WorldWideScience

Sample records for glimpse mid-infrared stellar-wind

  1. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.

    1978-01-01

    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  2. Mid-Infrared Lasers

    Data.gov (United States)

    National Aeronautics and Space Administration — Mid infrared solid state lasers for Differential Absorption Lidar (DIAL) systems required for understanding atmospheric chemistry are not available. This program...

  3. Terahertz and Mid Infrared

    CERN Document Server

    Shulika, Oleksiy; Detection of Explosives and CBRN (Using Terahertz)

    2014-01-01

    The reader will find here a timely update on new THz sources and detection schemes as well as concrete applications to the detection of Explosives and CBRN. Included is a method to identify hidden RDX-based explosives (pure and plastic ones) in the frequency domain study by Fourier Transformation, which has been complemented by the demonstration of improvement of the quality of the images captured commercially available THz passive cameras. The presented examples show large potential for the detection of small hidden objects at long distances (6-10 m).  Complementing the results in the short-wavelength range, laser spectroscopy with a mid-infrared, room temperature, continuous wave, DFB laser diode and high performance DFB QCL have been demonstrated to offer excellent enabling sensor technologies for environmental monitoring, medical diagnostics, industrial and security applications.  From the new source point of view a number of systems have been presented - From superconductors to semiconductors, e.g. Det...

  4. Mid-infrared tunable metamaterials

    Science.gov (United States)

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A; Passmore, Brandon Scott; Jun, Young Chul

    2015-04-28

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  5. Mid-infrared tunable metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A.; Passmore, Brandon Scott

    2017-07-11

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  6. Mid-infrared spectroscopic investigation

    International Nuclear Information System (INIS)

    Walter, L.; Vergo, N.; Salisbury, J.W.

    1987-01-01

    Mid-infrared spectroscopic research efforts are discussed. The development of a new instrumentation to permit advanced measurements in the mid-infrared region of the spectrum, the development of a special library of well-characterized mineral and rock specimens for interpretation of remote sensing data, and cooperative measurements of the spectral signatures of analogues of materials that may be present on the surfaces of asteroids, planets or their Moons are discussed

  7. Hydrodynamics and stellar winds an introduction

    CERN Document Server

    Maciel, Walter J

    2014-01-01

    Stellar winds are a common phenomenon in the life of stars, from the dwarfs like the Sun to the red giants and hot supergiants, constituting one of the basic aspects of modern astrophysics. Stellar winds are a hydrodynamic phenomenon in which circumstellar gases expand towards the interstellar medium. This book presents an elementary introduction to the fundamentals of hydrodynamics with an application to the study of stellar winds. The principles of hydrodynamics have many other applications, so that the book can be used as an introduction to hydrodynamics for students of physics, astrophysics and other related areas.

  8. Astrospheres and Solar-like Stellar Winds

    Directory of Open Access Journals (Sweden)

    Wood Brian E.

    2004-07-01

    Full Text Available Stellar analogs for the solar wind have proven to be frustratingly difficult to detect directly. However, these stellar winds can be studied indirectly by observing the interaction regions carved out by the collisions between these winds and the interstellar medium (ISM. These interaction regions are called "astrospheres", analogous to the "heliosphere" surrounding the Sun. The heliosphere and astrospheres contain a population of hydrogen heated by charge exchange processes that can produce enough H I Ly alpha absorption to be detectable in UV spectra of nearby stars from the Hubble Space Telescope (HST. The amount of astrospheric absorption is a diagnostic for the strength of the stellar wind, so these observations have provided the first measurements of solar-like stellar winds. Results from these stellar wind studies and their implications for our understanding of the solar wind are reviewed here. Of particular interest are results concerning the past history of the solar wind and its impact on planetary atmospheres.

  9. Mid-infrared upconversion spectroscopy

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin; Andersen, H. V.

    2016-01-01

    Mid-infrared (MIR) spectroscopy is emerging as an attractive alternative to near-infrared or visible spectroscopy. MIR spectroscopy offers a unique possibility to probe the fundamental absorption bands of a large number of gases as well as the vibrational spectra of complex molecules. In this paper...

  10. Mid-infrared Semiconductor Optoelectronics

    CERN Document Server

    Krier, Anthony

    2006-01-01

    The practical realisation of optoelectronic devices operating in the 2–10 µm (mid-infrared) wavelength range offers potential applications in a variety of areas from environmental gas monitoring around oil rigs and landfill sites to the detection of pharmaceuticals, particularly narcotics. In addition, an atmospheric transmission window exists between 3 µm and 5 µm that enables free-space optical communications, thermal imaging applications and the development of infrared measures for "homeland security". Consequently, the mid-infrared is very attractive for the development of sensitive optical sensor instrumentation. Unfortunately, the nature of the likely applications dictates stringent requirements in terms of laser operation, miniaturisation and cost that are difficult to meet. Many of the necessary improvements are linked to a better ability to fabricate and to understand the optoelectronic properties of suitable high-quality epitaxial materials and device structures. Substantial progress in these m...

  11. Multicomponent stellar wind from hot subdwarfs stars

    Czech Academy of Sciences Publication Activity Database

    Votruba, Viktor; Feldmeier, A.; Krtička, J.; Kubát, Jiří

    2010-01-01

    Roč. 329, 1-2 (2010), s. 159-161 ISSN 0004-640X R&D Projects: GA ČR GP205/09/P476 Institutional research plan: CEZ:AV0Z10030501 Keywords : stellar wind * hot subdwarfs * decoupling Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.437, year: 2010

  12. Towards the mid-infrared optical biopsy

    DEFF Research Database (Denmark)

    Seddon, Angela B.; Benson, Trevor M.; Sujecki, Slawomir

    2016-01-01

    of external cancers, mid-infrared detection of cancer-margins during external surgery for precise removal of diseased tissue, in one go during the surgery, and mid-infrared endoscopy for early diagnosis of internal cancers and their precision removal. The mid-infrared spectral region has previously lacked......, agriculture and in manufacturing and chemical processing. This work is in part supported by the European Commission: Framework Seven (FP7) Large-Scale Integrated Project MINERVA: MId-to-NEaR-infrared spectroscopy for improVed medical diAgnostics (317803; www.minerva-project.eu).......We are establishing a new paradigm in mid-infrared molecular sensing, mapping and imaging to open up the mid-infrared spectral region for in vivo (i.e. in person) medical diagnostics and surgery. Thus, we are working towards the mid-infrared optical biopsy ('opsy' look at, bio the biology) in situ...

  13. Mid infrared MEMS FTIR spectrometer

    Science.gov (United States)

    Erfan, Mazen; Sabry, Yasser M.; Mortada, Bassem; Sharaf, Khaled; Khalil, Diaa

    2016-03-01

    In this work we report, for the first time to the best of our knowledge, a bulk-micromachined wideband MEMS-based spectrometer covering both the NIR and the MIR ranges and working from 1200 nm to 4800 nm. The core engine of the spectrometer is a scanning Michelson interferometer micro-fabricated using deep reactive ion etching (DRIE) technology. The spectrum is obtained using the Fourier Transform techniques that allows covering a very wide spectral range limited by the detector responsivity. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator. Zirconium fluoride (ZrF4) multimode optical fibers are used to connect light between the white light source and the interferometer input, as well as the interferometer output to a PbSe photoconductive detector. The recorded signal-to-noise ratio is 25 dB at the wavelength of 3350 nm. The spectrometer is successfully used in measuring the absorption spectra of methylene chloride, quartz glass and polystyrene film. The presented solution provides a low cost method for producing miniaturized spectrometers in the near-/mid-infrared.

  14. Colliding Stellar Wind Models with Orbital Motion

    Science.gov (United States)

    Wilkin, Francis P.; O'Connor, Brendan

    2018-01-01

    We present thin-shell models for the collision between two ballistic stellar winds, including orbital motion.The stellar orbits are assumed circular, so that steady-state solutions exist in the rotating frame, where we include centrifugal and Coriolis forces. Exact solutions for the pre-shock winds are incorporated. Here we discuss 2-D model results for equal wind momentum-loss rates, although we allow for the winds to have distinct speeds and mass loss rates. For these unequal wind conditions, we obtain a clear violation of skew-symmetry, despite equal momentum loss rates, due to the Coriolis force.

  15. Mid Infrared Laser Sources for Remote Sensing

    Data.gov (United States)

    National Aeronautics and Space Administration — Mid infrared solid-state lasers are made possible by using innovative low phonon energy materials. Until recently, such lasers were not feasible because they...

  16. MID-INFRARED QUANTUM CASCADE LASERS

    African Journals Online (AJOL)

    2012-11-03

    Nov 3, 2012 ... Abstract. Quantum cascade lasers (QCL) based on intersubband transitions operating at room temperature in the mid-infrared or 'molecular fingerprint' spectral region (3.4–17 im) have been found useful for several applications including environmental sensing, pollution monitoring, and medical appli-.

  17. Stellar winds, dead zones, and coronal mass ejections

    NARCIS (Netherlands)

    Keppens, R.; Goedbloed, J. P.

    2000-01-01

    Axisymmetric stellar wind solutions are presented that were obtained by numerically solving the ideal magnetohydrodynamic (MHD) equations. Stationary solutions are critically analyzed using the knowledge of the flux functions. These flux functions enter in the general variational principle governing

  18. Next-generation mid-infrared sources

    Science.gov (United States)

    Jung, D.; Bank, S.; Lee, M. L.; Wasserman, D.

    2017-12-01

    The mid-infrared (mid-IR) is a wavelength range with a variety of technologically vital applications in molecular sensing, security and defense, energy conservation, and potentially in free-space communication. The recent development and rapid commercialization of new coherent mid-infrared sources have spurred significant interest in the development of mid-infrared optical systems for the above applications. However, optical systems designers still do not have the extensive optical infrastructure available to them that exists at shorter wavelengths (for instance, in the visible and near-IR/telecom wavelengths). Even in the field of optoelectronic sources, which has largely driven the growing interest in the mid-infrared, the inherent limitations of state-of-the-art sources and the gaps in spectral coverage offer opportunities for the development of new classes of lasers, light emitting diodes and emitters for a range of potential applications. In this topical review, we will first present an overview of the current state-of-the-art mid-IR sources, in particular thermal emitters, which have long been utilized, and the relatively new quantum- and interband-cascade lasers, as well as the applications served by these sources. Subsequently, we will discuss potential mid-infrared applications and wavelength ranges which are poorly served by the current stable of mid-IR sources, with an emphasis on understanding the fundamental limitations of the current source technology. The bulk of the manuscript will then explore both past and recent developments in mid-infrared source technology, including narrow bandgap quantum well lasers, type-I and type-II quantum dot materials, type-II superlattices, highly mismatched alloys, lead-salts and transition-metal-doped II-VI materials. We will discuss both the advantages and limitations of each of the above material systems, as well as the potential new applications which they might serve. All in all, this topical review does not aim

  19. Absorber Coatings for Mid-Infrared Astrophysics

    Science.gov (United States)

    Baker, Dahlia Anne; Wollack, Edward; Rostem, Karwan

    2017-01-01

    Control over optical response is an important aspect of instrument design for astrophysical imaging. Here we consider a mid-infrared absorber coating proposed for use on HIRMES (High Resolution Mid-Infrared Spectrometer), a cryogenic spectrometer which will fly on the SOFIA (Stratospheric Observatory for Infrared Astronomy) aircraft. The aim of this effort is to develop an absorptive coating for the 20-200 microns spectral range based on a graphene loaded epoxy binder (Epotek 377H) and glass microsphere scatterers (3M K1). The coatings electromagnetic response was modeled using a Matlab script and the glass microspheres were characterized by the measured size distribution, the dielectric constant, and the filling fraction. Images of the microspheres taken by a microscope were used to determine the size distribution with an ImageJ particle analysis program. Representative test samples for optical evaluation were fabricated for characterization via infrared Fourier transform spectroscopy. The optical tests will determine the material’s absorptance and reflectance. These test results will be compared to the modeled response.

  20. Mid infrared DFB interband cascade lasers

    Science.gov (United States)

    Koeth, J.; Weih, R.; Scheuermann, J.; Fischer, M.; Schade, A.; Kamp, M.; Höfling, S.

    2017-08-01

    The mid infrared spectral range (MIR) is of great interest for a variety of industrial, medical and environmental applications since numerous molecules have strong absorption lines therein. Interband cascade lasers (ICLs) have the ability to cover the entire MIR almost independently from the bandgap of the utilized semiconductors. Combined with a DFB technology which is applicable for most kinds of interband transition based semiconductor lasers the spectral range between 2.8 and 5.9 μm could be covered with application grade single mode devices with low power consumption. Recent optimizations regarding the layer design as well as the device processing yielded DFB laser chips with improved performance that will pave the way for a variety of applications that benefit from reasonable output power.

  1. A COMPREHENSIVE SEARCH FOR STELLAR BOWSHOCK NEBULAE IN THE MILKY WAY: A CATALOG OF 709 MID-INFRARED SELECTED CANDIDATES

    Energy Technology Data Exchange (ETDEWEB)

    Kobulnicky, Henry A.; Chick, William T.; Schurhammer, Danielle P.; Andrews, Julian E.; Munari, Stephan A.; Olivier, Grace M.; Sorber, Rebecca L.; Wernke, Heather N.; Dale, Daniel A. [Dept. of Physics and Astronomy, University of Wyoming, Laramie, WY 82070 (United States); Povich, Matthew S.; Dixon, Don M. [Department of Physics and Astronomy, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768 (United States)

    2016-12-01

    We identify 709 arc-shaped mid-infrared nebula in 24 μ m Spitzer Space Telescope or 22 μ m Wide Field Infrared Explorer surveys of the Galactic Plane as probable dusty interstellar bowshocks powered by early-type stars. About 20% are visible at 8 μ m or at shorter mid-infrared wavelengths. The vast majority (660) have no previous identification in the literature. These extended infrared sources are strongly concentrated near the Galactic mid-plane, with an angular scale height of ∼0.°6. All host a symmetrically placed star implicated as the source of a stellar wind sweeping up interstellar material. These are candidate “runaway” stars potentially having high velocities in the reference frame of the local medium. Among the 286 objects with measured proper motions, we find an unambiguous excess with velocity vectors aligned with the infrared morphology—kinematic evidence that many of these are “runaway” stars with large peculiar motions responsible for the bowshock signature. We discuss a population of “in situ” bowshocks (∼103 objects) that face giant H ii regions where the relative motions between the star and ISM may be caused by bulk outflows from an overpressured bubble. We also identify ∼58 objects that face 8 μ m bright-rimmed clouds and apparently constitute a sub-class of in situ bowshocks where the stellar wind interacts with a photoevaporative flow (PEF) from an eroding molecular cloud interface (i.e., “PEF bowshocks”). Orientations of the arcuate nebulae exhibit a correlation over small angular scales, indicating that external influences such as H ii regions are responsible for producing some bowshock nebulae. However, the vast majority of the nebulae in this sample appear to be isolated (499 objects) from obvious external influences.

  2. Nonlinear optics in germanium mid-infrared fiber material: Detuning oscillations in femtosecond mid-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Ordu

    2017-09-01

    Full Text Available Germanium optical fibers hold great promise in extending semiconductor photonics into the fundamentally important mid-infrared region of the electromagnetic spectrum. The demonstration of nonlinear response in fabricated Ge fiber samples is a key step in the development of mid-infrared fiber materials. Here we report the observation of detuning oscillations in a germanium fiber in the mid-infrared region using femtosecond dispersed pump-probe spectroscopy. Detuning oscillations are observed in the frequency-resolved response when mid-infrared pump and probe pulses are overlapped in a fiber segment. The oscillations arise from the nonlinear frequency resolved nonlinear (χ(3 response in the germanium semiconductor. Our work represents the first observation of coherent oscillations in the emerging field of germanium mid-infrared fiber optics.

  3. Mid-Infrared Variability of AGN

    Science.gov (United States)

    Rieke, George; Hines, Dean; Neugebauer, Gerry; Rigby, Jane; Shi, Yong; Smith, Paul

    2007-05-01

    Several issues dealing with the nature of flux variations of active galactic nuclei (AGN) in the thermal infrared remain unresolved after decades of investigation. Resolving the existing ambiguities will yield invaluable information concerning the physical processes important in these objects and the size of the region responsible for the IR continuum. Two sources of emission can dominate in the mid-infrared and provide a large fraction of the bolometric luminosity of AGN: (1) Synchrotron light is important for radio-loud AGN, and is generally observed to be highly variable at other wavelengths. (2) Thermal radiation from warm dust close to the central engine produces an enormous IR signature in many AGN and is likely to be dominant for radio-quiet AGN. We propose to re-observe a large sample of AGN of various types that have been measured at 24 microns by Spitzer during earlier observing cycles to identify variable objects. The stability of the well-characterized MIPS 24-micron channel, allow for the detection of <2-3% variations in the flux relative to the earlier MIPS measurements over a time scale 1-4 yr. Detection of flux variations at 24 microns identify nonthermal sources of IR emission given that changes in thermal emission sources occur over much longer time scales. Sizable radio-loud and radio-quiet subsamples are selected for systematic comparison.

  4. Mid-infrared supercontinuum generation in the fingerprint region

    DEFF Research Database (Denmark)

    Møller, Uffe Visbech; Petersen, Christian Rosenberg; Kubat, Irnis

    The mid-infrared spectral region is of great technical and scientific interest because most molecules display fundamental vibrational absorptions in this region, leaving distinctive spectral fingerprints. Here, we demonstrate experimentally that launching intense ultra-short pulses with a central...... the potential of fibres to emit across the mid-infrared molecular fingerprint region, which is of key importance for applications such as early cancer diagnostics, gas sensing and food quality control....

  5. Mid infrared supercontinuum generation from chalcogenide glass waveguides and fibers

    DEFF Research Database (Denmark)

    Luther-Davies, Barry; Yu, Yi; Zhang, Bin

    2015-01-01

    I report work on mid-infrared super-continuum generation in chalcogenide fibers and waveguides pumped by 320fsec pulses at 21MHz in the 3-4.6µm range. Average powers of ≈20mW were produced with spectral coverage from <2µm to >11µm.......I report work on mid-infrared super-continuum generation in chalcogenide fibers and waveguides pumped by 320fsec pulses at 21MHz in the 3-4.6µm range. Average powers of ≈20mW were produced with spectral coverage from 11µm....

  6. Cosmic ray acceleration by stellar wind. Simulation for heliosphere

    International Nuclear Information System (INIS)

    Petukhov, S.I.; Turpanov, A.A.; Nikolaev, V.S.

    1985-01-01

    The solar wind deceleration by the interstellar medium may result in the existence of the solar wind terminal shock. In this case a certain fraction of thermal particles after being heated at the shock would obtain enough energy to be injected to the regular acceleration process. An analytical solution for the spectrum in the frame of a simplified model that includes particle acceleration at the shock front and adiabatic cooling inside the stellar wind cavity has been derived. It is shown that the acceleration of the solar wind particles at the solar wind terminal shock is capable of providing the total flux, spectrum and radial gradients of the low-energy protons close to one observed in the interplanetary space

  7. Colliding Stellar Winds Structure and X-ray Emission

    Science.gov (United States)

    Pittard, J. M.; Dawson, B.

    2018-04-01

    We investigate the structure and X-ray emission from the colliding stellar winds in massive star binaries. We find that the opening angle of the contact discontinuity (CD) is overestimated by several formulae in the literature at very small values of the wind momentum ratio, η. We find also that the shocks in the primary (dominant) and secondary winds flare by ≈20° compared to the CD, and that the entire secondary wind is shocked when η ≲ 0.02. Analytical expressions for the opening angles of the shocks, and the fraction of each wind that is shocked, are provided. We find that the X-ray luminosity Lx∝η, and that the spectrum softens slightly as η decreases.

  8. Broadband integrated mid infrared light sources as enabling technology for point of care mid-infrared spectroscopy

    Science.gov (United States)

    2017-08-20

    DD-MM-YYYY)      06-09-2017 2. REPORT TYPE Final 3. DATES COVERED (From - To) 01 Aug 2016 to 31 Jul 2017 4. TITLE AND SUBTITLE Broadband integrated ...AFRL-AFOSR-JP-TR-2017-0061 Broadband integrated mid-infrared light sources as enabling technology for point-of-care mid- infrared spectroscopy Alex...Fuerbach MACQUARIE UNIVERSITY Final Report 08/20/2017 DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR

  9. Short pulse mid-infrared amplifier for high average power

    CSIR Research Space (South Africa)

    Botha, LR

    2006-09-01

    Full Text Available High pressure CO2 lasers are good candidates for amplifying picosecond mid infrared pulses. High pressure CO2 lasers are notorious for being unreliable and difficult to operate. In this paper a high pressure CO2 laser is presented based on well...

  10. Picosecond mid-infrared amplifier for high average power.

    CSIR Research Space (South Africa)

    Botha, LR

    2007-04-01

    Full Text Available High pressure CO2 lasers are good candidates for amplifying picosecond mid infrared pulses. High pressure CO2 lasers are notorious for being unreliable and difficult to operate. In this paper a high pressure CO2 laser is presented based on well...

  11. Modelling Near-IR polarization to constrain stellar wind bow shocks

    Science.gov (United States)

    Neilson, Hilding R.; Ignace, R.; Shrestha, M.; Hoffman, J. L.; Mackey, J.

    2013-06-01

    Bow shocks formed from stellar winds are common phenomena observed about massive and intermediate-mass stars such as zeta Oph, Betelgeuse and delta Cep. These bow shocks provide information about the motion of the star, the stellar wind properties and the density of the ISM. Because bow shocks are asymmetric structures, they also present polarized light that is a function of their shape and density. We present a preliminary work modeling dust polarization from a Wilkin (1996) analytic bow shock model and explore how the polarization changes as a function of stellar wind properties.

  12. Mid-Infrared Reflectance Imaging of Thermal-Barrier Coatings

    Science.gov (United States)

    Edlridge, Jeffrey I.; Martin, Richard E.

    2009-01-01

    An apparatus for mid-infrared reflectance imaging has been developed as means of inspecting for subsurface damage in thermal-barrier coatings (TBCs). The apparatus is designed, more specifically, for imaging the progression of buried delamination cracks in plasma-sprayed yttria-stabilized zirconia coatings on turbine-engine components. Progression of TBC delamination occurs by the formation of buried cracks that grow and then link together to produce eventual TBC spallation. The mid-infrared reflectance imaging system described here makes it possible to see delamination progression that is invisible to the unaided eye, and therefore give sufficiently advanced warning before delamination progression adversely affects engine performance and safety. The apparatus (see figure) includes a commercial mid-infrared camera that contains a liquid-nitrogen-cooled focal plane indium antimonide photodetector array, and imaging is restricted by a narrow bandpass centered at wavelength of 4 microns. This narrow wavelength range centered at 4 microns was chosen because (1) it enables avoidance of interfering absorptions by atmospheric OH and CO2 at 3 and 4.25 microns, respectively; and (2) the coating material exhibits maximum transparency in this wavelength range. Delamination contrast is produced in the midinfrared reflectance images because the introduction of cracks into the TBC creates an internal TBC/air-gap interface with a high diffuse reflectivity of 0.81, resulting in substantially higher reflectance of mid-infrared radiation in regions that contain buried delamination cracks. The camera is positioned a short distance (.12 cm) from the specimen. The mid-infrared illumination is generated by a 50-watt silicon carbide source positioned to the side of the mid-infrared camera, and the illumination is collimated and reflected onto the specimen by a 6.35-cm-diameter off-axis paraboloidal mirror. Because the collected images are of a steady-state reflected intensity (in

  13. Do stellar winds play a decisive role in feeding AGN?

    International Nuclear Information System (INIS)

    Davies, R; Burtscher, L; Dodds-Eden, K; De Xivry, G Orban

    2012-01-01

    While the existence of a starburst-AGN connection is undisputed, there is no consensus on what the connection is. In this contribution, we begin by noting that the mechanisms which drive gas inwards in disk galaxies are generally inefficient at removing angular momentum, leading to stalled inflows. Thus, a tiered series of such processes is required to bring gas to the smallest scales, each of which on its own may not correlate with the presence of an AGN. Similarly, each may be associated with a starburst event, making it important to discriminate between 'circumnuclear' and 'nuclear' star formation. In this contribution, we show that stellar feedback on scales of tens of parsecs plays a critical role in first hindering and then helping accretion. We argue that it is only after the initial turbulent phases of a starburst that gas from slow stellar winds can accrete efficiently to smaller scales. This would imply that the properties of the obscuring torus are directly coupled to star formation and that the torus must be a complex dynamical entity. We finish by remarking on other contexts where similar processes appear to be at work.

  14. Mid-infrared Variability of Changing-look AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zhenfeng; Wang, Tinggui; Jiang, Ning; Yang, Chenwei; Peng, Bo [CAS Key Laboratory for Researches in Galaxies and Cosmology, University of Sciences and Technology of China, Hefei, Anhui 230026 (China); Yan, Lin [Caltech Optical Observatories, Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Dou, Liming, E-mail: shengzf@mail.ustc.edu.cn, E-mail: twang@ustc.edu.cn [Center for Astrophysics, Guangzhou University, Guangzhou 510006 (China)

    2017-09-01

    It is known that some active galactic nuclei (AGNs) transit from Type 1 to Type 2 or vice versa. There are two explanations for the so-called changing-look AGNs: one is the dramatic change of the obscuration along the line of sight, and the other is the variation of accretion rate. In this Letter, we report the detection of large amplitude variations in the mid-infrared luminosity during the transitions in 10 changing-look AGNs using the Wide-field Infrared Survey Explorer ( WISE ) and newly released Near-Earth Object WISE Reactivation data. The mid-infrared light curves of 10 objects echo the variability in the optical band with a time lag expected for dust reprocessing. The large variability amplitude is inconsistent with the scenario of varying obscuration, rather it supports the scheme of dramatic change in the accretion rate.

  15. A Mid-infrared QEPAS sensor device for TATP detection

    Science.gov (United States)

    Bauer, C.; Willer, U.; Lewicki, R.; Pohlkötter, A.; Kosterev, A.; Kosynkin, D.; Tittel, F. K.; Schade, W.

    2009-03-01

    Recent developments of external cavity quantum cascade lasers (EC-QC lasers) enable new applications in laser spectroscopy of trace gas species in the mid-infrared spectral region. We report the application of quartz enhanced photo acoustic spectroscopy (QEPAS) with widely tuneable EC-QC lasers as excitation sources for chemical sensing of different species such as triacetone triperoxide (TATP). A pulsed EC-QC laser operating at v~1120cm-1 and a cw EC-QC laser operating at v~950cm-1 are used for the detection of the explosive TATP which is a mid infrared broad band absorber. The detection limit of our present setup is ~1ppm TATP at atmospheric pressure.

  16. A Mid-infrared QEPAS sensor device for TATP detection

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C; Willer, U; Pohlkoetter, A; Schade, W [TU Clausthal, Laser Application Centre, Am Stollen 19, 38640 Goslar (Germany); Lewicki, R; Kosterev, A; Tittel, F K [Electrical and Computer Engineering Department, Rice University, 6100 Main Street, MS-366 Houston, TX 77005, US (United States); Kosynkin, D, E-mail: w.schade@pe.tu-clausthal.d, E-mail: fkt@rice.ed [Department of Chemistry, Rice University, 6100 Main Street, MS-222, Houston, TX 77005, US (United States)

    2009-03-01

    Recent developments of external cavity quantum cascade lasers (EC-QC lasers) enable new applications in laser spectroscopy of trace gas species in the mid-infrared spectral region. We report the application of quartz enhanced photo acoustic spectroscopy (QEPAS) with widely tuneable EC-QC lasers as excitation sources for chemical sensing of different species such as triacetone triperoxide (TATP). A pulsed EC-QC laser operating at v{approx}1120cm{sup -1} and a cw EC-QC laser operating at v{approx}950cm{sup -1} are used for the detection of the explosive TATP which is a mid infrared broad band absorber. The detection limit of our present setup is {approx}1ppm TATP at atmospheric pressure.

  17. Ionization effects in the radiative driving of stellar winds in massive X ray binary systems

    Science.gov (United States)

    Stevens, Ian R.

    1989-01-01

    Massive X ray binaries consist of an early type primary lossing mass via a strong stellar wind driven by the stars radiation field, and an accreting neutron star companion. The X rays from the neutron star affect the wind dynamics by changing the temperature and ionization structure. The effect of the accretion powered X rays on the radiative line force that drives the stellar wind is calculated. The consequences of these calculations for the wind dynamics in massive X ray binaries is discussed.

  18. Generation of Mid-Infrared Frequency Combs for Spectroscopic Applications

    Science.gov (United States)

    Maser, Daniel L.

    Mid-infrared laser sources prove to be a valuable tool in exploring a vast array of phenomena, finding their way into applications ranging from trace gas detection to X-ray generation and carbon dating. Mid-infrared frequency combs, in particular, are well-suited for many of these applications, owing to their inherent low-noise and broadband nature. Frequency comb technology is well-developed in the near-infrared as a result of immense technological development by the telecommunication industry in silica fiber and the existence of readily-available glass dopants such as ytterbium and erbium that enable oscillators at 1 and 1.5 ?m. However, options become substantially more limited at longer wavelengths, as silica is no longer transparent and the components required in a mid-infrared frequency comb system (oscillators, fibers, and both fiber and free-space components) are far less technologically mature. This thesis explores several different approaches to generating frequency comb sources in the mid-infrared region, and the development of sources used in the nonlinear processes implemented to reach these wavelengths. An optical parametric oscillator, two approaches to difference frequency generation, and nonlinear spectral broadening in chip-scale waveguides are developed, characterized, and spectroscopic potential for these techniques is demonstrated. The source used for these nonlinear processes, the erbium-doped fiber amplifier, is also studied and discussed throughout the design and optimization process. The nonlinear optical processes critical to this work are numerically modeled and used to confirm and predict experimental behavior.

  19. Real-time mid-infrared imaging of living microorganisms.

    Science.gov (United States)

    Haase, Katharina; Kröger-Lui, Niels; Pucci, Annemarie; Schönhals, Arthur; Petrich, Wolfgang

    2016-01-01

    The speed and efficiency of quantum cascade laser-based mid-infrared microspectroscopy are demonstrated using two different model organisms as examples. For the slowly moving Amoeba proteus, a quantum cascade laser is tuned over the wavelength range of 7.6 µm to 8.6 µm (wavenumbers 1320 cm(-1) and 1160 cm(-1) , respectively). The recording of a hyperspectral image takes 11.3 s whereby an average signal-to-noise ratio of 29 is achieved. The limits of time resolution are tested by imaging the fast moving Caenorhabditis elegans at a discrete wavenumber of 1265 cm(-1) . Mid-infrared imaging is performed with the 640 × 480 pixel video graphics array (VGA) standard and at a full-frame time resolution of 0.02 s (i.e. well above the most common frame rate standards). An average signal-to-noise ratio of 16 is obtained. To the best of our knowledge, these findings constitute the first mid-infrared imaging of living organisms at VGA standard and video frame rate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Femtosecond few-cycle mid-infrared laser pulses

    DEFF Research Database (Denmark)

    Liu, Xing

    The few-cycle pulses of mid-infrared (mid-IR, wavelength 2-10 microns) have attracted increasing attention owing to their great potentials for high order harmonic generation, time-resolved spectroscopy, precision of cutting and biomedical science.In this thesis, mid-IR frequency conversion.......2 - 5.5 μm with only one fixed pump wavelength, a feature absent in Kerr media. Finally, we experimentally observe supercontinuum generation spanning 1.5 octaves, generated in a 10 mm long silicon-rich nitride waveguide pumped by 100 pJ femtosecond pulses from an erbium fiber laser. The waveguide has...

  1. Supercontinuum generation from ultraviolet to mid-infrared

    DEFF Research Database (Denmark)

    Møller, Uffe Visbech; Sørensen, Simon Toft; Petersen, Christian Rosenberg

    2014-01-01

    The advent of photonic crystal fibers (PCFs) has paved the road for commercial high-power supercontinuum light sources. The air-hole structuring in the PCF manipulates the properties of light and gives a tremendous degree of design freedom, which has enabled pushing the properties of PCFs to limits...... the intensity noise of the supercontinuum source [4]. Supercontinuum sources based on silica fibers are limited to the material loss edge at 2.4 μm. However, for wavelengths beyond 2.4 μm the attenuation of light in silica fibers is greatly increased making them useless for the mid-infrared region. Instead...

  2. Mid-Infrared Continuously Tunable Single Mode VECSEL

    Science.gov (United States)

    Khiar, A.; Rahim, M.; Felder, F.; Fill, M.; Zogg, H.

    2011-12-01

    Tunable mid-infrared vertical external cavity surface emitting lasers were developed for the wavelength range around 3.8-3.9 μm and 3.2-3.3 μm, respectively. The devices are based on lead salt materials epitaxially grown by MBE on a Si substrate. The active part consists of PbSe QW in a PbSrSe host layer. Both devices are operated around -20 °C and have output power of several 10 mW. By changing the cavity length, a single mode hop free tuning range up to 80 cm-1 is achieved.

  3. Broadband mid-infrared superlattice light-emitting diodes

    Science.gov (United States)

    Ricker, R. J.; Provence, S. R.; Norton, D. T.; Boggess, T. F.; Prineas, J. P.

    2017-05-01

    InAs/GaSb type-II superlattice light-emitting diodes were fabricated to form a device that provides emission over the entire 3-5 μm mid-infrared transmission window. Variable bandgap emission regions were coupled together using tunnel junctions to emit at peak wavelengths of 3.3 μm, 3.5 μm, 3.7 μm, 3.9 μm, 4.1 μm, 4.4 μm, 4.7 μm, and 5.0 μm. Cascading the structure recycles the electrons in each emission region to emit several wavelengths simultaneously. At high current densities, the light-emitting diode spectra broadened into a continuous, broadband spectrum that covered the entire mid-infrared band. When cooled to 77 K, radiances of over 1 W/cm2 sr were achieved, demonstrating apparent temperatures above 1000 K over the 3-5 μm band. InAs/GaSb type-II superlattices are capable of emitting from 3 μm to 30 μm, and the device design can be expanded to include longer emission wavelengths.

  4. Mid-Infrared Tunable Resonant Cavity Enhanced Detectors

    Directory of Open Access Journals (Sweden)

    Hans Zogg

    2008-09-01

    Full Text Available Mid-infrared detectors that are sensitive only in a tunable narrow spectral band are presented. They are based on the Resonant Cavity Enhanced Detector (RCED principle and employing a thin active region using IV-VI narrow gap semiconductor layers. A Fabry-Pérot cavity is formed by two mirrors. The active layer is grown onto one mirror, while the second mirror can be displaced. This changes the cavity length thus shifting the resonances where the detector is sensitive. Using electrostatically actuated MEMS micromirrors, a very compact tunable detector system has been fabricated. Mirror movements of more than 3 μm at 30V are obtained. With these mirrors, detectors with a wavelength tuning range of about 0.7 μm have been realized. Single detectors can be used in mid-infrared micro spectrometers, while a detector arrangement in an array makes it possible to realize Adaptive Focal Plane Arrays (AFPA.

  5. X-ray illuminated stellar winds - Ionization effects in the radiative driving of stellar winds in massive X-ray binary systems

    Science.gov (United States)

    Stevens, Ian R.; Kallman, Timothy R.

    1990-01-01

    This paper presents calculations of the effect of changing X-ray ionization conditions on the radiative force experienced by the stellar wind material in a massive X-ray binary system. The radiative line force from the radiation field of the primary is parameterized in terms of the Castor et al. (1975) force multiplier. The results show that the line force decreases sharply, but in a nonlinear way, with increasing X-ray ionization. The dynamic consequences of this effect are discussed.

  6. STAR-FORMATION ACTIVITY IN THE NEIGHBORHOOD OF W–R 1503-160L STAR IN THE MID-INFRARED BUBBLE N46

    International Nuclear Information System (INIS)

    Dewangan, L. K.; Janardhan, P.; Baug, T.; Ojha, D. K.; Ninan, J. P.; Luna, A.; Zinchenko, I.

    2016-01-01

    In order to investigate star-formation (SF) processes in extreme environments, we have carried out a multi-wavelength analysis of the mid-infrared bubble N46, which hosts a WN7 Wolf–Rayet (W–R) star. We have used 13 CO line data to trace an expanding shell surrounding the W–R star containing about five condensations within the molecular cloud associated with the bubble. The W–R star is associated with a powerful stellar wind having a mechanical luminosity of ∼4 × 10 37 erg s 1 . A deviation of the H -band starlight mean polarization angles around the bubble has also been traced, indicating the impact of stellar wind on the surroundings. The Herschel temperature map shows a temperature range of ∼18–24 K toward the five molecular condensations. The photometric analysis reveals that these condensations are associated with the identified clusters of young stellar objects, revealing ongoing SF process. The densest among these five condensations (peak N(H 2 ) ∼9.2 × 10 22 cm 2 and A V ∼ 98 mag) is associated with a 6.7 GHz methanol maser, an infrared dark cloud, and the CO outflow, tracing active massive SF within it. At least five compact radio sources (CRSs) are physically linked with the edges of the bubble, and each of them is consistent with the radio spectral class of a B0V–B0.5V-type star. The ages of the individual infrared counterparts of three CRSs (∼1–2 Myr) and a typical age of WN7 W–R star (∼4 Myr) indicate that the SF activities around the bubble are influenced by the feedback of the W–R star.

  7. STAR-FORMATION ACTIVITY IN THE NEIGHBORHOOD OF W–R 1503-160L STAR IN THE MID-INFRARED BUBBLE N46

    Energy Technology Data Exchange (ETDEWEB)

    Dewangan, L. K.; Janardhan, P. [Physical Research Laboratory, Navrangpura, Ahmedabad—380 009 (India); Baug, T.; Ojha, D. K.; Ninan, J. P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Luna, A. [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro #1, Tonantzintla, Puebla, C.P. 72840, México (Mexico); Zinchenko, I., E-mail: lokeshd@prl.res.in [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod 603950 (Russian Federation)

    2016-07-20

    In order to investigate star-formation (SF) processes in extreme environments, we have carried out a multi-wavelength analysis of the mid-infrared bubble N46, which hosts a WN7 Wolf–Rayet (W–R) star. We have used {sup 13}CO line data to trace an expanding shell surrounding the W–R star containing about five condensations within the molecular cloud associated with the bubble. The W–R star is associated with a powerful stellar wind having a mechanical luminosity of ∼4 × 10{sup 37} erg s{sup 1}. A deviation of the H -band starlight mean polarization angles around the bubble has also been traced, indicating the impact of stellar wind on the surroundings. The Herschel temperature map shows a temperature range of ∼18–24 K toward the five molecular condensations. The photometric analysis reveals that these condensations are associated with the identified clusters of young stellar objects, revealing ongoing SF process. The densest among these five condensations (peak N(H{sub 2}) ∼9.2 × 10{sup 22} cm{sup 2} and A{sub V} ∼ 98 mag) is associated with a 6.7 GHz methanol maser, an infrared dark cloud, and the CO outflow, tracing active massive SF within it. At least five compact radio sources (CRSs) are physically linked with the edges of the bubble, and each of them is consistent with the radio spectral class of a B0V–B0.5V-type star. The ages of the individual infrared counterparts of three CRSs (∼1–2 Myr) and a typical age of WN7 W–R star (∼4 Myr) indicate that the SF activities around the bubble are influenced by the feedback of the W–R star.

  8. NATO Advanced Research Workshop on Terahertz and Mid Infrared Radiation

    CERN Document Server

    Pereira, Mauro F; Terahertz and Mid Infrared Radiation

    2011-01-01

    Terahertz (THz) and Mid-Infrared (MIR) radiation  (TERA-MIR) can be transmitted through nearly any material without causing biological harm. Novel and rapid methods of detection can be created with devices operation in these spectral ranges allowing scanning for weapons, detecting hidden explosives (including plastic landmines), controlling the quality of food and a host of other exciting applications.  This book focuses on mathematical and physical aspects of the field, on unifying these two spectral domains (THz and MIR) with regard to common sources, detectors, materials and applications, and on key interdisciplinary topics. The main THz and MIR source is the quantum cascade laser (QCL). Thus significant attention is paid to the challenge of turning this advanced technology into affordable commercial devices so as to exploit its enormous potential. However other alternatives to THz QCLs are also presented, e.g.  sub-terahertz imaging from avalanching GaAs bipolar transistors, Josephson junctions as THz ...

  9. New Opportunities in Mid-Infrared Emission Control

    Directory of Open Access Journals (Sweden)

    Peter Geiser

    2015-09-01

    Full Text Available Tunable laser absorption spectroscopy (TLAS has been well accepted as a preferred measurement technique for many industrial applications in recent years, especially for in situ applications. Previously, mainly near-infrared lasers have been used in TLAS sensors. The advent of compact mid-infrared light sources, like quantum cascade lasers and interband cascade lasers, has made it possible to detect gases with better sensitivity by utilizing fundamental absorption bands and to measure species that do not have any absorption lines in the near-infrared spectral region. This technological advancement has allowed developing new sensors for gases, such as nitric oxide and sulfur dioxide, for industrial applications. Detection limits of better than 1 ppm·m for nitric oxide and better than 10 ppm·m for sulfur dioxide are demonstrated in field experiments.

  10. Mid Infrared Instrument cooler subsystem test facility overview

    Science.gov (United States)

    Moore, B.; Zan, J.; Hannah, B.; Chui, T.; Penanen, K.; Weilert, M.

    2017-12-01

    The Cryocooler for the Mid Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST) provides cooling at 6.2K on the instrument interface. The cooler system design has been incrementally documented in previous publications [1][2][3][4][5]. It has components that traverse three primary thermal regions on JWST: Region 1, approximated by 40K; Region 2, approximated by 100K; and Region 3, which is at the allowable flight temperatures for the spacecraft bus. However, there are several sub-regions that exist in the transition between primary regions and at the heat reject interfaces of the Cooler Compressor Assembly (CCA) and Cooler Control Electronics Assembly (CCEA). The design and performance of the test facility to provide a flight representative thermal environment for acceptance testing and characterization of the complete MIRI cooler subsystem are presented.

  11. Mid-infrared integrated photonics on silicon: a perspective

    Science.gov (United States)

    Lin, Hongtao; Luo, Zhengqian; Gu, Tian; Kimerling, Lionel C.; Wada, Kazumi; Agarwal, Anu; Hu, Juejun

    2017-12-01

    The emergence of silicon photonics over the past two decades has established silicon as a preferred substrate platform for photonic integration. While most silicon-based photonic components have so far been realized in the near-infrared (near-IR) telecommunication bands, the mid-infrared (mid-IR, 2-20-μm wavelength) band presents a significant growth opportunity for integrated photonics. In this review, we offer our perspective on the burgeoning field of mid-IR integrated photonics on silicon. A comprehensive survey on the state-of-the-art of key photonic devices such as waveguides, light sources, modulators, and detectors is presented. Furthermore, on-chip spectroscopic chemical sensing is quantitatively analyzed as an example of mid-IR photonic system integration based on these basic building blocks, and the constituent component choices are discussed and contrasted in the context of system performance and integration technologies.

  12. High order harmonic generation with femtosecond mid-infrared laser

    Science.gov (United States)

    Lin, Jinpu; Nees, John; Krushelnick, Karl; Dollar, Franklin; Nguyen, Tam

    2017-10-01

    There has been growing interest in high order harmonic generation (HHG) from laser-solid interactions as a compact source of coherent x-rays. The ponderomotive potential in laser-plasma interactions increases with longer laser wavelength, so there may be significant differences in the physics of harmonic generation and other phenomena when experiments are conducted with mid-infrared lasers. Previous experiments, however, have been done almost exclusively with near-infrared lasers. In this work, we report the results of experiments performed with millijoule, 40 fs, 2 µm laser pulses generated by an optical parametric amplifier (OPA) which are focused onto solid targets such as silicon and glass. The HHG efficiency, polarization dependence, and x-ray emission are studied and compared to measurements with near-infrared lasers. Funded by AFOSR MURI.

  13. Analytical Models of Spirals in Stellar Winds to Interpret ALMA Data

    NARCIS (Netherlands)

    Homan, W.; Decin, L.; de Koter, A.; van Marle, A.J.; Lombaert, R.; Vlemmings, W.H.T.

    2015-01-01

    Observations of stellar winds have shown that these outflows are non-homogeneous and might harbor structural complexities on macro- and microscales. Here, we focus on spiral structures with the aim to expand our understanding of the manifestation of such structures in the (one- and

  14. Human Milk Analysis Using Mid-Infrared Spectroscopy.

    Science.gov (United States)

    Groh-Wargo, Sharon; Valentic, Jennifer; Khaira, Sharmeel; Super, Dennis M; Collin, Marc

    2016-04-01

    The composition of human milk is known to vary with length of gestation, stage of lactation, and other factors. Human milk contains all nutrients required for infant health but requires fortification to meet the needs of low-birth-weight infants. Without a known nutrient profile of the mother's milk or donor milk fed to a baby, the composition of the fortified product is only an estimate. Human milk analysis has the potential to improve the nutrition care of high-risk newborns by increasing the information about human milk composition. Equipment to analyze human milk is available, and the technology is rapidly evolving. This pilot study compares mid-infrared (MIR) spectroscopy to reference laboratory milk analysis. After obtaining informed consent, we collected human milk samples from mothers of infants weighing analysis including Kjeldahl for protein, Mojonnier for fat, and high-pressure liquid chromatography for lactose. Intraclass correlation coefficients, Bland-Altman scatter plots, and paired t tests were used to compare the two methods. No significant differences were detected between the macronutrient content of human milk obtained by MIR vs reference laboratory analysis. MIR analysis appears to provide an accurate assessment of macronutrient content in expressed human milk from mothers of preterm infants. The small sample size of this study limits confidence in the results. Measurement of lactose is confounded by the presence of oligosaccharides. Human milk analysis is a potentially useful tool for establishing an individualized fortification plan. © 2015 American Society for Parenteral and Enteral Nutrition.

  15. Mid-Infrared Sensing of Organic Pollutants in Aqueous Environments

    Directory of Open Access Journals (Sweden)

    Andrew Ross

    2009-08-01

    Full Text Available The development of chemical sensors for monitoring the levels of organic pollutants in the aquatic environment has received a great deal of attention in recent decades. In particular, the mid-infrared (MIR sensor based on attenuated total reflectance (ATR is a promising analytical tool that has been used to detect a variety of hydrocarbon compounds (i.e., aromatics, alkyl halides, phenols, etc. dissolved in water. It has been shown that under certain conditions the MIR-ATR sensor is capable of achieving detection limits in the 10-100 ppb concentration range. Since the infrared spectral features of every single organic molecule are unique, the sensor is highly selective, making it possible to distinguish between many different analytes simultaneously. This review paper discusses some of the parameters (i.e., membrane type, film thickness, conditioning that dictate MIR ATR sensor response. The performance of various chemoselective membranes which are used in the fabrication of the sensor will be evaluated. Some of the challenges associated with long-term environmental monitoring are also discussed.

  16. Mid-Infrared Sensing of Organic Pollutants in Aqueous Environments

    Science.gov (United States)

    Pejcic, Bobby; Myers, Matthew; Ross, Andrew

    2009-01-01

    The development of chemical sensors for monitoring the levels of organic pollutants in the aquatic environment has received a great deal of attention in recent decades. In particular, the mid-infrared (MIR) sensor based on attenuated total reflectance (ATR) is a promising analytical tool that has been used to detect a variety of hydrocarbon compounds (i.e., aromatics, alkyl halides, phenols, etc.) dissolved in water. It has been shown that under certain conditions the MIR-ATR sensor is capable of achieving detection limits in the 10–100 ppb concentration range. Since the infrared spectral features of every single organic molecule are unique, the sensor is highly selective, making it possible to distinguish between many different analytes simultaneously. This review paper discusses some of the parameters (i.e., membrane type, film thickness, conditioning) that dictate MIR-ATR sensor response. The performance of various chemoselective membranes which are used in the fabrication of the sensor will be evaluated. Some of the challenges associated with long-term environmental monitoring are also discussed. PMID:22454582

  17. Cosmic ray-modified stellar winds. I - Solution topologies and singularities

    Science.gov (United States)

    Ko, C. M.; Webb, G. M.

    1987-01-01

    In the present two-fluid hydrodynamical model for stellar wind flow modification due to its interaction with Galactic cosmic rays, these rays are coupled to the stellar wind by either hydromagnetic wave scattering or background flow irregularity propagation. The background flow is modified by the cosmic rays via their pressure gradient. The system of equations used possesses a line of singularities in (r, u, P sub c)-space, or a two-dimensional hypersurface of singularities in (r, u, P sub c, dP sub c/dr)-space, where r, u, and P sub c are respectively the radial distance from the star, the radial wind flow speed, and the cosmic ray pressure. The singular points may be nodes, foci, or saddle points.

  18. Analytical modeling of mid-infrared silicon Raman lasers

    Science.gov (United States)

    Ma, J.; Fathpour, S.

    2012-01-01

    Silicon photonics has significantly matured in the near-infrared (telecommunication) wavelength range with several commercial products already in the market. More recently, the technology has been extended into the mid-infrared (mid- IR) regime with potential applications in biochemical sensing, tissue photoablation, environmental monitoring and freespace communications. The key advantage of silicon in the mid-IR, as compared with near-IR, is the absence of twophoton absorption (TPA) and free-carrier absorption (FCA). The absence of these nonlinear losses would potentially lead to high-performance nonlinear devices based on Raman and Kerr effects. Also, with the absence of TPA and FCA, the coupled-wave equations that are usually numerically solved to model these nonlinear devices lend themselves to analytical solutions in the mid-IR. In this paper, an analytical model for mid-IR silicon Raman lasers is developed. The validity of the model is confirmed by comparing it with numerical solutions of the coupled-wave equations. The developed model can be used as a versatile and efficient tool for analysis, design and optimization of mid-IR silicon Raman lasers, or to find good initial guesses for numerical methods. The effects of cavity parameters, such as cavity length and facet reflectivities, on the lasing threshold and input-output characteristics of the Raman laser are studied. For instance, for a propagation loss of 0.5 dB/cm, conversion efficiencies as high as 56% is predicted. The predicted optimum cavity (waveguide) length at 2.0 dB/cm propagation loss is { 3.4 mm. The results of this study predict strong prospects for mid-IR silicon Raman lasers for the mentioned applications.

  19. TATP and TNT detection by mid-infrared transmission spectroscopy

    Science.gov (United States)

    Herbst, Johannes; Hildenbrand, Jürgen; Wöllenstein, Jürgen; Lambrecht, Armin

    2009-05-01

    Sensitive and fast detection of explosives remains a challenge in many threat scenarios. Fraunhofer IPM works on two different detection methods using mid-infrared absorption spectroscopy in combination with quantum cascade lasers (QCL). 1. stand-off detection for a spatial distance of several meters and 2. contactless extractive sampling for short distance applications. The extractive method is based on a hollow fiber that works as gas cell and optical waveguide for the QCL light. The samples are membranes contaminated with the explosives and real background. The low vapor pressure of TNT requires a thermal desorbtion to introduce gaseous TNT and TATP into the heated fiber. The advantage of the hollow fiber setup is the resulting small sample volume. This enables a fast gas exchange rate and fast detection in the second range. The presented measurement setup achieves a detection limit of around 58 ng TNT and 26 ng TATP for 1 m hollow fiber. TATP - an explosive with a very high vapor pressure in comparison to TNT or other explosives - shows potential for an adequate concentration in gas phase under normal ambient conditions and thus the possibility of an explosive detection using open path absorption of TATP at 8 μm wavelength. In order to lower the cross sensitivities or interferents with substances with an absorption in the wavelength range of the TATP absorption the probe volume is checked synchronously by a second QCL emitting beside the target absorption wavelength. In laboratory measurements a detection limit of 5 ppm*m TATP are achieved.

  20. Spectroscopy of the Stellar Wind in the Cygnus X-1 System

    Science.gov (United States)

    Miskovicova, Ivica; Hanke, Manfred; Wilms, Joern; Nowak, Michael A.; Pottschmidt, Katja; Schultz, Norbert

    2010-01-01

    The X-ray luminosity of black holes is produced through the accretion of material from their companion stars. Depending on the mass of the donor star, accretion of the material falling onto the black hole through the inner Lagrange point of the system or accretion by the strong stellar wind can occur. Cygnus X-1 is a high mass X-ray binary system, where the black hole is powered by accretion of the stellar wind of its supergiant companion star HDE226868. As the companion is close to filling its Roche lobe, the wind is not symmetric, but strongly focused towards the black hole. Chandra-HETGS observations allow for an investigation of this focused stellar wind, which is essential to understand the physics of the accretion flow. We compare observations at the distinct orbital phases of 0.0, 0.2, 0.5 and 0.75. These correspond to different lines of sights towards the source, allowing us to probe the structure and the dynamics of the wind.

  1. Spectroscopy of the Stellar Wind in the Cygnus X-1 System

    Directory of Open Access Journals (Sweden)

    I. Miškovičová

    2011-01-01

    Full Text Available The X-ray luminosity of black holes is produced through the accretion of material from their companion stars. Depending on the mass of the donor star, accretion of the material falling onto the black hole through the inner Lagrange point of the system or accretion by the strong stellar wind can occur. Cygnus X-1 is a high mass X-ray binary system, where the black hole is powered by accretion of the stellar wind of its supergiant companion star HDE226868. As the companion is close to filling its Roche lobe, the wind is not symmetric, but strongly focused towards the black hole. Chandra-HETGS observations allow for an investigation of this focused stellar wind, which is essential to understand the physics of the accretion flow. We compare observations at the distinct orbital phases of 0.0, 0.2, 0.5 and 0.75. These correspond to different lines of sight towards the source, allowing us to probe the structure and the dynamics of the wind.

  2. Gemini/GNIRS infrared spectroscopy of the Wolf-Rayet stellar wind in Cygnus X-3

    Science.gov (United States)

    Koljonen, K. I. I.; Maccarone, T. J.

    2017-12-01

    The microquasar Cygnus X-3 was observed several times with the Gemini North Infrared Spectrograph while the source was in the hard X-ray state. We describe the observed 1.0-2.4 μm spectra as arising from the stellar wind of the companion star and suggest its classification as a WN 4-6 Wolf-Rayet star. We attribute the orbital variations of the emission line profiles to the variations in the ionization structure of the stellar wind caused by the intense X-ray emission from the compact object. The strong variability observed in the line profiles will affect the mass function determination. We are unable to reproduce earlier results, from which the mass function for the Wolf-Rayet star was derived. Instead, we suggest that the system parameters are difficult to obtain from the infrared spectra. We find that the near-infrared continuum and the line spectra can be represented with non-LTE Wolf-Rayet atmosphere models if taking into account the effects arising from the peculiar ionization structure of the stellar wind in an approximative manner. From the representative models we infer the properties of the Wolf-Rayet star and discuss possible mass ranges for the binary components.

  3. THE MID-INFRARED EXTINCTION LAW AND ITS VARIATION IN THE COALSACK NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shu; Gao Jian; Jiang, B. W.; Chen Yang [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Li Aigen, E-mail: shuwang@mail.bnu.edu.cn, E-mail: jiangao@bnu.edu.cn, E-mail: bjiang@bnu.edu.cn, E-mail: cheny@bnu.edu.cn, E-mail: lia@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2013-08-10

    In recent years, the wavelength dependence of interstellar extinction from the ultraviolet (UV) to the near- and mid-infrared (IR) has been studied extensively. Although it is well established that the UV/optical extinction law varies significantly among the different lines of sight, it is not clear how IR extinction varies among various environments. In this work, using the color-excess method and taking red giants as the extinction tracer, we determine interstellar extinction A{sub {lambda}} in the four Spitzer/IRAC bands in [3.6], [4.5], [5.8], [8.0] {mu}m (relative to A{sub K{sub s}}, extinction in the Two Micron All Sky Survey (2MASS) K{sub s} band at 2.16 {mu}m) of the Coalsack nebula, a nearby starless dark cloud, based on the data obtained from the 2MASS and Spitzer/GLIMPSE surveys. We select five individual regions across the nebula that span a wide variety of physical conditions ranging from diffuse and translucent to dense environments, as traced by the visual extinction, the Spitzer/MIPS 24 {mu}m emission, and CO emission. We find that A{sub {lambda}}/A{sub K{sub s}}, mid-IR extinction relative to A{sub K{sub s}}, decreases from diffuse to dense environments, which may be explained in terms of ineffective dust growth in dense regions. The mean extinction (relative to A{sub K{sub s}}) is calculated for the four IRAC bands as well and exhibits a flat mid-IR extinction law consistent with previous determinations for other regions. Extinction in the IRAC 4.5 {mu}m band is anomalously high, much higher than that of the other three IRAC bands, and cannot be explained in terms of CO and CO{sub 2} ice. Mid-IR extinction in the four IRAC bands has also been derived for four representative regions in the Coalsack Globule 2, which respectively exhibit strong ice absorption, moderate or weak ice absorption, and very weak or no ice absorption. The derived mid-IR extinction curves are all flat, with A{sub {lambda}}/A{sub K{sub s}} increasing with the decrease of the

  4. THE MID-INFRARED EXTINCTION LAW AND ITS VARIATION IN THE COALSACK NEBULA

    International Nuclear Information System (INIS)

    Wang Shu; Gao Jian; Jiang, B. W.; Chen Yang; Li Aigen

    2013-01-01

    In recent years, the wavelength dependence of interstellar extinction from the ultraviolet (UV) to the near- and mid-infrared (IR) has been studied extensively. Although it is well established that the UV/optical extinction law varies significantly among the different lines of sight, it is not clear how IR extinction varies among various environments. In this work, using the color-excess method and taking red giants as the extinction tracer, we determine interstellar extinction A λ in the four Spitzer/IRAC bands in [3.6], [4.5], [5.8], [8.0] μm (relative to A K s , extinction in the Two Micron All Sky Survey (2MASS) K s band at 2.16 μm) of the Coalsack nebula, a nearby starless dark cloud, based on the data obtained from the 2MASS and Spitzer/GLIMPSE surveys. We select five individual regions across the nebula that span a wide variety of physical conditions ranging from diffuse and translucent to dense environments, as traced by the visual extinction, the Spitzer/MIPS 24 μm emission, and CO emission. We find that A λ /A K s , mid-IR extinction relative to A K s , decreases from diffuse to dense environments, which may be explained in terms of ineffective dust growth in dense regions. The mean extinction (relative to A K s ) is calculated for the four IRAC bands as well and exhibits a flat mid-IR extinction law consistent with previous determinations for other regions. Extinction in the IRAC 4.5 μm band is anomalously high, much higher than that of the other three IRAC bands, and cannot be explained in terms of CO and CO 2 ice. Mid-IR extinction in the four IRAC bands has also been derived for four representative regions in the Coalsack Globule 2, which respectively exhibit strong ice absorption, moderate or weak ice absorption, and very weak or no ice absorption. The derived mid-IR extinction curves are all flat, with A λ /A K s increasing with the decrease of the 3.1 μm H 2 O ice absorption optical depth τ ice

  5. Nanoscale Optical Imaging and Spectroscopy from Visible to Mid-Infrared

    Science.gov (United States)

    2015-11-13

    Nanoscale Optical Imaging and Spectroscopy from Visible to Mid-infrared The PIs completed the acquisition of a nanoscale optical imaging and...of Papers published in non peer-reviewed journals: Final Report: Nanoscale Optical Imaging and Spectroscopy from Visible to Mid-infrared Report Title... spectroscopy system with extremely broad spectral capability spanning the ultraviolet to the near-infrared. The equipment provides new capabilities of

  6. LOCUSS: THE MID-INFRARED BUTCHER-OEMLER EFFECT

    International Nuclear Information System (INIS)

    Haines, C. P.; Smith, G. P.; Sanderson, A. J. R.; Egami, E.; Ellis, R. S.; Moran, S. M.; Merluzzi, P.; Busarello, G.; Smith, R. J.

    2009-01-01

    We study the mid-infrared (MIR) properties of galaxies in 30 massive galaxy clusters at 0.02 ≤ z ≤ 0.40, using panoramic Spitzer/MIPS 24 μm and near-infrared data, including 27 new observations from the LoCuSS and ACCESS surveys. This is the largest sample of clusters to date with such high-quality and uniform MIR data covering not only the cluster cores, but extending into the infall regions. We use these data to revisit the so-called Butcher-Oemler (BO) effect, measuring the fraction of massive infrared luminous galaxies (K IR > 5 x 10 10 L sun ) within r 200 , finding a steady increase in the fraction with redshift from ∼3% at z = 0.02 to ∼10% by z = 0.30, and an rms cluster-to-cluster scatter about this trend of 0.03. The best-fit redshift evolution model of the form f SF ∝ (1 + z) n has n = 5.7 +2.1 -1.8 , which is stronger redshift evolution than that of L* IR in both clusters and the field. We find that, statistically, this excess is associated with galaxies found at large cluster-centric radii, specifically r 500 200 , implying that the MIR BO effect can be explained by a combination of both the global decline in star formation in the universe since z ∼ 1 and enhanced star formation in the infall regions of clusters at intermediate redshifts. This picture is supported by a simple infall model based on the Millennium Simulation semianalytic galaxy catalogs, whereby star formation in infalling galaxies is instantaneously quenched upon their first passage through the cluster, in that the observed radial trends of f SF trace those inferred from the simulations. The observed f SF values, however, lie systematically above the predictions, suggesting an overall excess of star formation, either due to triggering by environmental processes, or a gradual quenching. We also find that f SF does not depend on simple indicators of the dynamical state of clusters, including the offset between the brightest cluster galaxy and the peak of the X-ray emission

  7. PROBING STELLAR ACCRETION WITH MID-INFRARED HYDROGEN LINES

    Energy Technology Data Exchange (ETDEWEB)

    Rigliaco, Elisabetta; Pascucci, I.; Mulders, G. D. [Department of Planetary Science, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85719 (United States); Duchene, G. [Astronomy Department, University of California, Berkeley, Hearst Field Annex B-20, Berkeley, CA 94720-3411 (United States); Edwards, S. [Five College Astronomy Department, Smith College, Northampton, MA 01063 (United States); Ardila, D. R. [NASA Herschel Science Center, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States); Grady, C. [Eureka Scientific, 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017 (United States); Mendigutía, I. [School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Montesinos, B. [Departamento de Astrofísica, Centro de Astrobiología, ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Najita, J. R. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Carpenter, J. [Department of Astronomy, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Furlan, E. [Infrared Processing and Analysis Center, California Institute of Technology, 770 S. Wilson Ave., Pasadena, CA 91125 (United States); Gorti, U. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Meijerink, R. [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Meyer, M. R., E-mail: rigliaco@lpl.arizona.edu, E-mail: elisabetta.rigliaco@phys.ethz.ch [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland)

    2015-03-01

    In this paper we investigate the origin of the mid-infrared (IR) hydrogen recombination lines for a sample of 114 disks in different evolutionary stages (full, transitional, and debris disks) collected from the Spitzer archive. We focus on the two brighter H I lines observed in the Spitzer spectra, the H I (7-6) at 12.37 μm and the H I (9-7) at 11.32 μm. We detect the H I (7-6) line in 46 objects, and the H I (9-7) in 11. We compare these lines with the other most common gas line detected in Spitzer spectra, the [Ne II] at 12.81 μm. We argue that it is unlikely that the H I emission originates from the photoevaporating upper surface layers of the disk, as has been found for the [Ne II] lines toward low-accreting stars. Using the H I (9-7)/H I (7-6) line ratios we find these gas lines are likely probing gas with hydrogen column densities of 10{sup 10}-10{sup 11} cm{sup –3}. The subsample of objects surrounded by full and transitional disks show a positive correlation between the accretion luminosity and the H I line luminosity. These two results suggest that the observed mid-IR H I lines trace gas accreting onto the star in the same way as other hydrogen recombination lines at shorter wavelengths. A pure chromospheric origin of these lines can be excluded for the vast majority of full and transitional disks. We report for the first time the detection of the H I (7-6) line in eight young (<20 Myr) debris disks. A pure chromospheric origin cannot be ruled out in these objects. If the H I (7-6) line traces accretion in these older systems, as in the case of full and transitional disks, the strength of the emission implies accretion rates lower than 10{sup –10} M {sub ☉} yr{sup –1}. We discuss some advantages of extending accretion indicators to longer wavelengths, and the next steps required pinning down the origin of mid-IR hydrogen lines.

  8. YSOVAR: MID-INFRARED VARIABILITY IN NGC 1333

    Energy Technology Data Exchange (ETDEWEB)

    Rebull, L. M. [Infrared Science Archive (IRSA), Infrared Processing and Analysis Center (IPAC), 1200 E. California Blvd., California Institute of Technology, Pasadena, CA 91125 (United States); Stauffer, J. R.; Cody, A. M. [Spitzer Science Center (SSC), 1200 E. California Blvd., California Institute of Technology, Pasadena, CA 91125 (United States); Günther, H. M.; Poppenhaeger, K.; Wolk, S. J.; Hora, J.; Forbrich, J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Hillenbrand, L. A. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Hernandez, J. [Centro de Investigaciones de Astronomía, Apdo. Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of); Bayo, A. [Max Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Covey, K. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Gutermuth, R. [Dept. of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Morales-Calderón, M.; Bouy, H. [Depto. Astrofísica, Centro de Astrobiología (INTA-CSIC), ESAC campus, P.O. Box 78, E-28691 Villanueva de la Cañada (Spain); Plavchan, P. [NASA Exoplanet Science Institute (NExScI), Infrared Processing and Analysis Center (IPAC), 1200 E. California Blvd., California Institute of Technology, Pasadena, CA 91125 (United States); Song, I. [Physics and Astronomy Department, University of Georgia, Athens, GA 30602-2451 (United States); Terebey, S., E-mail: rebull@ipac.caltech.edu [Department of Physics and Astronomy, 5151 State University Drive, California State University at Los Angeles, Los Angeles, CA 90032 (United States); and others

    2015-12-15

    As part of the Young Stellar Object VARiability (YSOVAR) program, we monitored NGC 1333 for ∼35 days at 3.6 and 4.5 μm using the Spitzer Space Telescope. We report here on the mid-infrared variability of the point sources in the ∼10′ × ∼20′ area centered on 03:29:06, +31:19:30 (J2000). Out of 701 light curves in either channel, we find 78 variables over the YSOVAR campaign. About half of the members are variable. The variable fraction for the most embedded spectral energy distributions (SEDs) (Class I, flat) is higher than that for less embedded SEDs (Class II), which is in turn higher than the star-like SEDs (Class III). A few objects have amplitudes (10–90th percentile brightness) in [3.6] or [4.5] > 0.2 mag; a more typical amplitude is 0.1–0.15 mag. The largest color change is >0.2 mag. There are 24 periodic objects, with 40% of them being flat SED class. This may mean that the periodic signal is primarily from the disk, not the photosphere, in those cases. We find 9 variables likely to be “dippers,” where texture in the disk occults the central star, and 11 likely to be “bursters,” where accretion instabilities create brightness bursts. There are 39 objects that have significant trends in [3.6]–[4.5] color over the campaign, about evenly divided between redder-when-fainter (consistent with extinction variations) and bluer-when-fainter. About a third of the 17 Class 0 and/or jet-driving sources from the literature are variable over the YSOVAR campaign, and a larger fraction (∼half) are variable between the YSOVAR campaign and the cryogenic-era Spitzer observations (6–7 years), perhaps because it takes time for the envelope to respond to changes in the central source. The NGC 1333 brown dwarfs do not stand out from the stellar light curves in any way except there is a much larger fraction of periodic objects (∼60% of variable brown dwarfs are periodic, compared to ∼30% of the variables overall)

  9. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza, V.; Paredes, J. M. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain); Bosch-Ramon, V., E-mail: vzabalza@am.ub.es [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  10. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-04-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  11. On the propagation of sound waves in a stellar wind traversed by periodic strong shocks

    OpenAIRE

    Pijpers, F. P.

    1994-01-01

    It has been claimed that in stellar winds traversed by strong shocks the mechanism for driving the wind by sound wave pressure cannot operate because sound waves cannot propagate past the shocks. It is shown here that sound waves can propagate through shocks in one direction and that this is a sufficient condition for the sound wave pressure mechanism to work. A strong shock amplifies a sound wave passing through it and can drag the sound wave away from the star. It is immaterial for the soun...

  12. STELLAR WIND INDUCED SOFT X-RAY EMISSION FROM CLOSE-IN EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Kislyakova, K. G.; Lammer, H. [Space Research Institute, Austrian Academy of Sciences, Graz (Austria); Fossati, L. [Argelander-Institut für Astronomie der Universität Bonn, Bonn (Germany); Johnstone, C. P. [Department of Astrophysics, University of Vienna, Vienna (Austria); Holmström, M. [Swedish Institute of Space Physics, Kiruna (Sweden); Zaitsev, V. V., E-mail: kristina.kislyakova@oeaw.ac.at [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation)

    2015-01-30

    In this Letter, we estimate the X-ray emission from close-in exoplanets. We show that the Solar/Stellar Wind Charge Exchange Mechanism (SWCX), which produces soft X-ray emission, is very effective for hot Jupiters. In this mechanism, X-ray photons are emitted as a result of the charge exchange between heavy ions in the solar wind and the atmospheric neutral particles. In the solar system, comets produce X-rays mostly through the SWCX mechanism, but it has also been shown to operate in the heliosphere, in the terrestrial magnetosheath, and on Mars, Venus, and the Moon. Since the number of emitted photons is proportional to the solar wind mass flux, this mechanism is not very effective for the solar system giants. Here we present a simple estimate of the X-ray emission intensity that can be produced by close-in extrasolar giant planets due to charge exchange with the heavy ions of the stellar wind. Using the example of HD 209458b, we show that this mechanism alone can be responsible for an X-ray emission of ≈10{sup 22} erg s{sup –1}, which is 10{sup 6} times stronger than the emission from the Jovian aurora. We discuss also the possibility of observing the predicted soft X-ray flux of hot Jupiters and show that despite high emission intensities they are unobservable with current facilities.

  13. Study of GeSn Alloy for Low Cost Monolithic Mid Infrared Quantum Well Sensor

    Directory of Open Access Journals (Sweden)

    Prakash PAREEK

    2017-02-01

    Full Text Available This paper focuses on theoretical study of Tin incorporated group IV alloys particularly GeSn and design of quantum well sensor for mid infrared sensing applications. Initially, the physics behind the selection of material for midinfrared sensor is explained. The importance of controlling strain in GeSn alloy is also explained. The physical background and motivation for incorporation of Tin(Sn in Germanium is briefly narrated. Eigen energy states for different Sn concentrations are obtained for strain compensated quantum well in G valley conduction band (GCB, heavy hole (HH band and light hole (LH band by solving coupled Schrödinger and Poisson equations simultaneously. Sn concentration dependent absorption spectra for HH- GCB transition reveals that significant absorption observed in mid infrared range (3-5 µm. So, Ge1-x Snx quantum well can be used for mid infrared sensing applications.

  14. A graphene-based Fabry-Pérot spectrometer in mid-infrared region

    Science.gov (United States)

    Wang, Xiaosai; Chen, Chen; Pan, Liang; Wang, Jicheng

    2016-01-01

    Mid-infrared spectroscopy is of great importance in many areas and its integration with thin-film technology can economically enrich the functionalities of many existing devices. In this paper we propose a graphene-based ultra-compact spectrometer (several micrometers in size) that is compatible with complementary metal-oxide-semiconductor (CMOS) processing. The proposed structure uses a monolayer graphene as a mid-infrared surface waveguide, whose optical response is spatially modulated using electric fields to form a Fabry-Pérot cavity. By varying the voltage acting on the cavity, we can control the transmitted wavelength of the spectrometer at room temperature. This design has potential applications in the graphene-silicon-based optoelectronic devices as it offers new possibilities for developing new ultra-compact spectrometers and low-cost hyperspectral imaging sensors in mid-infrared region. PMID:27573080

  15. THE BOLOCAM GALACTIC PLANE SURVEY. VIII. A MID-INFRARED KINEMATIC DISTANCE DISCRIMINATION METHOD

    Energy Technology Data Exchange (ETDEWEB)

    Ellsworth-Bowers, Timothy P.; Glenn, Jason; Battersby, Cara; Ginsburg, Adam; Bally, John [CASA, University of Colorado, UCB 389, University of Colorado, Boulder, CO 80309 (United States); Rosolowsky, Erik [Department of Physics and Astronomy, University of British Columbia Okanagan, 3333 University Way, Kelowna, BC V1V 1V7 (Canada); Mairs, Steven [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 1A1 (Canada); Evans, Neal J. II [Department of Astronomy, University of Texas, 1 University Station C1400, Austin, TX 78712 (United States); Shirley, Yancy L., E-mail: timothy.ellsworthbowers@colorado.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2013-06-10

    We present a new distance estimation method for dust-continuum-identified molecular cloud clumps. Recent (sub-)millimeter Galactic plane surveys have cataloged tens of thousands of these objects, plausible precursors to stellar clusters, but detailed study of their physical properties requires robust distance determinations. We derive Bayesian distance probability density functions (DPDFs) for 770 objects from the Bolocam Galactic Plane Survey in the Galactic longitude range 7. Degree-Sign 5 {<=} l {<=} 65 Degree-Sign . The DPDF formalism is based on kinematic distances, and uses any number of external data sets to place prior distance probabilities to resolve the kinematic distance ambiguity (KDA) for objects in the inner Galaxy. We present here priors related to the mid-infrared absorption of dust in dense molecular regions and the distribution of molecular gas in the Galactic disk. By assuming a numerical model of Galactic mid-infrared emission and simple radiative transfer, we match the morphology of (sub-)millimeter thermal dust emission with mid-infrared absorption to compute a prior DPDF for distance discrimination. Selecting objects first from (sub-)millimeter source catalogs avoids a bias towards the darkest infrared dark clouds (IRDCs) and extends the range of heliocentric distance probed by mid-infrared extinction and includes lower-contrast sources. We derive well-constrained KDA resolutions for 618 molecular cloud clumps, with approximately 15% placed at or beyond the tangent distance. Objects with mid-infrared contrast sufficient to be cataloged as IRDCs are generally placed at the near kinematic distance. Distance comparisons with Galactic Ring Survey KDA resolutions yield a 92% agreement. A face-on view of the Milky Way using resolved distances reveals sections of the Sagittarius and Scutum-Centaurus Arms. This KDA-resolution method for large catalogs of sources through the combination of (sub-)millimeter and mid-infrared observations of molecular

  16. Efficient Mid-Infrared Supercontinuum Generation in Tapered Large Mode Area Chalcogenide Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Petersen, Christian Rosenberg; Engelsholm, Rasmus Dybbro; Markos, Christos

    2017-01-01

    Mid-infrared supercontinuum spanning from 1.8-9  μm with an output power of 41.5 mW is demonstrated by pumping tapered large mode area chalcogenide photonic crystal fibers using a 4 μm optical parametric source.......Mid-infrared supercontinuum spanning from 1.8-9  μm with an output power of 41.5 mW is demonstrated by pumping tapered large mode area chalcogenide photonic crystal fibers using a 4 μm optical parametric source....

  17. Analysis and Control of Carrier Transport in Unipolar Barrier Mid-Infrared (IR) Detectors

    Science.gov (United States)

    2017-01-03

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0152 TR-2016-0152 ANALYSIS AND CONTROL OF CARRIER TRANSPORT IN UNIPOLAR BARRIER MID- INFRARED ( IR ) DETECTORS Gary W...SUBTITLE Analysis and Control of Carrier Transport in Unipolar Barrier Mid-Infrared ( IR ) Detectors 5a. CONTRACT NUMBER FA9453-15-1-0332 5b. GRANT...components of high performance mid- wave nBn mid-wave Infrared ( IR ) detectors. Material quality and surfaces can have deleterious effects on carrier

  18. High Average Power Mid-infrared Supercontinuum Generation in a Suspended Core Chalcogenide Fiber

    DEFF Research Database (Denmark)

    Møller, Uffe Visbech; Yu, Yi; Petersen, Christian Rosenberg

    2014-01-01

    Mid-infrared supercontinuum spanning from 2.0 to 6.1 μm is generated in a 9 cm suspended core chalcogenide fiber by pumping close to the fiber zero-dispersion wavelength at 3.5 μm with an OPA system......Mid-infrared supercontinuum spanning from 2.0 to 6.1 μm is generated in a 9 cm suspended core chalcogenide fiber by pumping close to the fiber zero-dispersion wavelength at 3.5 μm with an OPA system...

  19. Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics.

    Science.gov (United States)

    Mitrofanov, A V; Voronin, A A; Mitryukovskiy, S I; Sidorov-Biryukov, D A; Pugžlys, A; Andriukaitis, G; Flöry, T; Stepanov, E A; Fedotov, A B; Baltuška, A; Zheltikov, A M

    2015-05-01

    A high-energy supercontinuum spanning 4.7 octaves, from 250 to 6500 nm, is generated using a 0.3-TW, 3.9-μm output of a mid-infrared optical parametric chirped-pulse amplifier as a driver inducing a laser filament in the air. The high-frequency wing of the supercontinuum spectrum is enhanced by odd-order optical harmonics of the mid-infrared driver. Optical harmonics up to the 15th order are observed in supercontinuum spectra as overlapping, yet well-resolved peaks broadened, as verified by numerical modeling, due to spatially nonuniform ionization-induced blue shift.

  20. Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared

    Science.gov (United States)

    Moselund, Peter M.; Petersen, Christian; Dupont, Sune; Agger, Christian; Bang, Ole; Keiding, Søren R.

    2012-06-01

    Based on the experience gained developing our market leading visible spectrum supercontinuum sources NKT Photonics has built the first mid-infrared supercontinuum source based on modelocked picosecond fiber lasers. The source is pumped by a ~ 2 um laser based on a combination of erbium and thulium and use ZBLAN fibers to generate a 1.75-4.4 μm spectrum. We will present results obtained by applying the source for mid-infrared microscopy where absorption spectra can be used to identify the chemical nature of different parts of a sample. Subsequently, we discuss the possible application of a mid-IR supercontinuum source in other areas including infrared countermeasures.

  1. Mid-infrared Spectroscopy/Bioimaging: Moving toward MIR optical biopsy

    DEFF Research Database (Denmark)

    Seddon, Angela B.; Napier, Bruce; Lindsay, Ian

    2016-01-01

    Limited availability of tests to diagnose cancer in its early stages has contributed to an unfortunate prevalence of late-stage diagnoses and metastatic spread. For this reason, emerging technologies that promise early diagnosis constitute a key focus of research. Mid-infrared imaging (MIR), with...

  2. Microprocessing of human hard tooth tissues surface by mid-infrared erbium lasers radiation

    Science.gov (United States)

    Belikov, Andrey V.; Shatilova, Ksenia V.; Skrypnik, Alexei V.

    2015-03-01

    A new method of hard tooth tissues laser treatment is described. The method consists in formation of regular microdefects on tissue surface by mid-infrared erbium laser radiation with propagation ratio M2caries prevention as a result of increasing microhardness and acid resistance of tooth enamel.

  3. Rugged and compact mid-infrared solid-state laser for avionics applications

    CSIR Research Space (South Africa)

    Esser, MJD

    2009-11-01

    Full Text Available In order to demonstrate the feasibility of a helicopter-based application using advanced laser technology, the authors have developed a rugged and compact mid-infrared solid-state laser. The requirement for the laser was to simultaneously emit at 2...

