field configurations. A 3D curvilinear ADI code developed on the basis of an existing Cartesian code [2] was employed to simulate the underlying resistive one-fluid MHD model. Issues such as large regions of low background density and nonreflective boundary conditions were addressed. Results of the simulations in a curved guide field will be presented and compared to experimental results. [1] Y.Y. Tsui, D. Vick and R. Fedosejevs, Appl. Phys. Lett. 70 (15), pp. 1953-57, 1997. [2] R. Rankin, and I. Voronkov, in "High Performance Computing Systems and Applications", pp. 59-69, Kluwer AP, 1998.

  13. The early phases of galaxy clusters formation in IR: coupling hydrodynamical simulations with GRASIL3D

    Granato, Gian Luigi; Dominguez-Tenreiro, Rosa; Obreja, Aura; Borgani, Stefano; De Lucia, Gabriella; Murante, Giuseppe


    We compute and study the infrared and sub-mm properties of high redshift (z>1) simulated clusters and proto-clusters, by coupling the results of a large set of hydro-dynamical zoom-in simulations including active galactic nuclei (AGN) feedback (Ragone-Figueroa et al. 2013), with the recently developed radiative transfer code GRASIL3D (Dominguez-Tenreiro et al. 2014), which accounts for the effect of dust reprocessing in an arbitrary geometry, and we customized for the present purpose. While this field is in its infancy from the observational point of view, a rapid development is expected in the near future, thanks to observations performed in the far IR and sub-mm bands. Notably, we find that in this spectral regime our prediction are little affected by the assumption required by this post-processing, and the emission is mostly powered by star formation rather than accretion onto super massive black hole (SMBH). The comparison with the little observational information available so far, highlights that the sim...

  14. Simulation of a Synthetic Jet in Quiescent Air Using TLNS3D Flow Code

    Vatsa, Veer N.; Turkel, Eli


    Although the actuator geometry is highly three-dimensional, the outer flowfield is nominally two-dimensional because of the high aspect ratio of the rectangular slot. For the present study, this configuration is modeled as a two-dimensional problem. A multi-block structured grid available at the CFDVAL2004 website is used as a baseline grid. The periodic motion of the diaphragm is simulated by specifying a sinusoidal velocity at the diaphragm surface with a frequency of 450 Hz, corresponding to the experimental setup. The amplitude is chosen so that the maximum Mach number at the jet exit is approximately 0.1, to replicate the experimental conditions. At the solid walls zero slip, zero injection, adiabatic temperature and zero pressure gradient conditions are imposed. In the external region, symmetry conditions are imposed on the side (vertical) boundaries and far-field conditions are imposed on the top boundary. A nominal free-stream Mach number of 0.001 is imposed in the free stream to simulate incompressible flow conditions in the TLNS3D code, which solves compressible flow equations. The code was run in unsteady (URANS) mode until the periodicity was established. The time-mean quantities were obtained by running the code for at least another 15 periods and averaging the flow quantities over these periods. The phase-locked average of flow quantities were assumed to be coincident with their values during the last full time period.

  15. 3D simulations of gas puff effects on edge plasma and ICRF coupling in JET

    Zhang, W.; Jacquet, P.; Lerche, E.; Bilato, R.; Bobkov, V.; Coster, D.; Feng, Y.; Guillemaut, C.; Goniche, M.; Harting, D.; Lunt, T.; Noterdaeme, J.-M.; Szepesi, G.; Van Eester, D.; JET Contributors, the


    Recent JET (ITER-Like Wall) experiments have shown that the fueling gas puffed from different locations of the vessel can result in different scrape-off layer (SOL) density profiles and therefore different radio frequency (RF) coupling. To reproduce the experimental observations, to understand the associated physics and to optimize the gas puff methods, we have carried out three-dimensional (3D) simulations with the EMC3-EIRENE code in JET-ILW including a realistic description of the vessel geometry and the gas injection modules (GIMs) configuration. Various gas puffing methods have been investigated, in which the location of gas fueling is the only variable parameter. The simulation results are in quantitative agreement with the experimental measurements. They confirm that compared to divertor gas fueling, mid-plane gas puffing increases the SOL density most significantly but locally, while top gas puffing increases it uniformly in toroidal direction but to a lower degree. Moreover, the present analysis corroborates the experimental findings that combined gas puff scenarios—based on distributed main chamber gas puffing—can be effective in increasing the RF coupling for multiple antennas simultaneously. The results indicate that the spreading of the gas, the local ionization and the transport of the ionized gas along the magnetic field lines connecting the local gas cloud in front of the GIMs to the antennas are responsible for the enhanced SOL density and thus the larger RF coupling.

  16. EMPulse, a new 3-D simulation code for electromagnetic pulse studies

    Cohen, Bruce; Eng, Chester; Farmer, William; Friedman, Alex; Grote, David; Kruger, Hans; Larson, David


    EMPulse is a comprehensive and modern 3-D simulation code for electro-magnetic pulse (EMP) formation and propagation studies, being developed at LLNL as part of a suite of codes to study E1 EMP originating from prompt gamma rays. EMPulse builds upon the open-source Warp particle-in-cell code framework developed by members of this team and collaborators at other institutions. The goal of this endeavor is a new tool enabling the detailed and self-consistent study of multi-dimensional effects in geometries that have typically been treated only approximately. Here we present an overview of the project, the models and methods that have been developed and incorporated into EMPulse, tests of these models, comparisons to simulations undertaken in CHAP-lite (derived from the legacy code CHAP due to C. Longmire and co-workers), and some approaches to increased computational efficiency being studied within our project. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. A 3D numerical simulation of different phases of friction stir welding

    Guerdoux, S.; Fourment, L.


    An adaptive arbitrary Lagrangian-Eulerian formulation is developed to compute the material flow and the temperature evolution during the three phases of the friction stir welding (FSW) process. It follows a splitting approach: after the calculations of the velocity/pressure and temperature fields, the mesh velocity is derived from the domain boundary evolution and from an adaptive refinement criterion provided by error estimation, and finally state variables are remapped. In this way, the unilateral contact conditions between the plate and the tool are accurately taken into account, so allowing one to model various instabilities that may occur during the process, such as the role played by the plunge depth of the tool on the formations of flashes, the possible appearance of non-steady voids or tunnel holes and the influence of the threads on the material flow, the temperature field and the welding efforts. This formulation is implemented in the 3D Forge3 FE software with automatic remeshing. The non-steady phases of FSW can so be simulated, as well as the steady welding phase. The study of different process conditions shows that the main phenomena taking place during FSW can be simulated with the right sensitivities.

  18. Nonlinear 3-D simulation of high-intensity focused ultrasound therapy in the kidney

    Suomi, Visa; Treeby, Bradley; Cleveland, Robin


    Kidney cancer is a severe disease which can be treated non-invasively using high-intensity focused ultrasound (HIFU) therapy. However, tissue in front of the transducer and the deep location of kidney can cause significant losses to the efficiency of the treatment. The effect of attenuation, refraction and reflection due to different tissue types on HIFU therapy of the kidney was studied using a nonlinear ultrasound simulation model. The geometry of the tissue was derived from a computed tomography (CT) dataset of a patient which had been segmented for water, bone, soft tissue, fat and kidney. The combined effect of inhomogeneous attenuation and sound-speed was found to result in an 11.0 dB drop in spatial peak-temporal average (SPTA) intensity in the kidney compared to pure water. The simulation without refraction effects showed a 6.3 dB decrease indicating that both attenuation and refraction contribute to the loss in focal intensity. The losses due to reflections at soft tissue interfaces were less than 0....

  19. Parallel 3-d simulations for porous media models in soil mechanics

    Wieners, C.; Ammann, M.; Diebels, S.; Ehlers, W.

    Numerical simulations in 3-d for porous media models in soil mechanics are a difficult task for the engineering modelling as well as for the numerical realization. Here, we present a general numerical scheme for the simulation of two-phase models in combination with an material model via the stress response with a specialized parallel saddle point solver. Therefore, we give a brief introduction into the theoretical background of the Theory of Porous Media and constitute a two-phase model consisting of a porous solid skeleton saturated by a viscous pore-fluid. The material behaviour of the skeleton is assumed to be elasto-viscoplastic. The governing equations are transfered to a weak formulation suitable for the application of the finite element method. Introducing an formulation in terms of the stress response, we define a clear interface between the assembling process and the parallel solver modules. We demonstrate the efficiency of this approach by challenging numerical experiments realized on the Linux Cluster in Chemnitz.

