WorldWideScience

Sample records for gliding motility genes

  1. Gliding motility of Babesia bovis merozoites visualized by time-lapse video microscopy.

    Masahito Asada

    Full Text Available BACKGROUND: Babesia bovis is an apicomplexan intraerythrocytic protozoan parasite that induces babesiosis in cattle after transmission by ticks. During specific stages of the apicomplexan parasite lifecycle, such as the sporozoites of Plasmodium falciparum and tachyzoites of Toxoplasma gondii, host cells are targeted for invasion using a unique, active process termed "gliding motility". However, it is not thoroughly understood how the merozoites of B. bovis target and invade host red blood cells (RBCs, and gliding motility has so far not been observed in the parasite. METHODOLOGY/PRINCIPAL FINDINGS: Gliding motility of B. bovis merozoites was revealed by time-lapse video microscopy. The recorded images revealed that the process included egress of the merozoites from the infected RBC, gliding motility, and subsequent invasion into new RBCs. The gliding motility of B. bovis merozoites was similar to the helical gliding of Toxoplasma tachyzoites. The trails left by the merozoites were detected by indirect immunofluorescence assay using antiserum against B. bovis merozoite surface antigen 1. Inhibition of gliding motility by actin filament polymerization or depolymerization indicated that the gliding motility was driven by actomyosin dependent process. In addition, we revealed the timing of breakdown of the parasitophorous vacuole. Time-lapse image analysis of membrane-stained bovine RBCs showed formation and breakdown of the parasitophorous vacuole within ten minutes of invasion. CONCLUSIONS/SIGNIFICANCE: This is the first report of the gliding motility of B. bovis. Since merozoites of Plasmodium parasites do not glide on a substrate, the gliding motility of B. bovis merozoites is a notable finding.

  2. A cyclic GMP signalling module that regulates gliding motility in a malaria parasite.

    Robert W Moon

    2009-09-01

    Full Text Available The ookinete is a motile stage in the malaria life cycle which forms in the mosquito blood meal from the zygote. Ookinetes use an acto-myosin motor to glide towards and penetrate the midgut wall to establish infection in the vector. The regulation of gliding motility is poorly understood. Through genetic interaction studies we here describe a signalling module that identifies guanosine 3', 5'-cyclic monophosphate (cGMP as an important second messenger regulating ookinete differentiation and motility. In ookinetes lacking the cyclic nucleotide degrading phosphodiesterase delta (PDEdelta, unregulated signalling through cGMP results in rounding up of the normally banana-shaped cells. This phenotype is suppressed in a double mutant additionally lacking guanylyl cyclase beta (GCbeta, showing that in ookinetes GCbeta is an important source for cGMP, and that PDEdelta is the relevant cGMP degrading enzyme. Inhibition of the cGMP-dependent protein kinase, PKG, blocks gliding, whereas enhanced signalling through cGMP restores normal gliding speed in a mutant lacking calcium dependent protein kinase 3, suggesting at least a partial overlap between calcium and cGMP dependent pathways. These data demonstrate an important function for signalling through cGMP, and most likely PKG, in dynamically regulating ookinete gliding during the transmission of malaria to the mosquito.

  3. A protein secretion system linked to bacteroidete gliding motility and pathogenesis

    Sato, Keiko; Naito, Mariko; Yukitake, Hideharu; Hirakawa, Hideki; Shoji, Mikio; McBride, Mark J.; Rhodes, Ryan G.; Nakayama, Koji

    2009-01-01

    Porphyromonas gingivalis secretes strong proteases called gingipains that are implicated in periodontal pathogenesis. Protein secretion systems common to other Gram-negative bacteria are lacking in P. gingivalis, but several proteins, including PorT, have been linked to gingipain secretion. Comparative genome analysis and genetic experiments revealed 11 additional proteins involved in gingipain secretion. Six of these (PorK, PorL, PorM, PorN, PorW, and Sov) were similar in sequence to Flavobacterium johnsoniae gliding motility proteins, and two others (PorX and PorY) were putative two-component system regulatory proteins. Real-time RT-PCR analysis revealed that porK, porL, porM, porN, porP, porT, and sov were down-regulated in P. gingivalis porX and porY mutants. Disruption of the F. johnsoniae porT ortholog resulted in defects in motility, chitinase secretion, and translocation of a gliding motility protein, SprB adhesin, to the cell surface, providing a link between a unique protein translocation system and a motility apparatus in members of the Bacteroidetes phylum. PMID:19966289

  4. Contact- and Protein Transfer-Dependent Stimulation of Assembly of the Gliding Motility Machinery in Myxococcus xanthus.

    Beata Jakobczak

    2015-07-01

    Full Text Available Bacteria engage in contact-dependent activities to coordinate cellular activities that aid their survival. Cells of Myxococcus xanthus move over surfaces by means of type IV pili and gliding motility. Upon direct contact, cells physically exchange outer membrane (OM lipoproteins, and this transfer can rescue motility in mutants lacking lipoproteins required for motility. The mechanism of gliding motility and its stimulation by transferred OM lipoproteins remain poorly characterized. We investigated the function of CglC, GltB, GltA and GltC, all of which are required for gliding. We demonstrate that CglC is an OM lipoprotein, GltB and GltA are integral OM β-barrel proteins, and GltC is a soluble periplasmic protein. GltB and GltA are mutually stabilizing, and both are required to stabilize GltC, whereas CglC accumulate independently of GltB, GltA and GltC. Consistently, purified GltB, GltA and GltC proteins interact in all pair-wise combinations. Using active fluorescently-tagged fusion proteins, we demonstrate that GltB, GltA and GltC are integral components of the gliding motility complex. Incorporation of GltB and GltA into this complex depends on CglC and GltC as well as on the cytoplasmic AglZ protein and the inner membrane protein AglQ, both of which are components of the gliding motility complex. Conversely, incorporation of AglZ and AglQ into the gliding motility complex depends on CglC, GltB, GltA and GltC. Remarkably, physical transfer of the OM lipoprotein CglC to a ΔcglC recipient stimulates assembly of the gliding motility complex in the recipient likely by facilitating the OM integration of GltB and GltA. These data provide evidence that the gliding motility complex in M. xanthus includes OM proteins and suggest that this complex extends from the cytoplasm across the cell envelope to the OM. These data add assembly of gliding motility complexes in M. xanthus to the growing list of contact-dependent activities in bacteria.

  5. Rheological effects of micropolar slime on the gliding motility of bacteria with slip boundary condition

    Asghar, Z.; Ali, N.; Anwar Bég, O.; Javed, T.

    2018-06-01

    Gliding bacteria are virtually everywhere. These organisms are phylogenetically diverse with their hundreds of types, different shapes and several modes of motility. One possible mode of gliding motility in the rod shaped bacteria is that they propel themselves by producing undulating waves in their body. Few bacteria glides near the solid surface over the slime without any aid of flagella so the classical Navier-Stokes equations are incapable of explaining the slime rheology at the microscopic level. Micropolar fluid dynamics however provides a solid framework for mimicking bacterial physical phenomena at both micro and nano-scales, and therefore we use the micropolar fluid to characterize the rheology of a thin layer of slime and its dominant microrotation effects. It is also assumed that there is a certain degree of slip between slime and bacterial undulating surface and also between slime and solid substrate. The flow equations are formulated under long wavelength and low Reynolds number assumptions. Exact expressions for stream function and pressure gradient are obtained. The speed of the gliding bacteria is numerically calculated by using a modified Newton-Raphson method. Slip effects and effects of non-Newtonian slime parameters on bacterial speed and power are also quantified. In addition, when the glider is fixed, the effects of slip and rheological properties of micropolar slime parameters on the velocity, micro-rotation (angular velocity) of spherical slime particles, pressure rise per wavelength, pumping and trapping phenomena are also shown graphically and discussed in detail. The study is relevant to emerging biofuel cell technologies and also bacterial biophysics.

  6. A versatile class of cell surface directional motors gives rise to gliding motility and sporulation in Myxococcus xanthus.

    Morgane Wartel

    2013-12-01

    Full Text Available Eukaryotic cells utilize an arsenal of processive transport systems to deliver macromolecules to specific subcellular sites. In prokaryotes, such transport mechanisms have only been shown to mediate gliding motility, a form of microbial surface translocation. Here, we show that the motility function of the Myxococcus xanthus Agl-Glt machinery results from the recent specialization of a versatile class of bacterial transporters. Specifically, we demonstrate that the Agl motility motor is modular and dissociates from the rest of the gliding machinery (the Glt complex to bind the newly expressed Nfs complex, a close Glt paralogue, during sporulation. Following this association, the Agl system transports Nfs proteins directionally around the spore surface. Since the main spore coat polymer is secreted at discrete sites around the spore surface, its transport by Agl-Nfs ensures its distribution around the spore. Thus, the Agl-Glt/Nfs machineries may constitute a novel class of directional bacterial surface transporters that can be diversified to specific tasks depending on the cognate cargo and machinery-specific accessories.

  7. Glitter-like iridescence within the bacteroidetes especially Cellulophaga spp.: optical properties and correlation with gliding motility.

    Betty Kientz

    Full Text Available Iridescence results from structures that generate color. Iridescence of bacterial colonies has recently been described and illustrated. The glitter-like iridescence class, created especially for a few strains of Cellulophaga lytica, exhibits an intense iridescence under direct illumination. Such color appearance effects were previously associated with other bacteria from the Bacteroidetes phylum, but without clear elucidation and illustration. To this end, we compared various bacterial strains to which the iridescent trait was attributed. All Cellulophaga species and additional Bacteroidetes strains from marine and terrestrial environments were investigated. A selection of bacteria, mostly marine in origin, were found to be iridescent. Although a common pattern of reflected wavelengths was recorded for the species investigated, optical spectroscopy and physical measurements revealed a range of different glitter-like iridescence intensity and color profiles. Importantly, gliding motility was found to be a common feature of all iridescent colonies. Dynamic analyses of "glitter" formation at the edges of C. lytica colonies showed that iridescence was correlated with layer superposition. Both gliding motility, and unknown cell-to-cell communication processes, may be required for the establishment, in time and space, of the necessary periodic structures responsible for the iridescent appearance of Bacteroidetes.

  8. Porphyromonas gingivalis and related bacteria: from colonial pigmentation to the type IX secretion system and gliding motility

    Nakayama, K

    2015-01-01

    Porphyromonas gingivalis is a gram-negative, non-motile, anaerobic bacterium implicated as a major pathogen in periodontal disease. P. gingivalis grows as black-pigmented colonies on blood agar, and many bacteriologists have shown interest in this property. Studies of colonial pigmentation have revealed a number of important findings, including an association with the highly active extracellular and surface proteinases called gingipains that are found in P. gingivalis. The Por secretion system, a novel type IX secretion system (T9SS), has been implicated in gingipain secretion in studies using non-pigmented mutants. In addition, many potent virulence proteins, including the metallocarboxypeptidase CPG70, 35 kDa hemin-binding protein HBP35, peptidylarginine deiminase PAD and Lys-specific serine endopeptidase PepK, are secreted through the T9SS. These findings have not been limited to P. gingivalis but have been extended to other bacteria belonging to the phylum Bacteroidetes. Many Bacteroidetes species possess the T9SS, which is associated with gliding motility for some of these bacteria. PMID:25546073

  9. The ETRAMP family member SEP2 is expressed throughout Plasmodium berghei life cycle and is released during sporozoite gliding motility.

    Currà, Chiara; Di Luca, Marco; Picci, Leonardo; de Sousa Silva Gomes dos Santos, Carina; Siden-Kiamos, Inga; Pace, Tomasino; Ponzi, Marta

    2013-01-01

    The early transcribed membrane proteins ETRAMPs belong to a family of small, transmembrane molecules unique to Plasmodium parasite, which share a signal peptide followed by a short lysine-rich stretch, a transmembrane domain and a variable, highly charged C-terminal region. ETRAMPs are usually expressed in a stage-specific manner. In the blood stages they localize to the parasitophorous vacuole membrane and, in described cases, to vesicle-like structures exported to the host erythrocyte cytosol. Two family members of the rodent parasite Plasmodium berghei, uis3 and uis4, localize to secretory organelles of sporozoites and to the parasitophorous membrane vacuole of the liver stages. By the use of specific antibodies and the generation of transgenic lines, we showed that the P. berghei ETRAMP family member SEP2 is abundantly expressed in gametocytes as well as in mosquito and liver stages. In intracellular parasite stages, SEP2 is routed to the parasitophorous vacuole membrane while, in invasive ookinete and sporozoite stages, it localizes to the parasite surface. To date SEP2 is the only ETRAMP protein detected throughout the parasite life cycle. Furthermore, SEP2 is also released during gliding motility of salivary gland sporozoites. A limited number of proteins are known to be involved in this key function and the best characterized, the CSP and TRAP, are both promising transmission-blocking candidates. Our results suggest that ETRAMP members may be viewed as new potential candidates for malaria control.

  10. Gene expression in Pseudomonas aeruginosa swarming motility

    Déziel Eric

    2010-10-01

    Full Text Available Abstract Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14. Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center. Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to

  11. Quantitative analysis of Plasmodium ookinete motion in three dimensions suggests a critical role for cell shape in the biomechanics of malaria parasite gliding motility.

    Kan, Andrey; Tan, Yan-Hong; Angrisano, Fiona; Hanssen, Eric; Rogers, Kelly L; Whitehead, Lachlan; Mollard, Vanessa P; Cozijnsen, Anton; Delves, Michael J; Crawford, Simon; Sinden, Robert E; McFadden, Geoffrey I; Leckie, Christopher; Bailey, James; Baum, Jake

    2014-05-01

    Motility is a fundamental part of cellular life and survival, including for Plasmodium parasites--single-celled protozoan pathogens responsible for human malaria. The motile life cycle forms achieve motility, called gliding, via the activity of an internal actomyosin motor. Although gliding is based on the well-studied system of actin and myosin, its core biomechanics are not completely understood. Currently accepted models suggest it results from a specifically organized cellular motor that produces a rearward directional force. When linked to surface-bound adhesins, this force is passaged to the cell posterior, propelling the parasite forwards. Gliding motility is observed in all three life cycle stages of Plasmodium: sporozoites, merozoites and ookinetes. However, it is only the ookinetes--formed inside the midgut of infected mosquitoes--that display continuous gliding without the necessity of host cell entry. This makes them ideal candidates for invasion-free biomechanical analysis. Here we apply a plate-based imaging approach to study ookinete motion in three-dimensional (3D) space to understand Plasmodium cell motility and how movement facilitates midgut colonization. Using single-cell tracking and numerical analysis of parasite motion in 3D, our analysis demonstrates that ookinetes move with a conserved left-handed helical trajectory. Investigation of cell morphology suggests this trajectory may be based on the ookinete subpellicular cytoskeleton, with complementary whole and subcellular electron microscopy showing that, like their motion paths, ookinetes share a conserved left-handed corkscrew shape and underlying twisted microtubular architecture. Through comparisons of 3D movement between wild-type ookinetes and a cytoskeleton-knockout mutant we demonstrate that perturbation of cell shape changes motion from helical to broadly linear. Therefore, while the precise linkages between cellular architecture and actomyosin motor organization remain unknown, our

  12. In-situ determination of the mechanical properties of gliding or non-motile bacteria by atomic force microscopy under physiological conditions without immobilization.

    Samia Dhahri

    Full Text Available We present a study about AFM imaging of living, moving or self-immobilized bacteria in their genuine physiological liquid medium. No external immobilization protocol, neither chemical nor mechanical, was needed. For the first time, the native gliding movements of Gram-negative Nostoc cyanobacteria upon the surface, at speeds up to 900 µm/h, were studied by AFM. This was possible thanks to an improved combination of a gentle sample preparation process and an AFM procedure based on fast and complete force-distance curves made at every pixel, drastically reducing lateral forces. No limitation in spatial resolution or imaging rate was detected. Gram-positive and non-motile Rhodococcus wratislaviensis bacteria were studied as well. From the approach curves, Young modulus and turgor pressure were measured for both strains at different gliding speeds and are ranging from 20±3 to 105±5 MPa and 40±5 to 310±30 kPa depending on the bacterium and the gliding speed. For Nostoc, spatially limited zones with higher values of stiffness were observed. The related spatial period is much higher than the mean length of Nostoc nodules. This was explained by an inhomogeneous mechanical activation of nodules in the cyanobacterium. We also observed the presence of a soft extra cellular matrix (ECM around the Nostoc bacterium. Both strains left a track of polymeric slime with variable thicknesses. For Rhodococcus, it is equal to few hundreds of nanometers, likely to promote its adhesion to the sample. While gliding, the Nostoc secretes a slime layer the thickness of which is in the nanometer range and increases with the gliding speed. This result reinforces the hypothesis of a propulsion mechanism based, for Nostoc cyanobacteria, on ejection of slime. These results open a large window on new studies of both dynamical phenomena of practical and fundamental interests such as the formation of biofilms and dynamic properties of bacteria in real physiological conditions.

  13. In-Situ Determination of the Mechanical Properties of Gliding or Non-Motile Bacteria by Atomic Force Microscopy under Physiological Conditions without Immobilization

    Dhahri, Samia; Ramonda, Michel; Marlière, Christian

    2013-01-01

    We present a study about AFM imaging of living, moving or self-immobilized bacteria in their genuine physiological liquid medium. No external immobilization protocol, neither chemical nor mechanical, was needed. For the first time, the native gliding movements of Gram-negative Nostoc cyanobacteria upon the surface, at speeds up to 900 µm/h, were studied by AFM. This was possible thanks to an improved combination of a gentle sample preparation process and an AFM procedure based on fast and complete force-distance curves made at every pixel, drastically reducing lateral forces. No limitation in spatial resolution or imaging rate was detected. Gram-positive and non-motile Rhodococcus wratislaviensis bacteria were studied as well. From the approach curves, Young modulus and turgor pressure were measured for both strains at different gliding speeds and are ranging from 20±3 to 105±5 MPa and 40±5 to 310±30 kPa depending on the bacterium and the gliding speed. For Nostoc, spatially limited zones with higher values of stiffness were observed. The related spatial period is much higher than the mean length of Nostoc nodules. This was explained by an inhomogeneous mechanical activation of nodules in the cyanobacterium. We also observed the presence of a soft extra cellular matrix (ECM) around the Nostoc bacterium. Both strains left a track of polymeric slime with variable thicknesses. For Rhodococcus, it is equal to few hundreds of nanometers, likely to promote its adhesion to the sample. While gliding, the Nostoc secretes a slime layer the thickness of which is in the nanometer range and increases with the gliding speed. This result reinforces the hypothesis of a propulsion mechanism based, for Nostoc cyanobacteria, on ejection of slime. These results open a large window on new studies of both dynamical phenomena of practical and fundamental interests such as the formation of biofilms and dynamic properties of bacteria in real physiological conditions. PMID:23593493

  14. Emergence and modular evolution of a novel motility machinery in bacteria.

    Jennifer Luciano

    2011-09-01

    Full Text Available Bacteria glide across solid surfaces by mechanisms that have remained largely mysterious despite decades of research. In the deltaproteobacterium Myxococcus xanthus, this locomotion allows the formation stress-resistant fruiting bodies where sporulation takes place. However, despite the large number of genes identified as important for gliding, no specific machinery has been identified so far, hampering in-depth investigations. Based on the premise that components of the gliding machinery must have co-evolved and encode both envelope-spanning proteins and a molecular motor, we re-annotated known gliding motility genes and examined their taxonomic distribution, genomic localization, and phylogeny. We successfully delineated three functionally related genetic clusters, which we proved experimentally carry genes encoding the basal gliding machinery in M. xanthus, using genetic and localization techniques. For the first time, this study identifies structural gliding motility genes in the Myxobacteria and opens new perspectives to study the motility mechanism. Furthermore, phylogenomics provide insight into how this machinery emerged from an ancestral conserved core of genes of unknown function that evolved to gliding by the recruitment of functional modules in Myxococcales. Surprisingly, this motility machinery appears to be highly related to a sporulation system, underscoring unsuspected common mechanisms in these apparently distinct morphogenic phenomena.

  15. Thermo-Regulation of Genes Mediating Motility and Plant Interactions in Pseudomonas syringae

    Hockett, Kevin L.; Burch, Adrien Y.; Lindow, Steven E.

    2013-01-01

    Pseudomonas syringae is an important phyllosphere colonist that utilizes flagellum-mediated motility both as a means to explore leaf surfaces, as well as to invade into leaf interiors, where it survives as a pathogen. We found that multiple forms of flagellum-mediated motility are thermo-suppressed, including swarming and swimming motility. Suppression of swarming motility occurs between 28° and 30°C, which coincides with the optimal growth temperature of P. syringae. Both fliC (encoding flagellin) and syfA (encoding a non-ribosomal peptide synthetase involved in syringafactin biosynthesis) were suppressed with increasing temperature. RNA-seq revealed 1440 genes of the P. syringae genome are temperature sensitive in expression. Genes involved in polysaccharide synthesis and regulation, phage and IS elements, type VI secretion, chemosensing and chemotaxis, translation, flagellar synthesis and motility, and phytotoxin synthesis and transport were generally repressed at 30°C, while genes involved in transcriptional regulation, quaternary ammonium compound metabolism and transport, chaperone/heat shock proteins, and hypothetical genes were generally induced at 30°C. Deletion of flgM, a key regulator in the transition from class III to class IV gene expression, led to elevated and constitutive expression of fliC regardless of temperature, but did not affect thermo-regulation of syfA. This work highlights the importance of temperature in the biology of P. syringae, as many genes encoding traits important for plant-microbe interactions were thermo-regulated. PMID:23527276

  16. Relation Between Motility, Accelerated Aging and Gene Expression in Selected Drosophila Strains under Hypergravity Conditions

    Serrano, Paloma; van Loon, Jack J. W. A.; Medina, F. Javier; Herranz, Raúl

    2013-02-01

    Motility and aging in Drosophila have proven to be highly modified under altered gravity conditions (both in space and ground simulation facilities). In order to find out how closely connected they are, five strains with altered geotactic response or survival rates were selected and exposed to an altered gravity environment of 2 g. By analysing the different motile and behavioural patterns and the median survival rates, we show that altered gravity leads to changes in motility, which will have a negative impact on the flies' survival. Previous results show a differential gene expression between sessile samples and adults and confirm that environmentally-conditioned behavioural patterns constrain flies' gene expression and life span. Therefore, hypergravity is considered an environmental stress factor and strains that do not respond to this new environment experience an increment in motility, which is the major cause for the observed increased mortality also under microgravity conditions. The neutral-geotaxis selected strain (strain M) showed the most severe phenotype, unable to respond to variations in the gravitational field. Alternatively, the opposite phenotype was observed in positive-geotaxis and long-life selected flies (strains B and L, respectively), suggesting that these populations are less sensitive to alterations in the gravitational load. We conclude that the behavioural response has a greater contribution to aging than the modified energy consumption in altered gravity environments.

  17. Pancreatic cancer circulating tumour cells express a cell motility gene signature that predicts survival after surgery

    Sergeant, Gregory; Eijsden, Rudy van; Roskams, Tania; Van Duppen, Victor; Topal, Baki

    2012-01-01

    Most cancer deaths are caused by metastases, resulting from circulating tumor cells (CTC) that detach from the primary cancer and survive in distant organs. The aim of the present study was to develop a CTC gene signature and to assess its prognostic relevance after surgery for pancreatic ductal adenocarcinoma (PDAC). Negative depletion fluorescence activated cell sorting (FACS) was developed and validated with spiking experiments using cancer cell lines in whole human blood samples. This FACS-based method was used to enrich for CTC from the blood of 10 patients who underwent surgery for PDAC. Total RNA was isolated from 4 subgroup samples, i.e. CTC, haematological cells (G), original tumour (T), and non-tumoural pancreatic control tissue (P). After RNA quality control, samples of 6 patients were eligible for further analysis. Whole genome microarray analysis was performed after double linear amplification of RNA. ‘Ingenuity Pathway Analysis’ software and AmiGO were used for functional data analyses. A CTC gene signature was developed and validated with the nCounter system on expression data of 78 primary PDAC using Cox regression analysis for disease-free (DFS) and overall survival (OS). Using stringent statistical analysis, we retained 8,152 genes to compare expression profiles of CTC vs. other subgroups, and found 1,059 genes to be differentially expressed. The pathway with the highest expression ratio in CTC was p38 mitogen-activated protein kinase (p38 MAPK) signaling, known to be involved in cancer cell migration. In the p38 MAPK pathway, TGF-β1, cPLA2, and MAX were significantly upregulated. In addition, 9 other genes associated with both p38 MAPK signaling and cell motility were overexpressed in CTC. High co-expression of TGF-β1 and our cell motility panel (≥ 4 out of 9 genes for DFS and ≥ 6 out of 9 genes for OS) in primary PDAC was identified as an independent predictor of DFS (p=0.041, HR (95% CI) = 1.885 (1.025 – 3.559)) and OS (p=0.047, HR

  18. Alternative Splicing in Adhesion- and Motility-Related Genes in Breast Cancer

    Rosanna Aversa

    2016-01-01

    Full Text Available Breast cancer is the most common tumor and the second leading cause of cancer death among woman, mainly caused by the metastatic spread. Tumor invasiveness is due to an altered expression of adhesion molecules. Among them, semaphorins are of peculiar interest. Cancer cells can manipulate alternative splicing patterns to modulate the expression of adhesion- and motility-related molecules, also at the isoform level. In this study, combining RNA-Sequencing on MCF-7 to targeted experimental validations—in human breast cell lines and breast tumor biopsies—we identified 12 new alternative splicing transcripts in genes encoding adhesion- and motility-related molecules, including semaphorins, their receptors and co-receptors. Among them, a new SEMA3F transcript is expressed in all breast cell lines and breast cancer biopsies, and is translated into a new semaphorin 3F isoform. In silico analysis predicted that most of the new putative proteins lack functional domains, potentially missing some functions and acquiring new ones. Our findings better describe the extent of alternative splicing in breast cancer and highlight the need to further investigate adhesion- and motility-related molecules to gain insights into breast cancer progression.

  19. The HP0256 gene product is involved in motility and cell envelope architecture of Helicobacter pylori

    Douillard, Francois P

    2010-04-08

    Abstract Background Helicobacter pylori is the causative agent for gastritis, and peptic and duodenal ulcers. The bacterium displays 5-6 polar sheathed flagella that are essential for colonisation and persistence in the gastric mucosa. The biochemistry and genetics of flagellar biogenesis in H. pylori has not been fully elucidated. Bioinformatics analysis suggested that the gene HP0256, annotated as hypothetical, was a FliJ homologue. In Salmonella, FliJ is a chaperone escort protein for FlgN and FliT, two proteins that themselves display chaperone activity for components of the hook, the rod and the filament. Results Ablation of the HP0256 gene in H. pylori significantly reduced motility. However, flagellin and hook protein synthesis was not affected in the HP0256 mutant. Transmission electron transmission microscopy revealed that the HP0256 mutant cells displayed a normal flagellum configuration, suggesting that HP0256 was not essential for assembly and polar localisation of the flagella in the cell. Interestingly, whole genome microarrays of an HP0256 mutant revealed transcriptional changes in a number of genes associated with the flagellar regulon and the cell envelope, such as outer membrane proteins and adhesins. Consistent with the array data, lack of the HP0256 gene significantly reduced adhesion and the inflammatory response in host cells. Conclusions We conclude that HP0256 is not a functional counterpart of FliJ in H. pylori. However, it is required for full motility and it is involved, possibly indirectly, in expression of outer membrane proteins and adhesins involved in pathogenesis and adhesion.

  20. The MogR Transcriptional Repressor Regulates Nonhierarchal Expression of Flagellar Motility Genes and Virulence in Listeria monocytogenes.