  4. Conductive Oxides Trench Structures as Hyperbolic Metamaterials in Mid-infrared Range

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee

    oxides can function as hyperbolic metamaterials (HMMs) for the mid-infrared wavelength region. We fabricated a probe sample by a combination of atomic layer deposition (ALD) and dry etch techniques. We templated a Si wafer with deep UV photolithography and made trenches by deep reactive ion etching...

  5. Mid-Infrared Photoconductivity in Self-Assembled InAs Quantum Dots

    Science.gov (United States)

    Berryman, K. W.; Lyon, S. A.; Segev, Mordechai

    1997-03-01

    Observations of mid-infrared photoconductivity in self-assembled InAs quantum dots are observed. The dots, which self-assemble into squat pyramidal shapes approximately 10 nm on a side and 2-3 nm high, are grown using standard molecular beam epitaxy techniques and coherently strained in a matrix of Al_0.3Ga_0.7As which has been grown on a GaAs substrate. Using a variety of cladding structures and dots doped with electrons, normal incidence photoconductivity has been measured at a range of wavelengths in the mid-infrared. Observations at different sample temperatures and applied bias allows discrimination and explanation of different tranistion processes, including excitation of carriers from the ground state of the dots into both excited states and the continuum. Photoluminescence and electroluminescence experiments are in good agreement with the observed optical transitions. The large optical response of these quantum dot samples suggests possible future use as novel mid-infrared detectors. Infrared photoconductivity is investigated for several different dot structures, and the possibility of further optimization of self-assembled quantum dots for both mid-infrared detection and emission will be discussed.

  6. Spectral-temporal composition matters when cascading supercontinua into the mid-infrared

    DEFF Research Database (Denmark)

    Petersen, Christian Rosenberg; Moselund, Peter M.; Petersen, Christian

    2016-01-01

    Supercontinuum generation in chalcogenide fibers is a promising technology for broadband spatially coherent sources in the mid-infrared, but it suffers from discouraging commercial prospects, mainly due to a lack of suitable pump lasers. Here, a promising approach is experimentally demonstrated u...

  7. Mid-infrared supercontinuum generation in a suspended core chalcogenide fiber

    DEFF Research Database (Denmark)

    Møller, Uffe Visbech; Yu, Yi; Gai, Xin

    control [2], gas sensing [3] and medical diagnostics [4] . We have used a low-loss suspended core As 38 Se 62 fiber with core diameter of 4.5 μ m and a zero - dispersion wavelength of 3.5 μ m to generate mid-infrared supercontinuum by pumping with an optical parametric amplifier delivering 320 fs pulses...

  8. Validation of fatty acid predictions in milk using mid-infrared spectrometry across cattle breeds

    NARCIS (Netherlands)

    Maurice - Van Eijndhoven, M.H.T.; Soyeurt, H.; Dehareng, F.; Calus, M.P.L.

    2013-01-01

    The aim of this study was to investigate the accuracy to predict detailed fatty acid (FA) composition of bovine milk by mid-infrared spectrometry, for a cattle population that partly differed in terms of country, breed and methodology used to measure actual FA composition compared with the

  9. Supercontinuum - broad as a lamp, bright as a laser, now in the mid-infrared

    DEFF Research Database (Denmark)

    Moselund, Peter M.; Petersen, Christian; Dupont, Sune

    2012-01-01

    Based on the experience gained developing our market leading visible spectrum supercontinuum sources NKT Photonics has built the first mid-infrared supercontinuum source based on modelocked picosecond fiber lasers. The source is pumped by a ≈ 2 um laser based on a combination of erbium and thuliu...

  10. Halo Emission of the Cat's Eye Nebula, NGC 6543 Shock Excitation by Fast Stellar Winds

    Directory of Open Access Journals (Sweden)

    Siek Hyung

    2002-09-01

    Full Text Available Images taken with the Chandra X-ray telescope have for the the first time revealed the central, wind-driven, hot bubble (Chu et al. 2001, while Hubble Space Telescope (HST WFPC2 images of the Cat's Eye nebula, NGC 6543, show that the temperature of the halo region of angular radius ~ 20'', is much higher than that of the inner bright H II region. With the coupling of a photoionization calculation to a hydrodynamic simulation, we predict the observed [O III] line intensities of the halo region with the same O abundance as in the core H II region: oxygen abundance gradient does not appear to exist in the NGC 6543 inner halo. An interaction between a (leaky fast stellar wind and halo gas may cause the higher excitation temperatures in the halo region and the inner hot bubble region observed with the Chandra X-ray telescope.

  11. THE INTERACTION OF VENUS-LIKE, M-DWARF PLANETS WITH THE STELLAR WIND OF THEIR HOST STAR

    International Nuclear Information System (INIS)

    Cohen, O.; Drake, J. J.; Garraffo, C.; Ma, Y.; Glocer, A.; Bell, J. M.; Gombosi, T. I.

    2015-01-01

    We study the interaction between the atmospheres of Venus-like, non-magnetized exoplanets orbiting an M-dwarf star, and the stellar wind using a multi-species MHD model. We focus our investigation on the effect of enhanced stellar wind and enhanced EUV flux as the planetary distance from the star decreases. Our simulations reveal different topologies of the planetary space environment for sub- and super-Alfvénic stellar wind conditions, which could lead to dynamic energy deposition into the atmosphere during the transition along the planetary orbit. We find that the stellar wind penetration for non-magnetized planets is very deep, up to a few hundreds of kilometers. We estimate a lower limit for the atmospheric mass-loss rate and find that it is insignificant over the lifetime of the planet. However, we predict that when accounting for atmospheric ion acceleration, a significant amount of the planetary atmosphere could be eroded over the course of a billion years

  12. A new mechanical stellar wind feedback model for the Rosette Nebula

    Science.gov (United States)

    Wareing, C. J.; Pittard, J. M.; Wright, N. J.; Falle, S. A. E. G.

    2018-04-01

    The famous Rosette Nebula has an evacuated central cavity formed from the stellar winds ejected from the 2-6 Myr old codistant and comoving central star cluster NGC 2244. However, with upper age estimates of less than 110 000 yr, the central cavity is too young compared to NGC 2244 and existing models do not reproduce its properties. A new proper motion study herein using Gaia data reveals the ejection of the most massive star in the Rosette, HD 46223, from NGC 2244 occurred 1.73 (+0.34, -0.25) Myr (1σ uncertainty) in the past. Assuming this ejection was at the birth of the most massive stars in NGC 2244, including the dominant centrally positioned HD 46150, the age is set for the famous ionized region at more than 10 times that derived for the cavity. Here, we are able to reproduce the structure of the Rosette Nebula, through simulation of mechanical stellar feedback from a 40 M⊙ star in a thin sheet-like molecular cloud. We form the 135 000 M⊙ cloud from thermally unstable diffuse interstellar medium (ISM) under the influence of a realistic background magnetic field with thermal/magnetic pressure equilibrium. Properties derived from a snapshot of the simulation at 1.5 Myr, including cavity size, stellar age, magnetic field, and resulting inclination to the line of sight, match those derived from observations. An elegant explanation is thus provided for the stark contrast in age estimates based on realistic diffuse ISM properties, molecular cloud formation and stellar wind feedback.

  13. Modelling accretion disc and stellar wind interactions: the case of Sgr A.

    Science.gov (United States)

    Christie, I M; Petropoulou, M; Mimica, P; Giannios, D

    2016-07-01

    Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disc, the ram and thermal pressures of the disc terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geometry of the termination shock formed in the wind. With the employment of numerical hydrodynamic simulations, this model is both verified and extended to a region prone to Kelvin-Helmholtz instabilities. Because the characteristic wind and stellar velocities are in ∼10 8  cm s -1 range, the shocked wind may produce detectable X-rays via thermal bremsstrahlung emission. The application of this model to the pericentre passage of S2, the brightest member of the S-cluster, shows that the shocked wind produces roughly a month long X-ray flare with a peak luminosity of L ≈ 4 × 10 33  erg s -1 for a stellar mass-loss rate, disc number density, and thermal pressure strength of [Formula: see text], n d  = 10 5  cm -3 , and α = 0.1, respectively. This peak luminosity is comparable to the quiescent X-ray emission detected from Sgr A* and is within the detection capabilities of current X-ray observatories. Its detection could constrain the density and thickness of the disc at a distance of ∼3000 gravitational radii from the supermassive black hole.

  14. Solid hydrogen Raman shifter for the mid-infrared range (4.4-8 microm).

    Science.gov (United States)

    Kuyanov, Kirill E; Momose, Takamasa; Vilesov, Andrey F

    2004-11-10

    We developed a pulsed, continuously tunable laboratory laser source for the mid-infrared spectral range of 4.4-8 microm, which is characterized by the spectral linewidth of 0.4 cm(-1). The device is based on the stimulated backward Raman scattering in solid para-hydrogen at T = 4 K. It is pumped by a focused beam obtained from a commercial near-infrared optical parametric oscillator with output energy of approximately 20 mJ (7-ns pulse). Output energies range from 1.7 mJ at 4.4 microm to 120 microJ at 8 microm, which correspond to quantum efficiencies of 0.53 and 0.08, respectively. Spectra of NO, H2O, and CH4 molecules in the mid-infrared were recorded. The operation of the Raman cell pumped with 532-nm radiation was also studied.

  15. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber.

    Science.gov (United States)

    Qin, Zhipeng; Xie, Guoqiang; Zhao, Chujun; Wen, Shuangchun; Yuan, Peng; Qian, Liejia

    2016-01-01

    A mid-infrared saturable absorber mirror is successfully fabricated by transferring the mechanically exfoliated black phosphorus onto the gold-coated mirror. With the as-prepared black phosphorus saturable absorber mirror, a continuous-wave passively mode-locked Er:ZBLAN fiber laser is demonstrated at the wavelength of 2.8 μm, which delivers a maximum average output power of 613 mW, a repetition rate of 24 MHz, and a pulse duration of 42 ps. To the best of our knowledge, this is the first time a black phosphorus mode-locked laser at 2.8 μm wavelength has been demonstrated. Our results demonstrate the feasibility of black phosphorus flake as a new two-dimensional material for application in mid-infrared ultrafast photonics.

  16. Low-loss graphene-based optical phase modulator operating at mid-infrared wavelength

    Science.gov (United States)

    Yamaguchi, Yuki; Takagi, Shinichi; Takenaka, Mitsuru

    2018-04-01

    We numerically analyzed a graphene optical phase modulator with a Si or Ge waveguide operating at a mid-infrared wavelength. We found that the change in operating wavelength from a near-infrared wavelength to a mid-infrared wavelength enables phase modulation with a significantly small optical loss at a realistic bias voltage. We analyzed the wavelength dependence of the modulation characteristics in the wavelength range from 1.55 to 10 µm, which revealed that the minimum insertion of 4 dB with 1 dB optical loss change during phase modulation can be achieved at a wavelength of 4 µm. The phase modulation efficiency was expected to be 0.045 V·cm. Thus, we can obtain a practical graphene optical phase modulator at a wavelength of 4 µm, which will be useful for optical communication and sensing.

  17. Polarization-independent gain in mid-infrared interband cascade lasers

    Directory of Open Access Journals (Sweden)

    K. Ryczko

    2016-11-01

    Full Text Available We have calculated the gain function of a type-II W-design AlSb/InAs/GaAsSb/InAs/AlSb quantum wells to be used in an active region of interband cascade lasers, for two linear polarizations of in-plane propagating light: transverse-electric and transverse-magnetic. The effect of external electric field, imitating the conditions in a working device, has also been taken into account. We have proposed an active region design suitable for practical realization of mid-infrared lasing devices with controllable polarization properties. We have also demonstrated a way to achieve polarization-independent gain in mid-infrared emitters, which has not been reported so far.

  18. Optical system design with common aperture for mid-infrared and laser composite guidance

    Science.gov (United States)

    Zhang, Xuanzhi; Yang, Zijian; Sun, Ting; Yang, Huamei; Han, Kunye; Hu, Bo

    2017-02-01

    When the field of operation of precision strike missiles is more and more complicated, autonomous seekers will soon encounter serious difficulties, especially with regard to low signature targets and complex scenarios. So the dual-mode sensors combining an imaging sensor with a semi-active laser seeker are conceived to overcome these specific problems. Here the sensors composed a dual field of view mid-infrared thermal imaging camera and a laser range finder have the common optical aperture which produced the minization of seeker construction. The common aperture optical systems for mid-infrared and laser dual-mode guildance have been developed, which could meet the passive middle infrared high-resolution imaging and the active laser high-precision indication and ranging. The optical system had good image quality, and fulfilled the performance requirement of seeker system. The design and expected performance of such a dual-mode optical system will be discussed.

  19. The variable stellar wind of Rigel probed at high spatial and spectral resolution

    Science.gov (United States)

    Chesneau, O.; Kaufer, A.; Stahl, O.; Colvinter, C.; Spang, A.; Dessart, L.; Prinja, R.; Chini, R.

    2014-06-01

    Context. Luminous BA-type supergiants are the brightest stars in the visible that can be observed in distant galaxies and are potentially accurate distance indicators. The impact of the variability of the stellar winds on the distance determination remains poorly understood. Aims: Our aim is to probe the inhomogeneous structures in the stellar wind using spectro-interferometric monitoring. Methods: We present a spatially resolved, high-spectral resolution (R = 12 000) K-band temporal monitoring of the bright supergiant β Orionis (Rigel, B8 Iab) using AMBER at the Very Large Telescope Interferometer (VLTI). Rigel was observed in the Brγ line and its nearby continuum once per month over 3 months in 2006-2007, and 5 months in 2009-2010. These unprecedented observations were complemented by contemporaneous optical high-resolution spectroscopy. We analyse the near-IR spectra and visibilities with the 1D non-LTE radiative-transfer code CMFGEN. The differential and closure phase signals are evidence of asymmetries that are interpreted as perturbations of the wind. Results: A systematic visibility decrease is observed across the Brγ line indicating that at a radius of about 1.25 R∗ the photospheric absorption is filled by emission from the wind. During the 2006-2007 period the Brγ and likely the continuum forming regions were larger than in the 2009-2010 epoch. Using CMFGEN we infer a mass-loss rate change of about 20% between the two epochs. We also find time variations in the differential visibilities and phases. The 2006-2007 period is characterised by noticeable variations in the differential visibilities in Doppler position and width and by weak variations in differential and closure phase. The 2009-2010 period is much quieter with virtually no detectable variations in the dispersed visibilities but a strong S-shaped signal is observed in differential phase coinciding with a strong ejection event discernible in the optical spectra. The differential phase signal

  20. Fiber Based Mid Infrared Supercontinuum Source for Spectroscopic Analysis in Food Production

    DEFF Research Database (Denmark)

    Ramsay, Jacob; Dupont, Sune Vestergaard Lund; Keiding, Søren Rud

    Optimization of sustainable food production is a worldwide challenge that is undergoing continuous development as new technologies emerge. Applying solutions for food analysis with novel bright and broad mid-infrared (MIR) light sources has the potential to meet the increasing demands for food...... quality and production optimization. By combining a new MIR supercontinuum source with spectroscopy and chemometrics, we seek to enable faster and more precise analysis of grains, soils and dairy products....

  1. A MID-INFRARED VIEW OF THE HIGH MASS STAR FORMATION REGION W51A

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, C. L. [Laboratório Nacional de Astrofísica, R. dos Estados Unidos, Bairro das Nações, CEP 37504-364, Itajubá—MG (Brazil); Blum, R. D. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Damineli, A. [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, R. do Matão, 1226, Cid. Universitária, São Paulo 05508-900 (Brazil); Conti, P. S. [JILA, University of Colorado, Boulder, CO 80309-0440 (United States); Gusmão, D. M., E-mail: cassio.barbosa@pq.cnpq.br, E-mail: rblum@noao.edu, E-mail: augusto.damineli@iag.usp.br, E-mail: pconti@jila.colorado.edu, E-mail: danilo@univap.br [IP and D—Universidade do Vale do Paraíba, Av. Shishima Hifumi, 2911. São José dos Campos, SP, 12244-000 (Brazil)

    2016-07-01

    In this paper we present the results of a mid-infrared study of G49.5-0.4, or W51A, part of the massive starbirth complex W51. Combining public data from the Spitzer IRAC camera, and Gemini mid-infrared camera T-ReCS at 7.73, 9.69, 12.33, and 24.56 μ m, with a spatial resolution of ∼0.″5, we have identified the mid-infrared counterparts of eight ultracompact H ii regions, showing that two radio sources are deeply embedded in molecular clouds and another is a cloud of ionized gas. From the T-ReCS data we have unveiled the central core of the W51 region, revealing massive young stellar candidates. We modeled the spectral energy distribution of the detected sources. The results suggest that the embedded objects are sources with spectral types ranging from B3 to O5, but the majority of the fits indicate stellar objects with B1 spectral types. We also present an extinction map of IRS 2, showing that a region with lower extinction corresponds to the region where a proposed jet of gas has impacted the foreground cloud. From this map, we also derived the total extinction toward the enigmatic source IRS 2E, which amounts to ∼60 mag in the V band. We calculated the color temperature due to thermal emission of the circumstellar dust of the detected sources; the temperatures are in the interval of ∼100–150 K, which corresponds to the emission of dust located at 0.1 pc from the central source. Finally, we show a possible mid-infrared counterpart of a detected source at millimeter wavelengths that was found by Zapata et al. to be a massive young stellar object undergoing a high accretion rate.

  2. How useful is the mid-infrared spectroscopy in the assessment of black carbon in soils

    OpenAIRE

    Rosa Arranz, José M. de la; González-Vila, Francisco Javier; González-Pérez, José Antonio; Almendros Martín, Gonzalo; Hernández, Zulimar; López Martín, María; Knicker, Heike

    2013-01-01

    Black carbon (BC), the recalcitrant continuum of products from incomplete combustion, includes char, charcoal and soot, being considered an important component of the global C cycle. However due to measurement uncertainties, the magnitude and distribution of BC is hardly known. In this study, a rapid and inexpensive spectroscopic technique, as it is mid-infrared spectroscopy in combination with oxidation procedures is proposed to quantify the recalcitrant aromatic fraction res...

  3. Standardization of milk mid-infrared spectra from a European dairy network.

    Science.gov (United States)

    Grelet, C; Fernández Pierna, J A; Dardenne, P; Baeten, V; Dehareng, F

    2015-04-01

    The goal of this study was to find a procedure to standardize dairy milk mid-infrared spectra from different Fourier transform mid-infrared spectrophotometers (different brands or models) inside a European dairy network to create new farm-management indicators (e.g., fertility, health, feed, environmental impact) based on milk infrared spectra. This step is necessary to create common spectral databases, allowing the building of statistical tools, to be used by all instruments of the network. The method used was piecewise direct standardization (PDS), which matches slave-instrument spectra on master-instrument spectra. To evaluate the possibility of using common equations on different instruments, the PDS method was tested on a set of milk samples measured on each machine, and an equation predicting fat content of milk is applied on all. Regressions were performed between master and slaves fat predictions, before and after PDS. Bias and root mean square error between predictions were decreased after PDS, respectively, from 0.3781 to 0.0000 and from 0.4609 to 0.0156 (g of fat/100mL of milk). The stability over time of these results was confirmed by an application of the coefficients created by PDS 1 mo later on the slave spectra. These preliminary results showed that the PDS method permits a reduction of the inherent spectral variability between instruments, allowing the merging of Fourier transform mid-infrared milk spectra from different instruments into a common database, the creation of new types of dairy farm management indicators, and the use of these common calibrations for all Fourier transform mid-infrared instruments of the European dairy network. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Standardization of milk mid-infrared spectrometers for the transfer and use of multiple models

    OpenAIRE

    Grelet, Clément; Pierna, J. A. Fernández; Dardenne, P.; Soyeurt, Hélène; Vanlierde, Amélie; Colinet, Frédéric; Bastin, Catherine; Gengler, Nicolas; Baeten, V.; Dehareng, F.

    2017-01-01

    An increasing number of models are being developed to provide information from milk Fourier transform mid-infrared (FT-MIR) spectra on fine milk composition, technological properties of milk, or even cows' physiological status. In this context, and to take advantage of these existing models, the purpose of this work was to evaluate whether a spectral standardization method can enable the use of multiple equations within a network of different FT-MIR spectrometers. The piecewise direct standar...

  5. Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal

    Directory of Open Access Journals (Sweden)

    Faccio D.

    2013-03-01

    Full Text Available We present supercontinuum generation pumped by femtosecond mid-infrared pulses in a bulk homogeneous material. The spectrum extends from 450 nm into the midinfrared, and carries high spectral energy density (3 pJ/nm–10 nJ/nm. The supercontinuum has high shot-to-shot reproducibility and preserves the carrier-to-envelope phase. Our result paves the way for compact supercontinuum sources with unprecedented bandwidth.

  6. Robust design of subwavelength grating mirror for mid-infrared VCSEL application

    OpenAIRE

    Chevallier, Christyves; Genty, Frédéric; Fressengeas, Nicolas; Jacquet, Joel

    2011-01-01

    Oral Presentation - The final publication is available at http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6041173; International audience; We present the design of a Si/Si3N4 subwavelength grating mirror optimized for an integration in mid-infrared VCSEL. The definition of a quality factor adapted to VCSEL requirements and maximized by an optimization algorithm allowed us to obtain a polarization selective and high reflectivity structure. The robustness with respect to fabrication err...

  7. Optimized sub-wavelength grating mirror design for mid-infrared wavelength range

    OpenAIRE

    Chevallier, Christyves; Fressengeas, Nicolas; Genty, Frédéric; Jacquet, Joël

    2011-01-01

    The final publication is available at www.springerlink.com; International audience; Several designs of sub-wavelength grating mirrors adapted to mid-infrared operation are reported with several percents of tolerance for the grating fabrication. These designs have been automatically optimized by the use of a genetic-based algorithm to maximize a quality factor defined to meet the requirements of a VCSEL cavity mirror. These mirrors are devoted to an integration in VCSEL operating near λ=2.3 µm...

  8. Mid-infrared sub-wavelength grating mirror design: tolerance and influence of technological constraints

    OpenAIRE

    Chevallier, Christyves; Fressengeas, Nicolas; Genty, Frédéric; Jacquet, Joel

    2011-01-01

    The final publication is available at http://iopscience.iop.org/2040-8986/13/12/125502/; International audience; High polarization selective Si/SiO2 mid-infrared sub-wavelength grating mirrors with large bandwidth adapted to VCSEL integration are compared. These mirrors have been automatically designed for operation at λ = 2.3 µm by an optimization algorithm which maximizes a specially defined quality factor. Several technological constraints in relation with the grating manufacturing process...

  9. Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy

    Science.gov (United States)

    Nader, Nima; Maser, Daniel L.; Cruz, Flavio C.; Kowligy, Abijith; Timmers, Henry; Chiles, Jeff; Fredrick, Connor; Westly, Daron A.; Nam, Sae Woo; Mirin, Richard P.; Shainline, Jeffrey M.; Diddams, Scott

    2018-03-01

    Laser frequency combs, with their unique combination of precisely defined spectral lines and broad bandwidth, are a powerful tool for basic and applied spectroscopy. Here, we report offset-free, mid-infrared frequency combs and dual-comb spectroscopy through supercontinuum generation in silicon-on-sapphire waveguides. We leverage robust fabrication and geometrical dispersion engineering of nanophotonic waveguides for multi-band, coherent frequency combs spanning 70 THz in the mid-infrared (2.5 μm-6.2 μm). Precise waveguide fabrication provides significant spectral broadening with engineered spectra targeted at specific mid-infrared bands. We characterize the relative-intensity-noise of different bands and show that the measured levels do not pose any limitation for spectroscopy applications. Additionally, we use the fabricated photonic devices to demonstrate dual-comb spectroscopy of a carbonyl sulfide gas sample at 5 μm. This work forms the technological basis for applications such as point sensors for fundamental spectroscopy, atmospheric chemistry, trace and hazardous gas detection, and biological microscopy.

  10. Mid-infrared imaging system based on polarizers for detecting marine targets covered in sun glint.

    Science.gov (United States)

    Zhao, Huijie; Ji, Zheng; Zhang, Ying; Sun, Xiaofeng; Song, Pengfei; Li, Yansong

    2016-07-25

    When a marine target is detected by a mid-infrared detector on a sunny day, the target's information could be lost if it is located in sun glint. Therefore, we developed a new mid-infrared imaging system capable of effectively detecting marine targets in regions of strong sun glint, which is presented in this report. Firstly, the theory of the analysis methods employed in different detection scenarios is briefly described to establish whether one or two polarizers should be utilized to suppress further the p-polarized component of sun glint. Secondly, for the case in which a second polarizer is employed, the formula for the optimum angle between the two polarizers is given. Then, the results of our field experiment are presented, demonstrating that the developed system can significantly reduce sun glint and can enhance the contrast of target images. A commonly used image processing algorithm proved capable of identifying a target in sun glint, confirming the effectiveness of our proposed mid-infrared polarization imaging system.

  11. Design of a new family of narrow-linewidth mid-infrared lasers

    Science.gov (United States)

    Behzadi, Behsan; Aliannezhadi, Maryam; Hossein-Zadeh, Mani; Jain, Ravinder K.

    2017-12-01

    We describe the design of a new family of high spectral brightness narrow linewidth (NLW) mid-infrared (MIR) lasers of < 1 MHz anticipated linewidths with potential for operation at any target wavelength between 2.5 and 9.5 um. More specifically, we analyze the potential performance characteristics of mid-infrared distributed feedback (DFB) Raman fiber lasers (RFLs) based on Pi-phase-shifted (PPS) Fiber Bragg Gratings (FBGs) written in appropriately chosen low-phonon-energy glass fibers. In particular, we calculate anticipated threshold pump powers for optimal laser designs and pump wavelengths for single frequency (fundamental mode) operation of specific mid-infrared DFB-RFLs operating at chosen target wavelengths, and show that these pump powers can be as low as a few milliWatts for MIR DFB-RFLs fabricated with appropriate low-loss small mode area single mode fibers. As such, we clearly establish the PPS-DFB RFL platform as a very practical approach for constructing a broad range of narrow linewidth MIR coherent sources for numerous applications, including proximal and remote sensing of molecules and various high spectral brightness and long coherence length MIR applications.

  12. Interaction of a strong stellar wind with a mutiphase interstellar medium

    International Nuclear Information System (INIS)

    Wolff, M.T.

    1986-01-01

    The interaction of a strong stellar wind with the interstellar medium produces a hot, low density cavity surrounded by a swept-up shell of gas. This cavity-plus-shell structure is collectively called an interstellar bubble. In calculations prior to this work, researchers assumed that the interstellar medium surrounding the wind-blowing star was described by a constant density and temperature (i.e., was homogeneous). This dissertation improves on these earlier calculations by assuming that the interstellar medium surrounding the star is inhomogeneous or multiphase. Gas flows are modeled by assuming that the inhomogeneous phases of the interstellar medium (the clouds) and the intercloud gas form two distinct but interacting fluid that can exchange mass momentum and energy with each other. In one set of calculations, it is assumed that thermal conductive evaporation of clouds brought about by the clouds sitting inside a region of hot (T ≅ 10 6 K) gas is the only mass exchange process operation between the clouds and intercloud fluid. It was found that the mass injection from the clouds to the intercloud gas via the process of thermal evaporation can significantly modify the structure of the interstellar bubble from that found in previous studies

  13. MID-INFRARED PHOTOMETRY OF COLD BROWN DWARFS: DIVERSITY IN AGE, MASS, AND METALLICITY

    International Nuclear Information System (INIS)

    Leggett, S. K.; Burningham, Ben; Jones, H. R. A.; Lucas, P. W.; Pinfield, D. J.; Saumon, D.; Marley, M. S.; Warren, S. J.; Smart, R. L.; Tamura, Motohide

    2010-01-01

    We present new Spitzer Infrared Array Camera (IRAC) photometry of 12 very late-type T dwarfs: nine have [3.6], [4.5], [5.8], and [8.0] photometry and three have [3.6] and [4.5] photometry only. Combining this with previously published photometry, we investigate trends with type and color that are useful for both the planning and interpretation of infrared surveys designed to discover the coldest T or Y dwarfs. The online appendix provides a collation of MKO-system YJHKL'M' and IRAC photometry for a sample of M, L, and T dwarfs. Brown dwarfs with effective temperature (T eff ) below 700 K emit more than half their flux at wavelengths longer than 3 μm, and the ratio of the mid-infrared flux to the near-infrared flux becomes very sensitive to T eff at these low temperatures. We confirm that the color H (1.6 μm) - [4.5] is a good indicator of T eff with a relatively weak dependence on metallicity and gravity. Conversely, the colors H - K (2.2 μm) and [4.5] - [5.8] are sensitive to metallicity and gravity. Thus, near- and mid-infrared photometry provide useful indicators of the fundamental properties of brown dwarfs, and if temperature and gravity are known, then mass and age can be reliably determined from evolutionary models. There are 12 dwarfs currently known with H- [4.5] >3.0, and 500 K ∼ eff ∼<800 K, which we examine in detail. The ages of the dwarfs in the sample range from very young (0.1-1.0 Gyr) to relatively old (3-12 Gyr). The mass range is possibly as low as 5 Jupiter masses to up to 70 Jupiter masses, i.e., near the hydrogen burning limit. The metallicities also span a large range, from [m/H] = -0.3 to [m/H] = +0.3. The small number of T8-T9 dwarfs found in the UK Infrared Telescope Infrared Deep Sky Survey to date appear to be predominantly young low-mass dwarfs. Accurate mid-infrared photometry of cold brown dwarfs is essentially impossible from the ground, and extensions to the mid-infrared space missions, warm-Spitzer and Wide-Field Infrared

  14. Exploring the connection between the stellar wind and the non-thermal emission in LS 5039

    Science.gov (United States)

    Bosch-Ramon, V.; Motch, C.; Ribó, M.; Lopes de Oliveira, R.; Janot-Pacheco, E.; Negueruela, I.; Paredes, J. M.; Martocchia, A.

    2007-10-01

    Context: LS 5039 has been observed with several X-ray instruments so far showing quite steady emission in the long term and no signatures of accretion disk. The source also presents X-ray variability at orbital timescales in flux and photon index. The system harbors an O-type main sequence star with moderate mass-loss. At present, the link between the X-rays and the stellar wind is unclear. Aims: We study the X-ray fluxes, spectra, and absorption properties of LS 5039 at apastron and periastron passages during an epoch of enhanced stellar mass-loss, and the long term evolution of the latter in connection with the X-ray fluxes. Methods: New XMM-Newton observations were performed around periastron and apastron passages in September 2005, when the stellar wind activity was apparently higher. April 2005 Chandra observations on LS 5039 were revisited. Moreover, a compilation of Hα EW data obtained since 1992, from which the stellar mass-loss evolution can be approximately inferred, was carried out. Results: XMM-Newton observations show higher and harder emission around apastron than around periastron. No signatures of thermal emission or a reflection iron line indicating the presence of an accretion disk are found in the spectrum, and the hydrogen column density (N_H) is compatible with being the same in both observations and consistent with the interstellar value. 2005 Chandra observations show a hard X-ray spectrum, and possibly high fluxes, although pileup effects preclude conclusive results from being obtained. The Hα EW shows yearly variations of ˜ 10%, and does not seem to be correlated with X-ray fluxes obtained at similar phases, unlike what is expected in the wind accretion scenario. Conclusions: 2005 XMM-Newton and Chandra observations are consistent with 2003 RXTE/PCA results, namely moderate flux and spectral variability at different orbital phases. The constancy of the NH seems to imply that either the X-ray emitter is located at ⪆ 1012 cm from the

  15. Characterizing the turbulent porosity of stellar wind structure generated by the line-deshadowing instability

    Science.gov (United States)

    Owocki, Stanley P.; Sundqvist, Jon O.

    2018-03-01

    We analyse recent 2D simulations of the non-linear evolution of the line-deshadowing instability (LDI) in hot-star winds, to quantify how the associated highly clumped density structure can lead to a `turbulent porosity' reduction in continuum absorption and/or scattering. The basic method is to examine the statistical variations of mass column as a function of path length, and fit these to analytic forms that lead to simple statistical scalings for the associated mean extinction. A key result is that one can characterize porosity effects on continuum transport in terms of a single `turbulent porosity length', found here to scale as H ≈ (fcl - 1)a, where fcl ≡ 〈ρ2〉/〈ρ〉2 is the clumping factor in density ρ, and a is the density autocorrelation length. For continuum absorption or scattering in an optically thick layer, we find the associated effective reduction in opacity scales as ˜ 1/√{1+τ_H}, where τH ≡ κρH is the local optical thickness of this porosity length. For these LDI simulations, the inferred porosity lengths are small, only about a couple per cent of the stellar radius, H ≈ 0.02R*. For continuum processes like bound-free absorption of X-rays that are only marginally optically thick throughout the full stellar wind, this implies τH ≪ 1, and thus that LDI-generated porosity should have little effect on X-ray transport in such winds. The formalism developed here could however be important for understanding the porous regulation of continuum-driven, super-Eddington outflows from luminous blue variables.

  16. Development of a new mid-infrared instrument for the TAO 6.5-m Telescope

    Science.gov (United States)

    Miyata, Takashi; Sako, Shigeyuki; Nakamura, Tomohiko; Asano, Kentaro; Uchiyama, Mizuho; Onaka, Takashi; Sakon, Itsuki; Kataza, Hirokazu; Ita, Yoshifusa; Aoki, Tsutomu; Doi, Mamoru; Handa, Toshihiro; Kato, Daisuke; Kawara, Kimiaki; Kohno, Kotaro; Konishi, Masahiro; Koshida, Shintaro; Minezaki, Takeo; Mitani, Natsuko; Motohara, Kentaro; Soyano, Takao; Tanabe, Toshihiko; Tanaka, Masuo; Tarusawa, Ken'ichi; Yoshii, Yuzuru

    2010-07-01

    Ground-based mid-infrared observations have two distinct advantages over space observations despite relatively lower sensitivity. One is the high spatial resolution and the other is the monitoring capability. These advantages can be emphasized particularly for the next coming ground-based infrared project University of Tokyo Atacama Observatory (TAO). Thanks to the low water vapor of the TAO site (5,640m) and the large aperture of the telescope (6.5meter), we can observe at 30 micron with a spatial resolution of 1 arcsec. It is about ten times higher than that of current space telescopes. The TAO is also useful for monitoring observations because of the ample observing time. To take these advantages we are now developing a new mid-infrared infrared instrument for the TAO 6.5-meter telescope. This covers a wide wavelength range from 2 to 38 micron with three detectors (Si:As, Si:Sb, and InSb). Diffraction limited spatial resolution can be achieved at wavelengths longer than 7 micron. Low-resolution spectroscopy can also be carried out with grisms. This instrument equips a newly invented "field stacker" for monitoring observations. It is an optical system that consists of two movable pick-up mirrors and a triangle shaped mirror, and combine two discrete fields of the telescope into camera's field of view. It will enable us to apply a differential photometry method and dramatically improve the accuracy and increase the feasibility of the monitoring observations at the mid-infrared wavelengths.

  17. Authentication of Whey Protein Powders by Portable Mid-Infrared Spectrometers Combined with Pattern Recognition Analysis.

    Science.gov (United States)

    Wang, Ting; Tan, Siow Ying; Mutilangi, William; Aykas, Didem P; Rodriguez-Saona, Luis E

    2015-10-01

    The objective of this study was to develop a simple and rapid method to differentiate whey protein types (WPC, WPI, and WPH) used for beverage manufacturing by combining the spectral signature collected from portable mid-infrared spectrometers and pattern recognition analysis. Whey protein powders from different suppliers are produced using a large number of processing and compositional variables, resulting in variation in composition, concentration, protein structure, and thus functionality. Whey protein powders including whey protein isolates, whey protein concentrates and whey protein hydrolysates were obtained from different suppliers and their spectra collected using portable mid-infrared spectrometers (single and triple reflection) by pressing the powder onto an Attenuated Total Reflectance (ATR) diamond crystal with a pressure clamp. Spectra were analyzed by soft independent modeling of class analogy (SIMCA) generating a classification model showing the ability to differentiate whey protein types by forming tight clusters with interclass distance values of >3, considered to be significantly different from each other. The major bands centered at 1640 and 1580 cm(-1) were responsible for separation and were associated with differences in amide I and amide II vibrations of proteins, respectively. Another important band in whey protein clustering was associated with carboxylate vibrations of acidic amino acids (∼1570 cm(-1)). The use of a portable mid-IR spectrometer combined with pattern recognition analysis showed potential for discriminating whey protein ingredients that can help to streamline the analytical procedure so that it is more applicable for field-based screening of ingredients. A rapid, simple and accurate method was developed to authenticate commercial whey protein products by using portable mid-infrared spectrometers combined with chemometrics, which could help ensure the functionality of whey protein ingredients in food applications. © 2015

  18. Invited Article: An integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument

    Science.gov (United States)

    Kühne, P.; Herzinger, C. M.; Schubert, M.; Woollam, J. A.; Hofmann, T.

    2014-07-01

    We report on the development of the first integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument, covering an ultra wide spectral range from 3 cm-1 to 7000 cm-1 (0.1-210 THz or 0.4-870 meV). The instrument comprises four sub-systems, where the magneto-cryostat-transfer sub-system enables the usage of the magneto-cryostat sub-system with the mid-infrared ellipsometer sub-system, and the far-infrared/terahertz ellipsometer sub-system. Both ellipsometer sub-systems can be used as variable angle-of-incidence spectroscopic ellipsometers in reflection or transmission mode, and are equipped with multiple light sources and detectors. The ellipsometer sub-systems are operated in polarizer-sample-rotating-analyzer configuration granting access to the upper left 3 × 3 block of the normalized 4 × 4 Mueller matrix. The closed cycle magneto-cryostat sub-system provides sample temperatures between room temperature and 1.4 K and magnetic fields up to 8 T, enabling the detection of transverse and longitudinal magnetic field-induced birefringence. We discuss theoretical background and practical realization of the integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument, as well as acquisition of optical Hall effect data and the corresponding model analysis procedures. Exemplarily, epitaxial graphene grown on 6H-SiC, a tellurium doped bulk GaAs sample and an AlGaN/GaN high electron mobility transistor structure are investigated. The selected experimental datasets display the full spectral, magnetic field and temperature range of the instrument and demonstrate data analysis strategies. Effects from free charge carriers in two dimensional confinement and in a volume material, as well as quantum mechanical effects (inter-Landau-level transitions) are observed and discussed exemplarily.

  19. Absence of power-law mid-infrared conductivity in gravitational crystals

    Energy Technology Data Exchange (ETDEWEB)

    Langley, Brandon W.; Vanacore, Garrett; Phillips, Philip W. [Department of Physics and Institute for Condensed Matter Theory, University of Illinois, 1110 W. Green Street, Urbana, IL 61801 (United States)

    2015-10-26

    We compute conductivities of strongly-interacting and non-uniform charge densities dual to inhomogeneous anti-de Sitter-black hole spacetimes. Backreacting bulk scalars with periodic boundary profiles, we construct generalizations of Reissner-Nordström-AdS that interpolate between those used in two previous studies — one that reports power-law scaling for the boundary optical conductivity and one that does not. We find no evidence for power-law scaling of the conductivity, thereby corroborating the previous negative result that gravitational crystals are insufficient to generate the power-law mid-infrared conductivity observed in cuprate superconductors.

  20. Observations of V592 Cassiopeiae with the Spitzer Space Telescope - Dust in the Mid-Infrared

    OpenAIRE

    Hoard, D. W.; Kafka, Stella; Wachter, Stefanie; Howell, Steve B.; Brinkworth, Carolyn S.; Ciardi, David R.; Szkody, Paula; Belle, Kunegunda; Froning, Cynthia; van Belle, Gerard

    2008-01-01

    We present the ultraviolet-optical-infrared spectral energy distribution of the low inclination novalike cataclysmic variable (CV) V592 Cassiopeiae, including new mid-infrared observations from 3.5 to 24 μm obtained with the Spitzer Space Telescope. At wavelengths shortward of 8 μm, the spectral energy distribution of V592 Cas is dominated by the steady state accretion disk, but there is flux density in excess of the summed stellar components and accretion disk at longer wavelengths. Reproduc...

  1. Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy.

    Science.gov (United States)

    Pfeifer, Marcel; Ruf, Alexander; Fischer, Peer

    2013-11-04

    We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated.

  2. EVIDENCE FOR DYNAMICAL CHANGES IN A TRANSITIONAL PROTOPLANETARY DISK WITH MID-INFRARED VARIABILITY

    International Nuclear Information System (INIS)

    Muzerolle, James; Flaherty, Kevin; Balog, Zoltan; Smith, Paul S.; Rieke, George H.; Furlan, Elise; Allen, Lori; Muench, August; Calvet, Nuria; D'Alessio, Paola; Megeath, S. Thomas; Sherry, William H.

    2009-01-01

    We present multi-epoch Spitzer Space Telescope observations of the transitional disk LRLL 31 in the 2-3 Myr old star-forming region IC 348. Our measurements show remarkable mid-infrared variability on timescales as short as one week. The infrared continuum emission exhibits systematic wavelength-dependent changes that suggest corresponding dynamical changes in the inner disk structure and variable shadowing of outer disk material. We propose several possible sources for the structural changes, including a variable accretion rate or a stellar or planetary companion embedded in the disk. Our results indicate that variability studies in the infrared can provide important new constraints on protoplanetary disk behavior.

  3. Soil classification using mid-infrared off-normal active differential reflectance characteristics

    International Nuclear Information System (INIS)

    Narayanan, R.M.; Green, S.E.; Alexander, D.R.

    1992-01-01

    Active mid-infrared laser reflectance characteristics of 18 different bench-mark soil samples were measured at various angles of incidence between 0° and 80° at 9.283-, 10/247-, and 10.633-μm wavelengths for both copolarized and cross-polarized conditions. Calibration was performed for each measurement using a Labsphere Infragold diffuse reflectance standard of 94 percent reflectance. One hundred independent reflectivity measurements were averaged for each combination to yield a mean reflectance value. The soil samples were characterized in terms of the soil taxonomy, mineralogy, geographic location, soil texture, and organic carbon content. Selected samples represented wide variability in soil properties

  4. ZnO subwavelength wires for fast-response mid-infrared detection.

    Science.gov (United States)

    Dai, Wei; Yang, Qing; Gu, Fuxing; Tong, Limin

    2009-11-23

    Room temperature operating thermal detection for mid-infrared light based on ZnO subwavelength wires has been demonstrated. Electric resistance in ZnO wires increases linearly with the intensity of incident light. Noise equivalent power (NEP) of 5.8 microW/Hz(1/2) (at 1 kHz) with typical response times as fast as 1.3 ms is obtained at 10.6-microm wavelength. The sensitivity and response time of the detector are also found to be insensitive to the ambient.

  5. 2 W high efficiency PbS mid-infrared surface emitting laser

    Science.gov (United States)

    Ishida, A.; Sugiyama, Y.; Isaji, Y.; Kodama, K.; Takano, Y.; Sakata, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Zogg, H.

    2011-09-01

    High efficiency laser operation with output power exceeding 2 W was obtained for vertical external-cavity PbS based IV-VI compound surface emitting quantum-well structures. The laser showed external quantum efficiency as high as 16%. Generally, mid-infrared III-V or II-VI semiconductor laser operation utilizing interband electron transitions are restricted by Auger recombination and free carrier absorption. Auger recombination is much lower in the IV-VI semiconductors, and the free-carrier absorption is significantly reduced by an optically pumped laser structure including multi-step optical excitation layers.

  6. Mid-infrared spectroscopy combined with chemometrics to detect Sclerotinia stem rot on oilseed rape (Brassica napusL.) leaves.

    Science.gov (United States)

    Zhang, Chu; Feng, Xuping; Wang, Jian; Liu, Fei; He, Yong; Zhou, Weijun

    2017-01-01

    Detection of plant diseases in a fast and simple way is crucial for timely disease control. Conventionally, plant diseases are accurately identified by DNA, RNA or serology based methods which are time consuming, complex and expensive. Mid-infrared spectroscopy is a promising technique that simplifies the detection procedure for the disease. Mid-infrared spectroscopy was used to identify the spectral differences between healthy and infected oilseed rape leaves. Two different sample sets from two experiments were used to explore and validate the feasibility of using mid-infrared spectroscopy in detecting Sclerotinia stem rot (SSR) on oilseed rape leaves. The average mid-infrared spectra showed differences between healthy and infected leaves, and the differences varied among different sample sets. Optimal wavenumbers for the 2 sample sets selected by the second derivative spectra were similar, indicating the efficacy of selecting optimal wavenumbers. Chemometric methods were further used to quantitatively detect the oilseed rape leaves infected by SSR, including the partial least squares-discriminant analysis, support vector machine and extreme learning machine. The discriminant models using the full spectra and the optimal wavenumbers of the 2 sample sets were effective for classification accuracies over 80%. The discriminant results for the 2 sample sets varied due to variations in the samples. The use of two sample sets proved and validated the feasibility of using mid-infrared spectroscopy and chemometric methods for detecting SSR on oilseed rape leaves. The similarities among the selected optimal wavenumbers in different sample sets made it feasible to simplify the models and build practical models. Mid-infrared spectroscopy is a reliable and promising technique for SSR control. This study helps in developing practical application of using mid-infrared spectroscopy combined with chemometrics to detect plant disease.

  7. A novel method for a fast diagnosis of septic arthritis using mid infrared and deported spectroscopy.

    Science.gov (United States)

    Albert, Jean-David; Monbet, Valérie; Jolivet-Gougeon, Anne; Fatih, Nadia; Le Corvec, Maëna; Seck, Malik; Charpentier, Frédéric; Coiffier, Guillaume; Boussard-Pledel, Catherine; Bureau, Bruno; Guggenbuhl, Pascal; Loréal, Olivier

    2016-05-01

    To assess the ability of mid infrared deported spectroscopy to discriminate synovial fluids samples of septic arthritis patients from other causes of joint effusion. Synovial fluids obtained from patients with clinically suspected arthritis were collected, analysed and classified according to standard diagnostic procedures as septic or non-septic. A spectroscopic analysis on synovial fluid samples was then performed using a coiled optical fiber made with chalcogenide glass. After a factorial analysis of the normalized spectra and the computation of a Fisher test used to select the most relevant components, a logistic regression model was fitted, allowing to attribute a score between 0 - non-septic -, and 1 - septic. In a first phase, we analysed the synovial fluids from 122 different synovial fluids including 6 septic arthritis among arthritis of various origins. Septic synovial fluids were identified with a sensitivity of 95.8% and a specificity of 93.9% and an AUROC of 0.977. The analysis of an independent set of samples (n=42, including two septic arthritis) gave similar values. Our data strongly supports the interest of mid infrared deported spectroscopy, which could be used potentially at point of care, for a rapid and easy diagnosis of septic arthritis. Now, the precision of the diagnosis must be evaluated through a multicentric study on a larger panel of patients. Copyright © 2015 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  8. Wireless Mid-Infrared Spectroscopy Sensor Network for Automatic Carbon Dioxide Fertilization in a Greenhouse Environment

    Directory of Open Access Journals (Sweden)

    Jianing Wang

    2016-11-01

    Full Text Available In this paper, a wireless mid-infrared spectroscopy sensor network was designed and implemented for carbon dioxide fertilization in a greenhouse environment. A mid-infrared carbon dioxide (CO2 sensor based on non-dispersive infrared (NDIR with the functionalities of wireless communication and anti-condensation prevention was realized as the sensor node. Smart transmission power regulation was applied in the wireless sensor network, according to the Received Signal Strength Indication (RSSI, to realize high communication stability and low-power consumption deployment. Besides real-time monitoring, this system also provides a CO2 control facility for manual and automatic control through a LabVIEW platform. According to simulations and field tests, the implemented sensor node has a satisfying anti-condensation ability and reliable measurement performance on CO2 concentrations ranging from 30 ppm to 5000 ppm. As an application, based on the Fuzzy proportional, integral, and derivative (PID algorithm realized on a LabVIEW platform, the CO2 concentration was regulated to some desired concentrations, such as 800 ppm and 1200 ppm, in 30 min with a controlled fluctuation of <±35 ppm in an acre of greenhouse.

  9. THE MID-INFRARED ENVIRONMENTS OF HIGH-REDSHIFT RADIO GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Galametz, Audrey; Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); De Breuck, Carlos; Vernet, Joeel [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Hatch, Nina [University of Nottingham, School of Physics and Astronomy, Nottingham NG7 2RD (United Kingdom); Mayo, Jack [Institute for Astronomy, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Miley, George [Leiden Observatory, University of Leiden, P.B. 9513, Leiden 2300 RA (Netherlands); Rettura, Alessandro [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Seymour, Nick [Mullard Space Science Laboratory, UCL, Holmbury St Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Adam Stanford, S., E-mail: audrey.galametz@oa-roma.inaf.it [Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2012-04-20

    Taking advantage of the impressive sensitivity of Spitzer to detect massive galaxies at high redshift, we study the mid-infrared environments of powerful, high-redshift radio galaxies at 1.2 < z < 3. Galaxy cluster member candidates were isolated using a single Spitzer/IRAC mid-infrared color criterion, [3.6]-[4.5] > -0.1 (AB), in the fields of 48 radio galaxies at 1.2 < z < 3. Using a counts-in-cell analysis, we identify a field as overdense when 15 or more red IRAC sources are found within 1' (i.e., 0.5 Mpc at 1.2 < z < 3) of the radio galaxy to the 5{sigma} flux density limits of our IRAC data (f{sub 4.5} = 13.4 {mu}Jy). We find that radio galaxies lie preferentially in medium to dense regions, with 73% of the targeted fields denser than average. Our (shallow) 120 s data permit the rediscovery of previously known clusters and protoclusters associated with radio galaxies as well as the discovery of new promising galaxy cluster candidates at z > 1.2.

  10. How useful is the mid-infrared spectroscopy in the assessment of black carbon in soils

    Directory of Open Access Journals (Sweden)

    J.M. de la Rosa

    2013-09-01

    Full Text Available Black carbon (BC, the recalcitrant continuum of products from incomplete combustion, includes char, charcoal and soot, being considered an important component of the global C cycle. However due to measurement uncertainties, the magnitude and distribution of BC is hardly known. In this study, a rapid and inexpensive spectroscopic technique, as it is mid-infrared spectroscopy in combination with oxidation procedures is proposed to quantify the recalcitrant aromatic fraction resistant, which can effectively determine the proportion of BC in soils. This method was tested by using a wide variety soil samples of various origin, composition and properties. Results were contrasted by those obtained by applying solid-state Nuclear Magnetic Resonance (NMR spectroscopy. Mid-infrared spectroscopy showed a very high predicting potential in the case of samples with large concentrations of BC by taking advantage of the relative optical density of the 2920 cm-1 C–H stretching band. In the case of soils with low BC contents, the application of Partial Least Square Regression to baseline-subtracted, second-derivative Fourier-Transformed Infra-red (FT-IR spectra lead to significant (P<0.05 cross-validation models. By this procedure a considerable improvement in forecasting the aromatic fraction resistant to the chemical oxidation steps (BC-like material was obtained.

  11. High energy eye-safe and mid-infrared optical parametric oscillator

    International Nuclear Information System (INIS)

    Liu, J; Liu, Q; Huang, L; Gong, M

    2010-01-01

    A high energy eye-safe and mid-infrared optical parametric oscillator (OPO) is demonstrated. The nonlinear media is a Y-cut KTA crystal with the length of 20 mm, which is pumped by a Nd:YAG laser. Both eye-safe and mid-infrared laser are output with high energy. When the pump energy is 1 J and the pulse duration is 10 ns, we get 53 mJ idler at 3.632 μm and 151 mJ signal at 1.505 μm. As we know, the idler energy is the highest at the wavelength beyond 3.5 μm and the signal energy is the highest with Y-cut KTA. The results prove that the Y-cut KTA crystal can produce the signal and idler with the energies as high as these in the paper. We have tested the temperature-tuning characters and the coefficient of the idler is 0.26 nm/°C

  12. Spitzer IRAC mid-infrared photometry of 500-750 brown dwarf

    Energy Technology Data Exchange (ETDEWEB)

    Saumon, Didier [Los Alamos National Laboratory; Leggett, Sandy K [GEMINI OBSERVATORY; Albert, Loic [CFH TELESCOPE; Artigau, Etienne [U OF MONTREAL; Burningham, Ben [HERTFORDSHIRE U; Delfosse, Xavier [OBS. GRENOBLE; Delorme, Philippe [ST. ANDREWS U.; Forveille, Thierry [OBS. GRENOBLE; Lucas, Philip W [HERTFORDSHIRE U; Marley, Mark S [NASA AMES; Pinfield, David J [HERTFORDSHIRE U.; Reyle, Celine [OBS. BESANCON; Smart, Richard L [OSS. ASTRON, TORINO; Warren, Stephen J [IMPERIAL COLLEGE LONDON

    2010-10-26

    Mid-infrared data, including Spitzer warm-IRAC [3.6] and [4.5] photometry, is critical for understanding the cold population of brown dwarfs now being found, objects which have more in common with planets than stars. As effective temperature (T{sub eff}) drops from 800K to 400K, the fraction of flux emitted beyond 3 {mu}m increases rapidly, from about 40% to > 75%. This rapid increase makes a color like H-[4.5] a very sensitive temperature indicator, and it can be combined with a gravity- and metallicity-sensitive color like H-K to constrain all three of these fundamental properties, which in turn gives us mass and age for these slowly cooling objects. Determination of mid-infrared color trends also allows better exploitation of the WISE mission by the community. We use new Spitzer Cycle 6 IRAC photometry, together with published data, to present trends of color with type for L0 to T10 dwarfs. We also use the atmospheric and evolutionary models of Saumon and Marley to investigate the masses and ages of 13 very late-type T dwarfs, which have H-[4.5] > 3.2 and T{sub eff} {approx} 500K to 750K.

  13. Development of a Mid-Infrared Sea and Lake Ice Index (MISI Using the GOES Imager

    Directory of Open Access Journals (Sweden)

    Peter Dorofy

    2016-12-01

    Full Text Available An automated ice-mapping algorithm has been developed and evaluated using data from the GOES-13 imager. The approach includes cloud-free image compositing as well as image classification using spectral criteria. The algorithm uses an alternative snow index to the Normalized Difference Snow Index (NDSI. The GOES-13 imager does not have a 1.6 µm band, a requirement for NDSI; however, the newly proposed Mid-Infrared Sea and Lake Ice Index (MISI incorporates the reflective component of the 3.9 µm or mid-infrared (MIR band, which the GOES-13 imager does operate. Incorporating MISI into a sea or lake ice mapping algorithm allows for mapping of thin or broken ice with no snow cover (nilas, frazil ice and thicker ice with snow cover to a degree of confidence that is comparable to other ice mapping products. The proposed index has been applied over the Great Lakes region and qualitatively compared to the Interactive Multi-sensor Snow and Ice Mapping System (IMS, the National Ice Center ice concentration maps and MODIS snow cover products. The application of MISI may open additional possibilities in climate research using historical GOES imagery. Furthermore, MISI may be used in addition to the current NDSI in ice identification to build more robust ice-mapping algorithms for the next generation GOES satellites.

  14. Bio-analytical applications of mid-infrared spectroscopy using silver halide fiber-optic probes

    International Nuclear Information System (INIS)

    Heise, H.M.; Kuepper, L.; Butvina, L.N.

    2002-01-01

    Infrared-spectroscopy has proved to be a powerful method for the study of various biomedical samples, in particular for in-vitro analysis in the clinical laboratory and for non-invasive diagnostics. In general, the analysis of biofluids such as whole blood, urine, microdialysates and bioreactor broth media takes advantage of the fact that a multitude of analytes can be quantified simultaneously and rapidly without the need for reagents. Progress in the quality of infrared silver halide fibers enabled us to construct several flexible fiber-optic probes of different geometries, which are particularly suitable for the measurement of small biosamples. Recent trends show that dry film measurements by mid-infrared spectroscopy could revolutionize analytical tools in the clinical chemistry laboratory, and an example is given. Infrared diagnostic tools show a promising potential for patients, and minimal-invasive blood glucose assays or skin tissue pathology in particular cannot be left out using mid-infrared fiber-based probes. Other applications include the measurement of skin samples including penetration studies of vitamins and constituents of cosmetic cream formulations. A further field is the micro-domain analysis of biopsy samples from bog mummified corpses, and recent results on the chemistry of dermis and hair samples are reported. Another field of application, for which results are reported, is food analysis and bio-reactor monitoring

  15. Submillisecond mixing in a continuous-flow, microfluidic mixer utilizing mid-infrared hyperspectral imaging detection.

    Science.gov (United States)

    Kise, Drew P; Magana, Donny; Reddish, Michael J; Dyer, R Brian

    2014-02-07

    We report a continuous-flow, microfluidic mixer utilizing mid-infrared hyperspectral imaging detection, with an experimentally determined, submillisecond mixing time. The simple and robust mixer design has the microfluidic channels cut through a polymer spacer that is sandwiched between two IR transparent windows. The mixer hydrodynamically focuses the sample stream with two side flow channels, squeezing it into a thin jet and initiating mixing through diffusion and advection. The detection system generates a mid-infrared hyperspectral absorbance image of the microfluidic sample stream. Calibration of the hyperspectral image yields the mid-IR absorbance spectrum of the sample versus time. A mixing time of 269 μs was measured for a pD jump from 3.2 to above 4.5 in a D2O sample solution of adenosine monophosphate (AMP), which acts as an infrared pD indicator. The mixer was further characterized by comparing experimental results with a simulation of the mixing of an H2O sample stream with a D2O sheath flow, showing good agreement between the two. The IR microfluidic mixer eliminates the need for fluorescence labeling of proteins with bulky, interfering dyes, because it uses the intrinsic IR absorbance of the molecules of interest, and the structural specificity of IR spectroscopy to follow specific chemical changes such as the protonation state of AMP.

  16. Polaron theory of mid-infrared conductivity a numerical cluster solution

    Science.gov (United States)

    Alexandrov, A. S.; Kabanov, V. V.; Ray, D. K.

    1994-05-01

    Mid-infrared spectra are obtained with numerical calculations of the optical conductivity σ(ω) of a finite-size Holstein model. The results show that the analytic formula of Reik for the optical conductivity is valid only in a strong electron-phonon coupling regime. σ(ω) shows a number of peaks corresponding to the bound states of polarons with a different number of phonons. Calculation of σ(ω) has also been done in the adiabatic limit in the one-dimensional case. It is found that for intermediate coupling the peak in σ(ω) is strongly asymmetric. The optical conductivity of the two-site model in the presence of two electrons is studied. Numerical results show a shift of the peak in σ(ω) to the low-energy region with an increasing Hubbard U for the strong electron-phonon interaction (E p>U) whereas the peak moves to the high-energy region for U>E p high-energy region starts to develop in the large U limit in the presence of phonons. The significance of these calculations for the experimental observations of the mid-infrared spectra of high- Tc cuprates is discussed.

  17. Research on propane leak detection system and device based on mid infrared laser

    Science.gov (United States)

    Jiang, Meng; Wang, Xuefeng; Wang, Junlong; Wang, Yizhao; Li, Pan; Feng, Qiaoling

    2017-10-01

    Propane is a key component of liquefied petroleum gas (LPG) and crude oil volatile. This issue summarizes the recent progress of propane detection technology. Meanwhile, base on the development trend, our latest progress is also provided. We demonstrated a mid infrared propane sensor system, which is based on wavelength modulation spectroscopy (WMS) technique with a CW interband cascade laser (ICL) emitting at 3370.4nm. The ICL laser scanned over a sharp feature in the broader spectrum of propane, and harmonic signals are obtained by lock-in amplifier for gas concentration deduction. The surrounding gas is extracted into the fine optical absorption cell through the pump to realize online detection. The absorption cell is designed in mid infrared windows range. An example experimental setup is shown. The second harmonic signals 2f and first harmonic signals1f are obtained. We present the sensor performance test data including dynamic precision and temperature stability. The propane detection sensor system and device is portable can carried on the mobile inspection vehicle platforms or intelligent robot inspection platform to realize the leakage monitoring of whole oil gas tank area.

  18. Mid-Infrared Imaging of Exo-Earths: Impact of Exozodiacal Disk Structures

    Science.gov (United States)

    Defrere, Denis; Absil, O.; Stark, C.; den Hartog, R.; Danchi, W.

    2011-01-01

    The characterization of Earth-like extrasolar planets in the mid-infrared is a significant observational challenge that could be tackled by future space-based interferometers. The presence of large amounts of exozodiacal dust around nearby main sequence stars represents however a potential hurdle to obtain mid-infrared spectra of Earth-like planets. Whereas the disk brightness only affects the integration time, the emission of resonant dust structures mixes with the planet signal at the output of the interferometer and could jeopardize the spectroscopic analysis of an Earth-like planet. Fortunately, the high angular resolution provided by space-based interferometry is sufficient to spatially distinguish most of the extended exozodiacal emission from the planetary signal and only the dust located near the planet significantly contributes to the noise level. Considering modeled resonant structures created by Earth-like planets, we address in this talk the role of exozodiacal dust in two different cases: the characterization of Super-Earth planets with single space-based Bracewell interferometers (e.g., the FKSI mission) and the characterization of Earth-like planets with 4-telescope space-based nulling interferometers (e.g., the TPF-I and Darwin projects). In each case, we derive constraints on the disk parameters that can be tolerated without jeopardizing the detection of Earth-like planets

  19. Optimized mid-infrared thermal emitters for applications in aircraft countermeasures

    Directory of Open Access Journals (Sweden)

    Simón G. Lorenzo

    2017-12-01

    Full Text Available We introduce an optimized aperiodic multilayer structure capable of broad angle and high temperature thermal emission over the 3 μm to 5 μm atmospheric transmission band. This aperiodic multilayer structure composed of alternating layers of silicon carbide and graphite on top of a tungsten substrate exhibits near maximal emittance in a 2 μm wavelength range centered in the mid-wavelength infrared band traditionally utilized for atmospheric transmission. We optimize the layer thicknesses using a hybrid optimization algorithm coupled to a transfer matrix code to maximize the power emitted in this mid-infrared range normal to the structure’s surface. We investigate possible applications for these structures in mimicking 800–1000 K aircraft engine thermal emission signatures and in improving countermeasure effectiveness against hyperspectral imagers. We find these structures capable of matching the Planck blackbody curve in the selected infrared range with relatively sharp cutoffs on either side, leading to increased overall efficiency of the structures. Appropriately optimized multilayer structures with this design could lead to matching a variety of mid-infrared thermal emissions. For aircraft countermeasure applications, this method could yield a flare design capable of mimicking engine spectra and breaking the lock of hyperspectral imaging systems.

  20. THE FORMATION OF SECONDARY STELLAR GENERATIONS IN MASSIVE YOUNG STAR CLUSTERS FROM RAPIDLY COOLING SHOCKED STELLAR WINDS

    International Nuclear Information System (INIS)

    Wünsch, R.; Palouš, J.; Ehlerová, S.; Tenorio-Tagle, G.

    2017-01-01

    We study a model of rapidly cooling shocked stellar winds in young massive clusters and estimate the circumstances under which secondary star formation, out of the reinserted winds from a first stellar generation (1G), is possible. We have used two implementations of the model: a highly idealized, computationally inexpensive, spherically symmetric semi-analytic model, and a complex, three-dimensional radiation-hydrodynamic, simulation; they are in a good mutual agreement. The results confirm our previous findings that, in a cluster with 1G mass 10 7 M ⊙ and half-mass–radius 2.38 pc, the shocked stellar winds become thermally unstable, collapse into dense gaseous structures that partially accumulate inside the cluster, self-shield against ionizing stellar radiation, and form the second generation (2G) of stars. We have used the semi-analytic model to explore a subset of the parameter space covering a wide range of the observationally poorly constrained parameters: the heating efficiency, η he , and the mass loading, η ml . The results show that the fraction of the 1G stellar winds accumulating inside the cluster can be larger than 50% if η he ≲ 10%, which is suggested by the observations. Furthermore, for low η he , the model provides a self-consistent mechanism predicting 2G stars forming only in the central zones of the cluster. Finally, we have calculated the accumulated warm gas emission in the H30 α recombination line, analyzed its velocity profile, and estimated its intensity for super star clusters in interacting galaxies NGC4038/9 (Antennae) showing that the warm gas should be detectable with ALMA.

  1. THE FORMATION OF SECONDARY STELLAR GENERATIONS IN MASSIVE YOUNG STAR CLUSTERS FROM RAPIDLY COOLING SHOCKED STELLAR WINDS

    Energy Technology Data Exchange (ETDEWEB)

    Wünsch, R.; Palouš, J.; Ehlerová, S. [Astronomical Institute, Academy of Sciences of the Czech Republic, Boční II 1401, 141 31 Prague (Czech Republic); Tenorio-Tagle, G. [Instituto Nacional de Astrofísica Optica y Electrónica, AP 51, 72000 Puebla, México (Mexico)

    2017-01-20

    We study a model of rapidly cooling shocked stellar winds in young massive clusters and estimate the circumstances under which secondary star formation, out of the reinserted winds from a first stellar generation (1G), is possible. We have used two implementations of the model: a highly idealized, computationally inexpensive, spherically symmetric semi-analytic model, and a complex, three-dimensional radiation-hydrodynamic, simulation; they are in a good mutual agreement. The results confirm our previous findings that, in a cluster with 1G mass 10{sup 7} M {sub ⊙} and half-mass–radius 2.38 pc, the shocked stellar winds become thermally unstable, collapse into dense gaseous structures that partially accumulate inside the cluster, self-shield against ionizing stellar radiation, and form the second generation (2G) of stars. We have used the semi-analytic model to explore a subset of the parameter space covering a wide range of the observationally poorly constrained parameters: the heating efficiency, η {sub he}, and the mass loading, η {sub ml}. The results show that the fraction of the 1G stellar winds accumulating inside the cluster can be larger than 50% if η {sub he} ≲ 10%, which is suggested by the observations. Furthermore, for low η {sub he}, the model provides a self-consistent mechanism predicting 2G stars forming only in the central zones of the cluster. Finally, we have calculated the accumulated warm gas emission in the H30 α recombination line, analyzed its velocity profile, and estimated its intensity for super star clusters in interacting galaxies NGC4038/9 (Antennae) showing that the warm gas should be detectable with ALMA.

  2. Evolution of close binaries under the assumption that they lose angular momentum by a magnetic stellar wind

    International Nuclear Information System (INIS)

    Kraicheva, Z.T.; Tutukov, A.V.; Yungel'son, L.R.

    1986-01-01

    A simple method is proposed for describing the evolution of semidetached close binaries whose secondary components have degenerated helium cores and lose orbital angular momentum by a magnetic stellar wind. The results of calculations are used to estimate the initial parameters of a series of low-mass (M 1 + M 2 ≤ 5M.) systems of Algol type under the two assumptions of conservative and nonconservative evolution with respect to the orbital angular momentum. Only the assumption that the systems with secondary components possessing convective shells lose angular momentum makes it possible to reproduce their initial parameters without contradiction

  3. High Aspect Ratio Plasmonic Nanotrench Structures with Large Active Surface Area for Label-Free Mid-Infrared Molecular Absorption Sensing

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Repän, Taavi; Panah, Mohammad Esmail Aryaee

    2018-01-01

    Mid-infrared spectroscopy offers unique sensing schemes to detect target molecules thanks to the absorption of infrared light at specific wavelengths unique to chemical compositions. Due to the mismatch of the mid-infrared light wavelength on the order of micron and nanometer size molecules, the ...... may serve as a highly sensitive bio- and chemo-sensing platform for mid-infrared absorption spectroscopy....

  4. AN INTERFEROMETRIC STUDY OF THE FOMALHAUT INNER DEBRIS DISK. II. KECK NULLER MID-INFRARED OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mennesson, B.; Serabyn, E.; Colavita, M. M. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena CA 91109-8099 (United States); Absil, O. [Departement d' Astrophysique, Geophysique et Oceanographie, Universite de Liege, 17 Allee du Six Aout, B-4000 Sart Tilman (Belgium); Lebreton, J.; Augereau, J.-C. [IPAG, UMR 5274, CNRS and Universite Joseph Fourier, BP 53, F-38041 Grenoble (France); Millan-Gabet, R. [Michelson Science Center, California Institute of Technology, 770 South Wilson Avenue, Pasadena CA 91125 (United States); Liu, W. [Infrared Processing and Analysis Center, California Institute of Technology, Mail Code 100-22, Pasadena, CA 91125 (United States); Hinz, P. [Steward Observatory, University of Arizona, 933 N Cherry Avenue, Tucson, AZ 85721 (United States); Thebault, P. [Observatoire de Paris, Section de Meudon, F-92195 Meudon Principal Cedex (France)

    2013-02-15

    We report on high-contrast mid-infrared observations of Fomalhaut obtained with the Keck Interferometer Nuller (KIN) showing a small resolved excess over the level expected from the stellar photosphere. The measured null excess has a mean value of 0.35% {+-} 0.10% between 8 and 11 {mu}m and increases from 8 to 13 {mu}m. Given the small field of view of the instrument, the source of this marginal excess must be contained within 2 AU of Fomalhaut. This result is reminiscent of previous VLTI K-band ({approx_equal}2{mu}m) observations, which implied the presence of a {approx}0.88% excess, and argued that thermal emission from hot dusty grains located within 6 AU from Fomalhaut was the most plausible explanation. Using a parametric two-dimensional radiative transfer code and a Bayesian analysis, we examine different dust disk structures to reproduce both the near- and mid-infrared data simultaneously. While not a definitive explanation of the hot excess of Fomalhaut, our model suggests that the most likely inner few AU disk geometry consists of a two-component structure, with two different and spatially distinct grain populations. The 2-11 {mu}m data are consistent with an inner hot ring of very small ({approx_equal}10-300 nm) carbon-rich grains concentrating around 0.1 AU. The second dust population-inferred from the KIN data at longer mid-infrared wavelengths-consists of larger grains (size of a few microns to a few tens of microns) located further out in a colder region where regular astronomical silicates could survive, with an inner edge around 0.4 AU-1 AU. From a dynamical point of view, the presence of the inner concentration of submicron-sized grains is surprising, as such grains should be expelled from the inner planetary system by radiation pressure within only a few years. This could either point to some inordinate replenishment rates (e.g., many grazing comets coming from an outer reservoir) or to the existence of some braking mechanism preventing the grains

  5. Mid-infrared Observation of C/2012 S1 (ISON) with Subaru+COMCIS

    Science.gov (United States)

    Ootsubo, T.; Watanabe, J.; Honda, M.; Yanamandra-Fisher, P. A.; Usui, F.; Takita, S.; Kasuga, T.; Furusho, R.; Fuse, T.; Nagashima, M.; Kawakita, H.; Fujiyoshi, T.

    2013-12-01

    Dust grains in comets have been used to investigate the formation conditions of the solar system. A silicate feature is often observed in comets as a 10-micron resonant feature. In most cases the feature shows the existence of crystalline silicate together with amorphous silicate. Since the crystalline silicate grains are generally made through high-temperature annealing above 800K from amorphous ones, it is believed that the crystalline silicate grains produced at the inner part of the disk were transported to the outer cold regions where comet nuclei formed. Comet C/2012 S1 (ISON) is a long-period Oort cloud comet, discovered in September 2012. Mid-IR observations of this new comet and investigation of the 10-micron silicate feature help us to understand the formation of crystalline silicate grains in the early solar nebula. In particular, comet ISON is a sungrazing comet, which is predicted to pass close by the Sun and Earth and becoming a bright object. We might expect possible splitting and exposing of pristine materials inside the nucleus after its perihelion passage. If it splits, we can also investigate the homogeneity of the comet nucleus, and can compare the results with ecliptic comets, such as 9P/Temple and 73P/SW. Even if it does not split, we can fully investigate the evolution of crystalline grains described above. Thus, observations both at pre- and post-pelihelion are indespensable. We have a plan to observe the comet ISON with COMICS (Cooled Mid-Infrared Camera and Spectrometer) mounted on the 8.2m Subaru Telescope on late October 2013 and mid-January 2014. Subaru+COMICS in mid-infrared is a powerful tool for spectroscopic observations of cometary silicate grains. COMICS observations occupy an important place among organized many facilities and science of comet observations. We will conduct imaging and low-dispersion spectroscopic observations in mid-infrared region for the comet. We will show the preliminary result of the observations on October

  6. Dielectric properties of vertically aligned multi-walled carbon nanotubes in the terahertz and mid-infrared range

    Science.gov (United States)

    Thomson, Mark D.; Zouaghi, Wissem; Meng, Fanqi; Wiecha, Matthias M.; Rabia, Kaneez; Heinlein, Thorsten; Hussein, Laith; Babu, Deepu; Yadav, Sandeep; Engstler, Jörg; Schneider, Jörg J.; Nicoloso, Norbert; Rychetský, Ivan; Kužel, Petr; Roskos, Hartmut G.

    2018-01-01

    We investigate the broadband dielectric properties of vertically aligned, multi-wall carbon nanotubes (VACNT), over both the terahertz (THz) and mid-infrared spectral ranges. The nominally undoped, metallic VACNT samples are probed at normal incidence, i.e. the response is predominantly due to polarisation perpendicular to the CNT axis. A detailed comparison of various conductivity models and previously reported results is presented for the non-Drude behaviour we observe in the conventional THz range (up to 2.5 THz). Extension to the mid-infrared range reveals an absorption peak at \

  7. 2-10 μm Mid-infrared Supercontinuum Light Sources

    DEFF Research Database (Denmark)

    Petersen, Christian Rosenberg; Møller, Uffe Visbech

    Spectroscopy is the study of how light interacts with molecules, which can be used to identify various substances in for example foods and medicine, by observing which parts of the light is absorbed after interaction with the sample. Especially infrared light, more precisely the mid infrared part...... of the spectrum, is of interest because almost all molecules display distinct absorption fingerprints in this region. Current instrumentation however relies on thermal light sources, much like the wellknown incandescent light bulb, which has very limited brightness and limited possibilities for manipulating...... and using the light in different applications. This dissertation presents the past three years of my work with developing an alternative light source that has the broad spectral bandwidth of a lamp, and high power focused in a tight spot similar to a laser. Such a mid‐infrared light source can be achieved...

  8. Prospective for graphene based thermal mid-infrared light emitting devices

    Directory of Open Access Journals (Sweden)

    L. M. Lawton

    2014-08-01

    Full Text Available We have investigated the spatial and spectral characteristics of mid-infrared thermal emission from large area Chemical Vapor Deposition (CVD graphene, transferred onto SiO2/Si, and show that the emission is broadly that of a grey-body emitter, with emissivity values of approximately 2% and 6% for mono- and multilayer graphene. For the currents used, which could be sustained for over one hundred hours, the emission peaked at a wavelength of around 4 μm and covered the characteristic absorption of many important gases. A measurable modulation of thermal emission was obtained even when the drive current was modulated at frequencies up to 100 kHz.

  9. Widely Tunable Monolithic Mid-Infrared Quantum Cascade Lasers Using Super-Structure Grating Reflectors

    Directory of Open Access Journals (Sweden)

    Dingkai Guo

    2016-05-01

    Full Text Available A monolithic, three-section, and widely tunable mid-infrared (mid-IR quantum cascade laser (QCL is demonstrated. This electrically tuned laser consists of a gain section placed between two super structure grating (SSG distributed Bragg reflectors (DBRs. By varying the injection currents to the two grating sections of this device, its emission wavelength can be tuned from 4.58 μm to 4.77 μm (90 cm−1 with a supermode spacing of 30 nm. This type of SSG-DBR QCLs can be a compact replacement for the external cavity QCL. It has great potential to achieve gap-free and even further tuning ranges for sensor applications.

  10. Nanoscale mid-infrared imaging of phase separation in a drug-polymer blend.

    Science.gov (United States)

    Van Eerdenbrugh, Bernard; Lo, Michael; Kjoller, Kevin; Marcott, Curtis; Taylor, Lynne S

    2012-06-01

    The applicability of nanoscale mid-infrared (mid-IR) spectroscopy for the study of the micro- and nanostructure of pharmaceutical drug-polymer systems was explored. Felodipine-poly(acrylic acid) (PAA) blends were used as model systems. Standard atomic force microscopy evaluation as a function of drug-polymer composition suggested limited miscibility, in line with previous findings. Localized spectra on a 50:50 (w/w) felodipine-PAA dispersion revealed that the discrete submicrometer domains formed corresponded to an amorphous felodipine-rich phase while the continuous phase tended to be rich in PAA. Further, spectroscopic imaging at selected wavenumbers, enabling discrimination between both constituents, confirmed this finding and made it possible to chemically image differences in composition between each phase with submicrometer resolution. Copyright © 2011 Wiley Periodicals, Inc.

  11. Chalcogenide based rib waveguide for compact on-chip supercontinuum sources in mid-infrared domain

    Science.gov (United States)

    Saini, Than Singh; Tiwari, Umesh Kumar; Sinha, Ravindra Kumar

    2017-08-01

    We have designed and analysed a rib waveguide structure in recently reported Ga-Sb-S based highly nonlinear chalcogenide glass for nonlinear applications. The proposed waveguide structure possesses a very high nonlinear coefficient and can be used to generate broadband supercontinuum in mid-infrared domain. The reported design of the chalcogenide waveguide offers two zero dispersion values at 1800 nm and 2900 nm. Such rib waveguide structure is suitable to generate efficient supercontinuum generation ranging from 500 - 7400 μm. The reported waveguide can be used for the realization of the compact on-chip supercontinuum sources which are highly applicable in optical imaging, optical coherence tomography, food quality control, security and sensing.

  12. Data fusion of near-infrared and mid-infrared spectra for identification of rhubarb

    Science.gov (United States)

    Sun, Wenjuan; Zhang, Xin; Zhang, Zhuoyong; Zhu, Ruohua

    2017-01-01

    Rhubarb has different medicinal efficacy to official rhubarb and may affect the clinical medication safety. In order to guarantee the quality of rhubarb, we established a method to distinguish unofficial rhubarbs. 52 official and unofficial rhubarb samples were analyzed using near-infrared (NIR) spectroscopy and mid-infrared (MIR) spectroscopy for classification. The feature vectors, which were selected by wavelet compression (WC) and interval partial least squares (iPLS) from NIR, MIR spectra, were fused together for identifying rhubarb samples. Partial least squares-discriminant analysis (PLS-DA), soft independent modeling of class analogies (SIMCA), support vector machine (SVM) and artificial neural network (ANN) were compared for classifying rhubarb. The use of data fusion strategies improved the classification model and allowed correct classification of all the samples.

  13. Extraordinary mid-infrared transmission of subwavelength holes in gold films

    KAUST Repository

    Yue, Weisheng

    2014-04-01

    Gold (Au) nanoholes are fabricated with electron-beam lithography and used for the investigation of extraordinary transmission in mid-infrared regime. Transmission properties of the nanoholes are studied as the dependence on hole-size. Transmittance spectra are characterized by Fourier transform infrared spectroscopy (FTIR) and enhanced transmittance through the subwavelength holes is observed. The transmission spectra exhibit well-defined maximum and minimum of which the position are determined by the lattice of the hole array. The hole-size primarily influence the transmission intensity and bandwidth of the resonance peak. With an increase of hole-size, while keep lattice constant fixed, the intensity of the resonance peak and the bandwidth increases, which are due to the localized surface plasmons. Numerical simulation for the transmission through the subwavelength holes is performed and the simulated results agree with the experimental observations. Copyright © 2014 American Scientific Publishers.

  14. Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs.