  20. 3D dynamic rupture simulation and local tomography studies following the 2010 Haiti earthquake

    Douilly, Roby

    The 2010 M7.0 Haiti earthquake was the first major earthquake in southern Haiti in 250 years. As this event could represent the beginning of a new period of active seismicity in the region, and in consideration of how vulnerable the population is to earthquake damage, it is important to understand the nature of this event and how it has influenced seismic hazards in the region. Most significantly, the 2010 earthquake occurred on the secondary Leogâne thrust fault (two fault segments), not the Enriquillo Fault, the major strike-slip fault in the region, despite it being only a few kilometers away. We first use a finite element model to simulate rupture along the Leogâne fault. We varied friction and background stress to investigate the conditions that best explain observed surface deformations and why the rupture did not to jump to the nearby Enriquillo fault. Our model successfully replicated rupture propagation along the two segments of the Leogâne fault, and indicated that a significant stress increase occurred on the top and to the west of the Enriquillo fault. We also investigated the potential ground shaking level in this region if a rupture similar to the Mw 7.0 2010 Haiti earthquake were to occur on the Enriquillo fault. We used a finite element method and assumptions on regional stress to simulate low frequency dynamic rupture propagation for the segment of the Enriquillo fault closer to the capital. The high-frequency ground motion components were calculated using the specific barrier model, and the hybrid synthetics were obtained by combining the low-frequencies ( 1Hz) from the stochastic simulation using matched filtering at a crossover frequency of 1 Hz. The average horizontal peak ground acceleration, computed at several sites of interest through Port-au-Prince (the capital), has a value of 0.35g. Finally, we investigated the 3D local tomography of this region. We considered 897 high-quality records from the earthquake catalog as recorded by

  1. Enabling Lorentz boosted frame particle-in-cell simulations of laser wakefield acceleration in quasi-3D geometry

    Yu, Peicheng; Xu, Xinlu; Davidson, Asher; Tableman, Adam; Dalichaouch, Thamine; Li, Fei; Meyers, Michael D.; An, Weiming; Tsung, Frank S.; Decyk, Viktor K.; Fiuza, Frederico; Vieira, Jorge; Fonseca, Ricardo A.; Lu, Wei; Silva, Luis O.; Mori, Warren B.


    When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at βb c towards the laser, which can lead to a computational speedup of ∼ γb2 = (1 - βb2)-1. Meanwhile, when LWFA is modeled in the quasi-3D geometry in which the electromagnetic fields and current are decomposed into a limited number of azimuthal harmonics, speedups are achieved by modeling three dimensional (3D) problems with the computational loads on the order of two dimensional r - z simulations. Here, we describe a method to combine the speedups from the Lorentz boosted frame and quasi-3D algorithms. The key to the combination is the use of a hybrid Yee-FFT solver in the quasi-3D geometry that significantly mitigates the Numerical Cerenkov Instability (NCI) which inevitably arises in a Lorentz boosted frame due to the unphysical coupling of Langmuir modes and EM modes of the relativistically drifting plasma in these simulations. In addition, based on the space-time distribution of the LWFA data in the lab and boosted frame, we propose to use a moving window to follow the drifting plasma, instead of following the laser driver as is done in the LWFA lab frame simulations, in order to further reduce the computational loads. We describe the details of how the NCI is mitigated for the quasi-3D geometry, the setups for simulations which combine the Lorentz boosted frame, quasi-3D geometry, and the use of a moving window, and compare the results from these simulations against their corresponding lab frame cases. Good agreement is obtained among these sample simulations, particularly when there is no self-trapping, which demonstrates it is possible to combine the Lorentz boosted frame and the quasi-3D algorithms when modeling LWFA. We also discuss the preliminary speedups achieved in these sample simulations.

  2. From micro-scale 3D simulations to macro-scale model of periodic porous media

    Crevacore, Eleonora; Tosco, Tiziana; Marchisio, Daniele; Sethi, Rajandrea; Messina, Francesca


    In environmental engineering, the transport of colloidal suspensions in porous media is studied to understand the fate of potentially harmful nano-particles and to design new remediation technologies. In this perspective, averaging techniques applied to micro-scale numerical simulations are a powerful tool to extrapolate accurate macro-scale models. Choosing two simplified packing configurations of soil grains and starting from a single elementary cell (module), it is possible to take advantage of the periodicity of the structures to reduce the computation costs of full 3D simulations. Steady-state flow simulations for incompressible fluid in laminar regime are implemented. Transport simulations are based on the pore-scale advection-diffusion equation, that can be enriched introducing also the Stokes velocity (to consider the gravity effect) and the interception mechanism. Simulations are carried on a domain composed of several elementary modules, that serve as control volumes in a finite volume method for the macro-scale method. The periodicity of the medium involves the periodicity of the flow field and this will be of great importance during the up-scaling procedure, allowing relevant simplifications. Micro-scale numerical data are treated in order to compute the mean concentration (volume and area averages) and fluxes on each module. The simulation results are used to compare the micro-scale averaged equation to the integral form of the macroscopic one, making a distinction between those terms that could be computed exactly and those for which a closure in needed. Of particular interest it is the investigation of the origin of macro-scale terms such as the dispersion and tortuosity, trying to describe them with micro-scale known quantities. Traditionally, to study the colloidal transport many simplifications are introduced, such those concerning ultra-simplified geometry that usually account for a single collector. Gradual removal of such hypothesis leads to a

  3. 3D PIC simulations of electron beams created via reflection of intense laser light from a water target

    Ngirmang, Gregory K; Feister, Scott; Morrison, John T; Chowdhury, Enam A; Frische, Kyle; Roquemore, W M


    We present 3D Particle-in-Cell (PIC) modeling of an ultra-intense laser experiment by the Extreme Light group at the Air Force Research Laboratory (AFRL) using the PIC code LSP. This is the first time PIC simulations have been performed in 3D for this experiment which involves an ultra-intense, short-pulse (30 fs) laser interacting with a water jet target at normal incidence. These 3D PIC simulation results are compared to results from 2D(3$v$) PIC simulations for both $5.4\\cdot10^{17}$ W cm$^{-2}$ and $3\\cdot10^{18}$ W cm$^{-2}$ intensities. Comparing the 2D(3$v$) and 3D simulation results, the laser-energy-to-ejected-electron-energy conversion efficiencies were comparable, but the angular distribution of ejected electrons show interesting differences with qualitative differences at higher intensity. An analytic plane-wave model is provided that provides some explanation for the angular distribution and energies of ejected electrons in the 2D(3$v$) simulations. We also performed a 3D simulation with circular...

  4. Patient-individualized boundary conditions for CFD simulations using time-resolved 3D angiography.

    Boegel, Marco; Gehrisch, Sonja; Redel, Thomas; Rohkohl, Christopher; Hoelter, Philip; Doerfler, Arnd; Maier, Andreas; Kowarschik, Markus


    Hemodynamic simulations are of increasing interest for the assessment of aneurysmal rupture risk and treatment planning. Achievement of accurate simulation results requires the usage of several patient-individual boundary conditions, such as a geometric model of the vasculature but also individualized inflow conditions. We propose the automatic estimation of various parameters for boundary conditions for computational fluid dynamics (CFD) based on a single 3D rotational angiography scan, also showing contrast agent inflow. First the data are reconstructed, and a patient-specific vessel model can be generated in the usual way. For this work, we optimize the inflow waveform based on two parameters, the mean velocity and pulsatility. We use statistical analysis of the measurable velocity distribution in the vessel segment to estimate the mean velocity. An iterative optimization scheme based on CFD and virtual angiography is utilized to estimate the inflow pulsatility. Furthermore, we present methods to automatically determine the heart rate and synchronize the inflow waveform to the patient's heart beat, based on time-intensity curves extracted from the rotational angiogram. This will result in a patient-individualized inflow velocity curve. The proposed methods were evaluated on two clinical datasets. Based on the vascular geometries, synthetic rotational angiography data was generated to allow a quantitative validation of our approach against ground truth data. We observed an average error of approximately [Formula: see text] for the mean velocity, [Formula: see text] for the pulsatility. The heart rate was estimated very precisely with an average error of about [Formula: see text], which corresponds to about 6 ms error for the duration of one cardiac cycle. Furthermore, a qualitative comparison of measured time-intensity curves from the real data and patient-specific simulated ones shows an excellent match. The presented methods have the potential to accurately

  5. Understanding the core-halo relation of quantum wave dark matter from 3D simulations.

    Schive, Hsi-Yu; Liao, Ming-Hsuan; Woo, Tak-Pong; Wong, Shing-Kwong; Chiueh, Tzihong; Broadhurst, Tom; Hwang, W-Y Pauchy


    We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter, described by the Schrödinger-Poisson (SP) equation with a particle mass ∼10(-22)  eV. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass (Mc) and halo mass (Mh), Mc∝a(-1/2)Mh(1/3), where a is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kiloparsec-sized cores and a minimum mass of ∼10(8)M⊙, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of 2×10(12)M⊙ at z=8 should have massive solitonic cores of ∼2×10(9)M⊙ within ∼60  pc. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars.

  6. Toward a better integration of roughness in rockfall simulations - a sensitivity study with the RockyFor3D model

    Monnet, Jean-Matthieu; Bourrier, Franck; Milenkovic, Milutin


    complex hillside is simulated by combining three components: a) a global trend (planar surface), b) local systematic components (sine waves), c) random roughness (Gaussian, zero-mean noise). The parameters for simulating these components are estimated for three typical scenarios of rockfall terrains: soft soil, fine scree and coarse scree, based on expert knowledge and available airborne and terrestrial laser scanning data. For each scenario, the reference terrain is created and used to compute input data for RockyFor3D simulations at different scales, i.e. DTMs with resolutions from 0.5 m to 20 m and associated roughness parameters. Subsequent analysis mainly focuses on the sensitivity of simulations both in terms of run-out envelope and kinetic energy distribution. Guidelines drawn from the results are expected to help experts handle the scale issue while integrating remote sensing data and field measurements of roughness in rockfall simulations.