    2006-04-01

    Full Text Available Flagella are surface structures critical for motility and virulence of many bacterial species. In Listeria monocytogenes, MogR tightly represses expression of flagellin (FlaA during extracellular growth at 37 degrees C and during intracellular infection. MogR is also required for full virulence in a murine model of infection. Using in vitro and in vivo infection models, we determined that the severe virulence defect of MogR-negative bacteria is due to overexpression of FlaA. Specifically, overproduction of FlaA in MogR-negative bacteria caused pleiotropic defects in bacterial division (chaining phenotype, intracellular spread, and virulence in mice. DNA binding and microarray analyses revealed that MogR represses transcription of all known flagellar motility genes by binding directly to a minimum of two TTTT-N(5-AAAA recognition sites positioned within promoter regions such that RNA polymerase binding is occluded. Analysis of MogR protein levels demonstrated that modulation of MogR repression activity confers the temperature-specificity to flagellar motility gene expression. Epistasis analysis revealed that MogR repression of transcription is antagonized in a temperature-dependent manner by the DegU response regulator and that DegU further regulates FlaA levels through a posttranscriptional mechanism. These studies provide the first known example to our knowledge of a transcriptional repressor functioning as a master regulator controlling nonhierarchal expression of flagellar motility genes.

  1. Relation between motility, accelerated aging and gene expression in selected Drosophila strains under hypergravity conditions

    Serrano, P.; van Loon, J.J.W.A.; Javier Medina, F.; Herranz, R.

    2013-01-01

    Motility and aging in Drosophila have proven to be highly modified under altered gravity conditions (both in space and ground simulation facilities). In order to find out how closely connected they are, five strains with altered geotactic response or survival rates were selected and exposed to an

  2. A genome-wide association study reveals a novel candidate gene for sperm motility in pigs

    Diniz, D.B.; Lopes, M.S.; Broekhuijse, M.L.W.J.; Lopes, P.S.; Harlizius, B.; Guimaraes, S.E.F.; Duijvesteijn, N.; Knol, E.F.; Silva, F.F.

    2014-01-01

    Sperm motility is one of the most widely used parameters in order to evaluate boar semen quality. However, this trait can only be measured after puberty. Thus, the use of genomic information appears as an appealing alternative to evaluate and improve selection for boar fertility traits earlier in

  3. Complete genome sequence of the gliding, heparinolytic Pedobacter saltans type strain (113T)

    Liolios, Konstantinos; Sikorski, Johannes; Lu, Meagan; Nolan, Matt; Lapidus, Alla; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Huntemann, Marcel; Ivanova, Natalia; Pagani, Ioanna; Mavromatis, Konstantinos; Ovchinikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Brambilla, Evelyne-Marie; Kotsyurbenko, Oleg; Rohde, Manfred; Tindall, Brian J.; Abt, Birte; Göker, Markus; Detter, John C.; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C.

    2011-01-01

    Pedobacter saltans Steyn et al. 1998 is one of currently 32 species in the genus Pedobacter within the family Sphingobacteriaceae. The species is of interest for its isolated location in the tree of life. Like other members of the genus P. saltans is heparinolytic. Cells of P. saltans show a peculiar gliding, dancing motility and can be distinguished from other Pedobacter strains by their ability to utilize glycerol and the inability to assimilate D-cellobiose. The genome presented here is only the second completed genome sequence of a type strain from a member of the family Sphingobacteriaceae to be published. The 4,635,236 bp long genome with its 3,854 protein-coding and 67 RNA genes consists of one chromosome, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:22180808

  4. Complete genome sequence of the gliding, heparinolytic Pedobacter saltans type strain (113).

    Liolios, Konstantinos; Sikorski, Johannes; Lu, Meagan; Nolan, Matt; Lapidus, Alla; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Huntemann, Marcel; Ivanova, Natalia; Pagani, Ioanna; Mavromatis, Konstantinos; Ovchinikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Brambilla, Evelyne-Marie; Kotsyurbenko, Oleg; Rohde, Manfred; Tindall, Brian J; Abt, Birte; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C

    2011-10-15

    Pedobacter saltans Steyn et al. 1998 is one of currently 32 species in the genus Pedobacter within the family Sphingobacteriaceae. The species is of interest for its isolated location in the tree of life. Like other members of the genus P. saltans is heparinolytic. Cells of P. saltans show a peculiar gliding, dancing motility and can be distinguished from other Pedobacter strains by their ability to utilize glycerol and the inability to assimilate D-cellobiose. The genome presented here is only the second completed genome sequence of a type strain from a member of the family Sphingobacteriaceae to be published. The 4,635,236 bp long genome with its 3,854 protein-coding and 67 RNA genes consists of one chromosome, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  5. Using genetics to test the causal relationship of total adiposity and periodontitis: Mendelian randomization analyses in the Gene-Lifestyle Interactions and Dental Endpoints (GLIDE) Consortium

    Shungin, Dmitry; Cornelis, Marilyn C; Divaris, Kimon; Holtfreter, Birte; Shaffer, John R; Yu, Yau-Hua; Barros, Silvana P; Beck, James D; Biffar, Reiner; Boerwinkle, Eric A; Crout, Richard J.; Ganna, Andrea; Hallmans, Goran; Hindy, George; Hu, Frank B; Kraft, Peter; McNeil, Daniel W; Melander, Olle; Moss, Kevin L; North, Kari E; Orho-Melander, Marju; Pedersen, Nancy L; Ridker, Paul M; Rimm, Eric B; Rose, Lynda M; Rukh, Gull; Teumer, Alexander; Weyant, Robert J; Chasman, Daniel I; Joshipura, Kaumudi; Kocher, Thomas; Magnusson, Patrik KE; Marazita, Mary L; Nilsson, Peter; Offenbacher, Steve; Davey Smith, George; Lundberg, Pernilla; Palmer, Tom M; Timpson, Nicholas J; Johansson, Ingegerd; Franks, Paul W

    2015-01-01

    Background: The observational relationship between obesity and periodontitis is widely known, yet causal evidence is lacking. Our objective was to investigate causal associations between periodontitis and body mass index (BMI). Methods: We performed Mendelian randomization analyses with BMI-associated loci combined in a genetic risk score (GRS) as the instrument for BMI. All analyses were conducted within the Gene-Lifestyle Interactions and Dental Endpoints (GLIDE) Consortium in 13 studies from Europe and the USA, including 49 066 participants with clinically assessed (seven studies, 42.1% of participants) and self-reported (six studies, 57.9% of participants) periodontitis and genotype data (17 672/31 394 with/without periodontitis); 68 761 participants with BMI and genotype data; and 57 871 participants (18 881/38 990 with/without periodontitis) with data on BMI and periodontitis. Results: In the observational meta-analysis of all participants, the pooled crude observational odds ratio (OR) for periodontitis was 1.13 [95% confidence interval (CI): 1.03, 1.24] per standard deviation increase of BMI. Controlling for potential confounders attenuated this estimate (OR = 1.08; 95% CI:1.03, 1.12). For clinically assessed periodontitis, corresponding ORs were 1.25 (95% CI: 1.10, 1.42) and 1.13 (95% CI: 1.10, 1.17), respectively. In the genetic association meta-analysis, the OR for periodontitis was 1.01 (95% CI: 0.99, 1.03) per GRS unit (per one effect allele) in all participants and 1.00 (95% CI: 0.97, 1.03) in participants with clinically assessed periodontitis. The instrumental variable meta-analysis of all participants yielded an OR of 1.05 (95% CI: 0.80, 1.38) per BMI standard deviation, and 0.90 (95% CI: 0.56, 1.46) in participants with clinical data. Conclusions: Our study does not support total adiposity as a causal risk factor for periodontitis, as the point estimate is very close to the null in the causal inference analysis, with wide

  6. Motility of electric cable bacteria

    Bjerg, Jesper Tataru; Damgaard, Lars Riis; Holm, Simon Agner

    2016-01-01

    Cable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces...... with a highly variable speed of 0.50.3 ms1 (meanstandard deviation) and time between reversals of 155108 s. They frequently moved forward in loops, and formation of twisted loops revealed helical rotation of the filaments. Cable bacteria responded to chemical gradients in their environment, and around the oxic......-anoxic interface, they curled and piled up, with straight parts connecting back to the source of sulfide. Thus, it appears that motility serves the cable bacteria in establishing and keeping optimal connections between their distant electron donor and acceptors in a dynamic sediment environment....

  7. Comparative transcriptomics with a motility-deficient mutant leads to identification of a novel polysaccharide secretion system in Nostoc punctiforme.

    Risser, Douglas D; Meeks, John C

    2013-02-01

    Many filamentous cyanobacteria are capable of gliding motility by an undefined mechanism. Within the heterocyst-forming clades, some strains, such as the Nostoc spp. and Fisherella spp., are motile only as specialized filaments termed hormogonia. Here we report on the phenotype of inactivation of a methyl-accepting chemotaxis-like protein in Nostoc punctiforme, designated HmpD. The gene hmpD was found to be essential for hormogonium development, motility and polysaccharide secretion. Comparative global transcriptional profiling of the ΔhmpD strain demonstrated that HmpD has a profound effect on the transcriptional programme of hormogonium development, influencing approximately half of the genes differentially transcribed during differentiation. Utilizing this transcriptomic data, we identified a gene locus, designated here as hps, that appears to encode for a novel polysaccharide secretion system. Transcripts for the genes in the hps locus are upregulated in two steps, with the second step dependent on HmpD. Deletion of hpsA, hpsBCD or hpsEFG resulted in the complete loss of motility and polysaccharide secretion, similar to deletion of hmpD. Genes in the hps locus are highly conserved in the filamentous cyanobacteria, but generally absent in unicellular strains, implying a common mechanism of motility unique to the filamentous cyanobacteria. © 2012 Blackwell Publishing Ltd.

  8. Short-Term Pretreatment of Sub-Inhibitory Concentrations of Gentamycin Inhibits the Swarming Motility of Escherichia Coli by Down-Regulating the Succinate Dehydrogenase Gene

    Yijing Zhuang

    2016-09-01

    Full Text Available Background/Aims: Motility is a feature of many pathogens that contributes to the migration and dispersion of the infectious agent. Whether gentamycin has a post-antibiotic effect (PAE on the swarming and swimming motility of Escherichia coli (E. coli remains unknown. In this study, we aimed to examine whether short-term pretreatment of sub-inhibitory concentrations of gentamycin alter motility of E. coli and the mechanisms involved therein. Methods: After exposure to sub-inhibitory concentrations (0.8 μg/ml of gentamicin, the swarming and swimming motility of E. coli was tested in semi-solid media. Real-time PCR was used to detect the gene expression of succinate dehydrogenase (SDH. The production of SDH and fumarate by E. coli pretreated with or without gentamycin was measured. Fumarate was added to swarming agar to determine whether fumarate could restore the swarming motility of E. coli. Results: After pretreatment of E. coli with sub-inhibitory concentrations of gentamycin, swarming motility was repressed in the absence of growth inhibition. The expression of all four subunits of SDH was down-regulated, and the intracellular concentration of SDH and fumarate, produced by E. coli, were both decreased. Supplementary fumarate could restore the swarming motility inhibited by gentamycin. A selective inhibitor of SDH (propanedioic acid could strongly repress the swarming motility. Conclusion: Sub-inhibitory concentrations of gentamycin inhibits the swarming motility of E. coli. This effect is mediated by a reduction in cellular fumarate caused by down-regulation of SDH. Gentamycin may be advantageous for treatment of E. coli infections.

  9. More Than Gliding: Involvement of GldD and GldG in the Virulence of Flavobacterium psychrophilum

    David Pérez-Pascual

    2017-11-01

    Full Text Available A fascinating characteristic of most members of the genus Flavobacterium is their ability to move over surfaces by gliding motility. Flavobacterium psychrophilum, an important pathogen of farmed salmonids worldwide, contains in its genome the 19 gld and spr genes shown to be required for gliding or spreading in Flavobacterium johnsoniae; however, their relative role in its lifestyle remains unknown. In order to address this issue, two spreading deficient mutants were produced as part of a Tn4351 mutant library in F. psychrophilum strain THCO2-90. The transposons were inserted in gldD and gldG genes. While the wild-type strain is proficient in adhesion, biofilm formation and displays strong proteolytic activity, both mutants lost these characteristics. Extracellular proteome comparisons revealed important modifications for both mutants, with a significant reduction of the amounts of proteins likely transported through the outer membrane by the Type IX secretion system, indicating that GldD and GldG proteins are required for an effective activity of this system. In addition, a significant decrease in virulence was observed using rainbow trout bath and injection infection models. Our results reveal additional roles of gldD and gldG genes that are likely of importance for the F. psychrophilum lifestyle, including virulence.

  10. Circular random motion in diatom gliding under isotropic conditions

    Gutiérrez-Medina, Braulio; Maldonado, Ana Iris Peña; Guerra, Andrés Jiménez; Rubio, Yadiralia Covarrubias; Meza, Jessica Viridiana García

    2014-01-01

    How cells migrate has been investigated primarily for the case of trajectories composed by joined straight segments. In contrast, little is known when cellular motion follows intrinsically curved paths. Here, we use time-lapse optical microscopy and automated trajectory tracking to investigate how individual cells of the diatom Nitzschia communis glide across surfaces under isotropic environmental conditions. We find a distinct kind of random motion, where trajectories are formed by circular arcs traveled at constant speed, alternated with random stoppages, direction reversals and changes in the orientation of the arcs. Analysis of experimental and computer-simulated trajectories show that the circular random motion of diatom gliding is not optimized for long-distance travel but rather for recurrent coverage of limited surface area. These results suggest that one main biological role for this type of diatom motility is to efficiently build the foundation of algal biofilms. (paper)

  11. Approaches to systems biology. Four methods to study single-cell gene expression, cell motility, antibody reactivity, and respiratory metabolism

    Hagedorn, Peter

    To understand how complex systems, such as cells, function, comprehensive Measurements of their constituent parts must be made. This can be achieved by combining methods that are each optimized to measure specific parts of the system. Four such methods,each covering a different area, are presented...... from such measurements allows models of the system to be developed and tested. For each of the methods, such analysis and modelling approaches have beenapplied and are presented: Differentially regulated genes are identified and classified according to function; cell-specfic motility models...... are developed that can distinguish between different surfaces; a method for selecting repertoires of antigens thatseparate mice based on their response to treatment is developed; and the observed concentrations of free and bound NADH is used to build and test a basic model of respiratory metabolism...

  12. Genes that influence swarming motility and biofilm formation in Variovorax paradoxus EPS.

    Michael J Pehl

    Full Text Available Variovorax paradoxus is an aerobic soil bacterium associated with important biodegradative processes in nature. We use V. paradoxus EPS to study multicellular behaviors on surfaces.We recovered flanking sequence from 123 clones in a Tn5 mutant library, with insertions in 29 different genes, selected based on observed surface behavior phenotypes. We identified three genes, Varpa_4665, Varpa_4680, and Varpa_5900, for further examination. These genes were cloned into pBBR1MCS2 and used to complement the insertion mutants. We also analyzed expression of Varpa_4680 and Varpa_5900 under different growth conditions by qPCR.The 29 genes we identified had diverse predicted functions, many in exopolysaccharide synthesis. Varpa_4680, the most commonly recovered insertion site, encodes a putative N-acetyl-L-fucosamine transferase similar to WbuB. Expression of this gene in trans complemented the mutant fully. Several unique insertions were identified in Varpa_5900, which is one of three predicted pilY1 homologs in the EPS genome. No insertions in the two other putative pilY1 homologs present in the genome were identified. Expression of Varpa_5900 altered the structure of the wild type swarm, as did disruption of the chromosomal gene. The swarming phenotype was complemented by expression of Varpa_5900 from a plasmid, but biofilm formation was not restored. Both Varpa_4680 and Varpa_5900 transcripts were downregulated in biofilms and upregulated during swarming when compared to log phase culture. We identified a putative two component system (Varpa_4664-4665 encoding a response regulator (shkR and a sensor histidine kinase (shkS, respectively. Biofilm formation increased and swarming was strongly delayed in the Varpa_4665 (shkS mutant. Complementation of shkS restored the biofilm phenotype but swarming was still delayed. Expression of shkR in trans suppressed biofilm formation in either genetic background, and partially restored swarming in the mutant

  13. The effect of consuming small volumes of beer on gastric motility and the involvement of gene polymorphisms.

    Shibata, Tomoyuki; Yamashita, Hiromi; Kawamura, Tomohiko; Jodai, Yasutaka; Omori, Takafumi; Sumi, Kazuya; Ichikawa, Yuichiro; Okubo, Masaaki; Ishizuka, Takamitsu; Tahara, Tomomitsu; Nagasaka, Mitsuo; Nakagawa, Yoshihito; Hirata, Ichiro; Ohmiya, Naoki; Nakao, Makoto

    2016-01-01

    The aim of this study was to investigate the effect of consuming small amounts of beer or a nonalcoholic beer taste beverage (non-beer) on gastric emptying and the polymorphisms in alcohol metabolism-related enzyme-encoding genes. Twenty male healthy volunteers were questioned regarding their alcohol consumption status, and body measurement was performed. The genetic polymorphisms in ADH1B (rs1229984, Arg47His) and ALDH2 (rs671 Glu487Lys) were analyzed. The subjects consumed 150 mL of beer or non-beer once per week, followed by the ingestion of 200 kcal of the test nutrient containing 13 C-acetate 15 min later, after which the subjects' exhalations were collected up to 120 min. The concentration peak of 13 C was measured as Tmax. Diamine oxidase (DAO) activity for the marker of small intestinal function activity was also measured the day after the test. Gastric emptying was significantly slower in the group that consumed a small amount of beer, and in daily beer consumption group, and also in the ADH1B *2/*2, ALDH2 *1/*2 genotypes compared to non-beer drinking group. DAO values were not significantly changed between beer and non-beer group. The consumption of even a small amount of beer and the polymorphisms in ADH1B / ALDH2 affects gastric motility.

  14. Cell Motility

    Lenz, Peter

    2008-01-01

    Cell motility is a fascinating example of cell behavior which is fundamentally important to a number of biological and pathological processes. It is based on a complex self-organized mechano-chemical machine consisting of cytoskeletal filaments and molecular motors. In general, the cytoskeleton is responsible for the movement of the entire cell and for movements within the cell. The main challenge in the field of cell motility is to develop a complete physical description on how and why cells move. For this purpose new ways of modeling the properties of biological cells have to be found. This long term goal can only be achieved if new experimental techniques are developed to extract physical information from these living systems and if theoretical models are found which bridge the gap between molecular and mesoscopic length scales. Cell Motility gives an authoritative overview of the fundamental biological facts, theoretical models, and current experimental developments in this fascinating area.

  15. The g.-165 T>C Rather than Methylation Is Associated with Semen Motility in Chinese Holstein Bulls by Regulating the Transcriptional Activity of the HIBADH Gene.

    Shuai Zhang

    Full Text Available The 3-hydroxyisobutyrate dehydrogenase (HIBADH is regarded as a human sperm-motility marker. However, the molecular mechanisms involved in the regulation of expression of the HIBADH gene in bulls remain largely unknown. HIBADH was detected in the testis, epididymis, and sperm via reverse transcription polymerase chain reaction and Western blot analysis. It is also expressed in the seminiferous epithelium, spermatids, and the entire epididymis, as detected by immunohistochemistry. Furthermore, HIBADH was expressed in the neck-piece and mid-piece of bull spermatids, as shown in the immunofluorescence assay. Using serially truncated bovine HIBADH promoters and luciferase constructs, we discovered an 878 bp (-703 bp to +175 bp fragment that constitutes the core promoter region. One SNP g.-165 T>C of HIBADH was identified and genotyped in 307 Chinese Holstein bulls. Correlation analysis revealed that bulls with the TT genotype had higher initial sperm motility than those with the CC genotype (P C rather than methylation in the 5'-flanking region could affect the bovine sperm motility through the regulation of HIBADH gene transcriptional activity.

  16. The absence of the luxS gene increases swimming motility and flagella synthesis in Escherichia coli K12

    Ling, Hua; Kang, Aram; Tan, Mui Hua; Qi, Xiaobao [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Chang, Matthew Wook, E-mail: Matthewchang@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore)

    2010-10-29

    Research highlights: {yields} This paper provides the first evidence that luxS deletion enhances swimming motility and flagella synthesis in Escherichia coli K12 based on motility, transcriptome, and scanning electron microscopy analyses. {yields} A conceptual genetic regulatory network underlying the increased flagella synthesis was constructed based on the transcriptome and network component analyses, and previously known regulatory relations. {yields} The genetic regulatory network suggests that the increased flagella synthesis and motility might be contributed to by increased flhDC transcription level and/or decreased c-di-GMP concentration in luxS-deficient E. coli. -- Abstract: Despite the significant role of S-ribosylhomocysteinase (LuxS) in the activated methyl cycle pathway and quorum sensing, the connectivity between luxS and other cellular functions remains incomplete. Herein, we show that luxS deletion significantly increases swimming motility and flagella synthesis in Escherichia coli K12 using motility, transcriptome, and scanning electron microscopy assays. Further, based on the transcriptome and network component analyses, and known regulatory relations, we propose a conceptual genetic regulatory network underlying the increased flagella synthesis in response to luxS deletion.

  17. The absence of the luxS gene increases swimming motility and flagella synthesis in Escherichia coli K12

    Ling, Hua; Kang, Aram; Tan, Mui Hua; Qi, Xiaobao; Chang, Matthew Wook

    2010-01-01

    Research highlights: → This paper provides the first evidence that luxS deletion enhances swimming motility and flagella synthesis in Escherichia coli K12 based on motility, transcriptome, and scanning electron microscopy analyses. → A conceptual genetic regulatory network underlying the increased flagella synthesis was constructed based on the transcriptome and network component analyses, and previously known regulatory relations. → The genetic regulatory network suggests that the increased flagella synthesis and motility might be contributed to by increased flhDC transcription level and/or decreased c-di-GMP concentration in luxS-deficient E. coli. -- Abstract: Despite the significant role of S-ribosylhomocysteinase (LuxS) in the activated methyl cycle pathway and quorum sensing, the connectivity between luxS and other cellular functions remains incomplete. Herein, we show that luxS deletion significantly increases swimming motility and flagella synthesis in Escherichia coli K12 using motility, transcriptome, and scanning electron microscopy assays. Further, based on the transcriptome and network component analyses, and known regulatory relations, we propose a conceptual genetic regulatory network underlying the increased flagella synthesis in response to luxS deletion.

  18. A transposon mutant library of Bacillus cereus ATCC 10987 reveals novel genes required for biofilm formation and implicates motility as an important factor for pellicle-biofilm formation.

    Okshevsky, Mira; Louw, Matilde Greve; Lamela, Elena Otero; Nilsson, Martin; Tolker-Nielsen, Tim; Meyer, Rikke Louise

    2018-04-01

    Bacillus cereus is one of the most common opportunistic pathogens causing foodborne illness, as well as a common source of contamination in the dairy industry. B. cereus can form robust biofilms on food processing surfaces, resulting in food contamination due to shedding of cells and spores. Despite the medical and industrial relevance of this species, the genetic basis of biofilm formation in B. cereus is not well studied. In order to identify genes required for biofilm formation in this bacterium, we created a library of 5000 +  transposon mutants of the biofilm-forming strain B. cereusATCC 10987, using an unbiased mariner transposon approach. The mutant library was screened for the ability to form a pellicle biofilm at the air-media interface, as well as a submerged biofilm at the solid-media interface. A total of 91 genes were identified as essential for biofilm formation. These genes encode functions such as chemotaxis, amino acid metabolism and cellular repair mechanisms, and include numerous genes not previously known to be required for biofilm formation. Although the majority of disrupted genes are not directly responsible for motility, further investigations revealed that the vast majority of the biofilm-deficient mutants were also motility impaired. This observation implicates motility as a pivotal factor in the formation of a biofilm by B. cereus. These results expand our knowledge of the fundamental molecular mechanisms of biofilm formation by B. cereus. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  19. Complete genome sequence of the gliding, heparinolytic Pedobacter saltans type strain (113T)

    Liolios, Konstantinos; Sikorski, Johannes; Lu, Meagan; Nolan, Matt; Lapidus, Alla; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Huntemann, Marcel; Ivanova, Natalia

    2011-01-01

    Pedobacter saltans Steyn et al. 1998 is one of currently 32 species in the genus Pedobacter within the family Sphingobacteriaceae. The species is of interest for its isolated location in the tree of life. Like other members of the genus P. saltans is heparinolytic. Cells of P. saltans show a peculiar gliding, dancing motility and can be distinguished from other Pedobacter strains by their ability to utilize glycerol and the inability to assimilate D-cellobiose. The genome presented here is on...

  20. Study of gliding arc discharge plasma

    Yang Chi; Lin Lie; Wu Bin

    2006-01-01

    The electric parameters change during discharge is studied and the relationship between non-equilibrium degree and parameters is discussed for gliding arc discharges. Using two-channel model, the rules of arc moving due to effect of the airflow is simulated. The numerical simulation results can help analyzing the generation mechanism of gliding arc non-equilibrium plasma. (authors)

  1. Stability of alternating current gliding arcs

    Kusano, Yukihiro; Salewski, Mirko; Leipold, Frank

    2014-01-01

    on Ohm’s law indicates that the critical length of alternating current (AC) gliding arc discharge columns can be larger than that of a corresponding direct current (DC) gliding arc. This finding is supported by previously published images of AC and DC gliding arcs. Furthermore, the analysis shows......A gliding arc is a quenched plasma that can be operated as a non-thermal plasma at atmospheric pressure and that is thus suitable for large-scale plasma surface treatment. For its practical industrial use the discharge should be extended stably in ambient air. A simple analytical calculation based...... that the critical length can be increased by increasing the AC frequency, decreasing the serial resistance and lowering the gas flow rate. The predicted dependence of gas flow rate on the arc length is experimentally demonstrated. The gap width is varied to study an optimal electrode design, since the extended non...

  2. [Mutants of bacterium Azospirillum brasilense Sp245 with Omegon insertion in mmsB or fabG genes of lipid metabolism are defective in motility and flagellation].

    Kovtunov, E A; Shelud'ko, A V; Chernyshova, M P; Petrova, L P; Katsy, E I

    2013-11-01

    Bacteria Azospirillum brasilense have mixed flagellation: in addition to the polar flagellum, numerous lateral flagella are formed in their cells on medium with increased density. Flagella determine the active swimming and swarming capacities of azospirilla. Using A. brasilense Sp245 as an example, we showed that the Omegon-Km artificial transposon insertion into the chromosomal gene for 3-hydroxyisobutyrate dehydrogenase (mmsB) was concurrent with the appearance of significant defects in the formation of polar flagella and with the paralysis of lateral flagella. The Sp245 mutant with the Omegon insertion into the plasmid AZOBR_p1-borne gene for 3-oxoacyl-[acyl-carrier protein]-reductase (fabG) showed the complete loss of flagella and the swarming capacity, as well as significant defects in polar flagellar assembly (though some cells are still motile in liquid medium). The viability of the A. brasilense Sp245 mutants with the Omegon insertion into the mmsB or fabG gene was not reduced. No considerable differences in the fatty acid composition of whole cell lipid extracts were found for the A. brasilense Sp245 strain and its mmsB and fabG mutants.

  3. Gene copy number reduction in the azoospermia factor c (AZFc) region and its effect on total motile sperm count

    Noordam, Michiel J.; Westerveld, G. Henrike; Hovingh, Suzanne E.; van Daalen, Saskia K. M.; Korver, Cindy M.; van der Veen, Fulco; van Pelt, Ans M. M.; Repping, Sjoerd

    2011-01-01

    The azoospermia factor c (AZFc) region harbors multi-copy genes that are expressed in the testis. Deletions of the AZFc region lead to reduced copy numbers of these genes. Four (partial) AZFc deletions have been described of which the b2/b4 and gr/gr deletions affect semen quality. In most studies,

  4. Optical diagnostics of a gliding arc

    Sun, Z.W.; Zhu, J.J.; Li, Z.S.