    Science.gov (United States)

    Yue, Weisheng; Wang, Zhihong; Whittaker, John; Schedin, Fredrik; Wu, Zhipeng; Han, Jiaguang

    2016-02-05

    We present our design, fabrication and characterization of resonance-controllable metamaterials operating at mid-infrared wavelengths. The metamaterials are composed of pairs of back-to-back or face-to-face U-shape split-ring resonators (SRRs). Transmission spectra of the metamaterials are measured using Fourier-transform infrared spectroscopy. The results show that the transmission resonance is dependent on the distance between the two SRRs in each SRR pair. The dips in the transmission spectrum shift to shorter wavelengths with increasing distance between the two SRRs for both the back-to-back and face-to-face SRR pairs. The position of the resonance dips in the spectrum can hence be controlled by the relative position of the SRRs. This mechanism of resonance control offers a promising way of developing metamaterials with tunability for optical filters and bio/chemical sensing devices in integrated nano-optics.

  15. Mid-infrared emission and Raman spectra analysis of Er(3+)-doped oxyfluorotellurite glasses.

    Science.gov (United States)

    Chen, Fangze; Xu, Shaoqiong; Wei, Tao; Wang, Fengchao; Cai, Muzhi; Tian, Ying; Xu, Shiqing

    2015-04-10

    This paper reports on the spectroscopic and structural properties in Er(3+)-doped oxyfluorotellurite glasses. The compositional variation accounts for the evolutions of Raman spectra, Judd-Ofelt parameters, radiative properties, and fluorescent emission. It is found that, when maximum phonon energy changes slightly, phonon density plays a crucial role in quenching the 2.7 μm emission generated by the Er(3+):(4)I11/2→(4)I13/2 transition. The comparative low phonon density contributes strong 2.7 μm emission intensity. The high branching ratio (18.63%) and large emission cross section (0.95×10(-20)  cm(2)) demonstrate that oxyfluorotellurite glass contained with 50 mol.% TeO2 has potential application in the mid-infrared region laser.

  16. Broadly, independent-tunable, dual-wavelength mid-infrared ultrafast optical parametric oscillator.

    Science.gov (United States)

    Jin, Yuwei; Cristescu, S M; Harren, Frans J M; Mandon, Julien

    2015-08-10

    We demonstrate a two-crystal mid-infrared dual-wavelength optical parametric oscillator, synchronously pumped by a high power femtosecond Yb:fiber laser. The singly-resonant ring cavity, containing two periodically poled lithium niobate crystals, is capable of generating two synchronized idler wavelengths, independently tunable over 30 THz in the 2.9 - 4.2 μm wavelength region, due to the cascaded quadratic nonlinear effect. The independent tunability of the two idlers makes the optical parametric oscillator a promising source for ultrafast pulse generation towards the THz wavelength region, based on different frequency generation. In addition, the observed frequency doubled idler within the crystal indicates the possibility to realize a broadband optical self-phase locking between pump, signal, idler and higher order generated parametric lights.

  17. Compact tunable mid-infrared laser source by difference frequency generation of two diode-lasers

    Science.gov (United States)

    Schade, W.; Blanke, T.; Willer, U.; Rempel, C.

    1996-07-01

    Two continuous-wave single mode diode-lasers (Hitachi HL 7851G and Toshiba TOLD 9150) are applied as signal and pump sources for difference frequency generation (DFG) in an AgGaS2 crystal with a length of 30 mm. For 90° type I phase matching tunable mid-infrared laser radiation around 5 µm is obtained with an output power of up to P DFG = 0.2 µW while the diode lasers are operated with powers of 30 and 50 mW at the center wavelengths 682 and 791 nm, respectively. The performance of the diode-laser-DFG system is shown as the absorption spectrum of CO for the P(28) rotational line around 2023 cm-1 is probed in a 10cm long cell and in the exhaust of an engine.

  18. Mid-infrared optical properties of chalcogenide glasses within tin-antimony-selenium ternary system.

    Science.gov (United States)

    Lin, Ruiqiang; Chen, Feifei; Zhang, Xiaoyu; Huang, Yicong; Song, Baoan; Dai, Shixun; Zhang, Xianghua; Ji, Wei

    2017-10-16

    In this work, we investigated the mid-infrared (MIR) optical properties of selenide (Se-based) chalcogenide glasses (ChGs) within an As- and Ge-free system, namely the environment-friendly and low-cost tin-antimony-selenium (Sn-Sb-Se, SSS) ternary system, which has not been systematically studied to the best of our knowledge. As compared to ChGs within those conventional Se-based systems, SSS ChGs were found to exhibit extended infrared transmittance range as well as larger linear refractive index (n 0 ). Femtosecond Z-scan measurements show the presence of evident three-photon absorption from Urbach absorption of the SSS ChGs at MIR wavelength, which resonantly enhanced the nonlinear refractive behavior and resulted in large nonlinear refractive index (n 2 ).

  19. Coupling mid-infrared light from a photonic crystal waveguide to metallic transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Redondo, Andrea, E-mail: andrea.blanco@tecnalia.com, E-mail: r.hillenbrand@nanogune.eu [ICT-European Software Institute Division, Tecnalia, Ibaizabal Bidea, Ed. 202, 48170 Zamudio, Bizkaia (Spain); Dpto. Electronica y Telecom., E.T.S. Ingeniería Bilbao, UPV/EHU, Alda. Urquijo, 48103 Bilbao, Bizkaia (Spain); Sarriugarte, Paulo [Nanooptics Group, CIC nanoGUNE Consolider, 20018 Donostia–San Sebastian, Gipuzkoa (Spain); Garcia-Adeva, Angel [Dpto. Fisica Aplicada I, E.T.S. Ingeniería de Bilbao, UPV-EHU, Alda. Urquijo, 48103 Bilbao, Bizkaia (Spain); Zubia, Joseba [Dpto. Electronica y Telecom., E.T.S. Ingeniería Bilbao, UPV/EHU, Alda. Urquijo, 48103 Bilbao, Bizkaia (Spain); Hillenbrand, Rainer, E-mail: andrea.blanco@tecnalia.com, E-mail: r.hillenbrand@nanogune.eu [Nanooptics Group, CIC nanoGUNE Consolider, 20018 Donostia–San Sebastian, Gipuzkoa (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Bizkaia (Spain)

    2014-01-06

    We propose and theoretically study a hybrid structure consisting of a photonic crystal waveguide (PhC-wg) and a two-wire metallic transmission line (TL), engineered for efficient transfer of mid-infrared (mid-IR) light between them. An efficiency of 32% is obtained for the coupling from the transverse magnetic (TM) photonic mode to the symmetric mode of the TL, with a predicted intensity enhancement factor of 53 at the transmission line surface. The strong coupling is explained by the small phase velocity mismatch and sufficient spatial overlapping between the modes. This hybrid structure could find applications in highly integrated mid-IR photonic-plasmonic devices for biological and gas sensing, among others.

  20. Conceptual thermal design and analysis of a far-infrared/mid-infrared remote sensing instrument

    Science.gov (United States)

    Roettker, William A.

    1992-07-01

    This paper presents the conceptual thermal design and analysis results for the Spectroscopy of the Atmosphere using Far-Infrared Emission (SAFIRE) instrument. SAFIRE has been proposed for Mission to Planet Earth to study ozone chemistry in the middle atmosphere using remote sensing of the atmosphere in the far-infrared (21-87 microns) and mid-infrared (9-16 microns) spectra. SAFIRE requires that far-IR detectors be cooled to 3-4 K and mid-IR detectors to 80 K for the expected mission lifetime of five years. A superfluid helium dewar and Stirling-cycle cryocoolers provide the cryogenic temperatures required by the infrared detectors. The proposed instrument thermal design uses passive thermal control techniques to reject 465 watts of waste heat from the instrument.

  1. Mid-Infrared Spectrum of the Zodiacal Emission: Detection of Crystalline Silicates in Interplanetary Dust

    Science.gov (United States)

    Ootsubo, T.; Onaka, T.; Yamamura, I.; Ishihara, D.; Tanabe, T.; Roellig, T. L.

    2003-01-01

    Within a few astronomical units of the Sun the solar system is filled with interplanetary dust, which is believed to be dust of cometary and asteroidal origin. Spectroscopic observations of the zodiacal emission with moderate resolution provide key information on the composition and size distribution of the dust in the interplanetary space. They can be compared directly to laboratory measurements of candidate materials, meteorites, and dust particles collected in the stratosphere. Recently mid-infrared spectroscopic observations of the zodiacal emission have been made by two instruments on board the Infrared Space Observatory; the camera (ISOCAM) and the spectrophotometer (ISOPHOT-S). A broad excess emission feature in the 9-11 micron range is reported in the ISOCAM spectrum, whereas the ISOPHOT-S spectra in 6-12 microns can be well fitted by a blackbody radiation without spectral features.

  2. Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Galli, I.; Cappelli, F.; Bartalini, S.; Mazzotti, D.; Giusfredi, G.; Cancio, P.; De Natale, P. [CNR-INO-Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Firenze, FI (Italy); LENS-European Laboratory for Non-Linear Spectroscopy, Via Carrara 1, 50019 Sesto Fiorentino, FI (Italy); Siciliani de Cumis, M. [CNR-INO-Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Firenze, FI (Italy); Borri, S. [CNR-IFN-Istituto di Fotonica e Nanotecnologie, Via Amendola 173, 70126 Bari, BA (Italy); Montori, A. [LENS-European Laboratory for Non-Linear Spectroscopy, Via Carrara 1, 50019 Sesto Fiorentino, FI (Italy); Akikusa, N. [Development Bureau Laser Device R and D Group, Hamamatsu Photonics KK, Shizuoka 434-8601 (Japan); Yamanishi, M. [Central Research Laboratories, Hamamatsu Photonics KK, Shizuoka 434-8601 (Japan)

    2013-03-25

    We report on the linewidth narrowing of a room-temperature mid-infrared quantum cascade laser by phase-locking to a difference-frequency-generated radiation referenced to an optical frequency comb synthesizer. A locking bandwidth of 250 kHz, with a residual rms phase-noise of 0.56 rad, has been achieved. The laser linewidth is narrowed by more than 2 orders of magnitude below 1 kHz, and its frequency is stabilized with an absolute traceability of 2 Multiplication-Sign 10{sup -12}. This source has allowed the measurement of the absolute frequency of a CO{sub 2} molecular transition with an uncertainty of about 1 kHz.

  3. Plasmonic waveguides in mid-infrared using silicon-insulator-silicon

    Science.gov (United States)

    Gamal, Rania; Shafaay, Sarah; Ismail, Yehea; Swillam, Mohamed

    2015-03-01

    The mid-infrared (MIR) region is one of the most thriving spectral regions as it contains the vibrational resonances of several molecules of interest, as well as the absorption bands for hot bodies. In this work, we propose a novel dielectric waveguide that confines the light in a nanoscale air gap. This dielectric waveguide is a suitable candidate for on-chip sensing. Detailed dispersion analysis of this 3D waveguide is also provided. The effect of the refractive index change in the gap is studied and shows very high sensitivity and causes significant changes in the modal parameters. We also show that these waveguide modes exhibit plasmonic-like characteristics at the MIR region with controllable plasma frequency, without the inclusion of any metals. This waveguide is also utilized in various on-chip applications with nanoscale confinement at the MIR region.

  4. Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives

    Science.gov (United States)

    Bauer, C.; Sharma, A. K.; Willer, U.; Burgmeier, J.; Braunschweig, B.; Schade, W.; Blaser, S.; Hvozdara, L.; Müller, A.; Holl, G.

    2008-09-01

    Optical methods are well-established for trace gas detection in many applications, such as industrial process control or environmental sensing. Consequently, they gain much interest in the discussion of sensing methods for counterterrorism, e.g., the detection of explosives. Explosives as well as their decomposition products possess strong absorption features in the mid-infrared (MIR) spectral region between λ=5 and 11 μm. In this report we present two different laser spectroscopic approaches based on quantum cascade lasers (QCLs) operating at wavelengths around λ=5 and 8 μm, respectively. Stand-off configuration for the remote detection of nitro-based explosives (e.g., trinitrotoluene, TNT) and a fiber coupled sensor device for the detection of triacetone triperoxide (TATP) are discussed.

  5. Non-destructive testing of ceramic materials using mid-infrared ultrashort-pulse laser

    Science.gov (United States)

    Sun, S. C.; Qi, Hong; An, X. Y.; Ren, Y. T.; Qiao, Y. B.; Ruan, Liming M.

    2018-04-01

    The non-destructive testing (NDT) of ceramic materials using mid-infrared ultrashort-pulse laser is investigated in this study. The discrete ordinate method is applied to solve the transient radiative transfer equation in 2D semitransparent medium and the emerging radiative intensity on boundary serves as input for the inverse analysis. The sequential quadratic programming algorithm is employed as the inverse technique to optimize objective function, in which the gradient of objective function with respect to reconstruction parameters is calculated using the adjoint model. Two reticulated porous ceramics including partially stabilized zirconia and oxide-bonded silicon carbide are tested. The retrieval results show that the main characteristics of defects such as optical properties, geometric shapes and positions can be accurately reconstructed by the present model. The proposed technique is effective and robust in NDT of ceramics even with measurement errors.

  6. The Geminga pulsar wind nebula in the mid-infrared and submillimetre

    Science.gov (United States)

    Greaves, J. S.; Holland, W. S.

    2017-10-01

    The nearby middle-aged Geminga pulsar has crossed the Galactic plane within the last ∼0.1 Myr. We present archival data from Wide-field Infrared Survey Explorer and from SCUBA and SCUBA-2 on the James Clerk Maxwell Telescope to assess whether any mid-infrared and submillimetre emission arises from interaction of the pulsar wind nebula with the interstellar medium. A candidate shell and bow shock are reported. Given the low pulsar velocity and local density, dust grains appear able to penetrate into the nebula. A compact source seen towards the pulsar is fitted with a dust spectrum. If confirmed as a real association at higher resolution, this could be a circum-pulsar disc of at least a few Earth-masses, in which future planets could form.

  7. Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs

    KAUST Repository

    Yue, Weisheng

    2016-01-11

    We present our design, fabrication and characterization of resonance-controllable metamaterials operating at mid-infrared wavelengths. The metamaterials are composed of pairs of back-to-back or face-to-face U-shape split-ring resonators (SRRs). Transmission spectra of the metamaterials are measured using Fourier-transform infrared spectroscopy. The results show that the transmission resonance is dependent on the distance between the two SRRs in each SRR pair. The dips in the transmission spectrum shift to shorter wavelengths with increasing distance between the two SRRs for both the back-to-back and face-to-face SRR pairs. The position of the resonance dips in the spectrum can hence be controlled by the relative position of the SRRs. This mechanism of resonance control offers a promising way of developing metamaterials with tunability for optical filters and bio/chemical sensing devices in integrated nano-optics.

  8. The influence of melt purification and structure defects on mid-infrared light emitting diodes

    CERN Document Server

    Krier, A

    2003-01-01

    Mid-infrared light emitting diodes which exhibit more than 7 mW (pulsed) and 0.35 mW dc output power at 3.3 mu m and at room temperature have been fabricated by liquid phase epitaxy using Pb as a neutral solvent. Using Pb solution an increase in pulsed output power of between two and three times was obtained compared with InAs light emitting diodes (LEDs) made using rare-earth gettering. The performance improvements were attributed to a reduction in residual carrier concentration arising from the removal of un-intentional donors and structure defects in the InAs active region material. These LEDs are well matched to the CH sub 4 absorption spectrum and potentially could form the basis of a practical infrared CH sub 4 gas sensor.

  9. Continuously tunable monomode mid-infrared vertical external cavity surface emitting laser on Si

    Science.gov (United States)

    Khiar, A.; Rahim, M.; Fill, M.; Felder, F.; Hobrecker, F.; Zogg, H.

    2010-10-01

    A tunable PbTe based mid-infrared vertical external cavity surface emitting laser is described. The active part is a ˜1 μm thick PbTe layer grown epitaxially on a Bragg mirror on the Si-substrate. The cavity is terminated with a curved Si/SiO Bragg top mirror and pumped optically with a 1.55 μm laser. Cavity length is <100 μm in order that only one longitudinal mode is supported. By changing the cavity length, up to 5% wavelength continuous and mode-hop free tuning is achieved at fixed temperature. The total tuning extends from 5.6 to 4.7 μm at 100-170 K operation temperature.

  10. IV-VI mid-infrared VECSEL on Si-substrate

    Science.gov (United States)

    Fill, M.; Felder, F.; Rahim, M.; Khiar, A.; Rodriguez, R.; Zogg, H.; Ishida, A.

    2012-03-01

    Optically pumped VECSEL (vertical external cavity surface emitting lasers) based on IV-VI semiconductors grown on Si cover the entire wavelength range between 3.0 and 10 μm. Thanks to their simple structure and large wavelength coverage they are an interesting alternative laser technology to access the mid-infrared wavelength region. The active layers consist either of homogeneous "bulk" layers, double heterostructures or quantum well structures of the PbSe, PbTe or PbS material system. Maximum operation temperatures of 325 K are achieved with output powers above 200 mWp. Further, continuously tunable VECSEL are presented, emitting between 3.2 and 5.4 μm. The single emission mode is continuously tunable over 50-100 nm around the center wavelength, yielding an output power > 10 mWp. The axial symmetric emission beam has a half divergence angle of < 3.3°.

  11. Broadly tunable mid-infrared VECSEL for multiple components hydrocarbon gas sensing

    Science.gov (United States)

    Rey, J. M.; Fill, M.; Felder, F.; Sigrist, M. W.

    2014-12-01

    A new sensing platform to simultaneously identify and quantify volatile C1 to C4 alkanes in multi-component gas mixtures is presented. This setup is based on an optically pumped, broadly tunable mid-infrared vertical-external-cavity surface-emitting laser (VECSEL) developed for gas detection. The lead-chalcogenide VECSEL is the key component of the presented optical sensor. The potential of the proposed sensing setup is illustrated by experimental absorption spectra obtained from various mixtures of volatile hydrocarbons and water vapor. The sensor has a sub-ppm limit of detection for each targeted alkane in a hydrocarbon gas mixture even in the presence of a high water vapor content.

  12. Using low-loss phase-change materials for mid-infrared antenna resonance tuning.

    Science.gov (United States)

    Michel, Ann-Katrin U; Chigrin, Dmitry N; Maß, Tobias W W; Schönauer, Kathrin; Salinga, Martin; Wuttig, Matthias; Taubner, Thomas

    2013-08-14

    We show tuning of the resonance frequency of aluminum nanoantennas via variation of the refractive index n of a layer of phase-change material. Three configurations have been considered, namely, with the antennas on top of, inside, and below the layer. Phase-change materials offer a huge index change upon the structural transition from the amorphous to the crystalline state, both stable at room temperature. Since the imaginary part of their permittivity is negligibly small in the mid-infrared spectral range, resonance damping is avoided. We present resonance shifting to lower as well as to higher wavenumbers with a maximum shift of 19.3% and a tuning figure of merit, defined as the resonance shift divided by the full-width at half-maximum (FWHM) of the resonance peak, of 1.03.

  13. Direct detection of hundreds of exoplanets with a space-based mid-infrared interferometer

    Science.gov (United States)

    Quanz, S. P.; Kammerer, J.

    2017-09-01

    One of the long-term goals of exoplanet research is the (atmospheric) characterization of a sizeable sample of small, terrestrial planets in order to assess their potential habitability. In this context it is important to quantitatively assess the scientific return of various mission concepts in order to derive robust science requirements. While transit and secondary eclipse spectroscopy may provide data on a few systems, it seems questionable whether a larger planet sample can be investigated given that most planets do not transit in front of their host stars. Hence, direct detection methods may be required. Here we predict the exoplanet yield of a space-based mid-infrared nulling interferometer (akin to the Darwin mission concept) using a catalog of nearby stars and the planet occurrence rates found by NASA's Kepler mission. We find that a mission with the technical specifications of Darwin could detect >300 exoplanets (with radii between 0.5 and 6 Earth radii). Roughly 85 planets have radii between 0.5 and 1.75 Earth radii and equilibrium temperatures between 200 and 450 K and are prime targets for spectroscopic follow-up observations in the second phase of the mission investigating their potential habitability. Higher planet yields can be realized by further optimizing the observing strategy. We also compare the baseline planet yield of a space-based mid-infrared interferometer to that of a large space-based optical/IR telescope. We conclude that a Darwin-like mission concept should be put back on the long-term agenda of the exoplanet community and related space agencies.

  14. Just add water: Accuracy of analysis of diluted human milk samples using mid-infrared spectroscopy.

    Science.gov (United States)

    Smith, R W; Adamkin, D H; Farris, A; Radmacher, P G

    2017-01-01

    To determine the maximum dilution of human milk (HM) that yields reliable results for protein, fat and lactose when analyzed by mid-infrared spectroscopy. De-identified samples of frozen HM were obtained. Milk was thawed and warmed (40°C) prior to analysis. Undiluted (native) HM was analyzed by mid-infrared spectroscopy for macronutrient composition: total protein (P), fat (F), carbohydrate (C); Energy (E) was calculated from the macronutrient results. Subsequent analyses were done with 1 : 2, 1 : 3, 1 : 5 and 1 : 10 dilutions of each sample with distilled water. Additional samples were sent to a certified lab for external validation. Quantitatively, F and P showed statistically significant but clinically non-critical differences in 1 : 2 and 1 : 3 dilutions. Differences at higher dilutions were statistically significant and deviated from native values enough to render those dilutions unreliable. External validation studies also showed statistically significant but clinically unimportant differences at 1 : 2 and 1 : 3 dilutions. The Calais Human Milk Analyzer can be used with HM samples diluted 1 : 2 and 1 : 3 and return results within 5% of values from undiluted HM. At a 1 : 5 or 1 : 10 dilution, however, results vary as much as 10%, especially with P and F. At the 1 : 2 and 1 : 3 dilutions these differences appear to be insignificant in the context of nutritional management. However, the accuracy and reliability of the 1 : 5 and 1 : 10 dilutions are questionable.

  15. High spatial resolution observations of the T Tau system - II. Interferometry in the mid-infrared

    International Nuclear Information System (INIS)

    Ratzka, Thorsten

    2008-01-01

    Each time the resolution was improved, observations of the young low-mass star T Tau led to new insights. Initially classified as the prototype of low-mass pre-main-sequence stars, measurements with high resolution techniques in the near-infrared revealed the existence of a deeply embedded companion only 0.7 arcsec to the south. Later on, this companion itself has been resolved into two sources with a separation of only about 50 mas. We investigated both the optically bright northern component and the embedded southern binary with the MID-infrared Interferometric instrument (MIDI). The resulting visibilities of the northern component decrease with wavelength, independent of the baseline's position angle. This is a clear sign of the large face-on circumstellar disc. With a simultaneous fit of a radiative transfer model to both the interferometric results and the spectral energy distribution, the properties of this disc can be determined without the high degeneracy of fits to the spectral energy distribution alone. Since the visibilities of the southern binary are clearly dominated by the typical sinusoidal binary signal, we could for the first time in the mid-infrared derive separate spectra for both components together with a very precise relative position. This position is in excellent agreement with the orbit found from a fit to the near-infrared adaptive optics measurements. The orbit with its small periastron distance indicates tidally truncated discs, which are consistent with the interferometric measurements. The peculiar properties of the infrared companion can be explained by the model of an intermediate mass star extincted by an almost edge-on disc.

  16. An Overview of the Mid-Infrared Spectro-Interferometer MATISSE: Science, Concept, and Current Status

    Science.gov (United States)

    Matter, A.; Lopez, B.; Antonelli, P.; Lehmitz, M.; Bettonvil, F.; Beckmann, U.; Lagarde, S.; Jaffe, W.; Petrov, R. G.; Berio, P.; hide

    2016-01-01

    MATISSE is the second-generation mid-infrared spectrograph and imager for the Very Large Telescope Interferometer (VLTI) at Paranal. This new interferometric instrument will allow significant advances by opening new avenues in various fundamental research fields: studying the planet-forming region of disks around young stellar objects, understanding the surface structures and mass loss phenomena affecting evolved stars, and probing the environments of black holes in active galactic nuclei. As a first breakthrough, MATISSE will enlarge the spectral domain of current optical interferometers by offering the L and M bands in addition to the N band. This will open a wide wavelength domain, ranging from 2.8 to 13 microns, exploring angular scales as small as 3 mas (L band) 10 mas (N band). As a second breakthrough, MATISSE will allow mid-infrared imaging - closure-phase aperture-synthesis imaging - with up to four Unit Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. Moreover, MATISSE will offer a spectral resolution range from R approx. 30 to R approx. 5000. Here, we present one of the main science objectives, the study of protoplanetary disks, that has driven the instrument design and motivated several VLTI upgrades (GRA4MAT and NAOMI). We introduce the physical concept of MATISSE including a description of the signal on the detectors and an evaluation of the expected performances. We also discuss the current status of the MATISSE instrument, which is entering its testing phase, and the foreseen schedule for the next two years that will lead to the first light at Paranal.

  17. Narrowband widely tunable CW mid-infrared generator based on difference frequency generation in periodically poled KTP and KTA crystals

    Czech Academy of Sciences Publication Activity Database

    Baravets, Yauhen; Honzátko, Pavel; Todorov, Filip; Gladkov, Petar

    2016-01-01

    Roč. 48, č. 5 (2016), May ISSN 0306-8919 R&D Projects: GA MŠk LD14112 Grant - others:COST(XE) MP1204 Institutional support: RVO:67985882 Keywords : Fiber optics amplifiers * Difference-frequency generation * Mid-infrared tunable laser source Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.055, year: 2016

  18. Diffuse-reflectance fourier-transform mid-infrared spectroscopy as a method of characterizing changes in soil organic matter

    Science.gov (United States)

    Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy (MidIR) can identify the presence of important organic functional groups in soil organic matter (SOM). Soils contain myriad organic and inorganic components that absorb in the MidIR so spectral interpretation needs to be validated in or...

  19. Plasmonic tuning in mid-infrared regime with a composite array of graphene ribbons and silver nanowires

    Science.gov (United States)

    Sun, Cheng; Wang, Xiaoqiu; Zheng, Yuxuan; Yang, Tianhui; Zeng, Mengjia

    2018-03-01

    This work reports on a study regarding the systematic tuning of plasmonic resonance wavelength in the mid-infrared regime, by using a composite array composed of graphene ribbons and silver nanowires. A composite array that consists of graphene ribbons and silver nanowires are proposed on top of a glass substrate. The light transmittance is numerically simulated in the mid-infrared wavelength range from 6 to 20 μm with several parameters being varied, including the Fermi energy level and the layer number of the graphene ribbons, the radius of the silver nanowires, as well as the grating constant of the array. The results demonstrate that the plasmonic resonance wavelength associated with the composite array and the corresponding full width at half maximum can systematically be tuned in the mid-infrared range, by carefully adjusting the parameters of either the graphene ribbons or the silver nanowires, or both. Based on the tuning characteristics revealed by this study, we suggest that the structure of the composite array comprised of graphene ribbons and silver nanowires be implemented in further designs of plasmonic tuning devices at mid-infrared wavelengths.

  20. Mid-infrared characterization of two-dimensional photonic crystal slabs fabricated in silicon with laser interference lithography

    NARCIS (Netherlands)

    Prodan, L.G.

    2008-01-01

    The goal of the present work was to perform mid-infrared characterization of two dimensional photonic crystal slabs fabricated in silicon with laser interference lithography. A two-dimensional (2D) silicon photonic crystal (PhC), which is designed to provide a modified dispersion for photon energies

  1. Novel mid-infrared imaging system based on single-mode quantum cascade laser illumination and upconversion

    DEFF Research Database (Denmark)

    Tomko, Jan; Junaid, Saher; Tidemand-Lichtenberg, Peter

    2017-01-01

    Compared to the visible or near-infrared (NIR) spectral regions, there is a lack of very high sensitivity detectors in the mid-infrared (MIR) that operate near room temperature. Upconversion of the MIR light to NIR light that is imaged using affordable, fast, and sensitive NIR detectors or camera...

  2. A GLIMPSE of Star Formation in the Outer Galaxy

    Science.gov (United States)

    Winston, Elaine; Hora, Joseph L.; Tolls, Volker

    2018-01-01

    The wealth of infrared data provided by recent infrared missions such as Spitzer, Herschel, and WISE has yet to be fully mined in the study of star formation in the outer galaxy. The nearby galaxy and massive star forming regions towards the galactic center have been extensively studied. However the outer regions of the Milky Way, where the metallicity is intermediate in value between the inner galactic disk and the Magellanic Clouds, has not been systematically studied. We are using Spitzer/IRAC’s GLIMPSE (Galactic Legacy Infrared Mid-plane Survey Extraordinaire) observations of the galactic plane at 3.6, 4.5, 5.8, and 8.0 microns to identify young stellar objects (YSOs) via their disk emission in the mid-infrared. A tiered clustering analysis is then performed: preliminary large scale clustering is identified across the field using a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) technique. Smaller scale sub clustering within these regions is performed using an implementation of the Minimum Spanning Tree (MST) technique. The YSOs are then compared to known objects in the SIMBAD catalogue and their photometry and cluster membership is augmented using available Herschel and WISE photometry. We compare our results to those in the inner galaxy to determine how dynamical processes and environmental factors affect the star formation efficiency. These results will have applications to the study of star formation in other galaxies, where only global properties can be determined. We will present here the results of our initial investigation into star formation in the outer galaxy using the Spitzer/GLIMPSE observations of the SMOG field.

  3. Mid-infrared pulsed laser ablation of the arterial wall. Mechanical origin of "acoustic" wall damage and its effect on wall healing

    NARCIS (Netherlands)

    van Erven, L.; van Leeuwen, T. G.; Post, M. J.; van der Veen, M. J.; Velema, E.; Borst, C.

    1992-01-01

    Pulsed mid-infrared lasers are an alternative to excimer lasers for transluminal angioplasty. The mid-infrared lasers, however, were reported to produce "acoustic" wall damage that might impair the immediate and long-term results. To study the immediate and long-term effects on the arterial wall,

  4. Visible and Mid-Infrared Gypsum Optical Constants for Modeling of Martian Deposits

    Science.gov (United States)

    Roush, Ted L.; Esposito, Francesca; Rossmann, George R.; Colangeli, Luigi

    2007-08-01

    Introduction: Recent and on-going remote and in situ observations indicate that sulfates are present in significant abundances at various locations on Mars [1-7]. The Mars Reconnaissance Orbiter (MRO) imaging spectrometer (CRISM) is returning hyperspectral data at higher spatial resolution [8] than the OMEGA instrument on the Mars Express Mission [3]. Data from both OMEGA and CRISM have provided spectral evidence for the presence of gypsum and various hydrated sulfates on the Martian surface [e.g. 3-7] Thus, the optical properties of sulfates, in general, are of interest to quantitative interpretation of this increasing volume of remotely sensed data. This is because optical constants describe how a material interacts with electromagnetic radiation and represent the fundamental values used in radiative transfer calculations describing a variety of physical environments. Such environments include atmospheres where aerosols are present, planetary and satellite regoliths, and circumstellar dust clouds. Here we focus upon gypsum because of its applicability due to its identification on Mars. Also, gypsum is a mineral that is readily available in samples sizes that are suitable for study using a variety of spectral measurements. In the infrared (>5 μm) several studies reporting the optical constants of gypsum can be used in evaluating the approach used here. Most importantly, there is a general lack of data regarding the optical constants for gypsum at visible and mid-infrared wavelengths (0.4-5 μm) that are being observed by OMEGA and CRISM. Background: In the infrared, there have been several studies focused at determining the optical constants of gypsum using classical dispersion models [9-11]. These have used a variety of samples including; crystals, compressed pellets of pure materials, and grains suspended in a KBr matrix. Spectral measurements of gypsum, and other sulfates, have existed for about 100 years at visible and mid-infrared wavelengths (0.4-5 μm) [e

  5. Recent advances of mid-infrared compact, field deployable sensors: principles and applications

    Science.gov (United States)

    Tittel, Frank; Gluszek, Aleksander; Hudzikowski, Arkadiusz; Dong, Lei; Li, Chunguang; Patimisco, Pietro; Sampaolo, Angelo; Spagnolo, Vincenzo; Wojtas, Jacek

    2016-04-01

    The recent development of compact interband cascade lasers(ICLs) and quantum cascade lasers (QCLs) based trace gas sensors will permit the targeting of strong fundamental rotational-vibrational transitions in the mid-infrared which are one to two orders of magnitude more intense than transitions in the overtone and combination bands in the near-infrared. This has led to the design and fabrication of mid-infrared compact, field deployable sensors for use in the petrochemical industry, environmental monitoring and atmospheric chemistry. Specifically, the spectroscopic detection and monitoring of four molecular species, methane (CH4) [1], ethane (C2H6), formaldehyde (H2CO) [2] and hydrogen sulphide (H2S) [3] will be described. CH4, C2H6 and H2CO can be detected using two detection techniques: mid-infrared tunable laser absorption spectroscopy (TDLAS) using a compact multi-pass gas cell and quartz enhanced photoacoustic spectroscopy (QEPAS). Both techniques utilize state-of-the-art mid-IR, continuous wave (CW), distributed feedback (DFB) ICLs and QCLs. TDLAS was performed with an ultra-compact 54.6m effective optical path length innovative spherical multipass gas cell capable of 435 passes between two concave mirrors separated by 12.5 cm. QEPAS used a small robust absorption detection module (ADM) which consists of a quartz tuning fork (QTF), two optical windows, gas inlet/outlet ports and a low noise frequency pre-amplifier. Wavelength modulation and second harmonic detection were employed for spectral data processing. TDLAS and QEPAS can achieve minimum detectable absorption losses in the range from 10-8 to 10-11cm-1/Hz1/2. Several recent examples of real world applications of field deployable gas sensors will be described. For example, an ICL based TDLAS sensor system is capable of detecting CH4 and C2H6 concentration levels of 1 ppb in a 1 sec. sampling time, using an ultra-compact, robust sensor architecture. H2S detection was realized with a THz QEPAS sensor

  6. Towards a Unified View of Inhomogeneous Stellar Winds in Isolated Supergiant Stars and Supergiant High Mass X-Ray Binaries

    Science.gov (United States)

    Martínez-Núñez, Silvia; Kretschmar, Peter; Bozzo, Enrico; Oskinova, Lidia M.; Puls, Joachim; Sidoli, Lara; Sundqvist, Jon Olof; Blay, Pere; Falanga, Maurizio; Fürst, Felix; Gímenez-García, Angel; Kreykenbohm, Ingo; Kühnel, Matthias; Sander, Andreas; Torrejón, José Miguel; Wilms, Jörn

    2017-10-01

    Massive stars, at least ˜10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy. In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense "clumps". The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution. Supergiant high mass X-ray binaries (SgXBs) are among the brightest X

  7. Mid-infrared spectroscopy as a polymer selection tool for formulating amorphous solid dispersions.

    Science.gov (United States)

    Wegiel, Lindsay A; Mauer, Lisa J; Edgar, Kevin J; Taylor, Lynne S

    2014-02-01

    The development of amorphous solid dispersions is of increasing interest in the delivery of bioactive compounds; however, there is a need for a methodology that enables the rational selection of polymers for solid dispersion formulations with optimal stability to crystallization. The objective of this study was to evaluate the use of mid-infrared (IR) spectroscopy for this purpose. Polymers evaluated included poly(vinylpyrrolidone) (PVP), Eudragit E100 (E100), carboxymethylcellulose acetate butyrate (CMCAB), hydroxypropylmethylcellulose (HPMC), HPMC acetate succinate (HPMCAS) and poly(acrylic acid) (PAA). Model crystalline bioactive polyphenols included quercetin and naringenin. Amorphous solid dispersions were prepared by dissolving both polyphenol and polymer in a common solvent followed by solvent evaporation. Mid-IR spectroscopy was used to determine and quantify the extent of polyphenol-polymer interactions, and powder X-ray diffraction was used to monitor physical stability following storage at different environmental conditions. The mid-IR analysis suggested the following rank order for the crystallization-inhibiting performance of the different polymers: E100 > PVP > HPMCAS > HPMC ≥ CMCAB > PAA. The initial performance of the different polymers was evaluated using the highest concentration of polyphenol for which x-ray amorphous solid dispersions could be prepared via rotary evaporation. The observed stability followed that predicted from the mid-infrared spectroscopy evaluation of intermolecular interactions. The dispersions with better polyphenol-polymer interactions were stable against crystallization when exposed to high relative humidity and high temperatures; on the other hand, systems that had weak interactions were not stable to crystallization when stored at moderate environmental conditions. Based on the observed ability of mid-IR analysis to enable the characterization of intermolecular polyphenol-polymer interactions and

  8. Water in the early solar system: Mid-infrared studies of aqueous alteration on asteroids.

    Science.gov (United States)

    McAdam, Margaret M.; Sunshine, Jessica M.; Kelley, Michael S.; Trilling, David E.

    2017-10-01

    This work investigates the distribution of water in the early Solar System by connecting asteroids to carbonaceous chondrite meteorites using spectroscopy. Aqueous alteration or the chemical reaction between liquid water and silicates on the parent asteroid, has extensively affected several groups of carbonaceous chondrites. The degree of alteration or amount of hydrated minerals produced depends on a number of factors including the abundance of coaccreted water-ice, the internal distribution of water in the parent body and the setting of alteration (e.g., open vs. closed setting). Despite this complexity which is still under investigation, the mineralogical changes produced by aqueous alteration are well understood (e.g., Howard et al., 2015). The mid-infrared spectral region has been shown to be a tool for estimating the degree of alteration of asteroids and meteorites remotely (McAdam et al., 2015). Specifically, mid-infrared spectral features changes continuously with degree of alteration. In this region meteorites can be categorized into four groups based on their spectral characteristics: anhydrous, less altered, intermediately altered and highly altered. We present the estimated degrees of alteration for 73 main belt asteroids using these results. Hydrated minerals appear to be widespread in the main belt and asteroids have variable degrees of alteration. There does not appear to be any relationship between the estimated degree of alteration and size, albedo or heliocentric distance. This indicates that water-ice must have been a significant component of the solar nebula in the 2-5 AU region during the time of carbonaceous chondrite accretion (~2.7-4 Ma post-CAI formation; Sugiura and Fujiya, 2014). The snow-line therefore must have been in this region during this epoch. Furthermore, local heterogeneities of water-ice were likely common since asteroids of all sizes and heliocentric distances may exhibit any degree from anhydrous to highly altered

  9. Cloud top structure of Venus revealed by Subaru/COMICS mid-infrared images

    Science.gov (United States)

    Sato, T. M.; Sagawa, H.; Kouyama, T.; Mitsuyama, K.; Satoh, T.; Ohtsuki, S.; Ueno, M.; Kasaba, Y.; Nakamura, M.; Imamura, T.

    2014-11-01

    We have investigated the cloud top structure of Venus by analyzing ground-based images taken at the mid-infrared wavelengths of 8.66 μm and 11.34 μm. Venus at a solar phase angle of ∼90°, with the morning terminator in view, was observed by the Cooled Mid-Infrared Camera and Spectrometer (COMICS), mounted on the 8.2-m Subaru Telescope, during the period October 25-29, 2007. The disk-averaged brightness temperatures for the observation period are ∼230 K and ∼238 K at 8.66 μm and 11.34 μm, respectively. The obtained images with good signal-to-noise ratio and with high spatial resolution (∼200 km at the sub-observer point) provide several important findings. First, we present observational evidence, for the first time, of the possibility that the westward rotation of the polar features (the hot polar spots and the surrounding cold collars) is synchronized between the northern and southern hemispheres. Second, after high-pass filtering, the images reveal that streaks and mottled and patchy patterns are distributed over the entire disk, with typical amplitudes of ∼0.5 K, and vary from day to day. The detected features, some of which are similar to those seen in past UV images, result from inhomogeneities of both the temperature and the cloud top altitude. Third, the equatorial center-to-limb variations of brightness temperatures have a systematic day-night asymmetry, except those on October 25, that the dayside brightness temperatures are higher than the nightside brightness temperatures by 0-4 K under the same viewing geometry. Such asymmetry would be caused by the propagation of the migrating semidiurnal tide. Finally, by applying the lapse rates deduced from previous studies, we demonstrate that the equatorial center-to-limb curves in the two spectral channels give access to two parameters: the cloud scale height H and the cloud top altitude zc. The acceptable models for data on October 25 are obtained at H = 2.4-4.3 km and zc = 66-69 km; this supports

  10. Mid-infrared pulsed fiber lasers operating at 3μm region

    Science.gov (United States)

    Liu, Yong; Li, Jianfeng; Yu, Luohong; Zhang, Zhiyao; Li, Heping; Zhou, Xiaojun

    2014-11-01

    Mid-infrared pulsed fiber laser with centered wavelength from 2 to 5 μm have attracted substantial attention owing to their potential applications in defence, laser microsurgery, material processing, nonlinear frequency conversion, etc. We demonstrated our recent achievements at 3 μm pulsed fiber lasers by utilizing Q-switching method. Firstly, a cascaded dual wavelength actively Q-switched Ho3+-doped ZBLAN fiber was reported by inserting an external electrically driven acoustic-optical modulator (AOM) into the cavity. The 3.0 μm and 2.07 μm pulse trains were achieved with a μs level time delay corresponding to the pulse energy of 29 μJ and 7 μJ, pulse duration of 380 ns and 260 ns, respectively. The narrower pulse width in this case compared to that in passively Q-switched fiber lasers can be attributed to the much higher modulation depth of AOM. Using a reversely designed semiconductor saturable mirror (SESAM) as the saturable absorber (SA), we presented a passively Q-switched Ho3+-doped ZBLAN fiber laser operating at ~2971 nm, the obtained maximum pulse energy of 6.65 μJ only limited by the maximum pump power was also the highest level from passively Q-switched fiber lasers at this wavelength range, and corresponding pulse repetition rate and duration were 47.6 kHz and 1.68 μs, respectively. Then using a Fe2+: ZnSe crystal with an initial transmission of 69 % as the SA, a passively Q-switched Ho3+-doped ZBLAN fiber laser operating at 2970.3 nm was also achieved. The obtained pulse duration and repetition rate were 1.92 μs and 62.74 kHz, respectively with an output power of 266 mW and a pulse energy of 4.24 μJ. The further performance improvements were possible because they were just limited by the maximum pump power. To sum up, the above achievements would be beneficial for further development of mid-infrared pulsed fiber lasers.

  11. Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser.

    Science.gov (United States)

    Lin, Taichen; Aoki, Akira; Saito, Norihito; Yumoto, Masaki; Nakajima, Sadahiro; Nagasaka, Keigo; Ichinose, Shizuko; Mizutani, Koji; Wada, Satoshi; Izumi, Yuichi

    2016-12-01

    Mid-infrared erbium: yttrium-aluminum-garnet (Er:YAG) and erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers (2.94- and 2.78-μm, respectively) are utilized for effective dental hard tissue treatment because of their high absorption in water, hydroxide ion, or both. Recently, a mid-infrared tunable, nanosecond pulsed, all-solid-state chromium-doped: cadmium-selenide (Cr:CdSe) laser system was developed, which enables laser oscillation in the broad spectral range around 2.9 μm. The purpose of this study was to evaluate the ablation of dental hard tissue by the nanosecond pulsed Cr:CdSe laser at a wavelength range of 2.76-3.00 μm. Enamel, dentin, and cementum tissue were irradiated at a spot or line at a fluence of 0-11.20 J/cm 2 /pulse (energy output: 0-2.00 mJ/pulse) with a repetition rate of 10 Hz and beam diameter of ∼150 μm on the target (pulse width ∼250 ns). After irradiation, morphological changes, ablation threshold, depth, and efficiency, and thickness of the structurally and thermally affected layer of irradiated surfaces were analyzed using stereomicroscopy, scanning electron microscopy (SEM), and light microscopy of non-decalcified histological sections. The nanosecond pulsed irradiation without water spray effectively ablated dental hard tissue with no visible thermal damage such as carbonization. The SEM analysis revealed characteristic micro-irregularities without major melting and cracks in the lased tissue. The ablation threshold of dentin was the lowest at 2.76 μm and the highest at 3.00 μm. The histological analysis revealed minimal thermal and structural changes ∼20 μm wide on the irradiated dentin surfaces with no significant differences between wavelengths. The efficiency of dentin ablation gradually increased from 3.00 to 2.76 μm, at which point the highest ablation efficiency was observed. The nanosecond pulsed Cr:CdSe laser demonstrated an effective ablation ability of hard dental tissues

  12. Curtain-Lifting Winds Allow Rare Glimpse into Massive Star Factory

    Science.gov (United States)

    2003-06-01

    of the Swedish-ESO Submillimeter Telescpe (SEST) at the La Silla Observatory. Large-scale mapping of the distribution of the CS-molecule showed the structure and motions of the dense gas in the giant molecular cloud, from which the young stars in NGC 3603 originate. A total of 13 molecular clumps were detected and their sizes, masses and densities were determined. These observations also showed that the intense radiation and strong stellar winds from the hot stars in the central cluster have "carved a cavity" in the molecular cloud; this comparatively empty and transparent region now measures about 8 light-years across. Mid-infrared imaging (at wavelengths 11.9 and 18 µm) was made of selected regions in NGC 3603 with the TIMMI 2 instrument mounted on the ESO 3.6-m telescope. This constitutes the first sub-arcsec resolution mid-IR survey of NGC 3603 and serves in particular to show the warm dust distribution in the region. The survey gives a clear indication of intense, on-going star formation processes. Many different types of objects were detected, including extremely hot Wolf-Rayet stars and protostars; altogether 36 mid-IR point sources and 42 knots of diffuse emission were identified. In the area surveyed, the protostar IRS 9A is found to be the most luminous point source at both wavelengths; two other sources, designated IRS 9B and IRS 9C in the immediate vicinity are also very bright on the TIMMI 2 images, providing further indication that this is the site of an association of protostars in its own right. The collection of high-quality images of the IRS 9 area shown in PR Photo 16b/03 is well suited to investigate the nature and the evolutionary status of the highly obscured objects located there, IRS 9A-C. They are situated on the side of the massive molecular cloud core NGC 3603 MM 2 that faces the central cluster of young stars (PR Photo 16a/03) and were apparently only recently "liberated" from most of their natal gas and dust environment by strong stellar

  13. Source brightness fluctuation correction of solar absorption fourier transform mid infrared spectra

    Directory of Open Access Journals (Sweden)

    T. Ridder

    2011-06-01

    Full Text Available The precision and accuracy of trace gas observations using solar absorption Fourier Transform infrared spectrometry depend on the stability of the light source. Fluctuations in the source brightness, however, cannot always be avoided. Current correction schemes, which calculate a corrected interferogram as the ratio of the raw DC interferogram and a smoothed DC interferogram, are applicable only to near infrared measurements. Spectra in the mid infrared spectral region below 2000 cm−1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents the established source brightness fluctuation correction. This problem can be overcome by a determination of the offset using the modulation efficiency of the instrument. With known modulation efficiency the offset can be calculated, and the source brightness correction can be performed on the basis of offset-corrected interferograms. We present a source brightness fluctuation correction method which performs the smoothing of the raw DC interferogram in the interferogram domain by an application of a running mean instead of high-pass filtering the corresponding spectrum after Fourier transformation of the raw DC interferogram. This smoothing can be performed with the onboard software of commercial instruments. The improvement of MCT spectra and subsequent ozone profile and total column retrievals is demonstrated. Application to InSb interferograms in the near infrared spectral region proves the equivalence with the established correction scheme.

  14. Prediction of fatty acid profiles in cow, ewe, and goat milk by mid-infrared spectrometry.

    Science.gov (United States)

    Ferrand-Calmels, M; Palhière, I; Brochard, M; Leray, O; Astruc, J M; Aurel, M R; Barbey, S; Bouvier, F; Brunschwig, P; Caillat, H; Douguet, M; Faucon-Lahalle, F; Gelé, M; Thomas, G; Trommenschlager, J M; Larroque, H

    2014-01-01

    Mid-infrared (MIR) spectrometry was used to estimate the fatty acid (FA) composition in cow, ewe, and goat milk. The objectives were to compare different statistical approaches with wavelength selection to predict the milk FA composition from MIR spectra, and to develop equations for FA in cow, goat, and ewe milk. In total, a set of 349 cow milk samples, 200 ewe milk samples, and 332 goat milk samples were both analyzed by MIR and by gas chromatography, the reference method. A broad FA variability was ensured by using milk from different breeds and feeding systems. The methods studied were partial least squares regression (PLS), first-derivative pretreatment + PLS, genetic algorithm + PLS, wavelets + PLS, least absolute shrinkage and selection operator method (LASSO), and elastic net. The best results were obtained with PLS, genetic algorithm + PLS and first derivative + PLS. The residual standard deviation and the coefficient of determination in external validation were used to characterize the equations and to retain the best for each FA in each species. In all cases, the predictions were of better quality for FA found at medium to high concentrations (i.e., for saturated FA and some monounsaturated FA with a coefficient of determination in external validation >0.90). The conversion of the FA expressed in grams per 100mL of milk to grams per 100g of FA was possible with a small loss of accuracy for some FA. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk†

    Science.gov (United States)

    Honda, Mitsuhiko; Okada, Kazushi; Miyata, Takashi; Mulders, Gijs D.; Swearingen, Jeremy R.; Kamizuka, Takashi; Ohsawa, Ryou; Fujiyoshi, Takuya; Fujiwara, Hideaki; Uchiyama, Mizuho; Yamashita, Takuya; Onaka, Takashi

    2018-04-01

    Transitional disks around the Herbig Ae/Be stars are fascinating targets in the contexts of disk evolution and planet formation. Oph IRS 48 is one of such Herbig Ae stars, which shows an inner dust cavity and azimuthally lopsided large dust distribution. We present new images of Oph IRS 48 at eight mid-infrared (MIR) wavelengths from 8.59 to 24.6 μm taken with COMICS mounted on the 8.2 m Subaru Telescope. The N-band (7 to 13 μm) images show that the flux distribution is centrally peaked with a slight spatial extent, while the Q-band (17 to 25 μm) images show asymmetric double peaks (east and west). Using 18.8- and 24.6 μm images, we derived the dust temperature at both east and west peaks to be 135 ± 22 K. Thus, the asymmetry may not be attributed to a difference in the temperature. Comparing our results with previous modeling works, we conclude that the inner disk is aligned to the outer disk. A shadow cast by the optically thick inner disk has a great influence on the morphology of MIR thermal emission from the outer disk.

  16. Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study

    Directory of Open Access Journals (Sweden)

    Stephan Michael

    2016-05-01

    Full Text Available In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. Here, we study the influence of two important quantum-dot material parameters, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density can compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. However, by minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.

  17. Mid-infrared materials and devices on a Si platform for optical sensing

    Directory of Open Access Journals (Sweden)

    Vivek Singh

    2014-01-01

    Full Text Available In this article, we review our recent work on mid-infrared (mid-IR photonic materials and devices fabricated on silicon for on-chip sensing applications. Pedestal waveguides based on silicon are demonstrated as broadband mid-IR sensors. Our low-loss mid-IR directional couplers demonstrated in SiNx waveguides are useful in differential sensing applications. Photonic crystal cavities and microdisk resonators based on chalcogenide glasses for high sensitivity are also demonstrated as effective mid-IR sensors. Polymer-based functionalization layers, to enhance the sensitivity and selectivity of our sensor devices, are also presented. We discuss the design of mid-IR chalcogenide waveguides integrated with polycrystalline PbTe detectors on a monolithic silicon platform for optical sensing, wherein the use of a low-index spacer layer enables the evanescent coupling of mid-IR light from the waveguides to the detector. Finally, we show the successful fabrication processing of our first prototype mid-IR waveguide-integrated detectors.

  18. Mid-infrared reflectance of silicone resin coating on metal substrates: Effect of polymeric binders' absorption

    Science.gov (United States)

    Ho, Wen-Dar; Ma, Chen-Chi M.

    1997-04-01

    This study examines the infrared reflectance of polymeric coatings of silicone resin, silicone modified alkyd resin, and alkyd resin on aluminum substrates. The Kubelka-Munk's two constants theory is applied to calculate the reflectance while considering the surface reflection. An integrating sphere, infrared spectroradiometer and blackbody source are utilized as the measurement systems. The extinction coefficients are determined and used to calculate the reflectances of coatings on aluminum. Coefficients in the mid-infrared region display the quantitative difference between the polymers' structure. Silicone content enhances the absorptance of the coating in the mid-IR region. The coefficients of miscible silicone resin/alkyd resin blends are determined as well. Comparing the measured and calculated reflectances reveals that the discrepancies in thinner coatings or at the IR transparent wavelength are higher and around 0.1. Such a discrepancy is owing to the polymers' non-scattering with absorption properties which affect the validity of the values involving internal reflectances considered in the model. The internal reflectance can be assigned a negligible value in the high absorption region and is also a variable depending on thickness and transparency.

  19. Near-infrared to Mid-infrared Observations of Galaxy Mergers: NGC 2782 and NGC 7727

    Science.gov (United States)

    Onaka, Takashi; Nakamura, Tomohiko; Sakon, Itsuki; Wu, Ronin; Ohsawa, Ryou; Kaneda, Hidehiro; Lebouteiller, Vianney; Roellig, Thomas L.

    2018-01-01

    We present the results of near-infrared-to-mid-infrared (NIR-to-MIR) imaging and NIR spectroscopic observations of two galaxy mergers, NGC 2782 (Arp 215) and NGC 7727 (Arp 222), with the Infrared Camera on board AKARI. NGC 2782 shows extended MIR emission in the eastern side of the galaxy, which corresponds to the eastern tidal tail seen in the H I 21 cm map, while NGC 7727 shows extended MIR emission in the north of the galaxy, which is similar to the plumes seen in the residual image at the K-band after subtracting a galaxy model. Both extended structures are thought to have formed in association with their merger events. They show excess emission at 7–15 μm, which can be attributed to emission from polycyclic aromatic hydrocarbons (PAHs), while the observed spectral energy distributions (SEDs) decline longward of 24 μm, suggesting that very small grains (VSGs) are deficient. These characteristics of the observed MIR SED may be explained if PAHs are formed by fragmentation of VSGs during merger events. The star formation rate is estimated from the MIR PAH emission in the eastern tail region of NGC 2782 and it is in fair agreement with those estimated from Hα and [C II] 158 μm. MIR observations are efficient for the study of dust processing and structures formed during merger events.

  20. High-speed mid-infrared hyperspectral imaging using quantum cascade lasers

    Science.gov (United States)

    Kelley, David B.; Goyal, Anish K.; Zhu, Ninghui; Wood, Derek A.; Myers, Travis R.; Kotidis, Petros; Murphy, Cara; Georgan, Chelsea; Raz, Gil; Maulini, Richard; Müller, Antoine

    2017-05-01

    We report on a standoff chemical detection system using widely tunable external-cavity quantum cascade lasers (ECQCLs) to illuminate target surfaces in the mid infrared (λ = 7.4 - 10.5 μm). Hyperspectral images (hypercubes) are acquired by synchronously operating the EC-QCLs with a LN2-cooled HgCdTe camera. The use of rapidly tunable lasers and a high-frame-rate camera enables the capture of hypercubes with 128 x 128 pixels and >100 wavelengths in raster scanning of the laser illumination allowed imaging of a 100-cm2 area at 5-m standoff. Raw hypercubes are post-processed to generate a hypercube that represents the surface reflectance relative to that of a diffuse reflectance standard. Results will be shown for liquids (e.g., silicone oil) and solid particles (e.g., caffeine, acetaminophen) on a variety of surfaces (e.g., aluminum, plastic, glass). Signature spectra are obtained for particulate loadings of RDX on glass of <1 μg/cm2.

  1. Mid-infrared multiheterodyne spectroscopy with phase-locked quantum cascade lasers

    Science.gov (United States)

    Westberg, J.; Sterczewski, L. A.; Wysocki, G.

    2017-04-01

    Fabry-Pérot (FP) quantum cascade lasers (QCLs) provide purely electronically controlled monolithic sources for broadband mid-infrared (mid-IR) multiheterodyne spectroscopy (MHS), which benefits from the large gain bandwidth of the QCLs without sacrificing the narrowband properties commonly associated with the single mode distributed feedback variant. We demonstrate a FP-QCL based multiheterodyne spectrometer with a short-term noise-equivalent absorption of ˜3 × 10-4/ √{ H z } , a mid-IR spectral coverage of 25 cm-1, and very short acquisition time (10 μs) capability. The broadband potential is demonstrated by measuring the absorption spectra of ammonia and isobutane under atmospheric pressure conditions. The stability of the system is enhanced by a two-stage active frequency inter-locking procedure, where the two QCLs are pre-locked with a slow feedback loop based on an analog frequency discriminator, followed by a high bandwidth optical phase-locked loop. The locking system provides a relative frequency stability in the sub kHz range over seconds of integration time. The strength of the technique lies in the ability to acquire spectral information from all optical modes simultaneously and individually, which bodes for a versatile and cost effective spectrometer for mid-IR chemical gas sensing.

  2. Generation of Phase-Stable Sub-Cycle Mid-Infrared Pulses from Filamentation in Nitrogen

    Directory of Open Access Journals (Sweden)

    Takao Fuji

    2013-02-01

    Full Text Available Sub-single-cycle pulses in the mid-infrared (MIR region were generated through a laser-induced filament. The fundamental (ω1 and second harmonic (ω2 output of a 30-fs Ti:sapphire amplifier were focused into nitrogen gas and produce phase-stable broadband MIR pulses (ω0 by using a four-wave mixing process (ω1 + ω1 - ω2 → ω0 through filamentation. The spectrum spread from 400 cm-1 to 5500 cm-1, which completely covered the MIR region. The low frequency components were detected by using an electro-optic sampling technique with a gaseous medium. The efficiency of the MIR pulse generation was very sensitive to the delay between the fundamental and second harmonic pulses. It was revealed that the delay dependence of the efficiency came from the interference between two opposite parametric processes, ω1 + ω1 - ω2 → ω0 and ω2 - ω1 - ω1 → ω0. The pulse duration was measured as 6.9 fs with cross-correlation frequency-resolved optical gating by using four-wave mixing in nitrogen. The carrier-envelope phase of the MIR pulse was passively stabilized. The instability was estimated as 154 mrad rms in 2.5 h.

  3. Two-color mid-infrared spectroscopy of optically doped semiconductors

    International Nuclear Information System (INIS)

    Forcales, M.; Klik, M.A.J.; Vinh, N.Q.; Phillips, J.; Wells, J-P.R.; Gregorkiewicz, T.

    2003-01-01

    Optical doping is an attractive method to tailor photonic properties of semiconductor matrices for development of solid-state electroluminescent structures. For practical applications, thermal stability of emission obtained from these materials is required. Thermal processes can be conveniently investigated by two-color spectroscopy in the visible and the mid-infrared. Free-electron laser is a versatile high-brilliance source of radiation in the latter spectral range. In this contribution, we briefly review some of the results obtained recently by the two-color spectroscopy with a free-electron laser in different semiconductors optically doped with rare earth and transition metal ions. Effects leading to both enhancement and quenching of emission from optical dopants will be presented. For InP:Yb, Si:Er, and Si:Cu activation of particular optically induced non-radiative recombination paths will be shown. For Si:Er and Si:Ag, observation of a low temperature optical memory effect will be reported

  4. Mid-infrared refractive index sensing using optimized slotted photonic crystal waveguides

    Science.gov (United States)

    Kassa-Baghdouche, Lazhar; Cassan, Eric

    2018-02-01

    Slotted photonic crystal waveguides (SPCWs) were designed to act as refractive index sensing devices at mid-infrared (IR) wavelengths around λ = 3.6 μm. In particular, effort was made to engineer the input and output slot waveguide interfaces in order to increase the effective sensitivity through resonant tapering. A slotted PhC waveguide immersed in air and liquid cladding layers was considered. To determine the performance of the sensor, the sensitivity of the device was estimated by calculating the shift in the upper band edge of the output transmission spectrum. The results showed that the sensitivity of a conventionally designed SPCW followed by modifications in the structure parameter yielded a 510 nm shift in the wavelength position of the upper band edge, indicating a sensitivity of more than 1150 nm per refractive index unit (RIU) with an insertion loss level of -0.3 dB. This work demonstrates the viability of photonic crystal waveguide high sensitivity devices in the Mid-IR, following a transposition of the concepts inherited from the telecom band and an optimization of the design, in particular a minimization of photonic device insertion losses.

  5. Monolithic Mid-Infrared Integrated Photonics Using Silicon-on-Epitaxial Barium Titanate Thin Films.

    Science.gov (United States)

    Jin, Tiening; Li, Leigang; Zhang, Bruce; Lin, Hao-Yu Greg; Wang, Haiyan; Lin, Pao Tai

    2017-07-05

    Broadband mid-infrared (mid-IR) photonic circuits that integrate silicon waveguides and epitaxial barium titanate (BTO) thin films are demonstrated using the complementary metal-oxide-semiconductor process. The epitaxial BTO thin films are grown on lanthanum aluminate (LAO) substrates by the pulsed laser deposition technique, wherein a broad infrared transmittance between λ = 2.5 and 7 μm is observed. The optical waveguiding direction is defined by the high-refractive-index amorphous Si (a-Si) ridge structure developed on the BTO layer. Our waveguides show a sharp fundamental mode over the broad mid-IR spectrum, whereas its optical field distribution between the a-Si and BTO layers can be modified by varying the height of the a-Si ridge. With the advantages of broad mid-IR transparency and the intrinsic electro-optic properties, our monolithic Si on a ferroelectric BTO platform will enable tunable mid-IR microphotonics that are desired for high-speed optical logic gates and chip-scale biochemical sensors.

  6. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus.

    Science.gov (United States)

    Long, Mingsheng; Gao, Anyuan; Wang, Peng; Xia, Hui; Ott, Claudia; Pan, Chen; Fu, Yajun; Liu, Erfu; Chen, Xiaoshuang; Lu, Wei; Nilges, Tom; Xu, Jianbin; Wang, Xiaomu; Hu, Weida; Miao, Feng

    2017-06-01

    The mid-infrared (MIR) spectral range, pertaining to important applications, such as molecular "fingerprint" imaging, remote sensing, free space telecommunication, and optical radar, is of particular scientific interest and technological importance. However, state-of-the-art materials for MIR detection are limited by intrinsic noise and inconvenient fabrication processes, resulting in high-cost photodetectors requiring cryogenic operation. We report black arsenic phosphorus-based long-wavelength IR photodetectors, with room temperature operation up to 8.2 μm, entering the second MIR atmospheric transmission window. Combined with a van der Waals heterojunction, room temperature-specific detectivity higher than 4.9 × 10 9 Jones was obtained in the 3- to 5-μm range. The photodetector works in a zero-bias photovoltaic mode, enabling fast photoresponse and low dark noise. Our van der Waals heterojunction photodetectors not only exemplify black arsenic phosphorus as a promising candidate for MIR optoelectronic applications but also pave the way for a general strategy to suppress 1/ f noise in photonic devices.

  7. Detergent Analysis in Protein Samples Using Mid-Infrared (MIR) Spectroscopy.

    Science.gov (United States)

    Das, Chandreyee; Nadler, Timothy; Strug, Ivona

    2015-08-03

    Quantitating relative levels of detergent present in protein preparations or samples derived from biological material, such as tissue or body fluids, is important because the presence of detergent may affect downstream analyses as well as protein structure/function. Especially because sample volumes, analysts' available time, and other resources may be limited, a method that consumes little sample and that is rapid and simple is needed for detergent analysis. It would also be preferable to have a method that is generally applicable across many aliphatic chain-containing molecules with many different physical properties. In this unit, methods are described for analyzing detergents and proteins in detergent-protein mixtures using mid-infrared (MIR) spectroscopy. A protocol is also included for efficient removal of unbound detergents from a protein sample accompanied by MIR-based monitoring of both detergent and protein content. This rapid monitoring of sample preparation during the workflow enables users to make timely decisions about sample preparation strategies that maximize both analyte purity and yield. Copyright © 2015 John Wiley & Sons, Inc.

  8. A Noninvasive In Vivo Glucose Sensor Based on Mid-Infrared Quantum Cascade Laser Spectroscopy

    Science.gov (United States)

    Werth, Alexandra; Liakat, Sabbir; Xu, Laura; Gmachl, Claire

    Diabetes affects over 387 million people worldwide; a number which grows every year. The most common method of measuring blood glucose concentration involves a finger prick which for some can be a harrowing process. Therefore, a portable, accurate, noninvasive glucose sensor can significantly improve the quality of life for many of these diabetics who draw blood multiple times a day to monitor their glucose levels. We have implemented a noninvasive, mobile glucose sensor using a mid-infrared (MIR) quantum cascade laser (QCL), integrating sphere, and thermal electrically (TE) cooled detector. The QCL is scanned from 8 - 10 microns wavelength over which are distinct absorption features of glucose molecules with little competition of absorption from other molecules found in the blood and interstitial fluid. The obtained absorption spectra are analyzed using a neural network algorithm which relates the small changes in absorption to the changing glucose concentration. The integrating sphere has increased the signal-to-noise ratio from a previous design, allowing us to use the TE-cooled detector which increases mobility without loss of accuracy.

  9. Single-mode interband cascade laser sources for mid-infrared spectroscopic applications

    Science.gov (United States)

    Scheuermann, J.; von Edlinger, M.; Weih, R.; Becker, S.; Nähle, L.; Fischer, M.; Koeth, J.; Kamp, M.; Höfling, S.

    2016-05-01

    Compared to the near infrared, many technologically and industrially relevant gas species have more than an order of magnitude higher absorption features in the mid-infrared (MIR) wavelength range. These species include for example important hydrocarbons (methane, acetylene), nitrogen oxides and sulfur oxides. Tunable laser absorption spectroscopy (TLAS) has proven to be a versatile tool for gas sensing applications with significant advantages compared to other techniques. These advantages include real time measurement, standoff detection and ruggedness of the sensor. We present interband cascade lasers (ICLs), which have evolved into important laser sources for the MIR spectral range from 3 to 7 μm. ICLs achieve high efficiency by cascading optically active zones whilst using interband transitions, so they combine common diode laser as well as quantum cascade laser based technologies. Our application grade singlemode distributed feedback devices operate continuous wave at room temperature and are offering several features especially useful for high performance TLAS applications like: side mode suppression ratio of > 30 dB, continuous tuning ranges up to 30 nm, low threshold power densities and low overall power consumption. The devices are typically integrated in a thermoelectrically cooled TO-style package, hermetically sealed using a cap with anti-reflection coated window. This low power consumption as well as the compact size and ruggedness of the fabricated laser sources makes them perfectly suited for battery powered portable solutions for in field spectroscopy applications.

  10. "Slow-scanning" in Ground-based Mid-infrared Observations

    Science.gov (United States)

    Ohsawa, Ryou; Sako, Shigeyuki; Miyata, Takashi; Kamizuka, Takafumi; Okada, Kazushi; Mori, Kiyoshi; Uchiyama, Masahito S.; Yamaguchi, Junpei; Fujiyoshi, Takuya; Morii, Mikio; Ikeda, Shiro

    2018-04-01

    Chopping observations with a tip-tilt secondary mirror have conventionally been used in ground-based mid-infrared observations. However, it is not practical for next generation large telescopes to have a large tip-tilt mirror that moves at a frequency larger than a few hertz. We propose an alternative observing method, a "slow-scanning" observation. Images are continuously captured as movie data, while the field of view is slowly moved. The signal from an astronomical object is extracted from the movie data by a low-rank and sparse matrix decomposition. The performance of the "slow-scanning" observation was tested in an experimental observation with Subaru/COMICS. The quality of a resultant image in the "slow-scanning" observation was as good as in a conventional chopping observation with COMICS, at least for a bright point-source object. The observational efficiency in the "slow-scanning" observation was better than that in the chopping observation. The results suggest that the "slow-scanning" observation can be a competitive method for the Subaru telescope and be of potential interest to other ground-based facilities to avoid chopping.

  11. Applications of High Resolution Mid-Infrared Spectroscopy for Atmospheric and Environmental Measurements

    Science.gov (United States)

    Roscioli, Joseph R.; McManus, J. Barry; Nelson, David; Zahniser, Mark; Herndon, Scott C.; Shorter, Joanne; Yacovitch, Tara I.; Jervis, Dylan; Dyroff, Christoph; Kolb, Charles E.

    2016-06-01

    For the past 20 years, high resolution infrared spectroscopy has served as a valuable tool to measure gas-phase concentrations of ambient gas samples. We review recent advances in atmospheric sampling using direct absorption high resolution mid-infrared spectroscopy from the perspective of light sources, detectors, and optical designs. Developments in diode, quantum cascade and interband cascade laser technology have led to thermoelectrically-cooled single-mode laser sources capable of operation between 800 wn and 3100 wn, with 10 mW power. Advances in detector and preamplifier technology have yielded thermoelectriocally-cooled sensors capable of room-temperature operation with extremely high detectivities. Finally, novel spectrometer optical designs have led to robust multipass absorption cells capable of >400 m effective pathlength in a compact package. In combination with accurate spectroscopic databases, these developments have afforded dramatic improvements in measurement sensitivity, accuracy, precision, and selectivity. We will present several examples of the applications of high resolution mid-IR spectrometers in real-world field measurements at sampling towers and aboard mobile platforms such as vehicles and airplanes.

  12. MID-INFRARED SPECTROSCOPIC OBSERVATIONS OF THE DUST-FORMING CLASSICAL NOVA V2676 OPH

    Energy Technology Data Exchange (ETDEWEB)

    Kawakita, Hideyo; Arai, Akira; Shinnaka, Yoshiharu [Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Ootsubo, Takafumi [Department of Earth Science and Astronomy, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Nagashima, Masayoshi, E-mail: kawakthd@cc.kyoto-su.ac.jp [Department of Physics, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan)

    2017-02-01

    The dust-forming nova V2676 Oph is unique in that it was the first nova to provide evidence of C{sub 2} and CN molecules during its near-maximum phase and evidence of CO molecules during its early decline phase. Observations of this nova have revealed the slow evolution of its lightcurves and have also shown low isotopic ratios of carbon ({sup 12}C/{sup 13}C) and nitrogen ({sup 14}N/{sup 15}N) in its envelope. These behaviors indicate that the white dwarf (WD) star hosting V2676 Oph is a CO-rich WD rather than an ONe-rich WD (typically larger in mass than the former). We performed mid-infrared spectroscopic and photometric observations of V2676 Oph in 2013 and 2014 (respectively 452 and 782 days after its discovery). No significant [Ne ii] emission at 12.8 μ m was detected at either epoch. These provided evidence for a CO-rich WD star hosting V2676 Oph. Both carbon-rich and oxygen-rich grains were detected in addition to an unidentified infrared feature at 11.4 μ m originating from polycyclic aromatic hydrocarbon molecules or hydrogenated amorphous carbon grains in the envelope of V2676 Oph.

  13. YSOVAR: Mid-infrared variability in the star-forming region Lynds 1688

    Energy Technology Data Exchange (ETDEWEB)

    Günther, H. M.; Poppenhaeger, K.; Wolk, S. J.; Hora, J. L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cody, A. M. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Covey, K. R. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Hillenbrand, L. A. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Plavchan, P. [NASA Exoplanet Science Institute, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Rebull, L. M.; Stauffer, J. R. [Spitzer Science Center/Caltech, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Allen, L. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Bayo, A. [Max Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Meng, H. Y. A. [Infrared Processing and Analysis Center, California Institute of Technology, MC 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Morales-Calderón, M. [Centro de Astrobiología (INTA-CSIC), ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Canada (Spain); Parks, J. R. [Department of Physics and Astronomy, Georgia State University, 25 Park Place South, Atlanta, GA 30303 (United States); Song, Inseok, E-mail: hguenther@cfa.harvard.edu [Physics and Astronomy Department, University of Georgia, Athens, GA 30602-2451 (United States)

    2014-12-01

    The emission from young stellar objects (YSOs) in the mid-infrared (mid-IR) is dominated by the inner rim of their circumstellar disks. We present IR data from the Young Stellar Object VARiability (YSOVAR) survey of ∼800 objects in the direction of the Lynds 1688 (L1688) star-forming region over four visibility windows spanning 1.6 yr using the Spitzer Space Telescope in its warm mission phase. Among all light curves, 57 sources are cluster members identified based on their spectral energy distribution and X-ray emission. Almost all cluster members show significant variability. The amplitude of the variability is larger in more embedded YSOs. Ten out of 57 cluster members have periodic variations in the light curves with periods typically between three and seven days, but even for those sources, significant variability in addition to the periodic signal can be seen. No period is stable over 1.6 yr. Nonperiodic light curves often still show a preferred timescale of variability that is longer for more embedded sources. About half of all sources exhibit redder colors in a fainter state. This is compatible with time-variable absorption toward the YSO. The other half becomes bluer when fainter. These colors can only be explained with significant changes in the structure of the inner disk. No relation between mid-IR variability and stellar effective temperature or X-ray spectrum is found.

  14. Towards 3D-photonic, multi-telescope beam combiners for mid-infrared astrointerferometry

    Science.gov (United States)

    Diener, Romina; Tepper, Jan; Labadie, Lucas; Pertsch, Thomas; Nolte, Stefan; Minardi, Stefano

    2017-08-01

    In the past two decades high precision optical astronomical interferometry has benefited from the use of photonic technologies. Today, near-infrared interferometric instruments deliver high-resolution, hyperspectral images of astronomical objects and combine up to 4 independent telescopes at a time thanks to integrated optics (IO). Following the success of IO interferometry, several initiatives aim at developing components which could combine simultaneously more telescopes and extend their operation beyond the near-infrared bands. Here we report on the development of multi-telescope IO beam combiners for mid-infrared interferometry exploiting the three-dimensional (3D) structuring capabilities of ultrafast laser inscription. We characterise the capability of a 2-telescope and a 4-telescope beam combiner to retrieve the visibility amplitude and phase of monochromatic light fields at a wavelength of 3.39 μm. The combiner prototypes exploit different 3D architectures and are written with a femtosecond laser on substrates of Gallium Lanthanum Sulfide. Supporting numerical simulations of the performance of the beam combiners show that there is still room for improvement and indicate a roadmap for the development of future prototypes.

  15. Low-luminosity Blazars in Wise: A Mid-infrared View of Unification

    Science.gov (United States)

    Plotkin, Richard M.; Anderson, S. F.; Brandt, W. N.; Markoff, S.; Shemmer, O.; Wu, J.

    2012-01-01

    We use the preliminary data release from the Wide-Field Infrared Survey Explorer (WISE) to perform the first statistical study on the mid-infrared (IR) properties of a large number ( 102) of BL Lac objects -- low-luminosity Active Galactic Nuclei (AGN) with a jet beamed toward the Earth. As expected, many BL Lac objects are so highly beamed that their jet synchrotron emission dominates their IR spectral energy distributions (SEDs), and the shape of their SEDs in the IR correlates well with SED peak frequency. In other BL Lac objects, the jet is not strong enough to completely dilute the rest of the AGN, and we do not see observational signatures of the dusty torus from these weakly beamed BL Lac objects. While at odds with simple unification, the missing torus is consistent with recent suggestions that BL Lac objects are fed by radiatively inefficient accretion flows. We discuss implications on the ``nature vs. nurture" debate for FR I and FR II galaxies, and also on the standard orientation-based AGN unification model.

  16. Parametric generation and characterization of femtosecond mid-infrared pulses in ZnGeP2.

    Science.gov (United States)

    Wandel, Scott; Lin, Ming-Wei; Yin, Yanchun; Xu, Guibao; Jovanovic, Igor

    2016-03-07

    Ultrafast mid-infrared (IR) coherent radiation plays an important role in strong-field physics, wherein the use of longer wavelengths has reduced the optical intensities needed to drive light-matter interactions by orders of magnitude in comparison to near-IR radiation. Optimizing parametric interactions for generation and characterization of mid-IR pulses is an enabling step for those applications. We report on the production of >50 µJ femtosecond pulses centered at 5 µm in a two-stage optical parametric amplifier (OPA) based on ZnGeP 2 , a high-performance optical material in this spectral region. The OPA is pumped by an ultrafast 2-µm source. Amplified pulses have been characterized by parametric upconversion, enabling the use of standard silicon detectors. A numerical model of the system has been developed and tested to control dispersion, group-velocity mismatch, and off-axis parametric fluorescence. The source architecture is suitable for production of mJ-level mid-IR ultrafast pulses without the use of chirped-pulse amplification, where convenient pumping could be realized directly by mid-IR laser sources based on materials such as Cr:ZnSe or Cr:ZnS.

  17. Parametric generation of energetic short mid-infrared pulses for dielectric laser acceleration

    International Nuclear Information System (INIS)

    Wandel, S; Xu, G; Yin, Y; Jovanovic, I

    2014-01-01

    Laser-driven high-gradient electron acceleration in dielectric photonic structures is an enabling technology for compact and robust sources of tunable monochromatic x-rays. Such advanced x-ray sources are sought in medical imaging, security, industrial, and scientific applications. The use of long-wavelength pulses can mitigate the problem of laser-induced breakdown in dielectric structures at high optical intensities, relax the structure fabrication requirements, and allow greater pulse energy to be injected into the structure. We report on the design and construction of a simple and robust, short-pulse parametric source operating at a center wavelength 5 μm, to be used as a pump for a dielectric photonic structure for laser-driven acceleration. The source is based on a two-stage parametric downconversion design, consisting of a β-BaB 2 O 4 -based 2.05 μm optical parametric amplifier (OPA) and a ZnGeP 2 -based 5 μm OPA. The 2.05 μm OPA is presently pumped by a standard Ti:sapphire chirped-pulse amplified laser, which will be replaced with direct laser pumping at wavelengths >2 μm in the future. The design and performance of the constructed short-pulse mid-infrared source are described. The demonstrated architecture is also of interest for use in other applications, such as high harmonic generation and attosecond pulse production. (paper)

  18. Applications of mid-infrared spectroscopy in the clinical laboratory setting.

    Science.gov (United States)

    De Bruyne, Sander; Speeckaert, Marijn M; Delanghe, Joris R

    2018-01-01

    Fourier transform mid-infrared (MIR-FTIR) spectroscopy is a nondestructive, label-free, highly sensitive and specific technique that provides complete information on the chemical composition of biological samples. The technique both can offer fundamental structural information and serve as a quantitative analysis tool. Therefore, it has many potential applications in different fields of clinical laboratory science. Although considerable technological progress has been made to promote biomedical applications of this powerful analytical technique, most clinical laboratory analyses are based on spectroscopic measurements in the visible or ultraviolet (UV) spectrum and the potential role of FTIR spectroscopy still remains unexplored. In this review, we present some general principles of FTIR spectroscopy as a useful method to study molecules in specimens by MIR radiation together with a short overview of methods to interpret spectral data. We aim at illustrating the wide range of potential applications of the proposed technique in the clinical laboratory setting with a focus on its advantages and limitations and discussing the future directions. The reviewed applications of MIR spectroscopy include (1) quantification of clinical parameters in body fluids, (2) diagnosis and monitoring of cancer and other diseases by analysis of body fluids, cells, and tissues, (3) classification of clinically relevant microorganisms, and (4) analysis of kidney stones, nails, and faecal fat.