  7. Software Development: 3D Animations and Creating User Interfaces for Realistic Simulations

    Gordillo, Orlando Enrique


    My fall 2015 semester was spent at the Lyndon B. Johnson Space Center working in the Integrated Graphics, Operations, and Analysis Laboratory (IGOAL). My first project was to create a video animation that could tell the story of OMICS. OMICS is a term being used in the field of biomedical science to describe the collective technologies that study biological systems, such as what makes up a cell and how it functions with other systems. In the IGOAL I used a large 23 inch Wacom monitor to draw storyboards, graphics, and line art animations. I used Blender as the 3D environment to sculpt, shape, cut or modify the several scenes and models for the video. A challenge creating this video was to take a term used in biomedical science and describe it in such a way that an 8th grade student can understand. I used a line art style because it would visually set the tone for what we thought was an educational style. In order to get a handle on the perspective and overall feel for the animation without overloading my workspace, I split up the 2 minute animation into several scenes. I used Blender's python scripting capabilities which allowed for the addition of plugins to add or modify tools. The scripts can also directly interact with the objects to create naturalistic patterns or movements. After collecting the rendered scenes, I used Blender's built-in video editing workspace to output the animation. My second project was to write software that emulates a physical system's interface. The interface was to simulate a boat, ROV, and winch system. Simulations are a time and cost effective way to test complicated data and provide training for operators without having to use expensive hardware. We created the virtual controls with 3-D Blender models and 2-D graphics, and then add functionality in C# using the Unity game engine. The Unity engine provides several essential behaviors of a simulator, such as the start and update functions. A framework for Unity, which was developed in

  8. Optimized 3D simulation method for modeling of out-of-plane radiation in silicon photonic integrated circuits

    Westerveld, W J; Yousefi, M


    We present an accurate and fast 3D simulation scheme for out-of-plane grating couplers, based on two dimensional rigorous (finite difference time domain) grating simulations, the effective index method (EIM), and the Rayleigh-Sommerfeld diffraction formula. In comparison with full 3D FDTD simulations, the rms difference in electric field is below 5% and the difference in power flux is below 3%. A grating coupler for coupling from a silicon-on-insulator photonic integrated circuit to an optical fiber positioned 0.1 mm above the circuit is designed as example.

  9. 3D visual analysis tool in support of the SANDF's growing ground based air defence simulation capability

    Duvenhage, B


    Full Text Available A 3D visual analysis tool has been developed to add value to the SANDF's growing Ground Based Air Defence (GBAD) System of Systems simulation capability. A time based XML interface between the simulation and analysis tool, via a TCP connection or a...

  10. Numerical Simulation of the Effect of 3D Needle Movement on Cavitation and Spray Formation in a Diesel Injector

    Mandumpala Devassy, B.; Edelbauer, W.; Greif, D.


    Cavitation and its effect on spray formation and its dispersion play a crucial role in proper engine combustion and controlled emission. This study focuses on these effects in a typical common rail 6-hole diesel injector accounting for 3D needle movement and flow compressibility effects. Coupled numerical simulations using 1D and 3D CFD codes are used for this investigation. Previous studies in this direction have already presented a detailed structure of the adopted methodology. Compared to the previous analysis, the present study investigates the effect of 3D needle movement and cavitation on the spray formation for pilot and main injection events for a typical diesel engine operating point. The present setup performs a 3D compressible multiphase simulation coupled with a standalone 1D high pressure flow simulation. The simulation proceeds by the mutual communication between 1D and 3D solvers. In this work a typical common rail injector with a mini-sac nozzle is studied. The lateral and radial movement of the needle and its effect on the cavitation generation and the subsequent spray penetration are analyzed. The result indicates the effect of compressibility of the liquid on damping the needle forces, and also the difference in the spray penetration levels due to the asymmetrical flow field. Therefore, this work intends to provide an efficient and user-friendly engineering tool for simulating a complete fuel injector including spray propagation.

  11. In vitro bioactivity of 3D Ti-mesh with bioceramic coatings in simulated body fluid

    Wei Yi


    Full Text Available 3D Ti-mesh has been coated with bioceramics under different coating conditions, such as material compositions and micro-porosity, using a dip casting method. Hydroxyapatite (HA, micro-HA particles (HAp, a bioglass (BG and their different mixtures together with polymer additives were used to control HA-coating microstructures. Layered composites with the following coating-to-substrate designs, such as BG/Ti, HA + BG/BG/Ti and HAp + BG/BG/Ti, were fabricated. The bioactivity of these coated composites and the uncoated Ti-mesh substrate was then investigated in a simulated body fluid (SBF. The Ti-mesh substrate and BG/Ti composite did not induce biomimetic apatite deposition when they were immersed in SBF for the selected BG, a pressable dental ceramic, used in this study. After seven days in SBF, an apatite layer was formed on both HA + BG/BG/Ti and HAp + BG/BG/Ti composites. The difference is the apatite layer on the HAp + BG/BG/Ti composite was rougher and contained more micro-pores, while the apatite layer on the HA + BG/BG/Ti composite was dense and smooth. The formation of biomimetic apatite, being more bioresorbable, is favored for bone regeneration.

  12. Reconstruction of 3D Micro Pore Structure of Coal and Simulation of Its Mechanical Properties

    Guang-zhe Deng


    Full Text Available This article takes the low permeability coal seam in the coalfield of South Judger Basin in Xinjiang, as a research object. The pore structure characteristics of coal rock mass in low permeability coal seam were analyzed quantitatively using scanning electron microscopy (SEM through the methods of statistics and digital image analysis. Based on the pore structure parameters and the distribution function of the coal rock mass, a three-dimensional porous cylinder model with different porosity was reconstructed by FLAC3D. The numerical simulation study of reconstructed pore model shows that (1 the porosity and the compressive strength have obvious nonlinear relation and satisfy the negative exponential relation; (2 the porosity significantly affects the stress distribution; with the increase of micro porosity, the stress distribution becomes nonuniform; (3 the compressive failures of different models are mainly shear failures, and the shape of fracture section is related to porosity; (4 the variation of seepage coefficient of the pore reconstruction model is consistent with the development of micro cracks. The micro mechanism of the deformation and failure of coal and the interaction of multiphase flow with porosity are revealed, which provides a theoretical reference for the clean development of the low permeability coal seam.

  13. 3D numerical model of the Omega Nebula (M17): simulated thermal X-ray emission

    Reyes-Iturbide, J; Rosado, M; Rodríguez-Gónzalez, A; González, R F; Esquivel, A


    We present 3D hydrodynamical simulations of the superbubble M17, also known as the Omega nebula, carried out with the adaptive grid code yguazu'-a, which includes radiative cooling. The superbubble is modelled considering the winds of 11 individual stars from the open cluster inside the nebula (NGC 6618), for which there are estimates of the mass loss rates and terminal velocities based on their spectral types. These stars are located inside a dense interstellar medium, and they are bounded by two dense molecular clouds. We carried out three numerical models of this scenario, considering different line of sight positions of the stars (the position in the plane of the sky is known, thus fixed). Synthetic thermal X-ray emission maps are calculated from the numerical models and compared with ROSAT observations of this astrophysical object. Our models reproduce successfully both the observed X-ray morphology and the total X-ray luminosity, without taking into account thermal conduction effects.

  14. Analysis of Annular Thermoelectric Couples with Nonuniform Temperature Distribution by Means of 3-D Multiphysics Simulation

    Bauknecht, Andreas; Steinert, Torsten; Spengler, Carsten; Suck, Gerrit


    Thermoelectric (TE) modules with annular geometry are very attractive for waste heat recovery within the automotive world, especially when integrated as stacks into tubular heat exchangers. The required temperature difference is built up between the coolant, which flows inside an inner tube, and the exhaust gas, which flows around an outer tube. The flow pattern of the exhaust gas can be axial or circumferential, which can lead to higher heat transfer coefficients on the outer surface of the tube. However, this multidimensional construction in combination with a complex flow pattern can lead to a nonuniform heat flux. Additionally, the system experiences a nonuniform temperature distribution which consequently leads to complex conditions regarding the electrical potential. The relevant effects are investigated using a three-dimensional (3-D) numerical model implemented in the computational fluid dynamics (CFD) simulation environment Star-CCM+. The model supports temperature-dependent characteristics of the materials, contact resistances, and parasitic effects in the TE module. Furthermore, it involves techniques to quickly find the exact maximum power point of the TE module with the given boundary conditions. Using the validated model the influence of the nonuniform temperature distribution is investigated with emphasis on the electrical output and TE efficiency.

  15. USM3D Simulations of Saturn V Plume Induced Flow Separation

    Deere, Karen; Elmlilgui, Alaa; Abdol-Hamid, K. S.