    2013-01-01

    Dynamic processes in a gliding arc plasma generated between two diverging electrodes in ambient air driven by 31.25 kHz AC voltage were investigated using spatially and temporally resolved optical techniques. The life cycles of the gliding arc were tracked in fast movies using a high-speed camera...... triggered by Townsend breakdown between the two legs of the gliding arc. The emission from the plasma column is shown to pulsate at a frequency of 62.5 kHz, i.e., twice the frequency of the AC power supply. Optical emission spectra of the plasma radiation show the presence of excited N2, NO and OH radicals...... suggesting that ground-state OH is not formed in the plasma column but in its vicinity. ©2013 Optical Society of America...

  5. Comparative Plasmodium gene overexpression reveals distinct perturbation of sporozoite transmission by profilin.

    Sato, Yuko; Hliscs, Marion; Dunst, Josefine; Goosmann, Christian; Brinkmann, Volker; Montagna, Georgina N; Matuschewski, Kai

    2016-07-15

    Plasmodium relies on actin-based motility to migrate from the site of infection and invade target cells. Using a substrate-dependent gliding locomotion, sporozoites are able to move at fast speed (1-3 μm/s). This motility relies on a minimal set of actin regulatory proteins and occurs in the absence of detectable filamentous actin (F-actin). Here we report an overexpression strategy to investigate whether perturbations of F-actin steady-state levels affect gliding locomotion and host invasion. We selected two vital Plasmodium berghei G-actin-binding proteins, C-CAP and profilin, in combination with three stage-specific promoters and mapped the phenotypes afforded by overexpression in all three extracellular motile stages. We show that in merozoites and ookinetes, additional expression does not impair life cycle progression. In marked contrast, overexpression of C-CAP and profilin in sporozoites impairs circular gliding motility and salivary gland invasion. The propensity for productive motility correlates with actin accumulation at the parasite tip, as revealed by combinations of an actin-stabilizing drug and transgenic parasites. Strong expression of profilin, but not C-CAP, resulted in complete life cycle arrest. Comparative overexpression is an alternative experimental genetic strategy to study essential genes and reveals effects of regulatory imbalances that are not uncovered from deletion-mutant phenotyping. © 2016 Sato et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Performance analysis of jump-gliding locomotion for miniature robotics.

    Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M

    2015-03-26

    Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs.

  7. Underlying and derived glides in Middle High German

    Tracy Alan Hall

    2017-05-01

    Full Text Available The present study investigates the phonology of glides in Middle High German. On the basis of surface contrasts between prevocalic nuclear glides in syllable-final position ([VG.V] and postvocalic glides in onset position ([V.GV], it is argued that the latter were underlying glides (e.g. the /w/ in [le.wə] ‘lion’ and that the former were glides derived from vowels (e.g. the offglide [o̯] in the diphthong [uo̯] from /uo/. Underlying glides are argued to be [+consonantal], while nuclear glides ‒ like the vowels from which they derive ‒ are [‒consonantal]. The analysis of Middle High German bears on several debates involving glides in the theoretical literature. First, a treatment with an underlying glide in /VGV/ cannot be reanalyzed by treating the vowels as peaks (e.g. Harris & Kaisse 1999 for Argentinian Spanish. Second, the treatment of underlying glides as [+consonantal] is to be preferred over alternatives which analyze those sounds as [‒vocalic] (e.g. Nevins & Chitoran 2008 for several languages. Third, an analysis of nuclear structure is adopted (from Harris & Kaisse 1999 which enables one to interpret which element in a complex nucleus is the peak and which is the nonpeak without stipulation. Fourth, the contrastive syllabification of surface glides (i.e. [VG.V] vs. [V.GV] is shown to be a diagnostic of underlying glide languages that has not been discussed in the literature to date.

  8. How swifts control their glide performance with morphing wings

    Lentink, D.; Muller, U. K.; Stamhuis, E. J.; de Kat, R.; van Gestel, W.; Veldhuis, L. L. M.; Henningsson, P.; Hedenstrom, A.; Videler, J. J.

    2007-01-01

    Gliding birds continually change the shape and size of their wings(1-6), presumably to exploit the profound effect of wing morphology on aerodynamic performance(7-9). That birds should adjust wing sweep to suit glide speed has been predicted qualitatively by analytical glide models(2,10), which

  9. Motility Disorders in Children.

    Nurko, Samuel

    2017-06-01

    Gastrointestinal motility disorders in the pediatric population are common and can range from benign processes to more serious disorders. Performing and interpreting motility evaluations in children present unique challenges. There are primary motility disorders but abnormal motility may be secondary due to other disease processes. Diagnostic studies include radiographic scintigraphic and manometry studies. Although recent advances in the genetics, biology, and technical aspects are having an important impact and have allowed for a better understanding of the pathophysiology and therapy for gastrointestinal motility disorders in children, further research is needed to be done to have better understanding of the pathophysiology and for better therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Observation of gliding arc surface treatment

    Kusano, Yukihiro; Zhu, Jiajian; Ehn, A.

    2015-01-01

    . Water contact angle measurements indicate that the treatment uniformity improves significantly when the AC gliding arc is tilted to the polymer surface. Thickness reduction of the gas boundary layer, explaining the improvement of surface treatment, by the ultrasonic irradiation was directly observed...

  11. Investigation of gliding flight by flying fish

    Park, Hyungmin; Jeon, Woo-Pyung; Choi, Haecheon

    2006-11-01

    The most successful flight capability of fish is observed in the flying fish. Furthermore, despite the difference between two medium (air and water), the flying fish is well evolved to have an excellent gliding performance as well as fast swimming capability. In this study, flying fish's morphological adaptation to gliding flight is experimentally investigated using dry-mounted darkedged-wing flying fish, Cypselurus Hiraii. Specifically, we examine the effects of the pectoral and pelvic fins on the aerodynamic performance considering (i) both pectoral and pelvic fins, (ii) pectoral fins only, and (iii) body only with both fins folded. Varying the attack angle, we measure the lift, drag and pitching moment at the free-stream velocity of 12m/s for each case. Case (i) has higher lift-to-drag ratio (i.e. longer gliding distance) and more enhanced longitudinal static stability than case (ii). However, the lift coefficient is smaller for case (i) than for case (ii), indicating that the pelvic fins are not so beneficial for wing loading. The gliding performance of flying fish is compared with those of other fliers and is found to be similar to those of insects such as the butterfly and fruitfly.

  12. Differential Regulation of cGMP Signaling in Human Melanoma Cells at Altered Gravity: Simulated Microgravity Down-Regulates Cancer-Related Gene Expression and Motility

    Ivanova, Krassimira; Eiermann, Peter; Tsiockas, Wasiliki; Hemmersbach, Ruth; Gerzer, Rupert

    2018-03-01

    Altered gravity is known to affect cellular function by changes in gene expression and cellular signaling. The intracellular signaling molecule cyclic guanosine-3',5'-monophosphate (cGMP), a product of guanylyl cyclases (GC), e.g., the nitric oxide (NO)-sensitive soluble GC (sGC) or natriuretic peptide-activated GC (GC-A/GC-B), is involved in melanocyte response to environmental stress. NO-sGC-cGMP signaling is operational in human melanocytes and non-metastatic melanoma cells, whereas up-regulated expression of GC-A/GC-B and inducible NO synthase (iNOS) are found in metastatic melanoma cells, the deadliest skin cancer. Here, we investigated the effects of altered gravity on the mRNA expression of NOS isoforms, sGC, GC-A/GC-B and multidrug resistance-associated proteins 4/5 (MRP4/MRP5) as selective cGMP exporters in human melanoma cells with different metastatic potential and pigmentation. A specific centrifuge (DLR, Cologne Germany) was used to generate hypergravity (5 g for 24 h) and a fast-rotating 2-D clinostat (60 rpm) to simulate microgravity values ≤ 0.012 g for 24 h. The results demonstrate that hypergravity up-regulates the endothelial NOS-sGC-MRP4/MRP5 pathway in non-metastatic melanoma cells, but down-regulates it in simulated microgravity when compared to 1 g. Additionally, the suppression of sGC expression and activity has been suggested to correlate inversely to tumor aggressiveness. Finally, hypergravity is ineffective in highly metastatic melanoma cells, whereas simulated microgravity down-regulates predominantly the expression of the cancer-related genes iNOS and GC-A/GC-B (shown additionally on protein levels) as well as motility in comparison to 1 g. The results suggest that future studies in real microgravity can benefit from considering GC-cGMP signaling as possible factor for melanocyte transformation.

  13. Multidrug-resistant Salmonella enterica serovar Typhimurium isolates are resistant to antibiotics that influence their swimming and swarming motility

    Motile bacteria utilize one or more strategies for movement, such as darting, gliding, sliding, swarming, swimming, and twitching. The ability to move is considered a virulence factor in many pathogenic bacteria, including Salmonella. Multidrug-resistant (MDR) Salmonella encodes acquired factors t...

  14. The effect of antibiotics on swimming and swarming motility of multidrug-resistant Salmonella enterica serovar Typhimurium

    Motile bacteria can employ one or more different strategies to move, including swimming, swarming, twitching, gliding, sliding, and darting. Swimming is considered the movement of individual bacteria through a liquid or semi-solid medium, while swarming is the concerted movement of a group of bacte...

  15. Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA.

    Mauriello, Emilia M F; Mouhamar, Fabrice; Nan, Beiyan; Ducret, Adrien; Dai, David; Zusman, David R; Mignot, Tâm

    2010-01-20

    Gliding motility in the bacterium Myxococcus xanthus uses two motility engines: S-motility powered by type-IV pili and A-motility powered by uncharacterized motor proteins and focal adhesion complexes. In this paper, we identified MreB, an actin-like protein, and MglA, a small GTPase of the Ras superfamily, as essential for both motility systems. A22, an inhibitor of MreB cytoskeleton assembly, reversibly inhibited S- and A-motility, causing rapid dispersal of S- and A-motility protein clusters, FrzS and AglZ. This suggests that the MreB cytoskeleton is involved in directing the positioning of these proteins. We also found that a DeltamglA motility mutant showed defective localization of AglZ and FrzS clusters. Interestingly, MglA-YFP localization mimicked both FrzS and AglZ patterns and was perturbed by A22 treatment, consistent with results indicating that both MglA and MreB bind to motility complexes. We propose that MglA and the MreB cytoskeleton act together in a pathway to localize motility proteins such as AglZ and FrzS to assemble the A-motility machineries. Interestingly, M. xanthus motility systems, like eukaryotic systems, use an actin-like protein and a small GTPase spatial regulator.

  16. Effect of enhanced UV-B radiation on motile microorganisms

    Haeder, D.P.

    1985-02-01

    The effect of slightly increased UV-B radiation was studied in four taxonomically very different microorganisms: the gliding prokaryotic cyanobacterium, Phormidium, the unicellular green alga Cosmarium, the flagellate Euglena and the cellular slime mold Dictyostelium. UV-B doses which can be expected as a result of a slight decrease of the protective ozone layer in the stratosphere, do not kill or damage the microorganisms visibly. However, such UV-B doses impair the development, motility and photoorientation of these organisms. Due to the inhibition of these physiological important parameters the organisms cannot respond adequately to the changing factors in their environment, which prevents the survival of the populations. (orig.) [de

  17. A prefoldin-associated WD-repeat protein (WDR92) is required for the correct architectural assembly of motile cilia

    Patel-King, Ramila S.; King, Stephen M.

    2016-01-01

    WDR92 is a highly conserved WD-repeat protein that has been proposed to be involved in apoptosis and also to be part of a prefoldin-like cochaperone complex. We found that WDR92 has a phylogenetic signature that is generally compatible with it playing a role in the assembly or function of specifically motile cilia. To test this hypothesis, we performed an RNAi-based knockdown of WDR92 gene expression in the planarian Schmidtea mediterranea and were able to achieve a robust reduction in mRNA expression to levels undetectable under our standard RT-PCR conditions. We found that this treatment resulted in a dramatic reduction in the rate of organismal movement that was caused by a switch in the mode of locomotion from smooth, cilia-driven gliding to muscle-based, peristaltic contractions. Although the knockdown animals still assembled cilia of normal length and in similar numbers to controls, these structures had reduced beat frequency and did not maintain hydrodynamic coupling. By transmission electron microscopy we observed that many cilia had pleiomorphic defects in their architecture, including partial loss of dynein arms, incomplete closure of the B-tubule, and occlusion or replacement of the central pair complex by accumulated electron-dense material. These observations suggest that WDR92 is part of a previously unrecognized cytoplasmic chaperone system that is specifically required to fold key components necessary to build motile ciliary axonemes. PMID:26912790

  18. Assessing the importance of terrain parameters on glide avalanche release

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.

    2014-01-01

    Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide

  19. Assessing the importance of terrain parameters on glide avalanche release

    Peitzsch, E.; Hendrikx, J.; Fagre, D. B.

    2013-12-01

    Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide

  20. Esophageal motility disorders

    Hannig, C.; Rummeny, E.; Wuttge-Hannig, A.

    2007-01-01

    For the better understanding of esophageal motility, the muscle texture and the distribution of skeletal and smooth muscle fibers in the esophagus are of crucial importance. Esophageal physiology will be shortly mentioned as far as necessary for a comprehensive understanding of peristaltic disturbances. Besides the pure depiction of morphologic criteria, a complete esophageal study has to include an analysis of the motility. New diagnostic tools with reduced radiation for dynamic imaging (digital fluoroscopy, videofluoroscopy) at 4-30 frames/s are available. Radiomanometry is a combination of a functional pressure measurement and a simultaneous dynamic morphologic analysis. Esophageal motility disorders are subdivided by radiologic and manometric criteria into primary, secondary, and nonclassifiable forms. Primary motility disorders of the esophagus are achalasia, diffuse esophageal spasm, nutcracker esophagus, and the hypertonic lower esophageal sphincter. The secondary motility disorders include pseudoachalasia, reflux-associated motility disorders, functionally caused impactions, Boerhaave's syndrome, Chagas' disease, scleroderma, and presbyesophagus. The nonclassificable motility disorders (NEMD) are a very heterogeneous collective. (orig.) [de

  1. 14 CFR 23.71 - Glide: Single-engine airplanes.

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Glide: Single-engine airplanes. 23.71... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.71 Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical miles...

  2. Associação entre proteínas do plasma seminal, motilidade e viabilidade espermática em coelhos submetidos a doping genético Association among seminal plasma proteins, sperm motility and sperm viability in rabbits submitted to gene doping

    G Urtiaga

    2013-02-01

    Full Text Available Neste trabalho foi estudada a correlação entre o perfil proteico do plasma seminal e a motilidade e viabilidade espermática em coelhos submetidos ao tratamento com vetores de expressão contendo o gene da eritropoetina (EPO e com EPO recombinante humana. Foram identificadas, em coelhos submetidos ao tratamento com vetor de DNA contendo o gene da EPO, duas bandas proteicas associadas a alterações na motilidade espermática - 48kDa à baixa motilidade (PIn this study the correlation between seminal plasma protein profile and the sperm motility and sperm viability in rabbits submitted to treatment with an expression vector containing EPO gene and with human recombinant EPO was evaluated. In rabbits submitted to treatment with EPO expression vector, two protein bands were associated to sperm motility - 48kDa associated to low motility (P<0.05 and 18kDa to high motility (P<0.05 - and this protein band was also associated to high sperm viability (P<0.05. In rabbits submitted to treatment with human recombinant EPO, a protein factor, 63kDa, was associated to high sperm motility (P<0.05 while two protein factors, 26 and 40kDa, were associated to high sperm viability (P<0.05. These results suggest that gene doping leads to changes in rabbit seminal plasma protein, altering sperm motility and sperm viability.

  3. NCAM regulates cell motility

    Prag, Søren; Lepekhin, Eugene A; Kolkova, Kateryna

    2002-01-01

    Cell migration is required during development of the nervous system. The regulatory mechanisms for this process, however, are poorly elucidated. We show here that expression of or exposure to the neural cell adhesion molecule (NCAM) strongly affected the motile behaviour of glioma cells...... independently of homophilic NCAM interactions. Expression of the transmembrane 140 kDa isoform of NCAM (NCAM-140) caused a significant reduction in cellular motility, probably through interference with factors regulating cellular attachment, as NCAM-140-expressing cells exhibited a decreased attachment...... to a fibronectin substratum compared with NCAM-negative cells. Ectopic expression of the cytoplasmic part of NCAM-140 also inhibited cell motility, presumably via the non-receptor tyrosine kinase p59(fyn) with which NCAM-140 interacts. Furthermore, we showed that the extracellular part of NCAM acted as a paracrine...

  4. Simulation of dislocation glide in dilute Fe-Cu alloys

    Tapasa, K.; Bacon, D.J.; Osetsky, Yu.N.

    2005-01-01

    The effects on dislocation glide of the substitutional element copper in solution in α-iron are being investigated by computer simulation. In the first phase, the critical stress for a 1/2 {110} edge dislocation to overcome configurations of either a single or two nearest-neighbour solute atoms is simulated. Molecular statics and dynamics methods are used to simulate effects at temperature equal to and greater than 0K, respectively. Single copper atoms and nearest-neighbour pairs in the first atomic plane below the glide plane give the strongest barrier to dislocation glide, in partial agreement with elasticity theory. In addition to temperature, obstacle-spacing effects are considered

  5. Cell motility assays.

    Hague, Angela; Jones, Gareth E

    2008-10-01

    This report summarises practical aspects to measuring cell motility in culture. The methods described here were discussed at a 1-day European Tissue Culture Society (ETCS-UK) workshop organised by John Masters and Gareth E Jones that was held at University College London on 19th April 2007.

  6. Sphincter of Oddi motility

    Funch-Jensen, P; Ebbehøj, N

    1996-01-01

    Gastroenterology. RESULTS: The SO is a zone with an elevated basal pressure with superimposed phasic contractions. It acts mainly as a resistor in the regulation of bile flow. Neurohormonal regulation influences the motility pattern. The contractions are under the control of slow waves. Clinical subgroups show...

  7. Small intestinal motility

    Smout, André J. P. M.

    2004-01-01

    PURPOSE OF REVIEW: In the past year, many studies were published in which new and relevant information on small intestinal motility in humans and laboratory animals was obtained. RECENT FINDINGS: Although the reported findings are heterogeneous, some themes appear to be particularly interesting and

  8. Collective behavior of minus-ended motors in mitotic microtubule asters gliding toward DNA

    Athale, Chaitanya A; Dinarina, Ana; Nedelec, Francois; Karsenti, Eric

    2014-01-01

    Microtubules (MTs) nucleated by centrosomes form star-shaped structures referred to as asters. Aster motility and dynamics is vital for genome stability, cell division, polarization and differentiation. Asters move either toward the cell center or away from it. Here, we focus on the centering mechanism in a membrane independent system of Xenopus cytoplasmic egg extracts. Using live microscopy and single particle tracking, we find that asters move toward chromatinized DNA structures. The velocity and directionality profiles suggest a random-walk with drift directed toward DNA. We have developed a theoretical model that can explain this movement as a result of a gradient of MT length dynamics and MT gliding on immobilized dynein motors. In simulations, the antagonistic action of the motor species on the radial array of MTs leads to a tug-of-war purely due to geometric considerations and aster motility resembles a directed random-walk. Additionally, our model predicts that aster velocities do not change greatly with varying initial distance from DNA. The movement of asymmetric asters becomes increasingly super-diffusive with increasing motor density, but for symmetric asters it becomes less super-diffusive. The transition of symmetric asters from superdiffusive to diffusive mobility is the result of number fluctuations in bound motors in the tug-of-war. Overall, our model is in good agreement with experimental data in Xenopus cytoplasmic extracts and predicts novel features of the collective effects of motor-MT interactions. (paper)

  9. Glide back booster wind tunnel model testing

    Pricop, M. V.; Cojocaru, M. G.; Stoica, C. I.; Niculescu, M. L.; Neculaescu, A. M.; Persinaru, A. G.; Boscoianu, M.

    2017-07-01

    Affordable space access requires partial or ideally full launch vehicle reuse, which is in line with clean environment requirement. Although the idea is old, the practical use is difficult, requiring very large technology investment for qualification. Rocket gliders like Space Shuttle have been successfullyoperated but the price and correspondingly the energy footprint were found not sustainable. For medium launchers, finally there is a very promising platform as Falcon 9. For very small launchers the situation is more complex, because the performance index (payload to start mass) is already small, versus medium and heavy launchers. For partial reusable micro launchers this index is even smaller. However the challenge has to be taken because it is likely that in a multiyear effort, technology is going to enable the performance recovery to make such a system economically and environmentally feasible. The current paper is devoted to a small unitary glide back booster which is foreseen to be assembled in a number of possible configurations. Although the level of analysis is not deep, the solution is analyzed from the aerodynamic point of view. A wind tunnel model is designed, with an active canard, to enablea more efficient wind tunnel campaign, as a national level premiere.

  10. Detection and genomic characterization of motility in Lactobacillus curvatus: confirmation of motility in a species outside the Lactobacillus salivarius clade.

    Cousin, Fabien J; Lynch, Shónagh M; Harris, Hugh M B; McCann, Angela; Lynch, Denise B; Neville, B Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito; O'Toole, Paul W

    2015-02-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15 °C and 37 °C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus inthe L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli.

  11. Characterization of pro-inflammatory flagellin proteins produced by Lactobacillus ruminis and related motile Lactobacilli.

    B Anne Neville

    Full Text Available Lactobacillus ruminis is one of at least twelve motile but poorly characterized species found in the genus Lactobacillus. Of these, only L. ruminis has been isolated from mammals, and this species may be considered as an autochthonous member of the gastrointestinal microbiota of humans, pigs and cows. Nine L. ruminis strains were investigated here to elucidate the biochemistry and genetics of Lactobacillus motility. Six strains isolated from humans were non-motile while three bovine isolates were motile. A complete set of flagellum biogenesis genes was annotated in the sequenced genomes of two strains, ATCC25644 (human isolate and ATCC27782 (bovine isolate, but only the latter strain produced flagella. Comparison of the L. ruminis and L. mali DSM20444(T motility loci showed that their genetic content and gene-order were broadly similar, although the L. mali motility locus was interrupted by an 11.8 Kb region encoding rhamnose utilization genes that is absent from the L. ruminis motility locus. Phylogenetic analysis of 39 motile bacteria indicated that Lactobacillus motility genes were most closely related to those of motile carnobacteria and enterococci. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644. Flagellin proteins were isolated from L. ruminis ATCC27782 and from three other Lactobacillus species, while recombinant flagellin of aflagellate L. ruminis ATCC25644 was expressed and purified from E. coli. These native and recombinant Lactobacillus flagellins, and also flagellate L. ruminis cells, triggered interleukin-8 production in cultured human intestinal epithelial cells in a manner suppressed by short interfering RNA directed against Toll-Like Receptor 5. This study provides genetic, transcriptomic, phylogenetic and immunological insights into the trait of flagellum-mediated motility in the lactobacilli.

  12. A Putative O-Linked β-N-Acetylglucosamine Transferase Is Essential for Hormogonium Development and Motility in the Filamentous Cyanobacterium Nostoc punctiforme.

    Khayatan, Behzad; Bains, Divleen K; Cheng, Monica H; Cho, Ye Won; Huynh, Jessica; Kim, Rachelle; Omoruyi, Osagie H; Pantoja, Adriana P; Park, Jun Sang; Peng, Julia K; Splitt, Samantha D; Tian, Mason Y; Risser, Douglas D

    2017-05-01

    Most species of filamentous cyanobacteria are capable of gliding motility, likely via a conserved type IV pilus-like system that may also secrete a motility-associated polysaccharide. In a subset of these organisms, motility is achieved only after the transient differentiation of hormogonia, which are specialized filaments that enter a nongrowth state dedicated to motility. Despite the fundamental importance of hormogonia to the life cycles of many filamentous cyanobacteria, the molecular regulation of hormogonium development is largely undefined. To systematically identify genes essential for hormogonium development and motility in the model heterocyst-forming filamentous cyanobacterium Nostoc punctiforme , a forward genetic screen was employed. The first gene identified using this screen, designated ogtA , encodes a putative O-linked β- N -acetylglucosamine transferase (OGT). The deletion of ogtA abolished motility, while ectopic expression of ogtA induced hormogonium development even under hormogonium-repressing conditions. Transcription of ogtA is rapidly upregulated (1 h) following hormogonium induction, and an OgtA-GFPuv fusion protein localized to the cytoplasm. In developing hormogonia, accumulation of PilA but not HmpD is dependent on ogtA Reverse transcription-quantitative PCR (RT-qPCR) analysis indicated equivalent levels of pilA transcript in the wild-type and Δ ogtA mutant strains, while a reporter construct consisting of the intergenic region in the 5' direction of pilA fused to gfp produced lower levels of fluorescence in the Δ ogtA mutant strain than in the wild type. The production of hormogonium polysaccharide in the Δ ogtA mutant strain is reduced compared to that in the wild type but comparable to that in a pilA deletion strain. Collectively, these results imply that O -GlcNAc protein modification regulates the accumulation of PilA via a posttranscriptional mechanism in developing hormogonia. IMPORTANCE Filamentous cyanobacteria are among

  13. GLobal Integrated Design Environment (GLIDE): A Concurrent Engineering Application

    McGuire, Melissa L.; Kunkel, Matthew R.; Smith, David A.

    2010-01-01

    The GLobal Integrated Design Environment (GLIDE) is a client-server software application purpose-built to mitigate issues associated with real time data sharing in concurrent engineering environments and to facilitate discipline-to-discipline interaction between multiple engineers and researchers. GLIDE is implemented in multiple programming languages utilizing standardized web protocols to enable secure parameter data sharing between engineers and researchers across the Internet in closed and/or widely distributed working environments. A well defined, HyperText Transfer Protocol (HTTP) based Application Programming Interface (API) to the GLIDE client/server environment enables users to interact with GLIDE, and each other, within common and familiar tools. One such common tool, Microsoft Excel (Microsoft Corporation), paired with its add-in API for GLIDE, is discussed in this paper. The top-level examples given demonstrate how this interface improves the efficiency of the design process of a concurrent engineering study while reducing potential errors associated with manually sharing information between study participants.

  14. Cellular mechanics and motility

    Hénon, Sylvie; Sykes, Cécile

    2015-10-01

    The term motility defines the movement of a living organism. One widely known example is the motility of sperm cells, or the one of flagellar bacteria. The propulsive element of such organisms is a cilium(or flagellum) that beats. Although cells in our tissues do not have a flagellum in general, they are still able to move, as we will discover in this chapter. In fact, in both cases of movement, with or without a flagellum, cell motility is due to a dynamic re-arrangement of polymers inside the cell. Let us first have a closer look at the propulsion mechanism in the case of a flagellum or a cilium, which is the best known, but also the simplest, and which will help us to define the hydrodynamic general conditions of cell movement. A flagellum is sustained by cellular polymers arranged in semi-flexible bundles and flagellar beating generates cell displacement. These polymers or filaments are part of the cellular skeleton, or "cytoskeleton", which is, in this case, external to the cellular main body of the organism. In fact, bacteria move in a hydrodynamic regime in which viscosity dominates over inertia. The system is thus in a hydrodynamic regime of low Reynolds number (Box 5.1), which is nearly exclusively the case in all cell movements. Bacteria and their propulsion mode by flagella beating are our unicellular ancestors 3.5 billion years ago. Since then, we have evolved to form pluricellular organisms. However, to keep the ability of displacement, to heal our wounds for example, our cells lost their flagellum, since it was not optimal in a dense cell environment: cells are too close to each other to leave enough space for the flagella to accomplish propulsion. The cytoskeleton thus developed inside the cell body to ensure cell shape changes and movement, and also mechanical strength within a tissue. The cytoskeleton of our cells, like the polymers or filaments that sustain the flagellum, is also composed of semi-flexible filaments arranged in bundles, and also in

  15. Decomposition of naphthalene by dc gliding arc gas discharge.

    Yu, Liang; Li, Xiaodong; Tu, Xin; Wang, Yu; Lu, Shengyong; Yan, Jianhua

    2010-01-14

    Gliding arc discharge has been proved to be effective in treatment of gas and liquid contaminants. In this study, physical characteristics of dc gliding arc discharge and its application to naphthalene destruction are investigated with different external resistances and carrier gases. The decomposition rate increases with increasing of oxygen concentration and decreases with external resistance. This value can be achieved up to 92.3% at the external resistance of 50 kOmega in the oxygen discharge, while the highest destruction energy efficiency reaches 3.6 g (kW h)(-1) with the external resistance of 93 kOmega. Possible reaction pathways and degradation mechanisms in the plasma with different gases are proposed by qualitative analysis of postdestructed products. In the air and oxygen gliding arc discharges, the naphthalene degradation is mainly governed by reactions with oxygen-derived radicals.