  19. Primary experimental studies on mid-infrared FEL irradiation on dental substances at BFEL

    CERN Document Server

    Biao, Z J; Gao Xue Ju; He Wei; Huang Yu Ying; Li Yong Gui; LiuNianQing; Wang Min Kai; Wu Gan; Yan Xue Pin; Zhang Guo Qing

    2001-01-01

    A free electron laser (FEL) with its characteristics of wide wavelength tunability, ultrashort pulse time structure, and high peak power density is predominantly superior to all other conventional lasers in applications. Several experimental studies on mid-infrared FEL irradiation on dental enamel and dentine were performed at the Beijing FEL. Experimental aims were to investigate changes in the hardness, ratios of P to Ca and Cs before and after irradiation on samples with a characteristic absorption wavelength of 9.66 mu m, in the colors of these sample surfaces after irradiation with different wavelengths around the peak wavelength. The time dependence of temperature of the dentine sample was measured with its ps pulse effects compared to that with a continuous CO sub 2 laser. FTIR absorption spectra in the range of 2.5-15.4 mu m for samples of these hard dental substances and pure hydroxyapatite were first examined to decide their chemical components and absorption maximums. Primary experimental results w...

  20. Citrus species and hybrids depicted by near- and mid-infrared spectroscopy.

    Science.gov (United States)

    Páscoa, Ricardo Nmj; Moreira, Silvana; Lopes, João A; Sousa, Clara

    2018-01-31

    Citrus trees are among the most cultivated plants in the world, with a high economic impact. The wide sexual compatibility among relatives gave rise to a large number of hybrids that are difficult to discriminate. This work sought to explore the ability of infrared spectroscopy to discriminate among Citrus species and/or hybrids and to contribute to the elucidation of its relatedness. Adult leaves of 18 distinct Citrus plants were included in this work. Near- and mid-infrared (NIR and FTIR) spectra were acquired from leaves after harvesting and a drying period of 1 month. Spectra were modelled by principal component analysis and partial least squares discriminant analysis. Both techniques revealed a high discrimination potential (78.5-95.9%), being the best results achieved with NIR spectroscopy and air-dried leaves (95.9%). Infrared spectroscopy was able to successfully discriminate several Citrus species and/or hybrids. Our results contributed also to enhance insights regarding the studied Citrus species and/or hybrids. Despite the benefit of including additional samples, the results herein obtained clearly pointed infrared spectroscopy as a reliable technique for Citrus species and/or hybrid discrimination. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  1. Young massive stars and their environment in the mid-infrared at high angular resolution

    Energy Technology Data Exchange (ETDEWEB)

    Wit, W J de; Hoare, M G; Oudmaijer, R D [School of Physics and Astronomy, University of Leeds, LS2 9JT (United Kingdom); Fujiyoshi, T [Subaru Telescope, NAOJ, 650 North A' ohoku Place, Hilo, HI 96720 (United States)], E-mail: w.j.m.dewit@leeds.ac.uk

    2008-10-15

    We present interferometric and single-dish mid-infrared observations of a sample of massive young stellar objects (BN-type objects), using VLTI-MIDI (10{mu}m) and Subaru-COMICS (24.5 {mu}m). We discuss the regions S140, Mon R2, M8E-IR, and W33A. The observations probe the inner regions of the dusty envelope at scales of 50 milli arcsecond and 0.6'' ({approx}100-1000 AU), respectively. Simultaneous model fits to spectral energy distributions and spatial data are achieved using self-consistent spherical envelope modelling. We conclude that those MYSO envelopes that are best described by a spherical geometry, the commensurate density distribution is a powerlaw with index -1.0. Such a powerlaw is predicted if the envelope is supported by turbulence on the 100-1000 AU scales probed with MIDI and COMICS, but the role of rotation at these spatial scales need testing.

  2. Advances in mid-infrared detection and imaging: a key issues review.

    Science.gov (United States)

    Razeghi, Manijeh; Nguyen, Binh-Minh

    2014-08-01

    It has been over 200 years since people recognized the presence of infrared radiation, and developed methods to capture this signal. However, current material systems and technologies for infrared detections have not met the increasing demand for high performance infrared detectors/cameras, with each system having intrinsic drawbacks. Type-II InAs/GaSb superlattice has been recently considered as a promising candidate for the next generation of infrared detection and imaging. Type-II superlattice is a man-made crystal structure, consisting of multiple quantum wells placed next to each other in a controlled way such that adjacent quantum wells can interact. The interaction between multiple quantum wells offers an additional degree of freedom in tailoring the material's properties. Another advantage of type-II superlattice is the experimental benefit of inheriting previous research on material synthesis and device fabrication of bulk semiconductors. It is the combination of these two unique strengths of type-II superlattice--novel physics and easy manipulation--that has enabled unprecedented progress in recent years. In this review, we will describe historical development, and current status of type-II InAs/GaSb superlattice for advanced detection and imaging in the mid-infrared regime (λ = 3-5 µm).

  3. Thin-film deposition method assisted by mid-infrared-FEL

    CERN Document Server

    Yasumoto, M; Ishizu, A; Tsubouchi, N; Awazu, K; Umesaki, N

    2001-01-01

    We propose the novel application of the mid-infrared (MIR) FEL to the thin-film fabrication process. During the application, a substrate on which a thin film is being fabricated by a conventional method is simultaneously irradiated by the MIR FEL. The MIR FEL induces the fabricated molecules into the excited state of the stretching vibration energy, when the photon energy of the MIR FEL corresponds to one of the molecules. Therefore, the method can assist the thin-film fabrication quasi-independent of the substrate temperature. The method has the advantages of application on a temperature sensitive substrate and selective fabrication due to the tunable wavelength of the MIR FEL. In order to realize the method, we developed two thin film fabrication devices; an MIR FEL assisted RF sputtering device and an MIR FEL assisted laser ablation deposition device. For the method, the intensity of the assisted MIR FEL is an important problem. Thus the cross-section of the MIR FEL intensity profile is shown and the propa...

  4. Generation of 70-fs pulses at 286 μm from a mid-infrared fiber laser

    Science.gov (United States)

    Woodward, R. I.; Hudson, D. D.; Fuerbach, A.; Jackson, S. D.

    2017-12-01

    We propose and demonstrate a simple route to few-optical-cycle pulse generation from a mid-infrared fiber laser through nonlinear compression of pulses from a holmium-doped fiber oscillator using a short length of chalcogenide fiber and a grating pair. Pulses from the oscillator with 265-fs duration at 2.86 {\\mu}m are spectrally broadened through self-phase modulation in step-index As2S3 fiber to 141-nm bandwidth and then re-compressed to 70 fs (7.3 optical cycles). These are the shortest pulses from a mid-infrared fiber system to date, and we note that our system is compact, robust, and uses only commercially available components. The scalability of this approach is also discussed, supported by numerical modeling.

  5. Two-crystal mid-infrared optical parametric oscillator for absorption and dispersion dual-comb spectroscopy.

    Science.gov (United States)

    Jin, Yuwei; Cristescu, Simona M; Harren, Frans J M; Mandon, Julien

    2014-06-01

    We present a femtosecond optical parametric oscillator (OPO) containing two magnesium-doped periodically poled lithium niobate crystals in a singly resonant ring cavity, pumped by two mode-locked Yb-fiber lasers. As such, the OPO generates two idler combs (up to 220 mW), covering a wavelength range from 2.7 to 4.2 μm, from which a mid-infrared dual-comb Fourier transform spectrometer is constructed. By detecting the heterodyning signal between the two idler beams a full broadband spectrum of a molecular gas can be observed over 250  cm(-1) within 70 μs with a spectral resolution of 15 GHz. The absorption and dispersion spectra of acetylene and methane have been measured around 3000  cm(-1), indicating that this OPO represents an ideal broadband mid-infrared source for fast chemical sensing.

  6. Rapid determination of carbohydrates, ash, and extractives contents of straw using attenuated total reflectance fourier transform mid-infrared spectroscopy.

    Science.gov (United States)

    Tamaki, Yukihiro; Mazza, Giuseppe

    2011-06-22

    Analysis of the chemical components of lignocellulosic biomass is essential to understanding its potential for utilization. Mid-infrared spectroscopy and partial least-squares regression were used for rapid measurement of the carbohydrate (total glycans; glucan; xylan; galactan; arabinan; mannan), ash, and extractives content of triticale and wheat straws. Calibration models for total glycans, glucan, and extractives showed good and excellent predictive performance on the basis of slope, r², RPD, and R/SEP criteria. The xylan model showed good and acceptable predictive performance. However, the ash model was evaluated as providing only approximate quantification and screening. The models for galactan, arabinan, and mannan indicated poor and insufficient prediction for application. Most models could predict both triticale and wheat straw samples with the same degree of accuracy. Mid-infrared spectroscopic techniques coupled with partial least-squares regression can be used for rapid prediction of total glycans, glucan, xylan, and extractives in triticale and wheat straw samples.

  7. Mid-infrared spectroscopy and sensory analysis applied to detection of adulteration in roasted coffee by addition of coffee husks

    OpenAIRE

    Tavares, K. M.; Pereira, R. G. F. A.; Nunes, C. A.; Pinheiro, A. C. M.; Rodarte, M. P.; Guerreiro, M. C.

    2012-01-01

    Mid-infrared spectroscopy and chemometrics were used to identify adulteration in roasted and ground coffee by addition of coffee husks. Consumers' sensory perception of the adulteration was evaluated by a triangular test of the coffee beverages. Samples containing above 0.5% of coffee husks from pure coffees were discriminated by principal component analysis of the infrared spectra. A partial least-squares regression estimated the husk content in samples and presented a root-mean-square error...

  8. Determination of carbohydrates present in Saccharomyces cerevisiae using mid-infrared spectroscopy and partial least squares regression

    OpenAIRE

    Plata, Maria R.; Koch, Cosima; Wechselberger, Patrick; Herwig, Christoph; Lendl, Bernhard

    2013-01-01

    A fast and simple method to control variations in carbohydrate composition of Saccharomyces cerevisiae, baker's yeast, during fermentation was developed using mid-infrared (mid-IR) spectroscopy. The method allows for precise and accurate determinations with minimal or no sample preparation and reagent consumption based on mid-IR spectra and partial least squares (PLS) regression. The PLS models were developed employing the results from reference analysis of the yeast cells. The reference anal...

  9. Mid-infrared mapping of Jupiter's temperatures, aerosol opacity and chemical distributions with IRTF/TEXES

    Science.gov (United States)

    Fletcher, Leigh N.; Greathouse, T. K.; Orton, G. S.; Sinclair, J. A.; Giles, R. S.; Irwin, P. G. J.; Encrenaz, T.

    2016-11-01

    Global maps of Jupiter's atmospheric temperatures, gaseous composition and aerosol opacity are derived from a programme of 5-20 μm mid-infrared spectroscopic observations using the Texas Echelon Cross Echelle Spectrograph (TEXES) on NASA's Infrared Telescope Facility (IRTF). Image cubes from December 2014 in eight spectral channels, with spectral resolutions of R ∼2000 - 12 , 000 and spatial resolutions of 2-4° latitude, are inverted to generate 3D maps of tropospheric and stratospheric temperatures, 2D maps of upper tropospheric aerosols, phosphine and ammonia, and 2D maps of stratospheric ethane and acetylene. The results are compared to a re-analysis of Cassini Composite Infrared Spectrometer (CIRS) observations acquired during Cassini's closest approach to Jupiter in December 2000, demonstrating that this new archive of ground-based mapping spectroscopy can match and surpass the quality of previous investigations, and will permit future studies of Jupiter's evolving atmosphere. The visibility of cool zones and warm belts varies from channel to channel, suggesting complex vertical variations from the radiatively-controlled upper troposphere to the convective mid-troposphere. We identify mid-infrared signatures of Jupiter's 5-μm hotspots via simultaneous M, N and Q-band observations, which are interpreted as temperature and ammonia variations in the northern Equatorial Zone and on the edge of the North Equatorial Belt (NEB). Equatorial plumes enriched in NH3 gas are located south-east of NH3-desiccated 'hotspots' on the edge of the NEB. Comparison of the hotspot locations in several channels across the 5-20 μm range indicate that these anomalous regions tilt westward with altitude. Aerosols and PH3 are both enriched at the equator but are not co-located with the NH3 plumes. The equatorial temperature minimum and PH3/aerosol maxima have varied in amplitude over time, possibly as a result of periodic equatorial brightenings and the fresh updrafts of

  10. AN ORDERED MAGNETIC FIELD IN THE PROTOPLANETARY DISK OF AB Aur REVEALED BY MID-INFRARED POLARIMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan; Pantin, Eric; Telesco, Charles M.; Zhang, Han; Barnes, Peter J.; Mariñas, Naibí [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, FL 32611 (United States); Wright, Christopher M. [School of Physical, Environmental, and Mathematical Sciences, University of New South Wales, Canberra, ACT 2610 (Australia); Packham, Chris, E-mail: d.li@ufl.edu [Physics and Astronomy Department, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249 (United States)

    2016-11-20

    Magnetic fields ( B -fields) play a key role in the formation and evolution of protoplanetary disks, but their properties are poorly understood due to the lack of observational constraints. Using CanariCam at the 10.4 m Gran Telescopio Canarias, we have mapped out the mid-infrared polarization of the protoplanetary disk around the Herbig Ae star AB Aur. We detect ∼0.44% polarization at 10.3 μ m from AB Aur's inner disk ( r  < 80 au), rising to ∼1.4% at larger radii. Our simulations imply that the mid-infrared polarization of the inner disk arises from dichroic emission of elongated particles aligned in a disk B -field. The field is well ordered on a spatial scale, commensurate with our resolution (∼50 au), and we infer a poloidal shape tilted from the rotational axis of the disk. The disk of AB Aur is optically thick at 10.3 μ m, so polarimetry at this wavelength is probing the B -field near the disk surface. Our observations therefore confirm that this layer, favored by some theoretical studies for developing magneto-rotational instability and its resultant viscosity, is indeed very likely to be magnetized. At radii beyond ∼80 au, the mid-infrared polarization results primarily from scattering by dust grains with sizes up to ∼1 μ m, a size indicating both grain growth and, probably, turbulent lofting of the particles from the disk mid-plane.

  11. The structure of the planetary nebula NGC 2371 in the visible and mid-infrared

    Science.gov (United States)

    Ramos-Larios, Gerardo; Phillips, J. P.

    2012-09-01

    We investigate the structure of the planetary nebula NGC 2371 using [O III] λ5007 imaging taken with the Jacobus Kapteyn 1.0 m telescope, and [N II] λ6584, [O III] λ5007 and Hα results acquired with the Hubble Space Telescope. These are supplemented with archival mid-infrared (MIR) observations taken with the Spitzer Space Telescope. We note the presence of off-axis low-ionization spokes along a position angle of 65°, and associated collars of enhanced [O III] emission. The spokes appear to consist of dense condensations having low-excitation tails, possibly arising due to ultraviolet shadowing and/or ram-pressure stripping of material. Line ratios imply that most of the emission arises through photoionization, and is unlikely to derive from post-shock cooling regions. An analysis of these features in the MIR suggests that they may also be associated with high levels of emission from polycyclic aromatic hydrocarbons (PAHs), together with various permitted and forbidden line transitions. Such high levels of PAH emission, where they are confirmed, may develop as a result of preferentially enhanced far-ultraviolet pumping of the molecules, or shattering of larger grains within local shocks. Although H2 emission may also contribute to these trends, it is argued that shock-excited transitions would lead to markedly differing results. We finally note that thin filaments and ridges of [O III] emission may indicate the presence of shock activity at the limits of the interior envelope, as well as at various positions within the shell itself. We also note that radially increasing fluxes at 3.6, 5.8 and 8.0 μm, relative to the emission at 4.5 μm, may arise due to enhanced PAH emission in external photodissociative regions.

  12. THE ORION H ii REGION AND THE ORION BAR IN THE MID-INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, F.; Tielens, A. G. G. M. [Leiden Observatory, University of Leiden, P.O. Box 9513, 2300 RA Leiden (Netherlands); Berné, O. [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Adams, J. D.; Herter, T. L. [Astronomy Department, 202 Space Sciences Building, Cornell University, Ithaca, NY 14853-6801 (United States); Keller, L. D. [Department of Physics and Astronomy, Ithaca College, Ithaca, NY 14850 (United States)

    2016-10-20

    We present mid-infrared photometry of the Orion bar obtained with the Faint Object infraRed Camera for the SOFIA Telescope (FORCAST) on board SOFIA at 6.4, 6.6, 7.7, 19.7, 31.5, and 37.1 μ m. By complementing this observation with archival FORCAST and Herschel /PACS images, we are able to construct a complete infrared spectral energy distribution of the Huygens region in the Orion nebula. Comparing the infrared images with gas tracers, we find that PACS maps trace the molecular cloud, while the FORCAST data trace the photodissociation region (PDR) and the H ii region. Analysis of the energetics of the region reveal that the PDR extends for 0.28 pc along the line of sight and that the bar is inclined at an angle of 4°. The infrared and submillimeter images reveal that the Orion bar represents a swept-up shell with a thickness of 0.1 pc. The mass of the shell implies a shock velocity of ≃3 km s{sup −1} and an age of ≃10{sup 5} years for the H ii region. Our analysis shows that the UV and infrared dust opacities in the H ii region and the PDR are a factor 5 to 10 lower than in the diffuse interstellar medium. In the ionized gas, Ly α photons are a major source of dust heating at distances larger than ≃0.06 pc from θ {sup 1} Ori C. Dust temperatures can be explained if the size of the grains is between 0.1 and 1 μ m. We derive the photoelectric heating efficiency of the atomic gas in the Orion bar. The results are in good qualitative agreement with models and the quantitative differences indicate a decreased polycyclic aromatic hydrocarbon abundance in this region.

  13. THE ORION H ii REGION AND THE ORION BAR IN THE MID-INFRARED

    International Nuclear Information System (INIS)

    Salgado, F.; Tielens, A. G. G. M.; Berné, O.; Adams, J. D.; Herter, T. L.; Keller, L. D.

    2016-01-01

    We present mid-infrared photometry of the Orion bar obtained with the Faint Object infraRed Camera for the SOFIA Telescope (FORCAST) on board SOFIA at 6.4, 6.6, 7.7, 19.7, 31.5, and 37.1 μ m. By complementing this observation with archival FORCAST and Herschel /PACS images, we are able to construct a complete infrared spectral energy distribution of the Huygens region in the Orion nebula. Comparing the infrared images with gas tracers, we find that PACS maps trace the molecular cloud, while the FORCAST data trace the photodissociation region (PDR) and the H ii region. Analysis of the energetics of the region reveal that the PDR extends for 0.28 pc along the line of sight and that the bar is inclined at an angle of 4°. The infrared and submillimeter images reveal that the Orion bar represents a swept-up shell with a thickness of 0.1 pc. The mass of the shell implies a shock velocity of ≃3 km s −1 and an age of ≃10 5 years for the H ii region. Our analysis shows that the UV and infrared dust opacities in the H ii region and the PDR are a factor 5 to 10 lower than in the diffuse interstellar medium. In the ionized gas, Ly α photons are a major source of dust heating at distances larger than ≃0.06 pc from θ 1 Ori C. Dust temperatures can be explained if the size of the grains is between 0.1 and 1 μ m. We derive the photoelectric heating efficiency of the atomic gas in the Orion bar. The results are in good qualitative agreement with models and the quantitative differences indicate a decreased polycyclic aromatic hydrocarbon abundance in this region.

  14. The Mid-Infrared Fundamental Plane of Early-Type Galaxies

    Science.gov (United States)

    Jun, Hyunsung David; Im, Myungshin

    2008-05-01

    Three observables of early-type galaxies—size (re), surface brightness (Ie), and velocity dispersion (σ0)—form a tight planar correlation known as the fundamental plane (FP), which has provided great insights into the galaxy formation and the evolution processes. However, the FP has been found to be tilted against the simple virial expectation, prompting debates on its origin. In order to investigate the contribution of systematic stellar population variation to the FP tilt, we study here the FP relations of early-type galaxies in the mid-infrared (MIR), which may represent stellar mass well. We examine the wavelength dependence of the FP coefficients a and b in log re = alog σ0 + blog langle Iranglee + c, using a sample of 56 early-type galaxies for which visible (V band), near-infrared (K band), and MIR (Spitzer IRAC, 3.6-8.0 μm) data are available. We find that the coefficient a increases as a function of wavelength as da/dλ = 0.11 +/- 0.04 μm-1, while the coefficient b reaches the closest to -1 at 3.6-5.8 μm. When applied to the visible FP coefficients derived from a larger sample of nearby early-type galaxies, we get the FP relation with (a, b) ~= (1.6-1.8, -0.9) at 3.6 μm. Our result suggests that the stellar population effect can explain more than half of the FP tilt, closing the gap between the virial expectation and the optical FP. The reduction in the FP tilt is reflected in the dynamical mass-to-light ratio, Mdyn/L, dependence on L which decreases toward 3.6-5.8 μm, suggesting that the MIR light better represents mass than the shorter wavelengths.

  15. VERY LARGE INTERSTELLAR GRAINS AS EVIDENCED BY THE MID-INFRARED EXTINCTION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shu; Jiang, B. W. [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Li, Aigen, E-mail: shuwang@mail.bnu.edu.cn, E-mail: bjiang@bnu.edu.cn, E-mail: wanshu@missouri.edu, E-mail: lia@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2015-09-20

    The sizes of interstellar grains are widely distributed, ranging from a few angstroms to a few micrometers. The ultraviolet (UV) and optical extinction constrains the dust in the size range of a couple hundredths of micrometers to several submicrometers. The near and mid infrared (IR) emission constrains the nanometer-sized grains and angstrom-sized very large molecules. However, the quantity and size distribution of micrometer-sized grains remain unknown because they are gray in the UV/optical extinction and they are too cold and emit too little in the IR to be detected by IRAS, Spitzer, or Herschel. In this work, we employ the ∼3–8 μm mid-IR extinction, which is flat in both diffuse and dense regions to constrain the quantity, size, and composition of the μm-sized grain component. We find that, together with nano- and submicron-sized silicate and graphite (as well as polycyclic aromatic hydrocarbons), μm-sized graphite grains with C/H ≈ 137 ppm and a mean size of ∼1.2 μm closely fit the observed interstellar extinction of the Galactic diffuse interstellar medium from the far-UV to the mid-IR, as well as the near-IR to millimeter thermal emission obtained by COBE/DIRBE, COBE/FIRAS, and Planck up to λ ≲ 1000 μm. The μm-sized graphite component accounts for ∼14.6% of the total dust mass and ∼2.5% of the total IR emission.

  16. MID-INFRARED EVIDENCE FOR ACCELERATED EVOLUTION IN COMPACT GROUP GALAXIES

    International Nuclear Information System (INIS)

    Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.; Hibbard, John E.; Hornschemeier, Ann E.; Tzanavaris, Panayiotis; Charlton, Jane C.; Jarrett, Thomas H.

    2010-01-01

    Compact galaxy groups are at the extremes of the group environment, with high number densities and low velocity dispersions that likely affect member galaxy evolution. To explore the impact of this environment in detail, we examine the distribution in the mid-infrared (MIR) 3.6-8.0 μm color space of 42 galaxies from 12 Hickson compact groups (HCGs) in comparison with several control samples, including the LVL+SINGS galaxies, interacting galaxies, and galaxies from the Coma Cluster. We find that the HCG galaxies are strongly bimodal, with statistically significant evidence for a gap in their distribution. In contrast, none of the other samples show such a marked gap, and only galaxies in the Coma infall region have a distribution that is statistically consistent with the HCGs in this parameter space. To further investigate the cause of the HCG gap, we compare the galaxy morphologies of the HCG and LVL+SINGS galaxies, and also probe the specific star formation rate (SSFR) of the HCG galaxies. While galaxy morphology in HCG galaxies is strongly linked to position with MIR color space, the more fundamental property appears to be the SSFR, or star formation rate normalized by stellar mass. We conclude that the unusual MIR color distribution of HCG galaxies is a direct product of their environment, which is most similar to that of the Coma infall region. In both cases, galaxy densities are high, but gas has not been fully processed or stripped. We speculate that the compact group environment fosters accelerated evolution of galaxies from star-forming and neutral gas-rich to quiescent and neutral gas-poor, leaving few members in the MIR gap at any time.

  17. Mineral abundances of comet 17P/Holmes derived from the mid-infrared spectrum

    Science.gov (United States)

    Shinnaka, Yoshiharu; Yamaguchi, MItsuru; Ootsubo, Takafumi; Kawakita, Hideyo; Sakon, Itsuki; Honda, Mitsuhiko; Watanabe, Jun-ichi

    2017-10-01

    Dust grains of crystalline silicate, which is rarely presented in an interstellar space, were found in cometary nuclei (Messenger et al. 1996, LPI, 27, 867; Wooden et al. 1999, ApJ, 517, 1058, references therein). It is thought that these crystalline silicates had formed by annealing or condensations of amorphous grains near the Sun in the solar nebula, and incorporated into a cometary nucleus in a cold region (farther than formation regions of the crystalline silicates) by radial transportation in the solar nebula. It is considered that transportation mechanisms to outside of the solar nebula were turbulent and/or X-wind. An abundance of the crystalline dust grains was therefore expected to be smaller as far from the Sun (Gail, 2001, A&A, 378, 192; Bockelée-Morvan et al. 2002, A&A, 384, 1107). Namely, the abundance ratio of the crystalline silicate in cometary dust grains relates a degree of mass transportation and a distance from the Sun when cometary nucleus formed in the Solar nebula. The mass ratio of crystalline silicates of dust grains is determined from by Si-O stretching vibrational bands of silicate grains around 10 μm using difference of spectral band features between crystalline and amorphous grains. We present the crystalline-to-amorphous mass ratio of silicate grains in the comet 17P/Holmes by using the thermal emission mode of the dust grains (Ootsubo et al. 2007, P&SS, 55, 1044) applied to the mid-infrared spectra of the comet. These spectra were taken by the COMICS mounted on the Subaru Telescope on 2007 October 25, 26, 27 and 28 immediately after the great outburst of the comet (started on October 23). We discuss about formation conditions of the nucleus of the comet based on the derived mass ratio of silicate grains of the comet.

  18. Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant

    Science.gov (United States)

    Freedman, Wendy L.; Madore, Barry F.; Scowcroft, Victoria; Burns, Chris; Monson, Andy; Persson, S. Eric; Seibert, Mark; Rigby, Jane

    2012-01-01

    Using a mid-infrared calibration of the Cepheid distance scale based on recent observations at 3.6 micrometers with the Spitzer Space Telescope, we have obtained a new, high-accuracy calibration of the Hubble constant. We have established the mid-IR zero point of the Leavitt law (the Cepheid period-luminosity relation) using time-averaged 3.6 micrometers data for 10 high-metallicity, MilkyWay Cepheids having independently measured trigonometric parallaxes. We have adopted the slope of the PL relation using time-averaged 3.6micrometers data for 80 long-period Large Magellanic Cloud (LMC) Cepheids falling in the period range 0.8 Hubble Space Telescope Key Project has decreased by over a factor of three. Applying the Spitzer calibration to the Key Project sample, we find a value of H(sub 0) = 74.3 with a systematic uncertainty of +/-2.1 (systematic) kilometers per second Mpc(sup -1), corresponding to a 2.8% systematic uncertainty in the Hubble constant. This result, in combination with WMAP7measurements of the cosmic microwave background anisotropies and assuming a flat universe, yields a value of the equation of state for dark energy, w(sub 0) = -1.09 +/- 0.10. Alternatively, relaxing the constraints on flatness and the numbers of relativistic species, and combining our results with those of WMAP7, Type Ia supernovae and baryon acoustic oscillations yield w(sub 0) = -1.08 +/- 0.10 and a value of N(sub eff) = 4.13 +/- 0.67, mildly consistent with the existence of a fourth neutrino species.

  19. Continuous-wave, singly resonant parametric oscillator-based mid-infrared optical vortex source.

    Science.gov (United States)

    Aadhi, A; Sharma, Varun; Singh, R P; Samanta, G K

    2017-09-15

    We report on a high-power, continuous-wave source of optical vortices tunable in the mid-infrared (mid-IR) wavelength range. Using the orbital angular momentum (OAM) conservation of the parametric processes and the threshold conditions of the cavity modes of the singly resonant optical parametric oscillator (SRO), we have transferred the OAM of the pump beam at the near-infrared wavelength to the idler beam tunable in the mid-IR. Pumped with a vortex beam of order l p =1 at 1064 nm, the SRO, configured in a four curved mirror-based ring cavity with a 50 mm long MgO-doped periodically poled LiNbO 3 crystal, produces an idler beam with an output power in excess of 2 W in a vortex spatial profile with the order l i =1, tunable across 2217-3574 nm and corresponding signal beam in Gaussian intensity distribution across 1515-2046 nm. For pump vortices of the order l p =1 and 2, and a power of 22 W, the SRO produces idler vortices of the same order as that of the pump beam with a maximum power of 5.23 and 2.3 W, corresponding to near-IR to mid-IR vortex conversion efficiency of 23.8% and 10.4%, respectively. The idler vortex beam has a spectral width, and a passive rms power stability of 101 MHz and 4.9% over 2 h, respectively.

  20. High-efficiency mid-infrared optical parametric amplifier with approximate uniform rectangular pump distribution

    Science.gov (United States)

    Wei, Xingbin; Peng, Yuefeng; Luo, Xingwang; Zhou, Tangjian; Peng, Jue; Nie, Zan; Gao, Jianrong

    2017-10-01

    We present a high-efficiency mid-infrared optical parametric amplifier (OPA) pumped by a Nd:YAG slab laser with rectangular beam distribution. To improve the conversion efficiency of OPA, we used an approximate uniform pump beam, which helped most of the pump area maintain the optimal intensity to reduce the back conversion effect. The uniform pump distribution without any peak intensity also reduced the damage chances of the nonlinear crystal of PPMgOLN and increased its pump power capability in power-scaling operations. To make sufficient usage of the narrow and small interface of PPMgOLN, we chose a rectangular pump shape whose size was adjusted to match the maximum effective interface of PPMgOLN. The idler laser of 3.82 μm from an optical parametric oscillator (OPO) was powerscaled in the following OPA system. We used two 1.064 μm lasers to pump the OPO and OPA separately. The pulsewidth adjustment and pulse synchronization of the 1 μm pump laser and 3.82 μm seed laser were realized by changing the parameters of the two acoustic-optical Q-switches in the two pump lasers. With the input pump power of 293.4 W, the amplified 3.82 μm laser power was 40.3 W deducting the injected seed laser power of 2.9 W from OPO. The corresponding conversion efficiency from the pump to the idler was 13.7% for the PPMgOLN OPA.

  1. YSOVAR: MID-INFRARED VARIABILITY AMONG YSOs IN THE STAR FORMATION REGION GGD12-15

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, Scott J.; Günther, H. Moritz; Poppenhaeger, Katja; Forbrich, J. [Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cody, A. M. [NASA Ames Research Center, M/S 244-5 Moffett Field, CA 94035 (United States); Rebull, L. M.; Stauffer, J. R. [Spitzer Science Center/Caltech, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Hillenbrand, L. A. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Plavchan, P. [Department of Physics Astronomy and Materials Science, Missouri State University, Springfield, MO 65897 (United States); Covey, K. R. [Department of Physics and Astronomy, Western Washington Univ., Bellingham, WA 98225-9164 (United States); Song, Inseok, E-mail: swolk@cfa.harvard.edu [Physics and Astronomy Department, University of Georgia, Athens, GA 30602-2451 (United States)

    2015-11-15

    We present an IR-monitoring survey with the Spitzer Space Telescope of the star-forming region GGD 12-15. More than 1000 objects were monitored, including about 350 objects within the central 5′, which is found to be especially dense in cluster members. The monitoring took place over 38 days and is part of the Young Stellar Object VARiability project. The region was also the subject of a contemporaneous 67 ks Chandra observation. The field includes 119 previously identified pre-main sequence star candidates. X-rays are detected from 164 objects, 90 of which are identified with cluster members. Overall, we find that about half the objects in the central 5′ are young stellar objects (YSOs) based on a combination of their spectral energy distribution, IR variability, and X-ray emission. Most of the stars with IR excess relative to a photosphere show large amplitude (>0.1 mag) mid-infrared (mid-IR) variability. There are 39 periodic sources, and all but one is found to be a cluster member. Almost half of the periodic sources do not show IR excesses. Overall, more than 85% of the Class I, flat spectrum, and Class II sources are found to vary. The amplitude of the variability is larger in more embedded YSOs. Most of the Class I/II objects exhibit redder colors in a fainter state, which is compatible with time-variable extinction. A few become bluer when fainter, which can be explained with significant changes in the structure of the inner disk. A search for changes in the IR due to X-ray events is carried out, but the low number of flares prevented an analysis of the direct impact of X-ray flares on the IR light curves. However, we find that X-ray detected Class II sources have longer timescales for change in the MIR than a similar set of non-X-ray detected Class IIs.

  2. The Mid-Infrared Imager/Spectrometer/Coronagraph Instrument (MISC) for the Origins Space Telescope

    Science.gov (United States)

    Roellig, Thomas; Sakon, Itsuki; Ennico, Kimberly; MISC Instrument Study Team, Origins Space Telescope Study Team

    2018-01-01

    The Origins Space Telescope (OST) is one of four potential flagship missions that have been funded by NASA for study for consideration in the upcoming Astrophysics Decadal Review expected in 2020. The OST telescope will be up to 9.3 meters in diameter, cooled to ~4K, and the mission will be optimized for efficient mid and far-infrared astronomical observations. An initial suite of five focal plane instruments are being baselined for this observatory. The Mid-infrared Imager Spectrometer Coronagraph (MISC) instrument will observe at the shortest wavelengths of any of these instruments, ranging from 5 to 38 microns, and consists of three separate optical modules providing imaging, spectroscopy, and coronagraph capabilities. The imaging camera covers a 3 arcmin x 3 arcmin field with filters and grisms from 6-38 microns. The spectrometers have spectral resolving powers R~1,000 from 9-38 microns (with a goal of 5-38 microns) and R~25,000 for 12-18 and 25-36 microns. The coronagraph covers 6-38 microns. There is a special densified pupil spectrometer channel that provides R~100-300 exoplanet transit and emission spectroscopy from 6-26 microns with very high spectro-photometric stability. As the shortest wavelength focal plane imager the MISC instrument will also be used for focal plane guiding as needed for the other OST science instruments. The science that MISC enables on OST includes: studying episodic accretion in protostellar envelopes, tracing the rise in metallacity and dust over cosmic time (when combined with far-infrared measurements), measuring dust in galactic outflows, assessing feedback from supernovae and AGN on the multi-phase ISM in galaxies, characterizing the AGN and starburst power in normal and massive galaxies, detecting exoplanet atmospheric biosignatures, and direct imaging of Jovian planets orbiting older stars at separations of 5-20 AU.

  3. ISO Mid-Infrared Observations of Giant HII Regions in M33

    Science.gov (United States)

    Skelton, B. P.; Waller, W. H.; Hodge, P. W.; Boulanger, F.; Cornett, R. H.; Fanelli, M. N.; Lequeux, J.; Stecher, T. P.; Viallefond, F.; Hui, Y.

    1999-01-01

    We present Infrared Space Observatory Camera (ISOCAM) Circular Variable Filter scans of three giant HII regions in M33. IC 133, NGC 595, and CC 93 span a wide range of metallicity, luminosity, nebular excitation, and infrared excess; three other emission regions (CC 43, CC 99, and a region to the northeast of the core of NGC 595) are luminous enough in the mid-infrared to be detected in the observed fields. ISOCAM CVF observations provide spatially resolved observations (5'') of 151 wavelengths between 5.1 and 16.5 microns with a spectral resolution R = 35 to 50. We observe atomic emission lines ([Ne II], [Ne III], and [S IV]), several "unidentified infrared bands" (UIBs; 6.2, 7.7, 8.6, 11.3, 12.0, and 12.7 microns), and in some cases a continuum which rises steeply at longer wavelengths. We conclude that the spectra of these three GHRs are well explained by combinations of ionized gas, PAHs, and very small grains in various proportions and with different spatial distributions. Comparisons between observed ratios of the various UIBs with model ratios indicate that the PAHs in all three of the GHRs are dehydrogenated and that the small PAHs have been destroyed in IC 133 but have survived in NGC 595 and CC 93. The [Ne III]/[Ne II] ratios observed in IC 133 and NGC 595 are consistent with their ages of 5 and 4.5 Myr, respectively; the deduced ionization parameter is higher in IC 133, consistent with its more compact region of emission.

  4. Multi-wavelength study of triggered star formation around the mid-infrared bubble N14

    Science.gov (United States)

    Dewangan, L. K.; Ojha, D. K.

    2013-02-01

    We present multi-wavelength analysis around the mid-infrared (MIR) bubble N14 to probe the signature of triggered star formation as well as the formation of new massive star(s) and/or cluster(s) at the borders of the bubble by the expansion of the H II region. Spitzer Infrared Array Camera ratio maps reveal that the bubble is traced by the polycyclic aromatic hydrocarbon emission following an almost circular morphology except in the south-west direction towards the low molecular density environment. The observational signatures of the collected molecular and cold dust material have been found around the bubble. We have detected 418 young stellar objects (YSOs) in the selected region around the bubble N14. Interestingly, the detected YSO clusters are associated with the collected molecular and cold dust material at the borders of the bubble. One of the clusters is found with deeply embedded intermediate mass and massive Class I YSOs associated with one of the dense dust clumps in the east of the bubble N14. We do not find good agreement between the dynamical age of the H II region and the fragmentation time of the accumulated molecular materials to explain the possible `collect-and-collapse' process around the bubble N14. Therefore, we suggest the possibility of triggered star formation by compression of the pre-existing dense clumps by the shock wave and/or small-scale Jeans gravitational instabilities in the collected materials. We have also investigated 5 young massive embedded protostars (8-10 M⊙) and 15 intermediate mass (3-7 M⊙) Class I YSOs which are associated with the dust and molecular fragmented clumps at the borders of the bubble. We conclude that the expansion of the H II region is also leading to the formation of these intermediate and massive Class I YSOs around the bubble N14.

  5. Assessment of cyanide contamination in soils with a handheld mid-infrared spectrometer.

    Science.gov (United States)

    Soriano-Disla, José M; Janik, Leslie J; McLaughlin, Michael J

    2018-02-01

    We examined the feasibility of using handheld mid-infrared (MIR) Fourier-Transform infrared (FT-IR) instrumentation for detecting and analysing cyanide (CN) contamination in field contaminated soils. Cyanide spiking experiments were first carried out, in the laboratory, to test the sensitivity of infrared Fourier transform (DRIFT) spectrometry to ferro- and ferricyanide compounds across a range of reference soils and minerals. Both benchtop and handheld diffuse reflectance infrared spectrometers were tested. Excellent results were obtained for the reference soils and minerals, with the MIR outperforming the near-infrared (NIR) range. Spectral peaks characteristic of the -C≡N group were observed near 2062 and 2118cm -1 in the MIR region for the ferro- and ferricyanide compounds spiked into soils/minerals, respectively. In the NIR region such peaks were observed near 4134 and 4220cm -1 . Cyanide-contaminated samples were then collected in the field and analyzed with the two spectrometers to further test the applicability of the DRIFT technique for soils containing aged CN residues. The prediction of total CN in dry and ground contaminated soils using the handheld MIR instrument resulted in a coefficient of determination (R 2 ) of 0.88-0.98 and root mean square error of the cross-validation (RMSE) of 21-49mgkg -1 for a CN range of 0-611mgkg -1 . A major peak was observed in the MIR at about 2092cm -1 which was attributed to "Prussian Blue" (Fe 4 [Fe(CN) 6 ] 3 ·xH 2 O). These results demonstrate the potential of handheld DRIFT instrumentation as a promising alternative to the standard laboratory method to predict CN concentrations in contaminated field soils. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  6. Directly imaged L-T transition exoplanets in the mid-infrared {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Skemer, Andrew J.; Hinz, Philip M.; Morzinski, Katie M.; Leisenring, Jarron M.; Close, Laird M.; Bailey, Vanessa P.; Defrere, Denis; Follette, Katherine B.; Males, Jared R.; Rodigas, Timothy J. [Steward Observatory, Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Marley, Mark S. [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Saumon, Didier [Los Alamos National Laboratory, Mail Stop F663, Los Alamos, NM 87545 (United States); Briguglio, Runa; Esposito, Simone; Puglisi, Alfio; Xompero, Marco [Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Arcetri Largo E. Fermi 5 50125 Firenze (Italy); Hill, John M. [Large Binocular Telescope Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-09-01

    Gas-giant planets emit a large fraction of their light in the mid-infrared (≳3 μm), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L- and M-band atmospheric windows (3-5 μm), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT adaptive optics (AO) images of the HR 8799 planetary system in six narrow-band filters from 3 to 4 μm, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3 μm band. These systems encompass the five known exoplanets with luminosities consistent with L → T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrow-band filters and encompassed by the broader 3.3 μm filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the object's appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface and vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles.

  7. Directly imaged L-T transition exoplanets in the mid-infrared ,

    International Nuclear Information System (INIS)

    Skemer, Andrew J.; Hinz, Philip M.; Morzinski, Katie M.; Leisenring, Jarron M.; Close, Laird M.; Bailey, Vanessa P.; Defrere, Denis; Follette, Katherine B.; Males, Jared R.; Rodigas, Timothy J.; Marley, Mark S.; Skrutskie, Michael F.; Saumon, Didier; Briguglio, Runa; Esposito, Simone; Puglisi, Alfio; Xompero, Marco; Hill, John M.

    2014-01-01

    Gas-giant planets emit a large fraction of their light in the mid-infrared (≳3 μm), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L- and M-band atmospheric windows (3-5 μm), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT adaptive optics (AO) images of the HR 8799 planetary system in six narrow-band filters from 3 to 4 μm, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3 μm band. These systems encompass the five known exoplanets with luminosities consistent with L → T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrow-band filters and encompassed by the broader 3.3 μm filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the object's appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface and vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles.

  8. Mid - infrared transmission of polycrystalline (LaSr) (MnNi)O3

    International Nuclear Information System (INIS)

    Laksanawati, W. D.; Kurniawan, B.; Saptari, S. A.

    2016-01-01

    Polycrystalline (LaSr)(MnNi)O 3 was shintesized using sol gel methods with nitrat precursors La(NO 3 ) 3 , Sr(NO 3 ) 2 , Mn(NO 3 ) 2 .4H 2 O, and Ni(NO3)2.6H2O and the different heating process. Sample (LaSr)(MnNi)O 3 with chemical formulation La 0,67 Sr 0,33 Mn 1-x Ni x O 3 with × = 0,05 and 0,10. We report the crystallite structure of La 0,67 Sr 0,33 Mn 1-x Ni x O 3 with x= 0,00 and 0,10 are single phase with characterization by X-ray diffraction. Refinement has result that crystallite size of La 0,67 Sr 0,33 Mn 0,95 Ni 0,05 O 3 is 24,67 and La 0,67 Sr 0,33 Mn 0,9 Ni 0,1 O 3 is 21,84 with crystallite system rombohedral, it show us that increasing at Ni composition influence of decreased crystallite size. Sampel (LaSr)(MnNi)O3 has been characterization with Fourier Transform Infrared with range of wave number from 450 to 4000 cm -1 were chategories at mid infrared wave. The FTIR pattern show to us that the Mn-O-Mn bounded has absorp infrared at wave number 605 cm -1 and the dominant peak at wave number 3750 cm -1 caused the hidroxy compound in sampel La 0,67 Sr 0,33 Mn 0,95 Ni 0,05 O 3 . (paper)

  9. Modelling the mid-infrared drying of sweet potato: kinetics, mass and heat transfer parameters, and energy consumption

    Science.gov (United States)

    Onwude, Daniel I.; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan

    2018-04-01

    This study investigated the drying kinetics, mass and heat transfer characteristics of sweet potato slices (0.4-0.6 cm thickness) during drying based on mid-infrared experimental set-up (intensity of 1100-1400 W/m2). Thin layer drying models were used to evaluate the drying kinetics of sweet potato slices. Two analytical models (Fick's diffusion model, and Dincer and Dost model) were used to study the mass transfer behaviour of sweet potato slices with and without shrinkage during mid-infrared drying. The heat transfer flux between the emitter and sweet potato slices was also investigated. Results demonstrated that an increase in infrared intensity from 1100 W/m2 to 1400 W/m2 resulted in increased in average radiation heat flux by 3.4 times and a 15% reduction in the overall drying time. The two-term exponential model was found to be the best in predicting the drying kinetics of sweet potato slices during mid-infrared drying. The specific heat consumption varied from 0.91-4.82 kWh/kg. The effective moisture diffusivity with and without shrinkage using the Fick's diffusion model varied from 2.632 × 10-9 to 1.596 × 10-8 m2/s, and 1.24 × 10-8 to 2.4 × 10-8 m2/s using Dincer and Dost model, respectively. The obtained values of mass transfer coefficient, Biot number and activation energy varied from 5.99 × 10-6 to 1.17 × 10-5 m/s, 0.53 to 2.62, and 12.83 kJ/mol to 34.64 kJ/mol, respectively. The values obtained for Biot number implied the existence of simultaneous internal and external resistances. The findings further explained that mid-infrared intensity of 1100 W/m2 did not significantly affect the quality of sweet potato during drying, demonstrating a great potential of applying low intensity mid-infrared radiation in the drying of agricultural crops.

  10. Modeling of dispersion engineered chalcogenide rib waveguide for ultraflat mid-infrared supercontinuum generation in all-normal dispersion regime

    Science.gov (United States)

    Ahmad, H.; Karim, M. R.; Rahman, B. M. A.

    2018-03-01

    A rigorous numerical investigation has been carried out through dispersion engineering of chalcogenide rib waveguide for near-infrared to mid-infrared ultraflat broadband supercontinuum generation in all-normal group-velocity dispersion regime. We propose a novel design of a 1-cm-long air-clad rib waveguide which is made from {Ge}_{11.5} {As}_{24} {Se}_{64.5} chalcogenide glass as the core with either silica or {Ge}_{11.5} {As}_{24} {S}_{64.5} chalcogenide glass as a lower cladding separately. A broadband ultraflat supercontinuum spanning from 1300 to 1900 nm could be generated when pumped at 1.55 μ {m} with a low input peak power of 100 W. Shifting the pump to 2 μ {m}, the supercontinuum spectra extended in the mid-infrared region up to 3400 nm with a moderate-input peak power of 500 W. To achieve further extension in mid-infrared, we excite our optimized rib waveguide in both the anomalous and all-normal dispersion pumping regions at 3.1 μ {m} with a largest input peak power of 3 kW. In the case of anomalous dispersion region pumping, numerical analysis shows that supercontinuum spectrum can be extended in the mid-infrared up to 10 μ {m}, although this contains high spectral amplitude fluctuations over the entire bandwidth which limits the supercontinuum sources in the field of high precision measurement applications. On the other hand, by optimizing a rib waveguide geometry for pumping in all-normal dispersion region, we are able to generate a smooth and flat-top coherent supercontinuum spectrum with a moderate bandwidth spanning the wavelength range 2-5.5 μ {m} with less than 5 dB spectral fluctuation over the entire output bandwidth. Our proposed design is highly suitable for making on-chip SC light sources for a variety of applications such as biomedical imaging, and environmental and industrial sensing in the mid-infrared region.

  11. Low-mass Stars with Extreme Mid-Infrared Excesses: Potential Signatures of Planetary Collisions

    Science.gov (United States)

    Theissen, Christopher; West, Andrew

    2018-01-01

    I investigate the occurrence of extreme mid-infrared (MIR) excesses, a tracer of large amounts of dust orbiting stars, in low-mass stellar systems. Extreme MIR excesses, defined as an excess IR luminosity greater than 1% of the stellar luminosity (LIR/L* ≥ 0.01), have previously only been observed around a small number of solar-mass (M⊙) stars. The origin of this excess has been hypothesized to be massive amounts of orbiting dust, created by collisions between terrestrial planets or large planetesimals. Until recently, there was a dearth of low-mass (M* ≤ 0.6M⊙) stars exhibiting extreme MIR excesses, even though low-mass stars are ubiquitous (~70% of all stars), and known to host multiple terrestrial planets (≥ 3 planets per star).I combine the spectroscopic sample of low-mass stars from the Sloan Digital Sky Survey (SDSS) Data Release 7 (70,841 stars) with MIR photometry from the Wide-field Infrared Survey Explorer (WISE), to locate stars exhibiting extreme MIR excesses. I find the occurrence frequency of low-mass field stars (stars with ages ≥ 1 Gyr) exhibiting extreme MIR excesses is much larger than that for higher-mass field stars (0.41 ± 0.03% versus 0.00067 ± 0.00033%, respectively).In addition, I build a larger sample of low-mass stars based on stellar colors and proper motions using SDSS, WISE, and the Two-Micron All-Sky Survey (8,735,004 stars). I also build a galactic model to simulate stellar counts and kinematics to estimate the number of stars missing from my sample. I perform a larger, more complete study of low-mass stars exhibiting extreme MIR excesses, and find a lower occurrence frequency (0.020 ± 0.001%) than found in the spectroscopic sample but that is still orders of magnitude larger than that for higher-mass stars. I find a slight trend for redder stars (lower-mass stars) to exhibit a higher occurrence frequency of extreme MIR excesses, as well as a lower frequency with increased stellar age. These samples probe important

  12. Combining mid infrared and total X-ray fluorescence spectroscopy for prediction of soil properties

    Science.gov (United States)

    Towett, Erick; Shepherd, Keith; Sila, Andrew; Aynekulu, Ermias; Cadisch, Georg

    2015-04-01

    Mid-infrared diffuse reflectance spectroscopy (MIR) can predict many soil properties but extractable nutrients are often predicted poorly. We evaluated the potential of MIR and total elemental analysis using total X-ray fluorescence spectroscopy (TXRF), both individually and combined, to predict results of conventional soil tests. Total multi-elemental analysis provides a fingerprint of soil mineralogy and could predict some soil properties and help improve MIR predictions. A set of 700 georeferenced soil samples associated with the Africa Soil Information Service (AfSIS) (www.africasoils.net) from 44 stratified randomly-located 100-km2 sentinel sites distributed across sub-Saharan Africa were analysed for physico-chemical composition using conventional reference methods, and compared to MIR and TXRF spectra using the Random Forests regression algorithm and an internal out-of-bag validation. MIR spectra resulted in good prediction models (R2 >0.80) for organic C and total N, Mehlich-3 Ca and Al, and pH. To test the combined spectroscopic approach, TXRF element concentration data was included as a property predictor along with the first derivative of MIR spectral data using the RF algorithm. Including TXRF did not improve prediction of these properties. TXRF was poorer (R2 0.86) as these elements are not directly determined with TXRF, however the variance explained is still quite high and may be attributable to TXRF signatures relating to mineralogy correlated with protection of soil organic matter. TXRF model for Mehlich-3 Al had excellent prediction capability explaining 81% of the observed variation in extractable Al content and was comparable to that of MIR (R2 = 0.86). However, models for pH and Mehlich-3 exchangeable Ca exhibited R2 values of 0.74 and 0.79 respectively and thus had moderate predictive accuracy, compared to MIR alone with R2 values of 0.82 and 0.84 respectively. Both MIR and TXRF methods predicted soil properties that relate to nutrient

  13. THE DARKEST SHADOWS: DEEP MID-INFRARED EXTINCTION MAPPING OF A MASSIVE PROTOCLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Michael J. [Institute of Theoretical Physics, University of Zürich, CH-8057 Zürich (Switzerland); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Kainulainen, Jouni [Max-Planck-Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg (Germany)

    2014-02-20

    We use deep 8 μm Spitzer-IRAC imaging of massive Infrared Dark Cloud (IRDC) G028.37+00.07 to construct a mid-infrared (MIR) extinction map that probes mass surface densities up to Σ ∼ 1 g cm{sup –2} (A{sub V} ∼ 200 mag), amongst the highest values yet probed by extinction mapping. Merging with an NIR extinction map of the region creates a high dynamic range map that reveals structures down to A{sub V} ∼ 1 mag. We utilize the map to: (1) measure a cloud mass ∼7 × 10{sup 4} M {sub ☉} within a radius of ∼8 pc. {sup 13}CO kinematics indicate that the cloud is gravitationally bound. It thus has the potential to form one of the most massive young star clusters known in the Galaxy. (2) Characterize the structures of 16 massive cores within the IRDC, finding they can be fit by singular polytropic spheres with ρ∝r{sup −k{sub ρ}} and k {sub ρ} = 1.3 ± 0.3. They have Σ-bar ≃0.1--0.4 g cm{sup −2}—relatively low values that, along with their measured cold temperatures, suggest that magnetic fields, rather than accretion-powered radiative heating, are important for controlling fragmentation of these cores. (3) Determine the Σ (equivalently column density or A{sub V} ) probability distribution function (PDF) for a region that is nearly complete for A{sub V} > 3 mag. The PDF is well fit by a single log-normal with mean A-bar {sub V}≃9 mag, high compared to other known clouds. It does not exhibit a separate high-end power law tail, which has been claimed to indicate the importance of self-gravity. However, we suggest that the PDF does result from a self-similar, self-gravitating hierarchy of structures present over a wide range of scales in the cloud.

  14. THE MID-INFRARED EXTINCTION LAW IN THE LARGE MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jian; Jiang, B. W.; Xue, M. Y. [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Li, Aigen, E-mail: jiangao@bnu.edu.cn, E-mail: bjiang@bnu.edu.cn, E-mail: lia@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2013-10-10

    Based on photometric data from the Spitzer/SAGE survey, using red giants as extinction tracers, the mid-infrared (MIR) extinction laws in the Large Magellanic Cloud (LMC) are derived for the first time in the form of A{sub λ}/A{sub K{sub S}}. This quantity refers to the extinction in the four Infrared Array Camera (IRAC) bands (i.e., [3.6], [4.5], [5.8], and [8.0] μm) relative to the Two Micron All Sky Survey K{sub S} band at 2.16 μm. We obtain the near-infrared extinction coefficient to be E(J – H)/E(H – K{sub S} ) ≈ 1.29 ± 0.04 and E(J – K{sub S} )/E(H – K{sub S} ) ≈ 1.94 ± 0.04. The wavelength dependence of the MIR extinction A{sub λ}/A{sub K{sub S}} in the LMC varies from one sightline to another. The overall mean MIR extinction is A{sub [3.6]}/A{sub K{sub S}}∼0.72±0.03, A{sub [4.5]}/A{sub K{sub S}}∼0.94±0.03, A{sub [5.8]}/A{sub K{sub S}}∼0.58±0.04, and A{sub [8.0]}/A{sub K{sub S}}∼0.62±0.05. Except for the extinction in the IRAC [4.5] μm band, which may be contaminated by the 4.6 μm CO gas absorption of red giants used to trace LMC extinction, the extinction in the other three IRAC bands show a flat curve, close to the Milky Way R{sub V} = 5.5 model extinction curve, where R{sub V} is the optical total-to-selective extinction ratio. The possible systematic bias caused by the correlated uncertainties of K{sub S} – λ and J – K{sub S} is explored in terms of Monte Carlo simulations. We find that this bias could lead to an overestimation of A{sub λ}/A{sub K{sub S}} in the MIR.

  15. THE MID-INFRARED EXTINCTION LAW IN THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Gao, Jian; Jiang, B. W.; Xue, M. Y.; Li, Aigen

    2013-01-01

    Based on photometric data from the Spitzer/SAGE survey, using red giants as extinction tracers, the mid-infrared (MIR) extinction laws in the Large Magellanic Cloud (LMC) are derived for the first time in the form of A λ /A K S . This quantity refers to the extinction in the four Infrared Array Camera (IRAC) bands (i.e., [3.6], [4.5], [5.8], and [8.0] μm) relative to the Two Micron All Sky Survey K S band at 2.16 μm. We obtain the near-infrared extinction coefficient to be E(J – H)/E(H – K S ) ≈ 1.29 ± 0.04 and E(J – K S )/E(H – K S ) ≈ 1.94 ± 0.04. The wavelength dependence of the MIR extinction A λ /A K S in the LMC varies from one sightline to another. The overall mean MIR extinction is A [3.6] /A K S ∼0.72±0.03, A [4.5] /A K S ∼0.94±0.03, A [5.8] /A K S ∼0.58±0.04, and A [8.0] /A K S ∼0.62±0.05. Except for the extinction in the IRAC [4.5] μm band, which may be contaminated by the 4.6 μm CO gas absorption of red giants used to trace LMC extinction, the extinction in the other three IRAC bands show a flat curve, close to the Milky Way R V = 5.5 model extinction curve, where R V is the optical total-to-selective extinction ratio. The possible systematic bias caused by the correlated uncertainties of K S – λ and J – K S is explored in terms of Monte Carlo simulations. We find that this bias could lead to an overestimation of A λ /A K S in the MIR

  16. IPHAS A-TYPE STARS WITH MID-INFRARED EXCESSES IN SPITZER SURVEYS

    International Nuclear Information System (INIS)

    Hales, Antonio S.; Barlow, Michael J.; Drew, Janet E.; Unruh, Yvonne C.; Greimel, Robert; Irwin, Michael J.; Gonzalez-Solares, Eduardo

    2009-01-01

    We have identified 17 A-type stars in the Galactic Plane that have mid-infrared (mid-IR) excesses at 8 μm. From observed colors in the (r' - Hα) - (r' - i') plane, we first identified 23,050 early A-type main-sequence (MS) star candidates in the Isaac Newton Photometric H-Alpha Survey (IPHAS) point source database that are located in Spitzer Galactic Legacy Mid-Plane Survey Extraordinaire Galactic plane fields. Imposing the requirement that they be detected in all seven Two Micron All Sky Survey and Infrared Astronomical Satellite bands led to a sample of 2692 candidate A-type stars with fully sampled 0.6 to 8 μm spectral energy distributions (SEDs). Optical classification spectra of 18 of the IPHAS candidate A-type MS stars showed that all but one could be well fitted using MS A-type templates, with the other being an A-type supergiant. Out of the 2692 A-type candidates 17 (0.6%) were found to have 8 μm excesses above the expected photospheric values. Taking into account non-A-Type contamination estimates, the 8 μm excess fraction is adjusted to ∼0.7%. The distances to these sources range from 0.7 to 2.5 kpc. Only 10 out of the 17 excess stars had been covered by Spitzer MIPSGAL survey fields, of which five had detectable excesses at 24 μm. For sources with excesses detected in at least two mid-IR wavelength bands, blackbody fits to the excess SEDs yielded temperatures ranging from 270 to 650 K, and bolometric luminosity ratios L IR /L * from 2.2 x 10 -3 - 1.9 x 10 -2 , with a mean value of 7.9 x 10 -3 (these bolometric luminosities are lower limits as cold dust is not detectable by this survey). Both the presence of mid-IR excesses and the derived bolometric luminosity ratios are consistent with many of these systems being in the planet-building transition phase between the early protoplanetary disk phase and the later debris disk phase.

  17. A SYSTEMATIC STUDY OF MID-INFRARED EMISSION FROM CORE-COLLAPSE SUPERNOVAE WITH SPIRITS

    Energy Technology Data Exchange (ETDEWEB)

    Tinyanont, Samaporn; Kasliwal, Mansi M.; Lau, Ryan; Jencson, Jacob; Prince, Thomas [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Fox, Ori D.; Williams, Robert [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Smith, Nathan [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Perley, Daniel [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); Dykhoff, Devin; Gehrz, Robert [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, S. E., Minneapolis, MN 55455 (United States); Johansson, Joel [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Van Dyk, Schuyler D.; Masci, Frank [Infrared Processing and Analysis Center, California Institute of Technology, M/S 100-22, Pasadena, CA 91125 (United States); Cody, Ann Marie, E-mail: st@astro.caltech.edu [NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2016-12-20

    We present a systematic study of mid-infrared emission from 141 nearby supernovae (SNe) observed with Spitzer /IRAC as part of the ongoing SPIRITS survey. We detect 8 Type Ia and 36 core-collapse SNe. All Type Ia/Ibc SNe become undetectable within three years of explosion, whereas 22 ± 11% of Type II SNe continue to be detected. Five Type II SNe are detected even two decades after discovery (SN 1974E, 1979C, 1980K, 1986J, and 1993J). Warm dust luminosity, temperature, and a lower limit on mass are obtained by fitting the two IRAC bands, assuming an optically thin dust shell. We derive warm dust masses between 10{sup −6} and 10{sup −2} M {sub ⊙} and dust color temperatures between 200 and 1280 K. This observed warm dust could be pre-existing or newly created, but in either case represents a lower limit to the dust mass because cooler dust may be present. We present three case studies of extreme SNe. SN 2011ja (II-P) was over-luminous ([4.5] = −15.6 mag) at 900 days post explosion with increasing hot dust mass, suggesting either an episode of dust formation or intensifying circumstellar material (CSM) interactions heating up pre-existing dust. SN 2014bi (II-P) showed a factor of 10 decrease in dust mass over one month, suggesting either dust destruction or reduced dust heating. The IR luminosity of SN 2014C (Ib) stayed constant over 800 days, possibly due to strong CSM interaction with an H-rich shell, which is rare among stripped-envelope SNe. The observations suggest that this CSM shell originated from an LBV-like eruption roughly 100 years pre-explosion. The observed diversity demonstrates the power of mid-IR observations of a large sample of SNe.

  18. Young stellar object variability (YSOVAR): Long timescale variations in the mid-infrared

    Energy Technology Data Exchange (ETDEWEB)

    Rebull, L. M.; Cody, A. M.; Stauffer, J. R.; Morales-Calderón, M.; Carey, S. J. [Spitzer Science Center (SSC), Infrared Processing and Analysis Center (IPAC), 1200 East California Boulevard, California Institute of Technology, Pasadena, CA 91125 (United States); Covey, K. R. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Günther, H. M.; Poppenhaeger, K.; Wolk, S. J.; Hora, J. L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hillenbrand, L. A. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Plavchan, P. [NASA Exoplanet Science Institute (NExScI), Infrared Processing and Analysis Center (IPAC), 1200 East California Boulevard, California Institute of Technology, Pasadena, CA 91125 (United States); Gutermuth, R. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Song, I. [Physics and Astronomy Department, University of Georgia, Athens, GA 30602-2451 (United States); Barrado, D. [Departamento de Astrofísica, Centro de Astrobiología (INTA-CSIC), ESAC campus, P.O. Box 78, E-28691 Villanueva de la Cañada (Spain); Bayo, A. [Max Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); James, D. [Cerro Tololo InterAmerican Observatory (CTIO), Casilla 603, La Serena (Chile); Vrba, F. J. [US Naval Observatory, Flagstaff Station 10391 West Naval Observatory Road, Flagstaff, AZ 86005 (United States); Alves de Oliveira, C. [European Space Agency (ESA/ESAC), P.O. Box 78, E-28691 Villanueva de la Caãda, Madrid (Spain); Bouvier, J., E-mail: rebull@ipac.caltech.edu [Univ. Grenoble Alpes, IPAG, F-38000 Grenoble (France); and others

    2014-11-01

    The YSOVAR (Young Stellar Object VARiability) Spitzer Space Telescope observing program obtained the first extensive mid-infrared (3.6 and 4.5 μm) time series photometry of the Orion Nebula Cluster plus smaller footprints in 11 other star-forming cores (AFGL 490, NGC 1333, Mon R2, GGD 12-15, NGC 2264, L1688, Serpens Main, Serpens South, IRAS 20050+2720, IC 1396A, and Ceph C). There are ∼29,000 unique objects with light curves in either or both IRAC channels in the YSOVAR data set. We present the data collection and reduction for the Spitzer and ancillary data, and define the 'standard sample' on which we calculate statistics, consisting of fast cadence data, with epochs roughly twice per day for ∼40 days. We also define a 'standard sample of members' consisting of all the IR-selected members and X-ray-selected members. We characterize the standard sample in terms of other properties, such as spectral energy distribution shape. We use three mechanisms to identify variables in the fast cadence data—the Stetson index, a χ{sup 2} fit to a flat light curve, and significant periodicity. We also identified variables on the longest timescales possible of six to seven years by comparing measurements taken early in the Spitzer mission with the mean from our YSOVAR campaign. The fraction of members in each cluster that are variable on these longest timescales is a function of the ratio of Class I/total members in each cluster, such that clusters with a higher fraction of Class I objects also have a higher fraction of long-term variables. For objects with a YSOVAR-determined period and a [3.6]-[8] color, we find that a star with a longer period is more likely than those with shorter periods to have an IR excess. We do not find any evidence for variability that causes [3.6]-[4.5] excesses to appear or vanish within our data set; out of members and field objects combined, at most 0.02% may have transient IR excesses.

  19. Standardization of milk mid-infrared spectrometers for the transfer and use of multiple models.

    Science.gov (United States)

    Grelet, C; Pierna, J A Fernández; Dardenne, P; Soyeurt, H; Vanlierde, A; Colinet, F; Bastin, C; Gengler, N; Baeten, V; Dehareng, F

    2017-10-01

    An increasing number of models are being developed to provide information from milk Fourier transform mid-infrared (FT-MIR) spectra on fine milk composition, technological properties of milk, or even cows' physiological status. In this context, and to take advantage of these existing models, the purpose of this work was to evaluate whether a spectral standardization method can enable the use of multiple equations within a network of different FT-MIR spectrometers. The piecewise direct standardization method was used, matching "slave" instruments to a common reference, the "master." The effect of standardization on network reproducibility was assessed on 66 instruments from 3 different brands by comparing the spectral variability of the slaves and the master with and without standardization. With standardization, the global Mahalanobis distance from the slave spectra to the master spectra was reduced on average from 2,655.9 to 14.3, representing a significant reduction of noninformative spectral variability. The transfer of models from instrument to instrument was tested using 3 FT-MIR models predicting (1) the quantity of daily methane emitted by dairy cows, (2) the concentration of polyunsaturated fatty acids in milk, and (3) the fresh cheese yield. The differences, in terms of root mean squared error, between master predictions and slave predictions were reduced after standardization on average from 103 to 17 g/d, from 0.0315 to 0.0045 g/100 mL of milk, and from 2.55 to 0.49 g of curd/100 g of milk, respectively. For all the models, standard deviations of predictions among all the instruments were also reduced by 5.11 times for methane, 5.01 times for polyunsaturated fatty acids, and 7.05 times for fresh cheese yield, showing an improvement of prediction reproducibility within the network. Regarding the results obtained, spectral standardization allows the transfer and use of multiple models on all instruments as well as the improvement of spectral and prediction

  20. Characterizing organic matter lability in Alaskan tundra soils using mid-infrared spectroscopy

    Science.gov (United States)

    Fan, Z.; Matamala, R.; Jastrow, J. D.; Liang, C.; Calderon, F.; Michaelson, G. J.; Ping, C. L.; Mishra, U.; Hofmann, S. M.

    2015-12-01

    Soils in permafrost regions contain large amounts of soil organic carbon (SOC) that is preserved in a relatively undecomposed state due to cold and often wet conditions, yet the potential lability of these SOC stocks is still largely unknown. Traditional methods of assessing SOC lability (e.g., laboratory incubation studies) are labor intensive and time consuming. Fourier-transform mid-infrared spectroscopy (MidIR) provides a means to quickly estimate SOC quantity and quality based on the wealth of spectral information. In this study, we explored the possibility of linking MidIR spectra with SOC lability in Arctic tundra soils. Soils from four sites on the North Slope of Alaska were used in this study: a wet non-acidic tundra site in the coastal plain (CP), two moist acidic tundra sites between the northern foothills and the coastal plain (HC and SH), and another moist acidic tundra site in the northern foothills (HV). Active-layer organic and mineral soils and upper permafrost soils from the four sites were incubated for 60 days at -1, 1, 4, 8 and 16 °C. Thawed soils were allowed to drain to field capacity. Carbon dioxide (CO2) production was measured throughout the study. The chemical composition (e.g., total organic carbon and nitrogen) and MidIR spectra of soil samples were obtained before and after the incubations. CO2 production varied among soils and temperatures. CO2 production was greatest at 16 °C for CP and SH organic layers and for HC and HV permafrost layers. These trends among soil layers and sites remained similar at all temperatures. We found a good correlation between MidIR and cumulative 60-day CO2 production across different soils and temperatures. Characteristic MidIR bands and band ratios previously identified in the literature were also correlated with total CO2 production. For example, several band ratios (such as the ratio of aliphatics to clay or the ratio of lignin or phenolics to minerals) in the mineral active layer were highly

  1. Nanocomposites for high-speed optical modulators and plasmonic thermal mid-infrared emitters

    Science.gov (United States)

    Demir, Veysi

    Demand for high-speed optical modulators and narrow-bandwidth infrared thermal emitters for numerous applications continues to rise and new optical devices are needed to deal with massive data flows, processing powers, and fabrication costs. Conventional techniques are usually hindered by material limitations or electronic interconnects and advances in organic nanocomposite materials and their integration into photonic integrated circuits (PICs) have been acknowledged as a promising alternative to single crystal techniques. The work presented in this thesis uses plasmonic and magneto-optic effects towards the development of novel optical devices for harnessing light and generating high bandwidth signals (>40GHz) at room and cryogenic temperatures (4.2°K). Several publications have resulted from these efforts and are listed at the end of the abstract. In our first published research we developed a narrow-bandwidth mid-infrared thermal emitter using an Ag/dielectric/Ag thin film structure arranged in hexagonal planar lattice structures. PECVD produced nanoamorphous carbon (NAC) is used as a dielectric layer. Spectrally tunable (>2 mum) and narrow bandwidth (resistivity of NAC from 1012 and 109 O.cm with an MoSi2 dopant and increasing the emitter lattice constant from 4 to 7 mum. This technique offers excellent flexibility for developing cost-effective mid-IR sources as compared to costly fiber and quantum cascade lasers (QCLs). Next, the effect of temperature on the Verdet constant for cobalt-ferrite polymer nanocomposites was measured for a series of temperatures ranging from 40 to 200°K with a Faraday rotation polarimeter. No visual change was observed in the films during thermal cycling, and ˜4x improvement was achieved at 40°K. The results are promising and further analysis is merited at 4.2°K to assess the performance of this material for cryogenic magneto-optic modulators for supercomputers. Finally, the dielectric constant and loss tangent of MAPTMS sol

  2. Near infrared spectroscopic imaging assessment of cartilage composition: Validation with mid infrared imaging spectroscopy.

    Science.gov (United States)

    Palukuru, Uday P; Hanifi, Arash; McGoverin, Cushla M; Devlin, Sean; Lelkes, Peter I; Pleshko, Nancy

    2016-07-05

    Disease or injury to articular cartilage results in loss of extracellular matrix components which can lead to the development of osteoarthritis (OA). To better understand the process of disease development, there is a need for evaluation of changes in cartilage composition without the requirement of extensive sample preparation. Near infrared (NIR) spectroscopy is a chemical investigative technique based on molecular vibrations that is increasingly used as an assessment tool for studying cartilage composition. However, the assignment of specific molecular vibrations to absorbance bands in the NIR spectrum of cartilage, which arise from overtones and combinations of primary absorbances in the mid infrared (MIR) spectral region, has been challenging. In contrast, MIR spectroscopic assessment of cartilage is well-established, with many studies validating the assignment of specific bands present in MIR spectra to specific molecular vibrations. In the current study, NIR imaging spectroscopic data were obtained for compositional analysis of tissues that served as an in vitro model of OA. MIR spectroscopic data obtained from the identical tissue regions were used as the gold-standard for collagen and proteoglycan (PG) content. MIR spectroscopy in transmittance mode typically requires a much shorter pathlength through the sample (≤10 microns thick) compared to NIR spectroscopy (millimeters). Thus, this study first addressed the linearity of small absorbance bands in the MIR region with increasing tissue thickness, suitable for obtaining a signal in both the MIR and NIR regions. It was found that the linearity of specific, small MIR absorbance bands attributable to the collagen and PG components of cartilage (at 1336 and 856 cm(-1), respectively) are maintained through a thickness of 60 μm, which was also suitable for NIR data collection. MIR and NIR spectral data were then collected from 60 μm thick samples of cartilage degraded with chondroitinase ABC as a model

  3. THE SPITZER MID-INFRARED ACTIVE GALACTIC NUCLEUS SURVEY. I. OPTICAL AND NEAR-INFRARED SPECTROSCOPY OF OBSCURED CANDIDATES AND NORMAL ACTIVE GALACTIC NUCLEI SELECTED IN THE MID-INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Ridgway, S. E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Gates, E. L. [UCO/Lick Observatory, P.O. Box 85, Mount Hamilton, CA 95140 (United States); Nielsen, D. M. [Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53706 (United States); Petric, A. O. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Sajina, A. [Department of Physics and Astronomy, Tuffs University, 212 College Avenue, Medford, MA 02155 (United States); Urrutia, T. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Cox Drews, S. [946 Mangrove Avenue 102, Sunnyvale, CA 94086 (United States); Harrison, C. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Seymour, N. [CSIRO, P.O. Box 76, Epping, NSW 1710 (Australia); Storrie-Lombardi, L. J. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-10-01

    We present the results of a program of optical and near-infrared spectroscopic follow-up of candidate active galactic nuclei (AGNs) selected in the mid-infrared. This survey selects both normal and obscured AGNs closely matched in luminosity across a wide range, from Seyfert galaxies with bolometric luminosities L {sub bol} ∼ 10{sup 10} L {sub ☉} to highly luminous quasars (L {sub bol} ∼ 10{sup 14} L {sub ☉}), all with redshifts ranging from 0 to 4.3. Samples of candidate AGNs were selected with mid-infrared color cuts at several different 24 μm flux density limits to ensure a range of luminosities at a given redshift. The survey consists of 786 candidate AGNs and quasars, of which 672 have spectroscopic redshifts and classifications. Of these, 137 (20%) are type 1 AGNs with blue continua, 294 (44%) are type 2 objects with extinctions A{sub V} ∼> 5 toward their AGNs, 96 (14%) are AGNs with lower extinctions (A{sub V} ∼ 1), and 145 (22%) have redshifts, but no clear signs of AGN activity in their spectra. Of the survey objects 50% have L {sub bol} > 10{sup 12} L {sub ☉}, in the quasar regime. We present composite spectra for type 2 quasars and objects with no signs of AGN activity in their spectra. We also discuss the mid-infrared—emission-line luminosity correlation and present the results of cross correlations with serendipitous X-ray and radio sources. The results show that: (1) obscured objects dominate the overall AGN population, (2) mid-infrared selected AGN candidates exist which lack AGN signatures in their optical spectra but have AGN-like X-ray or radio counterparts, and (3) X-ray and optical classifications of obscured and unobscured AGNs often differ.

  4. European agreement on James Webb Space Telescope's Mid-Infrared Instrument (MIRI) signed

    Science.gov (United States)

    2004-06-01

    Artist's impression of the JWST hi-res Size hi-res: 1601 kb Credits: ESA Artist's impression of the JWST An artist's impression of the selected design for the JWST spacecraft. Northrop Grumman and Ball Aerospace are the prime contractors for JWST. Artist's impression of the JWST Credits: ESA Artist's impression of the JWST An artist's impression of the selected design for the JWST spacecraft. Northrop Grumman and Ball Aerospace are the prime contractors for JWST. Observing the first light, the James Webb Space Telescope (JWST) will help to solve outstanding questions about our place in the evolving Universe. MIRI, the Mid-Infrared Instrument, is one of the four instruments on board the JWST, the mission scheduled to follow on the heritage of Hubble in 2011. MIRI will be built in cooperation between Europe and the United States (NASA), both equally contributing to its funding. MIRI’s optics, core of the instrument, will be provided by a consortium of European institutes. According to this formal agreement, ESA will manage and co-ordinate the whole development of the European part of MIRI and act as the sole interface with NASA, which is leading the JWST project. This marks a difference with respect to the previous ESA scientific missions. In the past the funding and the development of the scientific instruments was agreed by the participating ESA Member States on the basis of purely informal arrangements with ESA. In this case, the Member States involved in MIRI have agreed on formally guaranteeing the required level of funding on the basis of a multi-lateral international agreement, which still keeps scientists in key roles. Over the past years, missions have become more complex and demanding, and more costly within an ever tighter budget. They also require a more and more specific expertise which is spread throughout the vast European scientific community. As a result, a new management procedure for co-ordination of payload development has become a necessity to

  5. NEWLY IDENTIFIED EXTENDED GREEN OBJECTS (EGOs) FROM THE SPITZER GLIMPSE II SURVEY. I. CATALOG

    International Nuclear Information System (INIS)

    Chen, Xi; Gan, Cong-Gui; Shen, Zhi-Qiang; Ellingsen, Simon P.; Titmarsh, Anita; He, Jin-Hua

    2013-01-01

    We have produced a catalog containing 98 newly identified massive young stellar object (MYSO) candidates associated with ongoing outflows (known as extended green objects, or EGOs). These have been identified from the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) II data set and our new identifications increase the number of known EGOs to ∼400 in our Galaxy, adding to the ∼300 previously identified EGOs reported by Cyganowski et al. from the GLIMPSE I survey. The high detection rate (∼70%) of 95 GHz class I methanol masers achieved in a survey toward 57 of these new EGOs with the Mopra 22 m radio telescope demonstrates that the new EGOs are associated with outflows. Investigations of the mid-infrared properties and physical associations with other star formation tracers (e.g., infrared dark clouds, class I and II methanol masers, and millimeter Bolocam Galactic Plane Survey sources) reveal that the newly identified EGOs are very similar in nature to those in the sample of Cyganowski et al. All of the observational evidence supports the hypothesis that EGOs correspond to MYSOs at the earliest evolutionary stage, with ongoing outflow activity, and active rapid accretion.

  6. Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy.

    Science.gov (United States)

    Monico, Letizia; Rosi, Francesca; Miliani, Costanza; Daveri, Alessia; Brunetti, Brunetto G

    2013-12-01

    In this work a reflection mid-infrared spectroscopy study of twelve metal-oxalate complexes, of interest in art conservation science as alteration compounds, was performed. Spectra of the reference materials highlighted the presence of derivative-like and/or inverted features for the fundamental vibrational modes as result of the main contribution from the surface component of the reflected light. In order to provide insights in the interpretation of theses spectral distortions, reflection spectra were compared with conventional transmission ones. The Kramers-Kronig (KK) algorithm, employed to correct for the surface reflection distortions, worked properly only for the derivative-like bands. Therefore, to pay attention to the use of this algorithm when interpreting the reflection spectra is recommended. The outcome of this investigation was exploited to discriminate among different oxalates on thirteen polychrome artworks analyzed in situ by reflection mid-infrared spectroscopy. The visualization of the νs(CO) modes (1400-1200 cm(-1)) and low wavenumber bands (below 900 cm(-1)) in the raw reflection profiles allowed Ca, Cu and Zn oxalates to be identified. Further information about the speciation of different hydration forms of calcium oxalates were obtained by using the KK transform. The work proves reflection mid-infrared spectroscopy to be a reliable and sensitive spectro-analytical method for identifying and mapping different metal-oxalate alteration compounds on the surface of artworks, thus providing conservation scientists with a non-invasive tool to obtain information on the state of conservation and causes of alteration of artworks. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A Mid-Infrared Imaging Survey of Embedded Young Stellar Objects in the (rho) Ophiuchi Cloud Core

    Science.gov (United States)

    Barsony, Mary; Ressler, Michael E.; Marsh, Kenneth A.