    The NASA Constellation Program included the Ares V heavy lift cargo vehicle. During the design stage, engineers questioned if the Plume Induced Flow Separation (PIFS) that occurred along Saturn V rocket during moon missions at some flight conditions, would also plague the newly proposed rocket. Computational fluid dynamics (CFD) was offered as a tool for initiating the investigation of PIFS along the Ares V rocket. However, CFD best practice guidelines were not available for such an investigation. In an effort to establish a CFD process and define guidelines for Ares V powered simulations, the Saturn V vehicle was used because PIFS flight data existed. The ideal gas, computational flow solver USM3D was evaluated for its viability in computing PIFS along the Saturn V vehicle with F-1 engines firing. Solutions were computed at supersonic freestream conditions, zero degree angle of attack, zero degree sideslip, and at flight Reynolds numbers. The effects of solution sensitivity to grid refinement, turbulence models, and the engine boundary conditions on the predicted PIFS distance along the Saturn V were discussed and compared to flight data from the Apollo 11 mission AS-506.

  16. Modeling and simulation of 3D thermal stresses of large-sized castings in solidification processes


    When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large- sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings.Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique.

  17. Multi-ion, multi-fluid 3-D magnetohydrodynamic simulation of the outer heliosphere

    Prested, Christina; Toth, Gabor


    Data from the Voyager probes and the Interstellar Boundary Explorer have revealed the importance of pick-up ions (PUIs) in understanding the character and behavior of the outer heliosphere, the region of interaction between the solar wind and the interstellar medium. In the outer heliosphere PUIs carry a large fraction of the thermal pressure, which effects the nature of the termination shock, and they are a dominate component of pressure in the heliosheath. This paper describes the development of a new multi-ion, multi-fluid 3-D magnetohydrodynamic model of the outer heliosphere. This model has the added capability of tracking the individual fluid properties of multiple ion populations. For this initial study two ion populations are modeled: the thermal solar wind ions and PUIs produced in the supersonic solar wind. The model also includes 4 neutral fluids that interact through charge-exchange with the ion fluids. The new multi-ion simulation reproduces the significant heating of PUIs at the termination shoc...

  18. Surface-effect corrections for solar-like oscillations using 3D hydrodynamical simulations

    Sonoi, T; Belkacem, K; Ludwig, H -G; Caffau, E; Mosser, B


    The space-borne missions have provided us with a wealth of high-quality observational data that allows for seismic inferences of stellar interiors. This requires the computation of precise and accurate theoretical frequencies, but imperfect modeling of the uppermost stellar layers introduces systematic errors. To overcome this problem, an empirical correction has been introduced by Kjeldsen et al. (2008, ApJ, 683, L175) and is now commonly used for seismic inferences. Nevertheless, we still lack a physical justification allowing for the quantification of the surface-effect corrections. We used a grid of these simulations computed with the CO$^5$BOLD code to model the outer layers of solar-like stars. Upper layers of the corresponding 1D standard models were then replaced by the layers obtained from the horizontally averaged 3D models. The frequency differences between these patched models and the 1D standard models were then calculated using the adiabatic approximation and allowed us to constrain the Kjeldsen...

  19. 3D numerical simulation of gaseous flows structure in semidetached binaries

    Bisikalo, D V; Chechetkin, V M; Kuznetsov, O A; Molteni, D


    The results of 3D hydrodynamic simulation of mass transfer in semidetached binaries of different types (cataclysmic variables and low-mass X-ray binaries) are presented. We find that taking into account of a circumbinary envelope leads to significant changes in the stream-disc morphology. In particular, the obtained steady-state self-consistent solutions show an absence of impact between gas stream from the inner Lagrangian point L1 and forming accretion disc. The stream deviates under the action of gas of circumbinary envelope, and does not cause the shock perturbation of the disc boundary (traditional `hotspot'). At the same time, the gas of circumbinary envelope interacts with the stream and causes the formation of an extended shock wave, located on the stream edge. We discuss the implication of this model without `hotspot' (but with a shock wave located outside the disc) for interpretation of observations. The comparison of synthetic light curves with observations proves the validity of the discussed hydr...

  20. Simulation study of a novel 3D SPAD pixel in an advanced FD-SOI technology

    Vignetti, M. M.; Calmon, F.; Lesieur, P.; Savoy-Navarro, A.


    In this paper, a novel SPAD architecture implemented in a Fully-Depleted Silicon-On-Insulator (SOI) CMOS technology is presented. Thanks to its intrinsic vertical 3D structure, the proposed solution is expected to allow further scaling of the pixel size while ensuring high fill factors. Moreover the pixel and the detector electronics can benefit of the well-known advantages brought by SOI technology with respect to bulk CMOS, such as higher speed and lower power consumption. TCAD simulations based on realistic process parameters and dedicated post-processing analysis are carried out in order to optimize and validate the avalanche diode architecture for an optimal electric field distribution in the device but also to extract the main parameters of the SPAD, such as the breakdown voltage, the avalanche triggering probability, the dark count rate and the photon detection probability. A comparison between the efficiency in back-side and front-side approaches is carried out with a particular focus on time-of-flight applications.

  1. GMC Collisions as Triggers of Star Formation. II. 3D Turbulent, Magnetized Simulations

    Wu, Benjamin; Tan, Jonathan C.; Nakamura, Fumitaka; Van Loo, Sven; Christie, Duncan; Collins, David


    We investigate giant molecular cloud collisions and their ability to induce gravitational instability and thus star formation. This mechanism may be a major driver of star formation activity in galactic disks. We carry out a series of 3D, magnetohydrodynamics (MHD), adaptive mesh refinement simulations to study how cloud collisions trigger formation of dense filaments and clumps. Heating and cooling functions are implemented based on photo-dissociation region models that span the atomic-to-molecular transition and can return detailed diagnostic information. The clouds are initialized with supersonic turbulence and a range of magnetic field strengths and orientations. Collisions at various velocities and impact parameters are investigated. Comparing and contrasting colliding and non-colliding cases, we characterize morphologies of dense gas, magnetic field structure, cloud kinematic signatures, and cloud dynamics. We present key observational diagnostics of cloud collisions, especially: relative orientations between magnetic fields and density structures, like filaments; 13CO(J = 2-1), 13CO(J = 3-2), and 12CO(J = 8-7) integrated intensity maps and spectra; and cloud virial parameters. We compare these results to observed Galactic clouds.

  2. Study of strength properties of ceramic composites with soft filler based on 3D computer simulation

    Smolin, Alexey Yu.; Smolin, Igor Yu.; Smolina, Irina Yu.


    The movable cellular automaton method which is a computational method of particle mechanics is applied to simulating uniaxial compression of 3D specimens of a ceramic composite. Soft inclusions were considered explicitly by changing the sort (properties) of automata selected randomly from the original fcc packing. The distribution of inclusions in space, their size, and the total fraction were varied. For each value of inclusion fraction, there were generated several representative specimens with individual pore position in space. The resulting magnitudes of the elastic modulus and strength of the specimens were scattered and well described by the Weibull distribution. We showed that to reveal the dependence of the elastic and strength properties of the composite on the inclusion fraction it is much better to consider the mathematical expectation of the corresponding Weibull distribution, rather than the average of the values for the specimens of the same inclusion fraction. It is shown that the relation between the mechanical properties of material and its inclusion fraction depends significantly on the material structure. Namely, percolation transition from isolated inclusions to interconnected clusters of inclusions strongly manifests itself in the dependence of strength on the fraction of inclusions. Thus, the curve of strength versus inclusion fraction fits different equations for a different kind of structure.

  3. Numerical simulation on the evolution of cloud particles in 3-D convective cloud


    A 3-D convective cloud model with compressible non-hydrostatic dynamics and the spectral bin microphysics of a 2-D slab-symmetric model has been used to simulate an observed supercell storm occurring on 29 June, 2000 near Bird City, Kansas, USA. The main objective of this paper is to study the evolution of particles in this convective storm with bin spectral microphysics scheme. Graupels form and grow through two mechanisms, deposition and riming, with the riming process dominant on top of the inflow and in the upper portion of main updraft. Over the outflow and during the developing and mature stages of the storm, graupel particles mainly grow through deposition with dominant unimodal spectra. Most fall out after growing up. Reducing initial relative humidity disturbance (increasing initial potential temperature disturbance) has negative impact on the formation and growth of graupels over the inflow (outflow). This study shows that large graupel and hail could be suppressed by altering the deposition and coalescence process over the inflow and main updraft. At different locations of the convective cells and with different initial humidity and potential temperature disturbance, the graupel formation and growth mechanisms are different, so as to the feasible hail suppression locations and methods.


    Zhang Zheng; Ma Shugen; Li Bin; Zhang Liping; Cao Binggang


    Objective To study mechanics characteristics of two cooperative reconfigurable planetary robots when they get across an obstacle, and to find out the relationship between the maximum height of a stair with the configuration of the two-robot, and to find some restrictions of kinematics for the cooperation. Methods Multirobot cooperation theory is used in the whole study process. Inverse kinematics of the robot is used to form a desired configuration in the cooperation process. Static equations are established to analyze the relations between the friction factor, the configuration of robots and the maximum height of a stair. Kinematics analysis is used to find the restrictions of the two collaborative robots in position, velocity and acceleration. Results 3D simulation shows that the two cooperative robots can climb up a stair under the condition of a certain height and a certain friction factor between robot wheel and the surface of the stair. Following the restrictions of kinematics, the climbing mission is fulfilled successfully and smoothly. Conclusion The maximum height of a stair, which the two cooperative robots can climb up, is involved in the configuration of robots, friction factor between the stair and the robots. The most strict restriction of the friction factor does not appear in the horizontal position. In any case, the maximum height is smaller than half of the distance between the centroid of robot1 with the centroid of robot2. However, the height can be higher than the radius of one robot wheel, which profit from the collaboration.