  16. CRISPR-Cas gene-editing reveals RsmA and RsmC act through FlhDC to repress the SdhE flavinylation factor and control motility and prodigiosin production in Serratia.

    Hampton, Hannah G; McNeil, Matthew B; Paterson, Thomas J; Ney, Blair; Williamson, Neil R; Easingwood, Richard A; Bostina, Mihnea; Salmond, George P C; Fineran, Peter C

    2016-06-01

    SdhE is required for the flavinylation and activation of succinate dehydrogenase and fumarate reductase (FRD). In addition, SdhE is conserved in proteobacteria (α, β and γ) and eukaryotes. Although the function of this recently characterized family of proteins has been determined, almost nothing is known about how their genes are regulated. Here, the RsmA (CsrA) and RsmC (HexY) post-transcriptional and post-translational regulators have been identified and shown to repress sdhEygfX expression in Serratia sp. ATCC 39006. Conversely, the flagella master regulator complex, FlhDC, activated sdhEygfX transcription. To investigate the hierarchy of control, we developed a novel approach that utilized endogenous CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR associated) genome-editing by a type I-F system to generate a chromosomal point mutation in flhC. Mutation of flhC alleviated the ability of RsmC to repress sdhEygfX expression, whereas RsmA acted in both an FlhDC-dependent and -independent manner to inhibit sdhEygfX. Mutation of rsmA or rsmC, or overexpression of FlhDC, led to increased prodigiosin, biosurfactant, swimming and swarming. Consistent with the modulation of sdhE by motility regulators, we have demonstrated that SdhE and FRD are required for maximal flagella-dependent swimming. Together, these results demonstrate that regulators of both metabolism and motility (RsmA, RsmC and FlhDC) control the transcription of the sdhEygfX operon.

  17. Ubiquity of quantum zero-point fluctuations in dislocation glide

    Landeiro Dos Reis, Marie; Choudhury, Anshuman; Proville, Laurent

    2017-03-01

    Modeling the dislocation glide through atomic scale simulations in Al, Cu, and Ni and in solid solution alloys Al(Mg) and Cu(Ag), we show that in the course of the plastic deformation the variation of the crystal zero-point energy (ZPE) and the dislocation potential energy barriers are of opposite sign. The multiplicity of situations where we have observed the same trend allows us to conclude that quantum fluctuations, giving rise to the crystal ZPE, make easier the dislocation glide in most materials, even those constituted of atoms heavier than H and He.

  18. Time lapse photography as an approach to understanding glide avalanche activity

    Hendrikx, Jordy; Peitzsch, Erich H.; Fagre, Daniel B.

    2012-01-01

    Avalanches resulting from glide cracks are notoriously difficult to forecast, but are a recurring problem for numerous avalanche forecasting programs. In some cases glide cracks are observed to open and then melt away in situ. In other cases, they open and then fail catastrophically as large, full-depth avalanches. Our understanding and management of these phenomena are currently limited. It is thought that an increase in the rate of snow gliding occurs prior to full-depth avalanche activity so frequent observation of glide crack movement can provide an index of instability. During spring 2011 in Glacier National Park, Montana, USA, we began an approach to track glide crack avalanche activity using a time-lapse camera focused on a southwest facing glide crack. This crack melted in-situ without failing as a glide avalanche, while other nearby glide cracks on north through southeast aspects failed. In spring 2012, a camera was aimed at a large and productive glide crack adjacent to the Going to the Sun Road. We captured three unique glide events in the field of view. Unfortunately, all of them either failed very quickly, or during periods of obscured view, so measurements of glide rate could not be obtained. However, we compared the hourly meteorological variables during the period of glide activity to the same variables prior to glide activity. The variables air temperature, relative humidity, air pressure, incoming and reflected long wave radiation, SWE, total precipitation, and snow depth were found to be statistically different for our cases examined. We propose that these are some of the potential precursors for glide avalanche activity, but do urge caution in their use, due to the simple approach and small data set size. It is hoped that by introducing a workable method to easily record glide crack movement, combined with ongoing analysis of the associated meteorological data, we will improve our understanding of when, or if, glide avalanche activity will ensue.

  19. The novel virulence-related gene nlxA in the lipopolysaccharide cluster of Xanthomonas citri ssp. citri is involved in the production of lipopolysaccharide and extracellular polysaccharide, motility, biofilm formation and stress resistance.

    Yan, Qing; Hu, Xiufang; Wang, Nian

    2012-10-01

    Lipopolysaccharide (LPS) is an important virulence factor of Xanthomonas citri ssp. citri, the causative agent of citrus canker disease. In this research, a novel gene, designated as nlxA (novel LPS cluster gene of X. citri ssp. citri), in the LPS cluster of X. citri ssp. citri 306, was characterized. Our results indicate that nlxA is required for O-polysaccharide biosynthesis by encoding a putative rhamnosyltransferase. This is supported by several lines of evidence: (i) NlxA shares 40.14% identity with WsaF, which acts as a rhamnosyltransferase; (ii) sodium dodecylsulphate-polyacrylamide gel electrophoresis analysis showed that four bands of the O-antigen part of LPS were missing in the LPS production of the nlxA mutant; this is also consistent with a previous report that the O-antigen moiety of LPS of X. citri ssp. citri is composed of a rhamnose homo-oligosaccharide; (iii) mutation of nlxA resulted in a significant reduction in the resistance of X. citri ssp. citri to different stresses, including sodium dodecylsulphate, polymyxin B, H(2)O(2), phenol, CuSO(4) and ZnSO(4). In addition, our results indicate that nlxA plays an important role in extracellular polysaccharide production, biofilm formation, stress resistance, motility on semi-solid plates, virulence and in planta growth in the host plant grapefruit. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  20. Symbiosis and the origin of eukaryotic motility

    Margulis, L.; Hinkle, G.

    1991-01-01

    Ongoing work to test the hypothesis of the origin of eukaryotic cell organelles by microbial symbioses is discussed. Because of the widespread acceptance of the serial endosymbiotic theory (SET) of the origin of plastids and mitochondria, the idea of the symbiotic origin of the centrioles and axonemes for spirochete bacteria motility symbiosis was tested. Intracellular microtubular systems are purported to derive from symbiotic associations between ancestral eukaryotic cells and motile bacteria. Four lines of approach to this problem are being pursued: (1) cloning the gene of a tubulin-like protein discovered in Spirocheata bajacaliforniesis; (2) seeking axoneme proteins in spirochets by antibody cross-reaction; (3) attempting to cultivate larger, free-living spirochetes; and (4) studying in detail spirochetes (e.g., Cristispira) symbiotic with marine animals. Other aspects of the investigation are presented.

  1. Achalasia and Esophageal Motility Disorders

    ... Tumors Mediastinal Tumors Achalasia and Esophageal Motility Disorders Pleural Diseases Mesothelioma Achalasia and Esophageal Motility Disorders Overview The esophagus (ĕ-sof´ah-gus) is the hollow, muscular tube that moves food and liquid from your mouth to your stomach. If the ...

  2. Degradation of Verapamil hydrochloride in water by gliding arc discharge

    Krishna, S.; Mašláni, Alan; Izdebski, T.; Horáková, M.; Klementová, Š.; Špatenka, P.

    2016-01-01

    Roč. 152, June (2016), s. 47-54 ISSN 0045-6535 Institutional support: RVO:61389021 Keywords : Gliding arc discharge * Emission spectroscopy * Pharmaceuticals * Half-life * Degradation mechanism Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.208, year: 2016 http://www.sciencedirect.com/science/article/pii/S0045653516302442

  3. Gliding Swifts Attain Laminar Flow over Rough Wings

    Lentink, D.; Kat, de R.

    2014-01-01

    Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1–2% of chord length on the upper surface—10,000 times rougher than sailplane

  4. Gliding swifts attain laminar flow over rough wings.

    David Lentink

    Full Text Available Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1-2% of chord length on the upper surface--10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13% of their total area during glides that maximize flight distance and duration--similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance.

  5. Kick, Glide, Pole! Cross-Country Skiing Fun (Part II)

    Duoos, Bridget A.

    2012-01-01

    Part I of Kick, Glide, Pole! Cross-Country Skiing Fun, which was published in last issue, discussed how to select cross-country ski equipment, dress for the activity and the biomechanics of the diagonal stride. Part II focuses on teaching the diagonal stride technique and begins with a progression of indoor activities. Incorporating this fun,…

  6. Hypergravity synthesis of graphitic carbon nanomaterial in glide arc plasma

    Šperka, J.; Soucek, P.; van Loon, J.J.W.A.; Dowson, A.; Schwarz, C.; Krause, J.; Butenko, Y.; Kroesen, G.; Kudrle, V.

    2014-01-01

    A nanostructured carbon material was synthesized using a methane/helium glide arc plasma under standard and increased gravity. Material analysis performed on samples collected from an effluent gas filter showed that the deposited material was present in the form of carbon nanoparticles. They

  7. Experimental protocols for and studies of the effects of surface passivation and water isotopes on the gliding speed of microtubules propelled by kinesin-1

    Maloney, Roger Andrew

    This dissertation explores how the kinesin-1 and microtubule system is affected by surface passivation and water isotopes. Surface passivation was found to affect the gliding speed that microtubules exhibit in the gliding motility assay and the lengths of microtubules supported by the passivation. It was also found that gliding speeds of microtubules are very sensitive to temperature changes. Studies changing the water isotope were a first attempt to investigate if changing the solvent changed the osmotic pressure of the solution kinesin and microtubules were in. No osmotic pressure changes were observed, however, the experiments using different isotopes of water did illuminate the possibility that kinesin may be sensitive to viscosity changes in the solvent. This experiment also suggests further experiments that can be specifically designed to probe osmotic pressure changes. This thesis was also the first thesis ever, to the best of the author's knowledge, to be done in a completely open format. All information and notebook entries that are related to it, as well as the thesis itself, can be found on the website OpenWetWare. The thesis can also be found there including all the different versions that went into its editing. The philosophy and process of making data open and accessible to every one is also discussed.

  8. The Use of a Reciprocating Handpiece to Create a Glide Path in Curved Canals: Comparison with Manual Glide Path Preparation

    2016-06-01

    instruments into the root canal system, manufacturers recommend creating a glide path to reduce the risk of instrument fracture due to taper lock . This...Results The two groups had almost identical mean and standard...The groups had identical median values of 85 seconds, and there was no significant difference between the groups (Mann-Whitney U test; p=0.15; two

  9. Analysis of temperature glide matching of heat pumps with zeotropic working fluid mixtures for different temperature glides

    Zühlsdorf, Benjamin; Jensen, Jonas Kjær; Cignitti, Stefano

    2018-01-01

    refrigerants. This approach enables a match of the temperature glide of sink and source with the temperature of the working fluid during phase change and thus, a reduction of the exergy destruction due to heat transfer. The model was evaluated for four different boundary conditions. The exergy destruction due...

  10. Colonic motility and enema spreading

    Hardy, J.G.; Wood, E.; Clark, A.G.; Reynolds, J.R.; Queen's Medical Centre, Nottingham

    1986-01-01

    Radiolabelled enema solution was administered to eight healthy subjects, both in fasted and fed states. Enema spreading was monitored over a 4-h period using gamma scintigraphy and colonic motility was recorded simultaneously using a pressure sensitive radiotelemetry capsule. The rate and extent of enema dispersion were unaffected by eating. Spreading could be correlated with colonic motility and was inhibited by aboral propulsion of the colonic contents. (orig.)

  11. Investigation of Aerodynamic Capabilities of Flying Fish in Gliding Flight

    Park, H.; Choi, H.

    In the present study, we experimentally investigate the aerodynamic capabilities of flying fish. We consider four different flying fish models, which are darkedged-wing flying fishes stuffed in actual gliding posture. Some morphological parameters of flying fish such as lateral dihedral angle of pectoral fins, incidence angles of pectoral and pelvic fins are considered to examine their effect on the aerodynamic performance. We directly measure the aerodynamic properties (lift, drag, and pitching moment) for different morphological parameters of flying fish models. For the present flying fish models, the maximum lift coefficient and lift-to-drag ratio are similar to those of medium-sized birds such as the vulture, nighthawk and petrel. The pectoral fins are found to enhance the lift-to-drag ratio and the longitudinal static stability of gliding flight. On the other hand, the lift coefficient and lift-to-drag ratio decrease with increasing lateral dihedral angle of pectoral fins.

  12. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong

    2016-05-01

    In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)

  13. Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in Drosophila

    Cattenoz, Pierre B.; Popkova, Anna; Southall, Tony D.; Aiello, Giuseppe; Brand, Andrea H.; Giangrande, Angela

    2016-01-01

    High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain–containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades. PMID:26567182

  14. Stochastic models of cell motility

    Gradinaru, Cristian

    2012-01-01

    Cell motility and migration are central to the development and maintenance of multicellular organisms, and errors during this process can lead to major diseases. Consequently, the mechanisms and phenomenology of cell motility are currently under intense study. In recent years, a new...... interdisciplinary field focusing on the study of biological processes at the nanoscale level, with a range of technological applications in medicine and biological research, has emerged. The work presented in this thesis is at the interface of cell biology, image processing, and stochastic modeling. The stochastic...... models introduced here are based on persistent random motion, which I apply to real-life studies of cell motility on flat and nanostructured surfaces. These models aim to predict the time-dependent position of cell centroids in a stochastic manner, and conversely determine directly from experimental...

  15. Characterization of Novel Factors Involved in Swimming and Swarming Motility in Salmonella enterica Serovar Typhimurium.

    Julia Andrea Deditius

    Full Text Available Salmonella enterica utilizes flagellar motility to swim through liquid environments and on surfaces. The biosynthesis of the flagellum is regulated on various levels, including transcriptional and posttranscriptional mechanisms. Here, we investigated the motility phenotype of 24 selected single gene deletions that were previously described to display swimming and swarming motility effects. Mutations in flgE, fliH, ydiV, rfaG, yjcC, STM1267 and STM3363 showed an altered motility phenotype. Deletions of flgE and fliH displayed a non-motile phenotype in both swimming and swarming motility assays as expected. The deletions of STM1267, STM3363, ydiV, rfaG and yjcC were further analyzed in detail for flagellar and fimbrial gene expression and filament formation. A ΔydiV mutant showed increased swimming motility, but a decrease in swarming motility, which coincided with derepression of curli fimbriae. A deletion of yjcC, encoding for an EAL domain-containing protein, increased swimming motility independent on flagellar gene expression. A ΔSTM1267 mutant displayed a hypermotile phenotype on swarm agar plates and was found to have increased numbers of flagella. In contrast, a knockout of STM3363 did also display an increase in swarming motility, but did not alter flagella numbers. Finally, a deletion of the LPS biosynthesis-related protein RfaG reduced swimming and swarming motility, associated with a decrease in transcription from flagellar class II and class III promoters and a lack of flagellar filaments.

  16. Assessment of the Implementation of GNSS into Gliding

    Tomáš Kubáč

    2017-11-01

    Full Text Available Global navigation satellite systems are increasingly part of our lives and many industries including aviation. Glider flying is no exception in this trend. Global navigation satellite systems were part of gliding since the early 1990s. First as official recording devices for simple evidence of sporting performances, then as navigation systems, anti-collision systems and emergency location transmitters. Development of recording application was initiated and supported by International Gliding Commission of World Air Sports Federation in way of certifications for flight recorders. The use of navigation and other modern instruments in gliders has brought many benefits but also risks. However, the advantages outweigh the disadvantages and these systems are now integral part of gliding. With this wide usage of global navigation satellite systems devices, there is great many possibilities how and in which way one can use these systems. Pilots must orient themselves in varied selection of products, which they can use to choose one solution, that fits him. Therefore, to find out how and if pilots use these devices, we created questionnaire survey among 143 Czech glider pilots. We found out, that 84% of them are using global navigation satellite systems devices for official record of flight and for navigation as well. More than half of pilots is using free, not built-in devices. Most common devices are mobile phones up to 5 inches of screen diagonal in combination with approved flight recorder without display. If pilots use mobile device for navigation, 52% of them is using one with Windows Mobile operating system, 33% use Android. Navigational software on these mobile devices is then almost tied between SeeYou Mobile, XCSoar and LK8000. Knowledge about usage preference of global navigation systems devices should help pilots with selection and overall orientation in subject.

  17. Aerodynamic characteristics of flying fish in gliding flight.

    Park, Hyungmin; Choi, Haecheon

    2010-10-01

    The flying fish (family Exocoetidae) is an exceptional marine flying vertebrate, utilizing the advantages of moving in two different media, i.e. swimming in water and flying in air. Despite some physical limitations by moving in both water and air, the flying fish has evolved to have good aerodynamic designs (such as the hypertrophied fins and cylindrical body with a ventrally flattened surface) for proficient gliding flight. Hence, the morphological and behavioral adaptations of flying fish to aerial locomotion have attracted great interest from various fields including biology and aerodynamics. Several aspects of the flight of flying fish have been determined or conjectured from previous field observations and measurements of morphometric parameters. However, the detailed measurement of wing performance associated with its morphometry for identifying the characteristics of flight in flying fish has not been performed yet. Therefore, in the present study, we directly measure the aerodynamic forces and moment on darkedged-wing flying fish (Cypselurus hiraii) models and correlated them with morphological characteristics of wing (fin). The model configurations considered are: (1) both the pectoral and pelvic fins spread out, (2) only the pectoral fins spread with the pelvic fins folded, and (3) both fins folded. The role of the pelvic fins was found to increase the lift force and lift-to-drag ratio, which is confirmed by the jet-like flow structure existing between the pectoral and pelvic fins. With both the pectoral and pelvic fins spread, the longitudinal static stability is also more enhanced than that with the pelvic fins folded. For cases 1 and 2, the lift-to-drag ratio was maximum at attack angles of around 0 deg, where the attack angle is the angle between the longitudinal body axis and the flying direction. The lift coefficient is largest at attack angles around 30∼35 deg, at which the flying fish is observed to emerge from the sea surface. From glide polar

  18. Magnetic circuit design of magnetically driving gliding arc discharge device

    Jiang Zhonghe; Liu Minghai; Gu Chenglin; Pan Yuan

    2002-01-01

    A gliding arc discharge driven by magnetic field at atmospheric pressure can generate non-equilibrium plasma with good confinement property, and has extensive application in the areas of microelectronic fabrication, environmental engineering, etc. The magnetic circuit of the generator is designed with the permeance method, and analytic expression is obtained on the magnetic induction, the permeant magnetic material thickness and length of air gap. The results have been compared with those of the finite element method, the difference is 3.1%. But the permeance method is more concise and convenient and more universal and economical. So the permeance method is a more credible and useful engineering arithmetic

  19. Social motility in african trypanosomes.

    Michael Oberholzer

    2010-01-01

    Full Text Available African trypanosomes are devastating human and animal pathogens that cause significant human mortality and limit economic development in sub-Saharan Africa. Studies of trypanosome biology generally consider these protozoan parasites as individual cells in suspension cultures or in animal models of infection. Here we report that the procyclic form of the African trypanosome Trypanosoma brucei engages in social behavior when cultivated on semisolid agarose surfaces. This behavior is characterized by trypanosomes assembling into multicellular communities that engage in polarized migrations across the agarose surface and cooperate to divert their movements in response to external signals. These cooperative movements are flagellum-mediated, since they do not occur in trypanin knockdown parasites that lack normal flagellum motility. We term this behavior social motility based on features shared with social motility and other types of surface-induced social behavior in bacteria. Social motility represents a novel and unexpected aspect of trypanosome biology and offers new paradigms for considering host-parasite interactions.

  20. Curriculum for neurogastroenterology and motility training

    Gyawali, C P; Savarino, E; Lazarescu, A

    2018-01-01

    Although neurogastroenterology and motility (NGM) disorders are some of the most frequent disorders encountered by practicing gastroenterologists, a structured competency-based training curriculum developed by NGM experts is lacking. The American Neurogastroenterology and Motility Society (ANMS) ...

  1. Esophageal motility in eosinophilic esophagitis.

    Weiss, A H; Iorio, N; Schey, R

    2015-01-01

    Eosinophilic esophagitis (EoE) is characterized by eosinophilic infiltration of the esophagus and is a potential cause of dysphagia and food impaction, most commonly affecting young men. Esophageal manometry findings vary from normal motility to aperistalsis, simultaneous contractions, diffuse esophageal spasm, nutcracker esophagus or hypotonic lower esophageal sphincter (LES). It remains unclear whether esophageal dysmotility plays a significant role in the clinical symptoms of EoE. Our aim is to review the pathogenesis, diagnosis, and effect of treatment on esophageal dysmotility in EoE. A literature search utilizing the PubMed database was performed using keywords: eosinophilic esophagitis, esophageal dysmotility, motility, manometry, impedance planimetry, barium esophagogram, endoscopic ultrasound, and dysphagia. Fifteen studies, totaling 387 patients with eosinophilic esophagitis were identified as keeping in accordance with the aim of this study and included in this review. The occurrence of abnormal esophageal manometry was reported to be between 4 and 87% among patients with EoE. Esophageal motility studies have shown reduced distensibility, abnormal peristalsis, and hypotonicity of the LES in patients with EoE, which may also mimic other esophageal motility disorders such as achalasia or nutcracker esophagus. Studies have shown conflicting results regarding the presence of esophageal dysmotility and symptoms with some reports suggesting a higher rate of food impaction, while others report no correlation between motor function and dysphagia. Motility dysfunction of the esophagus in EoE has not been well reported in the literature and studies have reported conflicting evidence regarding the clinical significance of dysmotility seen in EoE. The correlation between esophageal dysmotility and symptoms of EoE remains unclear. Larger studies are needed to investigate the incidence of esophageal dysmotility, clinical implications, and effect of treatment on

  2. The contribution of cell-cell signaling and motility to bacterial biofilm formation

    Shrout, Joshua D; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    Many bacteria grow attached to a surface as biofilms. Several factors dictate biofilm formation, including responses by the colonizing bacteria to their environment. Here we review how bacteria use cell-cell signaling (also called quorum sensing) and motility during biofilm formation. Specifically...... gene expression important to the production of polysaccharides, rhamnolipid, and other virulence factors. Surface motility affects the assembly and architecture of biofilms, and some aspects of motility are also influenced by quorum sensing. While some genes and their function are specific to P....... aeruginosa, many aspects of biofilm development can be used as a model system to understand how bacteria differentially colonize surfaces....

  3. Evolution of gliding in Southeast Asian geckos and other vertebrates is temporally congruent with dipterocarp forest development.

    Heinicke, Matthew P; Greenbaum, Eli; Jackman, Todd R; Bauer, Aaron M

    2012-12-23

    Gliding morphologies occur in diverse vertebrate lineages in Southeast Asian rainforests, including three gecko genera, plus frogs, snakes, agamid lizards and squirrels. It has been hypothesized that repeated evolution of gliding is related to the dominance of Asian rainforest tree floras by dipterocarps. For dipterocarps to have influenced the evolution of gliding in Southeast Asian vertebrates, gliding lineages must have Eocene or later origins. However, divergence times are not known for most lineages. To investigate the temporal pattern of Asian gliding vertebrate evolution, we performed phylogenetic and molecular clock analyses. New sequence data for geckos incorporate exemplars of each gliding genus (Cosymbotus, Luperosaurus and Ptychozoon), whereas analyses of other vertebrate lineages use existing sequence data. Stem ages of most gliding vertebrates, including all geckos, cluster in the time period when dipterocarps came to dominate Asian tropical forests. These results demonstrate that a gliding/dipterocarp correlation is temporally viable, and caution against the assumption of early origins for apomorphic taxa.

  4. Primary Esophageal Motility Disorders: Beyond Achalasia

    Schlottmann, Francisco; Patti, Marco G.

    2017-01-01

    The best-defined primary esophageal motor disorder is achalasia. However, symptoms such as dysphagia, regurgitation and chest pain can be caused by other esophageal motility disorders. The Chicago classification introduced new manometric parameters and better defined esophageal motility disorders. Motility disorders beyond achalasia with the current classification are: esophagogastric junction outflow obstruction, major disorders of peristalsis (distal esophageal spasm, hypercontractile esoph...

  5. 14 CFR 29.71 - Helicopter angle of glide: Category B.

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Helicopter angle of glide: Category B. 29... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.71 Helicopter angle of glide: Category B. For each category B helicopter, except multiengine helicopters meeting the...

  6. Adhesion improvement of glass-fibre-reinforced polyester composites by gliding arc discharge treatment

    Kusano, Yukihiro; Sørensen, Bent F.; Løgstrup Andersen, Tom

    2013-01-01

    A gliding arc is a plasma that can be operated at atmospheric pressure and applied for plasma surface treatment for adhesion improvement. In the present work, glass-fibre-reinforced polyester plates were treated using an atmospheric pressure gliding arc discharge with an air flow to improve...

  7. Plasma-liquid system with rotational gliding discharge with liquid electrode

    Nedybaliuk, O.A.; Solomenko, O.V; Martysh, E.V.; Fedirchuk, I.I.

    2014-01-01

    Plasma-liquid system based on rotational gliding discharge with one liquid electrode was developed. Emission spectra of plasma of rotational gliding discharge with one liquid electrode were investigated. Discovered effective mechanism of controlling non-isothermal level of plasma in dynamic plasma-liquid systems. Major mechanism of expulsion of metal anode material from plasma-liquid systems with rotational discharges was shown.

  8. The impact of glide phases on the trackability of hydrodynamic trails in harbour seals (Phoca vitulina).

    Wieskotten, S; Dehnhardt, G; Mauck, B; Miersch, L; Hanke, W

    2010-11-01

    The mystacial vibrissae of harbour seals (Phoca vitulina) constitute a highly sensitive hydrodynamic receptor system enabling the seals to detect and follow hydrodynamic trails. In the wild, hydrodynamic trails, as generated by swimming fish, consist of cyclic burst-and-glide phases, associated with various differences in the physical parameters of the trail. Here, we investigated the impact of glide phases on the trackability of differently aged hydrodynamic trails in a harbour seal. As fish are not easily trained to swim certain paths with predetermined burst-and-glide phases, the respective hydrodynamic trails were generated using a remote-controlled miniature submarine. Gliding phases in hydrodynamic trails had a negative impact on the trackability when trails were 15 s old. The seal lost the generated trails more often within the transition zones, when the submarine switched from a burst to a glide moving pattern. Hydrodynamic parameter analysis (particle image velocimetry) revealed that the smaller dimensions and faster decay of hydrodynamic trails generated by the gliding submarine are responsible for the impaired success of the seal tracking the gliding phase. Furthermore, the change of gross water flow generated by the submarine from a rearwards-directed stream in the burst phase to a water flow passively dragged behind the submarine during gliding might influence the ability of the seal to follow the trail as this might cause a weaker deflection of the vibrissae. The possible ecological implications of intermittent swimming behaviour in fish for piscivorous predators are discussed.

  9. The epidemiology of injury in hang-gliding and paragliding.

    Rekand, Tiina

    2012-01-01

    Para- and hang-gliding are modern air sports that developed in the 20th century. Performers should possess technical skills and manage certified equipment for successful flight. Injuries may happen during the take-off, flight and landing. PubMed was searched using the search terms 'paragliding' and/or 'hang-gliding'. The reference lists of articles identified in the search strategy were also searched for relevant articles. The most common injuries are fractures, dislocations or sprains in the extremities, followed by spinal and head traumas. Multiple injuries after accidents are common. Collision with electrical wires may cause burn injuries. Fatal outcomes are caused by brain injuries, spinal cord injuries at the cervical level or aorta rupture. Accidents happen because of risk-taking behavior, lack of education or use of self-modified equipment. Observational studies have suggested the need for protection of the head, trunk and lower extremities. The measures proposed are often based on conclusions of observational studies and not proven through randomized studies. Better education along with focusing on possible risk factors will probably diminish the risks of hang- and paragliding. Large denominator-based case series, case-control and population-based studies are needed for assessment of the risks of hang- and paragliding. Copyright © 2012 S. Karger AG, Basel.