    2005-01-01

    Results of a comprehensive, new, ground-based mid-infrared imaging survey of the young stellar population of the (rho) Ophiuchi cloud are presented. Data were acquired at the Palomar 5m and at the Keck 10m telescopes with the MIRLIN and LWS instruments, at 0'.5 and 0'.25 resolutions, respectively. Of 172 survey objects, 85 were detected. Among the 22 multiple systems observed, 15 were resolved and their individual component fluxes determined. A plot of the frequency distribution of the detected objects with SED spectral slope shows that YSOs spend approx.4 x 10(exp 5) yr in the flat-spectrum phase, clearing out their remnant infall envelopes. Mid-infrared variability is found among a significant fraction of the surveyed objects and is found to occur for all SED classes with optically thick disks. Large-amplitude near-infrared variability, also found for all SED classes with optically thick disks, seems to occur with somewhat higher frequency at the earlier evolutionary stages. Although a general trend of mid-infrared excess and near-infrared veiling exists progressing through SED classes, with Class I objects generally exhibiting r(sub K) >= 1, flat-spectrum objects with r(sub K) >= 0.58, and Class III objects with r(sub K) =0, Class II objects exhibit the widest range of r(sub K) values, ranging from 0 infrared versus near-infrared excesses in a subsample with well-determined effective temperatures and extinction values, disk-clearing mechanisms are explored. The results are consistent with disk clearing proceeding from the inside out.

  8. Evaluation of a newly developed mid-infrared sensor for real-time monitoring of yeast fermentations.

    Science.gov (United States)

    Schalk, Robert; Geoerg, Daniel; Staubach, Jens; Raedle, Matthias; Methner, Frank-Juergen; Beuermann, Thomas

    2017-05-01

    A mid-infrared (MIR) sensor using the attenuated total reflection (ATR) technique has been developed for real-time monitoring in biotechnology. The MIR-ATR sensor consists of an IR emitter as light source, a zinc selenide ATR prism as boundary to the process, and four thermopile detectors, each equipped with an optical bandpass filter. The suitability of the sensor for practical application was tested during aerobic batch-fermentations of Saccharomyces cerevisiae by simultaneous monitoring of glucose and ethanol. The performance of the sensor was compared to a commercial Fourier transform mid-infrared (FT-MIR) spectrometer by on-line measurements in a bypass loop. Sensor and spectrometer were calibrated by multiple linear regression (MLR) in order to link the measured absorbance in the transmission ranges of the four optical sensor channels to the analyte concentrations. For reference analysis, high-performance liquid chromatography (HPLC) was applied. Process monitoring using the sensor yielded in standard errors of prediction (SEP) of 6.15 g/L and 1.36 g/L for glucose and ethanol. In the case of the FT-MIR spectrometer the corresponding SEP values were 4.34 g/L and 0.61 g/L, respectively. The advantages of optical multi-channel mid-infrared sensors in comparison to FT-MIR spectrometer setups are the compactness, easy process implementation and lower price. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Upconversion enhanced degenerate four-wave mixing in the mid-infrared for sensitive detection of acetylene in gas flows

    DEFF Research Database (Denmark)

    Høgstedt, Lasse; Dam, Jeppe Seidelin; Sahlberg, Anna-Lena

    2014-01-01

    We present a new background free method for in situ gas detection that combines degenerate four-wave mixing with an infra-red light detector based on parametric frequency upconversion of infra-red light. The system is demonstrated at mid infrared wavelengths for low concentration measurements...... of acetylene diluted in a N2 gas flow at ambient conditions. It is demonstrated that the system is able to cover more than 100 nm in scanning range and detect concentrations as low as 3 ppm based on the R9e line. A major issue in small signal measurements is scattered light and it is showed how a spatial...

  10. A review of energy bandgap engineering in III V semiconductor alloys for mid-infrared laser applications

    Science.gov (United States)

    Yin, Zongyou; Tang, Xiaohong

    2007-01-01

    Semiconductor lasers emitting in mid-infrared (IR) range, 2-5 μm, have many important applications in semiconductor industries, military, environmental protection, telecommunications, molecular spectroscopy, biomedical surgery and researches. Different designs of the reactive regions in mid-IR laser structures have been investigated for achieving high performance devices. In this article, semiconductor mid-IR lasers with double heterostructure, quantum well, quantum cascade, quantum wire, quantum dash and quantum dot active regions have been reviewed. The performance of the lasers with these different active regions and the development of the newly emerging III-V-N materials for mid-IR applications have been discussed in details.

  11. All-fiber mid-infrared difference frequency generation source and its application to molecular dispersion spectroscopy

    Science.gov (United States)

    Krzempek, K.; Abramski, K. M.; Nikodem, M.

    2017-09-01

    A widely tunable, fully monolithic, mid-infrared difference frequency generation source and its application in the dispersion-spectroscopy-based laser trace gas detection of methane and ethane, near 2938 and 2998 cm-1, is presented. Utilizing a fiber pigtailed nonlinear crystal module radically simplified the optical setup, while maintaining a superb conversion efficiency of 20% W-1. Seeded directly from two laser diodes, the source delivered ~0.5 mW of tunable radiation, which was used in a chirped laser dispersion spectroscopy setup, enabling the highly sensitive detection of hydrocarbons.

  12. Triggered star formation around mid-infrared bubbles in G8.14+0.23 H II region

    OpenAIRE

    Dewangan, L. K.; Ojha, D. K.; Anandarao, B. G.; Ghosh, S. K.; Chakraborti, S.

    2012-01-01

    Mid-infrared (MIR) shells or bubbles around expanding H II regions have received much attention due to their ability to initiate a new generation of star formation. We present multi-wavelength observations around two bubbles associated with a southern massive star-forming (MSF) region G8.14+0.23, to investigate the triggered star formation signature on the edges of the bubbles by the expansion of the H II region. We have found observational signatures of the collected molecular and cold dust ...

  13. Solvothermally Synthesized Sb2Te3 Platelets Show Unexpected Optical Contrasts in Mid-Infrared Near-Field Scanning Microscopy.

    Science.gov (United States)

    Hauer, Benedikt; Saltzmann, Tobias; Simon, Ulrich; Taubner, Thomas

    2015-05-13

    We report nanoscale-resolved optical investigations on the local material properties of Sb2Te3 hexagonal platelets grown by solvothermal synthesis. Using mid-infrared near-field microscopy, we find a highly symmetric pattern, which is correlated to a growth spiral and which extends over the entire platelet. As the origin of the optical contrast, we identify domains with different densities of charge carriers. On Sb2Te3 samples grown by other means, we did not find a comparable domain structure.

  14. Improved performances and capabilities of the Cooled Mid-Infrared Camera and Spectrometer (COMICS) for the Subaru Telescope

    Science.gov (United States)

    Okamoto, Yoshiko K.; Kataza, Hirokazu; Yamashita, Takuya; Miyata, Takashi; Sako, Shigeyuki; Takubo, Shinya; Honda, Mitsuhiko; Onaka, Takashi

    2003-03-01

    COMICS is an observatory and mid-infrared instrument for the 8.2 m Subaru Telescope. It is designed for imaging and spectroscopic observations in the N- (8-13 micron) and Q-bands (16-25 micron) atmospheric windows. The design and very preliminary performances at the first light observations in December 1999 were reported at the SPIE meeting in 2000. We describe here the improved performances of COMICS and capability of high spectral resolution spectrocopy which became available from December 2001. We will also briefly report preliminary scientific results.

  15. Few-cycle high energy mid-infrared pulse from Ho:YLF laser

    International Nuclear Information System (INIS)

    Murari, Krishna

    2017-04-01

    Over the past decade, development of high-energy ultrafast laser sources has led to important breakthroughs in attoscience and strong-field physics study in atoms and molecules. Coherent pulse synthesis of few-cycle high-energy laser pulse is a promising tool to generate isolated attosecond pulses via high harmonics generation (HHG). An effective way to extend the HHG cut-off energy to higher values is making use of long mid-infrared (MIR) driver wavelength, as the ponderomotive potential scales quadratically with wavelength. If properly scaled in energy to multi-mJ level and few-cycle duration, such pulses provide a direct path to intriguing attoscience experiments in gases and solids, which even permit the realization of bright coherent table-top HHG sources in the water-window and keV X-ray region. However, the generation of high-intensity long-wavelength MIR pulses has always remained challenging, in particular starting from high-energy picosecond 2-μm laser driver, that is suitable for further energy scaling of the MIR pulses to multi-mJ energies by utilizing optical parametric amplifiers (OPAs). In this thesis, a front-end source for such MIR OPA is presented. In particular, a novel and robust strong-field few-cycle 2-μm laser driver directly from picosecond Ho:YLF laser and utilizing Kagome fiber based compression is presented. We achieved: a 70-fold compression of 140-μJ, 3.3-ps pulses from Ho:YLF amplifier to 48 fs with 11 μJ energy. The work presented in this thesis demonstrates a straightforward path towards generation of few-cycle MIR pulses and we believe that in the future the ultrafast community will benefit from this enabling technology. The results are summarized in mainly four parts: The first part is focused on the development of a 2-μm, high-energy laser source as the front-end. Comparison of available technology in general and promising gain media at MIR wavelength are discussed. Starting from the basics of an OPA, the design criteria

  16. Generation and application of ultrashort coherent mid-infrared electromagnetic radiation

    Science.gov (United States)

    Wandel, Scott

    Particle accelerators are useful instruments that help address critical issues for the future development of nuclear energy. Current state-of-the-art accelerators based on conventional radio-frequency (rf) cavities are too large and expensive for widespread commercial use, and alternative designs must be considered for supplying relativistic beams to small-scale applications, including medical imaging, secu- rity screening, and scientific research in a university-scale laboratory. Laser-driven acceleration using micro-fabricated dielectric photonic structures is an attractive approach because such photonic microstructures can support accelerating fields that are 10 to 100 times higher than that of rf cavity-based accelerators. Dielectric laser accelerators (DLAs) use commercial lasers as a driving source, which are smaller and less expensive than the klystrons used to drive current rf-based accelerators. Despite the apparent need for compact and economical laser sources for laser-driven acceleration, the availability of suitable high-peak-power lasers that cover a broad spectral range is currently limited. To address the needs of several innovative acceleration mechanisms like DLA, it is proposed to develop a coherent source of mid-infrared (IR) electromagnetic radiation that can be implemented as a driving source of laser accelerators. The use of ultrashort mid-IR high peak power laser systems in various laser-driven acceleration schemes has shown the potential to greatly reduce the optical pump intensities needed to realize high acceleration gradients. The optical intensity needed to achieve a given ponderomotive potential is 25 times less when using a 5-mum mid-IR laser as compared to using a 1-mum near-IR solid-state laser. In addition, dielectric structure breakdown caused by multiphoton ionization can be avoided by using longer-wavelength driving lasers. Current mid-IR laser sources do not produce sufficiently short pulse durations, broad spectral bandwidths

  17. Few-cycle high energy mid-infrared pulse from Ho:YLF laser

    Energy Technology Data Exchange (ETDEWEB)

    Murari, Krishna

    2017-04-15

    Over the past decade, development of high-energy ultrafast laser sources has led to important breakthroughs in attoscience and strong-field physics study in atoms and molecules. Coherent pulse synthesis of few-cycle high-energy laser pulse is a promising tool to generate isolated attosecond pulses via high harmonics generation (HHG). An effective way to extend the HHG cut-off energy to higher values is making use of long mid-infrared (MIR) driver wavelength, as the ponderomotive potential scales quadratically with wavelength. If properly scaled in energy to multi-mJ level and few-cycle duration, such pulses provide a direct path to intriguing attoscience experiments in gases and solids, which even permit the realization of bright coherent table-top HHG sources in the water-window and keV X-ray region. However, the generation of high-intensity long-wavelength MIR pulses has always remained challenging, in particular starting from high-energy picosecond 2-μm laser driver, that is suitable for further energy scaling of the MIR pulses to multi-mJ energies by utilizing optical parametric amplifiers (OPAs). In this thesis, a front-end source for such MIR OPA is presented. In particular, a novel and robust strong-field few-cycle 2-μm laser driver directly from picosecond Ho:YLF laser and utilizing Kagome fiber based compression is presented. We achieved: a 70-fold compression of 140-μJ, 3.3-ps pulses from Ho:YLF amplifier to 48 fs with 11 μJ energy. The work presented in this thesis demonstrates a straightforward path towards generation of few-cycle MIR pulses and we believe that in the future the ultrafast community will benefit from this enabling technology. The results are summarized in mainly four parts: The first part is focused on the development of a 2-μm, high-energy laser source as the front-end. Comparison of available technology in general and promising gain media at MIR wavelength are discussed. Starting from the basics of an OPA, the design criteria

  18. Effects of UV radiation on the lipids and proteins of bacteria studied by mid-infrared spectroscopy.

    Science.gov (United States)

    Santos, Ana L; Moreirinha, Catarina; Lopes, Diana; Esteves, Ana Cristina; Henriques, Isabel; Almeida, Adelaide; Domingues, M Rosário M; Delgadillo, Ivonne; Correia, António; Cunha, Angela

    2013-06-18

    Knowledge of the molecular effects of UV radiation (UVR) on bacteria can contribute to a better understanding of the environmental consequences of enhanced UV levels associated with global climate changes and will help to optimize UV-based disinfection strategies. In the present work, the effects of exposure to UVR in different spectral regions (UVC, 100-280 nm; UVB, 280-320 nm; and UVA, 320-400 nm) on the lipids and proteins of two bacterial strains ( Acinetobacter sp. strain PT5I1.2G and Pseudomonas sp. strain NT5I1.2B) with distinct UV sensitivities were studied by mid-infrared spectroscopy. Exposure to UVR caused an increase in methyl groups associated with lipids, lipid oxidation, and also led to alterations in lipid composition, which were confirmed by gas chromatography. Additionally, mid-infrared spectroscopy revealed the effects of UVR on protein conformation and protein composition, which were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), oxidative damage to amino acids, and changes in the propionylation, glycosylation and/or phosphorylation status of cell proteins. Differences in the targets of UVR in the two strains tested were identified and may explain their discrepant UV sensitivities. The significance of the results is discussed from an ecological standpoint and with respect to potential improvements in UV-based disinfection technologies.

  19. Seasonal variation of the radial brightness contrast of Saturn's rings viewed in mid-infrared by Subaru/COMICS

    Science.gov (United States)

    Fujiwara, Hideaki; Morishima, Ryuji; Fujiyoshi, Takuya; Yamashita, Takuya

    2017-03-01

    Aims: This paper investigates the mid-infrared (MIR) characteristics of Saturn's rings. Methods: We collected and analyzed MIR high spatial resolution images of Saturn's rings obtained in January 2008 and April 2005 with the COoled Mid-Infrared Camera and Spectrometer (COMICS) mounted on the Subaru Telescope, and investigated the spatial variation in the surface brightness of the rings in multiple bands in the MIR. We also composed the spectral energy distributions (SEDs) of the C, B, and A rings and the Cassini Division, and estimated the temperatures of the rings from the SEDs assuming the optical depths. Results: We found that the C ring and the Cassini Division were warmer than the B and A rings in 2008, which could be accounted for by their lower albedos, lower optical depths, and smaller self-shadowing effect. We also fonud that the C ring and the Cassini Division were considerably brighter than the B and A rings in the MIR in 2008 and the radial contrast of the ring brightness is the inverse of that in 2005, which is interpreted as a result of a seasonal effect with changing elevations of the Sun and observer above the ring plane. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A29

  20. Sol-gel based mid-infrared evanescent wave sensors for detection of organophosphate pesticides in aqueous solution

    International Nuclear Information System (INIS)

    Janotta, Markus; Karlowatz, Manfred; Vogt, Frank; Mizaikoff, Boris

    2003-01-01

    This work demonstrates the application of organically modified sol-gels as recognition layers combined with mid-infrared evanescent wave sensors for in situ detection of nitrated organics in aqueous media. Sol-gels were prepared by acid-catalyzed copolymerization of phenyltrimethoxysilane (PTMOS) and tetramethoxysilane (TMOS) and were spin-coated onto ZnSe attenuated total reflection (ATR) waveguides. These sensors were investigated with respect to their enrichment properties of selected organophosphates, i.e. parathion, fenitrothion and paraoxon, respectively, and their capability of suppressing interfering water background absorptions. Figures of merit are derived from calibration curves determined to assess sensitivity and reproducibility of the applied sensor system. It can be concluded that sol-gel coated infrared optical sensors enable reproducible detection of organophosphates down to the sub-ppm concentration range. Furthermore, measurement of spiked river water samples demonstrates feasibility as remote field sensor system. Once the required sensitivity is achieved, sol-gel based mid-infrared evanescent wave sensors have the potential of being an alternative to commonly applied biosensors for detection of organophosphates in environmental analysis, since they provide superior mechanical and chemical stability during application relevant periods of time

  1. Development of MIMIZUKU: a mid-infrared multi-field imager for 6.5-m TAO telescope

    Science.gov (United States)

    Kamizuka, Takafumi; Miyata, Takashi; Sako, Shigeyuki; Nakamura, Tomohiko; Asano, Kentaro; Uchiyama, Mizuho; Okada, Kazushi; Onaka, Takashi; Sakon, Itsuki; Kataza, Hirokazu; Sarugaku, Yuki; Yoshii, Yuzuru; Doi, Mamoru; Kohno, Kotaro; Kawara, Kimiaki; Tanaka, Masuo; Motohara, Kentaro; Tanabe, Toshihiko; Minezaki, Takeo; Morokuma, Tomoki; Tamura, Yoichi; Aoki, Tsutomu; Soyano, Takao; Tarusawa, Ken'ichi; Kato, Natsuko; Konishi, Masahiro; Takahashi, Hidenori; Koshida, Shintaro; Tateuchi, Ken; Handa, Toshihiro

    2012-09-01

    TAO (The University of Tokyo Atacama Observatory) is planned to be constructed at the summit of Co. Chajnantor (5640 m altitude) in Chile. MIMIZUKU (Mid-Infrared Multi-field Imager for gaZing at the UnKnown Universe) is a mid-infrared imager (Field of View: 1' x 1'- 2' x 2') and spectrometer (Δλ/λ: 60-230) for the 6.5-m TAO telescope, covering the wavelength range of 2-38 μm. The MIMIZUKU has a unique equipment called Field Stacker (FS) which enables the simultaneous observation of target and reference object. The simultaneity is expected to improve photometric accuracy and to realize long-term monitoring observations. The development status of the MIMIZUKU is reported in this paper. The FS and the cryostat of the MIMIZUKU have been fabricated and under testing. The cold optics (550 mm x 750 mm x 2 floors) with 28 mirrors has been constructed. The mirrors were aligned with the positional precision of 0.1 mm and the angular precision of 0.1 deg. The evaluated optical performance is that the diffraction-limited image at λ gears are employed and work well even in cryogenic environment. The grisms made with silicon and germanium have been fabricated by ultraprecision cutting. It was found that their surface roughness, grating constant, and blaze angle almost measure up to the designed values.

  2. GLIMPSED

    DEFF Research Database (Denmark)

    Klerke, Sigrid

    This thesis addresses the problem of detecting complex text by exploring whether recordings of readers’ eye movements can be leveraged for learning what parts of texts obstruct readers, and investigates how this information can help improve NLP applications. The problem of detecting and handling...... errors and deviations that make text unnecessarily difficult to read is becoming increasingly important to address, as the use of language technologies for improving information accessibility and communication efficiency grows. In the thesis, four independent studies target the tasks of automatic text...... simplification, machine translation, sentence compression and lexical complexity detection. The empirical investigation presents evidence that it is possible to obtain and make use of information about text complexity from readers’ gaze behaviour.The results presented and discussed in the thesis contribute...

  3. Spatial distribution of particulate organic matter pools, quantified and characterized by mid-infrared spectroscopy

    Science.gov (United States)

    Bornemann, L.; Welp, G.; Amelung, W.

    2009-04-01

    Comprising more than 60 % of the terrestrial carbon pool, soil organic carbon (SOC) is one of the principal factors regulating the global C-cycle. Against the background of worldwide increasing CO2 emissions, much effort has been put to the modelling of soil-C turnover in order to evaluate its potential for mitigation of climate change. Soil organic matter is an ever changing assemblage of various organic components that interact with the mineral matrix and in dependence of its ecological environment. Carbon storage is thereby assumed to propagate by hierarchical saturation of different carbon pools. A homogeneous distribution of the respective pools within natural environments is unlikely as the controlling soil parameters are subject to spatial and temporal heterogeneity. Several attempts to operationalize this complex soil compartment have been proposed, most of them resting upon a concept of pools with different stability and varying turnover times. Among these pools, particulate organic matter (POM) is considered to be most sensitive to environmental changes and has been shown to explain major parts of the SOC variations. Until today, rather laborious physical and physico-chemical fractionation procedures are most commonly applied for the initialization and validation of POM in C-turnover models. Mid-infrared spectroscopy (MIRS) in combination with partial least squares regression (PLSR) could overcome this problem. The technique is fast, cheap, and requires little sample preparation. All the same, it is an appropriate technique not only for the determination of gross parameters like total soil organic carbon contents, but also for the determination and characterization of minor constituents like black carbon in soils. Basically, the infrared radiation is absorbed by molecules that express a dipole-moment during vibration. As virtually all constituents of soil organic matter and also a multitude of inorganic soil constituents express such a dipole

  4. A mid-infrared laser absorption sensor for carbon monoxide and temperature measurements

    Science.gov (United States)

    Vanderover, Jeremy

    A mid-infrared (mid-IR) absorption sensor based on quantum cascade laser (QCL) technology has been developed and demonstrated for high-temperature thermometry and carbon monoxide (CO) measurements in combustion environments. The sensor probes the high-intensity fundamental CO ro-vibrational band at 4.6 mum enabling sensitive measurement of CO and temperature at kHz acquisition rates. Because the sensor operates in the mid-IR CO fundamental band it is several orders of magnitude more sensitive than most of the previously developed CO combustion sensors which utilized absorption in the near-IR overtone bands and mature traditional telecommunications-based diode lasers. The sensor has been demonstrated and validated under operation in both scanned-wavelength absorption and wavelength-modulation spectroscopy (WMS) modes in room-temperature gas cell and high-temperature shock tube experiments with known and specified gas conditions. The sensor has also been demonstrated for CO and temperature measurements in an atmospheric premixed ethylene/air McKenna burner flat flame for a range of equivalence ratios (phi = 0.7-1.4). Demonstration of the sensor under scanned-wavelength direct absorption operation was performed in a room-temperature gas cell (297 K and 0.001-1 atm) allowing validation of the line strengths and line shapes predicted by the HITRAN 2004 spectroscopic database. Application of the sensor in scanned-wavelength mode, at 1-2 kHz acquisition bandwidths, to specified high-temperature shock-heated gases (950-3400 K, 1 atm) provided validation of the sensor for measurements under the high-temperature conditions found in combustion devices. The scanned-wavelength shock tube measurements yielded temperature determinations that deviated by only +/-1.2% (1-sigma deviation) with the reflected shock temperatures and CO mole fraction determinations that deviated by that specified CO mole fraction by only +/-1.5% (1-sigma deviation). These deviations are in fact smaller

  5. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre

    DEFF Research Database (Denmark)

    Petersen, Christian Rosenberg; Møller, Uffe Visbech; Kubat, Irnis

    2014-01-01

    The mid-infrared spectral region is of great technical and scientific interest because most molecules display fundamental vibrational absorptions in this region, leaving distinctive spectral fingerprints. To date, the limitations of mid-infrared light sources such as thermal emitters, low...... the potential of fibres to emit across the mid-infrared molecular ‘fingerprint region’, which is of key importance for applications such as early cancer diagnostics3, gas sensing and food quality control....

  6. SPECTRAL CHARACTERISTICS OF MID-INFRARED LIGHT-EMITTING DIODES BASED ON InAs (Sb,P

    Directory of Open Access Journals (Sweden)

    N. K. Zhumashev

    2016-01-01

    Full Text Available Subject of Study. We consider spectral characteristics of mid-infrared light-emitting diodes with heterostructures based on InAs(Sb,P emitting at T=300 K in the wavelength range 3.4–4.1 micrometers. The aim of the study was to search for the ways of increasing the diode efficiency. Methods. The heterostructures were grown from metal-organic chemical compounds with the use of vapor-phase epitaxial technique. The spectra were recorded under pulse excitation with the use of computer-controlled installation employing MDR-23 grating monochromator and a lock-in amplifier. InSb photodiode was used as a detector. Comparative study of electroluminescence spectra of the diodes was carried out at the temperatures equal to 300 K and 77 K. We compared the obtained data with the calculation results of the band diagrams of the heterostructures. Main Results. As a result of comparative study of the electroluminescence spectra of the diodes recorded at 300 K and 77 K we have established that increasing of their efficiency is hindered by substantial influence of Auger recombination. For the first time at 77 К we have observed the effect of stimulated emission from InAsSb active layer in light-emitting structures made of InAs/InAsSb/InAsSbP. For heterostructures with quantum wells InAs/(InAs/InAsSb/InAsSbP we have found out that at 77 К the carrier recombination occurs outside quantum wells, which points out to the insufficient carrier localization in the active layer. Thus, we have shown that the efficiency of mid-infrared light-emitting diodes based on InAs(Sb,P can be increased via suppression of Auger-recombination and improvement of carrier localization in the active region. Practical Relevance. The results of the study can be used for development of heterostructures for mid-infrared light-emitting diodes.

  7. Assessment of Polysaccharides from Mycelia of genus Ganoderma by Mid-Infrared and Near-Infrared Spectroscopy.

    Science.gov (United States)

    Ma, Yuhan; He, Huaqi; Wu, Jingzhu; Wang, Chunyang; Chao, Kuanglin; Huang, Qing

    2018-01-08

    Ganoderma lingzhi (G. lingzhi), G. sinense, G. applanatum, etc. belongs to the Ganoderma genus of polypore mushrooms which contain rich polysaccharides valuable for nutrition and positive medicinal effects. In order to evaluate polysaccharide content in Ganoderma mycelia obtained in the fermentation process quickly and accurately, in this work we employed infrared spectroscopy to examine different Ganoderma stains of samples from diversified sources. Through mid-infrared (mid-IR) spectroscopy, we could identify the most relevant spectral bands required for polysaccharide evaluation, and through near-infrared (NIR) spectroscopy, we could establish the quantification model for making satisfactory prediction of polysaccharide ingredient content. As such, we have achieved an effective and convenient approach to quantitative assessment of the total polysaccharides in Ganoderma mycelia but also demonstrated that infrared spectroscopy can be a powerful tool for quality control of Ganoderma polysaccharides obtained from industrial production.

  8. Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation

    DEFF Research Database (Denmark)

    Dantanarayana, Harshana G.; Abdel-Moneim, Nabil; Tang, Zhuoqi

    2014-01-01

    We select a chalcogenide core glass, AsSe, and cladding glass, GeAsSe, for their disparate refractive indices yet sufficient thermal-compatibility for fabricating step index fiber (SIF) for mid-infrared supercontinuum generation (MIR-SCG). The refractive index dispersion of both bulk glasses...... is measured over the 0.4 μm–33 μm wavelength-range, probing the electronic and vibrational behavior of these glasses. We verify that a two-term Sellmeier model is unique and sufficient to describe the refractive index dispersion over the wavelength range for which the experimentally determined extinction...... coefficient is insignificant. A SIF composed of the glasses is fabricated and calculated to exhibit an ultra-high numerical aperture >0.97 over the entire wavelength range 0.4-33 μm suggesting that the SIF glass pair is a promising candidate for MIR-SCG. Material dispersion characteristics and the zero...

  9. Broadband and tunable optical parametric generator for remote detection of gas molecules in the short and mid-infrared.

    Science.gov (United States)

    Lambert-Girard, Simon; Allard, Martin; Piché, Michel; Babin, François

    2015-04-01

    The development of a novel broadband and tunable optical parametric generator (OPG) is presented. The OPG properties are studied numerically and experimentally in order to optimize the generator's use in a broadband spectroscopic LIDAR operating in the short and mid-infrared. This paper discusses trade-offs to be made on the properties of the pump, crystal, and seeding signal in order to optimize the pulse spectral density and divergence while enabling energy scaling. A seed with a large spectral bandwidth is shown to enhance the pulse-to-pulse stability and optimize the pulse spectral density. A numerical model shows excellent agreement with output power measurements; the model predicts that a pump having a large number of longitudinal modes improves conversion efficiency and pulse stability.

  10. Identification of Spectral Regions for Quantification of Red Wine Tannins with Fourier Transform Mid-Infrared Spectroscopy

    DEFF Research Database (Denmark)

    Jensen, Jacob Skibsted; Egebo, Max; Meyer, Anne S.

    2008-01-01

    the development of a new variable selection tool, iterative backward elimination of changeable size intervals PLS. The spectral regions identified by the different variable selection methods were not identical, but all included two regions (1485−1425 and 1060−995 cm−1), which therefore were concluded...... to be particularly important for tannin quantification. The spectral regions identified from the variable selection methods were used to develop calibration models. All four variable selection methods identified regions that allowed an improved quantitative prediction of tannins (RMSEP = 69−79 mg of CE/L; r = 0......Accomplishment of fast tannin measurements is receiving increased interest as tannins are important for the mouthfeel and color properties of red wines. Fourier transform mid-infrared spectroscopy allows fast measurement of different wine components, but quantification of tannins is difficult due...

  11. The Carnegie Hubble Program: The Distance and Structure of the SMC as Revealed by Mid-Infrared Observations of Cepheids

    Science.gov (United States)

    Scowcroft, Victoria; Freedman, Wendy L.; Madore, Barry F.; Monson, Andy; Persson, S. E.; Rich, Jeff; Seibert, Mark; Rigby, Jane R.

    2016-01-01

    Using Spitzer observations of classical Cepheids we have measured the true average distance modulus of the Small Magellanic Cloud (SMC) to be18.96 +/- 0.01 stat +/- 0.03sys mag (corresponding to 62+/- 0.3kpc), which is 0.48 +/- 0.01 mag more distant than the LMC. This is in agreement with previous results from Cepheid observations, as well as with measurements from other indicators such as RR Lyrae stars and the tip of the red giant branch. Utilizing the properties of the mid-infrared Leavitt Law we measured precise distances to individual Cepheids in the SMC, and have confirmed that the galaxy is tilted and elongated such that its eastern side is up to20 kpc closer than its western side. This is in agreement with the results from red clump stars and dynamical simulations of the Magellanic Clouds and Stream.

  12. Vibrational mid-infrared photothermal spectroscopy using a fiber laser probe: asymptotic limit in signal-to-baseline contrast.

    Science.gov (United States)

    Totachawattana, Atcha; Liu, Hui; Mertiri, Alket; Hong, Mi K; Erramilli, Shyamsunder; Sander, Michelle Y

    2016-01-01

    We report on a mid-infrared photothermal spectroscopy system with a near-infrared fiber probe laser and a tunable quantum cascade pump laser. Photothermal spectra of a 6 μm-thick 4-octyl-4'-cyanobiphenyl liquid crystal sample are measured with a signal-to-baseline contrast above 103. As both the peak photothermal signal and the corresponding baseline increase linearly with probe power, the signal-to-baseline contrast converges to an asymptotic limit for a given pump power. This limit is independent of the probe power and characterizes the best contrast achievable for the system. This enables sensitive quantitative spectral characterization of linear infrared absorption features directly from photothermal spectroscopy measurements.

  13. Frequency locking of an extended-cavity quantum cascade laser to a frequency comb for precision mid infrared spectroscopy

    KAUST Repository

    Alsaif, Bidoor

    2017-11-02

    Extended-cavity quantum cascade lasers (EC-QCLs) enable mode-hope-free frequency sweeps in the mid-infrared region over ranges in excess of 100 cm−1, at speeds up to 1 THz/s and with a 100-mW optical power level. This makes them ideally suited for broadband absorption spectroscopy and for the simultaneous detection of multiple gases. On the other hand, their use for precision spectroscopy has been hampered so far by a large amount of frequency noise, resulting in an optical linewidth of about 30 MHz over 50 ms [1]. This is one of the reasons why neither their frequency nor their phase have been so far locked to a frequency comb. Their use in combination with frequency combs has been performed in an open loop regime only [2], which has the merit of preserving the inherently fast modulation speed of these lasers, yet not to afford high spectral resolution and accuracy.

  14. Ultrafast gating of a mid-infrared laser pulse by a sub-pC relativistic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Cesar, D. B.; Musumeci, P. [Department of Physics and Astronomy, UCLA, Los Angeles, California 90095 (United States); Alesini, D. [INFN-LNF, Via E. Fermi, 40, 00044 Frascati, Roma (Italy)

    2015-12-21

    In this paper we discuss a relative time-of-arrival measurement scheme between an electron beam and a mid-infrared laser pulse based on the electron-beam controlled transmission in semiconductor materials. This technique can be used as a time-stamping diagnostic in ultrafast electron diffraction or microscopy. In particular, our characterization of Germanium demonstrates that sub-ps time-of-arrival sensitivity could be achieved in a single shot and with very low charge beams (<1 pC). Detailed measurements as a function of the beam charge and the laser wavelength offer insights on the free carrier dynamics in the semiconductor upon excitation by the electron beam.

  15. Contrast Enhancement of Wavelength-Selective Detection of Mid-Infrared Using Localized Atmospheric-Pressure Plasma Treatment

    Science.gov (United States)

    Masuno, Katsuya; Tashiro, Kohji; Hori, Masaru; Kumagai, Shinya; Sasaki, Minoru

    2010-04-01

    A new processing method to enhance the signal contrast of a mid-infrared (MIR) detector integrated with a wavelength-selective function is studied. Using the hydrophilic characteristic of an IR absorber solution, an absorber material is selectively deposited onto a hydrophilically modified area over the hot junctions in the diaphragm of a thermopile detector. The hydrophilic modification of the chip-mounted detector is realized using localized atmospheric Ar + O2 plasma treatment through a stencil mask. Using a thermograph, we measured thermal distributions over a previously fabricated detector, whose absorber material is deposited using a manual manipulator without a position-selective mechanism, and the newly fabricated detector for comparison. The newly fabricated detector exhibited a larger temperature difference between hot and cold junctions than that of the previous detector. The detector has an increased signal contrast of 100% from the baseline at the absorption peak.

  16. Off-axis quartz-enhanced photoacoustic spectroscopy using a pulsed nanosecond mid-infrared optical parametric oscillator.

    Science.gov (United States)

    Lassen, Mikael; Lamard, Laurent; Feng, Yuyang; Peremans, Andre; Petersen, Jan C

    2016-09-01

    A trace-gas sensor, based on quartz-enhanced photoacoustic spectroscopy (QEPAS), consisting of two acoustically coupled micro-resonators (mR) with an off-axis 20 kHz quartz tuning fork (QTF) is demonstrated. The complete acoustically coupled mR system is optimized based on finite-element simulations and is experimentally verified. The QEPAS sensor is pumped resonantly by a nanosecond pulsed single-mode mid-infrared optical parametric oscillator. The sensor is used for spectroscopic measurements on methane in the 3.1-3.5 μm wavelength region with a resolution bandwidth of 1  cm-1 and a detection limit of 0.8 ppm. An Allan deviation analysis shows that the detection limit at the optimum integration time for the QEPAS sensor is 32 ppbv at 190 s, and that the background noise is due solely to the thermal noise of the QTF.

  17. Thermal effects of an ICL-based mid-infrared CH4 sensor within a wide atmospheric temperature range

    Science.gov (United States)

    Ye, Weilin; Zheng, Chuantao; Sanchez, Nancy P.; Girija, Aswathy V.; He, Qixin; Zheng, Huadan; Griffin, Robert J.; Tittel, Frank K.

    2018-03-01

    The thermal effects of an interband cascade laser (ICL) based mid-infrared methane (CH4) sensor that uses long-path absorption spectroscopy were studied. The sensor performance in the laboratory at a constant temperature of ∼25 °C was measured for 5 h and its Allan deviation was ∼2 ppbv with a 1 s averaging time. A LabVIEW-based simulation program was developed to study thermal effects on infrared absorption and a temperature compensation technique was developed to minimize these effects. An environmental test chamber was employed to investigate the thermal effects that occur in the sensor system with variation of the test chamber temperature between 10 and 30 °C. The thermal response of the sensor in a laboratory setting was observed using a 2.1 ppm CH4 standard gas sample. Indoor/outdoor CH4 measurements were conducted to evaluate the sensor performance within a wide atmospheric temperature range.

  18. Blood glucose measurement in vivo using hollow-fiber based, mid-infrared ATR probe with multi-reflection prism

    Science.gov (United States)

    Kino, Saiko; Omori, Suguru; Matsuura, Yuji

    2016-03-01

    An attenuated-total-reflection (ATR), mid-infrared spectroscopy system that consists of hollow optical fibers, a trapezoidal multi-reflection ATR prism, and a conventional FT-IR spectrometer has been developed to measure blood glucose levels. Owing to the low transmission loss and high flexibility of the hollow-optical fiber, the system can measure any sites of the human body where blood capillaries are close to the surface of mucosa, such as inner lips. Using a multi-reflection prism brought about higher sensitivity, and the flat and wide contact surface of the prism resulted in higher measurement reproducibility. The results of in-vivo measurement of human inner lips showed the feasibility of the proposed system, and the measurement errors were within 20%.

  19. Lead-chalcogenide mid-infrared vertical external cavity surface emitting lasers with improved threshold: Theory and experiment

    Science.gov (United States)

    Fill, Matthias; Debernardi, Pierluigi; Felder, Ferdinand; Zogg, Hans

    2013-11-01

    Mid-infrared Vertical External Cavity Surface Emitting Lasers (VECSEL) based on narrow gap lead-chalcogenide (IV-VI) semiconductors exhibit strongly reduced threshold powers if the active layers are structured laterally for improved optical confinement. This is predicted by 3-d optical calculations; they show that lateral optical confinement is needed to counteract the anti-guiding features of IV-VIs due to their negative temperature dependence of the refractive index. An experimental proof is performed with PbSe quantum well based VECSEL grown on a Si-substrate by molecular beam epitaxy and emitting around 3.3 μm. With proper mesa-etching, the threshold intensity is about 8-times reduced.

  20. Modular PbSrS/PbS mid-infrared vertical external cavity surface emitting laser on Si

    Science.gov (United States)

    Khiar, A.; Rahim, M.; Fill, M.; Felder, F.; Zogg, H.; Cao, D.; Kobayashi, S.; Yokoyama, T.; Ishida, A.

    2011-07-01

    A mid-infrared vertical external cavity surface emitting laser (VECSEL) based on undoped PbS is described herein. A 200 nm-thick PbS active layer embedded between PbSrS cladding layers forms a double heterostructure. The layers are grown on a lattice and thermal expansion mismatched Si-substrate. The substrate is placed onto a flat bottom Bragg mirror again grown on a Si substrate, and the VECSEL is completed with a curved top mirror. Pumping is done optically with a 1.55 μm laser diode. This leads to an extremely simple modular fabrication process. Lasing wavelengths range from 3-3.8 μm at 100-260 K heat sink temperature. The lowest threshold power is ˜210 mWp and highest output power is ˜250 mWp. The influence of the different recombination mechanism as well as free carrier absorption on the threshold power is modeled.

  1. Lead-chalcogenide mid-infrared vertical external cavity surface emitting lasers with improved threshold: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fill, Matthias [ETH Zurich, Laser Spectroscopy and Sensing Lab, 8093 Zurich (Switzerland); Phocone AG, 8005 Zurich (Switzerland); Debernardi, Pierluigi [IEIIT-CNR, Torino 10129 (Italy); Felder, Ferdinand [Phocone AG, 8005 Zurich (Switzerland); Zogg, Hans [ETH Zurich (Switzerland)

    2013-11-11

    Mid-infrared Vertical External Cavity Surface Emitting Lasers (VECSEL) based on narrow gap lead-chalcogenide (IV-VI) semiconductors exhibit strongly reduced threshold powers if the active layers are structured laterally for improved optical confinement. This is predicted by 3-d optical calculations; they show that lateral optical confinement is needed to counteract the anti-guiding features of IV-VIs due to their negative temperature dependence of the refractive index. An experimental proof is performed with PbSe quantum well based VECSEL grown on a Si-substrate by molecular beam epitaxy and emitting around 3.3 μm. With proper mesa-etching, the threshold intensity is about 8-times reduced.

  2. PbSe quantum well mid-infrared vertical external cavity surface emitting laser on Si-substrates

    Science.gov (United States)

    Fill, M.; Khiar, A.; Rahim, M.; Felder, F.; Zogg, H.

    2011-05-01

    Mid-infrared vertical external cavity surface emitting lasers based on PbSe/PbSrSe multi-quantum-well structures on Si-substrates are realized. A modular design allows growing the active region and the bottom Bragg mirror on two different Si-substrates, thus facilitating comparison between different structures. Lasing is observed from 3.3 to 5.1 μm wavelength and up to 52 °C heat sink temperature with 1.55 μm optical pumping. Simulations show that threshold powers are limited by Shockley-Read recombination with lifetimes as short as 0.1 ns. At higher temperatures, an additional threshold power increase occurs probably due to limited carrier diffusion length and carrier leakage, caused by an unfavorable band alignment.

  3. Dilute nitride type-II 'W' quantum well lasers for the near-infrared and mid-infrared

    Science.gov (United States)

    Meyer, Jerry R.; Vurgaftman, Igor; Khandekar, Anish A.; Hawkins, B. E.; Yeh, J. Y.; Mawst, Luke J.; Kuech, Thomas F.; Tansu, Nelson

    2005-04-01

    Dilute nitride type-II "W" structures have potential for lasing at 1.55 microns (on GaAs substrates) and in the mid-infrared (3-6 microns, on InP substrates). The former active regions utilize (In)GaAsN/GaAsSb/(In)GaAsN/GaAs quantum wells, whereas the latter are based on InAsN/GaAsSb/InAsN/GaInP structures. Following a review of the theoretical rationale, we will present some preliminary MOCVD growth results for the GaAs-based type-II structures, along with their characterization by x-ray, TEM, and photoluminescence. The experimental energy gaps corresponding to the layer compositions determined from characterization are in good agreement with calculations based on the 10-band k×p formalism.

  4. Mid-infrared absorption-spectroscopy-based carbon dioxide sensor network in greenhouse agriculture: development and deployment.

    Science.gov (United States)

    Wang, Jianing; Zheng, Lingjiao; Niu, Xintao; Zheng, Chuantao; Wang, Yiding; Tittel, Frank K

    2016-09-01

    A mid-infrared carbon dioxide (CO2) sensor was experimentally demonstrated for application in a greenhouse farm environment. An optical module was developed using a lamp source, a dual-channel pyre-electrical detector, and a spherical mirror. A multi-pass gas chamber and a dual-channel detection method were adopted to effectively enhance light collection efficiency and suppress environmental influences. The moisture-proof function realized by a breathable waterproof chamber was specially designed for the application of such a sensor in a greenhouse with high humidity. Sensor structure of the optical part and electrical part were described, respectively, and related experiments were carried out to evaluate the sensor performance on CO2 concentration. The limit of detection of the sensor is 30 ppm with an absorption length of 30 cm. The relative detection error is less than 5% within the measurement range of 30-5000 ppm. The fluctuations for the long-term (10 h) stability measurements on a 500 ppm CO2 sample and a 2000 ppm CO2 sample are 1.08% and 3.6%, respectively, indicating a good stability of the sensor. A wireless sensor network-based automatic monitoring system was implemented for greenhouse application using multiple mid-infrared CO2 sensor nodes. A monitor software based on LabVIEW was realized via a laptop for real-time environmental data display, storage, and website sharing capabilities. A field experiment of the sensor network was carried out in the town of Shelin in Jilin Province, China, which proved that the whole monitoring system possesses stable sensing performance for practical application under the circumstances of a greenhouse.

  5. Four novel alkyl 2-cyanoacylate monomers and their use in latent fingermark detection by mid-infrared spectral imaging.

    Science.gov (United States)

    Tahtouh, Mark; Scott, Sonia A; Kalman, John R; Reedy, Brian J

    2011-04-15

    Four novel alkyl 2-cyanoacrylate monomers (alkyl=1-cyanoethyl, 2-cyanoethyl, trideuteromethyl and pentadeuteroethyl) have been tested for their ability to develop latent fingermarks that can then be visualized using mid-infrared spectral (chemical) imaging. Each of the four monomers was chosen for its potential to produce a strong, isolated infrared spectral band in its corresponding polymer (to provide spectral contrast against most backgrounds), as well as for its potential ability to be fumed onto fingermarks in the manner of conventional ethyl 2-cyanoacrylate (superglue). With the exception of the 2-cyanoethyl 2-cyanoacrylate, which had to be fumed under reduced pressure, all of the monomers were found to be sufficiently volatile to be fumed in a conventional fuming cabinet. All four monomers polymerized selectively on fingermark ridges on a variety of non-porous and semi-porous surfaces, leading to excellent development of the fingermarks. Unfortunately, although high quality mid-infrared spectral images of the fingermarks could be formed for all of the polymers at various frequencies, the new CN or CD stretching vibrations did not give rise to strong enough absorption intensities for good contrast on difficult backgrounds such as polymer banknotes. However, in the 1-cyanoethyl 2-cyanoacrylate polymer, the presence of the additional nitrile group had the unintended but desirable effect of shifting the strong CO absorption to higher frequencies, moving it away from interfering banknote absorptions. This enabled fingermark contrast to be achieved even against the intaglio printing on the banknotes. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Sensores ópticos com detecção no infravermelho próximo e médio Near and mid infrared optical sensors

    Directory of Open Access Journals (Sweden)

    Kássio M. G. Lima

    2009-01-01

    Full Text Available Optical chemical sensors with detection in the near and mid infrared region are reviewed. Fundamental concepts of infrared spectroscopy and optical chemical sensors are briefly described, before presenting some aspects on optical chemical sensors, such as synthesis of NIR and IR reagents, preparation of new materials as well as application in determinations of species of biological, industrial and environmental importance.

  7. MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER. I. CHARACTERIZING WISE-SELECTED ACTIVE GALACTIC NUCLEI IN COSMOS

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Daniel; Assef, Roberto J.; Eisenhardt, Peter [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-221, Pasadena, CA 91109 (United States); Benford, Dominic J. [NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Blain, Andrew [Department of Physics and Astronomy, University of Leicester, LE1 7RH Leicester (United Kingdom); Cutri, Roc; Griffith, Roger L.; Jarrett, T. H.; Masci, Frank; Tsai, Chao-Wei; Yan, Lin [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Dey, Arjun [National Optical Astronomical Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); Lake, Sean; Petty, Sara; Wright, E. L. [Physics and Astronomy Department, University of California, Los Angeles, CA 90095 (United States); Stanford, S. A. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Harrison, Fiona; Madsen, Kristin, E-mail: daniel.k.stern@jpl.nasa.gov [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-07-01

    The Wide-field Infrared Survey Explorer (WISE) is an extremely capable and efficient black hole finder. We present a simple mid-infrared color criterion, W1 - W2 {>=} 0.8 (i.e., [3.4]-[4.6] {>=}0.8, Vega), which identifies 61.9 {+-} 5.4 active galactic nucleus (AGN) candidates per deg{sup 2} to a depth of W2 {approx} 15.0. This implies a much larger census of luminous AGNs than found by typical wide-area surveys, attributable to the fact that mid-infrared selection identifies both unobscured (type 1) and obscured (type 2) AGNs. Optical and soft X-ray surveys alone are highly biased toward only unobscured AGNs, while this simple WISE selection likely identifies even heavily obscured, Compton-thick AGNs. Using deep, public data in the COSMOS field, we explore the properties of WISE-selected AGN candidates. At the mid-infrared depth considered, 160 {mu}Jy at 4.6 {mu}m, this simple criterion identifies 78% of Spitzer mid-infrared AGN candidates according to the criteria of Stern et al. and the reliability is 95%. We explore the demographics, multiwavelength properties and redshift distribution of WISE-selected AGN candidates in the COSMOS field.

  8. Highly ordered Al-doped ZnO nano-pillar and tube structures as hyperbolic metamaterials for mid-infrared plasmonics

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Takayama, Osamu; Panah, Mohammad Esmail Aryaee

    Fabrication of large area metamaterial structures in a reproducible manner is a tremendous challenge. Here, we realize the fabrication of plasmonic metamaterials for the mid-infrared wavelength region composed of Al-doped ZnO (AZO) pillars by a combination of atomic layer deposition and reactive...

  9. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm

    Science.gov (United States)

    Ycas, Gabriel; Giorgetta, Fabrizio R.; Baumann, Esther; Coddington, Ian; Herman, Daniel; Diddams, Scott A.; Newbury, Nathan R.

    2018-04-01

    Mid-infrared dual-comb spectroscopy has the potential to supplant conventional Fourier-transform spectroscopy in applications requiring high resolution, accuracy, signal-to-noise ratio and speed. Until now, mid-infrared dual-comb spectroscopy has been limited to narrow optical bandwidths or low signal-to-noise ratios. Using digital signal processing and broadband frequency conversion in waveguides, we demonstrate a mid-infrared dual-comb spectrometer covering 2.6 to 5.2 µm with comb-tooth resolution, sub-MHz frequency precision and accuracy, and a spectral signal-to-noise ratio as high as 6,500. As a demonstration, we measure the highly structured, broadband cross-section of propane from 2,840 to 3,040 cm-1, the complex phase/amplitude spectra of carbonyl sulfide from 2,000 to 2,100 cm-1, and of a methane, acetylene and ethane mixture from 2,860 to 3,400 cm-1. The combination of broad bandwidth, comb-mode resolution and high brightness will enable accurate mid-infrared spectroscopy in precision laboratory experiments and non-laboratory applications including open-path atmospheric gas sensing, process monitoring and combustion.

  10. MID-INFRARED PROPERTIES OF THE SWIFT BURST ALERT TELESCOPE ACTIVE GALACTIC NUCLEI SAMPLE OF THE LOCAL UNIVERSE. I. EMISSION-LINE DIAGNOSTICS

    International Nuclear Information System (INIS)

    Weaver, K. A.; Melendez, M.; Mushotzky, R. F.; Kraemer, S.; Engle, K.; Malumuth, E.; Tueller, J.; Markwardt, C.; Berghea, C. T.; Dudik, R. P.; Winter, L. M.; Armus, L.

    2010-01-01

    We compare mid-infrared emission-line properties from high-resolution Spitzer spectra of a hard X-ray (14-195 keV) selected sample of nearby (z < 0.05) active galactic nuclei (AGNs) detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission lines, [O IV] 25.89 μm, [Ne II] 12.81 μm, [Ne III] 15.56 μm, and [Ne V] 14.32/24.32 μm, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations; however, six newly discovered BAT AGNs are under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT fluxes and luminosities suggests that the emission lines primarily arise in gas ionized by the AGNs. We also compare the mid-infrared emission lines in the BAT AGNs with those from published studies of ULIRGs, Palomar-Green quasars, star-forming galaxies, and LINERs. We find that the BAT AGN sample falls into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] ratios. These line ratios are lower in sources that have been previously classified in the mid-infrared/optical as AGNs than those found for the BAT AGNs, suggesting that, in our X-ray selected sample, the AGNs represent the main contribution to the observed line emission. These ratios represent a new emission line diagnostic for distinguishing between AGNs and star-forming galaxies.

  11. Mid-infrared spectroscopy for rapid assessment of soil properties after land use change from pastures to Eucalyptus globulus plantations.

    Science.gov (United States)

    Madhavan, Dinesh B; Kitching, Matt; Mendham, Daniel S; Weston, Christopher J; Baker, Thomas G

    2016-06-15

    There is an increasing demand for rapid and cost effective techniques to accurately measure the effects of land use change on soil properties. This study evaluated the ability of mid-infrared spectroscopy (MIRS) coupled with partial least squares regression (PLSR) to rapidly predict soil properties affected by land use change from agriculture (mainly pasture) to Eucalyptus globulus plantations in south-western Australia. We measured total organic carbon (TOC), total nitrogen (Total N), TOC/Total N (C/N ratio), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and total phosphorus (Total P). The PLSR calibration models were developed using mid-infrared (MIR) spectra (4000 to 450 cm(-1)) and square root transformed measured soil data (n = 180) from 23 paired pasture and E. globulus plantation sites representing the soils and climate of E. globulus plantation estates in south-western Australia. The calibration models for TOC, Total N, C/N ratio and Total P showed excellent correlations between measured and predicted data with coefficient of determination (R(2)) exceeding 0.91 and minimum root-mean-square error (RMSE) of calibration [TOC (R(2) = 0.95, RMSE = 0.36), Total N (R(2) = 0.96, RMSE = 0.10), C/N ratio (R(2) = 0.92, RMSE = 0.14) and Total P (R(2) = 0.91, RMSE = 0.06)]. The calibration models had reasonable predictions for MBC (R(2) = 0.66, RMSE = 0.07) and MBN (R(2) = 0.63, RMSE = 0.06). The calibrated models were validated using soils from 8 independent paired pasture and E. globulus sites (n = 64). The validated predictions were excellent for TOC (R(2) = 0.92, RMSE = 0.40) and Total N (R(2) = 0.91, RMSE = 0.12), but less so for C/N ratio (R(2) = 0.80, RMSE = 0.35), MBC (R(2) = 0.70, RMSE = 0.08) and Total P (R(2) = 0.75, RMSE = 0.12). The results demonstrate the potential of MIRS-PLSR to rapidly, accurately and simultaneously determine several properties in land use change affected soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. RISING FROM THE ASHES: MID-INFRARED RE-BRIGHTENING OF THE IMPOSTOR SN 2010da IN NGC 300

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Ryan M.; Ressler, Michael E. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Kasliwal, Mansi M.; Jencson, Jacob [California Institute of Technology, Pasadena, CA 91125 (United States); Bond, Howard E.; Monson, Andrew J. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Smith, Nathan [Steward Observatory, University of Arizona, Tuscon, AZ 85721 (United States); Fox, Ori D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Carlon, Robert; Dykhoff, Devin; Gehrz, Robert [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, SE, University of Minnesota, Minneapolis, MN 55455 (United States); Cody, Ann Marie [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Contreras, Carlos [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Hsiao, Eric [Department of Physics, Florida State University, 77 Chieftain Way, Tallahassee, FL 32306 (United States); Khan, Rubab [NASA Goddard Space Flight Center, MC 665, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Masci, Frank [Infrared Processing and Analysis Center, California Institute of Technology, M/S 100-22, Pasadena, CA 91125 (United States); Monard, L. A. G. [Bronberg and Kleinkaroo Observatories, P.O. Box 281, Calitzdorp 6660, Western Cape (South Africa); Morrell, Nidia; Phillips, Mark [Carnegie Institution of Washington, Las Campanas Observatory, Colina el Pino, Casilla 601, La Serena (Chile)

    2016-10-20

    We present multi-epoch mid-infrared (IR) photometry and the optical discovery observations of the “impostor” supernova (SN) 2010da in NGC 300 using new and archival Spitzer Space Telescope images and ground-based observatories. The mid-infrared counterpart of SN 2010da was detected as Spitzer Infrared Intensive Transient Survey (SPIRITS) 14bme in the SPIRITS, an ongoing systematic search for IR transients. Before erupting on 2010 May 24, the SN 2010da progenitor exhibited a constant mid-IR flux at 3.6 and only a slight ∼10% decrease at 4.5 μ m between 2003 November and 2007 December. A sharp increase in the 3.6 μ m flux followed by a rapid decrease measured ∼150 days before and ∼80 days after the initial outburst, respectively, reveal a mid-IR counterpart to the coincident optical and high luminosity X-ray outbursts. At late times, after the outburst (∼2000 days), the 3.6 and 4.5 μ m emission increased to over a factor of two times the progenitor flux and is currently observed (as of 2016 Feb) to be fading, but still above the progenitor flux. We attribute the re-brightening mid-IR emission to continued dust production and increasing luminosity of the surviving system associated with SN 2010da. We analyze the evolution of the dust temperature ( T {sub d} ∼ 700–1000 K), mass ( M {sub d} ∼ 0.5–3.8 × 10{sup −7} M {sub ⊙}), luminosity ( L {sub IR} ∼ 1.3–3.5 × 10{sup 4} L {sub ⊙}), and the equilibrium temperature radius ( R {sub eq} ∼ 6.4–12.2 au) in order to resolve the nature of SN 2010da. We address the leading interpretation of SN 2010da as an eruption from a luminous blue variable high-mass X-ray binary (HMXB) system. We propose that SN 2010da is instead a supergiant (sg)B[e]-HMXB based on similar luminosities and dust masses exhibited by two other known sgB[e]-HMXB systems. Additionally, the SN 2010da progenitor occupies a similar region on a mid-IR color–magnitude diagram (CMD) with known sgB[e] stars in the Large

  13. Subwavelength engineered fiber-to-chip silicon-on-sapphire interconnects for mid-infrared applications (Conference Presentation)

    Science.gov (United States)

    Alonso-Ramos, Carlos; Han, Zhaohong; Le Roux, Xavier; Lin, Hongtao; Singh, Vivek; Lin, Pao Tai; Tan, Dawn; Cassan, Eric; Marris-Morini, Delphine; Vivien, Laurent; Wada, Kazumi; Hu, Juejun; Agarwal, Anuradha; Kimerling, Lionel C.

    2016-05-01

    The mid-Infrared wavelength range (2-20 µm), so-called fingerprint region, contains the very sharp vibrational and rotational resonances of many chemical and biological substances. Thereby, on-chip absorption-spectrometry-based sensors operating in the mid-Infrared (mid-IR) have the potential to perform high-precision, label-free, real-time detection of multiple target molecules within a single sensor, which makes them an ideal technology for the implementation of lab-on-a-chip devices. Benefiting from the great development realized in the telecom field, silicon photonics is poised to deliver ultra-compact efficient and cost-effective devices fabricated at mass scale. In addition, Si is transparent up to 8 µm wavelength, making it an ideal material for the implementation of high-performance mid-IR photonic circuits. The silicon-on-insulator (SOI) technology, typically used in telecom applications, relies on silicon dioxide as bottom insulator. Unfortunately, silicon dioxide absorbs light beyond 3.6 µm, limiting the usability range of the SOI platform for the mid-IR. Silicon-on-sapphire (SOS) has been proposed as an alternative solution that extends the operability region up to 6 µm (sapphire absorption), while providing a high-index contrast. In this context, surface grating couplers have been proved as an efficient means of injecting and extracting light from mid-IR SOS circuits that obviate the need of cleaving sapphire. However, grating couplers typically have a reduced bandwidth, compared with facet coupling solutions such as inverse or sub-wavelength tapers. This feature limits their feasibility for absorption spectroscopy applications that may require monitoring wide wavelength ranges. Interestingly, sub-wavelength engineering can be used to substantially improve grating coupler bandwidth, as demonstrated in devices operating at telecom wavelengths. Here, we report on the development of fiber-to-chip interconnects to ZrF4 optical fibers and integrated SOS

  14. Non-destructive determination of ethanol levels in fermented alcoholic beverages using Fourier transform mid-infrared spectroscopy.

    Science.gov (United States)

    Debebe, Ayalew; Redi-Abshiro, Mesfin; Chandravanshi, Bhagwan Singh

    2017-03-24

    Traditional fermented alcoholic beverages are indigenous to a particular area and are prepared by the local people using an age-old techniques and locally available raw materials. The main objective of this work was the direct determination of ethanol in traditional fermented alcoholic beverages using mid infrared spectroscopy with partial least squares regression, verifying the robustness of the calibration models and to assess the quality of beverages. The level of ethanol determination in Ethiopian traditional fermented alcoholic beverages was done using mid infrared spectroscopy with partial least squares regression (MIR-PLS). The calibration and validation sets, and real samples spectra were collected with 32 scans from 850-1200 cm -1 . A total of 25 synthetic standards (calibration and validation sets) with ethanol (2-10% w/w) and sugars (glucose, fructose, sucrose and maltose) (0-5% w/w) compositions were used to construct and validate the models. Twenty-five different calibration models were validated by cross-validation approach with 25 left out standards. A large number of pre-treatments were verified, but the best pre-treatment was subtracting minimum + 2nd derivative. The model was found to have the highest coefficients of determination for calibration and cross-validation (0.999, 0.999) and root mean square error of prediction [0.1% (w/w)]. For practical relevance, the MIR-PLS predicted values were compared against the values determined by gas chromatography. The predicted values of the model were found to be in excellent agreement with gas chromatographic measurements. In addition, recovery test was conducted with spiking 2.4-6.4% (w/w) ethanol. Based on the obtained recovery percentage, 85.4-107% (w/w), the matrix effects of the samples were not considerable. The proposed technique, MIR-PLS at 1200-850 cm -1 spectral region was found appropriate to quantify ethanol in fermented alcoholic beverages. Among the studied beverages (Tella, Netch Tella

  15. Connection between nonradial pulsations and stellar winds in massive stars. IV. Atmospheric structure and mass loss from pulsation with speculative application to B and Be stars

    International Nuclear Information System (INIS)

    Willson, L.A.

    1986-01-01

    Pulsation produces alterations in the density structure of a stellar atmosphere, and it drives or enhances mass loss. A summary is provided of some very general results which were obtained on the basis of an analysis of models calculated by Bowen (1985) for the atmospheres of radially pulsating cool stars. It is pointed out that four parameters are needed to characterize the structure of the atmosphere of a pulsating star, if simplifying assumptions are made regarding isothermal conditions with respect to shocks and the global temperature distribution. Some possible implications of the nonradial pulsations observed in B and Be stars for the structure of their atmospheres are discussed. Attention is given to the stellar wind, and applications to B and Be stars. 9 references

  16. Comparison of Portable and Bench-Top Spectrometers for Mid-Infrared Diffuse Reflectance Measurements of Soils

    Directory of Open Access Journals (Sweden)

    Christopher Hutengs

    2018-03-01

    Full Text Available Mid-infrared (MIR spectroscopy has received widespread interest as a method to complement traditional soil analysis. Recently available portable MIR spectrometers additionally offer potential for on-site applications, given sufficient spectral data quality. We therefore tested the performance of the Agilent 4300 Handheld FTIR (DRIFT spectra in comparison to a Bruker Tensor 27 bench-top instrument in terms of (i spectral quality and measurement noise quantified by wavelet analysis; (ii accuracy of partial least squares (PLS calibrations for soil organic carbon (SOC, total nitrogen (N, pH, clay and sand content with a repeated cross-validation analysis; and (iii key spectral regions for these soil properties identified with a Monte Carlo spectral variable selection approach. Measurements and multivariate calibrations with the handheld device were as good as or slightly better than Bruker equipped with a DRIFT accessory, but not as accurate as with directional hemispherical reflectance (DHR data collected with an integrating sphere. Variations in noise did not markedly affect the accuracy of multivariate PLS calibrations. Identified key spectral regions for PLS calibrations provided a good match between Agilent and Bruker DHR data, especially for SOC and N. Our findings suggest that portable FTIR instruments are a viable alternative for MIR measurements in the laboratory and offer great potential for on-site applications.

  17. An Iron Complex with a Bent, O-Coordinated CO2Ligand Discovered by Femtosecond Mid-Infrared Spectroscopy.

    Science.gov (United States)

    Straub, Steffen; Brünker, Paul; Lindner, Jörg; Vöhringer, Peter

    2018-03-06

    The activation of carbon dioxide by transition metals is widely recognized as a key step for utilizing this greenhouse gas as a renewable feedstock for the sustainable production of fine chemicals. However, the dynamics of CO 2 binding and unbinding to and from the ligand sphere of a metal have never been observed in the time domain. The ferrioxalate anion is used in aqueous solution as a unique model system for these dynamics and apply femtosecond UV-pump mid-infrared-probe spectroscopy to explore its photoinduced primary processes in a time-resolved fashion. Following optical excitation, a neutral CO 2 molecule is expelled from the complex within about 500 fs to generate a highly intriguing pentacoordinate ferrous dioxalate that carries a bent carbon dioxide radical anion ligand, that is, a reductively activated form of CO 2 , which is end-on-coordinated to the metal center by one of its two oxygen atoms. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Short-range remote spectral sensor using mid-infrared semiconductor lasers with orthogonal code-division multiplexing approach

    Science.gov (United States)

    Morbi, Zulfikar; Ho, D. B.; Ren, H.-W.; Le, Han Q.; Pei, Shin Shem

    2002-09-01

    Demonstration of short-range multispectral remote sensing, using 3 to 4-micrometers mid- infrared Sb semiconductor lasers based on code-division multiplexing (CDM) architecture, is described. The system is built on a principle similar to intensity- modulated/direct-detection optical-CDMA for communications, but adapted for sensing with synchronous, orthogonal codes to distinguish different wavelength channels with zero interchannel correlation. The concept is scalable for any number of channels, and experiments with a two-wavelength system are conducted. The CDM-signal processing yielded a white-Gaussian-like system noise that is found to be near the theoretical level limited by the detector fundamental intrinsic noise. With sub-mW transmitter average power, the system was able to detect an open-air acetylene gas leak of 10-2 STP ft3/hr from 10-m away with time-varying, random, noncooperative backscatters. A similar experiment detected and positively distinguished hydrocarbon oil contaminants on water from bio-organic oils and detergents. Projection for more advanced systems suggests a multi-kilometer-range capability for watt-level transmitters, and hundreds of wavelength channels can also be accommodated for active hyperspectral remote sensing application.

  19. Generation of sub-30-fs microjoule mid-infrared pulses for ultrafast vibrational dynamics at solid/liquid interfaces.

    Science.gov (United States)

    Boulesbaa, Abdelaziz; Isaienko, Oleksandr; Tuladhar, Aashish; Borguet, Eric

    2013-12-01

    We describe temporal compression of ultrabroadband, few microjoule mid-infrared (mid-IR) pulses from a noncollinear optical parametric amplifier (NOPA) employed in a sum-frequency generation (SFG) vibrational spectroscopic system, operating in total-internal-reflection geometry. The propagation of the mid-IR beam through optical materials results in a significant temporal chirp at the probed interface, which is analyzed and corrected by properly managing the total dispersion of materials introduced into the mid-IR beam path. By employing the simultaneous spatial and temporal focusing of the broadband infrared pulses at the probed interface, we achieve a sub-50-fs full width at half-maximum (FWHM) for the instrument response function, measured via SFG cross correlation of the ultrashort mid-IR pulses with an ultrashort (~30 fs) near-IR pulse from a synchronized, independently tunable NOPA. From the SFG cross-correlation FWHM, we extract a sub-30-fs mid-IR pulse duration, making it a suitable SFG spectroscopic system to investigate vibrational dynamics in hydrogen-bonded systems at interfaces.

  20. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride.

    Science.gov (United States)

    Kischkat, Jan; Peters, Sven; Gruska, Bernd; Semtsiv, Mykhaylo; Chashnikova, Mikaela; Klinkmüller, Matthias; Fedosenko, Oliana; Machulik, Stephan; Aleksandrova, Anna; Monastyrskyi, Gregorii; Flores, Yuri; Masselink, W Ted

    2012-10-01

    The complex refractive index components, n and k, have been studied for thin films of several common dielectric materials with a low to medium refractive index as functions of wavelength and stoichiometry for mid-infrared (MIR) wavelengths within the range 1.54-14.29 μm (700-6500 cm(-1)). The materials silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, and titanium oxide are prepared using room temperature reactive sputter deposition and are characterized using MIR variable angle spectroscopic ellipsometry. The investigation shows how sensitive the refractive index functions are to the O2 and N2 flow rates, and for which growth conditions the materials deposit homogeneously. It also allows conclusions to be drawn on the degree of amorphousness and roughness. To facilitate comparison of the materials deposited in this work with others, the index of refraction was also determined and provided for the near-IR and visible ranges of the spectrum. The results presented here should serve as a useful information base for designing optical coatings for the MIR part of the electromagnetic spectrum. The results are parameterized to allow them to be easily used for coating design.

  1. Rapid estimation of the biochemical methane potential of plant biomasses using Fourier transform mid-infrared photoacoustic spectroscopy.

    Science.gov (United States)

    Bekiaris, Georgios; Triolo, Jin M; Peltre, Clément; Pedersen, Lene; Jensen, Lars S; Bruun, Sander

    2015-12-01

    Biochemical methane potential (BMP) is a very important characteristic of a given feedstock for optimisation of its use in biogas production. However, the long digestion time needed to determine BMP is the main limitation for the use of this assay during the operation of anaerobic digesters to produce biogas. Fourier transform mid-infrared photoacoustic spectroscopy (FTIR-PAS) was used to predict the BMP of 87 plant biomasses. The developed calibration model was able to explain 81% of the variance in the measured BMP of a selected test set with a root mean square error (RMSE) of 40NLCH4kg(-1) of volatile solids (VS) and a ratio of performance to deviation (RPD) of 2.38. The interpretation of the regression coefficients used in the calibration revealed a positive correlation of BMP with easily degradable compounds (amorphous cellulose, hemicellulose and aliphatic compounds) and a negative correlation with inhibitors of cellulose hydrolysis (lignin, hemicellulose). Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effective intercalation of sodium dodecylsulfate (SDS) into hydrocalumite: Mechanism discussion via near-infrared and mid-infrared investigations.

    Science.gov (United States)

    Zhang, Ping; Wang, Tianqi; Qian, Guangren; Wu, Daishe; Frost, Ray L

    2015-10-05

    The intercalation of an anionic surfactant, sodium dodecylsulfate (SDS), into hydrocalumite (CaAl-LDH-Cl) was investigated in this study. To understand the intercalation behavior, X-ray diffraction (XRD), mid-infrared spectroscopy (MIR), near-infrared spectroscopy (NIR) and scanning electron microscopy (SEM) were undertaken. The near-infrared spectra indicated a special spectral range from 6000 to 5600 cm(-1)and prominent bands of CaAl-LDH-Cl intercalated with SDS around 8388 cm(-1). This band was assigned to the second overtone of the first fundamental of CH stretching vibrations of SDS, and it could be used to determinate the result of CaAl-LDH-Cl modified by SDS. Moreover, the results revealed that different adsorption behaviors were observed at different (high and low) concentrations of SDS. When the SDS concentration was around 0.2 mol L(-1), anion exchange intercalation occurred and the interlayer distance expanded to about 3.25 nm. When SDS concentration was 0.005 mol L(-1), the surface adsorption of DS(-) was the major anion exchange event. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Discovery of a Mid-infrared Echo from the TDE Candidate in the Nucleus of ULIRG F01004−2237

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Liming [Center for Astrophysics, Guangzhou University, Guangzhou 510006 (China); Wang, Tinggui; Jiang, Ning; Yang, Chenwei; Peng, Bo [CAS Key Laboratory for Researches in Galaxies and Cosmology, University of Sciences and Technology of China, Hefei, Anhui 230026 (China); Yan, Lin [Caltech Optical Observatories, Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Cutri, Roc M. [IPAC, Mail Code 100-22, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Mainzer, Amy, E-mail: doulm@gzhu.edu.cn, E-mail: twang@ustc.edu.cn, E-mail: lyan@ipac.caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2017-05-20

    We present the mid-infrared (MIR) light curves (LCs) of a tidal disruption event candidate in the center of a nearby ultraluminous infrared galaxy F01004−2237 using archival WISE and NEOWISE data from 2010 to 2016. At the peak of the optical flare, F01004−2237 was IR quiescent. About three years later, its MIR fluxes have shown a steady increase, rising by 1.34 and 1.04 mag in 3.4 and 4.6 μ m up to the end of 2016. The host-subtracted MIR peak luminosity is 2–3 × 10{sup 44} erg s{sup −1}. We interpret the MIR LCs as an infrared echo, i.e., dust reprocessed emission of the optical flare. Fitting the MIR LCs using our dust model, we infer a dust torus of the size of a few parsecs at some inclined angle. The derived dust temperatures range from 590–850 K, and the warm dust mass is ∼7 M {sub ⊙}. Such a large mass implies that the dust cannot be newly formed. We also derive the UV luminosity of 4–11 × 10{sup 44} erg s{sup −1}. The inferred total IR energy is 1–2 × 10{sup 52} erg, suggesting a large dust covering factor. Finally, our dust model suggests that the long tail of the optical flare could be due to dust scattering.

  4. Selective treatment of carious dentin using a mid-infrared tunable pulsed laser at 6 μm wavelength range

    Science.gov (United States)

    Saiki, Masayuki; Ishii, Katsunori; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    2011-03-01

    Optical technologies have good potential for caries detection, prevention, excavation, and the realization of minimal intervention dentistry. This study aimed to develop a selective excavation technique of carious tissue using the specific absorption in 6 μm wavelength range. Bovine dentin demineralized with lactic acid solution was used as a carious dentin model. A mid-infrared tunable pulsed laser was obtained by difference-frequency generation technique. The wavelength was tuned to 6.02 and 6.42 μm which correspond to absorption bands called amide I and amide II, respectively. The laser delivers 5 ns pulse width at a repetition rate of 10 Hz. The morphological change after irradiation was observed with a scanning electron microscope, and the measurement of ablation depth was performed with a confocal laser microscope. At λ = 6.02 μm and the average power density of 15 W/cm2, demineralized dentin was removed selectively with less-invasive effect on sound dentin. The wavelength of 6.42 μm also showed the possibility of selective removal. High ablation efficiency and low thermal side effect were observed using the nanosecond pulsed laser with λ = 6.02 μm. In the near future, development of compact laser device will open the minimal invasive laser treatment to the dental clinic.

  5. Near-surface thermal gradients and their effects on mid-infrared emission spectra of planetary surfaces

    Science.gov (United States)

    Henderson, B. G.; Jakosky, B. M.

    1994-01-01

    We model the heat transfer by radiation and conduction in the top few millimeters of a planetary surface to determine the magnitude of near-surface (approximately 100 micrometers) thermal gradients and their effects on mid-infrared emission spectra for a number of planetary environments. The model is one-dimensional and uses a finite difference scheme for approximately 10 micrometers layers. Calculations are peformed for samples heated at the base and from above by sunlight. Our results indicate that near-surface radiative cooling creates significant thermal gradients in the top few hundred microns of surfaces in which radiation is an importamnt heat transfer mechanism. The effect is maximized in evacuated, underdense particulate media with sufficiently high temperatures. Near-surface thermal gradients will be significant in fine-grained particulate surfaces on the Moon (40-60 K/100 micrometers) and Mercury (approximately 80 K/100 micrometers), increasing spectral contrast and creating emission maxima in the transparent regions of the spectra. They will be of lesser importance on the surface of Mars, with a maximum value of around 5 k/100 micrometers in areas of low thermal inertia, and will be negligible on planets with more substantial atmospheres (less than 1 K/100 micrometers). We conclude that the effects that thermal gradients have on mid-IR emission spectra are predictable and do not negate the utility of emission spectroscopy for remote determination of planetary surface composition.

  6. Determination of carbohydrates present in Saccharomyces cerevisiae using mid-infrared spectroscopy and partial least squares regression.

    Science.gov (United States)

    Plata, Maria R; Koch, Cosima; Wechselberger, Patrick; Herwig, Christoph; Lendl, Bernhard

    2013-10-01

    A fast and simple method to control variations in carbohydrate composition of Saccharomyces cerevisiae, baker's yeast, during fermentation was developed using mid-infrared (mid-IR) spectroscopy. The method allows for precise and accurate determinations with minimal or no sample preparation and reagent consumption based on mid-IR spectra and partial least squares (PLS) regression. The PLS models were developed employing the results from reference analysis of the yeast cells. The reference analyses quantify the amount of trehalose, glucose, glycogen, and mannan in S. cerevisiae. The selection and optimization of pretreatment steps of samples such as the disruption of the yeast cells and the hydrolysis of mannan and glycogen to obtain monosaccharides were carried out. Trehalose, glucose, and mannose were determined using high-performance liquid chromatography coupled with a refractive index detector and total carbohydrates were measured using the phenol-sulfuric method. Linear concentration range, accuracy, precision, LOD and LOQ were examined to check the reliability of the chromatographic method for each analyte.

  7. Analysis of Complex Carbohydrate Composition in Plant Cell Wall Using Fourier Transformed Mid-Infrared Spectroscopy (FT-IR).

    Science.gov (United States)

    Badhan, Ajay; Wang, Yuxi; McAllister, Tim A

    2017-01-01

    Fourier transformed mid-infrared spectroscopy (FTIR) is a powerful tool for compositional analysis of plant cell walls (Acebes et al., Front Plant Sci 5:303, 2014; Badhan et al., Biotechnol Biofuels 7:1-15, 2014; Badhan et al., BioMed Res Int 2015: 562952, 2015; Roach et al., Plant Physiol 156:1351-1363, 2011). The infrared spectrum generates a fingerprint of a sample with absorption peaks corresponding to the frequency of vibrations between the bonds of the atoms making up the material. Here, we describe a method focused on the use of FTIR in combination with principal component analysis (PCA) to characterize the composition of the plant cell wall. This method has been successfully used to study complex enzyme saccharification processes like rumen digestion to identify recalcitrant moieties in low-quality forage which resist rumen digestion (Badhan et al., BioMed Res Int 2015: 562952, 2015), as well as to characterize cell wall mutant lines or transgenic lines expressing exogenous hydrolases (Badhan et al., Biotechnol Biofuels 7:1-15, 2014; Roach et al., Plant Physiol 156:1351-1363, 2011). The FTIR method described here facilitates high-throughput identification of the major compositional differences across a large set of samples in a low cost and nondestructive manner.

  8. Attosecond lighthouse above 100 eV from high-harmonic generation of mid-infrared pulses

    Science.gov (United States)

    Kovács, K.; Negro, M.; Vozzi, C.; Stagira, S.; Tosa, V.

    2017-10-01

    In this paper, we numerically investigate the possibility to obtain a lighthouse emission for the attosecond pulses produced by high-order harmonics of a strong mid-infrared fundamental pulse without any optical element inserted in the path of the generating beam. The parameters of the driving pulse, focusing geometry, gas medium and detection configuration are currently experimentally feasible. Here, we study in detail the specific propagation conditions of the laser beam, and describe the exact mechanism of the sensitive space-time variation of the medium’s refractive index that lead to the dynamic wavefront rotation. This basic requirement for the lighthouse phenomenon is transmitted to the harmonic bursts, which are emitted with different divergence in successive optical half-cycles, thus can be detected in the far field at increasing distances from the optical axis. In this configuration, spectral filtering of the harmonics is not necessary, therefore the total harmonic pulse power might be used in further pump-probe experiments.

  9. Self-organized, effective medium black silicon antireflection structures for silicon optics in the mid-infrared

    Science.gov (United States)

    Steglich, Martin; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2016-09-01

    Thanks to its high quality and low cost, silicon is the material of choice for optical devices operating in the mid-infrared (MIR; 2 μm to 6 μm wavelength). Unfortunately in this spectral region, the refractive index is comparably high (about 3.5) and leads to severe reflection losses of about 30% per interface. In this work, we demonstrate that self-organized, statistical Black Silicon structures, fabricated by Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE), can be used to effectively suppress interface reflection. More importantly, it is shown that antireflection can be achieved in an image-preserving, non-scattering way. This enables Black Silicon antireflection structures (ARS) for imaging applications in the MIR. It is demonstrated that specular transmittances of 97% can be easily achieved on both flat and curved substrates, e.g. lenses. Moreover, by a combined optical and morphological analysis of a multitude of different Black Silicon ARS, an effective medium criterion for the examined structures is derived that can also be used as a design rule for maximizing sample transmittance in a desired wavelength range. In addition, we show that the mechanical durability of the structures can be greatly enhanced by coating with hard dielectric materials like diamond-like carbon (DLC), hence enabling practical applications. Finally, the distinct advantages of statistical Black Silicon ARS over conventional AR layer stacks are discussed: simple applicability to topological substrates, absence of thermal stress and cost-effectiveness.