  5. 3D Simulation Study of the Spreading/Elongation of Ribbons in Two-Ribbon Flares

    Arencibia, Milton; Cassak, Paul; Qiu, Jiong; Longscope, Dana; Priest, Eric R.


    Two-ribbon solar flares are characterized by the appearance in pairs of bright ribbons on the surface of the Sun. The ribbons separate from each other in time, which has been cited as one of many pieces of evidence that magnetic reconnection participates in the release of magnetic energy in solar flares. In addition to moving apart from each other, observations have revealed that ribbons also elongate (or spread) in time along the polarity inversion line. This is likely related to the spreading of the magnetic reconnection process in the corona. Recent observations have shown ribbons can elongate either unidirectionally or bidirectionally. We investigate the physics of reconnection spreading and its potential relation to two-ribbon flares via a parametric study using 3D numerical simulations with the two-fluid (MHD + Hall effect + electron inertia) model. We study how anti-parallel reconnection spreads in current sheets with a non-uniform thickness in the out-of-plane direction. Previous numerical work on spreading in current sheets of uniform thickness revealed that anti-parallel reconnection spreads at a speed given by the current carriers, but it is not obvious how the spreading occurs in a current sheet with non-uniform thickness. We compare spreading in this system with spreading in current sheets of uniform thickness that are thicker than the dissipation scale. The results may be useful not just for solar flares, but also for Earth’s magnetotail, laboratory reconnection experiments, and reconnection in the solar wind.

  6. Method of internal 3D flow field numerical simulation for hydrodynamic torque converter

    Tao SHANG; Dingxuan ZHAO; Yuankun ZHANG; Xiangen GUO; Xiangzhong SHI


    To enhance the performance of a hydrody-namic torque converter and thoroughly understand the trait of inside flow, a numerical simulation method of internal 3D flow for the three-element centrifugal hydrodynamic torque converter was systematically researched and expatiated in this paper. First, the internal flow field of each impeller was calculated. The curves that illustrate the relationships between the pressure differences of the inlet and outlet versus flux were drawn. Second, the concurrent working point of each impeller was approximately estimated. Finally, a calculation was performed considering the influence on each impeller. The flow field of a working point was solved by multiple calculations and the actual working condition was gradually determined. The pressure and velocity distributions of the flow field were proposed. The performance parameters of the hydrodynamic torque converter were predicted. The calculation method, and the proposed pressure and velocity distribution of the flow field, have practical significance for the design and improvement of a hydrodynamic torque converter.

  7. Linking 1D evolutionary to 3D hydrodynamical simulations of massive stars

    Cristini, A.; Meakin, C.; Hirschi, R.; Arnett, D.; Georgy, C.; Viallet, M.


    Stellar evolution models of massive stars are important for many areas of astrophysics, for example nucleosynthesis yields, supernova progenitor models and understanding physics under extreme conditions. Turbulence occurs in stars primarily due to nuclear burning at different mass coordinates within the star. The understanding and correct treatment of turbulence and turbulent mixing at convective boundaries in stellar models has been studied for decades but still lacks a definitive solution. This paper presents initial results of a study on convective boundary mixing (CBM) in massive stars. The ‘stiffness’ of a convective boundary can be quantified using the bulk Richardson number ({{Ri}}{{B}}), the ratio of the potential energy for restoration of the boundary to the kinetic energy of turbulent eddies. A ‘stiff’ boundary ({{Ri}}{{B}}˜ {10}4) will suppress CBM, whereas in the opposite case a ‘soft’ boundary ({{Ri}}{{B}}˜ 10) will be more susceptible to CBM. One of the key results obtained so far is that lower convective boundaries (closer to the centre) of nuclear burning shells are ‘stiffer’ than the corresponding upper boundaries, implying limited CBM at lower shell boundaries. This is in agreement with 3D hydrodynamic simulations carried out by Meakin and Arnett (2007 Astrophys. J. 667 448-75). This result also has implications for new CBM prescriptions in massive stars as well as for nuclear burning flame front propagation in super-asymptotic giant branch stars and also the onset of novae.

  8. 3D finite element simulation of effects of deflection rate on energy absorption for TRIP steel

    Hayashi, Asuka; Pham, Hang; Iwamoto, Takeshi


    Recently, with the requirement of lighter weight and more safety for a design of automobile, energy absorption capability of structural materials has become important. TRIP (Transformation-induced Plasticity) steel is expected to apply to safety members because of excellent energy absorption capability and ductility. Past studies proved that such excellent characteristics in TRIP steel are dominated by strain-induced martensitic transformation (SIMT) during plastic deformation. Because SIMT strongly depends on deformation rate and temperature, an investigation of the effects of deformation rate and temperature on energy absorption in TRIP is essential. Although energy absorption capability of material can be estimated by J-integral experimentally by using pre-cracked specimen, it is difficult to determine volume fraction of martensite and temperature rise during the crack extension. In addition, their effects on J-integral, especially at high deformation rate in experiment might be quite hard. Thus, a computational prediction needs to be performed. In this study, bending deformation behavior of pre-cracked specimen until the onset point of crack extension are predicted by 3D finite element simulation based on the transformation kinetics model proposed by Iwamoto et al. (1998). It is challenged to take effects of temperature, volume fraction of martensite and deformation rate into account. Then, the mechanism for higher energy absorption characteristic will be discussed.

  9. 3D finite element simulation of effects of deflection rate on energy absorption for TRIP steel

    Hayashi Asuka


    Full Text Available Recently, with the requirement of lighter weight and more safety for a design of automobile, energy absorption capability of structural materials has become important. TRIP (Transformation-induced Plasticity steel is expected to apply to safety members because of excellent energy absorption capability and ductility. Past studies proved that such excellent characteristics in TRIP steel are dominated by strain-induced martensitic transformation (SIMT during plastic deformation. Because SIMT strongly depends on deformation rate and temperature, an investigation of the effects of deformation rate and temperature on energy absorption in TRIP is essential. Although energy absorption capability of material can be estimated by J-integral experimentally by using pre-cracked specimen, it is difficult to determine volume fraction of martensite and temperature rise during the crack extension. In addition, their effects on J-integral, especially at high deformation rate in experiment might be quite hard. Thus, a computational prediction needs to be performed. In this study, bending deformation behavior of pre-cracked specimen until the onset point of crack extension are predicted by 3D finite element simulation based on the transformation kinetics model proposed by Iwamoto et al. (1998. It is challenged to take effects of temperature, volume fraction of martensite and deformation rate into account. Then, the mechanism for higher energy absorption characteristic will be discussed.

  10. 3D Simulations of Helmet Streamer Dynamics and Implications for the Slow Solar Wind

    Higginson, Aleida K.; Antiochos, Spiro K.; DeVore, C. R.; Zurbuchen, Thomas H.


    The source of the slow solar wind at the Sun is still an issue of intense debate in solar and heliospheric physics. Because the majority of the solar wind observed at Earth is slow wind, understanding its origin is essential for understanding and predicting Earth’s space weather environment. In-situ and remote observations show that, when compared to the fast wind, the slow solar wind corresponds to higher freeze-in temperatures, as indicated by charge-state ratios, and more corona-like elemental abundance ratios. These results indicate that the most likely source for the slow wind is the hot plasma in the closed-field corona, but the release mechanism(s) for the wind from the closed-field regions is far from understood. We perform fully dynamic, 3D MHD simulations in order to the study the opening and closing of the Sun’s magnetic field that leads to the escape of the slow solar wind. In particular, we calculate the dynamics of helmet streamers that are driven by photospheric motions such as supergranular flows. We determine in detail the opening and closing of coronal flux, and discuss the implications of our results for theories of slow wind origin, especially the S-Web model. We also determine observational signatures for the upcoming inner heliosphere missions Solar Orbiter and Solar Probe Plus.This work was supported by the NASA SR&T and TR&T Programs.

  11. Plasma environment of magnetized asteroids: a 3-D hybrid simulation study

    S. Simon


    Full Text Available The interaction of a magnetized asteroid with the solar wind is studied by using a three-dimensional hybrid simulation code (fluid electrons, kinetic ions. When the obstacle's intrinsic magnetic moment is sufficiently strong, the interaction region develops signs of magnetospheric structures. On the one hand, an area from which the solar wind is excluded forms downstream of the obstacle. On the other hand, the interaction region is surrounded by a boundary layer which indicates the presence of a bow shock. By analyzing the trajectories of individual ions, it is demonstrated that kinetic effects have global consequences for the structure of the interaction region.