  10. Gliding arc in tornado using a reverse vortex flow

    Kalra, Chiranjeev S.; Cho, Young I.; Gutsol, Alexander; Fridman, Alexander; Rufael, Tecle S.

    2005-01-01

    The present article reports a new gliding arc (GA) system using a reverse vortex flow ('tornado') in a cylindrical reactor (gliding arc in tornado, or GAT), as used to preserve the main advantages of traditional GA systems and overcome their main drawbacks. The primary advantages of traditional GA systems retained in the present GAT are the possibility to generate transitional plasma and to avoid considerable electrode erosion. In contrast to a traditional GA, the new GAT system ensures much more uniform gas treatment and has a significantly larger gas residence time in the reactor. The present article also describes the design of the new reactor and its stable operation regime when the variation of GAT current is very small. These features are understood to be very important for most viable applications. Additionally the GAT provides near-perfect thermal insulation from the reactor wall, indicating that the present GAT does not require the reactor wall to be constructed of high-temperature materials. The new GAT system, with its unique properties such as a high level of nonequilibrium and a large residence time, looks very promising for many industrial applications including fuel conversion, carbon dioxide conversion to carbon monoxide and oxygen, surface treatment, waste treatment, flame stabilization, hydrogen sulfide treatment, etc

  11. Plastic deformation of tubular crystals by dislocation glide.

    Beller, Daniel A; Nelson, David R

    2016-09-01

    Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.

  12. Improving efficiency of heat pumps by use of zeotropic mixtures for different temperature glides

    Zühlsdorf, Benjamin; Jensen, Jonas Kjær; Cignitti, Stefano

    2017-01-01

    The present study demonstrates the optimization of a heat pump for an application with a large temperature glide on the sink and a smaller temperature glide on the source side. The study includes a simulation of a heat pump cycle for all possible binary mixtures from a list of 14 natural...... refrigerants, which enables a match of the temperature glide of sink and source with the temperature of the working fluid during phase change and thus, a reduction of the exergy destruction due to heat transfer. The model was evaluated for four different boundary conditions. For a separated evaluation...... of the irreversibility solely caused by the fluid properties, the exergy destruction in the heat exchangers has been distinguished accordingly and an indicator quantifying the glide match has been defined to analyse the influence on the performance. It was observed that a good glide match can contribute to an increased...

  13. The glide of screw dislocations in bcc Fe: Atomistic static and dynamic simulations

    Chaussidon, Julien; Fivel, Marc; Rodney, David

    2006-01-01

    We present atomic-scale simulations of screw dislocation glide in bcc iron. Using two interatomic potentials that, respectively, predict degenerate and non-degenerate core structures, we compute the static 0 K dependence of the screw dislocation Peierls stress on crystal orientation and show strong boundary condition effects related to the generation of non-glide stress components. At finite temperatures we show that, with a non-degenerate core, glide by nucleation/propagation of kink-pairs in a {1 1 0} glide plane is obtained at low temperatures. A transition in the twinning region, towards an average {1 1 2} glide plane, with the formation of debris loops is observed at higher temperatures

  14. Director gliding in a nematic liquid crystal layer: Quantitative comparison with experiments

    Mema, E.; Kondic, L.; Cummings, L. J.

    2018-03-01

    The interaction between nematic liquid crystals and polymer-coated substrates may lead to slow reorientation of the easy axis (so-called "director gliding") when a prolonged external field is applied. We consider the experimental evidence of zenithal gliding observed by Joly et al. [Phys. Rev. E 70, 050701 (2004), 10.1103/PhysRevE.70.050701] and Buluy et al. [J. Soc. Inf. Disp. 14, 603 (2006), 10.1889/1.2235686] as well as azimuthal gliding observed by S. Faetti and P. Marianelli [Liq. Cryst. 33, 327 (2006), 10.1080/02678290500512227], and we present a simple, physically motivated model that captures the slow dynamics of gliding, both in the presence of an electric field and after the electric field is turned off. We make a quantitative comparison of our model results and the experimental data and conclude that our model explains the gliding evolution very well.

  15. HES6 enhances the motility of alveolar rhabdomyosarcoma cells

    Wickramasinghe, Caroline M [MRC Cancer Cell Unit, Hutchison-MRC Research centre, Addenbrooke' s Hospital Cambridge, CB2 0XZ (United Kingdom); MRC Laboratory of Molecular Biology, Addenbrooke' s Hospital Cambridge, CB2 0QH (United Kingdom); Domaschenz, Renae [MRC Cancer Cell Unit, Hutchison-MRC Research centre, Addenbrooke' s Hospital Cambridge, CB2 0XZ (United Kingdom); Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 ONN (United Kingdom); Amagase, Yoko [MRC Cancer Cell Unit, Hutchison-MRC Research centre, Addenbrooke' s Hospital Cambridge, CB2 0XZ (United Kingdom); Department of Pathophysiology, Faculty of Pharmaceutical Sciences, Doshisha Women' s College of Liberal Arts, Kodo, Kyotanabe, Kyoto 610-0395 (Japan); Williamson, Daniel [Molecular Cytogenetics, The Institute of Cancer Research, Sutton SM2 5NG (United Kingdom); Northern Institute for Cancer Research, Paul O' Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH (United Kingdom); Missiaglia, Edoardo; Shipley, Janet [Molecular Cytogenetics, The Institute of Cancer Research, Sutton SM2 5NG (United Kingdom); Murai, Kasumi [MRC Cancer Cell Unit, Hutchison-MRC Research centre, Addenbrooke' s Hospital Cambridge, CB2 0XZ (United Kingdom); Jones, Philip H, E-mail: phj20@cam.ac.uk [MRC Cancer Cell Unit, Hutchison-MRC Research centre, Addenbrooke' s Hospital Cambridge, CB2 0XZ (United Kingdom)

    2013-01-01

    Absract: HES6, a member of the hairy-enhancer-of-split family of transcription factors, plays multiple roles in myogenesis. It is a direct target of the myogenic transcription factor MyoD and has been shown to regulate the formation of the myotome in development, myoblast cell cycle exit and the organization of the actin cytoskeleton during terminal differentiation. Here we investigate the expression and function of HES6 in rhabdomyosarcoma, a soft tissue tumor which expresses myogenic genes but fails to differentiate into muscle. We show that HES6 is expressed at high levels in the subset of alveolar rhabdomyosarcomas expressing PAX/FOXO1 fusion genes (ARMSp). Knockdown of HES6 mRNA in the ARMSp cell line RH30 reduces proliferation and cell motility. This phenotype is rescued by expression of mouse Hes6 which is insensitive to HES6 siRNA. Furthermore, expression microarray analysis indicates that the HES6 knockdown is associated with a decrease in the levels of Transgelin, (TAGLN), a regulator of the actin cytoskeleton. Knockdown of TAGLN decreases cell motility, whilst TAGLN overexpression rescues the motility defect resulting from HES6 knockdown. These findings indicate HES6 contributes to the pathogenesis of ARMSp by enhancing both proliferation and cell motility.

  16. Primary Esophageal Motility Disorders: Beyond Achalasia.

    Schlottmann, Francisco; Patti, Marco G

    2017-06-30

    The best-defined primary esophageal motor disorder is achalasia. However, symptoms such as dysphagia, regurgitation and chest pain can be caused by other esophageal motility disorders. The Chicago classification introduced new manometric parameters and better defined esophageal motility disorders. Motility disorders beyond achalasia with the current classification are: esophagogastric junction outflow obstruction, major disorders of peristalsis (distal esophageal spasm, hypercontractile esophagus, absent contractility) and minor disorders of peristalsis (ineffective esophageal motility, fragmented peristalsis). The aim of this study was to review the current diagnosis and management of esophageal motility disorders other than achalasia.

  17. Measuring Borrelia burgdorferi Motility and Chemotaxis.

    Zhang, Kai; Li, Chunhao

    2018-01-01

    Swimming plate, cell motion tracking, and capillary tube assays are very useful tools to quantitatively measure bacterial motility and chemotaxis. These methods were modified and applied to study Borrelia burgdorferi motility and chemotaxis. By using these methods, numerous motility and chemotaxis mutants have been characterized and several chemoattractants were identified. With the assistance of these tools, the role of motility and chemotaxis in the pathogenicity of B. burgdorferi has been established. In addition, these tools also facilitate the study of motility and chemotaxis in other spirochetes.

  18. High Order Large Eddy Simulation (LES) of Gliding Snake Aerodynamics: Effect of 3D Flow on Gliding Performance

    Delorme, Yann; Hassan, Syed Harris; Socha, Jake; Vlachos, Pavlos; Frankel, Steven

    2014-11-01

    Chrysopelea paradisi are snakes that are able to glide over long distances by morphing the cross section of their bodies from circular to a triangular airfoil, and undulating through the air. Snake glide is characterized by relatively low Reynolds number and high angle of attack as well as three dimensional and unsteady flow. Here we study the 3D dynamics of the flow using an in-house high-order large eddy simulation code. The code features a novel multi block immersed boundary method to accurately and efficiently represent the complex snake geometry. We investigate the steady state 3-dimensionality of the flow, especially the wake flow induced by the presence of the snake's body, as well as the vortex-body interaction thought to be responsible for part of the lift enhancement. Numerical predictions of global lift and drag will be compared to experimental measurements, as well as the lift distribution along the body of the snake due to cross sectional variations. Comparisons with previously published 2D results are made to highlight the importance of 3-dimensional effects. Additional efforts are made to quantify properties of the vortex shedding and Dynamic Mode Decomposition (DMD) is used to analyse the main modes responsible for the lift and drag forces.

  19. Physical models of cell motility

    2016-01-01

    This book surveys the most recent advances in physics-inspired cell movement models. This synergetic, cross-disciplinary effort to increase the fidelity of computational algorithms will lead to a better understanding of the complex biomechanics of cell movement, and stimulate progress in research on related active matter systems, from suspensions of bacteria and synthetic swimmers to cell tissues and cytoskeleton.Cell motility and collective motion are among the most important themes in biology and statistical physics of out-of-equilibrium systems, and crucial for morphogenesis, wound healing, and immune response in eukaryotic organisms. It is also relevant for the development of effective treatment strategies for diseases such as cancer, and for the design of bioactive surfaces for cell sorting and manipulation. Substrate-based cell motility is, however, a very complex process as regulatory pathways and physical force generation mechanisms are intertwined. To understand the interplay between adhesion, force ...

  20. [Motility disorders of the esophagus].

    Bruder, E; Rougemont, A-L; Furlano, R I; Schneider, J F; Mayr, J; Haecker, F-M; Beier, K; Schneider, J; Weber, P; Berberich, T; Cathomas, G; Meier-Ruge, W A

    2013-03-01

    Motility disorders of the esophagus comprise a heterogeneous spectrum of diseases. Primary malformations of the esophagus are now amenable to improved surgical and gastroenterological therapies; however, they often lead to persistent long-term esophageal dysmotility. Achalasia originates from impaired relaxation of the gastroesophageal sphincter apparatus. Systemic diseases may give rise to secondary disorders of esophageal motility. A number of visceral neuromuscular disorders show an esophageal manifestation but aganglionosis rarely extends into the esophagus. The growing group of myopathies includes metabolic and mitochondrial disorders with increasing levels of genetic characterization and incipient emergence of therapeutic strategies. Esophagitis with an infectious etiology causes severe dysmotility particularly in immunocompromised patients. Immunologically mediated inflammatory processes involving the esophagus are increasingly better understood. Finally, rare tumors and tumor-like lesions may impair esophageal motor function.

  1. Esophageal motility in eosinophilic esophagitis

    A.H. Weiss

    2015-07-01

    Conclusions: Motility dysfunction of the esophagus in EoE has not been well reported in the literature and studies have reported conflicting evidence regarding the clinical significance of dysmotility seen in EoE. The correlation between esophageal dysmotility and symptoms of EoE remains unclear. Larger studies are needed to investigate the incidence of esophageal dysmotility, clinical implications, and effect of treatment on patients with EoE.

  2. PLAG1 deficiency impairs spermatogenesis and sperm motility in mice.

    Juma, Almas R; Grommen, Sylvia V H; O'Bryan, Moira K; O'Connor, Anne E; Merriner, D Jo; Hall, Nathan E; Doyle, Stephen R; Damdimopoulou, Pauliina E; Barriga, Daniel; Hart, Adam H; Van de Ven, Wim J M; De Groef, Bert

    2017-07-13

    Deficiency in pleomorphic adenoma gene 1 (PLAG1) leads to reduced fertility in male mice, but the mechanism by which PLAG1 contributes to reproduction is unknown. To investigate the involvement of PLAG1 in testicular function, we determined (i) the spatial distribution of PLAG1 in the testis using X-gal staining; (ii) transcriptomic consequences of PLAG1 deficiency in knock-out and heterozygous mice compared to wild-type mice using RNA-seq; and (iii) morphological and functional consequences of PLAG1 deficiency by determining testicular histology, daily sperm production and sperm motility in knock-out and wild-type mice. PLAG1 was sparsely expressed in germ cells and in Sertoli cells. Genes known to be involved in spermatogenesis were downregulated in the testes of knock-out mice, as well as Hsd17b3, which encodes a key enzyme in androgen biosynthesis. In the absence of Plag1, a number of genes involved in immune processes and epididymis-specific genes were upregulated in the testes. Finally, loss of PLAG1 resulted in significantly lowered daily sperm production, in reduced sperm motility, and in several animals, in sloughing of the germinal epithelium. Our results demonstrate that the subfertility seen in male PLAG1-deficient mice is, at least in part, the result of significantly reduced sperm output and sperm motility.

  3. Employment of hypersonic glide vehicles: Proposed criteria for use

    Olguin, Abel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    Hypersonic Glide Vehicles (HGVs) are a type of reentry vehicle that couples the high speed of ballistic missiles with the maneuverability of aircraft. The HGV has been in development since the 1970s, and its technology falls under the category of Conventional Prompt Global Strike (CPGS) weapons. As noted by James M. Acton, a senior associate in the Nuclear Policy Program at the Carnegie Endowment, CPGS is a “missile in search of a mission.” With the introduction of any significant new military capability, a doctrine for use—including specifics regarding how, when and where it would be used, as well as tactics, training and procedures—must be clearly defined and understood by policy makers, military commanders, and planners. In this paper, benefits and limitations of the HGV are presented. Proposed criteria and four scenarios illustrate a possible method for assessing when to use an HGV.

  4. Leaping shampoo glides on a lubricating air layer

    Lee, S.

    2013-06-10

    When a stream of shampoo is fed onto a pool in one\\'s hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer. We identify this layer by looking through the pool liquid and observing its rupture into fine bubbles. The resulting microbubble sizes suggest this air layer is of submicron thickness. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding.

  5. Leaping shampoo glides on a lubricating air layer

    Lee, S.; Li, Erqiang; Marston, J. O.; Bonito, A.; Thoroddsen, Sigurdur T

    2013-01-01

    When a stream of shampoo is fed onto a pool in one's hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer. We identify this layer by looking through the pool liquid and observing its rupture into fine bubbles. The resulting microbubble sizes suggest this air layer is of submicron thickness. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding.

  6. Leaping shampoo glides on a lubricating air layer

    Lee, S.; Li, E. Q.; Marston, J. O.; Bonito, A.; Thoroddsen, S. T.

    2013-06-01

    When a stream of shampoo is fed onto a pool in one's hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer. We identify this layer by looking through the pool liquid and observing its rupture into fine bubbles. The resulting microbubble sizes suggest this air layer is of submicron thickness. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding.

  7. Complete genome sequence analysis of the fish pathogen Flavobacterium columnare provides insights into antibiotic resistance and pathogenicity related genes.

    Zhang, Yulei; Zhao, Lijuan; Chen, Wenjie; Huang, Yunmao; Yang, Ling; Sarathbabu, V; Wu, Zaohe; Li, Jun; Nie, Pin; Lin, Li

    2017-10-01

    We analyzed here the complete genome sequences of a highly virulent Flavobacterium columnare Pf1 strain isolated in our laboratory. The complete genome consists of a 3,171,081 bp circular DNA with 2784 predicted protein-coding genes. Among these, 286 genes were predicted as antibiotic resistance genes, including 32 RND-type efflux pump related genes which were associated with the export of aminoglycosides, indicating inducible aminoglycosides resistances in F. columnare. On the other hand, 328 genes were predicted as pathogenicity related genes which could be classified as virulence factors, gliding motility proteins, adhesins, and many putative secreted proteases. These genes were probably involved in the colonization, invasion and destruction of fish tissues during the infection of F. columnare. Apparently, our obtained complete genome sequences provide the basis for the explanation of the interactions between the F. columnare and the infected fish. The predicted antibiotic resistance and pathogenicity related genes will shed a new light on the development of more efficient preventional strategies against the infection of F. columnare, which is a major worldwide fish pathogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Non-equilibrium trajectory dynamics and the kinematics of gliding in a flying snake

    Socha, John J; Jafari, Farid; Miklasz, Kevin; Vlachos, Pavlos P

    2010-01-01

    Given sufficient space, it is possible for gliding animals to reach an equilibrium state with no net forces acting on the body. In contrast, every gliding trajectory must begin with a non-steady component, and the relative importance of this phase is not well understood. Of any terrestrial animal glider, snakes exhibit the greatest active movements, which may affect their trajectory dynamics. Our primary aim was to determine the characteristics of snake gliding during the transition to equilibrium, quantifying changes in velocity, acceleration, and body orientation in the late phase of a glide sequence. We launched 'flying' snakes (Chrysopelea paradisi) from a 15 m tower and recorded the mid-to-end portion of trajectories with four videocameras to reconstruct the snake's body position with mm to cm accuracy. Additionally, we developed a simple analytical model of gliding assuming only steady-state forces of lift, drag and weight acting on the body and used it to explore effects of wing loading, lift-to-drag ratio, and initial velocity on trajectory dynamics. Despite the vertical space provided to transition to steady-state gliding, snakes did not exhibit equilibrium gliding and in fact displayed a net positive acceleration in the vertical axis, an effect also predicted by the analytical model.

  9. Non-equilibrium trajectory dynamics and the kinematics of gliding in a flying snake

    Socha, John J; Jafari, Farid [Engineering Science and Mechanics, Virginia Tech, Blacksburg, VA 24061 (United States); Miklasz, Kevin [Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950 (United States); Vlachos, Pavlos P, E-mail: jjsocha@vt.ed [Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061 (United States)

    2010-12-15

    Given sufficient space, it is possible for gliding animals to reach an equilibrium state with no net forces acting on the body. In contrast, every gliding trajectory must begin with a non-steady component, and the relative importance of this phase is not well understood. Of any terrestrial animal glider, snakes exhibit the greatest active movements, which may affect their trajectory dynamics. Our primary aim was to determine the characteristics of snake gliding during the transition to equilibrium, quantifying changes in velocity, acceleration, and body orientation in the late phase of a glide sequence. We launched 'flying' snakes (Chrysopelea paradisi) from a 15 m tower and recorded the mid-to-end portion of trajectories with four videocameras to reconstruct the snake's body position with mm to cm accuracy. Additionally, we developed a simple analytical model of gliding assuming only steady-state forces of lift, drag and weight acting on the body and used it to explore effects of wing loading, lift-to-drag ratio, and initial velocity on trajectory dynamics. Despite the vertical space provided to transition to steady-state gliding, snakes did not exhibit equilibrium gliding and in fact displayed a net positive acceleration in the vertical axis, an effect also predicted by the analytical model.

  10. Palatalization and glide strengthening as competing repair strategies: Evidence from Kirundi

    Alexei Kochetov

    2016-07-01

    Full Text Available Alternations involving place-changing palatalization (e.g. t+j → ʧ in spirit – spiritual are very common and have been a focus of much generative phonological work since Chomsky & Halle’s (1968 ‘Sound Pattern of English’. The interest in palatalization and its mechanisms (see e.g. Sagey 1990; Chen 1996; Bateman 2007 has somewhat obscured the question of how these processes fit into a wider typology of segmental alternations. What happens when palatalization fails to apply? Do other processes take its place and apply under the same circumstances? In this paper, I argue for a close functional and formal affinity between place-changing palatalization and one such process, palatal glide strengthening (e.g. p+j → pc. As evidence I present data from Kirundi (Bantu on the realization of consonant + palatal and velar glide sequences within and across morphemes. As will be shown, palatalization and glide strengthening in Kirundi work in parallel, affecting different subsets of consonants. Specifically, palatalization targets C+j sequences with laryngeals, velars, nasal coronals, and – across morpheme boundaries – non-nasal coronals. In contrast, glide strengthening targets C+j sequences with labials and – within morphemes – non-nasal coronals. In addition, glide strengthening applies to within- and across-morpheme consonant + velar glide sequences, producing a set of outputs (e.g. m+w → mŋ similar to C+j sequences. I further present a unified Optimality Theoretic (Prince & Smolensky 1993/2004 account of these seemingly disparate phenomena as both arising from different rankings of constraints prohibiting consonant + glide sequences (parameterized by place and/or manner and various feature-specific agreement and faithfulness constraints. Finally, I explore typological predictions of this account, reviewing several remarkably similar cases of C + glide resolution patterns from other languages, and outlining questions for further

  11. Onboard Determination of Vehicle Glide Capability for Shuttle Abort Flight Managment (SAFM)

    Straube, Timothy; Jackson, Mark; Fill, Thomas; Nemeth, Scott

    2002-01-01

    When one or more main engines fail during ascent, the flight crew of the Space Shuttle must make several critical decisions and accurately perform a series of abort procedures. One of the most important decisions for many aborts is the selection ofa landing site. Several factors influence the ability to reach a landing site, including the spacecraft point of atmospheric entry, the energy state at atmospheric entry, the vehicle glide capability from that energy state, and whether one or more suitable landing sites are within the glide capability. Energy assessment is further complicated by the fact that phugoid oscillations in total energy influence glide capability. Once the glide capability is known, the crew must select the "best" site option based upon glide capability and landing site conditions and facilities. Since most of these factors cannot currently be assessed by the crew in flight, extensive planning is required prior to each mission to script a variety of procedures based upon spacecraft velocity at the point of engine failure (or failures). The results of this preflight planning are expressed in tables and diagrams on mission-specific cockpit checklists. Crew checklist procedures involve leafing through several pages of instructions and navigating a decision tree for site selection and flight procedures - all during a time critical abort situation. With the advent of the Cockpit Avionics Upgrade (CAU), the Shuttle will have increased on-board computational power to help alleviate crew workload during aborts and provide valuable situational awareness during nominal operations. One application baselined for the CAU computers is Shuttle Abort Flight Management (SAFM), whose requirements have been designed and prototyped. The SAFM application includes powered and glided flight algorithms. This paper describes the glided flight algorithm which is dispatched by SAFM to determine the vehicle glide capability and make recommendations to the crew for site

  12. Debris extrusion by glide-path establishing endodontic instruments with different geometries

    Jung-Hong Ha

    2016-06-01

    Conclusion: Creating the glide-path using nickel-titanium rotary files produced lower amounts of debris extrusion than using manual stainless-steel files. The progressive taper design of ProGlider, the center-off cross-section of One G, and the alternative-pitch design of ScoutRace may have increased the efficiencies of debris removal with minimal extrusion during glide-path preparation. Glide-path preparation using NiTi rotary files have better clinical efficiency than the manual stainless-steel file.

  13. Mitochondrial PKA mediates sperm motility.

    Mizrahi, Rashel; Breitbart, Haim

    2014-12-01

    Mitochondria are the major source of ATP to power sperm motility. Phosphorylation of mitochondrial proteins has been proposed as a major regulatory mechanism for mitochondrial bioenergetics. Sperm motility was measured by a computer-assisted analyzer, protein detection by western blotting, membrane potential by tetramethylrhodamine, cellular ATP by luciferase assay and localization of PKA by immuno-electron microscopy. Bicarbonate is essential for the creation of mitochondrial electro-chemical gradient, ATP synthesis and sperm motility. Bicarbonate stimulates PKA-dependent phosphorylation of two 60kDa proteins identified as Tektin and glucose-6-phosphate isomerase. This phosphorylation was inhibited by respiration inhibition and phosphorylation could be restored by glucose in the presence of bicarbonate. However, this effect of glucose cannot be seen when the mitochondrial ATP/ADP exchanger was inhibited indicating that glycolytic-produced ATP is transported into the mitochondria and allows PKA-dependent protein phosphorylation inside the mitochondria. Bicarbonate activates mitochondrial soluble adenylyl cyclase (sAC) which catalyzes cAMP production leading to the activation of mitochondrial PKA. Glucose can overcome the lack of ATP in the absence of bicarbonate but it cannot affect the mitochondrial sAC/PKA system, therefore the PKA-dependent phosphorylation of the 60kDa proteins does not occur in the absence of bicarbonate. Production of CO2 in Krebs cycle, which is converted to bicarbonate is essential for sAC/PKA activation leading to mitochondrial membrane potential creation and ATP synthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Scintigraphic evaluation of gastrointestinal motility disorders

    Choe, Jae Gol [College of Medicine, Korea Univ., Seoul (Korea, Republic of)

    2001-02-01

    Current scintigraphic tests of gastrointestinal motor function provides relevant pathophysiologic information, but their clinical utility is controversial. Many scintigraphic methods are developed to investigate gastrointestinal motility from oral cavity to colon. These are esophageal transit scintigraphy, oropharyngeal transit study, gastric emptying test, small bowel transit time measurement, colon transit study and gastroesopahgeal reflux scintigraphy. Scintigraphy of gastrointestinal tract is the most physiologic and noninvasive method to evaluate gastrointestinal motility disorders. Stomach emptying test is regarded as a gold standard in motility study. Gastrointestinal transit scintigraphy also has a certain role in assessment of drug effect to GI motility and changes after theraphy of motility disorders. Scintigraphy provides noninvasive and quantitative assessment of physiological transit throughout the gastrointestinal tract, and it is extremely useful for diagnosing gastrointestinal motor dysfunction. This article reviews the current procedures, indications, significance and guidelines for gastrointestinal motility measurements by scintigraphy.

  15. Scintigraphic evaluation of gastrointestinal motility disorders

    Choe, Jae Gol

    2001-01-01

    Current scintigraphic tests of gastrointestinal motor function provides relevant pathophysiologic information, but their clinical utility is controversial. Many scintigraphic methods are developed to investigate gastrointestinal motility from oral cavity to colon. These are esophageal transit scintigraphy, oropharyngeal transit study, gastric emptying test, small bowel transit time measurement, colon transit study and gastroesopahgeal reflux scintigraphy. Scintigraphy of gastrointestinal tract is the most physiologic and noninvasive method to evaluate gastrointestinal motility disorders. Stomach emptying test is regarded as a gold standard in motility study. Gastrointestinal transit scintigraphy also has a certain role in assessment of drug effect to GI motility and changes after theraphy of motility disorders. Scintigraphy provides noninvasive and quantitative assessment of physiological transit throughout the gastrointestinal tract, and it is extremely useful for diagnosing gastrointestinal motor dysfunction. This article reviews the current procedures, indications, significance and guidelines for gastrointestinal motility measurements by scintigraphy

  16. Does Hypothyroidism Affect Gastrointestinal Motility?

    Olga Yaylali

    2009-01-01

    Full Text Available Background. Gastrointestinal motility and serum thyroid hormone levels are closely related. Our aim was to analyze whether there is a disorder in esophagogastric motor functions as a result of hypothyroidism. Materials and Methods. The study group included 30 females (mean age ± SE 45.17 ± 2.07 years with primary hypothyroidism and 10 healthy females (mean age ± SE 39.40 ± 3.95 years. All cases underwent esophagogastric endoscopy and scintigraphy. For esophageal scintigraphy, dynamic imaging of esophagus motility protocol, and for gastric emptying scintigraphy, anterior static gastric images were acquired. Results. The mean esophageal transit time (52.56 ± 4.07 sec for patients; 24.30 ± 5.88 sec for controls; P=.02 and gastric emptying time (49.06 ± 4.29 min for the hypothyroid group; 30.4 ± 4.74 min for the control group; P=.01 were markedly increased in cases of hypothyroidism. Conclusion. Hypothyroidism prominently reduces esophageal and gastric motor activity and can cause gastrointestinal dysfunction.