  10. A proposed novel method for thin-film fabrication assisted by mid-infrared free electron laser

    International Nuclear Information System (INIS)

    Yasumoto, Masato; Tomimasu, Takio

    2002-01-01

    We propose a novel method for thin-film fabrication using the mid-infrared free electron laser (MIR-FEL) having a tunable wavelength. In the fabrication process, the MIR-FEL stimulates the molecules to be processed into an excited vibrational state, when the photon energy of the MIR-FEL corresponds to one of the energy states of the molecules. During the process, the MIR-FEL irradiates a substrate on which a thin film is being fabricated simultaneously by a conventional method. Therefore, the method can, in principle, realize the thin-film fabrication quasi-independent of the substrate temperature. Because of its tunable wavelength, the method has the advantage of permitting selective fabrication with the mixed-gas chemical vapor deposition (CVD) process on a temperature-sensitive substrate such as a plastic film. In order to realize this method, we developed two thin-film fabrication devices (an MIR-FEL assisted RF sputtering device and an MIR-FEL assisted laser ablation deposition device)

  11. On a New Theoretical Framework for RR Lyrae Stars. II. Mid-infrared Period–Luminosity–Metallicity Relations

    Energy Technology Data Exchange (ETDEWEB)

    Neeley, Jillian R.; Marengo, Massimo; Trueba, Nicolas [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Bono, Giuseppe; Braga, Vittorio F.; Magurno, Davide [Department of Physics, Università di Roma Tor Vergara, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Dall’Ora, Massimo; Marconi, Marcella [INAF-Osservatorio Astronomico di Capodimonte, Salita Moiarello 16, I-80131 Napoli (Italy); Tognelli, Emanuele; Moroni, Pier G. Prada [Dipartimento di Fisica, Università di Pisa, Lago Bruno Pontecorvo 3, I-56127, Pisa (Italy); Beaton, Rachael L.; Madore, Barry F.; Seibert, Mark [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Freedman, Wendy L. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Monson, Andrew J. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Scowcroft, Victoria [Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Stetson, Peter B., E-mail: jrneeley@iastate.edu [NRC-Herzberg, Dominion Astrophysical Observatory, 5071 West Saanich Road, Victoria BC V9E 2E7 (Canada)

    2017-06-01

    We present new theoretical period–luminosity–metallicity (PLZ) relations for RR Lyræ stars (RRLs) at Spitzer and WISE wavelengths. The PLZ relations were derived using nonlinear, time-dependent convective hydrodynamical models for a broad range of metal abundances ( Z = 0.0001–0.0198). In deriving the light curves, we tested two sets of atmospheric models and found no significant difference between the resulting mean magnitudes. We also compare our theoretical relations to empirical relations derived from RRLs in both the field and in the globular cluster M4. Our theoretical PLZ relations were combined with multi-wavelength observations to simultaneously fit the distance modulus, μ {sub 0}, and extinction, A {sub V}, of both the individual Galactic RRL and of the cluster M4. The results for the Galactic RRL are consistent with trigonometric parallax measurements from Gaia ’ s first data release. For M4, we find a distance modulus of μ {sub 0} = 11.257 ± 0.035 mag with A {sub V}= 1.45 ± 0.12 mag, which is consistent with measurements from other distance indicators. This analysis has shown that, when considering a sample covering a range of iron abundances, the metallicity spread introduces a dispersion in the PL relation on the order of 0.13 mag. However, if this metallicity component is accounted for in a PLZ relation, the dispersion is reduced to ∼0.02 mag at mid-infrared wavelengths.

  12. MID-INFRARED IMAGING OF THE TRANSITIONAL DISK OF HD 169142: MEASURING THE SIZE OF THE GAP

    Energy Technology Data Exchange (ETDEWEB)

    Honda, M. [Department of Mathematics and Physics, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan); Maaskant, Koen; Waters, L. B. F. M.; Dominik, C.; Mulders, G. D. [Astronomical Institute Anton Pannekoek, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Okamoto, Y. K. [Institute of Astrophysics and Planetary Sciences, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Kataza, H. [Department of Infrared Astrophysics, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Fukagawa, M. [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Tielens, A. G. G. M. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Min, M. [Astronomical Institute Utrecht, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands); Yamashita, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Fujiyoshi, T.; Fujiwara, H. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Miyata, T.; Sako, S. [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Sakon, I.; Onaka, T. [Department of Astronomy, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-06-20

    The disk around the Herbig Ae star HD 169142 was imaged and resolved at 18.8 and 24.5 {mu}m using Subaru/COMICS. We interpret the observations using a two-dimensional radiative transfer model and find evidence for the presence of a large gap. The mid-infrared images trace dust that is emitted at the onset of a strong rise in the spectral energy distribution (SED) at 20 {mu}m, and are therefore very sensitive to the location and characteristics of the inner wall of the outer disk and its dust. We determine the location of the wall to be 23{sup +3}{sub -5} AU from the star. An extra component of hot dust must exist close to the star. We find that a hydrostatic optically thick inner disk does not produce enough flux in the near-infrared, and an optically thin, geometrically thick component is our solution to fit the SED. Considering the recent findings of gaps and holes in a number of Herbig Ae/Be group I disks, we suggest that such disk structures may be common in group I sources. Classification as group I should be considered a strong case for classification as a transitional disk, though improved imaging surveys are needed to support this speculation.

  13. MID-INFRARED IMAGING OF THE TRANSITIONAL DISK OF HD 169142: MEASURING THE SIZE OF THE GAP

    International Nuclear Information System (INIS)

    Honda, M.; Maaskant, Koen; Waters, L. B. F. M.; Dominik, C.; Mulders, G. D.; Okamoto, Y. K.; Kataza, H.; Fukagawa, M.; Tielens, A. G. G. M.; Min, M.; Yamashita, T.; Fujiyoshi, T.; Fujiwara, H.; Miyata, T.; Sako, S.; Sakon, I.; Onaka, T.

    2012-01-01

    The disk around the Herbig Ae star HD 169142 was imaged and resolved at 18.8 and 24.5 μm using Subaru/COMICS. We interpret the observations using a two-dimensional radiative transfer model and find evidence for the presence of a large gap. The mid-infrared images trace dust that is emitted at the onset of a strong rise in the spectral energy distribution (SED) at 20 μm, and are therefore very sensitive to the location and characteristics of the inner wall of the outer disk and its dust. We determine the location of the wall to be 23 +3 –5 AU from the star. An extra component of hot dust must exist close to the star. We find that a hydrostatic optically thick inner disk does not produce enough flux in the near-infrared, and an optically thin, geometrically thick component is our solution to fit the SED. Considering the recent findings of gaps and holes in a number of Herbig Ae/Be group I disks, we suggest that such disk structures may be common in group I sources. Classification as group I should be considered a strong case for classification as a transitional disk, though improved imaging surveys are needed to support this speculation.

  14. A mid-infrared carbon monoxide sensor system using wideband absorption spectroscopy and a single-reflection spherical optical chamber

    Science.gov (United States)

    Dong, Ming; Zheng, Chuantao; Miao, Shuzhuo; Song, Fang; Wang, Yiding

    2017-09-01

    A mid-infrared carbon monoxide (CO) sensor system based on a dual-channel differential detection method was developed using a broadband light source in the 4.60 μm wavelength region and a single-reflection spherical optical chamber with ∼0.373 m absorption path length. CO detection was realized by targeting the wideband strong absorption lines within 4.55-4.65 μm. A dual-channel pyroelectric detector as well as a self-developed digital signal processor (DSP) based orthogonal lock-in amplifier was employed to process CO sensing signal. A minimum detection limit of ∼0.5 ppm in volume (ppmv) was achieved with a measurement time of 6 s, based on an Allan deviation analysis of the sensor system. The response time (1000 → 0 ppmv) was determined to be ∼7 s for the CO sensor operation. Due to the characteristics of low detection limit, fast response time and high cost performance, the proposed sensor has relatively good prospect in coal-mining operation.

  15. Temperature dependence of mid-infrared intersubband absorption in AlGaN/GaN multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Kotani, Teruhisa, E-mail: tkotani@iis.u-tokyo.ac.jp [Institute for Nano Quantum Information Electronics, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Advanced Technology Research Laboratories, Sharp Corporation, 2613-1 Ichinomoto-cho, Tenri, Nara 632-8567 (Japan); Arita, Munetaka [Institute for Nano Quantum Information Electronics, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Hoshino, Katsuyuki [Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Arakawa, Yasuhiko [Institute for Nano Quantum Information Electronics, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2016-02-01

    The temperature dependence of the mid-infrared intersubband (ISB) absorption in non-polar (m-plane) and polar (c-plane) AlGaN/GaN quantum wells (QWs) is studied. The ISB absorption shifts to higher energy as the temperature is reduced from 300 K to below 10 K. Both m-plane and c-plane QWs show a small energy shift (1.6–2.6 meV) compared to AlGaAs/GaAs (3.5–5.2 meV) and AlSb/InAs (6.2 and 12 meV) QWs. Theoretical calculations considering the temperature induced material constant changes show good agreement with the experimental results. These results suggest that ISB transition energies in AlGaN/GaN QWs are more stable against temperature change mainly because of the heavy effective masses and small nonparabolicities.

  16. A Review of Mid-Infrared and Near-Infrared Imaging: Principles, Concepts and Applications in Plant Tissue Analysis.

    Science.gov (United States)

    Türker-Kaya, Sevgi; Huck, Christian W

    2017-01-20

    Plant cells, tissues and organs are composed of various biomolecules arranged as structurally diverse units, which represent heterogeneity at microscopic levels. Molecular knowledge about those constituents with their localization in such complexity is very crucial for both basic and applied plant sciences. In this context, infrared imaging techniques have advantages over conventional methods to investigate heterogeneous plant structures in providing quantitative and qualitative analyses with spatial distribution of the components. Thus, particularly, with the use of proper analytical approaches and sampling methods, these technologies offer significant information for the studies on plant classification, physiology, ecology, genetics, pathology and other related disciplines. This review aims to present a general perspective about near-infrared and mid-infrared imaging/microspectroscopy in plant research. It is addressed to compare potentialities of these methodologies with their advantages and limitations. With regard to the organization of the document, the first section will introduce the respective underlying principles followed by instrumentation, sampling techniques, sample preparations, measurement, and an overview of spectral pre-processing and multivariate analysis. The last section will review selected applications in the literature.

  17. THE EXTENDED HIGH A ( V ) QUASAR SURVEY: SEARCHING FOR DUSTY ABSORBERS TOWARD MID-INFRARED-SELECTED QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Krogager, J.-K.; Noterdaeme, P. [Institut d’Astrophysique de Paris, CNRS-UPMC, UMR7095, 98bis bd Arago, F-75014 Paris (France); Fynbo, J. P. U.; Heintz, K. E.; Vestergaard, M. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Geier, S. [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Ledoux, C. [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); Møller, P. [European Southern Observatory, Karl-Schwarzschildstrasse 2, D-85748 Garching bei München (Germany); Venemans, B. P. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2016-11-20

    We present the results of a new spectroscopic survey for dusty intervening absorption systems, particularly damped Ly α absorbers (DLAs), toward reddened quasars. The candidate quasars are selected from mid-infrared photometry from the Wide-field Infrared Survey Explorer combined with optical and near-infrared photometry. Out of 1073 candidates, we secure low-resolution spectra for 108 using the Nordic Optical Telescope on La Palma, Spain. Based on the spectra, we are able to classify 100 of the 108 targets as quasars. A large fraction (50%) is observed to have broad absorption lines (BALs). Moreover, we find six quasars with strange breaks in their spectra, which are not consistent with regular dust reddening. Using template fitting, we infer the amount of reddening along each line of sight ranging from A ( V ) ≈ 0.1 to 1.2 mag (assuming a Small Magellanic Cloud extinction curve). In four cases, the reddening is consistent with dust exhibiting the 2175 Å feature caused by an intervening absorber, and for two of these, an Mg ii absorption system is observed at the best-fit absorption redshift. In the rest of the cases, the reddening is most likely intrinsic to the quasar. We observe no evidence for dusty DLAs in this survey. However, the large fraction of BAL quasars hampers the detection of absorption systems. Out of the 50 non-BAL quasars, only 28 have sufficiently high redshift to detect Ly α in absorption.

  18. CO photodissociation dynamics in cytochrome P450BM3 studied by subpicosecond visible and mid-infrared spectroscopy.

    Science.gov (United States)

    Rupenyan, Alisa; Commandeur, Jan; Groot, Marie Louise

    2009-07-07

    Cytochrome P450BM3 is a bacterial enzyme with a heme cofactor that binds small diatomic ligands. Here we report the first study of carbon monoxide (CO) photodissociation and rebinding in ferrous P450BM3 on an ultrafast time scale. We monitored dissociation of carbon monoxide upon Soret band excitation using visible and infrared femtosecond spectroscopy between 100 fs and 4 ns. The dynamics of the ferric P450 was probed for reference in the visible spectral region. In the photodissociated ferrous P450-CO complex, the vibrational hot deligated ground state is populated in 0.2 ps and relaxes on a picosecond time scale. The onset of geminate recombination of CO with the heme is observed on a nanosecond time scale. In the mid-infrared spectral region, the bleached absorption due to the bound C=O stretch vibration is constant on the picosecond to 1 ns time scale, indicating that the photodissociation yield is 100% and that rebinding occurs after 1 ns. In the infrared absorption difference spectra, we additionally resolve two small bands of dissociated CO molecules at 2092 and 2114 cm(-1). This indicates that the escape of photolyzed CO to solvent and the geminate recombination are preceded by transient docking within the protein in a manner similar to that of globins. The bands partially decay with a time constant of 1 ps, possibly due to a relaxation of the protein around the CO docking site, allowing for greater orientational freedom of the CO molecules.

  19. Towards strong light-matter coupling at the single-resonator level with sub-wavelength mid-infrared nano-antennas

    Energy Technology Data Exchange (ETDEWEB)

    Malerba, M.; De Angelis, F., E-mail: francesco.deangelis@iit.it [Istituto Italiano di Tecnologia, Via Morego, 30, I-16163 Genova (Italy); Ongarello, T.; Paulillo, B.; Manceau, J.-M.; Beaudoin, G.; Sagnes, I.; Colombelli, R., E-mail: raffaele.colombelli@u-psud.fr [Centre for Nanoscience and Nanotechnology (C2N Orsay), CNRS UMR9001, Univ. Paris Sud, Univ. Paris Saclay, 91405 Orsay (France)

    2016-07-11

    We report a crucial step towards single-object cavity electrodynamics in the mid-infrared spectral range using resonators that borrow functionalities from antennas. Room-temperature strong light-matter coupling is demonstrated in the mid-infrared between an intersubband transition and an extremely reduced number of sub-wavelength resonators. By exploiting 3D plasmonic nano-antennas featuring an out-of-plane geometry, we observed strong light-matter coupling in a very low number of resonators: only 16, more than 100 times better than what reported to date in this spectral range. The modal volume addressed by each nano-antenna is sub-wavelength-sized and it encompasses only ≈4400 electrons.

  20. Generation of 70-fs pulses at 2.86  μm from a mid-infrared fiber laser.

    Science.gov (United States)

    Woodward, R I; Hudson, D D; Fuerbach, A; Jackson, S D

    2017-12-01

    We propose and demonstrate a simple route to few-optical-cycle pulse generation from a mid-infrared fiber laser through nonlinear compression of pulses from a holmium-doped fiber oscillator using a short length of chalcogenide fiber and a grating pair. Pulses from the oscillator with 265-fs duration at 2.86 μm are spectrally broadened through self-phase modulation in step-index As 2 S 3 fiber to 141-nm bandwidth and then re-compressed to 70 fs (7.3 optical cycles). These are the shortest pulses from a mid-infrared fiber system to date, and we note that our system is compact, robust, and uses only commercially available components. The scalability of this approach is also discussed, supported by numerical modeling.

  1. Quantification of SOC and Clay Content Using Visible Near-Infrared Reflectance–Mid-Infrared Reflectance Spectroscopy With Jack-Knifing Partial Least Squares Regression

    DEFF Research Database (Denmark)

    Peng, Yi; Knadel, Maria; Gislum, René

    2014-01-01

    A total of 125 soil samples were collected from a Danish field varying in soil texture from sandy to loamy. Visible near-infrared reflectance (Vis-NIR) and mid-infrared reflectance (MIR) spectroscopy combined with chemometric methods were used to predict soil organic carbon (SOC) and clay contents...... of error. Partial least squares regression with JK simplified and enhanced the interpretation of the developed models because of a reduction in the number of variables used in the models...

  2. Large scale prediction of soil properties in the West African yam belt based on mid-infrared soil spectroscopy

    Science.gov (United States)

    Baumann, Philipp; Lee, Juhwan; Paule Schönholzer, Laurie; Six, Johan; Frossard, Emmanuel

    2016-04-01

    Yam (Dioscorea sp.) is an important staple food in West Africa. Fertilizer applications have variable effects on yam tuber yields, and a management option solely based on application of mineral NPK fertilizers may bear the risk of increased organic matter mineralization. Therefore, innovative and sustainable nutrient management strategies need to be developed and evaluated for yam cultivation. The goal of this study was to establish a mid-infrared soil spectroscopic library and models to predict soil properties relevant to yam growth. Soils from yam fields at four different locations in Côte d'Ivoire and Burkina Faso that were representative of the West African yam belt were sampled. The project locations ranged from the humid forest zone (5.88 degrees N) to the northern Guinean savannah (11.07 degrees N). At each location, soils of 20 yam fields were sampled (0-30 cm). For the location in the humid forest zone additional 14 topsoil samples from positions that had been analyzed in the Land Degradation Surveillance Framework developed by ICRAF were included. In total, 94 soil samples were analyzed using established reference analysis protocols. Besides soils were milled and then scanned by fourier transform mid-infrared spectroscopy in the range between 400 and 4000 reciprocal cm. Using partial least squares (PLS) regression, PLS1 calibration models that included soils from the four locations were built using two thirds of the samples selected by Kennard-Stones sampling algorithm in the spectral principal component space. Models were independently validated with the remaining data set. Spectral models for total carbon, total nitrogen, total iron, total aluminum, total potassium, exchangeable calcium, and effective cation exchange capacity performed very well, which was indicated by R-squared values between 0.8 and 1.0 on both calibration and validation. For these soil properties, spectral models can be used for cost-effective, rapid, and accurate predictions

  3. Genetic parameters of mid-infrared methane predictions and their relationships with milk production traits in Holstein cattle.

    Science.gov (United States)

    Kandel, P B; Vanrobays, M-L; Vanlierde, A; Dehareng, F; Froidmont, E; Gengler, N; Soyeurt, H

    2017-07-01

    Many countries have pledged to reduce greenhouse gases. In this context, the dairy sector is one of the identified sectors to adapt production circumstances to address socio-environmental constraints due to its large carbon footprint related to CH 4 emission. This study aimed mainly to estimate (1) the genetic parameters of 2 milk mid-infrared-based CH 4 proxies [predicted daily CH 4 emission (PME, g/d), and log-transformed predicted CH 4 intensity (LMI)] and (2) their genetic correlations with milk production traits [milk (MY), fat (FY), and protein (PY) yields] from first- and second-parity Holstein cows. A total of 336,126 and 231,400 mid-infrared CH 4 phenotypes were collected from 56,957 and 34,992 first- and second-parity cows, respectively. The PME increased from the first to the second lactation (433 vs. 453 g/d) and the LMI decreased (2.93 vs. 2.86). We used 20 bivariate random regression test-day models to estimate the variance components. Moderate heritability values were observed for both CH 4 traits, and those values decreased slightly from the first to the second lactation (0.25 ± 0.01 and 0.22 ± 0.01 for PME; 0.18 ± 0.01 and 0.17 ± 0.02 for LMI). Lactation phenotypic and genetic correlations were negative between PME and MY in both first and second lactations (-0.07 vs. -0.07 and -0.19 vs. -0.24, respectively). More close scrutiny revealed that relative increase of PME was lower with high MY levels even reverting to decrease, and therefore explaining the negative correlations, indicating that higher producing cows could be a mitigation option for CH 4 emission. The PME phenotypic correlations were almost equal to 0 with FY and PY for both lactations. However, the genetic correlations between PME and FY were slightly positive (0.11 and 0.12), whereas with PY the correlations were slightly negative (-0.05 and -0.04). Both phenotypic and genetic correlations between LMI and MY or PY or FY were always relatively highly negative (from -0.21 to -0

  4. Monitoring wheat mitochondrial compositional and respiratory changes using Fourier transform mid-infrared spectroscopy in response to agrochemical treatments.

    Science.gov (United States)

    Pedersen, Matthew; Wegner, Casey; Phansak, Piyaporn; Sarath, Gautam; Gaussoin, Roch; Schlegel, Vicki

    2017-02-15

    Fungicides and plant growth regulators can impact plant growth outside of their effects on fungal pathogens. Although many of these chemicals are inhibitors of mitochondrial oxygen uptake, information remains limited as to whether they are able to modify other mitochondrial constituents. Fourier transform mid-infrared spectroscopy (FT-mIR) offers a high sample throughput method to comparatively and qualitatively evaluate the effects of exogenously added compounds on mitochondrial components. Therefore the objective of this study was to determine the ability of FT-mIR to detect effects mitochondrial fractions isolated from wheat (Triticum aestivum L.) seedlings in response to several agrochemical treatments, with an emphasis on fungicides. The accessed need was to develop FT-mIR analytical and statistical routines as an effective approach to differentiate spectra obtained from chemically-treated or untreated mitochondria. An NADH-dependent oxygen uptake approach was initially used as a comparative method to determine whether the fungicides (azoxystrobin, boscalid, cyazofamid, fluazinam, isopyrazam, and pyraclostrobin) and the plant growth regulator, (trinexapac-ethyl) reduced respiration inhibition on isolated mitochondria. Pyraclostrobin was the most effective inhibitor, whereas amisulbrom did not impact oxygen uptake. However, hierarchical clustering of FT-mIR spectra of isolated mitochondria treated with these different compounds separated into clades consistent with each of their expected mode of action. Analysis of the FT-mIR amide protein region indicated that amisulbrom and pyraclostrobin interacted with the isolated wheat mitochondria. Both chemicals were statistically different from the control signifying that respiration was indeed influenced by these treatments. Moreover, the entire FT-mIR region showed differences in various biological bands thereby providing additional information on mitochondria responses to agrochemicals, if so warranted. Published by

  5. First Detection of Mid-infrared Variability from an Ultraluminous X-Ray Source Holmberg II X-1

    Science.gov (United States)

    Lau, Ryan; Heida, Marianne; Kasliwal, Mansi; Walton, Dominic

    2018-01-01

    We present mid-infrared (IR) light curves of the Ultraluminous X-ray Source (ULX) Holmberg II X-1 from observations taken between 2014 January 13 and 2017 January 5 with the Spitzer Space Telescope at 3.6 and 4.5 μm in the Spitzer Infrared Intensive Transients Survey. The mid-IR light curves, which reveal the first detection of mid-IR variability from a ULX, is determined to arise primarily from dust emission rather than from a jet or an accretion disk outflow. We derived the evolution of the dust temperature (Td ~ 600 - 800 K), IR luminosity LIR ~ 3 × 104 L⊙ ), mass (Md ~ 1 - 3 × 10-6 M⊙), and equilibrium temperature radius (Req ~ 10 - 20 AU). A comparison of X-1 with a sample of spectroscopically identified massive stars in the Large Magellanic Cloud on a mid-IR color-magnitude diagram suggests that the mass donor in X-1 is a supergiant (sg) B[e]-star. The sgB[e]-interpretation is consistent with the derived dust properties and the presence of the [Fe II] (λ = 1.644 μm) emission line revealed from previous near-IR studies of X-1. We attribute the mid-IR variability of X-1 to the increased heating of dust located in a circumbinary torus. It is unclear what physical processes are responsible for the increased dust heating; however, it does not appear to be associated with the X-ray flux from the ULX, given the constant X-ray luminosities provided by serendipitous, near-contemporaneous X-ray observations around the first mid-IR variability event in 2014. Our results highlight the importance of mid-IR observations of luminous X-ray sources traditionally studied at X-ray and radio wavelengths.

  6. [Two-Dimensional Hetero-Spectral Near-Infrared and Mid-Infrared Correlation Spectroscopy for Discrimination Adulterated Milk].

    Science.gov (United States)

    Yu, Ge; Yang, Ren-jie; Lü, Ai-jun; Tan, En-zhong

    2015-08-01

    New approach for discriminant analysis of adulterated milk is proposed based on combining hetero-spectral two-dimensional (2D) near-infrared (NIR) and mid-infrared (IR) correlation spectroscopy along with multi-way partial least squares discriminant analysis (NPLS-DA). Firstly, 36 pure milk samples were collected and 36 adulterated milk with starch samples (0.01 to 1 g · L(-1)) were prepared by adding appropriate mass of starch into pure milk. Then, one-dimensional NIR transmittance spectra and IR attenuated total reflection spectra of pure milk and adulterated milk with starch were measured at room temperature. And the synchronous 2D NIR-IR (4200~4800 vs. 900~1700 cm(-1)) correlation spectra of all samples were calculated. Due to the trace of adulterants, the synchronous 2D IR-NIR correlation spectral differences between adulterated milk with starch and pure milk are very subtle. Consequently, it was impossible to directly distinguish whether the sample was pure milk or adulterated milk. Finally, 2D IR-NIR correlation spectra were to build a discriminant model to classify adulterated milk and pure milk. The classification accuracy rates of samples in calibration set and in prediction set were 95.8% and 100% respectively. Also, the NPLS-DA models were built based on 2D NIR and 2D IR correlation spectra, respectively. The classification accuracy rates of samples in prediction set were 95.8%. Comparison results showed that the NPLS-DA model could provide better results using 2D NIR-IR correlation spectra than using 2D NIR, and 2D IR correlation spectra. The proposed method can not only effectively extract the feature information of adulterants in milk, but also explores a new perspective method for detection of adulterated food.

  7. Mid-infrared spectrometry of milk as a predictor of energy intake and efficiency in lactating dairy cows.

    Science.gov (United States)

    McParland, S; Lewis, E; Kennedy, E; Moore, S G; McCarthy, B; O'Donovan, M; Butler, S T; Pryce, J E; Berry, D P

    2014-09-01

    Interest is increasing in the feed intake complex of individual dairy cows, both for management and animal breeding. However, energy intake data on an individual-cow basis are not routinely available. The objective of the present study was to quantify the ability of routinely undertaken mid-infrared (MIR) spectroscopy analysis of individual cow milk samples to predict individual cow energy intake and efficiency. Feed efficiency in the present study was described by residual feed intake (RFI), which is the difference between actual energy intake and energy used (e.g., milk production, maintenance, and body tissue anabolism) or supplied from body tissue mobilization. A total of 1,535 records for energy intake, RFI, and milk MIR spectral data were available from an Irish research herd across 36 different test days from 535 lactations on 378 cows. Partial least squares regression analyses were used to relate the milk MIR spectral data to either energy intake or efficiency. The coefficient of correlation (REX) of models to predict RFI across lactation ranged from 0.48 to 0.60 in an external validation data set; the predictive ability was, however, strongest (REX=0.65) in early lactation (energy intake across lactation (REX=0.70). The correlation between measured RFI and measured energy balance across lactation was 0.85, whereas the correlation between RFI and energy balance, both predicted from the MIR spectrum, was 0.65. Milk MIR spectral data are routinely generated for individual cows throughout lactation and, therefore, the prediction equations developed in the present study can be immediately (and retrospectively where MIR spectral data have been stored) applied to predict energy intake and efficiency to aid in management and breeding decisions. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Chemometric quality inspection control of pyrantel pamoate, febantel and praziquantel in veterinary tablets by mid infrared spectroscopy

    Science.gov (United States)

    Piantavini, Mário S.; Pontes, Flávia L. D.; Uber, Caroline P.; Stremel, Dile P.; Sena, Marcelo M.; Pontarolo, Roberto

    This paper describes the development and validation of a new multivariate calibration method based on diffuse reflectance mid infrared spectroscopy for direct and simultaneous determination of three veterinary pharmaceutical drugs, pyrantel pamoate, praziquantel and febantel, in commercial tablets. The best synergy interval partial least squares (siPLS) model was obtained by selecting three spectral regions, 3715-3150, 2865-2583, and 2298-1733 cm-1, preprocessed by first derivative and Savitzky-Golay smoothing followed by mean centering. This model was built with five latent variables and provided root mean square errors of prediction (RMSEP) equal or lower than 0.69 mg per 100 mg of powder for the three analytes. The method was validated according the appropriate regulations through the estimate of figures of merit, such as trueness, precision, linearity, analytical sensitivity, bias and residual prediction deviation (RPD). Then, it was applied to three different veterinary pharmaceutical formulations found in the Brazilian market, in a situation of multi-product calibration, since the excipient composition of these commercial products, which was not known a priori, was modeled by an experimental design that scanned the likely content range of the possible constituents. The results were verified with high performance liquid chromatography with diode array detection (HPLC-DAD) and high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and were in agreement with the predicted values at 95% confidence level. The developed method presented the advantages of being simple, rapid, solvent free, and about ten times faster than the HPLC ones.

  9. Toward single-material multilayer interference mid-infrared filters with sub-wavelength structures for cryogenic infrared astronomical missions

    Science.gov (United States)

    Makitsubo, Hironobu; Wada, Takehiko; Mita, Makoto

    2011-03-01

    We are trying to develop high performance mid-infrared (MIR) and far-infrared (FIR) optical filters with mechanical strength and robustness for thermal cycling toward cryogenic infrared astronomical space missions. Multilayer interference filters enable us to design a wide variety of spectral response by controlling refractive index and thickness of each layer, however, in longer MIR and FIR (30-300μm) wavelength regions, there are a few optical materials known to have both good transparency and physical robustness, which makes difficult to realize high performance filters because of limited refractive index values. It is also difficult to deposit thick layers required for MIR/FIR multilayer filters by conventional method. Furthermore, multilayer interference filters are realized by thin film coatings having different coefficients of thermal expansion (CTE), which makes filters fragile for thermal cycling. To clear these problems, we introduce sub-wavelength structures (SWS) for controlling the refractive index. Then, only one material is necessary for fabricating filters, which enables us to fabricate filters with mechanical strength and robustness for thermal cycling. In 30-300μm wavelength regions silicon is very suitable for filter material because not only silicon has little absorption and physical robustness but also SWS are easily fabricated by micro-electro mechanical systems (MEMS) technology. As a first step, we have fabricated anti-reflection SWS layer on silicon wafers to demonstrate the refractive index control by simple SWS (periodic cylindrical holes on a silicon wafer). Comparing measured transmittance with both effective medium approximation (EMA) theory and rigorous coupled wave analysis (RCWA) simulation, we confirm that the refractive control of SWS layer is verified.

  10. OPTICAL CONSTANTS AND BAND STRENGTHS OF CH4:C2H6 ICES IN THE NEAR- AND MID-INFRARED

    International Nuclear Information System (INIS)

    Molpeceres, Germán; Ortigoso, Juan; Escribano, Rafael; Maté, Belén; Satorre, Miguel Angel; Millán, Carlos

    2016-01-01

    We present a spectroscopic study of methane–ethane ice mixtures. We have grown CH 4 :C 2 H 6 mixtures with ratios 3:1, 1:1, and 1:3 at 18 and 30 K, plus pure methane and ethane ices, and have studied them in the near-infrared (NIR) and mid-infrared (MIR) ranges. We have determined densities of all species mentioned above. For amorphous ethane grown at 18 and 30 K we have obtained a density of 0.41 and 0.54 g cm −3 , respectively, lower than a previous measurement of the density of the crystalline species, 0.719 g cm −3 . As far as we know this is the first determination of the density of amorphous ethane ice. We have measured band shifts of the main NIR methane and ethane features in the mixtures with respect to the corresponding values in the pure ices. We have estimated band strengths of these bands in the NIR and MIR ranges. In general, intensity decay in methane modes was detected in the mixtures, whereas for ethane no clear tendency was observed. Optical constants of the mixtures at 30 and 18 K have also been evaluated. These values can be used to trace the presence of these species in the surface of trans-Neptunian objects. Furthermore, we have carried out a theoretical calculation of these ice mixtures. Simulation cells for the amorphous solids have been constructed using a Metropolis Monte Carlo procedure. Relaxation of the cells and prediction of infrared spectra have been carried out at density functional theory level.

  11. Investigation of adulteration of sunflower oil with thermally deteriorated oil using Fourier transform mid-infrared spectroscopy and chemometrics

    Directory of Open Access Journals (Sweden)

    Joana Vilela

    2015-12-01

    Full Text Available Fourier transform infrared spectroscopy based on attenuated total reflectance sampling technique, combined with multivariate analysis methods was used to monitor the adulteration of pure sunflower oil (SO with thermally deteriorated oil (TDO. Contrary to published research, in this work, SO was thermally deteriorated in the absence of foodstuff. SO samples were exposed to temperatures between 125 and 225°C from 6 to 24 h. Quantification of adulteration of SO with TDO, based on principal components regression (PCR, partial least squares regression (PLS-R, and linear discriminant analysis (LDA applied to mid-infrared spectra and to their first and second derivatives is reported for the first time. Infrared frequencies associated with the biochemical differences between TDO samples deteriorated in different conditions were investigated by principal component analysis (PCA. LDA was effective in the twofold classification presence/absence of TDO in adulterated SO (with 5% V/V of less of TDO. It provided 93.7% correct classification for the calibration set and 91.3% correct classification when cross-validated. A detection limit of 1% V/V of TDO in SO was determined. Investigation of an external set of samples allowed the evaluation of the predictability of the models. The regression coefficient (R2 for prediction was 0.95 and 0.96 and the RMSE was 2.1 and 1.9% V/V when using the PCR or PLS-R models, respectively, and the first derivative of spectra. To the best of our knowledge, no investigation of adulteration of SO with TDO based on PCR, PLS-R, and LDA has been reported so far.

  12. Monitoring wheat mitochondrial compositional and respiratory changes using Fourier transform mid-infrared spectroscopy in response to agrochemical treatments

    Science.gov (United States)

    Pedersen, Matthew; Wegner, Casey; Phansak, Piyaporn; Sarath, Gautam; Gaussoin, Roch; Schlegel, Vicki

    2017-02-01

    Fungicides and plant growth regulators can impact plant growth outside of their effects on fungal pathogens. Although many of these chemicals are inhibitors of mitochondrial oxygen uptake, information remains limited as to whether they are able to modify other mitochondrial constituents. Fourier transform mid-infrared spectroscopy (FT-mIR) offers a high sample throughput method to comparatively and qualitatively evaluate the effects of exogenously added compounds on mitochondrial components. Therefore the objective of this study was to determine the ability of FT-mIR to detect effects mitochondrial fractions isolated from wheat (Triticum aestivum L.) seedlings in response to several agrochemical treatments, with an emphasis on fungicides. The accessed need was to develop FT-mIR analytical and statistical routines as an effective approach to differentiate spectra obtained from chemically-treated or untreated mitochondria. An NADH-dependent oxygen uptake approach was initially used as a comparative method to determine whether the fungicides (azoxystrobin, boscalid, cyazofamid, fluazinam, isopyrazam, and pyraclostrobin) and the plant growth regulator, (trinexapac-ethyl) reduced respiration inhibition on isolated mitochondria. Pyraclostrobin was the most effective inhibitor, whereas amisulbrom did not impact oxygen uptake. However, hierarchical clustering of FT-mIR spectra of isolated mitochondria treated with these different compounds separated into clades consistent with each of their expected mode of action. Analysis of the FT-mIR amide protein region indicated that amisulbrom and pyraclostrobin interacted with the isolated wheat mitochondria. Both chemicals were statistically different from the control signifying that respiration was indeed influenced by these treatments. Moreover, the entire FT-mIR region showed differences in various biological bands thereby providing additional information on mitochondria responses to agrochemicals, if so warranted.

  13. Spectroscopic (far or terahertz, mid-infrared and Raman) investigation, thermal analysis and biological activity of piplartine

    Science.gov (United States)

    Srivastava, Anubha; Karthick, T.; Joshi, B. D.; Mishra, Rashmi; Tandon, Poonam; Ayala, A. P.; Ellena, Javier

    2017-09-01

    Research in the field of medicinal plants including Piper species like long pepper (Piper longum L.- Piperaceae) is increasing all over the world due to its use in traditional and Ayurvedic medicine. Piplartine (piperlongumine, 5,6-dihydro-1-[(2E)-1-oxo-3-(3,4,5-trimethoxyphenyl)-2-propenyl]-2(1H)-pyridinone), a biologically active alkaloid/amide was isolated from the phytochemical investigations of Piper species, as long pepper. This alkaloid has cytotoxic, anti-fungal, anti-diabetic, anti-platelet aggregation, anti-tumoral, anxiolytic, anti-depressant, anti-leishmanial, and genotoxic activities, but, its anticancer property is the most promising and has been widely explored. The main purpose of the work is to present a solid state characterization of PPTN using thermal analysis and vibrational spectroscopy. Quantum mechanical calculations based on the density functional theory was also applied to investigate the molecular conformation and vibrational spectrum, which was compared with experimental results obtained by Raman scattering, far (terahertz) and mid-infrared adsorption spectroscopy. NBO analysis has been performed which predict that most intensive interactions in PPTN are the hyperconjugative interactions between n(1) N6 and π*(O1sbnd C7) having delocalization energy of 50.53 kcal/mol, Topological parameters have been analyzed using 'AIM' analysis which governs the three bond critical points (BCPs), one di-hydrogen, and four ring critical points (RCPs). MEP surface has been plotted which forecast that the most negative region is associated with the electronegative oxygen atoms (sites for nucleophilic activity). Theoretically, to confirm that the title compound has anti-cancer, anti-diabetic and anti-platelet aggregation activities, it was analyzed by molecular docking interactions with the corresponding target receptors. The obtained values of H-bonding parameters and binding affinity prove that its anti-cancer activity is the more prominent than the

  14. THE MID-INFRARED AND NEAR-ULTRAVIOLET EXCESS EMISSIONS OF QUIESCENT GALAXIES ON THE RED SEQUENCE

    International Nuclear Information System (INIS)

    Ko, Jongwan; Lee, Jong Chul; Hwang, Ho Seong; Sohn, Young-Jong

    2013-01-01

    We study the mid-infrared (IR) and near-ultraviolet (UV) excess emissions of spectroscopically selected quiescent galaxies on the optical red sequence. We use the Wide-field Infrared Survey Explorer mid-IR and Galaxy Evolution Explorer near-UV data for a spectroscopic sample of galaxies in the Sloan Digital Sky Survey Data Release 7 to study the possible connection between quiescent red-sequence galaxies with and without mid-IR/near-UV excess. Among 648 12 μm detected quiescent red-sequence galaxies without Hα emission, 26% and 55% show near-UV and mid-IR excess emissions, respectively. When we consider only bright (M r n 4000 than those without mid-IR and near-UV excess emissions. We also find that mid-IR weighted mean stellar ages of quiescent red-sequence galaxies with mid-IR excess are larger than those with near-UV excess, and smaller than those without mid-IR and near-UV excess. The environmental dependence of the fraction of quiescent red-sequence galaxies with mid-IR and near-UV excess seems strong even though the trends of quiescent red-sequence galaxies with near-UV excess differ from those with mid-IR excess. These results indicate that the recent star formation traced by near-UV (∼< 1 Gyr) and mid-IR (∼< 2 Gyr) excess is not negligible among nearby, quiescent, red, early-type galaxies. We suggest a possible evolutionary scenario of quiescent red-sequence galaxies from quiescent red-sequence galaxies with near-UV excess to those with mid-IR excess to those without near-UV and mid-IR excess.

  15. A low cost mid-infrared sensor for on line contamination monitoring of lubricating oils in marine engines

    Science.gov (United States)

    Ben Mohammadi, L.; Kullmann, F.; Holzki, M.; Sigloch, S.; Klotzbuecher, T.; Spiesen, J.; Tommingas, T.; Weismann, P.; Kimber, G.

    2010-04-01

    The chemical and physical condition of oils in marine engines must be monitored to ensure optimum performance of the engine and to avoid damage by degraded oil not adequately lubricating the engine. Routine monitoring requires expensive laboratory testing and highly skilled analysts. This work describes the adaptation and implementation of a mid infrared (MIR) sensor module for continued oil condition monitoring in two-stroke and four-stroke diesel engines. The developed sensor module will help to reduce costs in oil analysis by eliminating the need to collect and send samples to a laboratory for analysis. The online MIR-Sensor module measures the contamination of oil with water, soot, as well as the degradation indicated by the TBN (Total Base Number) value. For the analysis of water, TBN, and soot in marine engine oils, four spectral regions of interest have been identified. The optical absorption in these bands correlating with the contaminations is measured simultaneously by using a four-field thermopile detector, combined with appropriate bandpass filters. Recording of the MIR-absorption was performed in a transmission mode using a flow-through cell with appropriate path length. Since in this case no spectrometer is required, the sensor including the light source, the flowthrough- cell, and the detector can be realised at low cost and in a very compact manner. The optical configuration of the sensor with minimal component number and signal intensity optimisation at the four-field detector was implemented by using non-sequential ray tracing simulation. The used calibration model was robust enough to predict accurately the value for soot, water, and TBN concentration for two-stroke and four-stroke engine oils. The sensor device is designed for direct installation on the host engine or machine and, therefore, becoming an integral part of the lubrication system. It can also be used as a portable stand-alone system for machine fluid analysis in the field.

  16. Calibration Adjustment of the Mid-infrared Analyzer for an Accurate Determination of the Macronutrient Composition of Human Milk.

    Science.gov (United States)

    Billard, Hélène; Simon, Laure; Desnots, Emmanuelle; Sochard, Agnès; Boscher, Cécile; Riaublanc, Alain; Alexandre-Gouabau, Marie-Cécile; Boquien, Clair-Yves

    2016-08-01

    Human milk composition analysis seems essential to adapt human milk fortification for preterm neonates. The Miris human milk analyzer (HMA), based on mid-infrared methodology, is convenient for a unique determination of macronutrients. However, HMA measurements are not totally comparable with reference methods (RMs). The primary aim of this study was to compare HMA results with results from biochemical RMs for a large range of protein, fat, and carbohydrate contents and to establish a calibration adjustment. Human milk was fractionated in protein, fat, and skim milk by covering large ranges of protein (0-3 g/100 mL), fat (0-8 g/100 mL), and carbohydrate (5-8 g/100 mL). For each macronutrient, a calibration curve was plotted by linear regression using measurements obtained using HMA and RMs. For fat, 53 measurements were performed, and the linear regression equation was HMA = 0.79RM + 0.28 (R(2) = 0.92). For true protein (29 measurements), the linear regression equation was HMA = 0.9RM + 0.23 (R(2) = 0.98). For carbohydrate (15 measurements), the linear regression equation was HMA = 0.59RM + 1.86 (R(2) = 0.95). A homogenization step with a disruptor coupled to a sonication step was necessary to obtain better accuracy of the measurements. Good repeatability (coefficient of variation < 7%) and reproducibility (coefficient of variation < 17%) were obtained after calibration adjustment. New calibration curves were developed for the Miris HMA, allowing accurate measurements in large ranges of macronutrient content. This is necessary for reliable use of this device in individualizing nutrition for preterm newborns. © The Author(s) 2015.

  17. Mid-Infrared and near-infrared spectral properties of mycorrhizal and non-mycorrhizal root cultures.

    Science.gov (United States)

    Calderón, Francisco J; Acosta-Martinez, Veronica; Douds, David D; Reeves, James B; Vigil, Merle F

    2009-05-01

    We investigated the Fourier-transformed mid-infrared (MIR) and near-infrared (NIR) spectroscopic properties of mycorrhizal (M) and non-mycorrhizal (NM) carrot roots with the goal of finding infrared markers for colonization by arbuscular mycorrhizal (AM) fungi. The roots were cultured with or without the AM fungus Glomus intraradices under laboratory conditions. A total of 50 M and NM samples were produced after pooling subsamples. The roots were dried, ground, and scanned separately for the NIR and MIR analyses. The root samples were analyzed for fatty acid composition in order to confirm mycorrhizal infection and to determine the presence of fatty acid markers. Besides the roots, fatty acid standards, pure cultures of saprophytic fungi, and chitin were also scanned in order to identify spectral bands likely to be found in M samples. Principal components analysis (PCA) was used to illustrate spectral differences between the M and NM root samples. The NIR analysis achieved good resolution with the raw spectral data and no pretreatment was needed to obtain good resolution in the PCA analysis of the NIR data. Standard normal variate and detrending pretreatment improved the resolution between M and NM in the MIR range. The PCA loadings and/or the spectral subtraction of selected samples showed that M roots are characterized by absorbances at or close to 400 cm(-1), 1100-1170 cm(-1), 1690 cm(-1), 2928 cm(-1), and 5032 cm(-1). The NM samples had characteristic absorbances at or near 1734 cm(-1), 3500 cm(-1), 4000 cm(-1), 4389 cm(-1), and 4730 cm(-1). Some of the bands that differentiate M from NM roots are prominent in the spectra of pure fungal cultures, chitin, and fatty acids. Our results show that mycorrhizal and nonmycorrhizal root tissues can be differentiated via MIR and NIR spectra with the advantage that the same samples can then be used for other analyses.

  18. Validation of MODIS-derived bidirectional reflectivity retrieval algorithm in mid-infrared channel with field measurements.

    Science.gov (United States)

    Tang, Bo-Hui; Wu, Hua-; Li, Zhao-Liang; Nerry, Françoise

    2012-07-30

    This work addressed the validation of the MODIS-derived bidirectional reflectivity retrieval algorithm in mid-infrared (MIR) channel, proposed by Tang and Li [Int. J. Remote Sens. 29, 4907 (2008)], with ground-measured data, which were collected from a field campaign that took place in June 2004 at the ONERA (Office National d'Etudes et de Recherches Aérospatiales) center of Fauga-Mauzac, on the PIRRENE (Programme Interdisciplinaire de Recherche sur la Radiométrie en Environnement Extérieur) experiment site [Opt. Express 15, 12464 (2007)]. The leaving-surface spectral radiances measured by a BOMEM (MR250 Series) Fourier transform interferometer were used to calculate the ground brightness temperatures with the combination of the inversion of the Planck function and the spectral response functions of MODIS channels 22 and 23, and then to estimate the ground brightness temperature without the contribution of the solar direct beam and the bidirectional reflectivity by using Tang and Li's proposed algorithm. On the other hand, the simultaneously measured atmospheric profiles were used to obtain the atmospheric parameters and then to calculate the ground brightness temperature without the contribution of the solar direct beam, based on the atmospheric radiative transfer equation in the MIR region. Comparison of those two kinds of brightness temperature obtained by two different methods indicated that the Root Mean Square Error (RMSE) between the brightness temperatures estimated respectively using Tang and Li's algorithm and the atmospheric radiative transfer equation is 1.94 K. In addition, comparison of the hemispherical-directional reflectances derived by Tang and Li's algorithm with those obtained from the field measurements showed that the RMSE is 0.011, which indicates that Tang and Li's algorithm is feasible to retrieve the bidirectional reflectivity in MIR channel from MODIS data.

  19. CONFRONTING STANDARD MODELS OF PROTO-PLANETARY DISKS WITH NEW MID-INFRARED SIZES FROM THE KECK INTERFEROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Millan-Gabet, Rafael [California Institute of Technology, NASA Exoplanet Science Institute, Pasadena, CA 91125 (United States); Che, Xiao; Monnier, John D.; Aarnio, Alicia N. [University of Michigan Astronomy Department, 1085 S. University Avenue 303B West Hall University of Michigan, Ann Arbor, MI 48109-1107 (United States); Sitko, Michael L.; Day, Amanda N. [Department of Physics, University of Cincinnati, Cincinnati OH 45221 (United States); Russell, Ray W. [The Aerospace Corporation, Los Angeles, CA 90009 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Perry, R. B. [NASA Langley Research Center, MS 160, Hampton, VA 23681 (United States); Harries, Tim J. [Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Colavita, Mark M. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Wizinowich, Peter L.; Ragland, Sam; Woillez, Julien, E-mail: R.Millan-Gabet@caltech.edu [Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743 (United States)

    2016-08-01

    We present near- and mid-infrared (MIR) interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the infrared telescope facilities (IRTFs) of 11 well-known young stellar objects, several of which were observed for the first time in these spectral and spatial resolution regimes. With au-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and MIR disk emission. We find a high degree of correlation between the stellar luminosity and the MIR disk sizes after using near-infrared data to remove the contribution from the inner rim. We then use a semi-analytical physical model to also find that the very widely used “star + inner dust rim + flared disk” class of models strongly fails to reproduce the spectral energy distribution (SED) and spatially resolved MIR data simultaneously; specifically a more compact source of MIR emission is required than results from the standard flared disk model. We explore the viability of a modification to the model whereby a second dust rim containing smaller dust grains is added, and find that the 2-rim model leads to significantly improved fits in most cases. This complexity is largely missed when carrying out SED modeling alone, although detailed silicate feature fitting by McClure et al. recently came to a similar conclusion. As has been suggested recently by Menu et al., the difficulty in predicting MIR sizes from the SED alone might hint at “transition disk”-like gaps in the inner au; however, the relatively high correlation found in our MIR disk size versus stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead.

  20. RESOLVING THE ACTIVE GALACTIC NUCLEUS AND HOST EMISSION IN THE MID-INFRARED USING A MODEL-INDEPENDENT SPECTRAL DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Hernán-Caballero, Antonio; Alonso-Herrero, Almudena [Instituto de Física de Cantabria, CSIC-UC, Avenida de los Castros s/n, E-39005, Santander (Spain); Hatziminaoglou, Evanthia [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Spoon, Henrik W. W. [Cornell University, CRSR, Space Sciences Building, Ithaca, NY 14853 (United States); Almeida, Cristina Ramos [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Santos, Tanio Díaz [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Hönig, Sebastian F. [School of Physics and Astronomy, University of Southampton, Southampton SO18 1BJ (United Kingdom); González-Martín, Omaira [Centro de Radioastronomía y Astrofísica (CRyA-UNAM), 3-72 (Xangari), 8701, Morelia (Mexico); Esquej, Pilar, E-mail: ahernan@ifca.unican.es [Departamento de Astrofísica, Facultad de CC. Físicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2015-04-20

    We present results on the spectral decomposition of 118 Spitzer Infrared Spectrograph (IRS) spectra from local active galactic nuclei (AGNs) using a large set of Spitzer/IRS spectra as templates. The templates are themselves IRS spectra from extreme cases where a single physical component (stellar, interstellar, or AGN) completely dominates the integrated mid-infrared emission. We show that a linear combination of one template for each physical component reproduces the observed IRS spectra of AGN hosts with unprecedented fidelity for a template fitting method with no need to model extinction separately. We use full probability distribution functions to estimate expectation values and uncertainties for observables, and find that the decomposition results are robust against degeneracies. Furthermore, we compare the AGN spectra derived from the spectral decomposition with sub-arcsecond resolution nuclear photometry and spectroscopy from ground-based observations. We find that the AGN component derived from the decomposition closely matches the nuclear spectrum with a 1σ dispersion of 0.12 dex in luminosity and typical uncertainties of ∼0.19 in the spectral index and ∼0.1 in the silicate strength. We conclude that the emission from the host galaxy can be reliably removed from the IRS spectra of AGNs. This allows for unbiased studies of the AGN emission in intermediate- and high-redshift galaxies—currently inaccesible to ground-based observations—with archival Spitzer/IRS data and in the future with the Mid-InfraRed Instrument of the James Webb Space Telescope. The decomposition code and templates are available at http://denebola.org/ahc/deblendIRS.

  1. Coherent control of D2/H2 dissociative ionization by a mid-infrared two-color laser field

    Science.gov (United States)

    Wanie, Vincent; Ibrahim, Heide; Beaulieu, Samuel; Thiré, Nicolas; Schmidt, Bruno E.; Deng, Yunpei; Alnaser, Ali S.; Litvinyuk, Igor V.; Tong, Xiao-Min; Légaré, François

    2016-01-01

    Steering the electrons during an ultrafast photo-induced process in a molecule influences the chemical behavior of the system, opening the door to the control of photochemical reactions and photobiological processes. Electrons can be efficiently localized using a strong laser field with a well-designed temporal shape of the electric component. Consequently, many experiments have been performed with laser sources in the near-infrared region (800 nm) in the interest of studying and enhancing the electron localization. However, due to its limited accessibility, the mid-infrared (MIR) range has barely been investigated, although it allows to efficiently control small molecules and even more complex systems. To push further the manipulation of basic chemical mechanisms, we used a MIR two-color (1800 and 900 nm) laser field to ionize H2 and D2 molecules and to steer the remaining electron during the photo-induced dissociation. The study of this prototype reaction led to the simultaneous control of four fragmentation channels. The results are well reproduced by a theoretical model solving the time-dependent Schrödinger equation for the molecular ion, identifying the involved dissociation mechanisms. By varying the relative phase between the two colors, asymmetries (i.e., electron localization selectivity) of up to 65% were obtained, corresponding to enhanced or equivalent levels of control compared to previous experiments. Experimentally easier to implement, the use of a two-color laser field leads to a better electron localization than carrier-envelope phase stabilized pulses and applying the technique in the MIR range reveals more dissociation channels than at 800 nm.

  2. Triggered Star Formation around Mid-infrared Bubbles in the G8.14+0.23 H II Region

    Science.gov (United States)

    Dewangan, L. K.; Ojha, D. K.; Anandarao, B. G.; Ghosh, S. K.; Chakraborti, S.

    2012-09-01

    Mid-infrared shells or bubbles around expanding H II regions have received much attention due to their ability to initiate a new generation of star formation. We present multi-wavelength observations around two bubbles associated with a southern massive star-forming region G8.14+0.23, to investigate the triggered star formation signature on the edges of the bubbles by the expansion of the H II region. We have found observational signatures of the collected molecular and cold dust material along the bubbles and the 12CO(J = 3-2) velocity map reveals that the molecular gas in the bubbles is physically associated around the G8.14+0.23 region. We have detected 244 young stellar objects (YSOs) in the region and about 37% of these YSOs occur in clusters. Interestingly, these YSO clusters are associated with the collected material on the edges of the bubbles. We have found good agreement between the dynamical age of the H II region and the kinematical timescale of bubbles (from the 12CO(J = 3-2) line data) with the fragmentation time of the accumulated molecular materials to explain possible "collect and collapse" process around the G8.14+0.23 region. However, one cannot entirely rule out the possibility of triggered star formation by compression of the pre-existing dense clumps by the shock wave. We have also found two massive embedded YSOs (about 10 and 22 M ⊙) which are associated with the dense fragmented clump at the interface of the bubbles. We conclude that the expansion of the H II region is also leading to the formation of these two young massive embedded YSOs in the G8.14+0.23 region.

  3. Broadband mid-infrared and THz chemical detection with quantum cascade laser multi-heterodyne spectrometers (Conference Presentation)

    Science.gov (United States)

    Westberg, Jonas; Sterczewski, Lukasz A.; Patrick, Link; Wysocki, Gerard

    2017-05-01

    Majority of chemical species of interest in security and safety applications (e.g. explosives) have complex molecular structures that produce unresolved rotational-vibrational spectroscopic signatures in the mid-infrared. This requires spectroscopic techniques that can provide broadband coverage in the mid-IR region to target broadband absorbers and high resolution to address small molecules that exhibit well-resolved spectral lines. On the other hand, many broadband mid-IR absorbers exhibit well-resolved rotational components in the THz spectral region. Thus, development of spectroscopic sensing technologies that can address both spectral regions is of great importance. Here we demonstrate recent progress towards broadband high-resolution spectroscopic sensing applications with Fabry-Perot quantum cascade lasers (QCLs) and frequency combs using multi-heterodyne spectroscopy (MHS) techniques. In this paper, we will present spectroscopic sensing of large and small molecules in the mid-IR region using QCLs operating at 8.5µm. An example high-resolution, broadband MHS of ammonia (small molecule) and isobutane (broadband absorber) at atmospheric pressure in the 1165-1190 cm^-1 range will be discussed. We have developed a balanced MHS system for mitigation of the laser intensity fluctuations. Absorption spectroscopy as well as dispersion spectroscopy with minimum fractional absorption down to 10^-4/Hz1/2 and fast spectral acquisition capabilities down to 10 µs/spectrum range will be demonstrated. In order to mitigate the shortcomings of the limited chemical selectivity in the mid-IR, THz QCL based spectrometer is currently under development to provide spectral de-congestion and thus significantly improve chemical identification. Preliminary characterization of the performance of THZ QCL combs for the THz QCL-MHS will be presented.

  4. Glimpses of a Century-Old Story

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 4. Glimpses of a Century-Old Story - Agrobacterium, a Pathogen Deployed for Genetic Engineering. Jasmine M Shah. General Article Volume 18 Issue 4 April 2013 pp 336-344 ...

  5. Infrared galaxies evolution. From cosmological observations with ISO to a mid-infrared to sub-millimetric modeling

    International Nuclear Information System (INIS)

    Dole, Herve

    2000-01-01

    This thesis deals with the analysis of the FIRBACK deep survey performed in the far infrared at λ=170 μm with the Infrared Space Observatory whose aim is the study of the galaxies contributing to the Cosmic Infrared Background, and with the modelling of galaxy evolution in the mid-infrared to submillimeter range. The FIRBACK survey covers 3. 89 Sq. Deg. in 3 high galactic latitude and low foreground emission fields (2 of which are in the northern sky). I first present the techniques of reduction, processing and calibration of the ISOPHOT cosmological data. I show that there is a good agreement between PHOT and DIRBE on extended emission, thanks to the derivation of the PHOT footprint. Final maps are created, and the survey is confusion limited at σc=45 mJy. I present then the techniques of source extraction and the simulations for photometry needed to build the final catalog of 106 sources between 180 mJy (4σ) and 2.4 Jy. The complementary catalog is made of 90 sources between 135 and 180 mJy. Galaxy counts show a large excess with respect to local counts or models (with and without evolution), only compatible with strong evolution scenarios. The Cosmic Infrared Background (CIB) is resolved at 4 % at 170 μm. The identifications of the sources at other wavelengths suggest that most of the sources are local, but a non-negligible part lies above redshift 1. I have developed a phenomenological model of galaxy evolution in order to constrain galaxy evolution in the infrared and to have a better understanding of what the FIRBACK sources are. Using the local Luminosity Function (LF), and template spectra of starburst galaxies, it is possible to constrain the evolution of the LF using all the available data: deep source counts at 15, 170 and 850 μm and the CIB spectrum. I show that galaxy evolution is dominated by a high infrared luminosity population, peaking at L=2.0*10 11 Redshift distributions are in agreement with available observations. Predictions are possible

  6. Determination of fat, protein, moisture, and salt content of Cheddar cheese using mid-infrared transmittance spectroscopy.

    Science.gov (United States)

    Margolies, Brenda J; Barbano, David M

    2018-02-01

    The objective of our work was to develop and evaluate the performance of a rapid method for measuring fat, protein, moisture, and salt content of Cheddar cheese using a combination mid-infrared (MIR) transmittance analysis and an in-line conductivity sensor in an MIR milk analyzer. Cheddar cheese was blended with a dissolving solution containing pentasodium triphosphate and disodium metasilicate to achieve a uniform, particle-free dispersion of cheese, which had a fat and protein content similar to milk and could be analyzed using a MIR transmittance milk analyzer. Annatto-colored Cheddar cheese samples (34) from one cheese factory were analyzed using reference chemistry methods for fat (Mojonnier ether extraction), crude protein (Kjeldahl), moisture (oven-drying total solids), and salt (Volhard silver nitrate titration). The same 34 cheese samples were also dissolved using the cheese dissolver solution, and then run through the MIR and used for calibration. The reference testing for fat and crude protein was done on the cheese after dispersion in the dissolver solution. Validation was done using a total of 36 annatto-colored Cheddar cheese samples from 4 cheese factories. The 36 validation cheese samples were also analyzed using near-infrared spectroscopy for fat, moisture, and the coulometric method for salt in each factory where they were produced. The validation cheeses were also tested using the same chemical reference methods that were used for analysis of the calibration samples. Standard error of prediction (SEP) values for moisture and fat on the near-infrared spectroscopy were 0.30 and 0.45, respectively, whereas the MIR produced SEP values of 0.28 and 0.23 for moisture (mean 36.82%) and fat (mean 34.0%), respectively. The MIR also out-performed the coulometric method for salt determination with SEP values of 0.036 and 0.139 at a mean level of salt of 1.8%, respectively. The MIR had an SEP value of 0.19 for estimation at a mean level of 24.0% crude

  7. Mid-infrared interferometry with K band fringe-tracking. I. The VLTI MIDI+FSU experiment

    Science.gov (United States)

    Müller, A.; Pott, J.-U.; Mérand, A.; Abuter, R.; Delplancke-Ströbele, F.; Henning, Th.; Köhler, R.; Leinert, Ch.; Morel, S.; Phan Duc, T.; Pozna, E.; Ramirez, A.; Sahlmann, J.; Schmid, C.

    2014-07-01

    Context. A turbulent atmosphere causes atmospheric piston variations leading to rapid changes in the optical path difference of an interferometer, which causes correlated flux losses. This leads to decreased sensitivity and accuracy in the correlated flux measurement. Aims: To stabilize the N band interferometric signal in MIDI (MID-infrared Interferometric instrument), we use an external fringe tracker working in K band, the so-called FSU-A (fringe sensor unit) of the PRIMA (Phase-Referenced Imaging and Micro-arcsecond Astrometry) facility at VLTI. We present measurements obtained using the newly commissioned and publicly offered MIDI+FSU-A mode. A first characterization of the fringe-tracking performance and resulting gains in the N band are presented. In addition, we demonstrate the possibility of using the FSU-A to measure visibilities in the K band. Methods: We analyzed FSU-A fringe track data of 43 individual observations covering different baselines and object K band magnitudes with respect to the fringe-tracking performance. The N band group delay and phase delay values could be predicted by computing the relative change in the differential water vapor column density from FSU-A data. Visibility measurements in the K band were carried out using a scanning mode of the FSU-A. Results: Using the FSU-A K band group delay and phase delay measurements, we were able to predict the corresponding N band values with high accuracy with residuals of less than 1 μm. This allows the coherent integration of the MIDI fringes of faint or resolved N band targets, respectively. With that method we could decrease the detection limit of correlated fluxes of MIDI down to 0.5 Jy (vs. 5 Jy without FSU-A) and 0.05 Jy (vs. 0.2 Jy without FSU-A) using the ATs and UTs, respectively. The K band visibilities could be measured with a precision down to ≈2%. Based on data products from observations with ESO Telescopes at the La Silla Paranal Observatory under program ID 087.C-0824, 090.B

  8. Prediction of fatty acid chain length and unsaturation of milk fat by mid-infrared milk analysis.

    Science.gov (United States)

    Wojciechowski, Karen L; Barbano, David M

    2016-11-01

    Our objective was to develop partial least squares (PLS) models to predict fatty acid chain length and total unsaturation of milk fat directly from a mid-infrared (MIR) spectra of milk at 40°C and then determine the feasibility of using those measures as correction factors to improve the accuracy of milk fat determination. A set of 268 milks (modified milks, farm bulk tank milks, and individual cow) were analyzed for fat, true protein, and anhydrous lactose with chemical reference methods, and in addition a MIR absorption spectra was collected for each milk. Fat was extracted from another portion of each milk, the fat was saponified to produce free fatty acids, and the free fatty acids were converted to methyl esters and quantified using gas-liquid chromatography. The PLS models for predicting the average chain length (carbons per fatty acid) and unsaturation (double bonds per fatty acid) of fatty acids in the fat portion of a milk sample from a MIR milk spectra were developed and validated. The validation performance of the prediction model for chain length and unsaturation had a relative standard deviation of 0.43 and 3.3%, respectively. These measures are unique in that they are fat concentration independent characteristics of fat structure that were predicted directly with transmission MIR analysis of milk. Next, the real-time data output from the MIR spectrophotometer for fatty acid chain length and unsaturation of milk were used to correct the fat A (C=O stretch) and fat B (C-H stretch) measures to improve accuracy of fat prediction. The accuracy validation was done over a period of 5 mo with 12 sets of 10 individual farm milks that were not a part of the PLS modeling population. The correction of a traditional fat B virtual filter result (C-H stretch) for sample-to-sample variation in unsaturation reduced the Euclidean distance for predicted fat from 0.034 to 0.025. The correction of a traditional fat A virtual filter result (C=O stretch) modified with

  9. Factors associated with milk processing characteristics predicted by mid-infrared spectroscopy in a large database of dairy cows.

    Science.gov (United States)

    Visentin, G; De Marchi, M; Berry, D P; McDermott, A; Fenelon, M A; Penasa, M; McParland, S

    2017-04-01

    Despite milk processing characteristics being important quality traits, little is known about the factors underlying their variability, due primarily to the resources required to measure these characteristics in a sufficiently large population. Cow milk coagulation properties (rennet coagulation time, curd-firming time, curd firmness 30 and 60 min after rennet addition), heat coagulation time, casein micelle size, and pH were generated from available mid-infrared spectroscopy prediction models. The prediction models were applied to 136,807 spectra collected from 9,824 Irish dairy cows from research and commercial herds. Sources of variation were investigated using linear mixed models that included the fixed effects of calendar month of test; milking time in the day; linear regressions on the proportion of Friesian, Jersey, Montbéliarde, Norwegian Red, and "other" breeds in the cow; coefficients of heterosis and of recombination loss; parity; stage of lactation; and the 2-way interaction parity × stage of lactation. Within- and across-parity cow effects, contemporary group, and a residual term were also included as random effects in the model. Supplementary analyses considered the inclusion of either test-day milk yield or milk protein concentration as fixed-effects covariates in the multiple regression models. Milk coagulation properties were most favorable (i.e., short rennet coagulation time and strong curd firmness) for cheese manufacturing in early lactation, concurrent with the lowest values of both pH and casein micelle size. Milk coagulation properties and pH deteriorated in mid lactation but improved toward the end of lactation. In direct contrast, heat coagulation time was more favorable in mid lactation and less suitable (i.e., shorter) for high temperature treatments in both early and late lactation. Relative to multiparous cows, primiparous cows, on average, yielded milk with shorter rennet coagulation time and longer heat coagulation time. Milk from

  10. UNDERSTANDING THE UNUSUAL X-RAY EMISSION PROPERTIES OF THE MASSIVE, CLOSE BINARY WR 20a: A HIGH ENERGY WINDOW INTO THE STELLAR WIND INITIATION REGION

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Strickler, Rachel, E-mail: gmontes@ucsc.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-11-10

    The problem of explaining the X-ray emission properties of the massive, close binary WR 20a is discussed. Located near the cluster core of Westerlund 2, WR 20a is composed of two nearly identical Wolf-Rayet stars of 82 and 83 solar masses orbiting with a period of only 3.7 days. Although Chandra observations were taken during the secondary optical eclipse, the X-ray light curve shows no signs of a flux decrement. In fact, WR 20a appears slightly more X-ray luminous and softer during the optical eclipse, opposite to what has been observed in other binary systems. To aid in our interpretation of the data, we compare with the results of hydrodynamical simulations using the adaptive mesh refinement code Mezcal which includes radiative cooling and a radiative acceleration force term. It is shown that the X-ray emission can be successfully explained in models where the wind-wind collision interface in this system occurs while the outflowing material is still being accelerated. Consequently, WR 20a serves as a critical test-case for how radiatively driven stellar winds are initiated and how they interact. Our models not only procure a robust description of current Chandra data, which cover the orbital phases between 0.3 and 0.6, but also provide detailed predictions over the entire orbit.

  11. Understanding the Unusual X-Ray Emission Properties of the Massive, Close Binary WR 20a: A High Energy Window into the Stellar Wind Initiation Region

    Science.gov (United States)

    Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Strickler, Rachel

    2013-11-01

    The problem of explaining the X-ray emission properties of the massive, close binary WR 20a is discussed. Located near the cluster core of Westerlund 2, WR 20a is composed of two nearly identical Wolf-Rayet stars of 82 and 83 solar masses orbiting with a period of only 3.7 days. Although Chandra observations were taken during the secondary optical eclipse, the X-ray light curve shows no signs of a flux decrement. In fact, WR 20a appears slightly more X-ray luminous and softer during the optical eclipse, opposite to what has been observed in other binary systems. To aid in our interpretation of the data, we compare with the results of hydrodynamical simulations using the adaptive mesh refinement code Mezcal which includes radiative cooling and a radiative acceleration force term. It is shown that the X-ray emission can be successfully explained in models where the wind-wind collision interface in this system occurs while the outflowing material is still being accelerated. Consequently, WR 20a serves as a critical test-case for how radiatively driven stellar winds are initiated and how they interact. Our models not only procure a robust description of current Chandra data, which cover the orbital phases between 0.3 and 0.6, but also provide detailed predictions over the entire orbit.

  12. Estimation of the stellar effective temperature and stellar wind detection in a Herbig Ae/Be type star from spectra acquired in Bogotá - Colombia

    Science.gov (United States)

    Guasca Garnica, I. L.; Ramírez Suárez, O. L.; Oostra Vannoppen, B.; Chaparro Molano, G.; Restrepo Gaitán, O. A.

    2017-07-01

    We present the results of spectroscopic observations in the range of 4280-6800 Å of AB Aur, a Herbig Ae/Be type star. These observations were carried out at the Observatory of the Universidad de los Andes in Bogotá - Colombia in 2015. We select the 4280-6000 Å spectral window for fitting our data to a black-body model of the star. In this range, the effects due to circumstellar disk emission are negligible and the nighborhood of the prominent accretion Hα emission line is neglected. In this window the dominant lines due atomic processes are the Balmer series lines Hβ and Hγ. We remove data around 3σ for each of these lines in order to ignore quantum effects. We model the stellar continuum by doing a Monte Carlo bootstrap-sampled fitting of three parameters: (i) a bolometric correction factor due to atmospheric absorption and/or defect electronics, (ii) measured (relative) continuum flux, and (iii) stellar temperature Teff. We obtain a value for the stellar temperature of 9400K-9700K, in agreement with the temperature reported by Tannirkulam et al. 2008. We also successfully fitted the H lines using a two-component gaussian fit, which shows the effects of stellar wind on top of the gas accretion onto the star. Our measurements strongly suggest that even in the harsh observational conditions present in Colombia, it is possible to obtain quality astronomical data for teaching astrophysics at an undergraduate level.

  13. Field-based stable isotope analysis of carbon dioxide by mid-infrared laser spectroscopy for carbon capture and storage monitoring.

    Science.gov (United States)

    van Geldern, Robert; Nowak, Martin E; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A C; Jost, Hans-Jürg

    2014-12-16

    A newly developed isotope ratio laser spectrometer for CO2 analyses has been tested during a tracer experiment at the Ketzin pilot site (northern Germany) for CO2 storage. For the experiment, 500 tons of CO2 from a natural CO2 reservoir was injected in supercritical state into the reservoir. The carbon stable isotope value (δ(13)C) of injected CO2 was significantly different from background values. In order to observe the breakthrough of the isotope tracer continuously, the new instruments were connected to a stainless steel riser tube that was installed in an observation well. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10 day carbon stable isotope data set with 30 min resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within analytical precision. This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time stable isotope data directly in the field. The laser spectroscopy data revealed for the first time a prior to this experiment unknown, intensive dynamic with fast changing δ(13)C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The short-term variances as observed in this study might have been missed during previous works that applied laboratory-based IRMS analysis. The new technique could contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long

  14. Proposal of ultrasonic-assisted mid-infrared spectroscopy for incorporating into daily life like smart-toilet and non-invasive blood glucose sensor

    Science.gov (United States)

    Kitazaki, Tomoya; Mori, Keita; Yamamoto, Naoyuki; Wang, Congtao; Kawashima, Natsumi; Ishimaru, Ichiro

    2017-07-01

    We proposed the extremely compact beans-size snap-shot mid-infrared spectroscopy that will be able to be built in smartphones. And also the easy preparation method of thin-film samples generated by ultrasonic standing wave is proposed. Mid-infrared spectroscopy is able to identify material components and estimate component concentrations quantitatively from absorption spectra. But conventional spectral instruments were very large-size and too expensive to incorporate into daily life. And preparations of thin-film sample were very troublesome task. Because water absorption in mid-infrared lights is very strong, moisture-containing-sample thickness should be less than 100[μm]. Thus, midinfrared spectroscopy has been utilized only by analytical experts in their laboratories. Because ultrasonic standing wave is compressional wave, we can generate periodical refractive-index distributions inside of samples. A high refractiveindex plane is correspond to a reflection boundary. When we use a several MHz ultrasonic transducer, the distance between sample surface and generated first node become to be several ten μm. Thus, the double path of this distance is correspond to sample thickness. By combining these two proposed methods, as for liquid samples, urinary albumin and glucose concentrations will be able to be measured inside of toilet. And as for solid samples, by attaching these apparatus to earlobes, the enhancement of reflection lights from near skin surface will create a new path to realize the non-invasive blood glucose sensor. Using the small ultrasonic-transducer whose diameter was 10[mm] and applied voltage 8[V], we detected the internal reflection lights from colored water as liquid sample and acrylic board as solid sample.

  15. Static and time-resolved mid-infrared spectroscopy of Hg0.95Cd0.05Cr2Se4 spinel.

    Science.gov (United States)

    Barsaume, S; Telegin, A V; Sukhorukov, Yu P; Stavrias, N; Fedorov, V A; Menshchikova, T K; Kimel, A V

    2017-08-16

    Static and time-resolved mid-infrared spectroscopy of ferromagnetic single crystal Hg 0.95 Cd 0.05 Cr 2 Se 4 was performed below the absorption edge, in order to reveal the origin of the electronic transitions contributing to the magneto-optical properties of this material. The mid-infrared spectroscopy reveals a strong absorption peak around 0.236 eV which formerly was assigned to a transition within the selenide-chromium complexes ([Formula: see text] Se -Cr 2+ ). To reveal the sensitivity of the transition to the magnetic order, we performed the studies in a temperature range across the Curie temperature and magnetic fields across the value at which the saturation of ferromagnetic magnetization occurs. Despite the fact that the Curie temperature of this ferromagnetic semiconductor is around 107 K, the intensity of the mid-infrared transition reduces substantially increasing the temperature, so that already at 70 K the absorption peak is hardly visible. Such a dramatic decrease of the oscillator strength is observed simultaneously with the strong red-shift of the absorption edge in the magnetic semiconductor. Employing a time-resolved pump-and-probe technique enabled us to determine the lifetime of the electrons in the excited state of this optical transition. In the temperature range from 7 K to 80 K, the lifetime changes from 3 ps to 6 ps. This behavior agrees with the phenomenon of giant oscillator strength described earlier for weakly bound excitons in nonmagnetic semiconductors.

  16. Detection of several common adulterants in raw milk by MID-infrared spectroscopy and one-class and multi-class multivariate strategies

    OpenAIRE

    RUISANCHEZ CAPELASTEGUI, MARÍA ICIAR; Gondim, C.D.S.; Junqueira, R.G.; Souza, S.V.C.D.; CALLAO LASMARIAS, MARÍA PILAR; Ruisánchez, I.; Gondim, C.D.S.; Junqueira, R.G.; Souza, S.V.C.D.; Callao, M.P.

    2017-01-01

    DOI: 10.1016/j.foodchem.2017.03.022 URL: http://www.sciencedirect.com/science/article/pii/S0308814617303874 Filiació URV: SI A sequential strategy was proposed to detect adulterants in milk using a mid-infrared spectroscopy and soft independent modelling of class analogy technique. Models were set with low target levels of adulterations including formaldehyde (0.074 g.L−1), hydrogen peroxide (21.0 g.L−1), bicarbonate (4.0 g.L−1), carbonate (4.0 g.L−1), chloride (5.0 g.L−1), citrate ...

  17. The Mechanical Design of a Kinematic Mount for the Mid Infrared Instrument Focal Plane Module on the James Webb Space Telescope

    Science.gov (United States)

    Thelen, Michael P.; Moore, Donald M.

    2009-01-01

    The detector assembly for the Mid Infrared Instrument (MIRI) of the James Webb Space Telescope (JWST) is mechanically supported in the Focal Plane Module (FPM) Assembly with an efficient hexapod design. The kinematic mount design allows for precision adjustment of the detector boresight to assembly alignment fiducials and maintains optical alignment requirements during flight conditions of launch and cryogenic operations below 7 Kelvin. This kinematic mounting technique is able to be implemented in a variety of optical-mechanical designs and is capable of micron level adjustment control and stability over wide dynamic and temperature ranges.

  18. Strategy for high-accuracy-and-precision retrieval of atmospheric methane from the mid-infrared FTIR network

    Directory of Open Access Journals (Sweden)

    R. Sussmann

    2011-09-01

    Full Text Available We present a strategy (MIR-GBM v1.0 for the retrieval of column-averaged dry-air mole fractions of methane (XCH4 with a precision <0.3% (1-σ diurnal variation, 7-min integration and a seasonal bias <0.14% from mid-infrared ground-based solar FTIR measurements of the Network for the Detection of Atmospheric Composition Change (NDACC, comprising 22 FTIR stations. This makes NDACC methane data useful for satellite validation and for the inversion of regional-scale sources and sinks in addition to long-term trend analysis. Such retrievals complement the high accuracy and precision near-infrared observations of the younger Total Carbon Column Observing Network (TCCON with time series dating back 15 years or so before TCCON operations began.

    MIR-GBM v1.0 is using HITRAN 2000 (including the 2001 update release and 3 spectral micro windows (2613.70–2615.40 cm−1, 2835.50–2835.80 cm−1, 2921.00–2921.60 cm−1. A first-order Tikhonov constraint is applied to the state vector given in units of per cent of volume mixing ratio. It is tuned to achieve minimum diurnal variation without damping seasonality. Final quality selection of the retrievals uses a threshold for the goodness of fit (χ2 < 1 as well as for the ratio of root-mean-square spectral noise and information content (<0.15%. Column-averaged dry-air mole fractions are calculated using the retrieved methane profiles and four-times-daily pressure-temperature-humidity profiles from National Center for Environmental Prediction (NCEP interpolated to the time of measurement.

    MIR-GBM v1.0 is the optimum of 24 tested retrieval strategies (8 different spectral micro-window selections, 3 spectroscopic line lists: HITRAN 2000, 2004, 2008. Dominant errors of the non-optimum retrieval strategies are systematic HDO/H2O-CH4 interference errors leading to a seasonal bias up to ≈5%. Therefore interference

  19. DO WE REALLY KNOW THE DUST? SYSTEMATICS AND UNCERTAINTIES OF THE MID-INFRARED SPECTRAL ANALYSIS METHODS

    International Nuclear Information System (INIS)

    Juhasz, A.; Henning, Th.; Bouwman, J.; Dullemond, C. P.; Pascucci, I.; Apai, D.

    2009-01-01

    disk. The effect of different noise levels on the results has also been tested. We find that for a signal-to-noise ratio (S/N) of 100 one can expect an absolute uncertainty in the value of the crystallinity of about 11% using ground-based observations (8-13 μm). For space-based observations (7-17 μm) the expected uncertainty is about 5% for the same S/N value. Moreover, the average value of the estimated crystallinity increases toward lower S/N in general. On the basis of our results, we propose a recipe for the analysis and interpretation of dust spectroscopy data in the mid-infrared which should be especially valuable for analyzing Spitzer spectroscopy data and ground-based infrared spectroscopy data in the 10 μm window.