  12. Mapping of coma anisotropies to plasma structures of weak comets: a 3-D hybrid simulation study

    N. Gortsas


    Full Text Available The effects of coma anisotropies on the plasma environment of comets have been studied by means of a 3-D hybrid model which treats electrons as a massless, charge-neutralizing fluid, whereas ion dynamics are covered by a kinetic approach. From Earth-based observations as well as from in-situ spacecraft measurements the shape of the coma of many comets is ascertained to be anisotropic. However, most plasma simulation studies deploy a spherically symmetric activity pattern. In this paper anisotropy is studied by considering three different coma shape models. The first model is derived from the Haser model and is characterised by spherically symmetry. This reference model is then compared with two different neutral gas shape models: the dayside restricted model with no nightside activity and a cone shaped model with opening angle of π/2. In all models the integrated surface activity is kept constant. The simulations have been done for the Rosetta target comet 67P/Churyumov-Gerasimenko for two heliocentric distances, 1.30 AU and 3.25 AU. It is found that shock formation processes are modified as a result of increasing spatial confinement. Characteristic plasma structures of comets such as the bow shock, magnetic barrier region and the ion composition boundary exhibit a shift towards the sun. In addition, the cone shaped model leads to a strong increase of the mass-loaded region which in turn leads to a smooth deceleration of the solar wind flow and an increasing degree of mixture between the solar wind and cometary ion species. This creates an additional transport channel of the magnetic field from the magnetic barrier region away which in turn leads to a broadening of this region. In addition, it leads to an ion composition boundary which is only gradually developed.

  13. Identification of slow magnetosonic wave trains and their evolution in 3-D compressible turbulence simulation

    Zhang, L.; Yang, L.-P.; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.; Feng, X.-S.


    In solar wind, dissipation of slow-mode magnetosonic waves may play a significant role in heating the solar wind, and these modes contribute essentially to the solar wind compressible turbulence. Most previous identifications of slow waves utilized the characteristic negative correlation between δ|B| and δρ. However, that criterion does not well identify quasi-parallel slow waves, for which δ|B| is negligible compared to δρ. Here we present a new method of identification, which will be used in 3-D compressible simulation. It is based on two criteria: (1) that VpB0 (phase speed projected along B0) is around ± cs, and that (2) there exists a clear correlation of δv|| and δρ. Our research demonstrates that if vA > cs, slow waves possess correlation between δv|| and δρ, with δρ / δv|| ≈ ± ρ0 / cs. This method helps us to distinguish slow-mode waves from fast and Alfvén waves, both of which do not have this polarity relation. The criteria are insensitive to the propagation angle θk B, defined as the angle between wave vector k and B0; they can be applied with a wide range of β if only vA > cs. In our numerical simulation, we have identified four cases of slow wave trains with this method. The slow wave trains seem to deform, probably caused by interaction with other waves; as a result, fast or Alfvén waves may be produced during the interaction and seem to propagate bidirectionally away. Our identification and analysis of the wave trains provide useful methods for investigations of compressible turbulence in the solar wind or in similar environments, and will thus deepen understandings of slow waves in the turbulence.

  14. Validation of "AW3D" Global Dsm Generated from Alos Prism

    Takaku, Junichi; Tadono, Takeo; Tsutsui, Ken; Ichikawa, Mayumi


    Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), one of onboard sensors carried by Advanced Land Observing Satellite (ALOS), was designed to generate worldwide topographic data with its optical stereoscopic observation. It has an exclusive ability to perform a triplet stereo observation which views forward, nadir, and backward along the satellite track in 2.5 m ground resolution, and collected its derived images all over the world during the mission life of the satellite from 2006 through 2011. A new project, which generates global elevation datasets with the image archives, was started in 2014. The data is processed in unprecedented 5 m grid spacing utilizing the original triplet stereo images in 2.5 m resolution. As the number of processed data is growing steadily so that the global land areas are almost covered, a trend of global data qualities became apparent. This paper reports on up-to-date results of the validations for the accuracy of data products as well as the status of data coverage in global areas. The accuracies and error characteristics of datasets are analyzed by the comparison with existing global datasets such as Ice, Cloud, and land Elevation Satellite (ICESat) data, as well as ground control points (GCPs) and the reference Digital Elevation Model (DEM) derived from the airborne Light Detection and Ranging (LiDAR).

  15. Finite-Difference Algorithm for Simulating 3D Electromagnetic Wavefields in Conductive Media

    Aldridge, D. F.; Bartel, L. C.; Knox, H. A.


    Electromagnetic (EM) wavefields are routinely used in geophysical exploration for detection and characterization of subsurface geological formations of economic interest. Recorded EM signals depend strongly on the current conductivity of geologic media. Hence, they are particularly useful for inferring fluid content of saturated porous bodies. In order to enhance understanding of field-recorded data, we are developing a numerical algorithm for simulating three-dimensional (3D) EM wave propagation and diffusion in heterogeneous conductive materials. Maxwell's equations are combined with isotropic constitutive relations to obtain a set of six, coupled, first-order partial differential equations governing the electric and magnetic vectors. An advantage of this system is that it does not contain spatial derivatives of the three medium parameters electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of explicit, time-domain finite-differencing on a 3D staggered rectangular grid. Temporal and spatial FD operators have order 2 and N, where N is user-selectable. We use an artificially-large electric permittivity to maximize the FD timestep, and thus reduce execution time. For the low frequencies typically used in geophysical exploration, accuracy is not unduly compromised. Grid boundary reflections are mitigated via convolutional perfectly matched layers (C-PMLs) imposed at the six grid flanks. A shared-memory-parallel code implementation via OpenMP directives enables rapid algorithm execution on a multi-thread computational platform. Good agreement is obtained in comparisons of numerically-generated data with reference solutions. EM wavefields are sourced via point current density and magnetic dipole vectors. Spatially-extended inductive sources (current carrying wire loops) are under development. We are particularly interested in accurate representation of high-conductivity sub-grid-scale features that are common

  16. Roles of initial current carrier in the distribution of field-aligned current in 3-D Hall MHD simulations


    A three-dimensional (3-D) Hall MHD simulation is carried out to study the roles of initial current carrier in the topology of magnetic field, the generation and distribu- tion of field aligned currents (FACs), and the appearance of Alfvén waves. Consid- ering the contribution of ions to the initial current, the topology of the obtained magnetic field turns to be more complex. In some cases, it is found that not only the traditional By quadrupole structure but also a reversal By quadrupole structure appears in the simulation box. This can explain the observational features near the diffusion region, which are inconsistent with the Hall MHD theory with the total ini- tial current carried by electrons. Several other interesting features are also emerged. First, motions of electrons and ions are decoupled from each other in the small plasma region (Hall effect region) with a scale less than or comparable with the ion inertial length or ion skin depth di=c/ωp. In the non-Hall effect region, the global magnetic structure is shifted in +y direction under the influence of ions with initial y directional motion. However, in the Hall effect region, magnetic field lines are bent in ?y direction, mainly controlled by the motion of electrons, then By is generated. Second, FACs emerge as a result of the appearance of By. Compared with the prior Hall MHD simulation results, the generated FACs shift in +y direction, and hence the dawn-dusk symmetry is broken. Third, the Walén relation in our simulations is consistent with the Walén relation in Hall plasma, thus the presence of Alfvén wave is confirmed.

  17. Large Time Behavior for Weak Solutions of the 3D Globally Modified Navier-Stokes Equations

    Junbai Ren


    Full Text Available This paper is concerned with the large time behavior of the weak solutions for three-dimensional globally modified Navier-Stokes equations. With the aid of energy methods and auxiliary decay estimates together with Lp-Lq estimates of heat semigroup, we derive the optimal upper and lower decay estimates of the weak solutions for the globally modified Navier-Stokes equations as C1(1+t-3/4≤uL2≤C2(1+t-3/4,  t>1. The decay rate is optimal since it coincides with that of heat equation.

  18. 3-D evaluation of tropospheric ozone simulations by an ensemble of regional Chemistry Transport Model

    D. Zyryanov


    Full Text Available A detailed 3-D evaluation of an ensemble of five regional CTM's and one global CTM with focus on free tropospheric ozone over Europe is presented. It is performed over a summer period (June to August 2008 in the context of the GEMS-RAQ project. A data set of about 400 vertical ozone profiles from balloon soundings and commercial aircraft at 11 different locations is used for model evaluation, in addition to satellite measurements with the infrared nadir IASI sounder showing largest sensitivity to free tropospheric ozone. In the free troposphere, models using the same top and boundary conditions from MOZART-IFS exhibit a systematic negative bias with respect to observed profiles of about −20%. RMSE values are constantly growing with altitude, from 22% to 32% to 53%, respectively for 0–2 km, 2–8 km and 8–10 km height ranges. Lowest correlation is found in the free troposphere, with minimum coefficients (R between 0.2 to 0.45 near 8 km, as compared to 0.7 near the surface and similar values around 10 km. Use of hourly instead of monthly chemical boundary conditions generally improves the model skill. Lower tropospheric 0–6 km partial ozone columns derived from IASI show a clear North-South gradient over Europe, which is qualitatively reproduced by the models. Also the temporal variability showing decreasing ozone concentrations in the lower troposphere (0–6 km columns during summer is well catched by models even if systematic bias remains (the value of the bias being also controlled by the type of BC used. A multi-day case study of a through with low tropopause was conducted and showed that both IASI and models were able to resolve strong horizontal gradients of middle and upper tropospheric ozone occurring in the vicinity of an upper tropospheric frontal zone.