  17. Translational, rotational, vibrational and electron temperatures of a gliding arc discharge

    Zhu, Jiajian; Ehn, Andreas; Gao, Jinlong

    2017-01-01

    , 0) band was used to simulate the rotational temperature (Tr) of the gliding arc discharge whereas the NO A–X (1, 0) and (0, 1) bands were used to determine its vibrational temperature (Tv). The instantaneous reduced electric field strength E/N was obtained by simultaneously measuring......Translational, rotational, vibrational and electron temperatures of a gliding arc discharge in atmospheric pressure air were experimentally investigated using in situ, non-intrusive optical diagnostic techniques. The gliding arc discharge was driven by a 35 kHz alternating current (AC) power source...... and operated in a glow-type regime. The two-dimensional distribution of the translational temperature (Tt) of the gliding arc discharge was determined using planar laser-induced Rayleigh scattering. The rotational and vibrational temperatures were obtained by simulating the experimental spectra. The OH A–X (0...

  18. Irradiation creep by climb-enables glide of dislocations resulting from preferred absorption of point defects

    Mansur, L K [Oak Ridge National Lab., TN (USA)

    1979-04-01

    A mechanism of irradiation creep arising from the climb-enabled glide of dislocations due to stress-induced preferred absorption of radiation-produced point defects is proposed. This creep component is here termed preferred absorption glide, PAG. PAG-creep operates in addition to the previously studied components of creep from climb by stress-induced preferred absorption, (SI) PA-creep, and the climb-enabled glide due to excess absorption of interstitials on dislocations during swelling, I-creep. A formulation of the various climb and climb-enabled glide processes which includes earlier results is presented. PAG-creep is comparable in magnitude to PA-creep in the parameter range of applications. While the PSA-creep rate and the I-creep rate are linear in stress, the PAG-creep rate is quadratic in stress and thus dominates at high stresses.

  19. The novel echo-guided ProGlide technique during percutaneous transfemoral transcatheter aortic valve implantation.

    Honda, Yohsuke; Araki, Motoharu; Yamawaki, Masahiro; Tokuda, Takahiro; Tsutumi, Masakazu; Mori, Shinsuke; Sakamoto, Yasunari; Kobayashi, Norihiro; Hirano, Keisuke; Ito, Yoshiaki

    2018-04-01

    The aim of this study was to assess clinical benefit of the Echo-guided ProGlide technique in patients undergoing percutaneous transfemoral transcatheter aortic valve implantation (TF-TAVI). The efficacy of the Echo-guided ProGlide technique during percutaneous TF-TAVI was not previously clarified. A total of 121 consecutive patients who underwent percutaneous TF-TAVI at our institution between February 2014 and July 2017 were enrolled in this study. According to the introduction of this novel technique in March 2016, patients were divided into two groups (echo-guided group who underwent TAVI from March 2016 to July 2017, n = 63; not echo-guided group who underwent TAVI from February 2014 to February 2016, n = 58). The incidence of major vascular complications, defined per the Valve Academic Research Consortium-2 criteria, and ProGlide complications including acute femoral artery stenosis or occlusion and bleeding requiring any intervention. The incidence of major vascular complication and ProGlide complication were significantly lower in the echo-guided group than in not echo-guided group (1.6% vs 17.2%, P guided ProGlide technique was independently associated with prevention of ProGlide complications (odds ratio, 0.11; 95% confidential interval, 0.01-0.76; P = 0.03). This novel Echo-guided ProGlide technique was associated with a lower rate of major vascular complications, particularly ProGlide complications during percutaneous TF-TAVI. © 2017, Wiley Periodicals, Inc.

  20. Dislocation glide velocity in creep of Mg alloys derived from dip tests

    Eisenlohr, P.; Blum, W.; Milička, Karel

    510-511, Sp. Iss. (2009), s. 393-397 ISSN 0921-5093. [Creep 2008. Bayreuth, 04.05.2008-09.05.2008] R&D Projects: GA ČR GA106/06/1354 Institutional research plan: CEZ:AV0Z20410507 Keywords : Dislocation glide velocity * Temperature dependence * Solute drag * Forest cutting * Prismatic glide Subject RIV: JG - Metallurgy Impact factor: 1.901, year: 2009

  1. Efficiency of lift production in flapping and gliding flight of swifts.

    Per Henningsson

    Full Text Available Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing with an elliptical planform. In flapping flight, on the other hand, the wing tip travels faster than the root, creating a spanwise velocity gradient. To compensate, the optimal wing shape should taper towards the tip (reducing the local chord and/or twist from root to tip (reducing local angle of attack. We hypothesised that, if a bird is limited in its ability to morph its wings and adapt its wing shape to suit both flight modes, then a preference towards flapping flight optimization will be expected since this is the most energetically demanding flight mode. We tested this by studying a well-known flap-gliding species, the common swift, by measuring the wakes generated by two birds, one in gliding and one in flapping flight in a wind tunnel. We calculated span efficiency, the efficiency of lift production, and found that the flapping swift had consistently higher span efficiency than the gliding swift. This supports our hypothesis and suggests that even though swifts have been shown previously to increase their lift-to-drag ratio substantially when gliding, the wing morphology is tuned to be more aerodynamically efficient in generating lift during flapping. Since body drag can be assumed to be similar for both flapping and gliding, it follows that the higher total drag in flapping flight compared with gliding flight is primarily a consequence of an increase in wing profile drag due to the flapping motion, exceeding the reduction in induced drag.

  2. Efficiency of Lift Production in Flapping and Gliding Flight of Swifts

    Henningsson, Per; Hedenström, Anders; Bomphrey, Richard J.

    2014-01-01

    Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing with an elliptical planform. In flapping flight, on the other hand, the wing tip travels faster than the root, creating a spanwise velocity gradient. To compensate, the optimal wing shape should taper towards the tip (reducing the local chord) and/or twist from root to tip (reducing local angle of attack). We hypothesised that, if a bird is limited in its ability to morph its wings and adapt its wing shape to suit both flight modes, then a preference towards flapping flight optimization will be expected since this is the most energetically demanding flight mode. We tested this by studying a well-known flap-gliding species, the common swift, by measuring the wakes generated by two birds, one in gliding and one in flapping flight in a wind tunnel. We calculated span efficiency, the efficiency of lift production, and found that the flapping swift had consistently higher span efficiency than the gliding swift. This supports our hypothesis and suggests that even though swifts have been shown previously to increase their lift-to-drag ratio substantially when gliding, the wing morphology is tuned to be more aerodynamically efficient in generating lift during flapping. Since body drag can be assumed to be similar for both flapping and gliding, it follows that the higher total drag in flapping flight compared with gliding flight is primarily a consequence of an increase in wing profile drag due to the flapping motion, exceeding the reduction in induced drag. PMID:24587260

  3. Asian motility studies in irritable bowel syndrome.

    Lee, Oh Young

    2010-04-01

    Altered motility remains one of the important pathophysiologic factors in patients with irritable bowel syndrome (IBS) who commonly complain of abdominal pain and stool changes such as diarrhea and constipation. The prevalence of IBS has increased among Asian populations these days. Gastrointestinal (GI) physiology may vary between Asian and Western populations because of differences in diets, socio-cultural backgrounds, and genetic factors. The characteristics and differences of GI dysmotility in Asian IBS patients were reviewed. MEDLINE search work was performed including following terms, 'IBS,' 'motility,' 'transit time,' 'esophageal motility,' 'gastric motility,' 'small intestinal motility,' 'colonic motility,' 'anorectal function,' and 'gallbladder motility' and over 100 articles were categorized under 'esophagus,' 'stomach,' 'small intestine,' 'colon,' 'anorectum,' 'gallbladder,' 'transit,' 'motor pattern,' and 'effect of stressors.' Delayed gastric emptying, slow tansit in constipation predominant IBS patients, rapid transit in diarrhea predominant IBS patients, accelerated motility responses to various stressors such as meals, mental stress, or corticotrophin releasing hormones, and altered rectal compliance and altered rectal accomodation were reported in many Asian studies regarding IBS. Many conflicting results were found among these studies and there are still controversies to conclude these as unique features of Asian IBS patients. Multinational and multicenter studies are needed to be performed vigorously in order to elaborate characteristics as well as differences of altered motililty in Asian patients with IBS.

  4. Reconfigurable engineered motile semiconductor microparticles.

    Ohiri, Ugonna; Shields, C Wyatt; Han, Koohee; Tyler, Talmage; Velev, Orlin D; Jokerst, Nan

    2018-05-03

    Locally energized particles form the basis for emerging classes of active matter. The design of active particles has led to their controlled locomotion and assembly. The next generation of particles should demonstrate robust control over their active assembly, disassembly, and reconfiguration. Here we introduce a class of semiconductor microparticles that can be comprehensively designed (in size, shape, electric polarizability, and patterned coatings) using standard microfabrication tools. These custom silicon particles draw energy from external electric fields to actively propel, while interacting hydrodynamically, and sequentially assemble and disassemble on demand. We show that a number of electrokinetic effects, such as dielectrophoresis, induced charge electrophoresis, and diode propulsion, can selectively power the microparticle motions and interactions. The ability to achieve on-demand locomotion, tractable fluid flows, synchronized motility, and reversible assembly using engineered silicon microparticles may enable advanced applications that include remotely powered microsensors, artificial muscles, reconfigurable neural networks and computational systems.

  5. Scintigraphic assessment of gastrointestinal motility

    Madsen, Jan Lysgård

    2014-01-01

    intestinal and colonic transit. This article reviews current imaging techniques, methods for data processing and principles for evaluating results when scintigraphy is used to assess gastrointestinal motility. Furthermore, clinical indications for performing scintigraphy are reviewed.......Gastrointestinal transit reflects overall gastrointestinal motor activity and is regulated by a complex interplay between neural and hormonal stimuli. Thus, transit measurements provide a measure of the combined effects of gastrointestinal muscular activity and feedback from the gut and brain....... Dysmotility in the different major segments of the gastrointestinal tract may give rise to similar symptoms; hence, localizing transit abnormalities to a specific segment is a valuable element of diagnostic evaluation. Scintigraphy is an effective noninvasive tool to assess gastric emptying as well as small...

  6. Spontaneous mutations in the flhD operon generate motility heterogeneity in Escherichia coli biofilm.

    Horne, Shelley M; Sayler, Joseph; Scarberry, Nicholas; Schroeder, Meredith; Lynnes, Ty; Prüß, Birgit M

    2016-11-08

    Heterogeneity and niche adaptation in bacterial biofilm involve changes to the genetic makeup of the bacteria and gene expression control. We hypothesized that i) spontaneous mutations in the flhD operon can either increase or decrease motility and that ii) the resulting motility heterogeneity in the biofilm might lead to a long-term increase in biofilm biomass. We allowed the highly motile E. coli K-12 strain MC1000 to form seven- and fourteen-day old biofilm, from which we recovered reduced motility isolates at a substantially greater frequency (5.4 %) than from a similar experiment with planktonic bacteria (0.1 %). Biofilms formed exclusively by MC1000 degraded after 2 weeks. In contrast, biofilms initiated with a 1:1 ratio of MC1000 and its isogenic flhD::kn mutant remained intact at 4 weeks and the two strains remained in equilibrium for at least two weeks. These data imply that an 'optimal' biofilm may contain a mixture of motile and non-motile bacteria. Twenty-eight of the non-motile MC1000 isolates contained an IS1 element in proximity to the translational start of FlhD or within the open reading frames for FlhD or FlhC. Two isolates had an IS2 and one isolate had an IS5 in the open reading frame for FlhD. An additional three isolates contained deletions that included the RNA polymerase binding site, five isolates contained point mutations and small deletions in the open reading frame for FlhC. The locations of all these mutations are consistent with the lack of motility and further downstream within the flhD operon than previously published IS elements that increased motility. We believe that the location of the mutation within the flhD operon determines whether the effect on motility is positive or negative. To test the second part of our hypothesis where motility heterogeneity in a biofilm may lead to a long-term increase in biofilm biomass, we quantified biofilm biomass by MC1000, MC1000 flhD::kn, and mixtures of the two strains at ratios of 1:1, 10

  7. An evolutionary link between capsular biogenesis and surface motility in bacteria.

    Agrebi, Rym; Wartel, Morgane; Brochier-Armanet, Céline; Mignot, Tâm

    2015-05-01

    Studying the evolution of macromolecular assemblies is important to improve our understanding of how complex cellular structures evolved, and to identify the functional building blocks that are involved. Recent studies suggest that the macromolecular complexes that are involved in two distinct processes in Myxococcus xanthus - surface motility and sporulation - are derived from an ancestral polysaccharide capsule assembly system. In this Opinion article, we argue that the available data suggest that the motility machinery evolved from this capsule assembly system following a gene duplication event, a change in carbohydrate polymer specificity and the acquisition of additional proteins by the motility complex, all of which are key features that distinguish the motility and sporulation systems. Furthermore, the presence of intermediates of these systems in bacterial genomes suggests a testable evolutionary model for their emergence and spread.

  8. Marked colour divergence in the gliding membranes of a tropical lizard mirrors population differences in the colour of falling leaves

    Klomp, D. A.; Stuart-Fox, D.; Das, I.; Ord, T. J.

    2014-01-01

    Populations of the Bornean gliding lizard, Draco cornutus, differ markedly in the colour of their gliding membranes. They also differ in local vegetation type (mangrove forest versus lowland rainforest) and consequently, the colour of falling leaves (red and brown/black in mangrove versus green, brown and black in rainforest). We show that the gliding membranes of these lizards closely match the colours of freshly fallen leaves in the local habitat as they appear to the visual system of birds...

  9. A rolling-gliding wear simulator for the investigation of tribological material pairings for application in total knee arthroplasty

    Richter, Berna I; Ostermeier, Sven; Turger, Anke; Denkena, Berend; Hurschler, Christof

    2010-01-01

    Abstract Background Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only. Methods A rolling-gliding wear simulator was thus designed, constructed and implemented, which sim...

  10. Effects of Glide Path on the Centering Ability and Preparation Time of Two Reciprocating Instruments

    Coelho, Marcelo Santos; Fontana, Carlos Eduardo; Kato, Augusto Shoji; de Martin, Alexandre Sigrist; da Silveira Bueno, Carlos Eduardo

    2016-01-01

    Introduction: The aim of this in vitro study was to evaluate the effects of establishing glide path on the centering ability and preparation time of two single-file reciprocating systems in mesial root canals of mandibular molars. Methods and Materials: Sixty extracted mandibular molars with curvatures of 25-39 degrees and separate foramina for the mesiobuccal and mesiolingual canals, were divided into four groups (n=15); WaveOne+glide path; WaveOne; Reciproc+glide path and Reciproc. Non-patent canals were excluded and only one canal in each tooth was instrumented. A manual glide path was established in first and third groups with #10, 15 and 20 hand K-files. Preparation was performed with reciprocating in-and-out motion, with a 3-4 mm amplitude and slight apical pressure. Initial and final radiographs were taken to analyze the amount of dentin removed in the instrumented canals. The radiographs were superimposed with an image editing software and examined to assess discrepancies at 3-, 6- and 9-mm distances from the apex. The Kruskal-Wallis test was used for statistical analysis. The level of significance was set at 0.05. Results: Preparation in groups without glide paths was swifter than the other groups (P=0.001). However, no difference was observed regarding centering ability. Conclusion: Establishing a glide path increased the total instrumentation time for preparing curved canals with WaveOne and Reciproc instruments. Glide path had no influence on the centering ability of these systems. PMID:26843875

  11. [Posterior lamellar keratoplasty with DSEK technique and use of the Tan EndoGlide - short-term results].

    Kałuiny, Bartłomiej J; Piotrowiak, Ilona; Sołdańska, Beata; Grzybek, Katarzyna; Czajkowska, Monika; Galas, Małgorzata; Malukiewicz, Grazyna

    2013-01-01

    To present the differences in surgical technique of DSEK (Descemet's Stripping Endothelial Keratoplasty) with the use of Tan EndoGlide (Coronet, UK) and Busin Glide (Moria, FR). Short-term results will also be presented, DSEK was performed in 24 eyes, in 8 cases the surgery was combined with cataract phacoemulsification and lOL implantation. Surgery course and 6 months postoperative results of first 12 eyes performed with the use of Tan EndoGlide were compared with 12 consecutive eyes preformed with Busin Glide. Tan EndoGlide provided much more stable anterior chamber, donor tissue unfolding process was better controlled but the incision was wider incision. Surgically induced mean refractory cylinder 6. months after the surgery was 1.56 - 1.15 Dsph in Tan EndoGlide group and 1.18 +/- 1.10 Dsph in Busin Glide group (P 0.05). Mean CDVA was 0.65+/- 0.27 and 0.63 +/- 0.25, respectively (P>0,05). Statistically significant differences in intra- and post-operative complications between both groups were not found. The Tan EndoGlide used during posterior lamellar keratoplasty with DSEK technique is a good alternative to currently used methods. It provides better stabilization of the anterior chamber, however its use is linked with higher postoperative astigmatism in comparison with Busin Glide. The visual outcomes and endothelial cell loss 6 months after the surgery were similar in both groups.

  12. Barriers to bacterial motility on unsaturated surfaces

    Dechesne, Arnaud; Smets, Barth F.

    2013-01-01

    Our knowledge of the spatial organization and spatial dynamics of microbial populations in soil at a scale close to that of the microorganisms is scarce. While passive dispersal via water ow or soil biota is probably a major dispersal route, it is reasonable to consider that active dispersal also...... and their isogenic mutants unable to express various type of motility we aimed to quantify the physical limits of bacterial motility. Our results demonstrate how hydration controls bacterial motility under unsaturated conditions. They can form the base of improved biodegradation models that include microbial...

  13. Plankton motility patterns and encounter rates

    Visser, Andre; Kiørboe, Thomas

    2006-01-01

    measure of run length to reaction distance determines whether the underlying encounter is ballistic or diffusive. Since ballistic interactions are intrinsically more efficient than diffusive, we predict that organisms will display motility with long correlation run lengths compared to their reaction...... distances to their prey, but short compared to the reaction distances of their predators. We show motility data for planktonic organisms ranging from bacteria to copepods that support this prediction. We also present simple ballistic and diffusive motility models for estimating encounter rates, which lead...

  14. Physiology of Normal Esophageal Motility

    Goyal, Raj K; Chaudhury, Arun

    2009-01-01

    The esophagus consists of two different parts. In humans, the cervical esophagus is composed of striated muscles and the thoracic esophagus is composed of phasic smooth muscles. The striated muscle esophagus is innervated by the lower motor neurons and peristalsis in this segment is due to sequential activation of the motor neurons in the nucleus ambiguus. Both primary and secondary peristaltic contractions are centrally mediated. The smooth muscle of esophagus is phasic in nature and is innervated by intramural inhibitory (nitric oxide releasing) and excitatory (acetylcholine releasing) neurons that receive inputs from separate sets of preganglionic neurons located in the dorsal motor nucleus of vagus. The primary peristalsis in this segment involves both central and peripheral mechanisms. The primary peristalsis consist of inhibition (called deglutitive inhibition) followed by excitation. The secondary peristalsis is entirely due to peripheral mechanisms and also involves inhibition followed by excitation. The lower esophageal sphincter (LES) is characterized by tonic muscle that is different from the muscle of the esophageal body. The LES, like the esophageal body smooth muscle, is also innervated by the inhibitory and excitatory neurons. The LES maintains tonic closure due to its myogenic property. The LES tone is modulated by the inhibitory and the excitatory nerves. Inhibitory nerves mediate LES relaxation and the excitatory nerves mediate reflex contraction or rebound contraction of the LES. Clinical disorders of esophageal motility can be classified on the basis of disorders of the inhibitory and excitatory innervations and the smooth muscles. PMID:18364578

  15. Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa.

    Cursino, Luciana; Li, Yaxin; Zaini, Paulo A; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J

    2009-10-01

    A mutation in the Xylella fastidiosa tonB1 gene resulted in loss of twitching motility and in significantly less biofilm formation as compared with a wild type. The altered motility and biofilm phenotypes were restored by complementation with a functional copy of the gene. The mutation affected virulence as measured by Pierce's disease symptoms on grapevines. The role of TonB1 in twitching and biofilm formation appears to be independent of the characteristic iron-uptake function of this protein. This is the first report demonstrating a functional role for a tonB homolog in X. fastidiosa.

  16. Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa

    Cursino, Luciana; Li, Yaxin; Zaini, Paulo A.; De La Fuente, Leonardo; Hoch, Harvey C.; Burr, Thomas J.

    2017-01-01

    A mutation in the Xylella fastidiosa tonB1 gene resulted in loss of twitching motility and in significantly less biofilm formation as compared with a wild type. The altered motility and biofilm phenotypes were restored by complementation with a functional copy of the gene. The mutation affected virulence as measured by Pierce's disease symptoms on grapevines. The role of TonB1 in twitching and biofilm formation appears to be independent of the characteristic iron-uptake function of this prote...

  17. Lubrication of dislocation glide in MgO by hydrous defects

    Skelton, Richard; Walker, Andrew M.

    2018-02-01

    Water-related defects, principally in the form of protonated cation vacancies, are potentially able to weaken minerals under high-stress or low-temperature conditions by reducing the Peierls stress required to initiate dislocation glide. In this study, we use the Peierls-Nabarro (PN) model to determine the effect of protonated Mg vacancies on the 1/2{110} and 1/2{100} slip systems in MgO. This PN model is parameterized using generalized stacking fault energies calculated using plane-wave density functional theory, with and without protonated Mg vacancies present at the glide plane. It found that these defects increase dislocation core widths and reduce the Peierls stress over the entire pressure range 0-125 GPa. Furthermore, 1/2{110} slip is found to be more sensitive to the presence of protonated vacancies which increases in the pressure at which {100} becomes the easy glide plane for 1/2 screw dislocations. These results demonstrate, for a simple mineral system, that water-related defects can alter the deformation behavior of minerals in the glide-creep regime by reducing the stress required to move dislocations by glide. (Mg, Fe)O is the most anisotropic mineral in the Earth's lower mantle, so the differential sensitivity of the major slip systems in MgO to hydrous defects has potential implications for the interpretation of the seismic anisotropy in this region.

  18. Root canal anatomy preservation of WaveOne reciprocating files with or without glide path.

    Berutti, Elio; Paolino, Davide Salvatore; Chiandussi, Giorgio; Alovisi, Mario; Cantatore, Giuseppe; Castellucci, Arnaldo; Pasqualini, Damiano

    2012-01-01

    This study evaluated the influence of glide path on canal curvature and axis modification after instrumentation with WaveOne Primary reciprocating files. Thirty ISO 15, 0.02 taper Endo Training Blocks were used. In group 1, glide path was created with PathFile 1, 2, and 3 at working length, whereas in group 2, glide path was not performed. In both groups, canals were shaped with WaveOne Primary reciprocating files at working length. Preinstrumentation and postinstrumentation digital images were superimposed and processed with Matlab r2010b software to analyze the curvature radius ratio (CRr) and the relative axis error (rAe), representing canal curvature modification. Data were analyzed with 1-way balanced analyses of variance at 2 levels (P < .05). Glide path was found to be extremely significant for both CRr parameter (F = 9.59; df = 1; P = .004) and rAe parameter (F = 13.55; df = 1; P = .001). Canal modifications seem to be significantly reduced when previous glide path is performed by using the new WaveOne nickel-titanium single-file system. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Influence of a glide path on the dentinal crack formation of ProTaper Next system

    Sevinç Aktemur Türker

    2015-11-01

    Full Text Available Objectives The aim was to evaluate dentinal crack formation after root canal preparation with ProTaper Next system (PTN with and without a glide path. Materials and Methods Forty-five mesial roots of mandibular first molars were selected. Fifteen teeth were left unprepared and served as controls. The experimental groups consist of mesiobuccal and mesiolingual root canals of remaining 30 teeth, which were divided into 2 groups (n = 15: Group PG/PTN, glide path was created with ProGlider (PG and then canals were shaped with PTN system; Group PTN, glide path was not prepared and canals were shaped with PTN system only. All roots were sectioned perpendicular to the long axis at 1, 2, 3, 4, 6, and 8 mm from the apex, and the sections were observed under a stereomicroscope. The presence/absence of cracks was recorded. Data were analyzed with chi-square tests with Yates correction. Results There were no significant differences in crack formation between the PTN with and without glide path preparation. The incidence of cracks observed in PG/PTN and PTN groups was 17.8% and 28.9%, respectively. Conclusions The creation of a glide path with ProGlider before ProTaper Next rotary system did not influence dentinal crack formation in root canals.

  20. Mammalian Sperm Motility: Observation and Theory

    Gaffney, E.A.; Gadê lha, H.; Smith, D.J.; Blake, J.R.; Kirkman-Brown, J.C.

    2011-01-01

    the mechanics of these specialized cells, especially during their remarkable journey to the egg. The biological structure of the motile sperm appendage, the flagellum, is described and placed in the context of the mechanics underlying the migration of mammalian

  1. Mammalian Sperm Motility: Observation and Theory

    Gaffney, E.A.

    2011-01-21

    Mammalian spermatozoa motility is a subject of growing importance because of rising human infertility and the possibility of improving animal breeding. We highlight opportunities for fluid and continuum dynamics to provide novel insights concerning the mechanics of these specialized cells, especially during their remarkable journey to the egg. The biological structure of the motile sperm appendage, the flagellum, is described and placed in the context of the mechanics underlying the migration of mammalian sperm through the numerous environments of the female reproductive tract. This process demands certain specific changes to flagellar movement and motility for which further mechanical insight would be valuable, although this requires improved modeling capabilities, particularly to increase our understanding of sperm progression in vivo. We summarize current theoretical studies, highlighting the synergistic combination of imaging and theory in exploring sperm motility, and discuss the challenges for future observational and theoretical studies in understanding the underlying mechanics. © 2011 by Annual Reviews. All rights reserved.

  2. The collapse of stacking-fault tetrahedra by interaction with gliding dislocations

    Matsukawa, Y.; Osetsky, Yu.N.; Stoller, R.E.; Zinkle, S.J.

    2005-01-01

    The collapse of stacking-fault tetrahedra (SFT) by gliding dislocations was observed in in situ straining experiments in a transmission electron microscope (TEM). A stacking-fault tetrahedron was collapsed by intersection with a gliding perfect dislocation: only the base portion divided by the gliding plane of the dislocation annihilated, while the apex portion remained intact. As a result of analysis on evolution of atom configuration induced by intersection with perfect dislocation in SFT, it was found that an unusual atom configuration inevitably appeared in one of the ledges formed on stacking-fault planes, which is traditionally called I-ledge: the atoms on adjacent (1 1 1) planes were overlapping each other. The overlapping configuration provides a strong repulsive force, being a conceivable driving force to induce a chain reaction of atom displacements that collapses the SFT base portion

  3. HEATR2 plays a conserved role in assembly of the ciliary motile apparatus.

    Christine P Diggle

    2014-09-01

    Full Text Available Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections, infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD. Using the comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4. These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme.

  4. Plastic deformation of crystals: analytical and computer simulation studies of dislocation glide

    Altintas, S.