  20. Multiwavelength diagnostic properties of Galactic planetary nebulae detected by the GLIMPSE-I

    Science.gov (United States)

    Cohen, Martin; Parker, Quentin A.; Green, Anne J.; Miszalski, Brent; Frew, David; Murphy, Tara

    2011-05-01

    We uniformly analyse 136 optically detected planetary nebulae (PNe) and candidates from the GLIMPSE-I in order to develop robust, multiwavelength, classification criteria to augment existing diagnostics and provide pure PN samples. PNe represent powerful astrophysical probes. They are important dynamical tracers, key sources of interstellar medium chemical enrichment, windows into late stellar evolution and potent cosmological yardsticks. However, their utility depends on separating them unequivocally from the many nebular mimics which can strongly resemble bona fide PNe in traditional optical images and spectra. We merge new PNe from the carefully evaluated, homogeneous Macquarie-AAO-Strasbourg Hα PN Project (MASH-I) and MASH-II surveys, which offer a wider evolutionary range of PNe than hitherto available, with previously known PNe classified by SIMBAD. Mid-infrared (MIR) measurements vitally complement optical data because they reveal other physical processes and morphologies via fine-structure lines, molecular bands and dust. MIR colour-colour planes, optical emission-line ratios and radio fluxes show the unambiguous classification of PNe to be complex, requiring all available evidence. Statistical trends provide predictive value and we offer quantitative MIR criteria to determine whether an emission nebula is most likely to be a PN or one of the frequent contaminants such as compact H II regions or symbiotic systems. Prerequisites have been optical images and spectra, but MIR morphology, colours, environment and a candidate's MIR-to-radio flux ratio provide a more rigorous classification. Our ultimate goal is to recognize PNe using only MIR and radio characteristics, enabling us to trawl for PNe effectively even in heavily obscured regions of the Galaxy.

  1. Coupling hydrodynamics with comoving frame radiative transfer. II. Stellar wind stratification in the high-mass X-ray binary Vela X-1

    Science.gov (United States)

    Sander, A. A. C.; Fürst, F.; Kretschmar, P.; Oskinova, L. M.; Todt, H.; Hainich, R.; Shenar, T.; Hamann, W.-R.

    2018-02-01

    Context. Vela X-1, a prototypical high-mass X-ray binary (HMXB), hosts a neutron star (NS) in a close orbit around an early-B supergiant donor star. Accretion of the donor star's wind onto the NS powers its strong X-ray luminosity. To understand the physics of HMXBs, detailed knowledge about the donor star winds is required. Aims: To gain a realistic picture of the donor star in Vela X-1, we constructed a hydrodynamically consistent atmosphere model describing the wind stratification while properly reproducing the observed donor spectrum. To investigate how X-ray illumination affects the stellar wind, we calculated additional models for different X-ray luminosity regimes. Methods: We used the recently updated version of the Potsdam Wolf-Rayet code to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer. Results: The wind flow in Vela X-1 is driven by ions from various elements, with Fe III and S III leading in the outer wind. The model-predicted mass-loss rate is in line with earlier empirical studies. The mass-loss rate is almost unaffected by the presence of the accreting NS in the wind. The terminal wind velocity is confirmed at v∞≈ 600 km s-1. On the other hand, the wind velocity in the inner region where the NS is located is only ≈100 km s-1, which is not expected on the basis of a standard β-velocity law. In models with an enhanced level of X-rays, the velocity field in the outer wind can be altered. If the X-ray flux is too high, the acceleration breaks down because the ionization increases. Conclusions: Accounting for radiation hydrodynamics, our Vela X-1 donor atmosphere model reveals a low wind speed at the NS location, and it provides quantitative information on wind driving in this important HMXB.

  2. TWO REGIMES OF INTERACTION OF A HOT JUPITER’S ESCAPING ATMOSPHERE WITH THE STELLAR WIND AND GENERATION OF ENERGIZED ATOMIC HYDROGEN CORONA

    International Nuclear Information System (INIS)

    Shaikhislamov, I. F.; Prokopov, P. A.; Berezutsky, A. G.; Zakharov, Yu. P.; Posukh, V. G.; Khodachenko, M. L.; Lammer, H.; Kislyakova, K. G.; Fossati, L.; Johnstone, C. P.

    2016-01-01

    The interaction of escaping the upper atmosphere of a hydrogen-rich non-magnetized analog of HD 209458b with a stellar wind (SW) of its host G-type star at different orbital distances is simulated with a 2D axisymmetric multi-fluid hydrodynamic (HD) model. A realistic Sun-like spectrum of X-ray and ultraviolet radiation, which ionizes and heats the planetary atmosphere, together with hydrogen photochemistry, as well as stellar-planetary tidal interaction are taken into account to generate self-consistently an atmospheric HD outflow. Two different regimes of the planetary and SW interaction have been modeled. These are: (1) the “ captured by the star ” regime, when the tidal force and pressure gradient drive the planetary material beyond the Roche lobe toward the star, and (2) the “ blown by the wind ” regime, when sufficiently strong SW confines the escaping planetary atmosphere and channels it into the tail. The model simulates in detail the HD interaction between the planetary atoms, protons and the SW, as well as the production of energetic neutral atoms (ENAs) around the planet due to charge exchange between planetary atoms and stellar protons. The revealed location and shape of the ENA cloud, either as a paraboloid shell between the ionopause and bowshock (for the “ blown by the wind ” regime), or a turbulent layer at the contact boundary between the planetary stream and SW (for the “ captured by the star ” regime) are of importance for the interpretation of Ly α absorption features in exoplanetary transit spectra and characterization of the plasma environments.

  3. TWO REGIMES OF INTERACTION OF A HOT JUPITER’S ESCAPING ATMOSPHERE WITH THE STELLAR WIND AND GENERATION OF ENERGIZED ATOMIC HYDROGEN CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Shaikhislamov, I. F.; Prokopov, P. A.; Berezutsky, A. G.; Zakharov, Yu. P.; Posukh, V. G. [Institute of Laser Physics SB RAS, Novosibirsk (Russian Federation); Khodachenko, M. L.; Lammer, H.; Kislyakova, K. G.; Fossati, L. [Space Research Institute, Austrian Acad. Sci., Graz (Austria); Johnstone, C. P., E-mail: maxim.khodachenko@oeaw.ac.at [Department of Astrophysics, University of Vienna, Vienna (Austria)

    2016-12-01

    The interaction of escaping the upper atmosphere of a hydrogen-rich non-magnetized analog of HD 209458b with a stellar wind (SW) of its host G-type star at different orbital distances is simulated with a 2D axisymmetric multi-fluid hydrodynamic (HD) model. A realistic Sun-like spectrum of X-ray and ultraviolet radiation, which ionizes and heats the planetary atmosphere, together with hydrogen photochemistry, as well as stellar-planetary tidal interaction are taken into account to generate self-consistently an atmospheric HD outflow. Two different regimes of the planetary and SW interaction have been modeled. These are: (1) the “ captured by the star ” regime, when the tidal force and pressure gradient drive the planetary material beyond the Roche lobe toward the star, and (2) the “ blown by the wind ” regime, when sufficiently strong SW confines the escaping planetary atmosphere and channels it into the tail. The model simulates in detail the HD interaction between the planetary atoms, protons and the SW, as well as the production of energetic neutral atoms (ENAs) around the planet due to charge exchange between planetary atoms and stellar protons. The revealed location and shape of the ENA cloud, either as a paraboloid shell between the ionopause and bowshock (for the “ blown by the wind ” regime), or a turbulent layer at the contact boundary between the planetary stream and SW (for the “ captured by the star ” regime) are of importance for the interpretation of Ly α absorption features in exoplanetary transit spectra and characterization of the plasma environments.

  4. Real-time monitoring of benzene, toluene, and p-xylene in a photoreaction chamber with a tunable mid-infrared laser and ultraviolet differential optical absorption spectroscopy.

    Science.gov (United States)

    Parsons, Matthew T; Sydoryk, Ihor; Lim, Alan; McIntyre, Thomas J; Tulip, John; Jäger, Wolfgang; McDonald, Karen

    2011-02-01

    We describe the implementation of a mid-infrared laser-based trace gas sensor with a photoreaction chamber, used for reproducing chemical transformations of benzene, toluene, and p-xylene (BTX) gases that may occur in the atmosphere. The system performance was assessed in the presence of photoreaction products including aerosol particles. A mid-infrared external cavity quantum cascade laser (EC-QCL)-tunable from 9.41-9.88 μm (1012-1063 cm(-1))-was used to monitor gas phase concentrations of BTX simultaneously and in real time during chemical processing of these compounds with hydroxyl radicals in a photoreaction chamber. Results are compared to concurrent measurements using ultraviolet differential optical absorption spectroscopy (UV DOAS). The EC-QCL based system provides quantitation limits of approximately 200, 200, and 600 parts in 10(9) (ppb) for benzene, toluene, and p-xylene, respectively, which represents a significant improvement over our previous work with this laser system. Correspondingly, we observe the best agreement between the EC-QCL measurements and the UV DOAS measurements with benzene, followed by toluene, then p-xylene. Although BTX gas-detection limits are not as low for the EC-QCL system as for UV DOAS, an unidentified by-product of the photoreactions was observed with the EC-QCL, but not with the UV DOAS system.

  5. Mid-infrared subwavelength modulator based on grating-assisted coupling of a hybrid plasmonic waveguide mode to a graphene plasmon.

    Science.gov (United States)

    Kim, Yonghan; Kwon, Min-Suk

    2017-11-16

    This work reports a mid-infrared modulator based on a hybrid plasmonic waveguide with graphene on a grating in its slot region. The modulator utilizes a graphene plasmon for electro-optic tuning in a more practical and effective way than graphene-plasmon-based waveguide devices studied up to now. The hybrid plasmonic waveguide can be easily and efficiently integrated with input and output photonic waveguides. It supports a hybrid plasmonic waveguide mode and a graphene-plasmon-based waveguide mode. Grating-assisted coupling of the former to the latter in it is demonstrated to work successfully even though the two modes have significantly different propagation constants and losses. Theoretical investigation of the modulator shows that the coupling via the grating of length 5.92 μm generates a deep rejection band at a wavelength of 8.014 μm in the transmission spectrum of the output photonic waveguide of the modulator. With the graphene chemical potential tuned between 0.6 eV and 0.65 eV, the transmission at the wavelength is modulated between -27 dB and -1.8 dB. The subwavelength modulator, which may have a large bandwidth and small energy consumption, is expected to play a key role in free-space communications and sensing requiring mid-infrared integrated photonics.

  6. Characterization and control of the electro-optic phase dispersion in lithium niobate modulators for wide spectral band interferometry applications in the mid-infrared.

    Science.gov (United States)

    Heidmann, S; Ulliac, G; Courjal, N; Martin, G

    2017-05-10

    Mid-infrared wideband modulation (3.2-3.7 μm) is achieved in an electro-optic Y-junction using lithium niobate waveguides in TE polarized light. Comparison between external (scanning mirror) and internal (electro-optical) modulation allows studying the chromatic polynomial dependence of the relative phase. Internal modulation consists on a V AC ramp up to 370 V at 0.25 Hz, applied over 14 mm long electrodes with 14 μm separation. The overall V π L π obtained is 17.5 V·cm, meaning that using a 300 V generator we can actively scan and track the whole L-band (3.4-4.1 μm) wideband fringes. We observe a dramatic reduction of the coherence length under electro-optic modulation, which is attributed to a strong nonlinear dependence of the electro-optic effect on the wavelength upon application of such high voltages. We study the effect of applying a V DC offset, from -50  V to 200 V (50 V step). We characterize this dispersion and propose an improved dispersion model that is used to show active dispersion compensation in wideband fringe modulation in the mid-infrared. This can be useful for long baseline interferometry or pulse compression applications when light propagates along fibers, in order to compensate for chromatic effects that induce differential dispersion or pulse spreading, respectively.

  7. Simultaneous detection of ethanol, ether and acetone by mid-infrared cavity ring-down spectroscopy at 3.8 μm

    Science.gov (United States)

    Zhou, Sheng; Han, Yanling; Li, Bincheng

    2016-07-01

    Mid-infrared cavity ring-down spectroscopy (CRDS) using an external cavity, widely tunable pulsed quantum cascade laser operating at 3.8 μm, was employed for simultaneous detections of ethanol, ether and acetone in this paper. The experiments were performed with a maximum cavity mirror reflectivity of 99.915 % between the wave number 2614 and 2634 cm-1, leading to an effective optical path length of 588 m. The absorption spectra of ethanol, ether and acetone were measured with high spectral resolution in the range of 2614-2634 cm-1, and the spectroscopic analysis of the mixture of ethanol, ether and acetone with overlapping absorption spectra was demonstrated. The experimentally achieved detection limits (3σ, or three times of standard deviation) for ethanol, ether and acetone were 157, 60 and 280 ppb, respectively. The simultaneously measured concentration results were in good agreement with the results with the standard gravimetric method, indicated that the mid-infrared CRDS has the potential for multi-component trace gas detection as well as for spectroscopic measurements of multi-broadband absorbers.

  8. Two-Dimensional Study of Mass Outflow from Central Gravitational Astrophysical Object. Analytical 2-D solutions for thermo-radiatively driven stellar winds.

    Science.gov (United States)

    Kakouris, A.

    The present PhD Thesis deals with the two-dimensional description of the plasma outflow from central astrophysical objects. The concept of stellar winds was originated by Eugene Parker 1958, and has become a very hot area of research the last decade. Mass outflow from all types of stars, as well as AGNs, quasars or planetary nebulae are observed in all astrophysical scales indicating at least two-dimensional (2-D) features (e.g. Hughes (editor), 1991, Beams and jets in astrophysics, Cambridge University Press). In a first stage, the flows are modeled empirically but their origin has to be in accordance with the fluid mechanics and the conservation laws. So, self-consistent 2-D models are needed (i.e. full solutions of the total set of equations which conserve mass, momentum and energy). The main mechanisms of ejecting plasma from an astrophysical object are the thermal (similar to solar wind), the radiative and the magnetic. Self consistent analytical 2-D steady hydrodynamic (HD) solutions for stellar winds have been presented by Tsinganos & Vlastou 1988, Tsinganos & Trussoni 1990, Tsinganos & Sauty 1992 and Lima & Priest 1993. Following their description we derive a new set of solutions in the present work. Our main assumptions are steady state (\\partial/\\partial t = 0), axisymmetry to the rotational axis (\\partial/\\partial \\phi = 0) and helicoidal geometry for the streamlines (meridional velocity {\\vec u}_{\\theta} = {\\vec 0} ). Besides, the fluid is assumed to be a nonmagnetized fully ionized hydrogen. The model could be named as non polytropic since we do not follow the polytropic assumption with a constant polytropic exponent but we evaluate the total external energy needed by the 1st law of Thermodynamics. Also, the solutions are \\theta-self similar since the dependence to the colatitude is given from the beginning. The generalized differential rotation of the fluid is taken into account considering a dependence of the rotational velocity of (V

  9. WMAP - A Glimpse of the Early Universe

    Science.gov (United States)

    Wollack, Edward

    2009-01-01

    The early Universe was incredibly hot, dense, and homogeneous. A powerful probe of this time is provided by the relic radiation which we refer to today as the Cosmic Microwave Background (CMB). Images produced from this light contain the earliest glimpse of the Universe after the "Big Bang" and the signature of the evolution of its contents. By exploiting these clues, precise constraints on the age, mass density, and geometry of the early Universe can be derived. The history of this intriguing cosmological detective story will be reviewed. Recent results from NASA's Wilkinson Microwave Anisotropy Probe (WMAP) will be presented.

  10. Predictive ability of mid-infrared spectroscopy for major mineral composition and coagulation traits of bovine milk by using the uninformative variable selection algorithm.

    Science.gov (United States)

    Visentin, G; Penasa, M; Gottardo, P; Cassandro, M; De Marchi, M

    2016-10-01

    Milk minerals and coagulation properties are important for both consumers and processors, and they can aid in increasing milk added value. However, large-scale monitoring of these traits is hampered by expensive and time-consuming reference analyses. The objective of the present study was to develop prediction models for major mineral contents (Ca, K, Mg, Na, and P) and milk coagulation properties (MCP: rennet coagulation time, curd-firming time, and curd firmness) using mid-infrared spectroscopy. Individual milk samples (n=923) of Holstein-Friesian, Brown Swiss, Alpine Grey, and Simmental cows were collected from single-breed herds between January and December 2014. Reference analysis for the determination of both mineral contents and MCP was undertaken with standardized methods. For each milk sample, the mid-infrared spectrum in the range from 900 to 5,000cm(-1) was stored. Prediction models were calibrated using partial least squares regression coupled with a wavenumber selection technique called uninformative variable elimination, to improve model accuracy, and validated both internally and externally. The average reduction of wavenumbers used in partial least squares regression was 80%, which was accompanied by an average increment of 20% of the explained variance in external validation. The proportion of explained variance in external validation was about 70% for P, K, Ca, and Mg, and it was lower (40%) for Na. Milk coagulation properties prediction models explained between 54% (rennet coagulation time) and 56% (curd-firming time) of the total variance in external validation. The ratio of standard deviation of each trait to the respective root mean square error of prediction, which is an indicator of the predictive ability of an equation, suggested that the developed models might be effective for screening and collection of milk minerals and coagulation properties at the population level. Although prediction equations were not accurate enough to be proposed

  11. Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm

    DEFF Research Database (Denmark)

    Kubat, Irnis; Agger, Christian; Møller, Uffe Visbech

    2014-01-01

    We present numerical modeling of mid-infrared (MIR) supercontinuum generation (SCG) in dispersion-optimized chalcogenide (CHALC) step-index fibres (SIFs) with exceptionally high numerical aperture (NA) around one, pumped with mode-locked praseodymium-doped (Pr3+) chalcogenide fibre lasers. The 4...... for the highest NA considered but required pumping at 4.7kW as well as up to 3m of fibre to compensate for the lower nonlinearities. The amount of power converted into the 8-10 μm band was 7.5 and 8.8mW for the 8 and 10μm fibres, respectively. For the 20μm core fibres up to 46mW was converted....

  12. Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA.

    Science.gov (United States)

    Botelho, Bruno G; Reis, Nádia; Oliveira, Leandro S; Sena, Marcelo M

    2015-08-15

    This paper proposed a new screening method for the simultaneous detection of five common adulterants in raw cow milk by using attenuated total reflectance (ATR) mid infrared spectroscopy and multivariate supervised classification (partial least squares discrimination analysis - PLSDA). The method was able to detect the presence of the adulterants water, starch, sodium citrate, formaldehyde and sucrose in milk samples containing from one up to five of these analytes, in the range of 0.5-10% w/v. A multivariate qualitative validation was performed, estimating specific figures of merit, such as false positive and false negative rates, selectivity, specificity and efficiency rates, accordance and concordance. The proposed method does not need any sample pretreatment, requires a small amount of sample (30 μL), is fast and simple, being suitable for the control of raw milk in a dairy industry or for the quality inspection of commercialized milk. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Electron effective mass in Sn-doped monoclinic single crystal β-gallium oxide determined by mid-infrared optical Hall effect

    Science.gov (United States)

    Knight, Sean; Mock, Alyssa; Korlacki, Rafał; Darakchieva, Vanya; Monemar, Bo; Kumagai, Yoshinao; Goto, Ken; Higashiwaki, Masataka; Schubert, Mathias

    2018-01-01

    The isotropic average conduction band minimum electron effective mass in Sn-doped monoclinic single crystal β-Ga2O3 is experimentally determined by the mid-infrared optical Hall effect to be (0.284 ± 0.013)m0 combining investigations on (010) and ( 2 ¯01 ) surface cuts. This result falls within the broad range of values predicted by theoretical calculations for undoped β-Ga2O3. The result is also comparable to recent density functional calculations using the Gaussian-attenuation-Perdew-Burke-Ernzerhof hybrid density functional, which predict an average effective mass of 0.267m0. Within our uncertainty limits, we detect no anisotropy for the electron effective mass, which is consistent with most previous theoretical calculations. We discuss upper limits for possible anisotropy of the electron effective mass parameter from our experimental uncertainty limits, and we compare our findings with recent theoretical results.

  14. A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite--a mid-infrared and near-infrared study.

    Science.gov (United States)

    Cheng, Hongfei; Yang, Jing; Liu, Qinfu; Zhang, Jinshan; Frost, Ray L

    2010-11-01

    Mid-infrared (MIR) and near-infrared (NIR) spectroscopy have been compared and evaluated for differentiating kaolinite, coal bearing kaolinite and halloysite. Kaolinite, coal bearing kaolinite and halloysite are the three relative abundant minerals of the kaolin group, especially in China. In the MIR spectra, the differences are shown in the 3000-3600 cm⁻¹ between kaolinite and halloysite. It cannot obviously differentiate the kaolinite and halloysite, leaving alone kaolinite and coal bearing kaolinite. However, NIR, together with MIR, gives us the sufficient evidence to differentiate the kaolinite and halloysite, especially kaolinite and coal bearing kaolinite. There are obvious differences between kaolinite and halloysite in all range of their spectra, and they also show some difference between kaolinite and coal bearing kaolinite. Therefore, the reproducibility of measurement, signal to noise ratio and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for mineral analysis. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures

    DEFF Research Database (Denmark)

    Jensen, P.S.; Bak, J.; Andersson-Engels, S.

    2003-01-01

    Near- and mid-infrared absorption spectra of pure water and aqueous 1.0 g/dL glucose solutions in the wavenumber range 8000-950 cm(-1) were measured in the temperature range 30-42 C in steps of 2 degreesC. Measurements were carried out with an FT-IR spectrometer and a variable pathlength...... degreesC water spectrum from the spectra measured at other temperatures. The difference spectra reveal that the effect of temperature is highest in the vicinity of the strong absorption bands, with a number of isosbestic points with no temperature dependence and relatively flat plateaus in between....... The change in water absorption associated with the addition of glucose has also been studied. An estimate of these effects is given and is related to the expected level of infrared signals from glucose in humans....

  16. Near-field investigation of the effect of the array edge on the resonance of loop frequency selective surface elements at mid-infrared wavelengths.

    Science.gov (United States)

    Tucker, Eric; D' Archangel, Jeffrey; Raschke, Markus B; Boreman, Glenn

    2015-05-04

    Mid-infrared scattering scanning near-field optical microscopy, in combination with far-field infrared spectroscopy, and simulations, was employed to investigate the effect of mutual-element coupling towards the edge of arrays of loop elements acting as frequency selective surfaces (FSSs). Two different square loop arrays on ZnS over a ground plane, resonant at 10.3 µm, were investigated. One array had elements that were closely spaced while the other array had elements with greater inter-element spacing. In addition to the dipolar resonance, we observed a new emergent resonance associated with the edge of the closely-spaced array as a finite size effect, due to the broken translational invariance.

  17. Three-dimensional mid-infrared tomographic imaging of endogenous and exogenous molecules in a single intact cell with subcellular resolution.

    Science.gov (United States)

    Quaroni, Luca; Obst, Martin; Nowak, Marcus; Zobi, Fabio

    2015-01-02

    Microscopy in the mid-infrared spectral range provides detailed chemical information on a sample at moderate spatial resolution and is being used increasingly in the characterization of biological entities as challenging as single cells. However, a conventional cellular 2D imaging measurement is limited in its ability to associate specific compositional information to subcellular structures because of the interference from the complex topography of the sample. Herein we provide a method and protocols that overcome this challenge in which tilt-series infrared tomography is used with a standard benchtop infrared microscope. This approach gives access to the quantitative 3D distribution of molecular components based on the intrinsic contrast provided by the sample. We demonstrate the method by quantifying the distribution of an exogenous metal carbonyl complex throughout the cell and by reporting changes in its coordination sphere in different locations in the cell. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Diffusion-Controlled Recrystallization of Water Sorbed into Poly(meth)acrylates Revealed by Variable-Temperature Mid-Infrared Spectroscopy and Molecular Dynamics Simulation.

    Science.gov (United States)

    Yasoshima, Nobuhiro; Fukuoka, Mizuki; Kitano, Hiromi; Kagaya, Shigehiro; Ishiyama, Tatsuya; Gemmei-Ide, Makoto

    2017-05-18

    Recrystallization behaviors of water sorbed into four poly(meth)acrylates, poly(2-methoxyethyl acrylate), poly(tetrahydrofurfuryl acrylate), poly(methyl acrylate), and poly(methyl methacrylate), are investigated by variable-temperature mid-infrared (VT-MIR) spectroscopy and molecular dynamics (MD) simulation. VT-MIR spectra demonstrate that recrystallization temperatures of water sorbed into the polymers are positively correlated with their glass-transition temperatures reported previously. The present MD simulation shows that a lower-limit temperature of the diffusion for the sorbed water and the glass-transition temperatures of the polymers also have a positive correlation, indicating that the recrystallization is controlled by diffusion mechanism rather than reorientation mechanism. Detailed molecular processes of not only recrystallization during rewarming but also crystallization during cooling and hydrogen-bonding states of water in the polymers are systematically analyzed and discussed.

  19. Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Muda, R; Lewis, E; O' Keeffe, S; Dooly, G; Clifford, J, E-mail: razali.muda@ul.i [Optical Fibre Sensors Research Centre, Electronic and Computer Engineering Department, University of Limerick (Ireland)

    2009-07-01

    A novel and highly compact optical fibre based sensor system for measurement of high concentrations CO{sub 2} gas emissions in modern automotive exhaust is presented. The sensor system works based on the principle of open-path direct absorption spectroscopy in the mid-infrared wavelength range. The sensor system, which comprises low cost components and is compact in design, is well suited for applications in monitoring CO{sub 2} emissions from the exhaust of automotive vehicles. The sensor system utilises calcium fluoride (CaF{sub 2}) lenses and a narrow band pass (NBP) filter for detection of CO{sub 2} gas. The response of the sensor to high concentrations of CO{sub 2} gas is presented and the result is compared with that of a commercial flue gas analyser. The sensor shows response times of 5.2s and demonstrates minimal susceptibility to cross interferences of other gases present in the exhaust system.

  20. Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6-8 μm) optical parametric oscillator

    Science.gov (United States)

    Todd, M. W.; Provencal, R. A.; Owano, T. G.; Paldus, B. A.; Kachanov, A.; Vodopyanov, K. L.; Hunter, M.; Coy, S. L.; Steinfeld, J. I.; Arnold, J. T.

    A novel instrument, based on cavity-ringdown spectroscopy (CRDS), has been developed for trace gas detection. The new instrument utilizes a widely tunable optical parametric oscillator (OPO), which incorporates a zinc-germanium-phosphide (ZGP) crystal that is pumped at 2.8 μm by a 25-Hz Er,Cr:YSGG laser. The resultant mid-IR beam profile is nearly Gaussian, with energies exceeding 200 μJ/pulse between 6 and 8 μm, corresponding to a quantum conversion efficiency of approximately 35%. Vapor-phase mid-infrared spectra of common explosives (TNT, TATP, RDX, PETN and Tetryl) were acquired using the CRDS technique. Parts-per-billion concentration levels were readily detected with no sample preconcentration. A collection/flash-heating sequence was implemented in order to enhance detection limits for ambient air sampling. Detection limits as low as 75 ppt for TNT are expected, with similar concentration levels for the other explosives.

  1. Broadband mid-infrared supercontinuum generation in novel As2Se3-As2Se2 S step-index fibers

    Science.gov (United States)

    Wang, Yingying; Dai, Shixun; Han, Xin; Zhang, Peiqing; Liu, Yongxing; Wang, Xunsi; Sun, Shaochao

    2018-03-01

    We experimentally demonstrate the mid-infrared supercontinuum generation in a chalcogenide step-index fiber consisting of an As2Se3 core and an As2Se2 S cladding. The fiber with the core diameter of 21 μm was fabricated through the rod-in-tube technique and fiber-drawing process. The effect of pump wavelength, fiber length, and pump power on the spectral bandwidth and output power of the supercontinuum spectra generated from the fiber pumped by the ultrashort pulses of ∼ 150 fs with a repetition rate of 1000 Hz was systematically investigated. When pumping a 12-cm-long fiber at a wavelength of 6 . 5 μm with 14 mW pump laser power, a broadband supercontinuum spanning from 2 . 0 μm to 12 . 7 μm with an output power of 300 μW was obtained.

  2. Two-colour mid-infrared absorption in an InAs/GaSb-based type II and broken-gap quantum well

    International Nuclear Information System (INIS)

    Wei, X F; Xu, W; Zeng, Z

    2007-01-01

    We examine contributions from different transition channels to optical absorption in an InAs/GaSb-based type II and broken-gap quantum well (QW). In such a structure, because both electron and hole subbands are occupied by the conducting carriers, new channels open up for electronic transition via intra- and inter-layer scattering mechanisms. We find that two absorption peaks can be observed through inter-subband transitions within the same material layer. The absorption induced by the inter-layer transition is rather weak due to a small overlap of electron and hole wavefunctions. The results suggest that InAs/GaSb-based type II and broken-gap QWs can be employed as two-colour photodetectors working at mid-infrared bandwidth at relatively high temperatures up to room-temperature

  3. Mid-infrared PbTe vertical external cavity surface emitting laser on Si-substrate with above 1 W output power

    Science.gov (United States)

    Rahim, M.; Fill, M.; Felder, F.; Chappuis, D.; Corda, M.; Zogg, H.

    2009-12-01

    Mid-infrared vertical external cavity surface emitting lasers (VECSELs) emitting above 1 W output power in pulsed mode and up to 17 mW in continuous mode at -172 °C were realized. Emission wavelength changes from 5 μm at -172 °C to 3.6 μm at 20 °C heat sink temperature. The active medium is a one wavelength thick PbTe layer grown by molecular beam epitaxy on a Si-substrate. It is followed by a 2.5 pair Pb1-yEuyTe/EuTe epitaxial Bragg mirror. The cavity is completed with an external curved Pb1-yEuyTe/BaF2 mirror. The VECSEL is optically pumped with 1.55 μm wavelength laser and In-soldered to Cu heat sink. No microstructural processing is needed.

  4. ENHANCED WARM H{sub 2} EMISSION IN THE COMPACT GROUP MID-INFRARED ''GREEN VALLEY''

    Energy Technology Data Exchange (ETDEWEB)

    Cluver, M. E.; Ogle, P.; Guillard, P. [Spitzer Science Center, IPAC, California Institute of Technology, Pasadena, CA 91125 (United States); Appleton, P. N. [NASA Herschel S Center, California Institute of Technology, Pasadena, CA 91125 (United States); Jarrett, T. H. [Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Rasmussen, J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Lisenfeld, U. [Departmento de Fisica Teorica y del Cosmos, Facultad de Ciencias, Universidad de Granada (Spain); Verdes-Montenegro, L. [Instituto de Astrofisica de Andalucia (IAA/CSIC), Apdo. 3004, E-18080 Granada (Spain); Antonucci, R. [Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106 (United States); Bitsakis, T.; Charmandaris, V. [Department of Physics, University of Crete, GR-71003, Heraklion (Greece); Boulanger, F. [Institute d' Astrophysique Spatiale, Universite Paris Sud 11, Orsay (France); Egami, E. [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Xu, C. K. [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Yun, M. S., E-mail: mcluver@aao.gov.au [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2013-03-10

    We present results from a Spitzer mid-infrared spectroscopy study of a sample of 74 galaxies located in 23 Hickson Compact Groups (HCGs), chosen to be at a dynamically active stage of H I depletion. We find evidence for enhanced warm H{sub 2} emission (i.e., above that associated with UV excitation in star-forming regions) in 14 galaxies ({approx}20%), with 8 galaxies having extreme values of L(H{sub 2} S(0)-S(3))/L(7.7 {mu}m polycyclic aromatic hydrocarbon), in excess of 0.07. Such emission has been seen previously in the compact group HCG 92 (Stephan's Quintet), and was shown to be associated with the dissipation of mechanical energy associated with a large-scale shock caused when one group member collided, at high velocity, with tidal debris in the intragroup medium. Similarly, shock excitation or turbulent heating is likely responsible for the enhanced H{sub 2} emission in the compact group galaxies, since other sources of heating (UV or X-ray excitation from star formation or active galactic nuclei) are insufficient to account for the observed emission. The group galaxies fall predominantly in a region of mid-infrared color-color space identified by previous studies as being connected to rapid transformations in HCG galaxy evolution. Furthermore, the majority of H{sub 2}-enhanced galaxies lie in the optical ''green valley'' between the blue cloud and red sequence, and are primarily early-type disk systems. We suggest that H{sub 2}-enhanced systems may represent a specific phase in the evolution of galaxies in dense environments and provide new insight into mechanisms which transform galaxies onto the optical red sequence.

  5. IRAS 15099-5856: REMARKABLE MID-INFRARED SOURCE WITH PROMINENT CRYSTALLINE SILICATE EMISSION EMBEDDED IN THE SUPERNOVA REMNANT MSH15-52

    International Nuclear Information System (INIS)

    Koo, Bon-Chul; Kim, Hyun-Jeong; Im, Myungshin; McKee, Christopher F.; Suh, Kyung-Won; Moon, Dae-Sik; Lee, Ho-Gyu; Onaka, Takashi; Burton, Michael G.; Hiramatsu, Masaaki; Bessell, Michael S.; Gaensler, B. M.; Lee, Jae-Joon; Jeong, Woong-Seob; Tatematsu, Ken'ichi; Kawabe, Ryohei; Ezawa, Hajime; Kohno, Kotaro; Wilson, Grant; Yun, Min S.

    2011-01-01

    We report new mid-infrared (MIR) observations of the remarkable object IRAS 15099-5856 using the space telescopes AKARI and Spitzer, which demonstrate the presence of prominent crystalline silicate emission in this bright source. IRAS 15099-5856 has a complex morphology with a bright central compact source (IRS1) surrounded by knots, spurs, and several extended (∼4') arc-like filaments. The source is seen only at ≥10 μm. The Spitzer mid-infrared spectrum of IRS1 shows prominent emission features from Mg-rich crystalline silicates, strong [Ne II] 12.81 μm, and several other faint ionic lines. We model the MIR spectrum as thermal emission from dust and compare with the Herbig Be star HD 100546 and the luminous blue variable R71, which show very similar MIR spectra. Molecular line observations reveal two molecular clouds around the source, but no associated dense molecular cores. We suggest that IRS1 is heated by UV radiation from the adjacent O star Muzzio 10 and that its crystalline silicates most likely originated in a mass outflow from the progenitor of the supernova remnant (SNR) MSH 15-52. IRS1, which is embedded in the SNR, could have been shielded from the SN blast wave if the progenitor was in a close binary system with Muzzio 10. If MSH 15-52 is a remnant of Type Ib/c supernova (SN Ib/c), as has been previously proposed, this would confirm the binary model for SN Ib/c. IRS1 and the associated structures may be the relics of massive star death, as shaped by the supernova explosion, the pulsar wind, and the intense ionizing radiation of the embedded O star.

  6. WISE TF: A MID-INFRARED, 3.4 μm EXTENSION OF THE TULLY-FISHER RELATION USING WISE PHOTOMETRY

    International Nuclear Information System (INIS)

    Lagattuta, David J.; Mould, Jeremy R.; Staveley-Smith, Lister; Hong Tao; Springob, Christopher M.; Masters, Karen L.; Koribalski, Bärbel S.; Jones, D. Heath

    2013-01-01

    We present a mid-infrared Tully-Fisher (TF) relation using photometry from the 3.4 μm W1 band of the Wide-field Infrared Survey Explorer (WISE) satellite. The WISE TF relation is formed from 568 galaxies taken from the all-sky 2MASS Tully-Fisher (2MTF) galaxy catalog, spanning a range of environments including field, group, and cluster galaxies. This constitutes the largest mid-infrared TF relation constructed to date. After applying a number of corrections to galaxy magnitudes and line widths, we measure a master TF relation given by M corr = –22.24 – 10.05[log (W corr ) – 2.5], with an average dispersion of σ WISE = 0.686 mag. There is some tension between WISE TF and a preliminary 3.6 μm relation, which has a shallower slope and almost no intrinsic dispersion. However, our results agree well with a more recent relation constructed from a large sample of cluster galaxies. We additionally compare WISE TF to the near-infrared 2MTF template relations, finding a good agreement between the TF parameters and total dispersions of WISE TF and the 2MTF K-band template. This fact, coupled with typical galaxy colors of (K – W1) ∼ 0, suggests that these two bands are tracing similar stellar populations, including the older, centrally-located stars in the galactic bulge which can (for galaxies with a prominent bulge) dominate the light profile.

  7. Investigation of applicability of a mid-infrared spectroscopic method using an attenuated total reflection accessory and a new near-infrared transmission method for determination of faecal fat

    NARCIS (Netherlands)

    Volmer, M; Kingma, AW; Borsboom, PCF; Wolthers, BG; Kema, IP

    In many laboratories, the titrimetric method of Van de Kamer is used for the analysis of faecal fat content of patients suspected of steatorrhoea. We investigated the applicability of a mid-infrared (MIR) spectroscopic method, using an attenuated total reflection (ATR) accessory, and a new

  8. Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network.

    Science.gov (United States)

    Grelet, C; Bastin, C; Gelé, M; Davière, J-B; Johan, M; Werner, A; Reding, R; Fernandez Pierna, J A; Colinet, F G; Dardenne, P; Gengler, N; Soyeurt, H; Dehareng, F

    2016-06-01

    To manage negative energy balance and ketosis in dairy farms, rapid and cost-effective detection is needed. Among the milk biomarkers that could be useful for this purpose, acetone and β-hydroxybutyrate (BHB) have been proved as molecules of interest regarding ketosis and citrate was recently identified as an early indicator of negative energy balance. Because Fourier transform mid-infrared spectrometry can provide rapid and cost-effective predictions of milk composition, the objective of this study was to evaluate the ability of this technology to predict these biomarkers in milk. Milk samples were collected in commercial and experimental farms in Luxembourg, France, and Germany. Acetone, BHB, and citrate contents were determined by flow injection analysis. Milk mid-infrared spectra were recorded and standardized for all samples. After edits, a total of 548 samples were used in the calibration and validation data sets for acetone, 558 for BHB, and 506 for citrate. Acetone content ranged from 0.020 to 3.355mmol/L with an average of 0.103mmol/L; BHB content ranged from 0.045 to 1.596mmol/L with an average of 0.215mmol/L; and citrate content ranged from 3.88 to 16.12mmol/L with an average of 9.04mmol/L. Acetone and BHB contents were log-transformed and a part of the samples with low values was randomly excluded to approach a normal distribution. The 3 edited data sets were then randomly divided into a calibration data set (3/4 of the samples) and a validation data set (1/4 of the samples). Prediction equations were developed using partial least square regression. The coefficient of determination (R(2)) of cross-validation was 0.73 for acetone, 0.71 for BHB, and 0.90 for citrate with root mean square error of 0.248, 0.109, and 0.70mmol/L, respectively. Finally, the external validation was performed and R(2) obtained were 0.67 for acetone, 0.63 for BHB, and 0.86 for citrate, with respective root mean square error of validation of 0.196, 0.083, and 0.76mmol/L. Although

  9. AN IN-DEPTH VIEW OF THE MID-INFRARED PROPERTIES OF POINT SOURCES AND THE DIFFUSE ISM IN THE SMC GIANT H II REGION, N66

    International Nuclear Information System (INIS)

    Whelan, David G.; Johnson, Kelsey E.; Indebetouw, Rémy; Lebouteiller, Vianney; Galliano, Frédéric; Peeters, Els; Bernard-Salas, Jeronimo; Brandl, Bernhard R.

    2013-01-01

    The focus of this work is to study mid-infrared point sources and the diffuse interstellar medium (ISM) in the low-metallicity (∼0.2 Z ☉ ) giant H II region N66 in order to determine properties that may shed light on star formation in these conditions. Using the Spitzer Space Telescope's Infrared Spectrograph, we study polycyclic aromatic hydrocarbon (PAH), dust continuum, silicate, and ionic line emission from 14 targeted infrared point sources as well as spectra of the diffuse ISM that is representative of both the photodissociation regions (PDRs) and the H II regions. Among the point source spectra, we spectroscopically confirm that the brightest mid-infrared point source is a massive embedded young stellar object, we detect silicates in emission associated with two young stellar clusters, and we see spectral features of a known B[e] star that are commonly associated with Herbig Be stars. In the diffuse ISM, we provide additional evidence that the very small grain population is being photodestroyed in the hard radiation field. The 11.3 μm PAH complex emission exhibits an unexplained centroid shift in both the point source and ISM spectra that should be investigated at higher signal-to-noise and resolution. Unlike studies of other regions, the 6.2 μm and 7.7 μm band fluxes are decoupled; the data points cover a large range of I 7.7 /I 11.3 PAH ratio values within a narrow band of I 6.2 /I 11.3 ratio values. Furthermore, there is a spread in PAH ionization, being more neutral in the dense PDR where the radiation field is relatively soft, but ionized in the diffuse ISM/PDR. By contrast, the PAH size distribution appears to be independent of local ionization state. Important to unresolved studies of extragalactic low-metallicity star-forming regions, we find that emission from the infrared-bright point sources accounts for only 20%-35% of the PAH emission from the entire region. These results make a comparative data set to other star-forming regions with

  10. Authentication of lotus root powder adulterated with potato starch and/or sweet potato starch using Fourier transform mid-infrared spectroscopy.

    Science.gov (United States)

    Liu, Jia; Wen, Yu; Dong, Nan; Lai, Chunli; Zhao, Guohua

    2013-12-01

    Fourier transform mid infrared (FT-MIR) spectroscopy combined with chemometrics techniques were developed for classification and quantification of cheaper starches (potato and sweet potato starch) in lotus root powder (LRP). By performing principal component analysis (PCA), it was possible to distinguish between adulterated and non-adulterated LRP. The coefficient of determination (R(2)) and standard deviation ratio (SDR) of calibration set were found to be 0.9587-0.9898 and 3.63-10.2, depending on the pre-treatment of spectra. The external validation set gave a coefficient of determination (R(2)) and standard deviation ratio (SDR) of 0.9810 and 5.47, respectively. Moreover, the limit of detection (1%), the limit of quantification (3%), reasonable recovery (92.3-101.5%), satisfactory intra-assay (2.9-5.5%) and inter-assay (11.0-13.5%) precision illustrated the good performance of the present method. The results obtained in this study indicate that FT-MIR spectroscopy can be used as an easy, rapid and novel tool to detect the LRP adulterated with cheaper starches. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Electron effective mass in In0.33Ga0.67N determined by mid-infrared optical Hall effect

    Science.gov (United States)

    Armakavicius, Nerijus; Stanishev, Vallery; Knight, Sean; Kühne, Philipp; Schubert, Mathias; Darakchieva, Vanya

    2018-02-01

    Mid-infrared optical Hall effect measurements are used to determine the free charge carrier parameters of an unintentionally doped wurtzite-structure c-plane oriented In0.33Ga0.67N epitaxial layer. Room temperature electron effective mass parameters of m⊥* =(0.205 ±0.013) m0 and m∥*=(0.204 ±0.016 ) m0 for polarization perpendicular and parallel to the c-axis, respectively, were determined. The free electron concentration was obtained as (1.7 ± 0.2) × 1019 cm-3. Within our uncertainty limits, we detect no anisotropy for the electron effective mass parameter and we estimate the upper limit of the possible effective mass anisotropy as 7%. We discuss the influence of conduction band nonparabolicity on the electron effective mass parameter as a function of In content. The effective mass parameter is consistent with a linear interpolation scheme between the conduction band mass parameters in GaN and InN when the strong nonparabolicity in InN is included. The In0.33Ga0.67N electron mobility parameter was found to be anisotropic, supporting previous experimental findings for wurtzite-structure GaN, InN, and AlxGa1-xN epitaxial layers with c-plane growth orientation.

  12. Regulating Mid-infrared to Visible Fluorescence in Monodispersed Er3+-doped La2O2S (La2O2SO4) Nanocrystals by Phase Modulation

    Science.gov (United States)

    Pan, Qiwen; Yang, Dandan; Kang, Shiliang; Qiu, Jianrong; Dong, Guoping

    2016-11-01

    Rare earth doped mid-infrared (MIR) fluorescent sources have been widely investigated due to their various potential applications in the fields of communication, chemical detecting, medical surgery and so forth. However, with emission wavelength extended to MIR, multiphonon relaxation process that strongly quenched the MIR emission is one of the greatest challenges for such practical applications. In our design, we have described a controllable gas-aided annealing strategy to modulate the phase, crystal size, morphology and fluorescent performance of a material simultaneously. Uniform and monodispersed Er3+-doped La2O2S and La2O2SO4 nanocrystals with a similar lattice structure, crystallinity, diameter and morphology have been introduced to investigate the impact of multiphonon relaxation on luminescence performance. Detailed spectroscopic evolutions in the region of MIR, near-infrared (NIR), visible upconversion (UC) and their corresponding decay times provide insight investigation into the fluorescent mechanism caused by multiphonon relaxation. A possible energy transfer model has also been established. Our results present direct observation and mechanistic investigation of fluorescent evolution in multiphonon relaxation process, which is conductive to design MIR fluorescent materials in the future. To the best of our knowledge, it is the first investigation on MIR fluorescent performance of La2O2S nanocrystals, which may find various applications in many photoelectronic fields.

  13. Benign odontogenic tumors versus histochemically related tissues: preliminary results from mid-infrared and solid-state nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Kolmas, Joanna; Prządka, Rafał

    2014-01-01

    Three types of human odontogenic tumors histologically classified as compound composite odontoma, ossifying fibroma, and Pindborg tumor were characterized using mid-infrared spectroscopy (mid-IR) and solid-state nuclear magnetic resonance (ssNMR). For comparison, human jawbone and dental mineralized tissues such as dentin, enamel, and dental cement were also characterized. The studies focused on the structural properties and chemical composition of pathological tissues versus histochemically related tissues. All analyzed tumors were composed of organic and mineral parts and water. Apatite was found to be the main constituent of the mineral part. Various components (water, structural hydroxyl groups, carbonate ions (CO(3)(2-)), and hydrogen phosphate ions (HPO(4)(2-))) and physicochemical parameters (index of apatite maturity and crystallinity) were examined. The highest organic/mineral ratio was observed in fibrocementoma, a finding that can be explained by the fibrous character of the tumor. The lowest relative HPO(4)(2-) content was found in odontoma. This tumor is characterized by the highest mineral crystallinity index and content of structural hydroxyl groups. The Pindborg tumor mineral portion was found to be poorly crystalline and rich in HPO(4)(2-). The relative CO(3)(2-) content was similar in all samples studied. The results of spectroscopic studies of odontogenic tumors were consistent with the standard histochemical analysis. It was shown that the various techniques of ssNMR and elaborate analysis of the mid-IR spectra, applied together, provide valuable information about calcified benign odontogenic tumors.

  14. Quantitative in situ monitoring of an elevated temperature reaction using a water-cooled mid-infrared fiber-optic probe.

    Science.gov (United States)

    Maclaurin, P; Crabb, N C; Wells, I; Worsfold, P J; Coombs, D

    1996-04-01

    A novel water-cooled mid-infrared fiber-optic probe is described which is heatable to 230 °C. The probe has chalcogenide fibers and a ZnSe internal reflection element and is compact and fully flexible, allowing access to a wide range of standard laboratory reaction vessels and fume cupboard arrangements. Performance is demonstrated via the in situ analysis of an acid-catalyzed esterification reaction in toluene at 110 °C, and the results are compared with those from a conventional extractive sampling loop flow cell arrangement. Particular emphasis is given to the quantitative interpretation of the spectroscopic data, using gas chromatographic reference data. Calibration data are presented for univariate and partial least squares models, with an emphasis on procedures for improving the quality of interpreparation calibration and prediction through the use of focused reference analysis regimes. Subset univariate procedures are presented that yield relative errors of spectroscopy combined with bias correction partial least squares procedures for the efficient in situ quantitative analysis of laboratory scale reactions.

  15. Detection of several common adulterants in raw milk by MID-infrared spectroscopy and one-class and multi-class multivariate strategies.

    Science.gov (United States)

    Gondim, Carina de Souza; Junqueira, Roberto Gonçalves; Souza, Scheilla Vitorino Carvalho de; Ruisánchez, Itziar; Callao, M Pilar

    2017-09-01

    A sequential strategy was proposed to detect adulterants in milk using a mid-infrared spectroscopy and soft independent modelling of class analogy technique. Models were set with low target levels of adulterations including formaldehyde (0.074g.L -1 ), hydrogen peroxide (21.0g.L -1 ), bicarbonate (4.0g.L -1 ), carbonate (4.0g.L -1 ), chloride (5.0g.L -1 ), citrate (6.5g.L -1 ), hydroxide (4.0g.L -1 ), hypochlorite (0.2g.L -1 ), starch (5.0g.L -1 ), sucrose (5.4g.L -1 ) and water (150g.L -1 ). In the first step, a one-class model was developed with unadulterated samples, providing 93.1% sensitivity. Four poorly assigned adulterants were discarded for the following step (multi-class modelling). Then, in the second step, a multi-class model, which considered unadulterated and formaldehyde-, hydrogen peroxide-, citrate-, hydroxide- and starch-adulterated samples was implemented, providing 82% correct classifications, 17% inconclusive classifications and 1% misclassifications. The proposed strategy was considered efficient as a screening approach since it would reduce the number of samples subjected to confirmatory analysis, time, costs and errors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. LIFTING THE DUSTY VEIL WITH NEAR- AND MID-INFRARED PHOTOMETRY. II. A LARGE-SCALE STUDY OF THE GALACTIC INFRARED EXTINCTION LAW

    International Nuclear Information System (INIS)

    Zasowski, G.; Majewski, S. R.; Indebetouw, R.

    2009-01-01

    We combine near-infrared (Two Micron All Sky Survey) and mid-infrared (Spitzer-IRAC) photometry to characterize the IR extinction law (1.2-8 μm) over nearly 150 deg. of contiguous Milky Way midplane longitude. The relative extinctions in five passbands across these wavelength and longitude ranges are derived by calculating color excess ratios for G and K giant red clump stars in contiguous midplane regions and deriving the wavelength dependence of extinction in each one. Strong, monotonic variations in the extinction law shape are found as a function of angle from the Galactic center, symmetric on either side of it. These longitudinal variations persist even when dense interstellar regions, known a priori to have a shallower extinction curve, are removed. The increasingly steep extinction curves toward the outer Galaxy indicate a steady decrease in the absolute-to-selective extinction ratio (R V ) and in the mean dust grain size at greater Galactocentric angles. We note an increasing strength of the 8 μm extinction inflection at high Galactocentric angles and, using theoretical dust models, show that this behavior is consistent with the trend in R V . Along several lines of sight where the solution is most feasible, A λ /A K s as a function of Galactic radius (R GC ) is estimated and shown to have a Galactic radial dependence. Our analyses suggest that the observed relationship between extinction curve shape and Galactic longitude is due to an intrinsic dependence of the extinction law on Galactocentric radius.

  17. Rapid measurement of human milk macronutrients in the neonatal intensive care unit: accuracy and precision of fourier transform mid-infrared spectroscopy.

    Science.gov (United States)

    Smilowitz, Jennifer T; Gho, Deborah S; Mirmiran, Majid; German, J Bruce; Underwood, Mark A

    2014-05-01

    Although it is well established that human milk varies widely in macronutrient content, it remains common for human milk fortification for premature infants to be based on historic mean values. As a result, those caring for premature infants often underestimate protein intake. Rapid precise measurement of human milk protein, fat, and lactose to allow individualized fortification has been proposed for decades but remains elusive due to technical challenges. This study aimed to evaluate the accuracy and precision of a Fourier transform (FT) mid-infrared (IR) spectroscope in the neonatal intensive care unit to measure human milk fat, total protein, lactose, and calculated energy compared with standard chemical analyses. One hundred sixteen breast milk samples across lactation stages from women who delivered at term (n = 69) and preterm (n = 5) were analyzed with the FT mid-IR spectroscope and with standard chemical methods. Ten of the samples were tested in replicate using the FT mid-IR spectroscope to determine repeatability. The agreement between the FT mid-IR spectroscope analysis and reference methods was high for protein and fat and moderate for lactose and energy. The intra-assay coefficients of variation for all outcomes were less than 3%. The FT mid-IR spectroscope demonstrated high accuracy in measurement of total protein and fat of preterm and term milk with high precision.

  18. Selective excavation of decalcified dentin using a mid-infrared tunable nanosecond pulsed laser: wavelength dependency in the 6 μm wavelength range

    Science.gov (United States)

    Ishii, Katsunori; Saiki, Masayuki; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    2011-07-01

    Selective caries treatment has been anticipated as an essential application of dentistry. In clinic, some lasers have already realized the optical drilling of dental hard tissue. However, conventional lasers lack the selectivity, and still depend on the dentist's ability. Based on the absorption property of carious dentin, 6 μm wavelength range shows specific absorptions and promising characteristics for excavation. The objective of this study is to develop a selective excavation of carious dentin by using the laser ablation with 6 μm wavelength range. A mid-infrared tunable pulsed laser was obtained by difference-frequency generation technique. The wavelength was tuned around the absorption bands called amide 1 and amide 2. In the wavelength range from 5.75 to 6.60 μm, the difference of ablation depth between demineralized and normal dentin was observed. The wavelength at 6.02 μm and the average power density of 15 W/cm2, demineralized dentin was removed selectively with less-invasive effect on normal dentin. The wavelength at 6.42 μm required the increase of average power density, but also showed the possibility of selective ablation. This study provided a valuable insight into a wavelength choice for a novel dental laser device under development for minimal intervention dentistry.

  19. Development and validation of an environmentally friendly attenuated total reflectance in the mid-infrared region method for the determination of ethanol content in used engine lubrication oil.

    Science.gov (United States)

    Hatanaka, Rafael Rodrigues; Sequinel, Rodrigo; Gualtieri, Carlos Eduardo; Tercini, Antônio Carlos Bergamaschi; Flumignan, Danilo Luiz; de Oliveira, José Eduardo

    2013-05-15

    Lubricating oils are crucial in the operation of automotive engines because they both reduce friction between moving parts and protect against corrosion. However, the performance of lubricant oil may be affected by contaminants, such as gasoline, diesel, ethanol, water and ethylene glycol. Although there are many standard methods and studies related to the quantification of contaminants in lubricant oil, such as gasoline and diesel oil, to the best of our knowledge, no methods have been reported for the quantification of ethanol in used Otto cycle engine lubrication oils. Therefore, this work aimed at the development and validation of a routine method based on partial least-squares multivariate analysis combined with attenuated total reflectance in the mid-infrared region to quantify ethanol content in used lubrication oil. The method was validated based on its figures of merit (using the net analyte signal) as follows: limit of detection (0.049%), limit of quantification (0.16%), accuracy (root mean square error of prediction=0.089% w/w), repeatability (0.05% w/w), fit (R(2)=0.9997), mean selectivity (0.047), sensitivity (0.011), inverse analytical sensitivity (0.016% w/w(-1)) and signal-to-noise ratio (max: 812.4 and min: 200.9). The results show that the proposed method can be routinely implemented for the quality control of lubricant oils. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. The Carnegie Chicago Hubble Program: The Mid-Infrared Colours of Cepheids and the Effect of Metallicity on the CO Band-Head at 4.6 Micron

    Science.gov (United States)

    Scowcroft, Victoria; Seibert, Mark; Freedman, Wendy L.; Beaton, Rachael L.; Madore, Barry F.; Monson, Andrew J.; Rich, Jeffery A.; Rigby, Jane R.

    2016-01-01

    We compare mid-infrared (IR) 3.6 and 4.5 micron Warm Spitzer observations for Cepheids in the Milky Way and the Large and Small Magellanic Clouds. Using models, we explore in detail the effect of the CO rotation-vibration band-head at 4.6 micron on the mid-IR photometry. We confirm the temperature sensitivity of the CO band-head at 4.6 micron and find no evidence for an effect at 3.6 micron. We compare the ([3.6]-[4.5]) period-colour relations in the MW, LMC and SMC. The slopes of the period-colour relations for the three galaxies are in good agreement, but there is a trend in zero-point with metallicity, with the lowest metallicity Cepheids having redder mid-IR colours. Finally, we present a colour-[Fe/H] relation based on published spectroscopic metallicities. This empirical relation, calibrated to the metallicity system of Genovali et al., demonstrates that the ([3.6]-[4.5]) colour provides a reliable metallicity indicator for Cepheids, with a precision comparable to current spectroscopic determinations.

  1. Airborne Measurements of Venus Cloud-top H2O and HDO from NASA’s SOFIA in the Mid-Infrared

    Science.gov (United States)

    Tsang, Constantine; Encrenaz, Therese; DeWitt, Curtis N.; Richter, Matthew; Irwin, Patrick

    2017-10-01

    The determination of the D/H ratio in Venus’s atmosphere using water (H2O) and light water (HDO) has been used as evidence for the loss of a global sized ocean in the distant past on paleo-Venus. Measurements of atmospheric water vapour at and above the cloud level is also important as water is a key ingredient in the production of the hydrated H2SO4 clouds that prevail globally on Venus. While variations in latitude and local solar time of H2O at the cloud tops has been most recently measured by ESA’s Venus Express spacecraft, the data is sporadic due to the limb sounding geometry needed to make these measurements.Here we present H2O and HDO measurements from January 2017 from NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) using the EXES mid-infrared spectrometer flying at 40,000 ft where the relatively low telluric absorption makes detection of Venusian H2O possible. Two observation sequences were obtained that yielded spatially resolved maps of H2O and HDO at R~89,000 centered at 7.21 µm (1380 cm-1). We will also discuss the preliminary retrieved values of D/H ratios at the 65 km altitude probed at this wavelength.

  2. Growth, Properties, and Theoretical Analysis of M2LiVO4 (M = Rb, Cs) Crystals: Two Potential Mid-Infrared Nonlinear Optical Materials.

    Science.gov (United States)

    Han, Guopeng; Wang, Ying; Su, Xin; Yang, Zhihua; Pan, Shilie

    2017-05-15

    Mid-Infrared nonlinear optical (Mid-IR NLO) crystals with excellent performances play a particularly important role for applications in areas such as telecommunications, laser guidance, and explosives detection. However, the design and growth of high performance Mid-IR NLO crystals with large NLO efficiency and high laser-damage threshold (LDT) still face numerous fundamental challenge. In this study, two potential Mid-IR NLO materials, Rb 2 LiVO 4 (RLVO) and Cs 2 LiVO 4 (CLVO) with noncentrosymmetric structures (Orthorhombic, Cmc2 1 ) were synthesized by high-temperature solution method. Thermal analysis and powder X-ray diffraction demonstrate that RLVO and CLVO melt congruently. Centimeter sized crystals of CLVO have been grown by the top-seeded solution growth method. RLVO and CLVO exhibit strong second harmonic generation (SHG) effects (about 4 and 5 times that of KH 2 PO 4 , respectively) with a phase-matching behavior at 1.064 μm, and a wide transparency range (0.33-6.0 μm for CLVO). More importantly, RLVO and CLVO possess a high LDT value (~28 × AgGaS 2 ). In addition, the density functional theory (DFT) and dipole moments studies indicate that the VO 4 anionic groups have a dominant contribution to the SHG effects in RLVO and CLVO. These results suggest that the title compounds are promising NLO candidate crystals applied in the Mid-IR region.

  3. Comparison of Attenuated Total Reflectance Mid-Infrared, Near Infrared, and 1H-Nuclear Magnetic Resonance Spectroscopies for the Determination of Coffee’s Geographical Origin

    Directory of Open Access Journals (Sweden)

    Jessica Medina

    2017-01-01

    Full Text Available The sensorial properties of Colombian coffee are renowned worldwide, which is reflected in its market value. This raises the threat of fraud by adulteration using coffee grains from other countries, thus creating a demand for robust and cost-effective methods for the determination of geographical origin of coffee samples. Spectroscopic techniques such as Nuclear Magnetic Resonance (NMR, near infrared (NIR, and mid-infrared (mIR have arisen as strong candidates for the task. Although a body of work exists that reports on their individual performances, a faithful comparison has not been established yet. We evaluated the performance of 1H-NMR, Attenuated Total Reflectance mIR (ATR-mIR, and NIR applied to fraud detection in Colombian coffee. For each technique, we built classification models for discrimination by species (C. arabica versus C. canephora (or robusta and by origin (Colombia versus other C. arabica using a common set of coffee samples. All techniques successfully discriminated samples by species, as expected. Regarding origin determination, ATR-mIR and 1H-NMR showed comparable capacity to discriminate Colombian coffee samples, while NIR fell short by comparison. In conclusion, ATR-mIR, a less common technique in the field of coffee adulteration and fraud detection, emerges as a strong candidate, faster and with lower cost compared to 1H-NMR and more discriminating compared to NIR.

  4. Post-mortem interval estimation of human skeletal remains by micro-computed tomography, mid-infrared microscopic imaging and energy dispersive X-ray mapping.

    Science.gov (United States)

    Longato, S; Wöss, C; Hatzer-Grubwieser, P; Bauer, C; Parson, W; Unterberger, S H; Kuhn, V; Pemberger, N; Pallua, Anton K; Recheis, W; Lackner, R; Stalder, R; Pallua, J D

    2015-04-07

    In this study different state-of-the-art visualization methods such as micro-computed tomography (micro-CT), mid-infrared (MIR) microscopic imaging and energy dispersive X-ray (EDS) mapping were evaluated to study human skeletal remains for the determination of the post-mortem interval (PMI). PMI specific features were identified and visualized by overlaying molecular imaging data and morphological tissue structures generated by radiological techniques and microscopic images gained from confocal microscopy (Infinite Focus (IFM)). In this way, a more distinct picture concerning processes during the PMI as well as a more realistic approximation of the PMI were achieved. It could be demonstrated that the gained result in combination with multivariate data analysis can be used to predict the Ca/C ratio and bone volume (BV) over total volume (TV) for PMI estimation. Statistical limitation of this study is the small sample size, and future work will be based on more specimens to develop a screening tool for PMI based on the outcome of this multidimensional approach.

  5. Mechanisms of browning development in aggregates of marine organic matter formed under anoxic conditions: A study by mid-infrared and near-infrared spectroscopy

    Science.gov (United States)

    Mecozzi, Mauro; Acquistucci, Rita; Nisini, Laura; Conti, Marcelo Enrique

    2014-03-01

    In this paper we analyze some chemical aspects concerning the browning development associated to the aggregation of marine organic matter (MOM) occurring in anoxic conditions. Organic matter samples obtained by the degradation of different algal samples were daily taken to follow the evolution of the aggregation process and the associated browning process. These samples were examined by Fourier transform mid infrared (FTIR) and Fourier transform near infrared (FTNIR) spectroscopy and the colour changes occurring during the above mentioned aggregation process were measured by means of Colour Indices (CIs). Spectral Cross Correlation Analysis (SCCA) was applied to correlate changes in CI values to the structural changes of MOM observed by FTIR and FTNIR spectra which were also submitted to Two-Dimensional Hetero Correlation Analysis (2HDCORR). SCCA results showed that all biomolecules present in MOM aggregates such as carbohydrates, proteins and lipids are involved in the browning development. In particular, SCCA results of algal mixtures suggest that the observed yellow-brown colour can be linked to the development of non enzymatic (i.e. Maillard) browning reactions. SCCA results for MOM furthermore suggest that aggregates coming from brown algae also showed evidence of browning related to enzymatic reactions. In the end 2HDCORR results indicate that hydrogen bond interactions among different molecules of MOM can play a significant role in the browning development.

  6. Mid-infrared emission and Judd-Ofelt analysis of Dy3+-doped infrared Ga-Sb-S and Ga-Sb-S-PbI2 chalcohalide glasses

    Science.gov (United States)

    Guo, Jixiao; Jiao, Qing; He, Xiaolong; Guo, Hansong; Tong, Jianghao; Zhang, Zhihang; Jiang, Fuchao; Wang, Guoxiang

    2018-03-01

    Dy3+-doped Ga-Sb-S and Ga-Sb-S-PbI2 chalcohalide glasses were prepared by traditional melt quenching method. The effect of halide PbI2 on the physical and optical properties of Dy3+ ions was investigated. The density and ionic concentration of the host sample increased with the introduction of PbI2 halides, whereas the refractive index at 1.55 μm decreased. The Judd-Ofelt parameters showed that Ω2 increased in PbI2-modified glass, whereas the Ω6 value showed the opposite tendency. Infrared emission spectrum also showed that the intensity increased with PbI2 addition, and considerable enhancement at 2.8 μm was observed in the mid-infrared region. The halide PbI2 promoted the reduction of phonon energy of the host and the improvement of the laser pump efficiency, which led to the construction of optimized infrared glass materials for optical applications.

  7. Ground and aerial use of an infrared video camera with a mid-infrared filter (1.45 to 2.0 microns)

    Science.gov (United States)

    Everitt, J. H.; Escobar, D. E.; Nixon, P. R.; Hussey, M. A.; Blazquez, C. H.

    1986-01-01

    A black-and-white infrared (0.9 to 2.2 micron) video camera, filtered to record radiation within the 1.45 to 2.0 microns midinfrared water absorption region, was evaluated with ground and aerial studies. Imagery of single leaves of seven plant species (four succulent; three nonsucculent) showed that succulent leaves were easily distinguishable from nonsucculent leaves. Spectrophotometric leaf reflectance measurements made over the 1.45 to 2.0 microns confirmed the imagery results. Ground-based video recordings also showed that severely drought-stressed buffelgrass (Cenchrus ciliaris L.) plants were distinguishable from the nonstressed and moderately stressed plants. Moreover, the camera provided airborne imagery that clearly differentiated between irrigated and nonirrigated grass plots. Due to the lower radiation intensity in the mid-infrared spectral region and the low sensitivity response of the camera's tube, these video images were not as sharp as those obtained by visible or visible/near-infrared sensitive video cameras. Nevertheless, these results showed that a video camera with midinfrared sensitivity has potential for use in remote sensing research and applications.

  8. Characterization of a multi-module tunable EC-QCL system for mid-infrared biofluid spectroscopy for hospital use and personalized diabetes technology

    Science.gov (United States)

    Grafen, M.; Nalpantidis, K.; Ostendorf, A.; Ihrig, D.; Heise, H. M.

    2016-03-01

    Blood glucose monitoring systems are important point-of-care devices for the hospital and personalised diabetes technology. FTIR-spectrometers have been successfully employed for the development of continuous bed-side monitoring systems in combination with micro-dialysis. For implementation in miniaturised portable systems, external-cavity quantum cascade lasers (EC-QCL) are suited. An ultra-broadly tunable pulsed EC-QCL system, covering a spectral range from 1920 to 780 cm-1, has been characterised with regard to the spectral emission profiles and wavenumber scale accuracy. The measurement of glucose in aqueous solution is presented and problems with signal linearity using Peltier-cooled MCT-detectors are discussed. The use of larger optical sample pathlengths for attenuating the laser power in transmission measurements has recently been suggested and implemented, but implications for broad mid-infrared measurements have now been investigated. The utilization of discrete wavenumber variables as an alternative for sweep-tune measurements has also been studied and sparse multivariate calibration models intended for clinical chemistry applications are described for glucose and lactate.

  9. The automated sample preparation system MixMaster for investigation of volatile organic compounds with mid-infrared evanescent wave spectroscopy.

    Science.gov (United States)

    Vogt, F; Karlowatz, M; Jakusch, M; Mizaikoff, B

    2003-04-01

    For efficient development assessment, and calibration of new chemical analyzers a large number of independently prepared samples of target analytes is necessary. Whereas mixing units for gas analysis are readily available, there is a lack of instrumentation for accurate preparation of liquid samples containing volatile organic compounds (VOCs). Manual preparation of liquid samples containing VOCs at trace concentration levels is a particularly challenging and time consuming task. Furthermore, regularly scheduled calibration of sensors and analyzer systems demands for computer controlled automated sample preparation systems. In this paper we present a novel liquid mixing device enabling extensive measurement series with focus on volatile organic compounds, facilitating analysis of water polluted by traces of volatile hydrocarbons. After discussing the mixing system and control software, first results obtained by coupling with an FT-IR spectrometer are reported. Properties of the mixing system are assessed by mid-infrared attenuated total reflection (ATR) spectroscopy of methanol-acetone mixtures and by investigation of multicomponent samples containing volatile hydrocarbons such as 1,2,4-trichlorobenzene and tetrachloroethylene. Obtained ATR spectra are evaluated by principal component regression (PCR) algorithms. It is demonstrated that the presented sample mixing device provides reliable multicomponent mixtures with sufficient accuracy and reproducibility at trace concentration levels.

  10. Mid-infrared Fe2+:ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser

    Directory of Open Access Journals (Sweden)

    Shougui Ning

    2018-02-01

    Full Text Available A mid-infrared (mid-IR semiconductor saturable absorber mirror (SESAM based on Fe2+:ZnSe for passively Q-switched Er3+-doped ZBLAN fiber laser has been demonstrated. Fe2+:ZnSe SESAM was fabricated by electron beam evaporation method. Fe2+ was innovatively doped into the reflective Bragg stack, in which ZnSe layer served as both doped matrix and high refractive layer during the fabricating process. By using the Fe2+:ZnSe SESAM, stable passively Q-switched pulses with the minimum pulse width of 0.43 μs under a repetition rate of 160.82 kHz were obtained. The recorded maximum average output power of 873 mW with a peak power of 12.59 W and pulse energy of 5.43 μJ were achieved. The results demonstrated a new method for fabricating Fe2+:ZnSe SESAM, which can be used in compact mid-IR Q-switched fiber laser.

  11. OPEN CLUSTERS IN THE MILKY WAY OUTER DISK: NEWLY DISCOVERED AND UNSTUDIED CLUSTERS IN THE SPITZER GLIMPSE-360, CYG-X, AND SMOG SURVEYS

    International Nuclear Information System (INIS)

    Zasowski, G.; Beaton, R. L.; Hamm, K. K.; Majewski, S. R.; Patterson, R. J.; Babler, B.; Churchwell, E.; Meade, M.; Whitney, B. A.; Benjamin, R. A.; Watson, C.

    2013-01-01

    Open stellar clusters are extremely valuable probes of Galactic structure, star formation, kinematics, and chemical abundance patterns. Near-infrared (NIR) data have enabled the detection of hundreds of clusters hidden from optical surveys, and mid-infrared (MIR) data are poised to offer an even clearer view into the most heavily obscured parts of the Milky Way. We use new MIR images from the Spitzer GLIMPSE-360, Cyg-X, and SMOG surveys to visually identify a large number of open cluster candidates in the outer disk of the Milky Way (65° < l < 265°). Using NIR color-magnitude diagrams, stellar isochrones, and stellar reddening estimates, we derive cluster parameters (metallicity, distance, reddening) for those objects without previous identification and/or parameters in the literature. In total, we present coordinates and sizes of 20 previously unknown open cluster candidates; for 7 of these we also present metallicity, distance, and reddening values. In addition, we provide the first estimates of these values for nine clusters that had been previously cataloged. We compare our cluster sizes and other derived parameters to those in the open cluster catalog of Dias et al. and find strong similarities except for a higher mean reddening for our objects, which signifies our increased detection sensitivity in regions of high extinction. The results of this cluster search and analysis demonstrate the ability of MIR imaging and photometry to augment significantly the current census of open clusters in the Galaxy

  12. Glimpse: Sparsity based weak lensing mass-mapping tool

    Science.gov (United States)

    Lanusse, F.; Starck, J.-L.; Leonard, A.; Pires, S.

    2018-02-01

    Glimpse, also known as Glimpse2D, is a weak lensing mass-mapping tool that relies on a robust sparsity-based regularization scheme to recover high resolution convergence from either gravitational shear alone or from a combination of shear and flexion. Including flexion allows the supplementation of the shear on small scales in order to increase the sensitivity to substructures and the overall resolution of the convergence map. To preserve all available small scale information, Glimpse avoids any binning of the irregularly sampled input shear and flexion fields and treats the mass-mapping problem as a general ill-posed inverse problem, regularized using a multi-scale wavelet sparsity prior. The resulting algorithm incorporates redshift, reduced shear, and reduced flexion measurements for individual galaxies and is made highly efficient by the use of fast Fourier estimators.

  13. Mid-infrared and near-infrared spectroscopy for rapid detection of Gardeniae Fructus by a liquid-liquid extraction process.

    Science.gov (United States)

    Tao, Lingyan; Lin, Zhonglin; Chen, Jiashan; Wu, Yongjiang; Liu, Xuesong

    2017-10-25

    Gardeniae Fructus is widely used in the pharmaceutical industry, and many studies have confirmed its medical and economic value. In this study, samples collected from different liquid-liquid extraction batches of Gardeniae Fructus were detected by mid-infrared (MIR) and near-infrared (NIR) spectroscopy. Seven analytes, neochlorogenic acid (5-CQA), cryptochlorogenic acid (4-CQA), chlorogenic acid (3-CQA), geniposidic acid (GEA), deacetyl-asperulosidic acid methyl ester (DAAME), genipin-gentiobioside (GGB), and gardenoside (GA), were chosen as quality property indexes of Gardeniae Fructus. The two kinds of spectra were each used to build models by single partial least squares (PLS). Additionally, both spectral data were combined and modeled by multiblock PLS. For single spectroscopy modeling results, NIR had a better prediction for high-concentration analytes (3-CQA, DAAME, GGB, and GA) whereas MIR performed better for low-concentration analytes (5-CQA, 4-CQA, and GEA). The multiblock methodology was found to be better compared to single spectroscopy models for all seven analytes. Specifically, the coefficients of determination (R 2 ) of the NIR, MIR, and multiblock PLS calibration models of all seven components were higher than 0.95. Relative standard errors of prediction (RSEP) were all less than 7%, except for models of GGB, which were 10.36%, 13.24%, and 8.15% for the NIR-PLS, MIR-PLS, and multiblock models, respectively. These results indicate that MIR and NIR spectrographic techniques could provide a new choice for quality control in industrial production of Gardeniae Fructus. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Influence of composition and roughness on the pigment mapping of paintings using mid-infrared fiberoptics reflectance spectroscopy (mid-IR FORS) and multivariate calibration.

    Science.gov (United States)

    Sessa, Clarimma; Bagán, Héctor; García, Jose Francisco

    2014-10-01

    Mid-infrared fiberoptics reflectance spectroscopy (mid-IR FORS) is a very interesting technique for artwork characterization purposes. However, the fact that the spectra obtained are a mixture of surface (specular) and volume (diffuse) reflection is a significant drawback. The physical and chemical features of the artwork surface may produce distortions in the spectra that hinder comparison with reference databases acquired in transmission mode. Several studies attempted to understand the influence of the different variables and propose procedures to improve the interpretation of the spectra. This article is focused on the application of mid-IR FORS and multivariate calibration to the analysis of easel paintings. The objectives are the evaluation of the influence of the surface roughness on the spectra, the influence of the matrix composition for the classification of unknown spectra, and the capability of obtaining pigment composition mappings. A first evaluation of a fast procedure for spectra management and pigment discrimination is discussed. The results demonstrate the capability of multivariate methods, principal component analysis (PCA), and partial least squares discrimination analysis (PLS-DA), to model the distortions of the reflectance spectra and to delimitate and discriminate areas of uniform composition. The roughness of the painting surface is found to be an important factor affecting the shape and relative intensity of the spectra. A mapping of the major pigments of a painting is possible using mid-IR FORS and PLS-DA when the calibration set is a palette that includes the potential pigments present in the artwork mixed with the appropriate binder and that shows the different paint textures.

  15. Selection of discriminant mid-infrared wavenumbers by combining a naïve Bayesian classifier and a genetic algorithm: Application to the evaluation of lignocellulosic biomass biodegradation.

    Science.gov (United States)

    Rammal, Abbas; Perrin, Eric; Vrabie, Valeriu; Assaf, Rabih; Fenniri, Hassan

    2017-07-01

    Infrared spectroscopy provides useful information on the molecular compositions of biological systems related to molecular vibrations, overtones, and combinations of fundamental vibrations. Mid-infrared (MIR) spectroscopy is sensitive to organic and mineral components and has attracted growing interest in the development of biomarkers related to intrinsic characteristics of lignocellulose biomass. However, not all spectral information is valuable for biomarker construction or for applying analysis methods such as classification. Better processing and interpretation can be achieved by identifying discriminating wavenumbers. The selection of wavenumbers has been addressed through several variable- or feature-selection methods. Some of them have not been adapted for use in large data sets or are difficult to tune, and others require additional information, such as concentrations. This paper proposes a new approach by combining a naïve Bayesian classifier with a genetic algorithm to identify discriminating spectral wavenumbers. The genetic algorithm uses a linear combination of an a posteriori probability and the Bayes error rate as the fitness function for optimization. Such a function allows the improvement of both the compactness and the separation of classes. This approach was tested to classify a small set of maize roots in soil according to their biodegradation process based on their MIR spectra. The results show that this optimization method allows better discrimination of the biodegradation process, compared with using the information of the entire MIR spectrum, the use of the spectral information at wavenumbers selected by a genetic algorithm based on a classical validity index or the use of the spectral information selected by combining a genetic algorithm with other methods, such as Linear Discriminant Analysis. The proposed method selects wavenumbers that correspond to principal vibrations of chemical functional groups of compounds that undergo degradation

  16. OPTICAL CONSTANTS AND BAND STRENGTHS OF CH{sub 4}:C{sub 2}H{sub 6} ICES IN THE NEAR- AND MID-INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Molpeceres, Germán; Ortigoso, Juan; Escribano, Rafael; Maté, Belén [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006 Madrid (Spain); Satorre, Miguel Angel; Millán, Carlos, E-mail: belen.mate@csic.es [Escuela Politécnica Superior de Alcoy, UPV, E-03801 Alicante (Spain)

    2016-07-10

    We present a spectroscopic study of methane–ethane ice mixtures. We have grown CH{sub 4}:C{sub 2}H{sub 6} mixtures with ratios 3:1, 1:1, and 1:3 at 18 and 30 K, plus pure methane and ethane ices, and have studied them in the near-infrared (NIR) and mid-infrared (MIR) ranges. We have determined densities of all species mentioned above. For amorphous ethane grown at 18 and 30 K we have obtained a density of 0.41 and 0.54 g cm{sup −3}, respectively, lower than a previous measurement of the density of the crystalline species, 0.719 g cm{sup −3}. As far as we know this is the first determination of the density of amorphous ethane ice. We have measured band shifts of the main NIR methane and ethane features in the mixtures with respect to the corresponding values in the pure ices. We have estimated band strengths of these bands in the NIR and MIR ranges. In general, intensity decay in methane modes was detected in the mixtures, whereas for ethane no clear tendency was observed. Optical constants of the mixtures at 30 and 18 K have also been evaluated. These values can be used to trace the presence of these species in the surface of trans-Neptunian objects. Furthermore, we have carried out a theoretical calculation of these ice mixtures. Simulation cells for the amorphous solids have been constructed using a Metropolis Monte Carlo procedure. Relaxation of the cells and prediction of infrared spectra have been carried out at density functional theory level.