  19. A 3D parameterization of iron atmospheric deposition to the global ocean

    Myriokefalitakis, Stelios; Krol, Maarten C.; van Noije, Twan P. C.; Le Sager, Philippe


    Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients to the global ocean, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. Iron (Fe) is a key micronutrient that significantly modulates gross primary production in High-Nutrient-Low-Chlorophyll (HNLC) oceans, where macronutrients like nitrate are abundant but primary production is limited by Fe scarcity. The global atmospheric Fe cycle is here parameterized in the state-of-the-art global Earth System Model EC-Earth. The model takes into account the primary emissions of both insoluble and soluble Fe, associated with dusts and combustion processes. The impact of atmospheric acidity on mineral solubility is parameterized based on updated experimental and theoretical findings, and model results are evaluated against available observations. The link between the soluble Fe atmospheric deposition and anthropogenic sources is also investigated. Overall, the response of the chemical composition of nutrient containing aerosols to atmospheric composition changes is demonstrated and quantified. This work has been financed by the Marie-Curie H2020-MSCA-IF-2015 grant (ID 705652) ODEON (Online DEposition over OceaNs: Modeling the effect of air pollution on ocean bio-geochemistry in an Earth System Model).

  20. In-cloud oxalate formation in the global troposphere: A 3-D modeling study

    Myriokefalitakis, S.; Tsigaridis, K.; Mihalopoulos, N.; Sciare, J.; Nenes, A.; Kawamura, K.; Segers, A.; Kanakidou, M.


    Organic acids attract increasing attention as contributors to atmospheric acidity, secondary organic aerosol mass and aerosol hygroscopicity. Oxalic acid is globally the most abundant dicarboxylic acid, formed via chemical oxidation of gas-phase precursors in the aqueous phase of aerosols and

  1. In-cloud oxalate formation in the global troposphere: A 3-D modeling study

    Myriokefalitakis, S.; Tsigaridis, K.; Mihalopoulos, N.; Sciare, J.; Nenes, A.; Kawamura, K.; Segers, A.; Kanakidou, M.


    Organic acids attract increasing attention as contributors to atmospheric acidity, secondary organic aerosol mass and aerosol hygroscopicity. Oxalic acid is globally the most abundant dicarboxylic acid, formed via chemical oxidation of gas-phase precursors in the aqueous phase of aerosols and drople

  2. Simulating Small-Scale Experiments of In-Tunnel Airblast Using STUN and ALE3D

    Neuscamman, Stephanie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glenn, Lewis [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schebler, Gregory [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McMichael, Larry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glascoe, Lee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    This report details continuing validation efforts for the Sphere and Tunnel (STUN) and ALE3D codes. STUN has been validated previously for blast propagation through tunnels using several sets of experimental data with varying charge sizes and tunnel configurations, including the MARVEL nuclear driven shock tube experiment (Glenn, 2001). The DHS-funded STUNTool version is compared to experimental data and the LLNL ALE3D hydrocode. In this particular study, we compare the performance of the STUN and ALE3D codes in modeling an in-tunnel airblast to experimental results obtained by Lunderman and Ohrt in a series of small-scale high explosive experiments (1997).

  3. A PFC3D-based numerical simulation of cutting load for lunar rock simulant and experimental validation

    Li, Peng; Jiang, Shengyuan; Tang, Dewei; Xu, Bo


    For sake of striking a balance between the need of drilling efficiency and the constrains of power budget on the moon, the penetrations per revolution of drill bit are generally limited in the range around 0.1 mm, and besides the geometric angle of the cutting blade need to be well designed. This paper introduces a simulation approach based on PFC3D (particle flow code 3 dimensions) for analyzing the cutting load feature on lunar rock simulant, which is derived from different geometric-angle blades with a small cutting depth. The mean values of the cutting force of five blades in the survey region (four on the boundary points and one on the center point) are selected as the macroscopic responses of model. The method of experimental design which includes Plackett-Burman (PB) design and central composite design (CCD) method is adopted in the matching procedure of microparameters in PFC model. Using the optimization method of enumeration, the optimum set of microparameters is acquired. Then, the experimental validation is implemented by using other twenty-five blades with different geometric angles, and the results from both simulations and laboratory tests give fair agreements. Additionally, the rock breaking process cut by different blades are quantified from simulation analysis. This research provides the theoretical support for the refinement of the rock cutting load prediction and the geometric design of cutting blade on the drill bit.

  4. Online 3D Ear Recognition by Combining Global and Local Features

    Liu, Yahui; Zhang, Bob; Lu, Guangming; Zhang, David


    The three-dimensional shape of the ear has been proven to be a stable candidate for biometric authentication because of its desirable properties such as universality, uniqueness, and permanence. In this paper, a special laser scanner designed for online three-dimensional ear acquisition was described. Based on the dataset collected by our scanner, two novel feature classes were defined from a three-dimensional ear image: the global feature class (empty centers and angles) and local feature class (points, lines, and areas). These features are extracted and combined in an optimal way for three-dimensional ear recognition. Using a large dataset consisting of 2,000 samples, the experimental results illustrate the effectiveness of fusing global and local features, obtaining an equal error rate of 2.2%. PMID:27935955

  5. Comparisons of Observations with Results from 3D Simulations and Implications for Predictions of Ozone Recovery

    Douglass, Anne R.; Stolarski, Richard S.; Strahan, Susan E.; Steenrod, Stephen D.; Polarsky, Brian C.


    Although chemistry and transport models (CTMs) include the same basic elements (photo- chemical mechanism and solver, photolysis scheme, meteorological fields, numerical transport scheme), they produce different results for the future recovery of stratospheric ozone as chlorofluorcarbons decrease. Three simulations will be contrasted: the Global Modeling Initiative (GMI) CTM driven by a single year\\'s winds from a general circulation model; the GMI CTM driven by a single year\\'s winds from a data assimilation system; the NASA GSFC CTM driven by a winds from a multi-year GCM simulation. CTM results for ozone and other constituents will be compared with each other and with observations from ground-based and satellite platforms to address the following: Does the simulated ozone tendency and its latitude, altitude and seasonal dependence match that derived from observations? Does the balance from analysis of observations? Does the balance among photochemical processes match that expected from observations? Can the differences in prediction for ozone recovery be anticipated from these comparisons?

  6. Simulating Global Climate Summits

    Vesperman, Dean P.; Haste, Turtle; Alrivy, Stéphane


    One of the most persistent and controversial issues facing the global community is climate change. With the creation of the UN Framework Convention on Climate Change (UNFCCC) in 1992 and the Kyoto Protocol (1997), the global community established some common ground on how to address this issue. However, the last several climate summits have failed…

  7. Simulating Global Climate Summits

    Vesperman, Dean P.; Haste, Turtle; Alrivy, Stéphane


    One of the most persistent and controversial issues facing the global community is climate change. With the creation of the UN Framework Convention on Climate Change (UNFCCC) in 1992 and the Kyoto Protocol (1997), the global community established some common ground on how to address this issue. However, the last several climate summits have failed…

  8. Combining Abundance/Temperature Retrieval with 3D Atmospheric Circulation Simulations of Hot Jupiters

    Heng, Kevin


    The atmospheres of hot Jupiters are three-dimensional, non-linear entities and understanding them requires the construction of a hierarchy of models of varying sophistication. Since previous work has either focused on the atmospheric dynamics or implemented multi-band radiative transfer, a reasonable approach is to combine the treatment of 3D dynamics with dual-band radiative transfer, where the assumption is that the stellar irradiation and re-emitted radiation from the exoplanet are at distinct wavelengths. I report on the successful implementation of such a setup and demonstrate how it can be used to compute self-consistent temperature-pressure profiles on both the day and night sides of a hot Jupiter, as well as zonal-wind profiles, circulation cell patterns and the angular/temporal offset of the hotspot from the substellar point. In particular, the hotspot offset should aid us in distinguishing between different types of hot Jupiter atmospheres. Together with N. Madhusudhan, we combine the dual-band simulation technique with the abundance/temperature retrieval method of Madhusudhan & Seager, by empirically constraining a range of values for the broad-band opacities which are consistent with the current observations. The advantage of our novel method is that the range of opacities used improves with time as the observations get better. The ability to thoroughly, efficiently and systematically explore the interplay between atmospheric dynamics, radiation and synthetic spectra is an important step forward, as it prepares us for the theoretical interpretation of exoplanetary spectra which will be obtained by future space-based missions such as JWST and EChO. I acknowledge generous support from the Zwicky Prize Fellowship and the Star and Planet Formation Group (PI: Michael Meyer) at ETH Zurich.

  9. Global well-posedness for the 3D incompressible inhomogeneous Navier-Stokes equations and MHD equations

    Zhai, Xiaoping; Yin, Zhaoyang


    The present paper is dedicated to the global well-posedness for the 3D inhomogeneous incompressible Navier-Stokes equations, in critical Besov spaces without smallness assumption on the variation of the density. We aim at extending the work by Abidi, Gui and Zhang (2012) [2], and (2013) [3] to a lower regularity index about the initial velocity. The key to that improvement is a new a priori estimate for an elliptic equation with nonconstant coefficients in Besov spaces which have the same degree as L2 in R3. Finally, we also generalize our well-posedness result to the inhomogeneous incompressible MHD equations.