    1978-05-01

    The plastic deformation of crystals is usually accomplished through the motion of dislocations. The glide of a dislocation is impelled by the applied stress and opposed by microstructural defects such as point defects, voids, precipitates and other dislocations. The planar glide of a dislocation through randomly distributed obstacles is considered. The objective of the present research work is to calculate the critical resolved shear stress (CRSS) for athermal glide and the velocity of the dislocation at finite temperature as a function of the applied stress and the nature and strength of the obstacles. Dislocation glide through mixtures of obstacles has been studied analytically and by computer simulation. Arrays containing two kinds of obstacles as well as square distribution of obstacle strengths are considered. The critical resolved shear stress for an array containing obstacles with a given distribution of strengths is calculated using the sum of the quadratic mean of the stresses for the individual obstacles and is found to be in good agreement with the computer simulation data. Computer simulation of dislocation glide through randomly distributed obstacles containing up to 10 6 obstacles show that the CRSS decreases as the size of the array increases and approaches a limiting value. Histograms of forces and of segment lengths are obtained and compared with theoretical predictions. Effects of array shape and boundary conditions on the dislocation glide are also studied. Analytical and computer simulation results are compared with experimental results obtained on precipitation-, irradiation-, forest-, and impurity cluster-hardening systems and are found to be in good agreement

  5. Plastic deformation of crystals: analytical and computer simulation studies of dislocation glide

    Altintas, S.

    1978-05-01

    The plastic deformation of crystals is usually accomplished through the motion of dislocations. The glide of a dislocation is impelled by the applied stress and opposed by microstructural defects such as point defects, voids, precipitates and other dislocations. The planar glide of a dislocation through randomly distributed obstacles is considered. The objective of the present research work is to calculate the critical resolved shear stress (CRSS) for athermal glide and the velocity of the dislocation at finite temperature as a function of the applied stress and the nature and strength of the obstacles. Dislocation glide through mixtures of obstacles has been studied analytically and by computer simulation. Arrays containing two kinds of obstacles as well as square distribution of obstacle strengths are considered. The critical resolved shear stress for an array containing obstacles with a given distribution of strengths is calculated using the sum of the quadratic mean of the stresses for the individual obstacles and is found to be in good agreement with the computer simulation data. Computer simulation of dislocation glide through randomly distributed obstacles containing up to 10/sup 6/ obstacles show that the CRSS decreases as the size of the array increases and approaches a limiting value. Histograms of forces and of segment lengths are obtained and compared with theoretical predictions. Effects of array shape and boundary conditions on the dislocation glide are also studied. Analytical and computer simulation results are compared with experimental results obtained on precipitation-, irradiation-, forest-, and impurity cluster-hardening systems and are found to be in good agreement.

  6. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.

    Klaassen van Oorschot, Brett; Mistick, Emily A; Tobalske, Bret W

    2016-10-01

    Birds morph their wings during a single wingbeat, across flight speeds and among flight modes. Such morphing may allow them to maximize aerodynamic performance, but this assumption remains largely untested. We tested the aerodynamic performance of swept and extended wing postures of 13 raptor species in three families (Accipitridae, Falconidae and Strigidae) using a propeller model to emulate mid-downstroke of flapping during take-off and a wind tunnel to emulate gliding. Based on previous research, we hypothesized that (1) during flapping, wing posture would not affect maximum ratios of vertical and horizontal force coefficients (C V :C H ), and that (2) extended wings would have higher maximum C V :C H when gliding. Contrary to each hypothesis, during flapping, extended wings had, on average, 31% higher maximum C V :C H ratios and 23% higher C V than swept wings across all biologically relevant attack angles (α), and, during gliding, maximum C V :C H ratios were similar for the two postures. Swept wings had 11% higher C V than extended wings in gliding flight, suggesting flow conditions around these flexed raptor wings may be different from those in previous studies of swifts (Apodidae). Phylogenetic affiliation was a poor predictor of wing performance, due in part to high intrafamilial variation. Mass was only significantly correlated with extended wing performance during gliding. We conclude that wing shape has a greater effect on force per unit wing area during flapping at low advance ratio, such as take-off, than during gliding. © 2016. Published by The Company of Biologists Ltd.

  7. Association of manual or engine-driven glide path preparation with canal centring and apical transportation: a systematic review.

    Hartmann, R C; Peters, O A; de Figueiredo, J A P; Rossi-Fedele, G

    2018-04-28

    The role and effect of glide path preparation in root canal treatment remain controversial. This systematic review aims to compare apical transportation and canal centring of different glide path preparation techniques, with or without subsequent engine-driven root canal preparation. A database search in PubMed, PubMed Central, Embase, Scopus, EBSCO Dentistry & Oral Sciences Source and Virtual Health Library was conducted, using appropriate key words to identify the effect of glide path preparation (or its absence) on apical transportation and canal centring. An assessment for the risk of bias in included studies was carried out. Amongst 2146 studies, 18 satisfied the inclusion criteria. Nine studies assessed glide path preparation per se, comparing apical transportation and canal centring of rotary systems and/or manual files; eleven further investigations examined the efficacy of the glide path prior to final canal preparation with different engine-driven systems. Risk of bias and other study design features with potential influence on study outcomes and clinical implications were assessed. Based on the available evidence, and within the limitation of the studies included, preparation of a glide path using rotary sequences performs similarly (in most of the component studies) or significantly better than manual preparation when assessing apical transportation or canal centring. When compared to the absence of a glide path, canal shaping following glide path preparation was of similar, or significantly better quality, in regard to apical transportation or canal centring. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. Marked colour divergence in the gliding membranes of a tropical lizard mirrors population differences in the colour of falling leaves.

    Klomp, D A; Stuart-Fox, D; Das, I; Ord, T J

    2014-12-01

    Populations of the Bornean gliding lizard, Draco cornutus, differ markedly in the colour of their gliding membranes. They also differ in local vegetation type (mangrove forest versus lowland rainforest) and consequently, the colour of falling leaves (red and brown/black in mangrove versus green, brown and black in rainforest). We show that the gliding membranes of these lizards closely match the colours of freshly fallen leaves in the local habitat as they appear to the visual system of birds (their probable predators). Furthermore, gliding membranes more closely resembled colours of local fallen leaves than standing foliage or fallen leaves in the other population's habitat. This suggests that the two populations have diverged in gliding membrane coloration to match the colours of their local falling leaves, and that mimicking falling leaves is an adaptation that functions to reduce predation by birds. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. A Genome-wide RNAi Screen for Microtubule Bundle Formation and Lysosome Motility Regulation in Drosophila S2 Cells

    Amber L. Jolly

    2016-01-01

    Full Text Available Long-distance intracellular transport of organelles, mRNA, and proteins (“cargo” occurs along the microtubule cytoskeleton by the action of kinesin and dynein motor proteins, but the vast network of factors involved in regulating intracellular cargo transport are still unknown. We capitalize on the Drosophila melanogaster S2 model cell system to monitor lysosome transport along microtubule bundles, which require enzymatically active kinesin-1 motor protein for their formation. We use an automated tracking program and a naive Bayesian classifier for the multivariate motility data to analyze 15,683 gene phenotypes and find 98 proteins involved in regulating lysosome motility along microtubules and 48 involved in the formation of microtubule filled processes in S2 cells. We identify innate immunity genes, ion channels, and signaling proteins having a role in lysosome motility regulation and find an unexpected relationship between the dynein motor, Rab7a, and lysosome motility regulation.

  10. Seeking sunlight: rapid phototactic motility of filamentous mat-forming cyanobacteria optimize photosynthesis and enhance carbon burial in Lake Huron’s submerged sinkholes

    Bopaiah A Biddanda

    2015-09-01

    Full Text Available We studied the motility of filamentous mat-forming cyanobacteria consisting primarily of Oscillatoria-like cells growing under low-light, low-oxygen and high-sulfur conditions in Lake Huron’s submerged sinkholes using in situ observations, in vitro measurements and time-lapse microscopy. Gliding movement of the cyanobacterial trichomes (100-10,000 µm long filaments, composed of cells ~10 µm wide and ~3 µm tall revealed individual as well as group-coordinated motility. When placed in a petri dish and dispersed in ground water from the sinkhole, filaments re-aggregated into defined colonies within minutes, then dispersed again. Speed of individual filaments increased with temperature from ~50 µm minute-1 or ~15 body lengths minute-1 at 10°C to ~215 µm minute-1 or ~70 body lengths minute-1 at 35°C – rates that are rapid relative to non-flagellated/ciliated microbes. Filaments exhibited precise and coordinated positive phototaxis towards pinpoints of light and congregated under the light of foil cutouts. Such light-responsive clusters showed an increase in photosynthetic yield – suggesting phototactic motility aids in light acquisition as well as photosynthesis. Once light source was removed, filaments slowly spread out evenly and re-aggregated, demonstrating coordinated movement through inter-filament communication regardless of light. Pebbles and pieces of broken shells placed upon intact mat were quickly covered by vertically motile filaments within hours and became fully buried in the anoxic sediments over 3-4 diurnal cycles – likely facilitating the preservation of falling debris. Coordinated horizontal and vertical filament motility optimize mat cohesion and dynamics, photosynthetic efficiency and sedimentary carbon burial in modern-day sinkhole habitats that resemble the shallow seas in Earth’s early history. Analogous cyanobacterial motility may have played a key role in the oxygenation of the planet by optimizing

  11. Seeking sunlight: rapid phototactic motility of filamentous mat-forming cyanobacteria optimize photosynthesis and enhance carbon burial in Lake Huron's submerged sinkholes.

    Biddanda, Bopaiah A; McMillan, Adam C; Long, Stephen A; Snider, Michael J; Weinke, Anthony D

    2015-01-01

    We studied the motility of filamentous mat-forming cyanobacteria consisting primarily of Oscillatoria-like cells growing under low-light, low-oxygen, and high-sulfur conditions in Lake Huron's submerged sinkholes using in situ observations, in vitro measurements and time-lapse microscopy. Gliding movement of the cyanobacterial trichomes (100-10,000 μm long filaments, composed of cells ∼10 μm wide and ∼3 μm tall) revealed individual as well as group-coordinated motility. When placed in a petri dish and dispersed in ground water from the sinkhole, filaments re-aggregated into defined colonies within minutes, then dispersed again. Speed of individual filaments increased with temperature from ∼50 μm min(-1) or ∼15 body lengths min(-1) at 10°C to ∼215 μm min(-1) or ∼70 body lengths min(-1) at 35°C - rates that are rapid relative to non-flagellated/ciliated microbes. Filaments exhibited precise and coordinated positive phototaxis toward pinpoints of light and congregated under the light of foil cutouts. Such light-responsive clusters showed an increase in photosynthetic yield - suggesting phototactic motility aids in light acquisition as well as photosynthesis. Once light source was removed, filaments slowly spread out evenly and re-aggregated, demonstrating coordinated movement through inter-filament communication regardless of light. Pebbles and pieces of broken shells placed upon intact mat were quickly covered by vertically motile filaments within hours and became fully buried in the anoxic sediments over 3-4 diurnal cycles - likely facilitating the preservation of falling debris. Coordinated horizontal and vertical filament motility optimize mat cohesion and dynamics, photosynthetic efficiency and sedimentary carbon burial in modern-day sinkhole habitats that resemble the shallow seas in Earth's early history. Analogous cyanobacterial motility may have played a key role in the oxygenation of the planet by optimizing photosynthesis while favoring

  12. Helicobacter pylori HP1034 (ylxH) is required for motility

    van Amsterdam, Karin; van der Ende, Arie

    2004-01-01

    Background. Helicobacter pylori motility is essential for the colonization and persistence in the human gastric mucosa. So far, more than 50 genes have been described to play a role in flagellar biosynthesis. H. pylori YlxH (HP1034) is annotated as an ATP-binding protein. However, H. pylori YlxH

  13. Identification of an operon, Pil-Chp, that controls twitching motility and virulence in Xylella fastidiosa.

    Cursino, Luciana; Galvani, Cheryl D; Athinuwat, Dusit; Zaini, Paulo A; Li, Yaxin; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J; Mowery, Patricia

    2011-10-01

    Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases, including Pierce's disease of grapevines. Disease manifestation by X. fastidiosa is associated with the expression of several factors, including the type IV pili that are required for twitching motility. We provide evidence that an operon, named Pil-Chp, with genes homologous to those found in chemotaxis systems, regulates twitching motility. Transposon insertion into the pilL gene of the operon resulted in loss of twitching motility (pilL is homologous to cheA genes encoding kinases). The X. fastidiosa mutant maintained the type IV pili, indicating that the disrupted pilL or downstream operon genes are involved in pili function, and not biogenesis. The mutated X. fastidiosa produced less biofilm than wild-type cells, indicating that the operon contributes to biofilm formation. Finally, in planta the mutant produced delayed and less severe disease, indicating that the Pil-Chp operon contributes to the virulence of X. fastidiosa, presumably through its role in twitching motility.

  14. How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1

    Rasmussen, Thomas Bovbjerg; Manefield, M.; Andersen, Jens Bo

    2000-01-01

    Halogenated furanones produced by the benthic marine macroalga Delisea pulchra inhibit swarming motility of Serratia liquefaciens MG1. This study demonstrates that exogenously added furanones control transcription of the quorum sensing regulated gene swrA in competition with the cognate signal...

  15. Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1

    Givskov, M; Ostling, J; Eberl, L

    1998-01-01

    Swarming motility of Serratia liquefaciens MG1 requires the expression of two genetic loci, flhDC and swrI. Here we demonstrate that the products of the flhDC operon (the flagellar master regulator) and the swrI gene (the extracellular signal molecule N-butanoyl-L-homoserine lactone) are global...

  16. Lichen Secondary Metabolite, Physciosporin, Inhibits Lung Cancer Cell Motility

    Yang, Yi; Park, So-Yeon; Nguyen, Thanh Thi; Yu, Young Hyun; Nguyen, Tru Van; Sun, Eun Gene; Udeni, Jayalal; Jeong, Min-Hye; Pereira, Iris; Moon, Cheol; Ha, Hyung-Ho; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2015-01-01

    Lichens produce various unique chemicals that can be used for pharmaceutical purposes. To screen for novel lichen secondary metabolites showing inhibitory activity against lung cancer cell motility, we tested acetone extracts of 13 lichen samples collected in Chile. Physciosporin, isolated from Pseudocyphellaria coriacea (Hook f. & Taylor) D.J. Galloway & P. James, was identified as an effective compound and showed significant inhibitory activity in migration and invasion assays against human lung cancer cells. Physciosporin treatment reduced both protein and mRNA levels of N-cadherin with concomitant decreases in the levels of epithelial-mesenchymal transition markers such as snail and twist. Physciosporin also suppressed KITENIN (KAI1 C-terminal interacting tetraspanin)-mediated AP-1 activity in both the absence and presence of epidermal growth factor stimulation. Quantitative real-time PCR analysis showed that the expression of the metastasis suppressor gene, KAI1, was increased while that of the metastasis enhancer gene, KITENIN, was dramatically decreased by physciosporin. Particularly, the activity of 3’-untranslated region of KITENIN was decreased by physciosporin. Moreover, Cdc42 and Rac1 activities were decreased by physciosporin. These results demonstrated that the lichen secondary metabolite, physciosporin, inhibits lung cancer cell motility through novel mechanisms of action. PMID:26371759

  17. Use of glide-ins in CMS for production and analysis

    Bradley, D; Gutsche, O; Holzman, B; Sfiligoi, I; Vaandering, E; Hahn, K; Padhi, S; Pi, H; Wuerthwein, F; Spiga, D

    2010-01-01

    With the evolution of various grid federations, the Condor glide-ins represent a key feature in providing a homogeneous pool of resources using late-binding technology. The CMS collaboration uses the glide-in based Workload Management System, glideinWMS, for production (ProdAgent) and distributed analysis (CRAB) of the data. The Condor glide-in daemons traverse to the worker nodes, submitted via Condor-G. Once activated, they preserve the Master-Worker relationships, with the worker first validating the execution environment on the worker node before pulling the jobs sequentially until the expiry of their lifetimes. The combination of late-binding and validation significantly reduces the overall failure rate visible to CMS physicists. We discuss the extensive use of the glideinWMS since the computing challenge, CCRC-08, in order to prepare for the forthcoming LHC data-taking period. The key features essential to the success of large-scale production and analysis on CMS resources across major grid federations, including EGEE, OSG and NorduGrid are outlined. Use of glide-ins via the CRAB server mechanism and ProdAgent, as well as first hand experience of using the next generation CREAM computing element within the CMS framework is discussed.

  18. Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation

    Kusano, Yukihiro; Norrman, Kion; Drews, Joanna Maria

    2011-01-01

    . The efficiency of such a plasma treatment at atmospheric pressure can be further improved by ultrasonic irradiation onto the surface during the treatment. In the present work glass fiber reinforced polyester (GFRP) plates are treated using an atmospheric pressure gliding arc with and without ultrasonic...

  19. Gliding arc discharge — Application for adhesion improvement of fibre reinforced polyester composites

    Kusano, Yukihiro; Teodoru, Steluta; Leipold, Frank

    2008-01-01

    production, and surface treatment. However, the application for adhesion improvement of structural materials has been rarely reported. In the present work, glass fibre reinforced polyester plates were treated using atmospheric pressure gliding arcs with high speed air flow for adhesion improvement...

  20. The 3D CFD study of gliding swimmer on passive hydrodynamics drag

    Vishveshwar Rajendra Mantha

    2014-04-01

    Full Text Available The aim of this study was to analyze the effect of depth on the hydrodynamic drag coefficient during the passive underwater gliding after the starts and turns. The swimmer hydrodynamics performance was studied by the application of computational fluid dynamics (CFD method. The steady-state CFD simulations were performed by the application of k - omega turbulent model and volume of fluid method to obtain two-phase flow around a three-dimensional swimmer model when gliding near water surface and at different depths from the water surface. The simulations were conducted for four different swimming pool size, each with different depth, i.e., 1.0, 1.5, 2.0 and 3.0 m for three different velocities, i.e., 1.5, 2.0 and 2.5 m/s, with swimmer gliding at different depths with intervals of 0.25 m, each starting from the water surface, respectively. The numerical results of pressure drag and total coefficients at individual average race velocities were obtained. The results showed that the drag coefficient decreased as depth increased, with a trend toward reduced fluctuation after 0.5m depth from the water surface. The selection of the appropriate depth during the gliding phase should be a main concern of swimmers and coaches.

  1. Is Snow Gliding a Major Soil Erosion Agent in Steep Alpine Areas?

    Meusburger, K.; Walter, A.; Alewell, C.; Leitinger, G.; Mabit, L.; Mueller, M.H.

    2015-01-01

    Snow cover is a key hydrological characteristic of mountain areas. Nevertheless, a majority of studies focused on quantifying rates of soil erosion and sediment transport in steep mountain areas has largely neglected the role of snow cover on soil erosion rates (Stanchi et al., 2014). Soil erosion studies have focused almost exclusively on the snow-free periods even though it is well known that wet avalanches can yield enormous erosive forces (Freppaz et al., 2010; Korup and Rixen, 2014). This raises the question whether annual snow cover and particularly the slow movement of snow packages over the soil surface, termed ‘‘snow gliding’’, contribute significantly to the total soil loss in these areas. Three different approaches to estimate soil erosion rates were used to address this question. These include (1) the anthropogenic soil tracer 137 Cs, (2) the Revised Universal Soil Loss Equation (RUSLE), and (3) direct sediment yield measurements of snow glide deposits. The fallout radionuclide 137 Cs integrates total soil loss due to all erosion agents involved, the RUSLE model is suitable to estimate soil loss by water erosion and the sediment yield measurements yield represents a direct estimate of soil removal by snow gliding. Moreover, cumulative snow glide distance was measured for 14 sites and modelled for the surrounding area with the Spatial Snow Glide Model (Leitinger et al., 2008)

  2. 14 CFR 121.360 - Ground proximity warning-glide slope deviation alerting system.

    2010-01-01

    ... deviation alerting system. 121.360 Section 121.360 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Equipment Requirements § 121.360 Ground proximity warning-glide slope deviation alerting system. (a) No... system that meets the performance and environmental standards of TSO-C92 (available from the FAA, 800...

  3. Gravity effects on a gliding arc in four noble gases: from normal to hypergravity

    Potocnakova, L.; Sperka, J.; Zikan, P.; van Loon, J.J.W.A.; Beckers, J.; Kudrle, V.

    2015-01-01

    A gliding arc in four noble gases (He, Ne, Ar, Kr) has been studied under previously unexplored conditions of varying artificial gravity, from normal 1 g gravity up to 18 g hypergravity. Significant differences, mainly the visual thickness of the plasma channel, its maximum elongation and general

  4. Translational, rotational and vibrational temperatures of a gliding arc discharge at atmospheric pressure air

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2014-01-01

    and vibrational temperatures of a gliding arc generated at atmospheric pressure air are investigated. Translational temperatures (about 1100 K) were measured by laser-induced Rayleigh scattering, and two-dimensional temperature imaging was performed. Rotational and vibrational temperatures (about 3600 K and 6700...

  5. Brittle-ductile gliding shear zone and its dynamic metallization in uranium deposit No. 3110

    Fang Shiyi.

    1990-01-01

    A preliminary study on the macroscopic geological structure, microstructures of plastic deformation rotary strain, structural geochemistry and zoning regularity of a brittle-ductile gliding shear zone in uranium deposit No. 3110 is made. Structural dynamic metallization of uranium caused by the strong shearing stress is discussed. It is pointed out that great attention must be paid to in further exploration

  6. An in vitro comparison of root canal transportation by reciproc file with and without glide path.

    Nazarimoghadam, Kiumars; Daryaeian, Mohammad; Ramazani, Nahid

    2014-09-01

    The aim of ideal canal preparation is to prevent iatrogenic aberrations such as transportation. The aim of this study was to evaluate the root canal transportation by Reciproc file with and without glide path. Thirty acrylic-resin blocks with a curvature of 60° and size#10 (2% taper) were assigned into two groups (n= 15). In group 1, the glide path was performed using stainless steel k-files size#10 and 15 at working length In group 2, canals were prepared with Reciproc file system at working length. By using digital imaging software (AutoCAD 2008), the pre-instrumentation and post-instrumentation digital images were superimposed over, taking the landmarks as reference points. Then the radius of the internal and external curve of the specimens was calculated at three α, β and γ points (1mm to apex as α, 3mm to apex as β, and 5mm to apex as γ). The data were statically analyzed using the independent T-test and Mann-Whitney U test by SPSS version 16. Glide path was found significant for only external curve in the apical third of the canal; that is, 5mm to apex (P=0.005). But in the other third, canal modification was not significant (P> 0.008). Canal transportation in the apical third of the canal seems to be significantly reduced when glide path is performed using reciprocating files.

  7. The Hydrodynamic Study of the Swimming Gliding: a Two-Dimensional Computational Fluid Dynamics (CFD) Analysis.

    Marinho, Daniel A; Barbosa, Tiago M; Rouboa, Abel I; Silva, António J

    2011-09-01

    Nowadays the underwater gliding after the starts and the turns plays a major role in the overall swimming performance. Hence, minimizing hydrodynamic drag during the underwater phases should be a main aim during swimming. Indeed, there are several postures that swimmers can assume during the underwater gliding, although experimental results were not conclusive concerning the best body position to accomplish this aim. Therefore, the purpose of this study was to analyse the effect in hydrodynamic drag forces of using different body positions during gliding through computational fluid dynamics (CFD) methodology. For this purpose, two-dimensional models of the human body in steady flow conditions were studied. Two-dimensional virtual models had been created: (i) a prone position with the arms extended at the front of the body; (ii) a prone position with the arms placed alongside the trunk; (iii) a lateral position with the arms extended at the front and; (iv) a dorsal position with the arms extended at the front. The drag forces were computed between speeds of 1.6 m/s and 2 m/s in a two-dimensional Fluent(®) analysis. The positions with the arms extended at the front presented lower drag values than the position with the arms aside the trunk. The lateral position was the one in which the drag was lower and seems to be the one that should be adopted during the gliding after starts and turns.

  8. Hydrogen peroxide stimulates cell motile activity through LPA receptor-3 in liver epithelial WB-F344 cells

    Shibata, Ayano; Tanabe, Eriko; Inoue, Serina; Kitayoshi, Misaho; Okimoto, Souta; Hirane, Miku; Araki, Mutsumi [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2013-04-12

    Highlights: •Hydrogen peroxide stimulates cell motility of WB-F344 cells. •LPA{sub 3} is induced by hydrogen peroxide in WB-F344 cells. •Cell motility by hydrogen peroxide is inhibited in LPA{sub 3} knockdown cells. •LPA signaling is involved in cell migration by hydrogen peroxide. -- Abstract: Hydrogen peroxide which is one of reactive oxygen species (ROS) mediates a variety of biological responses, including cell proliferation and migration. In the present study, we investigated whether lysophosphatidic acid (LPA) signaling is involved in cell motile activity stimulated by hydrogen peroxide. The rat liver epithelial WB-F344 cells were treated with hydrogen peroxide at 0.1 or 1 μM for 48 h. In cell motility assays, hydrogen peroxide treated cells showed significantly high cell motile activity, compared with untreated cells. To measure the expression levels of LPA receptor genes, quantitative real time RT-PCR analysis was performed. The expressions of LPA receptor-3 (Lpar3) in hydrogen peroxide treated cells were significantly higher than those in control cells, but not Lpar1 and Lpar2 genes. Next, to assess the effect of LPA{sub 3} on cell motile activity, the Lpar3 knockdown cells from WB-F344 cells were also treated with hydrogen peroxide. The cell motile activity of the knockdown cells was not stimulated by hydrogen peroxide. Moreover, in liver cancer cells, hydrogen peroxide significantly activated cell motility of Lpar3-expressing cells, but not Lpar3-unexpressing cells. These results suggest that LPA signaling via LPA{sub 3} may be mainly involved in cell motile activity of WB-F344 cells stimulated by hydrogen peroxide.

  9. Comparison of patellar distraction with patellar glides in female patients with patellofemoral pain syndrom

    Syed, S.; Chaudhary, M.A.; Noor, R.; Bashir, M.S.; Manzoor, B.

    2017-01-01

    To analyse effectiveness of patellar glides and patellar distraction in the patients with patellofemoral pain syndrome (PFPS). Methodology: This longitudinal interventional comparative study was conducted at Physiotherapy Department, Mayo Hospital Lahore, Pakistan from September 2015 to March 2016. A total of 70 patients were divided into 2 groups randomly; group A received hot pack, quadriceps strengthening exercises and patellar distraction whereas group B received hot pack, quadriceps strengthening exercises and patellar glides. Age of the female patients was 18-40 years. Visual Analogue Scale (VAS) and Knee Injury and osteoarthritis outcome score (KOOS) questionnaire were used to compare the effectiveness of both treatments. The data were analysed using SPSS v. 21.0. Results: There was reduction in pain at VAS and KOOS showed improvement in function as well as the range of motion also increased in both groups. Both treatment techniques were effective in reducing pain in PFPS (P <0.005). Pre-treatment KOOS score in patellar glides group was 34.77+10.84 and post-treatment KOOS score was 62.155+15.75 and for patellar distraction group pre-treatment KOOS score was 35.42+10.07 that increased to 55.77+14.66 after treatment which showed that patellar glides had better effect on PFPS. Conclusion: Both treatments were effective in managing PFPS in terms of decreasing pain and increasing ROM as there was no significant difference between two techniques, however patellar glides were superior as compared to patellar distraction in decreasing pain and increasing ROM. (author)

  10. Ancient phylogenetic divergence of the enigmatic African rodent Zenkerella and the origin of anomalurid gliding

    Steven Heritage

    2016-08-01

    Full Text Available The “scaly-tailed squirrels” of the rodent family Anomaluridae have a long evolutionary history in Africa, and are now represented by two gliding genera (Anomalurus and Idiurus and a rare and obscure genus (Zenkerella that has never been observed alive by mammalogists. Zenkerella shows no anatomical adaptations for gliding, but has traditionally been grouped with the glider Idiurus on the basis of craniodental similarities, implying that either the Zenkerella lineage lost its gliding adaptations, or that Anomalurus and Idiurus evolved theirs independently. Here we present the first nuclear and mitochondrial DNA sequences of Zenkerella, based on recently recovered whole-body specimens from Bioko Island (Equatorial Guinea, which show unambiguously that Zenkerella is the sister taxon of Anomalurus and Idiurus. These data indicate that gliding likely evolved only once within Anomaluridae, and that there were no subsequent evolutionary reversals. We combine this new molecular evidence with morphological data from living and extinct anomaluromorph rodents and estimate that the lineage leading to Zenkerella has been evolving independently in Africa since the early Eocene, approximately 49 million years ago. Recently discovered fossils further attest to the antiquity of the lineage leading to Zenkerella, which can now be recognized as a classic example of a “living fossil,” about which we know remarkably little. The osteological markers of gliding are estimated to have evolved along the stem lineage of the Anomalurus–Idiurus clade by the early Oligocene, potentially indicating that this adaptation evolved in response to climatic perturbations at the Eocene–Oligocene boundary (∼34 million years ago.