  17. Mid-infrared spectroscopy of serum, a promising non-invasive method to assess prognosis in patients with ascites and cirrhosis

    Science.gov (United States)

    Le Corvec, Maëna; Jezequel, Caroline; Monbet, Valérie; Fatih, Nadia; Charpentier, Frédéric; Tariel, Hugues; Boussard-Plédel, Catherine; Bureau, Bruno; Loréal, Olivier; Sire, Olivier

    2017-01-01

    Background & aims Prognostic tests are critical in the management of patients with cirrhosis and ascites. Biological tests or scores perform poorly in that situation. Mid-infrared fibre evanescent wave spectroscopy (MIR-FEWS) which allows for global serum metabolic profiling may provide more relevant information by measuring a wider range of metabolic parameters in serum. Here we present the accuracy of a MIR-FEWS based predictive model for the prognosis of 6 months survival in patients with ascites and cirrhosis. Methods Patients with ascites were prospectively included and followed up for 6 months. MIR-FEWS spectra were measured in serum samples. The most informative spectral variables obtained by MIR-FEWS were selected by FADA algorithm and then used to build the MIR model. Accuracy of this model was assessed by ROC curves and 90%/10% Monte Carlo cross-validation. MIR model accuracy for 6 months survival was compared to that of the Child-Pugh and MELD scores. Results 119 patients were included. The mean age was 57.36±13.70, the MELD score was 16.32±6.26, and the Child-Pugh score was 9.5±1.83. During follow-up, 23 patients died (20%). The MIR model had an AUROC for 6 months mortality of 0.90 (CI95: 0.88–0.91), the MELD 0.77 (CI95: 0.66–0.89) and Child-Pugh 0.76 (CI95: 0.66–0.88). MELD and Child-Pugh AUROCs were significantly lower than that of the MIR model (p = 0.02 and p = 0.02 respectively). Multivariate logistic regression analysis showed that MELD (pinfrared spectroscopy could be helpful in the management of these patients. PMID:29020046

  18. Cavity-Enhanced Spectroscopy of Molecular Ions in the Mid-Infrared with Up-Conversion Detection and Brewster-Plate Spoilers

    Science.gov (United States)

    Markus, Charles R.; McCollum, Jefferson E.; Hodges, James Neil; Perry, Adam J.; McCall, Benjamin J.

    2017-06-01

    Molecular ions are challenging to study with conventional spectroscopic methods. Laboratory discharges produce ions in trace quantities which can be obscured by the abundant neutral molecules present. The technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy (NICE-OHVMS) overcomes these challenges by combining the ion-neutral discrimination of velocity modulation spectroscopy with the sensitivity of Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy (NICE-OHMS), and has been able to determine transition frequencies of molecular ions in the mid-infrared (mid-IR) with sub-MHz uncertainties when calibrated with an optical frequency comb. However, the extent of these studies was limited by the presence of fringes due to parasitic etalons and the speed and noise characteristics of mid-IR detectors. Recently, we have overcome these limitations by implementing up-conversion detection and dithered optics. We performed up-conversion using periodically poled lithium niobate to convert light from the mid-IR to the visible to be within the coverage of sensitive and fast silicon detectors while maintaining our heterodyne and velocity modulation signals. The parasitic etalons were removed by rapidly rotating CaF_2 windows with galvanometers, which is known as a Brewster-plate spoiler, which averaged out the fringes in detection. Together, these improved the sensitivity by more than an order of magnitude and have enabled extended spectroscopic surveys of molecular ions in the mid-IR. J. N. Hodges, A. J. Perry, P. A. Jenkins II, B. M. Siller, and B. J. McCall, J. Chem. Phys. (2013), 139, 164201. C. R. Webster, J. Opt. Soc. Am. B (1985), 2, 1464. C. R. Markus, A. J. Perry, J. N. Hodges, and B. J. McCall, Opt. Express (2017), 25, 3709-3721.

  19. The Development of a High-Power, Pulsed Mid-Infrared Laser for a Two-Photon LIF Detection of Tropospheric OH

    Science.gov (United States)

    Hannun, R. A.; Smith, J. B.; Witinski, M. F.; Anderson, J. G.

    2015-12-01

    The hydroxyl radical is universally recognized as the dominant oxidizing species in the earth's atmosphere. OH initiates the chemical transformation and degradation of greenhouse gases, pollutants, and volatile organic compounds and plays a critical role in both urban ozone pollution and aerosol formation. Because of its high reactivity, OH radicals have an atmospheric lifetime of less than a second and only reach mixing ratios of parts per trillion (ppt) in the free troposphere. The combination of these two factors makes in-situ observations of OH challenging. Laser-Induced Fluorescence (LIF) is a highly sensitive technique that has been successfully applied to measurements of stratospheric OH. The LIF technique has also been adapted to instrumentation for OH observations in the troposphere. However, results for tropospheric OH have been inconclusive due to poorly understood interferences, and large discrepancies exist between modeled and measured OH concentrations. A Two-Photon LIF (TP-LIF) technique has been proposed as a means of enhancing sensitivity by shifting to lower-energy pumping frequencies, which also minimizes laser-induced interference pathways. In this detection scheme, OH is pumped into an excited vibrational state and subsequently pumped into an excited electronic state. A major limitation in the sensitivity of the TP-LIF detection scheme has been the lack of a mid-infrared (mid-IR) light source with enough power to adequately pump the vibrational transition. We have developed a high-power, pulsed laser system at 2.97 μm using an optical parametric generator (OPG). The OPG system delivers narrow-linewidth, tunable radiation with high peak-power to substantially populate the vibrational excitation. The development of the OPG laser system effectively addresses the major challenge in the TP-LIF detection of OH.

  20. An extinction-free AGN selection by 18-band SED fitting in mid-infrared in the AKARI NEP deep field

    Science.gov (United States)

    Huang, Ting-Chi; Goto, Tomotsugu; Hashimoto, Tetsuya; Oi, Nagisa; Matsuhara, Hideo

    2017-11-01

    We have developed an efficient active galactic nucleus (AGN) selection method using 18-band spectral energy distribution (SED) fitting in mid-infrared (mid-IR). AGNs are often obscured by gas and dust, and those obscured AGNs tend to be missed in optical, UV and soft X-ray observations. Mid-IR light can help us to recover them in an obscuration-free way using their thermal emission. On the other hand, star-forming galaxies (SFGs) also have strong polycyclic aromatic hydrocarbon emission features in mid-IR. Hence, establishing an accurate method to separate populations of AGNs and SFGs is important. However, in previous mid-IR surveys, only three or four filters were available, and thus the selection was limited. We combined AKARI's continuous nine mid-IR bands with Wide field Infrared Survey Explorer (WISE) and Spitzer data to create 18 mid-IR bands for AGN selection. Among 4682 galaxies in the AKARI north ecliptic pole deep field, 1388 are selected to be AGN hosts, which implies an AGN fraction of 29.6 ± 0.8 per cent (among them 47 per cent are Seyfert 1.8 and 2). Comparing the result from SED fitting into WISE and Spitzer colour-colour diagram reveals that Seyferts are often missed by previous studies. Our result has been tested by stacking median magnitude for each sample. Using X-ray data from Chandra, we compared the result of our SED fitting with WISE's colour box selection. We recovered more X-ray detected AGNs than previous methods by 20 per cent.

  1. THE DUST CLOUD AROUND THE WHITE DWARF G 29-38. II. SPECTRUM FROM 5 TO 40 μm AND MID-INFRARED PHOTOMETRIC VARIABILITY

    International Nuclear Information System (INIS)

    Reach, William T.; Lisse, Carey; Von Hippel, Ted; Mullally, Fergal

    2009-01-01

    We model the mineralogy and distribution of dust around the white dwarf G29-39 using the infrared spectrum from 1 to 35 μm. The spectral model for G29-38 dust combines a wide range of materials based on spectral studies of comets and debris disks. In order of their contribution to the mid-infrared emission, the most abundant minerals around G29-38 are amorphous carbon (λ || = 5, and the radial density profile ∝r -2.7 ; the total mass of this model disk is 2 x 10 19 g. A physically thin (less than the white dwarf radius) and optically thick disk can contribute to the near-infrared continuum only; such a disk cannot explain the longer-wavelength continuum or strong emission features. The combination of a physically thin, optically thick inner disk and an outer, physically thick and moderately optically thin cloud or disk produces a reasonably good fit to the spectrum and requires only silicates in the outer cloud. We discuss the mineralogical results in comparison to planetary materials. The silicate composition contains minerals found from cometary spectra and meteorites, but Fe-rich pyroxene is more abundant than enstatite (Mg-rich pyroxene) or forsterite (Mg-rich olivine) in G29-38 dust, in contrast to what is found in most comet or meteorite mineralogies. Enstatite meteorites may be the most similar solar system materials to G29-38 dust. Finally, we suggest the surviving core of a h ot Jupiteras an alternative (neither cometary nor asteroidal) origin for the debris, though further theoretical work is needed to determine if this hypothesis is viable.

  2. Heritability and repeatability of milk coagulation properties predicted by mid-infrared spectroscopy during routine data recording, and their relationships with milk yield and quality traits.

    Science.gov (United States)

    Tiezzi, F; Pretto, D; De Marchi, M; Penasa, M; Cassandro, M

    2013-10-01

    The aim of this study was to estimate (co)variance components for milk coagulation properties (MCP) predicted by mid-infrared spectroscopy (MIRS) during routine milk recording, and to assess their relationships with yield and quality traits. A total of 63 470 milk samples from Holstein-Friesian cows were analyzed for MCP, pH and quality characteristics using MIRS. Casein to protein and protein to fat ratios were calculated from information obtained by MIRS. Records were collected across 1 year on 16 089 cows in 345 herds. The model used for genetic analysis included fixed effects of parity and stage of lactation, and random effects of herd-test-day, cow permanent environmental, animal additive genetic and residual. (Co)variance components were assessed in a Bayesian framework using the Gibbs Sampler. Estimates of heritabilities were consistent with those reported in the literature, being moderate for MCP (0.210 and 0.238 for rennet coagulation time (RCT) and curd firmness (a30), respectively), milk contents (0.213 to 0.333) and pH (0.262), and low for somatic cell score (0.093) and yield traits (0.098 to 0.130). Repeatabilities were 0.391 and 0.434 for RCT and a30, respectively, and genetic correlations were generally low, with estimates greater than 0.30 (in absolute value) only for a30 with fat, protein and casein contents. Overall, results suggest that genetic evaluation for MCP predicted by MIRS is feasible at population level, and several repeated measures per cow during a lactation are required to estimate reliable breeding values for coagulation traits.

  3. LIFTING THE DUSTY VEIL WITH NEAR- AND MID-INFRARED PHOTOMETRY. I. DESCRIPTION AND APPLICATIONS OF THE RAYLEIGH-JEANS COLOR EXCESS METHOD

    International Nuclear Information System (INIS)

    Majewski, Steven R.; Zasowski, Gail; Nidever, David L.

    2011-01-01

    The Milky Way (MW) remains a primary laboratory for understanding the structure and evolution of spiral galaxies, but typically we are denied clear views of MW stellar populations at low Galactic latitudes because of extinction by interstellar dust. However, the combination of Two Micron All-Sky Survey (2MASS) near-infrared (NIR) and Spitzer-IRAC mid-infrared (MIR) photometry enables a powerful method for determining the line-of-sight reddening to any star: the sampled wavelengths lie in the Rayleigh-Jeans part of the spectral energy distribution of most stars, where, to first order, all stars have essentially the same intrinsic color. Thus, changes in stellar NIR-MIR colors due to interstellar reddening are readily apparent, and (under an assumed extinction law) the observed colors and magnitudes of stars can be easily and accurately restored to their intrinsic values, greatly increasing their usefulness for Galactic structure studies. In this paper, we explore this 'Rayleigh-Jeans Color Excess' (RJCE) method and demonstrate that use of even a simple variant of the RJCE method based on a single reference color, (H -[4.5μ]), can rather accurately remove dust effects from previously uninterpretable 2MASS color-magnitude diagrams of stars in fields along the heavily reddened Galactic midplane, with results far superior to those derived from application of other dereddening methods. We also show that 'total' Galactic midplane extinction looks rather different from that predicted using 100μ emission maps from the IRAS/ISSA and COBE/DIRBE instruments as presented by Schlegel et al. Instead, the Galactic midplane extinction strongly resembles the distribution of 13 CO (J = 1→0) emission. Future papers will focus on refining the RJCE method and applying the technique to understand better not only dust and its distribution but also the distribution of stars intermixed with the dust in the low-latitude Galaxy.

  4. Using mid infrared technology as new method for the determination of the dwell time of salivary substitutes on three dimensional gingiva models

    Directory of Open Access Journals (Sweden)

    Karin Engelhart

    2016-03-01

    Full Text Available Abstract Background Many people suffer from dry mouth (xerostomia due to radiotherapy treatment of head and neck cancer, diseases like Sjogren’s syndrome or as adverse effects to prescribed medications. Salivary substitute products like gels or sprays are often used for treatment. Efficacy of those oral care products are regularly assessed by validated or even not validated questionnaires. To determine the adhesion effect over time more objectively a new and sensitive method was established. The following study was designed to assess the dwell time of different oral care products in vitro. Method Two different types of surfaces were covered with oral care products and washed using a definite protocol with artificial saliva salt solution. First, oral care gels or oral care sprays were spread to a polystyrene surface of 2.25 cm2, then onto cell based three-dimensional gingiva models. The surfaces were washed ten times with artificial saliva salt solution. The resulting washing solutions were examined using mid infrared spectroscopy in order to detect ingredients of the oral care products. Results All assessed oral care gels or oral care sprays and their components were detected very sensitive. Even traces of the products were detected in the eluent and thus enabled to differentiate the dwell times of the different products. In general, the dwell time of oral care gels on polystyrene or gingiva models was longer than that of oral care sprays. The use of gingiva models improved the differentiation between different products. Conclusions MIR spectroscopy turned out to be a sensitive method to detect salivary substitutes. Differences between single components and different products can be detected. The described method is a simple, reliable and easy process to evaluate the dwell time of oral care products in vitro and thus a useful tool to design optimised salivary substitute products. Ethics This is an in vitro study. No ethics or consent was

  5. Quantification of whey proteins by reversed phase-HPLC and effectiveness of mid-infrared spectroscopy for their rapid prediction in sweet whey.

    Science.gov (United States)

    Sturaro, Alba; De Marchi, Massimo; Masi, Antonio; Cassandro, Martino

    2016-01-01

    In the dairy industry, membrane filtration is used to reduce the amount of whey waste and, simultaneously, to recover whey proteins (WP). The composition of WP can strongly affect the filtration treatment of whey, and rapid determination of WP fractions would be of interest for dairy producers to monitor WP recovery. This study aimed to develop mid-infrared spectroscopy (MIRS) prediction models for the rapid quantification of protein in sweet whey, using a validated rapid reversed phase (RP)-HPLC as a reference method. Quantified WP included α-lactalbumin (α-LA), β-lactoglobulin (β-LG) A and B, bovine serum albumin, caseinomacropeptides, and proteose peptone. Validation of RP-HPLC was performed by calculating the relative standard deviation (RSD) in repeatability and reproducibility tests for WP retention time and peak areas. Samples of liquid whey (n=187) were analyzed by RP-HPLC and scanned through MIRS to collect spectral information (900 to 4,000 cm(-1)); statistical analysis was carried out through partial least squares regression and random cross-validation procedure. Retention times in RP-HPLC method were stable (RSD between 0.03 and 0.80%), whereas the RSD of peak area (from 0.25 to 8.48%) was affected by WP relative abundance. Higher coefficients of determination in validation for MIRS model were obtained for protein fractions present in whey in large amounts, such as β-LG (0.58), total identified WP (0.58), and α-LA (0.56). Results of this study suggest that MIRS is an easy method for rapid quantification of detail protein in sweet whey, even if better resolution was achieved with the method based on RP-HPLC. The prediction of WP in sweet whey by MIRS might be used for screening and for classifying sweet whey according to its total and individual WP contents. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Evaluation and benchmarking of an EC-QCL-based mid-infrared spectrometer for monitoring metabolic blood parameters in critical care units

    Science.gov (United States)

    Grafen, M.; Delbeck, S.; Busch, H.; Heise, H. M.; Ostendorf, A.

    2018-02-01

    Mid-infrared spectroscopy hyphenated with micro-dialysis is an excellent method for monitoring metabolic blood parameters as it enables the concurrent, reagent-free and precise measurement of multiple clinically relevant substances such as glucose, lactate and urea in micro-dialysates of blood or interstitial fluid. For a marketable implementation, quantum cascade lasers (QCL) seem to represent a favourable technology due to their high degree of miniaturization and potentially low production costs. In this work, an external cavity (EC) - QCL-based spectrometer and two Fourier-transform infrared (FTIR) spectrometers were benchmarked with regard to the precision, accuracy and long-term stability needed for the monitoring of critically ill patients. For the tests, ternary aqueous solutions of glucose, lactate and mannitol (the latter for dialysis recovery determination) were measured in custom-made flow-through transmission cells of different pathlengths and analyzed by Partial Least Squares calibration models. It was revealed, that the wavenumber tuning speed of the QCL had a severe impact on the EC-mirror trajectory due to matching the digital-analog-converter step frequency with the mechanical resonance frequency of the mirror actuation. By selecting an appropriate tuning speed, the mirror oscillations acted as a hardware smoothing filter for the significant intensity variations caused by mode hopping. Besides the tuning speed, the effects of averaging over multiple spectra and software smoothing parameters (Savitzky-Golay-filters and FT-smoothing) were investigated. The final settings led to a performance of the QCL-system, which was comparable with a research FTIR-spectrometer and even surpassed the performance of a small FTIR-mini-spectrometer.

  7. MID-INFRARED HIGH-CONTRAST IMAGING OF HD 114174 B: AN APPARENT AGE DISCREPANCY IN A ''SIRIUS-LIKE'' BINARY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Christopher T.; Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Skemer, Andrew; Hinz, Philip M.; Bailey, Vanessa P.; Defrere, Denis; Leisenring, Jarron [Department of Astronomy, University of Arizona, 993 N. Cherry Ave, Tucson, AZ 85721 (United States); Gianninas, Alexandros; Kilic, Mukremin [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Skrutskie, Michael [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Esposito, Simone; Puglisi, Alfio [Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Arcetri Largo E. Fermi I-550125 Firenze (Italy)

    2014-03-10

    We present new observations of the faint ''Sirius-like'' companion discovered to orbit HD 114174. Previous attempts to image HD 114174 B at mid-infrared wavelengths using NIRC2 at Keck have resulted in a non-detection. Our new L'-band observations taken with the Large Binocular Telescope and L/M-band InfraRed Camera recover the companion (ΔL = 10.15 ± 0.15 mag, ρ = 0.''675 ± 0.''016) with a high signal-to-noise ratio (10σ). This measurement represents the deepest L' high-contrast imaging detection at subarcsecond separations to date, including extrasolar planets. We confirm that HD 114174 B has near-infrared colors consistent with the interpretation of a cool white dwarf (WD; J – L' = 0.76 ± 0.19 mag, K – L' = 0.64 ± 0.20). New model fits to the object's spectral energy distribution indicate a temperature T {sub eff} = 4260 ± 360 K, surface gravity log g = 7.94 ± 0.03, a cooling age t{sub c} ≈ 7.8 Gyr, and mass M = 0.54 ± 0.01 M {sub ☉}. We find that the cooling ages given by theoretical atmospheric models do not agree with the age of HD 114174 A derived from both isochronological and gyrochronological analyses. We speculate on possible scenarios to explain the apparent age discrepancy between the primary and secondary. HD 114174 B is a nearby benchmark WD that will ultimately enable a dynamical mass estimate through continued Doppler and astrometric monitoring. Efforts to characterize its physical properties in detail will test theoretical atmospheric models and improve our understanding of WD evolution, cooling, and progenitor masses.

  8. MID-INFRARED HIGH-CONTRAST IMAGING OF HD 114174 B: AN APPARENT AGE DISCREPANCY IN A ''SIRIUS-LIKE'' BINARY SYSTEM

    International Nuclear Information System (INIS)

    Matthews, Christopher T.; Crepp, Justin R.; Skemer, Andrew; Hinz, Philip M.; Bailey, Vanessa P.; Defrere, Denis; Leisenring, Jarron; Gianninas, Alexandros; Kilic, Mukremin; Skrutskie, Michael; Esposito, Simone; Puglisi, Alfio

    2014-01-01

    We present new observations of the faint ''Sirius-like'' companion discovered to orbit HD 114174. Previous attempts to image HD 114174 B at mid-infrared wavelengths using NIRC2 at Keck have resulted in a non-detection. Our new L'-band observations taken with the Large Binocular Telescope and L/M-band InfraRed Camera recover the companion (ΔL = 10.15 ± 0.15 mag, ρ = 0.''675 ± 0.''016) with a high signal-to-noise ratio (10σ). This measurement represents the deepest L' high-contrast imaging detection at subarcsecond separations to date, including extrasolar planets. We confirm that HD 114174 B has near-infrared colors consistent with the interpretation of a cool white dwarf (WD; J – L' = 0.76 ± 0.19 mag, K – L' = 0.64 ± 0.20). New model fits to the object's spectral energy distribution indicate a temperature T eff = 4260 ± 360 K, surface gravity log g = 7.94 ± 0.03, a cooling age t c ≈ 7.8 Gyr, and mass M = 0.54 ± 0.01 M ☉ . We find that the cooling ages given by theoretical atmospheric models do not agree with the age of HD 114174 A derived from both isochronological and gyrochronological analyses. We speculate on possible scenarios to explain the apparent age discrepancy between the primary and secondary. HD 114174 B is a nearby benchmark WD that will ultimately enable a dynamical mass estimate through continued Doppler and astrometric monitoring. Efforts to characterize its physical properties in detail will test theoretical atmospheric models and improve our understanding of WD evolution, cooling, and progenitor masses

  9. Mid-Infrared Graphene Photoresponse

    Science.gov (United States)

    Hsu, Allen; Herring, Patrick; Shin, Yong Cheol; Kim, Ki Kang; Kong, Jing; Marcus, Charlie; Gabor, Nathaniel; Palacios, Tomas; Jarillo-Herrero, Pablo

    2013-03-01

    Graphene is a two-dimensional (2D) material that has attracted great interest for electronic devices since its discovery in 2004. Due to its zero band gap band structure, it has a broad-band optical absorption ranging from the far-infrared all the way to the visible making it potentially useful for infrared photodetectors. Electrostatically gated p-n junctions have demonstrated photocurrents in the near-IR (λ = 850nm), primarily due to hot carrier mechanisms. In order to study these mechanisms at longer wavelengths (λ = 10 μm), high quality chemically vapor grown (CVD) graphene is necessary to fabricate electrostatically controlled p-n junctions due to the longer optical length scales. Moreover, at these low energies (~ 125 meV), optical phonon scattering is suppressed and is predicted to lead to increased carrier lifetimes and enhanced photo-response. Using electrostatic gating, we are able to study the absorption mechanisms in graphene by selecting between conventional photovoltaic effects and photo-thermoelectric effects. Experiments suggest that the photocurrent signal is enhanced by electrostatic gating near the Dirac peak and reduced disorder in the graphene sample. Institute for Solder Nanotechnologies, GATE MURI, MSD Focus Center

  10. Integration of GCAM-USA into GLIMPSE: Update and ...

    Science.gov (United States)

    The purpose of this presentation is to (i) discuss changes made to the GCAM-USA model to more fully support long-term, coordinated environmental-climate-energy planning within the U.S., and (ii) demonstrate the graphical user interface that has been constructed to construct modeling scenarios, execute GCAM-USA, and visualize and compare model outputs. GLIMPSE is intended to provide insights into linkages and synergies among the goals of air quality management, climate change mitigation, and long-range energy planning. We have expanded GLIMPSE to also incorporate the open-source Global Change Assessment Model-USA (GCAM-USA), which has state-level representation of the U.S. energy system. With GCAM-USA, GLIMPSE can consider more aspects of the economy, linkages to the water and climate systems, and interactions with other regions of the world. A user-friendly graphical interface allows the system to be applied by analysts to explore a range of policies, such emission taxes or caps, efficiency standards, and renewable portfolio standards. We expect GLIMPSE to be used within research and planning activities, both within the EPA and beyond.

  11. A Glimpse of the Young Milky Way

    Science.gov (United States)

    2002-10-01

    contraction in that gas, many heavier elements were built up by nuclear processes in their interiors. As time passed, many of the stars of this and following stellar generations returned the processed matter to their surroundings at the ends of their lives, either during violent supernova explosions or via strong "stellar winds". In this way, the interstellar gas in the Milky Way system has ever since been continuously enriched with heavier elements. Stars of later generations like our Sun now contain those elements produced by their ancestors and we are indeed ourselves made up of them. Consequently, the early (and hence, old) stars in the Milky Way mainly differ from younger stars by containing very small amounts of such elements . Hunting the earliest stars Have some of those earliest stars survived to our days? In theory, at least, it would be possible that some of the lighter ones - having the longest lifetimes - are still around. But if so, where are they? During the past three decades, astronomers have desperately tried to find bona-fide representatives of the very first stellar generation(s) in the Milky Way, i.e. stars with no or, at most, extremely low abundance of elements other than hydrogen and helium. The researchers usually refer to such objects as Population III stars , the other two populations being stars with heavy-element abundances like the Sun (Population I) or somewhat less (Population II) [3]. The Hamburg/ESO survey Now, a group of astronomers from Germany, Sweden, Australia, Brazil and the USA [2] has found a giant star that has a concentration of heavy elements 200,000 times lower than the Sun, or about 20 times less than the previous "record" for this kind of star. It thus provides the researchers with a unique window towards the early stages of the formation of the Milky Way and a fine opportunity to study stellar gas with a composition close to that produced during the Big Bang. This is one important outcome of a systematic search for the most

  12. Glimpse360: Observing The Outback Of The Galaxy

    Science.gov (United States)

    Whitney, Barbara; Benjamin, R.; Meade, M.; Babler, B.; Watson, C.; Churchwell, E.; Robitaille, T.; Indebetouw, R.; GLIMPSE360 Team

    2011-01-01

    GLIMPSE360 is a Spitzer Space Telescope Exploration Science Project that is mapping the remaining 187 degrees of the Galactic Plane not previously observed with Spitzer. The survey covers longitude l=65-265 degrees (excluding l =102-109 and l=76-82). The latitude range is 2.6 degrees, slightly wider than the previous GLIMPSE surveys (2 degrees). The latitude center follows the Galactic warp. Three visits on each sky position with 0.6 & 12s HDR frames makes this survey 13 times more sensitive than the previous GLIMPSE surveys of the inner Galactic plane. Even though we only have 2 IRAC bands in the post-cryogenic mission (3.6 and 4.5 microns) compared to GLIMPSE (3.6, 4.5, 5.8, 8.0, and 24 micron from the MIPSGAL), the combination of deeper exposures and lower confusion is allowing us to achieve all the science goals we had hoped for, including: mapping the edge of the stellar disk, and finding PAH bubbles from massive stars, outflows from intermediate to high-mass Young Stellar Objects (YSOs), low-to high-mass YSOs, stellar clusters, supernova remnants, infrared dark clouds (from extinction fitting of stars rather than silhouettes of PAH backgrounds), dusty evolved stars, and external galaxies in the Zone of Avoidance. As of Oct. 1, 2010, about 80% of the data have been taken, and of that, about 70% have been processed at least once to produce source lists. We will present preliminary results and some wickedly pretty (green) pictures. Following the tradition of the previous GLIMPSE Legacy programs, we will deliver enhanced products to the community, consisting of high-quality point source lists and cleaned mosaic images. This research is supported by NASA/JPL.

  13. Monitoring of an esterification reaction by on-line direct liquid sampling mass spectrometry and in-line mid infrared spectrometry with an attenuated total reflectance probe

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Andrew W.; McAulay, Edith A.J. [WestCHEM, Department of Pure and Applied Chemistry and CPACT, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL (United Kingdom); Nordon, Alison, E-mail: alison.nordon@strath.ac.uk [WestCHEM, Department of Pure and Applied Chemistry and CPACT, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL (United Kingdom); Littlejohn, David, E-mail: d.littlejohn@strath.ac.uk [WestCHEM, Department of Pure and Applied Chemistry and CPACT, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL (United Kingdom); Lynch, Thomas P. [WestCHEM, Department of Pure and Applied Chemistry and CPACT, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL (United Kingdom); Lancaster, J. Steven [Hull Research and Technology Centre, BP Chemicals, Hull, HU12 8DS (United Kingdom); Wright, Robert G. [Thermo Fisher Scientific, Winsford, Cheshire, CW7 3GA (United Kingdom)

    2014-11-07

    Highlights: • High efficiency thermal vaporiser designed and used for on-line reaction monitoring. • Concentration profiles of all reactants and products obtained from mass spectra. • By-product formed from the presence of an impurity detected by MS but not MIR. • Mass spectrometry can detect trace and bulk components unlike molecular spectrometry. - Abstract: A specially designed thermal vaporiser was used with a process mass spectrometer designed for gas analysis to monitor the esterification of butan-1-ol and acetic anhydride. The reaction was conducted at two scales: in a 150 mL flask and a 1 L jacketed batch reactor, with liquid delivery flow rates to the vaporiser of 0.1 and 1.0 mL min{sup −1}, respectively. Mass spectrometry measurements were made at selected ion masses, and classical least squares multivariate linear regression was used to produce concentration profiles for the reactants, products and catalyst. The extent of reaction was obtained from the butyl acetate profile and found to be 83% and 76% at 40 °C and 20 °C, respectively, at the 1 L scale. Reactions in the 1 L reactor were also monitored by in-line mid-infrared (MIR) spectrometry; off-line gas chromatography (GC) was used as a reference technique when building partial least squares (PLS) multivariate calibration models for prediction of butyl acetate concentrations from the MIR spectra. In validation experiments, good agreement was achieved between the concentration of butyl acetate obtained from in-line MIR spectra and off-line GC. In the initial few minutes of the reaction the profiles for butyl acetate derived from on-line direct liquid sampling mass spectrometry (DLSMS) differed from those of in-line MIR spectrometry owing to the 2 min transfer time between the reactor and mass spectrometer. As the reaction proceeded, however, the difference between the concentration profiles became less noticeable. DLSMS had advantages over in-line MIR spectrometry as it was easier to

  14. Short communication: Prediction of milk coagulation and acidity traits in Mediterranean buffalo milk using Fourier-transform mid-infrared spectroscopy.

    Science.gov (United States)

    Manuelian, C L; Visentin, G; Boselli, C; Giangolini, G; Cassandro, M; De Marchi, M

    2017-09-01

    Milk coagulation and acidity traits are important factors to inform the cheesemaking process. Those traits have been deeply studied in bovine milk, whereas scarce information is available for buffalo milk. However, the dairy industry is interested in a method to determine milk coagulation and acidity features quickly and in a cost-effective manner, which could be provided by Fourier-transform mid-infrared (FT-MIR) spectroscopy. The aim of this study was to evaluate the potential of FT-MIR to predict coagulation and acidity traits of Mediterranean buffalo milk. A total of 654 records from 36 herds located in central Italy with information on milk yield, somatic cell score, milk chemical composition, milk acidity [pH, titratable acidity (TA)], and milk coagulation properties (rennet coagulation time, curd firming time, and curd firmness) were available for statistical analysis. Reference measures of milk acidity and coagulation properties were matched with milk spectral information, and FT-MIR prediction models were built using partial least squares regression. The data set was divided into a calibration set (75%) and a validation set (25%). The capacity of FT-MIR spectroscopy to correctly classify milk samples based on their renneting ability was evaluated by a canonical discriminant analysis. Average values for milk coagulation traits were 13.32 min, 3.24 min, and 39.27 mm for rennet coagulation time, curd firming time, and curd firmness, respectively. Milk acidity traits averaged 6.66 (pH) and 7.22 Soxhlet-Henkel degrees/100 mL (TA). All milk coagulation and acidity traits, except for pH, had high variability (17 to 46%). Prediction models of coagulation traits were moderately to scarcely accurate, whereas the coefficients of determination of external validation were 0.76 and 0.66 for pH and TA, respectively. Canonical discriminant analysis indicated that information on milk coagulating ability is present in the MIR spectra, and the model correctly classified as

  15. A Search for Mid-Infrared Emission Lines of F and Na in Planetary Nebulae with EXES on SOFIA: Testing AGB Nucleosynthesis

    Science.gov (United States)

    Dinerstein, Harriet L.; Sterling, N. C.; Richter, Matthew J.; DeWitt, Curtis; Montiel, Edward J.; Karakas, Amanda I.

    2018-01-01

    We report results from a search for mid-infrared emission lines of F (Z = 9) and Na (Z =11) in planetary nebulae using the Echelon-Cross-Echelle Spectrometer, EXES (DeWitt, C., et al. 2012, SPIE, 8446, id. 84461A) on the Stratospheric Facility for Infrared Astronomy (SOFIA Young et al. 2012, ApJL, 749, L17). As the envelopes of former AGB stars, planetary nebulae carry the imprint of all nuclear reactions that occurred over the star’s lifetime. Complex sequences of reactions during the late evolutionary stages may produce – or in some cases destroy – F and Na. Due to sensitivity to uncertainties in the interior physical conditions and key processes (e.g. convection, mass loss), their predicted final abundances vary widely for different sets of theoretical models (Karakas & Lugaro 2016, ApJ, 825, 26). During a flight series with EXES in May 2017, we looked for [Na III] 7.39 μm and the as-yet undetected fine structure transitions [F IV] 25.8 μm and [F V] 13.4 μm. The F lines were observed at resolving power R = 50,000, while Na was observed with R ≈ 2000. We observed a spectral region containing the [F IV] line and [O IV] 25.9 μm in 3 planetary nebulae descended from stars of ≈ 2.5 – 4 M⊙ (NGC 6886, NGC 7027, and Hb 5), and [F V] in NGC 7027 only. We observed NGC 6886 and IC 5117 in the [Na III] setting, which included the H I 6-5 Pfund α line at 7.46 μm. Simultaneous measurement of O+3 and H+ enables us to derive reliable ionic abundance ratios from the [F IV] and [Na III] lines. We obtained high S/N on the [Na III] line in IC 5117 but were unsuccessful in detecting either F line in any of our targets. We present our upper limits, compare them to values in the literature from optical spectra, and discuss our findings in the context of evolutionary models.This research is supported by NASA/USRA subcontract SOF 05-0121. Support for EXES is provided via collaborative agreement NNXAI85A between NASA Ames Research Center and the University of

  16. Could predicting fatty acid profile by mid-infrared reflectance spectroscopy be used as a method to increase the value added by milk production chains?

    Science.gov (United States)

    Coppa, M; Revello-Chion, A; Giaccone, D; Tabacco, E; Borreani, G

    2017-11-01

    The aims of this work were (1) to develop prediction equations from mid-infrared spectroscopy (MIRS) to establish a detailed fatty acid (FA) composition of milk; (2) to propose a milk FA index, utilizing MIRS-developed equations, in which the precision of the FA-prediction equations is taken into account to increase the value of milk; and (3) to show application examples. A total of 651 bulk cow milk samples were collected from 245 commercial farms in northwest Italy. The results of the 651 gas chromatography analyses were used to establish (421 samples) and to validate (230 samples) the outcomes of the FA composition prediction that had been obtained by MIRS. A class-based approach, in which the obtained MIRS equations were used, was proposed to define a milk classification. The method provides a numerical index [milk FA index (MFAI)] that allows a premium price to be quantified to increase the value of a favorable FA profile of milk. Ten FA were selected to calculate MFAI, according to their relevance for human health and potential cheese sensory properties, and animal welfare and environmental sustainability were also considered. These factors were selected as dimensions of MFAI. A statistical analysis and expert judgment aggregation were performed on the selected FA by weighting the FA and normalizing the dimensions to reduce redundancy. A class approach was applied, using the precision of the MIRS equations to establish the classes. The median FA concentration of the data set was set as a reference value of class 0. The width, number, and limits of classes above and below the median were calculated using the 95% confidence level of the standard error of prediction, corrected with the bias of each FA. A progressive number and a positive or negative sign were assigned to each FA class above or below the median according to their role in the above mentioned dimensions. The sum of the numbers of each class, associated with its sign for each FA, was used to

  17. Monitoring of an esterification reaction by on-line direct liquid sampling mass spectrometry and in-line mid infrared spectrometry with an attenuated total reflectance probe

    International Nuclear Information System (INIS)

    Owen, Andrew W.; McAulay, Edith A.J.; Nordon, Alison; Littlejohn, David; Lynch, Thomas P.; Lancaster, J. Steven; Wright, Robert G.

    2014-01-01

    Highlights: • High efficiency thermal vaporiser designed and used for on-line reaction monitoring. • Concentration profiles of all reactants and products obtained from mass spectra. • By-product formed from the presence of an impurity detected by MS but not MIR. • Mass spectrometry can detect trace and bulk components unlike molecular spectrometry. - Abstract: A specially designed thermal vaporiser was used with a process mass spectrometer designed for gas analysis to monitor the esterification of butan-1-ol and acetic anhydride. The reaction was conducted at two scales: in a 150 mL flask and a 1 L jacketed batch reactor, with liquid delivery flow rates to the vaporiser of 0.1 and 1.0 mL min −1 , respectively. Mass spectrometry measurements were made at selected ion masses, and classical least squares multivariate linear regression was used to produce concentration profiles for the reactants, products and catalyst. The extent of reaction was obtained from the butyl acetate profile and found to be 83% and 76% at 40 °C and 20 °C, respectively, at the 1 L scale. Reactions in the 1 L reactor were also monitored by in-line mid-infrared (MIR) spectrometry; off-line gas chromatography (GC) was used as a reference technique when building partial least squares (PLS) multivariate calibration models for prediction of butyl acetate concentrations from the MIR spectra. In validation experiments, good agreement was achieved between the concentration of butyl acetate obtained from in-line MIR spectra and off-line GC. In the initial few minutes of the reaction the profiles for butyl acetate derived from on-line direct liquid sampling mass spectrometry (DLSMS) differed from those of in-line MIR spectrometry owing to the 2 min transfer time between the reactor and mass spectrometer. As the reaction proceeded, however, the difference between the concentration profiles became less noticeable. DLSMS had advantages over in-line MIR spectrometry as it was easier to generate

  18. Detection of an Inner Gaseous Component in a Herbig Be Star Accretion Disk: Near- and Mid-Infrared Spectrointerferometry and Radiative Transfer modeling of MWC 147

    Science.gov (United States)

    Kraus, Stefan; Preibisch, Thomas; Ohnaka, Keiichi

    2008-03-01

    We study the geometry and the physical conditions in the inner (AU-scale) circumstellar region around the young Herbig Be star MWC 147 using long-baseline spectrointerferometry in the near-infrared (NIR) K-band, VLTI/AMBER observations, and PTI archive data, as well as the mid-infrared (MIR) N-band, VLTI/MIDI observations. The emission from MWC 147 is clearly resolved and has a characteristic physical size of ~1.3 and ~9 AU at 2.2 and 11 μm, respectively (Gaussian diameter). The MIR emission reveals asymmetry consistent with a disk structure seen under intermediate inclination. The spectrally dispersed AMBER and MIDI interferograms both show a strong increase in the characteristic size toward longer wavelengths, much steeper than predicted by analytic disk models assuming power-law radial temperature distributions. We model the interferometric data and the spectral energy distribution of MWC 147 with two-dimensional, frequency-dependent radiation transfer simulations. This analysis shows that models of spherical envelopes or passive irradiated Keplerian disks (with vertical or curved puffed-up inner rim) can easily fit the SED, but predict much lower visibilities than observed; the angular size predicted by such models is 2-4 times larger than the size derived from the interferometric data, so these models can clearly be ruled out. Models of a Keplerian disk with optically thick gas emission from an active gaseous disk (inside the dust sublimation zone), however, yield a good fit of the SED and simultaneously reproduce the absolute level and the spectral dependence of the NIR and MIR visibilities. We conclude that the NIR continuum emission from MWC 147 is dominated by accretion luminosity emerging from an optically thick inner gaseous disk, while the MIR emission also contains contributions from the outer, irradiated dust disk. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under program IDs 074.C-0181, 076.C-0138, and 078.C

  19. A clumpy stellar wind and luminosity-dependent cyclotron line revealed by the first Suzaku observation of the high-mass X-ray binary 4U 1538–522

    Energy Technology Data Exchange (ETDEWEB)

    Hemphill, Paul B.; Rothschild, Richard E.; Markowitz, Alex [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 920093-0424 (United States); Fürst, Felix [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 290-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Pottschmidt, Katja [Center for Space Science and Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Wilms, Jörn, E-mail: pbhemphill@physics.ucsd.edu [Dr. Karl Remeis-Sternwarte and Erlangen Center for Astroparticle Physics, Sternwartstr. 7, D-96049 Bamberg (Germany)

    2014-09-01

    We present results from the first Suzaku observation of the high-mass X-ray binary 4U 1538–522. The broadband spectral coverage of Suzaku allows for a detailed spectral analysis, characterizing the cyclotron resonance scattering feature at 23.0 ± 0.4 keV and the iron Kα line at 6.426 ± 0.008 keV, as well as placing limits on the strengths of the iron Kβ line and the iron K edge. We track the evolution of the spectral parameters both in time and in luminosity, notably finding a significant positive correlation between cyclotron line energy and luminosity. A dip and spike in the light curve is shown to be associated with an order-of-magnitude increase in column density along the line of sight, as well as significant variation in the underlying continuum, implying the accretion of a overdense region of a clumpy stellar wind. We also present a phase-resolved analysis, with most spectral parameters of interest showing significant variation with phase. Notably, both the cyclotron line energy and the iron Kα line intensity vary significantly with phase, with the iron line intensity significantly out of phase with the pulse profile. We discuss the implications of these findings in the context of recent work in the areas of accretion column physics and cyclotron resonance scattering feature formation.

  20. Optimization of the structural, microstructural and optical properties of nanostructured Cr{sup 2+}:ZnSe films deposited by magnetron co-sputtering for mid-infrared applications

    Energy Technology Data Exchange (ETDEWEB)

    Vivet, N. [Centre de Recherche sur les Ions, les Materiaux et la Photonique (CIMAP)-ENSICAEN, 6 Bd. du Marechal Juin, F-14050 Caen (France); Morales, M., E-mail: magali.morales@ensicaen.f [Centre de Recherche sur les Ions, les Materiaux et la Photonique (CIMAP)-ENSICAEN, 6 Bd. du Marechal Juin, F-14050 Caen (France); Levalois, M. [Centre de Recherche sur les Ions, les Materiaux et la Photonique (CIMAP)-ENSICAEN, 6 Bd. du Marechal Juin, F-14050 Caen (France); Charvet, S. [Laboratoire de Physique de la Matiere Condensee (LPMC), Universite de Picardie Jules Verne, 33, rue Saint-Leu-F-80039 Amiens (France); Jomard, F. [Laboratoire de Physique des Solides et de Cristallogenese (LPSC), 1 place Aristide Briand, F-92195 Meudon (France)

    2010-10-29

    In order to obtain optimally adherent films having the highest mid-infrared photoluminescence efficiency, nanostructured Cr{sup 2+}:ZnSe films were deposited at room temperature on various substrates by magnetron radiofrequency co-sputtering of a SiO{sub 2} target covered by a given number of ZnSe and Cr chips, at different Argon pressures and radiofrequency powers. The deposition parameter effect on the compositional, structural, microstructural and optical properties of the films has been investigated using X-ray reflectivity and diffraction, optical transmission spectroscopy, transmission electron microscopy, and photoluminescence studies. The corresponding films are composed by highly textured cubic and hexagonal ZnSe phases and exhibit strong tensile in-plane residual stresses. The evolution of the tensile residual stress and porosity values are consistent with the optical properties of the layers, and in particular the evolutions of both optical gap and refractive index. The room temperature mid-infrared (2-3 {mu}m) photoluminescence measurements under direct excitation (1850 nm) revealed that chromium has been incorporated in the Cr{sup 2+} active state, and the corresponding fluorescence efficiency for an optimized thin film is only two times smaller than the one of a Cr{sup 2+}:ZnSe reference bulk single crystal.

  1. Differentiation of perirenal and omental fat quality of suckling lambs according to the rearing system from Fourier transforms mid-infrared spectra using partial least squares and artificial neural networks analysis.

    Science.gov (United States)

    Osorio, M T; Zumalacárregui, J M; Alaiz-Rodríguez, R; Guzman-Martínez, R; Engelsen, S B; Mateo, J

    2009-09-01

    Fourier transform mid-infrared (FT-IR) spectroscopy was evaluated as a tool to discriminate between carcasses of suckling lambs according to the rearing system. Fat samples (39 perirenal and 67 omental) were collected from carcasses of lambs from up to three sheep dairy farms, reared on either ewes milk (EM) or milk replacer (MR). Fatty acid composition of the samples from each fat deposit was first analyzed and, when discriminant-partial least squares regression (PLS) was applied, a perfect discrimination between rearing systems could be established. Additionally, FT-IR spectra of fat samples were obtained and discriminant-PLS and artificial neural network (ANN) based analysis were applied to data sets, the latter using principal component analysis (PCA) or support vector machines (SVM) as processing procedure. Perirenal fat samples were perfectly discriminated from their FT-IR spectra. However, analysis of omental fat showed misclassification rates of 9-13%, with the ANN approach showing a higher discrimination power.

  2. Stellar wind models of subluminous hot stars

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří; Krtičková, I.

    2016-01-01

    Roč. 593, September (2016), A101/1-A101/14 ISSN 0004-6361 R&D Projects: GA ČR GA13-10589S Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:67985815 Keywords : stars * winds * outflows Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  3. GLIMPSE – A computational framework for supporting state-level environmental and energy planning

    Science.gov (United States)

    GLIMPSE is an EPA modeling tool for environmental and energy planning used to find U.S. policy scenarios that simultaneously improve air quality, human health, reduce impacts to ecosystems, and mitigate climate change.

  4. Nuclear magnetic resonance (1.40 T) and mid infrared (FTIR-ATR) associated with chemometrics as analytical methods for the analysis of methyl ester yield obtained by esterification reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kollar, Sara R.M.; Suarez, Paulo A.Z., E-mail: psuarez@unb.br [Universidade de Brasilia (UnB), Brasília, DF (Brazil). Instituto de Química; Novotny, Etelvino H. [Embrapa Solos, Rio de Janeiro, RJ (Brazil); Nascimento, Claudia J. do [Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, (Brazil). Instituto de Biociências

    2017-07-01

    In this work, we compared 1.40 T nuclear magnetic resonance (NMR) to 7.05 T (60 and 300 MHz for proton, respectively), and mid-infrared with attenuated total reflectance (FTIR-ATR), associated with chemometrics methods, for the quantification of the reaction yield during esterification of fatty acids with methanol. The results showed that the integrated intensities of the ester C=O stretching region, relative to the total C=O stretching region, is useful to quantify the fatty acid methyl ester (FAME) concentration. Comparing the results obtained by the different final models: NMR (1.40 T and 7.05 T), FTIR-ATR using multivariate partial last squares regression (PLS) with orthogonal signal correction (OSC), and univariate ordinary least squares (OLS), the NMR of 1.40 T (60 MHz for proton) showed more advantages when compared to a high field spectrometer, due to the non-use of cryogenic and solvents and less laborious work for obtaining results. (author)

  5. Eight-band k·p modeling of InAs/InGaAsSb type-II W-design quantum well structures for interband cascade lasers emitting in a broad range of mid infrared

    Energy Technology Data Exchange (ETDEWEB)

    Ryczko, K.; Sęk, G.; Misiewicz, J. [Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland)

    2013-12-14

    Band structure properties of the type-II W-design AlSb/InAs/GaIn(As)Sb/InAs/AlSb quantum wells have been investigated theoretically in a systematic manner and with respect to their use in the active region of interband cascade laser for a broad range of emission in mid infrared between below 3 to beyond 10 μm. Eight-band k·p approach has been utilized to calculate the electronic subbands. The fundamental optical transition energy and the corresponding oscillator strength have been determined in function of the thickness of InAs and GaIn(As)Sb layers and the composition of the latter. There have been considered active structures on two types of relevant substrates, GaSb and InAs, introducing slightly modified strain conditions. Additionally, the effect of external electric field has been taken into account to simulate the conditions occurring in the operational devices. The results show that introducing arsenic as fourth element into the valence band well of the type-II W-design system, and then altering its composition, can efficiently enhance the transition oscillator strength and allow additionally increasing the emission wavelength, which makes this solution prospective for improved performance and long wavelength interband cascade lasers.

  6. A Comparison of Near- and Mid-Infrared Spectroscopic Methods for the Analysis of Several Nutritionally Important Chemical Substances in the Chinese Yam (Dioscorea opposita): Total Sugar, Polysaccharides, and Flavonoids.

    Science.gov (United States)

    Zhuang, Hua; Ni, Yongnian; Kokot, Serge

    2015-04-01

    The Chinese yam (Dioscorea opposita) is a basic food in Asia and especially China. Consequently, an uncomplicated, reliable method should be available for the analysis of the quality and origin of the yams. Thus, near-infrared (NIR) and mid-infrared (mid-IR) spectroscopic methods were developed to discriminate among Chinese yam samples collected from four geographical regions. The yam samples were analyzed also for total sugar, polysaccharides, and flavonoids. These three analytes were used to compare the performance of the analytical methods. Overlapping spectra were resolved using chemometrics methods. Such spectra were compared qualitatively using principal component analysis (PCA) and quantitatively using partial least squares (PLS) and least squares-support vector machine (LS-SVM) models. We discriminated among the four sets of yam data using PCA, and the NIR data performed somewhat better than the mid-IR data. We constructed the PLS and LS-SVM calibration models for the prediction of the three key variables, and the LS-SVM model produced better results. Also, the NIR prediction model produced better outcomes than the mid-IR prediction model. Thus, both infrared (IR) techniques performed well for the analysis of the three key analytes, and the samples were qualitatively discriminated according to their provinces of origin. Both techniques may be recommended for the analysis of Chinese yams, although the NIR technique would be preferred.

  7. A Glimpse of the genomic diversity of haloarchaeal tailed viruses

    Directory of Open Access Journals (Sweden)

    Ana eSencilo

    2014-03-01

    Full Text Available Tailed viruses are the most common isolates infecting prokaryotic hosts residing hypersaline environments. Archaeal tailed viruses represent only a small portion of all characterized tailed viruses of prokaryotes. But even this small dataset revealed that archaeal tailed viruses have many similarities to their counterparts infecting bacteria, the bacteriophages. Shared functional homologues and similar genome organizations suggested that all microbial tailed viruses have common virion architectural and assembly principles. Recent structural studies have provided evidence justifying this thereby grouping archaeal and bacterial tailed viruses into a single lineage. Currently there are 17 haloarchaeal tailed viruses with entirely sequenced genomes. Nine viruses have at least one close relative among the 17 viruses and, according to the similarities, can be divided into three groups. Two other viruses share some homologues and therefore are distantly related, whereas the rest of the viruses are rather divergent (or singletons. Comparative genomics analysis of these viruses offers a glimpse into the genetic diversity and structure of haloarchaeal tailed virus communities.

  8. Comment on "A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite--a mid-infrared and near-infrared study" and "Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite" by Hongfei Cheng et al. (2010).

    Science.gov (United States)

    Kloprogge, J Theo

    2015-02-05

    In two papers Cheng et al. (2010) reported in this journal on the mid-infrared, near-infrared and infrared emission spectroscopy of a halloysite from Hunan Xianrenwan, China. This halloysite contains around 8% of quartz (SiO2) and nearly 9% gibbsite (Al(OH)3). In their interpretation of the spectra these impurities were completely ignored. Careful comparison with a phase pure halloysite from Southern Belgium, synthetic gibbsite, gibbsite from Minas Gerais, and quartz show that these impurities do have a marked influence on the mid-infrared and infrared emission spectra. In the near-infrared, the effect is much less pronounced. Quartz does not show bands in this region and the gibbsite bands will be very weak. Comparison still show that the presence of gibbsite does contribute to the overall spectrum and bands that were ascribed to the halloysite alone do coincide with those of gibbsite. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Structural and opto-electronic properties of InP1-xBix bismide alloys for MID-infrared optical devices: A DFT + TB-mBJ study

    Science.gov (United States)

    Assali, Abdenacer; Bouslama, M.; Chaabane, L.; Mokadem, A.; Saidi, F.

    2017-12-01

    Using full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT), we have studied the structural and opto-electronic properties of zinc blende InP1-xBix bismide alloys (0 ≤ x ≤ 0.5). The bowing lattice parameter exhibits a weak composition dependence on InP1-xBix alloys with b = 0.02834 Å. The band gap decreases with Bi composition by about 1.285 meV for x = 0.25 covering the middle (MID) and far-wavelength infrared region [0.88-10.5 μm]. From DOS, the decrease of band gap can be attributed to the both upper shifts of the valence band VB and the downward shifts of the conduction band CB, due to the resonance interaction of the Bi-p orbitals at the top of the VB and hybridization of the occupied s/p orbitals of In/P/Bi atoms at the bottom of the CB, with increasing Bi composition. The dielectric functions (ε1(ω), ε2(ω)) and optical constants such as n(ω), k(ω), α(ω) and R(ω) for InP1-xBix alloys are determined for radiation up to 8 eV in excellent agreement with the measured data. The energies of the critical-point (CP) are also identified agree well with the experimental data. The InPBi material appears as a promising material to realize novel optical devices as Laser Diodes and detectors operating in the MID-Infrared spectrum region.

  10. Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm

    Science.gov (United States)

    Liu, Xunchen; Zhang, Guoyong; Huang, Yan; Wang, Yizun; Qi, Fei

    2018-04-01

    We present a multi-line flame thermometry technique based on mid-infrared direct absorption spectroscopy of carbon dioxide at its v_3 fundamental around 4.2 μm that is particularly suitable for sooting flames. Temperature and concentration profiles of gas phase molecules in a flame are important characteristics to understand its flame structure and combustion chemistry. One of the standard laboratory flames to analyze polycyclic aromatic hydrocarbons (PAH) and soot formation is laminar non-premixed co-flow flame, but PAH and soot introduce artifact to most non-contact optical measurements. Here we report an accurate diagnostic method of the temperature and concentration profiles of CO2 in ethylene diffusion flames by measuring its v_3 vibrational fundamental. An interband cascade laser was used to probe the R-branch bandhead at 4.2 μm, which is highly sensitive to temperature change, free from soot interference and ambient background. Calibration measurement was carried out both in a low-pressure Herriott cell and an atmospheric pressure tube furnace up to 1550 K to obtain spectroscopic parameters for high-temperature spectra. In our co-flow flame measurement, two-dimensional line-of-sight optical depth of an ethylene/N2 laminar sooting flame was recorded by dual-beam absorption scheme. The axially symmetrical attenuation coefficient profile of CO2 in the co-flow flame was reconstructed from the optical depth by Abel inversion. Spatially resolved flame temperature and in situ CO2 volume fraction profiles were derived from the calibrated CO2 spectroscopic parameters and compared with temperature profiles measured by two-line atomic fluorescence.

  11. Prospects of Mid Infrared Silicon Raman Laser

    Science.gov (United States)

    Jalali, Bahram

    2006-03-01

    Mid wave infrared (MWIR) lasers in the wavelength range of 2-5μm form an important tool for free space communications, bio-chemical detection and certain medical applications. Most organic chemicals and biological agents have unique signatures in the MWIR and can be detected using these lasers. The strong water absorption peak at 2.9μm renders such a laser attractive for surgery and dentistry. Solid state lasers comprising OPO-based nonlinear frequency converters and Raman lasers have been the popular choice for these applications. However, the low damage threshold, poor thermal conductivity and high cost limit the commercial availability of these sources. The recent demonstration of the first silicon Raman laser in 2004 combined with excellent transmission of silicon in the mid-IR suggests that silicon should be considered as a MWIR Raman crystal. In the near IR, where current silicon Raman lasers operate, free carriers that are generated by two photon absorption (TPA) create severe losses. TPA vanishes in the MWIR regime (λ > 2.25μm), hence eliminating the main problem with silicon Raman lasers. This combined with (i) the unsurpassed quality of commercial silicon crystals, (ii) the low cost and wide availability of the material, (iii) extremely high optical damage threshold of 1-4 GW/cm2 (depending on the crystal resistivity), and (iv) excellent thermal conductivity renders silicon a very attractive Raman crystal. Moreover, integrated waveguide and resonator technologies can lead to device miniaturization. This talk discusses the MWIR silicon laser and its applications.

  12. Mid infrared upconversion spectroscopy using diffuse reflectance

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Kehlet, Louis M.; Dam, Jeppe Seidelin

    2014-01-01

    specifically that upconversion methods can be deployed using a diffuse reflectance setup where the test sample is irradiated by a thermal light source, i.e. a globar. The diffuse reflectance geometry is particularly well suited when a transmission setup cannot be used. This situation may happen for highly...

  13. Unstable Resonator Mid-Infrared Laser Sources

    Science.gov (United States)

    2016-02-26

    pattern relative to the cleaved edges of the sample.  A B  Z  Y X X Y’ L L D Graded Intensity Filter Mirror Lens Sample a) v u X’ Y’ b) X’ > He et...shown in Fig. 9. For an unchirped grating the traditional symmetrical passband curve is obtained. The FWHM of the stop-band, which in this low...Sons, Inc., 2012. [27] H. Ghafouri-Shiraz, Distributed Feedback Laser Diodes and Optical Tunable Filters , The Atrium, Souther Gate, Chichester

  14. Transformative Colloidal Nanomaterials for Mid- Infrared Devices

    Science.gov (United States)

    2015-06-11

    conductivity in monodispersed colloidal nanocrystal films was observed first nearly a decade ago, 7 field-effect transistors achieve ever increasing...mobilities,8 there are reports of high sensitivity photoconduction,9 and photovoltaic performance is improving with already ~100% quantum efficiency.2 The...446 (2005) [2] Hillhouse, H.W., Beard, M.C., “Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics,” Curr. Op

  15. Mid-infrared upconversion based hyperspectral imaging

    DEFF Research Database (Denmark)

    Junaid, Saher; Tomko, Jan; Semtsiv, Mykhaylo P.

    2018-01-01

    quantum cascade laser illumination. AgGaS2 is used as the nonlinear medium for sum frequency generation using a 1064 nm mixing laser. Angular scanning of the nonlinear crystal provides broad spectral coverage at every spatial position in the image. This study demonstrates the retrieval of series...

  16. Prediction of bovine milk true protein content by mid-infrared spectroscopy Estimativa do teor de proteína verdadeira do leite bovino por espectroscopia na região do infravermelho médio

    Directory of Open Access Journals (Sweden)

    Bruno Garcia Botaro

    2011-08-01

    Full Text Available The aim of this study was to estimate the concentration of milk true protein (TP by mid-infrared absorbance method (MIR in samples from bulk tank of dairy herds, and to determine the correlation between the results of TP of milk determined by Kjeldahl and MIR. Forty nine dairy herds were selected (17 Holstein, 6 Jersey and 26 Girolando for monthly collections of samples from bulk tanks during the period of one year (284 samples. Fat, lactose, crude protein and total solids were firstly determined by MIR, and then analyzed for total and true protein by Kjeldahl method. The regression equation to estimate TP contents based on MIR crude protein determination was as follows: TP=0.0021+(1.0104xCP, where: TP is the content of true protein, CP is the crude protein content determined by the MIR method, and 0.0155 is the model error term.O objetivo deste estudo foi estimar o teor de proteína verdadeira (PV do leite por meio de metodologia de espectroscopia na região do infravermelho médio (IVM, em amostras de tanque de rebanhos leiteiros comerciais, e determinar a correlação entre os resultados de proteína verdadeira do leite determinados pelo método de Kjeldahl e por IVM. Foram selecionados 49 rebanhos leiteiros (17 da raça Holandesa, seis da raça Jersey e 26 da raça Girolando para coletas mensais de amostras de leite de tanque durante o período de um ano, totalizando 284 amostras analisadas. As amostras de leite foram analisadas inicialmente em relação aos teores de gordura, lactose, proteína bruta e sólidos totais por IVM, sendo em seguida analisadas quanto ao teor de PB e PV pelo método de Kjeldahl. A equação de regressão para estimativa do teor de PV com base nos teores de proteína bruta foi a seguinte: PV=0,0021+(1,0104xPB; em que: PV é o teor de proteína verdadeira estimado; PB é o teor de proteína bruta pelo método IVM e 0,0155 é o erro apresentado pelo modelo.

  17. Uv-bright Nearby Early-type Galaxies Observed in the Mid-infrared: Eidence for a Multi-stage Formation History by Way of WISE and GALEX Imaging

    Science.gov (United States)

    Petty, S. M.; Neill, J. D.; Jarrett, T. H.; Blain, A. W.; Farrah, D. G.; Rich, R. M.; Tsai, C.-W.; Benford, D. J.; Bridge, C. R.; Lake, S. E.; hide

    2013-01-01

    In the local universe, 10% of massive elliptical galaxies are observed to exhibit a peculiar property: a substantial excess of ultraviolet emission than what is expected from their old, red stellar populations. Several origins for this ultraviolet excess (UVX) have been proposed including a population of hot young stars and a population of old, blue horizontal branch or extended horizontal branch (BHB or EHB) stars that have undergone substantial mass loss from their outer atmospheres. We explore the radial distribution of UVX in a selection of 49 nearby E/S0-type galaxies by measuring their extended photometry in the UV through mid-infrared (mid-IR) with the Galaxy Evolution Explorer (GALEX), the Sloan Digital Sky Survey, and the Wide-field Infrared Survey Explorer (WISE). We compare UV/optical and UV/mid-IR colors with the Flexible Stellar Population Synthesis models, which allow for the inclusion of EHB stars. We find that combined WISE mid-IR and GALEX UV colors are more effective in distinguishing models than optical colors, and that the UV/mid-IR combination is sensitive to the EHB fraction. There are strong color gradients, with the outer radii bluer than the inner half-light radii by approx.1 mag. This color difference is easily accounted for with an increase in the BHB fraction of 0.25 with radius. We estimated that the average ages for the inner and outer radii are 7.0 +/- 0.3 Gyr, and 6.2 +/- 0.2 Gyr, respectively, with the implication that the outer regions are likely to have formed approx. 1 Gyr after the inner regions. Additionally, we find that metallicity gradients are likely not a significant factor in the color difference. The separation of color between the inner and outer regions, which agrees with a specific stellar population difference (e.g., higher EHB populations), and the approx. 0.5-2 Gyr age difference suggests multi-stage formation. Our results are best explained by inside-out formation: rapid star formation within the core at early

  18. GLIMPSE: Google Glass interface for sensory feedback in myoelectric hand prostheses

    Science.gov (United States)

    Markovic, Marko; Karnal, Hemanth; Graimann, Bernhard; Farina, Dario; Dosen, Strahinja

    2017-06-01

    Objective. Providing sensory feedback to the user of the prosthesis is an important challenge. The common approach is to use tactile stimulation, which is easy to implement but requires training and has limited information bandwidth. In this study, we propose an alternative approach based on augmented reality. Approach. We have developed the GLIMPSE, a Google Glass application which connects to the prosthesis via a Bluetooth interface and renders the prosthesis states (EMG signals, aperture, force and contact) using augmented reality (see-through display) and sound (bone conduction transducer). The interface was tested in healthy subjects that used the prosthesis with (FB group) and without (NFB group) feedback during a modified clothespins test that allowed us to vary the difficulty of the task. The outcome measures were the number of unsuccessful trials, the time to accomplish the task, and the subjective ratings of the relevance of the feedback. Main results. There was no difference in performance between FB and NFB groups in the case of a simple task (basic, same-color clothespins test), but the feedback significantly improved the performance in a more complex task (pins of different resistances). Importantly, the GLIMPSE feedback did not increase the time to accomplish the task. Therefore, the supplemental feedback might be useful in the tasks which are more demanding, and thereby less likely to benefit from learning and feedforward control. The subjects integrated the supplemental feedback with the intrinsic sources (vision and muscle proprioception), developing their own idiosyncratic strategies to accomplish the task. Significance. The present study demonstrates a novel self-contained, ready-to-deploy, wearable feedback interface. The interface was successfully tested and was proven to be feasible and functionally beneficial. The GLIMPSE can be used as a practical solution but also as a general and flexible instrument to investigate closed-loop prosthesis

  19. Peaceful Uses Initiative (PUI) — a glimpse into current and future projects

    International Nuclear Information System (INIS)

    2015-01-01

    With more than 170 projects successfully supported, benefiting more than 130 Member States, the Peaceful Uses Initiative (PUI) has been an effective mechanism for raising additional resources to meet the needs of Member States. The IAEA hopes to carry on with this initiative to further expand the benefits of the peaceful uses of nuclear science and technology in promoting broad development goals. Here is a glimpse into some of the major current and future PUI-supported projects that need additional financial contributions. For more information, see: www.iaea.org/newscenter/focus/ peaceful-uses-initiative.

  20. Peaceful Uses Initiative (PUI) — A glimpse into current and future projects

    International Nuclear Information System (INIS)

    2015-01-01

    With more than 170 projects successfully supported, benefiting more than 130 Member States, the Peaceful Uses Initiative (PUI) has been an effective mechanism for raising additional resources to meet the needs of Member States. The IAEA hopes to carry on with this initiative to further expand the benefits of the peaceful uses of nuclear science and technology in promoting broad development goals. Here is a glimpse into some of the major current and future PUI-supported projects that need additional financial contributions. For more information, see: www.iaea.org/newscenter/focus/ peaceful-uses-initiative.

  1. Peaceful Uses Initiative (PUI) — A glimpse into current and future projects

    International Nuclear Information System (INIS)

    2015-01-01

    With more than 170 projects successfully supported, benefiting more than 130 Member States, the Peaceful Uses Initiative (PUI) has been an effective mechanism for raising additional resources to meet the needs of Member States. The IAEA hopes to carry on with this initiative to further expand the benefits of the peaceful uses of nuclear science and technology in promoting broad development goals. Here is a glimpse into some of the major current and future PUI-supported projects that need additional financial contributions. For more information, see: www.iaea.org/newscenter/focus/ peaceful-uses-initiative

  2. [Glimpsing undergraduate research from the view of the advisors of Nursing scholarships].

    Science.gov (United States)

    Erdmann, Alacoque Lorenzini; Leite, Joséte Luzia; Nascimento, Keyla Cristiane do; Lanzoni, Gabriela Marcellino de Melo

    2011-01-01

    This research aimed at understanding the meaning of undergraduate research for supervisors of Nursing scholarship students in a university in the South of Brazil. The methodological reference used was the Grounded Theory, by the means of interviews with seven undergraduate research scholarship advisors forming two sample groups. The phenomenon "glimpsing undergraduate research activities of research groups coordinated by nursing advisors, the basis of competency formation in research of the scholarships" emerged form the interrelation of six categories. To be a advisor and researcher of human resources in research form undergraduation requires pedagogical, instrumental, and managerial competencies associated to research policies of nursing and health.

  3. Glass Glimpsed

    DEFF Research Database (Denmark)

    Lock, Charles

    2015-01-01

    Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology.......Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology....

  4. Really focused stellar winds in X-ray binaries

    Czech Academy of Sciences Publication Activity Database

    Hadrava, Petr; Čechura, Jan

    2012-01-01

    Roč. 542, June (2012), A42/1-A42/11 ISSN 0004-6361 R&D Projects: GA MŠk(CZ) LC06014; GA ČR GA202/09/0772; GA ČR GD205/09/H033 Grant - others:GAUK(CZ) 139810 Institutional research plan: CEZ:AV0Z10030501 Keywords : accretion disk * hydrodynamics * numerical methods Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.084, year: 2012

  5. Momentum and energy balance in late-type stellar winds

    Science.gov (United States)

    Macgregor, K. B.

    1981-01-01

    Observations at ultraviolet and X-ray wavelengths indicate that the classical picture of a static stellar atmosphere containing a radiative equilibrium temperature distribution is inapplicable to the majority of late type stars. Mass loss and the presence of atmospheric regions characterized by gas temperatures in excess of the stellar effective temperature appear to be almost ubiquitous throughout the HR diagram. Evidence pertaining to the thermal and dynamical structure of the outer envelopes of cool stars is summarized. These results are compared with the predictions of several theoretical models which were proposed to account for mass loss from latetype stars. Models in which the outflow is thermally radiatively, or wave driven are considered for identification of the physical processes responsible for the observed wind properties. The observed variation of both the wind, thermal and dynamical structure as one proceeds from the supergiant branch toward the main sequence in the cool portion of the HR diagram give consideration to potential mechanisms for heating and cooling the flow from low gravity stars.

  6. Photoionization Modelling of HII Region with Stellar Wind Bubble Inside

    Science.gov (United States)

    Kozel, R. V., Melekh, B. Ya.

    2009-12-01

    The last results obtained from optimized photoionization modelling of HII region show a lack of Lyman continuum (Lyc) quanta in wavelength range 912 - 504 Å. It could be explained by the ionizing radiation penetrating the very thin and dense envelope of nebular plasma with high density. Presence of such envelope in HII region surrounding a starburst could be explained by a superwind bubble formation. For detailed analysis the multicomponent grid of photoionization models was culculated with ISM grains included. In this paper the comparative analysis of emission line spectra obtained from multicomponent modelling is presented.

  7. HUBBLE SPACE TELESCOPE/NEAR-INFRARED CAMERA AND MULTI-OBJECT SPECTROMETER OBSERVATIONS OF THE GLIMPSE9 STELLAR CLUSTER

    International Nuclear Information System (INIS)

    Messineo, Maria; Figer, Donald F.; Davies, Ben; Trombley, Christine; Kudritzki, R. P.; Rich, R. Michael; MacKenty, John

    2010-01-01

    We present Hubble Space Telescope/Near-Infrared Camera and Multi-Object Spectrometer photometry, and low-resolution K-band spectra of the GLIMPSE9 stellar cluster. The newly obtained color-magnitude diagram shows a cluster sequence with H - K S = ∼1 mag, indicating an interstellar extinction A K s = 1.6 ± 0.2 mag. The spectra of the three brightest stars show deep CO band heads, which indicate red supergiants with spectral type M1-M2. Two 09-B2 supergiants are also identified, which yield a spectrophotometric distance of 4.2 ± 0.4 kpc. Presuming that the population is coeval, we derive an age between 15 and 27 Myr, and a total cluster mass of 1600 ± 400 M sun , integrated down to 1 M sun . In the vicinity of GLIMPSE9 are several H II regions and supernova remnants, all of which (including GLIMPSE9) are probably associated with a giant molecular cloud (GMC) in the inner galaxy. GLIMPSE9 probably represents one episode of massive star formation in this GMC. We have identified several other candidate stellar clusters of the same complex.

  8. Glimpses of black hole formation/evaporation in highly inelastic, ultra-planckian string collisions

    Energy Technology Data Exchange (ETDEWEB)

    Addazi, Andrea [Dipartimento di Fisica, Università di L’Aquila,67010 Coppito, L’Aquila (Italy); LNGS, Laboratori Nazionali del Gran Sasso,67010 Assergi (Italy); Bianchi, Massimo [Dipartimento di Fisica, Università di Roma Tor Vergata andI.N.F.N. Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Veneziano, Gabriele [Collége de France,11 place M. Berthelot, 75005 Paris (France); Theory Division, CERN,CH-1211 Geneva 23 (Switzerland); Dipartimento di Fisica, Università di Roma La Sapienza,00185 Roma (Italy)

    2017-02-22

    We revisit possible glimpses of black-hole formation by looking at ultra-planckian string-string collisions at very high final-state multiplicity. We compare, in particular, previous results using the optical theorem, the resummation of ladder diagrams at arbitrary loop order, and the AGK cutting rules, with the more recent study of 2→N scattering at N∼sM{sub P}{sup −2}≫1. We argue that some apparent tension between the two approaches disappears once a reinterpretation of the latter’s results in terms of suitably defined infrared-safe cross sections is adopted. Under that assumption, the typical final state produced in an ultra-planckian collision does indeed appear to share some properties with those expected from the evaporation of a black hole of mass √s, although no sign of thermalization is seen to emerge at this level of approximation.

  9. Glimpses of black hole formation/evaporation in highly inelastic, ultra-planckian string collisions

    CERN Document Server

    Addazi, Andrea; Veneziano, Gabriele

    2017-02-22

    We revisit possible glimpses of black-hole formation by looking at ultra-planckian string-string collisions at very high final-state multiplicity. We compare, in particular, previous results using the optical theorem, the resummation of ladder diagrams at arbitrary loop order, and the AGK cutting rules, with the more recent study of $2 \\rightarrow N$ scattering at $N \\sim s M_P^{-2} \\gg 1$. We argue that some apparent tension between the two approaches disappears once a reinterpretation of the latter's results in terms of suitably defined infrared-safe cross sections is adopted. Under that assumption, the typical final state produced in an ultra-planckian collision does indeed appear to share some properties with those expected from the evaporation of a black hole of mass $\\sqrt{s}$, although no sign of thermalization is seen to emerge at this level of approximation.

  10. PLANETARY NEBULAE DETECTED IN THE SPITZER SPACE TELESCOPE GLIMPSE II LEGACY SURVEY

    International Nuclear Information System (INIS)

    Zhang Yong; Sun Kwok

    2009-01-01

    We report the result of a search for the infrared counterparts of 37 planetary nebulae (PNs) and PN candidates in the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire II (GLIMPSE II) survey. The photometry and images of these PNs at 3.6, 4.5, 5.8, 8.0, and 24 μm, taken through the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS), are presented. Most of these nebulae are very red and compact in the IRAC bands, and are found to be bright and extended in the 24 μm band. The infrared morphology of these objects are compared with Hα images of the Macquarie-AAO-Strasbourg (MASH) and MASH II PNs. The implications for morphological difference in different wavelengths are discussed. The IRAC data allow us to differentiate between PNs and H II regions and be able to reject non-PNs from the optical catalog (e.g., PNG 352.1 - 00.0). Spectral energy distributions are constructed by combing the IRAC and MIPS data with existing near-, mid-, and far-IR photometry measurements. The anomalous colors of some objects allow us to infer the presence of aromatic emission bands. These multi-wavelength data provide useful insights into the nature of different nebular components contributing to the infrared emission of PNs.

  11. Pupillometry as a glimpse into the neurochemical basis of human memory encoding.

    Science.gov (United States)

    Hoffing, Russell Cohen; Seitz, Aaron R

    2015-04-01

    Neurochemical systems are well studied in animal learning; however, ethical issues limit methodologies to explore these systems in humans. Pupillometry provides a glimpse into the brain's neurochemical systems, where pupil dynamics in monkeys have been linked with locus coeruleus (LC) activity, which releases norepinephrine (NE) throughout the brain. Here, we use pupil dynamics as a surrogate measure of neurochemical activity to explore the hypothesis that NE is involved in modulating memory encoding. We examine this using a task-irrelevant learning paradigm in which learning is boosted for stimuli temporally paired with task targets. We show that participants better recognize images that are paired with task targets than distractors and, in correspondence, that pupil size changes more for target-paired than distractor-paired images. To further investigate the hypothesis that NE nonspecifically guides learning for stimuli that are present with its release, a second procedure was used that employed an unexpected sound to activate the LC-NE system and induce pupil-size changes; results indicated a corresponding increase in memorization of images paired with the unexpected sounds. Together, these results suggest a relationship between the LC-NE system, pupil-size changes, and human memory encoding.

  12. Quantitative Infrared Absorption Spectra and Vibrational Assignments of Crotonaldehyde and Methyl Vinyl Ketone Using Gas-Phase Mid-Infrared, Far-Infrared, and Liquid Raman Spectra: s-cis vs s-trans Composition Confirmed via Temperature Studies and ab Initio Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmaier, Rodica; Williams, Stephen D.; Sams, Robert L.; Johnson, Timothy J.

    2016-12-16

    Methyl vinyl ketone (MVK) and crotonaldehyde are chemical isomers; both are also important species in tropospheric chemistry. We report quantitative vapor-phase infrared spectra of crotonaldehyde and MVK vapors over the 540-6500 cm-1 range. Vibrational assignments of all fundamental modes are made for both molecules based on far- and mid-infrared vapor-phase spectra, liquid Raman spectra, along with density functional theory and ab initio MP2 and high energy-accuracy compound theoretical models (W1BD). Theoretical results indicate that at room temperature the crotonaldehyde equilibrium mixture is approximately 97% s-trans and only 3% s-cis conformer. Nearly all observed bands are thus associated with the s-trans conformer, but a few appear to be uniquely associated the s-cis conformer, notably ν16c at 730.90 cm-1, which displays a substantial intensity increase with temperature (62% upon going from 5 to 50 oC). The intensity of the corresponding mode of the s-trans conformer decreases with temperature. Under the same conditions, the MVK equilibrium mixture is approximately 69% s-trans conformer and 31% s-cis. W1BD calculations indicate that for MVK this is one of those (rare) cases where there are comparable populations of both conformers, ~doubling the number of observed bands and exacerbating the vibrational assignments. We uniquely assign the bands associated with both the MVK s-cis conformer as well as those of the s-trans, thus completing the vibrational analyses of both conformers from the same set of experimental spectra. Integrated band intensities are reported for both molecules along with global warming potential values. Using the quantitative IR data, potential bands for atmospheric monitoring are also discussed.

  13. Mid-infrared gas sensors of liquid crystal type

    International Nuclear Information System (INIS)

    Nazarava, K.U.; Navumenka, V.I.

    2005-01-01

    One of the most important tasks in the environmental monitoring field is detection and concentration measurements of different ingredients in natural and artificial mixtures of substances. According to the measuring of value of IR absorption of different gases one can determine their concentration in the environment. That is why there is a great practical and on principle fundamental interest to investigate an opportunity of making the devices which could be used for measuring the absorption of some gases in IR optical range and also would not have such disadvantages as construction complexity, cumbersome embodiments, difficulty in controlling and obligatory presence of the moving parts (mirrors, prisms or gratings). The main element in a sensor of the type proposed is a liquid-crystalline cell, possessing marked dichroism of optical absorption in some spectral range (IR region). By fitting the absorbance and alignment parameters of the LC cell, it is possible to create the effect of the absorption edge shift when varying the magnitude of electric field applied. This leads to some kind of wavelength modulation of an external optical radiation in the pre-determined spectral range. Adding an appropriate light detector to the system described, one can obtain a miniature scanning spectral instrument (sensor) of a liquid crystal type. LC cells with absorption bands in spectral range near 3 μm where some atmospheric hydrocarbons absorb were investigated. The technique for reducing true external spectrum from the signal detected after the modulation process was developed

  14. Multispectral mid-infrared imaging using frequency upconversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Dam, Jeppe Seidelin; Jensen, Ole Bjarlin

    2013-01-01

    parameter, allowing for fast tuning and hence potentially fast image acquisition, paving the way for upconversion based real time multispectral imaging. In the present realization the upconversion module consists of an external cavity tapered diode laser in a Littrow configuration with a computer controlled......It has recently been shown that it is possible to upconvert infrared images to the near infrared region with high quantum efficiency and low noise by three-wave mixing with a laser field [1]. If the mixing laser is single-frequency, the upconverted image is simply a band-pass filtered version......: Infrared imaging, nonlinear frequency conversion, diode lasers, upconversion ] of the nonlinear material. Unfortunately, temperature tuning is slow, and angle tuning typically results in alignment issues. Here we present a novel approach where the wavelength of the mixing field is used as a tuning...

  15. Scaling of an Optically Pumped Mid-Infrared Rubidium Laser

    Science.gov (United States)

    2015-03-26

    ns pulsed, 1 MW/cm2 Continuum neodymium-doped yttrium aluminum garnet (Nd:YAG) laser to pump at 1.06 µm. The wavelength was decreased to 355 nm by...characterize the mid-IR rubidium laser, the calibration scheme of the indium- antimonide (InSb) detector, and the setup of the cw experiments...Richards’ experiment, the separated IR beam was then incident on a liquid nitrogen cooled indium antimonide (InSb) detector (Richards, 2013:11). As</