  10. Global classical solutions to the 3D isentropic compressible Navier-Stokes equations in a bounded domain

    Yu, Haibo; Zhao, Junning


    In this paper, we study the global existence for classical solutions to the 3D isentropic compressible Navier-Stokes equations in a cuboid domain. Compared to the Cauchy problem studied in Hoff (1995 J. Differ. Equ. 120 215-54), Hoff (2005 J. Math. Fluid Mech. 7 315-38), Huang et al (2012 Commun. Pure Appl. Math. 65 549-85), some new thoughts are applied to obtain upper bounds for density. Precisely, through piecewise estimation and some time-depending a priori estimates, we establish time-uniform upper bounds for density under the assumption that the initial energy is small. The initial vacuum is allowed.

  11. New 3D parallel GILD electromagnetic modeling and nonlinear inversion using global magnetic integral and local differential equation

    Xie, G.; Li, J.; Majer, E.; Zuo, D.


    This paper describes a new 3D parallel GILD electromagnetic (EM) modeling and nonlinear inversion algorithm. The algorithm consists of: (a) a new magnetic integral equation instead of the electric integral equation to solve the electromagnetic forward modeling and inverse problem; (b) a collocation finite element method for solving the magnetic integral and a Galerkin finite element method for the magnetic differential equations; (c) a nonlinear regularizing optimization method to make the inversion stable and of high resolution; and (d) a new parallel 3D modeling and inversion using a global integral and local differential domain decomposition technique (GILD). The new 3D nonlinear electromagnetic inversion has been tested with synthetic data and field data. The authors obtained very good imaging for the synthetic data and reasonable subsurface EM imaging for the field data. The parallel algorithm has high parallel efficiency over 90% and can be a parallel solver for elliptic, parabolic, and hyperbolic modeling and inversion. The parallel GILD algorithm can be extended to develop a high resolution and large scale seismic and hydrology modeling and inversion in the massively parallel computer.

  12. Parameterization experiments performed via synthetic mass movements prototypes generated by 3D slope stability simulator

    Colangelo, Antonio C.


    each cell in synthetic slope systems performed by relief unity emulator. The central methodological strategy is to locate the potential rupture surfaces (prs), main material discontinuities, like soil-regolith or regolith-rock transitions. Inner these "prs", we would to outline the effective potential rupture surfaces (eprs). This surface is a sub-set of the "prs" that presents safety factor less than unity (fequilibrium be attained at residual shear strength. These devices generate graphic 3D cinematic sequences of experiments in synthetic slope systems and numerical results about physical and morphological data about scars and deposits. Thus, we have a detailed geotechnical, morphological, topographic and morphometric description of these mass movements prototypes, for deal with effective mass movements found in the real environments.

  13. 3D Relativistic MHD Simulation of a Tilted Accretion Disk Around a Rapidly Rotating Black Hole

    Fragile, P Chris; Blaes, Omer M; Salmonson, Jay D


    We posit that accreting compact objects, including stellar mass black holes and neutron stars as well as supermassive black holes, may undergo extended periods of accretion during which the angular momentum of the disk at large scales is misaligned with that of the compact object. In such a scenario, Lense-Thirring precession caused by the rotating compact object can dramatically affect the disk. In this presentation we describe results from a three-dimensional relativistic magnetohydrodynamic simulation of an MRI turbulent disk accreting onto a tilted rapidly rotating black hole. For this case, the disk does not achieve the commonly described Bardeen-Petterson configuration; rather, it remains nearly planar, undergoing a slow global precession. Accretion from the disk onto the hole occurs predominantly through two opposing plunging streams that start from high latitudes with respect to both the black-hole and disk midplanes. This is a consequence of the non-sphericity of the gravitational spacetime of the bl...

  14. Internal wave attractors examined using laboratory experiments and 3D numerical simulations

    Brouzet, Christophe; Scolan, H; Ermanyuk, E V; Dauxois, Thierry


    In the present paper, we combine numerical and experimental approaches to study the dynamics of stable and unstable internal wave attractors. The problem is considered in a classic trapezoidal setup filled with a uniformly stratified fluid. Energy is injected into the system at global scale by the small-amplitude motion of a vertical wall. Wave motion in the test tank is measured with the help of conventional synthetic schlieren and PIV techniques. The numerical setup closely reproduces the experimental one in terms of geometry and the operational range of the Reynolds and Schmidt numbers. The spectral element method is used as a numerical tool to simulate the nonlinear dynamics of a viscous salt-stratified fluid. We show that the results of three-dimensional calculations are in excellent qualitative and quantitative agreement with the experimental data, including the spatial and temporal parameters of the secondary waves produced by triadic resonance instability. Further, we explore experimentally and numeri...

  15. Simulated radiographic bone and joint modeling from 3D ankle MRI: feasibility and comparison with radiographs and 2D MRI

    Nordeck, Shaun M. [University of Texas Southwestern Medical College, Dallas, TX (United States); University of Texas Southwestern Medical Center, Musculoskeletal Radiology, Dallas, TX (United States); Koerper, Conrad E.; Adler, Aaron [University of Texas Southwestern Medical College, Dallas, TX (United States); Malhotra, Vidur; Xi, Yin [University of Texas Southwestern Medical Center, Musculoskeletal Radiology, Dallas, TX (United States); Liu, George T. [University of Texas Southwestern Medical Center, Orthopaedic Surgery, Dallas, TX (United States); Chhabra, Avneesh [University of Texas Southwestern Medical Center, Musculoskeletal Radiology, Dallas, TX (United States); University of Texas Southwestern Medical Center, Orthopaedic Surgery, Dallas, TX (United States)


    The purpose of this work is to simulate radiographs from isotropic 3D MRI data, compare relationship of angle and joint space measurements on simulated radiographs with corresponding 2D MRIs and real radiographs (XR), and compare measurement times among the three modalities. Twenty-four consecutive ankles were included, eight males and 16 females, with a mean age of 46 years. Segmented joint models simulating radiographs were created from 3D MRI data sets. Three readers independently performed blinded angle and joint space measurements on the models, corresponding 2D MRIs, and XRs at two time points. Linear mixed models and the intraclass correlation coefficient (ICC) was ascertained, with p values less than 0.05 considered significant. Simulated radiograph models were successfully created in all cases. Good agreement (ICC > 0.65) was noted among all readers across all modalities and among most measurements. Absolute measurement values differed between modalities. Measurement time was significantly greater (p < 0.05) on 2D versus simulated radiographs for most measurements and on XR versus simulated radiographs (p < 0.05) for nearly half the measurements. Simulated radiographs can be successfully generated from 3D MRI data; however, measurements differ. Good inter-reader and moderate-to-good intra-reader reliability was observed and measurements obtained on simulated radiograph models took significantly less time compared to measurements with 2D and generally less time than XR. (orig.)

  16. Efficient triple-grid multiscale finite element method for 3D groundwater flow simulation in heterogeneous porous media

    Xie, Yifan; Wu, Jichun; Nan, Tongchao; Xue, Yuqun; Xie, Chunhong; Ji, Haifeng


    In this paper, an efficient triple-grid multiscale finite element method (ETMSFEM) is proposed for 3D groundwater simulation in heterogeneous porous media. The main idea of this method is to employ new 3D linear base functions and the domain decomposition technique to solve the local reduced elliptical problem, thereby simplifying the base function construction process and improving the efficiency. Furthermore, by using the ETMSFEM base functions, this method can solve Darcy's equation with high efficiency to obtain a continuous velocity field. Therefore, this method can considerably reduce the computational cost of solving for heads and velocities, which is crucial for large-scale 3D groundwater simulations. In the application section, we present numerical examples to compare the ETMSFEM with several classical methods to demonstrate its efficiency and effectiveness.

  17. An experimental analysis for the impact of 3D variation assi- milation of satellite data on typhoon track simulation

    XIE Hongqin; WU Zengmao; GAO Shanhong


    A series of test simulations are performed to evaluate the impact of satellite-derived meteorological data on numerical typhoon track prediction. Geostationary meteorological satellite (GMS-5) and NOAA's TIROS operational vertical sounder (TOVS) observations are used in the experiments. A three-dimensional variational (3D-Var) assimilation scheme is developed to assimilate the satellite data directly into the Penn State-NCAR nonhydrostatic meteorological model (MM5). Three-dimensional objective analysis fields based on the T213 results and conventional observations are employed as the background fields of the initialization. The comparisons of the simulated typhoon tracks are carried out, which correspond respectively to assimilate different kinds of satellite data. It is found that, compared with the experiment without satellite data assimilation, the 3D-Var assimilation schemes lead to significant improvements on typhoon track prediction. Track errors reduce from approximately 25% at 24 h to approximately 30% at 48 h for 3D-Var assimilation experiments.

  18. 3-D evaluation of tropospheric ozone simulations by an ensemble of regional Chemistry Transport Model

    D. Zyryanov


    Full Text Available A detailed 3-D evaluation of an ensemble of five regional Chemistry Transport Models (RCTM and one global CTM with focus on free tropospheric ozone over Europe is presented. It is performed over a summer period (June to August 2008 in the context of the GEMS-RAQ project. A data set of about 400 vertical ozone profiles from balloon soundings and commercial aircraft at 11 different locations is used for model evaluation, in addition to satellite measurements with the infrared nadir sounder (IASI showing largest sensitivity to free tropospheric ozone. In the middle troposphere, the four regional models using the same top and boundary conditions