  11. Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling.

    Wang, Weizong; Patil, Bhaskar; Heijkers, Stjin; Hessel, Volker; Bogaerts, Annemie

    2017-05-22

    The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO 2 yields and the corresponding energy efficiency for NO x formation for different N 2 /O 2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NO x . The results indicate that vibrational excitation of N 2 in the gliding arc contributes significantly to activating the N 2 molecules, and leads to an energy efficient way of NO x production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NO x formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale Haber-Bosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which low-temperature plasma technology might play an important role. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Influence of GlideScope assisted endotracheal intubation on intraocular pressure in ophthalmic patients

    Nauman Ahmad

    2015-01-01

    Full Text Available Background: Traditional Macintoch laryngoscopy is known to cause a rise in intraocular pressure (IOP, tachycardia and hypertension. These changes are not desirable in patients with glaucoma and open globe injury. GlideScope is a video laryngoscope that functions independent of the line of sight, reduces upward lifting forces for glottic exposure and requires less cervical neck movement for intubation, making it less stimulating than Macintosh laryngoscopy. Aim: The aim was to assess the variations in IOP and hemodynamic changes after GlideScope assisted intubation. Materials and Methods: After approval of the local Institutional Research and Ethical Board and informed patient consent, 50 adult American Society of Anesthesiologist I and II patients with normal IOP were enrolled in a prospective, randomized study for ophthalmic surgery requiring tracheal intubation. In all patients, trachea was intubated using either GlideScope or Macintoch laryngoscope. IOP of nonoperated eye, heart rate and blood pressure were measured as baseline, 1 min after induction, 1 min and 5 min after tracheal intubation. Results: IOP was not significantly different between groups before and after anesthetic induction and 5 min after tracheal intubation (P = 0.217, 0.726, and 0.110 respectively. The only significant difference in IOP was at 1 min after intubation (P = 0.041. No significant difference noted between groups in mean arterial pressure (P = 0.899, 0.62, 0.47, 0.82 respectively and heart rate (P = 0.21, 0.72, 0.07, 0.29, respectively at all measurements. Conclusion: GlideScope assisted tracheal intubation shown lesser rise in IOP at 1 min after intubation in comparison to Macintoch laryngoscope, suggesting that GlideScope may be preferable to Macintosh laryngoscope.

  13. Mutation of Growth Arrest Specific 8 Reveals a Role in Motile Cilia Function and Human Disease.

    Lewis, Wesley R; Malarkey, Erik B; Tritschler, Douglas; Bower, Raqual; Pasek, Raymond C; Porath, Jonathan D; Birket, Susan E; Saunier, Sophie; Antignac, Corinne; Knowles, Michael R; Leigh, Margaret W; Zariwala, Maimoona A; Challa, Anil K; Kesterson, Robert A; Rowe, Steven M; Drummond, Iain A; Parant, John M; Hildebrandt, Friedhelm; Porter, Mary E; Yoder, Bradley K; Berbari, Nicolas F

    2016-07-01

    Ciliopathies are genetic disorders arising from dysfunction of microtubule-based cellular appendages called cilia. Different cilia types possess distinct stereotypic microtubule doublet arrangements with non-motile or 'primary' cilia having a 9+0 and motile cilia have a 9+2 array of microtubule doublets. Primary cilia are critical sensory and signaling centers needed for normal mammalian development. Defects in their structure/function result in a spectrum of clinical and developmental pathologies including abnormal neural tube and limb patterning. Altered patterning phenotypes in the limb and neural tube are due to perturbations in the hedgehog (Hh) signaling pathway. Motile cilia are important in fluid movement and defects in motility result in chronic respiratory infections, altered left-right asymmetry, and infertility. These features are the hallmarks of Primary Ciliary Dyskinesia (PCD, OMIM 244400). While mutations in several genes are associated with PCD in patients and animal models, the genetic lesion in many cases is unknown. We assessed the in vivo functions of Growth Arrest Specific 8 (GAS8). GAS8 shares strong sequence similarity with the Chlamydomonas Nexin-Dynein Regulatory Complex (NDRC) protein 4 (DRC4) where it is needed for proper flagella motility. In mammalian cells, the GAS8 protein localizes not only to the microtubule axoneme of motile cilia, but also to the base of non-motile cilia. Gas8 was recently implicated in the Hh signaling pathway as a regulator of Smoothened trafficking into the cilium. Here, we generate the first mouse with a Gas8 mutation and show that it causes severe PCD phenotypes; however, there were no overt Hh pathway phenotypes. In addition, we identified two human patients with missense variants in Gas8. Rescue experiments in Chlamydomonas revealed a subtle defect in swim velocity compared to controls. Further experiments using CRISPR/Cas9 homology driven repair (HDR) to generate one of these human missense variants in

  14. Mutation of Growth Arrest Specific 8 Reveals a Role in Motile Cilia Function and Human Disease.

    Wesley R Lewis

    2016-07-01

    Full Text Available Ciliopathies are genetic disorders arising from dysfunction of microtubule-based cellular appendages called cilia. Different cilia types possess distinct stereotypic microtubule doublet arrangements with non-motile or 'primary' cilia having a 9+0 and motile cilia have a 9+2 array of microtubule doublets. Primary cilia are critical sensory and signaling centers needed for normal mammalian development. Defects in their structure/function result in a spectrum of clinical and developmental pathologies including abnormal neural tube and limb patterning. Altered patterning phenotypes in the limb and neural tube are due to perturbations in the hedgehog (Hh signaling pathway. Motile cilia are important in fluid movement and defects in motility result in chronic respiratory infections, altered left-right asymmetry, and infertility. These features are the hallmarks of Primary Ciliary Dyskinesia (PCD, OMIM 244400. While mutations in several genes are associated with PCD in patients and animal models, the genetic lesion in many cases is unknown. We assessed the in vivo functions of Growth Arrest Specific 8 (GAS8. GAS8 shares strong sequence similarity with the Chlamydomonas Nexin-Dynein Regulatory Complex (NDRC protein 4 (DRC4 where it is needed for proper flagella motility. In mammalian cells, the GAS8 protein localizes not only to the microtubule axoneme of motile cilia, but also to the base of non-motile cilia. Gas8 was recently implicated in the Hh signaling pathway as a regulator of Smoothened trafficking into the cilium. Here, we generate the first mouse with a Gas8 mutation and show that it causes severe PCD phenotypes; however, there were no overt Hh pathway phenotypes. In addition, we identified two human patients with missense variants in Gas8. Rescue experiments in Chlamydomonas revealed a subtle defect in swim velocity compared to controls. Further experiments using CRISPR/Cas9 homology driven repair (HDR to generate one of these human missense

  15. Gene disruption of Plasmodium falciparum p52 results in attenuation of malaria liver stage development in cultured primary human hepatocytes.

    Ben C L van Schaijk

    Full Text Available Difficulties with inducing sterile and long lasting protective immunity against malaria with subunit vaccines has renewed interest in vaccinations with attenuated Plasmodium parasites. Immunizations with sporozoites that are attenuated by radiation (RAS can induce strong protective immunity both in humans and rodent models of malaria. Recently, in rodent parasites it has been shown that through the deletion of a single gene, sporozoites can also become attenuated in liver stage development and, importantly, immunization with these sporozoites results in immune responses identical to RAS. The promise of vaccination using these genetically attenuated sporozoites (GAS depends on translating the results in rodent malaria models to human malaria. In this study, we perform the first essential step in this transition by disrupting, p52, in P. falciparum an ortholog of the rodent parasite gene, p36p, which we had previously shown can confer long lasting protective immunity in mice. These P. falciparum P52 deficient sporozoites demonstrate gliding motility, cell traversal and an invasion rate into primary human hepatocytes in vitro that is comparable to wild type sporozoites. However, inside the host hepatocyte development is arrested very soon after invasion. This study reveals, for the first time, that disrupting the equivalent gene in both P. falciparum and rodent malaria Plasmodium species generates parasites that become similarly arrested during liver stage development and these results pave the way for further development of GAS for human use.

  16. Bacterial cell motility of Burkholderia gut symbiont is required to colonize the insect gut.

    Lee, Jun Beom; Byeon, Jin Hee; Jang, Ho Am; Kim, Jiyeun Kate; Yoo, Jin Wook; Kikuchi, Yoshitomo; Lee, Bok Luel

    2015-09-14

    We generated a Burkholderia mutant, which is deficient of an N-acetylmuramyl-l-alanine amidase, AmiC, involved in peptidoglycan degradation. When non-motile ΔamiC mutant Burkholderia cells harboring chain form were orally administered to Riptortus insects, ΔamiC mutant cells were unable to establish symbiotic association. But, ΔamiC mutant complemented with amiC gene restored in vivo symbiotic association. ΔamiC mutant cultured in minimal medium restored their motility with single-celled morphology. When ΔamiC mutant cells harboring single-celled morphology were administered to the host insect, this mutant established normal symbiotic association, suggesting that bacterial motility is essential for the successful symbiosis between host insect and Burkholderia symbiont. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester

    Kusano, Yukihiro; Sørensen, Bent F.; Løgstrup Andersen, Tom

    2013-01-01

    A non-equilibrium quenched plasma is prepared using a gliding-arc discharge generated between diverging electrodes and extended by a gas flow. It can be operated at atmospheric pressure and applied to plasma surface treatment to improve adhesion properties of material surfaces. In this work, glass......-fibre-reinforced polyester plates were treated using an atmospheric pressure gliding-arc discharge with air flow to improve adhesion with a vinylester adhesive. The electrodes were water-cooled so as to operate the gliding arc continually. The treatment improved wettability and increased the density of oxygen...

  18. Motile hepatocellular carcinoma cells preferentially secret sugar metabolism regulatory proteins via exosomes.

    Zhang, Jing; Lu, Shaohua; Zhou, Ye; Meng, Kun; Chen, Zhipeng; Cui, Yizhi; Shi, Yunfeng; Wang, Tong; He, Qing-Yu

    2017-07-01

    Exosomes are deliverers of critically functional proteins, capable of transforming target cells in numerous cancers, including hepatocellular carcinoma (HCC). We hypothesize that the motility of HCC cells can be featured by comparative proteome of exosomes. Hence, we performed the super-SILAC-based MS analysis on the exosomes secreted by three human HCC cell lines, including the non-motile Hep3B cell, and the motile 97H and LM3 cells. More than 1400 exosomal proteins were confidently quantified in each MS analysis with highly biological reproducibility. We justified that 469 and 443 exosomal proteins represented differentially expressed proteins (DEPs) in the 97H/Hep3B and LM3/Hep3B comparisons, respectively. These DEPs focused on sugar metabolism-centric canonical pathways per ingenuity pathway analysis, which was consistent with the gene ontology analysis on biological process enrichment. These pathways included glycolysis I, gluconeogenesis I and pentose phosphate pathways; and the DEPs enriched in these pathways could form a tightly connected network. By analyzing the relative abundance of proteins and translating mRNAs, we found significantly positive correlation between exosomes and cells. The involved exosomal proteins were again focusing on sugar metabolism. In conclusion, motile HCC cells tend to preferentially export more sugar metabolism-associated proteins via exosomes that differentiate them from non-motile HCC cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Transverse loop colostomy and colonic motility.

    Pucciani, F; Ringressi, M N; Maltinti, G; Bechi, P

    2014-11-01

    The motility of the defunctionalized colon, distal to transverse loop colostomy, has never been studied "in vivo." The aim of our study was to evaluate the influence of transverse loop colostomy on colonic motility. Thirteen patients were examined before stoma closure by means of clinical evaluation and colonic manometry; we studied both the right and distal colon in both fasting and fed patients in order to detect motor activity. Quantitative and qualitative manometric analyses showed that the diverted colon had motor activity even if no regular colonic motor pattern was observed. The spreading of aboral propagated contractions (PCs) was sometimes recorded from the right colon to the distal colon. The response of the proximal and distal colon to a standard meal, when compared to fasting values, increased more than 40 and 35 %, respectively. Stool and gas ejections from the colostomy were never related to a particular type of colonic motility: Motor quiescence such as PCs was chaotically related to stool escape. In conclusion, motility of the defunctionalized colon is preserved in patients with transverse loop colostomy.

  20. Flagellar Motility of Trypanosoma cruzi Epimastigotes

    G. Ballesteros-Rodea

    2012-01-01

    Full Text Available The hemoflagellate Trypanosoma cruzi is the causative agent of American trypanosomiasis. Despite the importance of motility in the parasite life cycle, little is known about T. cruzi motility, and there is no quantitative description of its flagellar beating. Using video microscopy and quantitative vectorial analysis of epimastigote trajectories, we find a forward parasite motility defined by tip-to-base symmetrical flagellar beats. This motion is occasionally interrupted by base-to-tip highly asymmetric beats, which represent the ciliary beat of trypanosomatid flagella. The switch between flagellar and ciliary beating facilitates the parasite's reorientation, which produces a large variability of movement and trajectories that results in different distance ranges traveled by the cells. An analysis of the distance, speed, and rotational angle indicates that epimastigote movement is not completely random, and the phenomenon is highly dependent on the parasite behavior and is characterized by directed and tumbling parasite motion as well as their combination, resulting in the alternation of rectilinear and intricate motility paths.

  1. Dissecting the molecular assembly of the Toxoplasma gondii MyoA motility complex.

    Powell, Cameron J; Jenkins, Meredith L; Parker, Michelle L; Ramaswamy, Raghavendran; Kelsen, Anne; Warshaw, David M; Ward, Gary E; Burke, John E; Boulanger, Martin J

    2017-11-24

    Apicomplexan parasites such as Toxoplasma gondii rely on a unique form of locomotion known as gliding motility. Generating the mechanical forces to support motility are divergent class XIV myosins (MyoA) coordinated by accessory proteins known as light chains. Although the importance of the MyoA-light chain complex is well-established, the detailed mechanisms governing its assembly and regulation are relatively unknown. To establish a molecular blueprint of this dynamic complex, we first mapped the adjacent binding sites of light chains MLC1 and ELC1 on the MyoA neck (residues 775-818) using a combination of hydrogen-deuterium exchange mass spectrometry and isothermal titration calorimetry. We then determined the 1.85 Å resolution crystal structure of MLC1 in complex with its cognate MyoA peptide. Structural analysis revealed a bilobed architecture with MLC1 clamping tightly around the helical MyoA peptide, consistent with the stable 10 nm K d measured by isothermal titration calorimetry. We next showed that coordination of calcium by an EF-hand in ELC1 and prebinding of MLC1 to the MyoA neck enhanced the affinity of ELC1 for the MyoA neck 7- and 8-fold, respectively. When combined, these factors enhanced ELC1 binding 49-fold (to a K d of 12 nm). Using the full-length MyoA motor (residues 1-831), we then showed that, in addition to coordinating the neck region, ELC1 appears to engage the MyoA converter subdomain, which couples the motor domain to the neck. These data support an assembly model where staged binding events cooperate to yield high-affinity complexes that are able to maximize force transduction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Esophageal motility disorders; Motilitaetsstoerungen des Oesophagus

    Hannig, C.; Rummeny, E. [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Institut fuer Roentgendiagnostik, Muenchen (Germany); Wuttge-Hannig, A. [Gemeinschaftspraxis fuer Radiologie, Nuklearmedizin und Strahlentherapie, Muenchen (Germany)

    2007-02-15

    For the better understanding of esophageal motility, the muscle texture and the distribution of skeletal and smooth muscle fibers in the esophagus are of crucial importance. Esophageal physiology will be shortly mentioned as far as necessary for a comprehensive understanding of peristaltic disturbances. Besides the pure depiction of morphologic criteria, a complete esophageal study has to include an analysis of the motility. New diagnostic tools with reduced radiation for dynamic imaging (digital fluoroscopy, videofluoroscopy) at 4-30 frames/s are available. Radiomanometry is a combination of a functional pressure measurement and a simultaneous dynamic morphologic analysis. Esophageal motility disorders are subdivided by radiologic and manometric criteria into primary, secondary, and nonclassifiable forms. Primary motility disorders of the esophagus are achalasia, diffuse esophageal spasm, nutcracker esophagus, and the hypertonic lower esophageal sphincter. The secondary motility disorders include pseudoachalasia, reflux-associated motility disorders, functionally caused impactions, Boerhaave's syndrome, Chagas' disease, scleroderma, and presbyesophagus. The nonclassificable motility disorders (NEMD) are a very heterogeneous collective. (orig.) [German] Zum Verstaendnis der Motilitaet des Oesophagus sind muskulaere Architektur und Verteilung der quergestreiften und glatten Muskelfasern von Bedeutung. Die Physiologie des Oesophagus wird in soweit kurz dargestellt, als sie fuer das Verstaendnis von peristaltischen Stoerungen notwendig ist. Neben der Erfassung rein morphologischer Kriterien ist bei der Untersuchung der Speiseroehre eine diagnostische Bewertung der Motilitaet erforderlich. Es stehen uns heute strahlungsarme dynamische Aufzeichnungsverfahren (digitale dynamische Aufzeichnung, Videofluoroskopie) mit Bildsequenzen von 4-30 Bildern/s zur Verfuegung. Die Kombination einer funktionellen Methode zur Darstellung der Morphologie und der

  3. Chicago Classification of Esophageal Motility Disorders: Lessons Learned

    Rohof, W. O. A.; Bredenoord, A. J.

    2017-01-01

    High-resolution manometry (HRM) is increasingly performed worldwide, to study esophageal motility. The Chicago classification is subsequently applied to interpret the manometric findings and facilitate a diagnosis of esophageal motility disorders. This review will discuss new insights regarding the

  4. Regional gastrointestinal contractility parameters using the wireless motility capsule

    Farmer, A D; Wegeberg, A-M L; Brock, B

    2018-01-01

    BACKGROUND: The wireless motility capsule concurrently measures temperature, pH and pressure as it traverses the gastrointestinal tract. AIMS: To describe normative values for motility/contractility parameters across age, gender and testing centres. METHODS: Healthy participants underwent...

  5. Engineering bacterial motility towards hydrogen-peroxide.

    Virgile, Chelsea; Hauk, Pricila; Wu, Hsuan-Chen; Shang, Wu; Tsao, Chen-Yu; Payne, Gregory F; Bentley, William E

    2018-01-01

    Synthetic biologists construct innovative genetic/biological systems to treat environmental, energy, and health problems. Many systems employ rewired cells for non-native product synthesis, while a few have employed the rewired cells as 'smart' devices with programmable function. Building on the latter, we developed a genetic construct to control and direct bacterial motility towards hydrogen peroxide, one of the body's immune response signaling molecules. A motivation for this work is the creation of cells that can target and autonomously treat disease, the latter signaled by hydrogen peroxide release. Bacteria naturally move towards a variety of molecular cues (e.g., nutrients) in the process of chemotaxis. In this work, we engineered bacteria to recognize and move towards hydrogen peroxide, a non-native chemoattractant and potential toxin. Our system exploits oxyRS, the native oxidative stress regulon of E. coli. We first demonstrated H2O2-mediated upregulation motility regulator, CheZ. Using transwell assays, we showed a two-fold increase in net motility towards H2O2. Then, using a 2D cell tracking system, we quantified bacterial motility descriptors including velocity, % running (of tumble/run motions), and a dynamic net directionality towards the molecular cue. In CheZ mutants, we found that increased H2O2 concentration (0-200 μM) and induction time resulted in increased running speeds, ultimately reaching the native E. coli wild-type speed of ~22 μm/s with a ~45-65% ratio of running to tumbling. Finally, using a microfluidic device with stable H2O2 gradients, we characterized responses and the potential for "programmed" directionality towards H2O2 in quiescent fluids. Overall, the synthetic biology framework and tracking analysis in this work will provide a framework for investigating controlled motility of E. coli and other 'smart' probiotics for signal-directed treatment.

  6. Colony Expansion of Socially Motile Myxococcus xanthus Cells Is Driven by Growth, Motility, and Exopolysaccharide Production.

    Pintu Patra

    2016-06-01

    Full Text Available Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher's equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase-a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics.

  7. Colony Expansion of Socially Motile Myxococcus xanthus Cells Is Driven by Growth, Motility, and Exopolysaccharide Production.

    Patra, Pintu; Kissoon, Kimberley; Cornejo, Isabel; Kaplan, Heidi B; Igoshin, Oleg A

    2016-06-01

    Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher's equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase-a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics.

  8. Light Regulation of Swarming Motility in Pseudomonas syringae Integrates Signaling Pathways Mediated by a Bacteriophytochrome and a LOV Protein

    Wu, Liang; McGrane, Regina S.; Beattie, Gwyn A.

    2013-01-01

    ABSTRACT The biological and regulatory roles of photosensory proteins are poorly understood for nonphotosynthetic bacteria. The foliar bacterial pathogen Pseudomonas syringae has three photosensory protein-encoding genes that are predicted to encode the blue-light-sensing LOV (light, oxygen, or voltage) histidine kinase (LOV-HK) and two red/far-red-light-sensing bacteriophytochromes, BphP1 and BphP2. We provide evidence that LOV-HK and BphP1 form an integrated network that regulates swarming motility in response to multiple light wavelengths. The swarming motility of P. syringae B728a deletion mutants indicated that LOV-HK positively regulates swarming motility in response to blue light and BphP1 negatively regulates swarming motility in response to red and far-red light. BphP2 does not detectably regulate swarming motility. The histidine kinase activity of each LOV-HK and BphP1 is required for this regulation based on the loss of complementation upon mutation of residues key to their kinase activity. Surprisingly, mutants lacking both lov and bphP1 were similar in motility to a bphP1 single mutant in blue light, indicating that the loss of bphP1 is epistatic to the loss of lov and also that BphP1 unexpectedly responds to blue light. Moreover, whereas expression of bphP1 did not alter motility under blue light in a bphP1 mutant, it reduced motility in a mutant lacking lov and bphP1, demonstrating that LOV-HK positively regulates motility by suppressing negative regulation by BphP1. These results are the first to show cross talk between the LOV protein and phytochrome signaling pathways in bacteria, and the similarity of this regulatory network to that of photoreceptors in plants suggests a possible common ancestry. PMID:23760465

  9. Complex regulatory network encompassing the Csr, c-di-GMP and motility systems of Salmonella Typhimurium.

    Jonas, Kristina; Edwards, Adrianne N; Ahmad, Irfan; Romeo, Tony; Römling, Ute; Melefors, Ojar

    2010-02-01

    Bacterial survival depends on the ability to switch between sessile and motile lifestyles in response to changing environmental conditions. In many species, this switch is governed by (3'-5')-cyclic-diguanosine monophosphate (c-di-GMP), a signalling molecule, which is metabolized by proteins containing GGDEF and/or EAL domains. Salmonella Typhimurium contains 20 such proteins. Here, we show that the RNA-binding protein CsrA regulates the expression of eight genes encoding GGDEF, GGDEF-EAL and EAL domain proteins. CsrA bound directly to the mRNA leaders of five of these genes, suggesting that it may regulate these genes post-transcriptionally. The c-di-GMP-specific phosphodiesterase STM3611, which reciprocally controls flagella function and production of biofilm matrix components, was regulated by CsrA binding to the mRNA, but was also indirectly regulated by CsrA through the FlhDC/FliA flagella cascade and STM1344. STM1344 is an unconventional (c-di-GMP-inactive) EAL domain protein, recently identified as a negative regulator of flagella gene expression. Here, we demonstrate that CsrA directly downregulates expression of STM1344, which in turn regulates STM3611 through fliA and thus reciprocally controls motility and biofilm factors. Altogether, our data reveal that the concerted and complex regulation of several genes encoding GGDEF/EAL domain proteins allows CsrA to control the motility-sessility switch in S. Typhimurium at multiple levels.

  10. Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2017-01-01

    A gliding arc discharge was generated in a turbulent air flow at atmospheric pressure driven by a 35 kHz alternating current (AC) electric power. The spatiotemporally resolved characteristics of the gliding arc discharge, including glow-type discharges, spark-type discharges, short-cutting events...... and transitions among the different types of discharges, were investigated using simultaneously optical and electrical diagnostics. The glow-type discharge shows sinusoidal-like voltage and current waveforms with a peak current of hundreds of milliamperes. The frequency of the emission intensity variation...... of the glow-type discharge is the same as that of the electronic power dissipated in the plasma column. The glow-type discharge can transfer into a spark discharge characterized by a sharp peak current of several amperes and a sudden increase of the brightness in the plasma column. Transitions can also...

  11. Deformation behavior of dragonfly-inspired nodus structured wing in gliding flight through experimental visualization approach.

    Zhang, Sheng; Sunami, Yuta; Hashimoto, Hiromu

    2018-04-10

    Dragonfly has excellent flight performance and maneuverability due to the complex vein structure of wing. In this research, nodus as an important structural element of the dragonfly wing is investigated through an experimental visualization approach. Three vein structures were fabricated as, open-nodus structure, closed-nodus structure (with a flex-limiter) and rigid wing. The samples were conducted in a wind tunnel with a high speed camera to visualize the deformation of wing structure in order to study the function of nodus structured wing in gliding flight. According to the experimental results, nodus has a great influence on the flexibility of the wing structure. Moreover, the closed-nodus wing (with a flex-limiter) enables the vein structure to be flexible without losing the strength and rigidity of the joint. These findings enhance the knowledge of insect-inspired nodus structured wing and facilitate the application of Micro Air Vehicle (MAV) in gliding flight.

  12. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets

    Snezhko, Alexey; Aranson, Igor S [Materials Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Argonne, IL 60439 (United States); Jacob, Eshel Ben [School of Physics and Astronomy, 69978 Tel Aviv University, Tel Aviv (Israel)], E-mail: aranson@msd.anl.gov

    2008-04-15

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 {sup 0}C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets.

  13. Relationship between the electronic structure and the glide in the hexagonal close packed metals

    Legrand, B.; Le Hazif, R.

    1983-06-01

    In all hexagonal close-packed metals (HCP), deformation is performed by slip on a mean glide system (MGS) and on several secondary systems. There are no reliable predictions of the MGS choice. In this paper is shown the role played by the electronic structure on the choice of glide system in HCP metals. MGS is basal for all normal metals and is a function of the electron number in HCP transition metals. The different SFE's were calculated using appropriate total energy models, for different metals. Thus pseudopotentials were used (or empirical pair potentials) for normal metals, and a tight-binding model for transition metals. The most important results are the following: prismatic SFE (PSFE) is smaller than basal SFE (BSFE) for Y, Ti, Zr, Hf, Ru and Os; BSFE is smaller than PSFE for Co and all normal metals; BSFE and PSFe and about the same for RE and Tc

  14. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets

    Snezhko, Alexey; Aranson, Igor S; Jacob, Eshel Ben

    2008-01-01

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 0 C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets

  15. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro

    2014-12-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.

  16. Destruction of acenaphthene, fluorene, anthracene and pyrene by a dc gliding arc plasma reactor.

    Yu, Liang; Tu, Xin; Li, Xiaodong; Wang, Yu; Chi, Yong; Yan, Jianhua

    2010-08-15

    In this study, four kinds of PAHs (polycyclic aromatic hydrocarbons) i.e. acenaphthene, fluorene, anthracene and pyrene are used as targets for investigation of PAHs treatment process assisted by dc gliding arc discharge. The effects of carrier gas and external resistance on the PAHs decomposition process are discussed. The results indicate that the destruction rate can be achieved to the highest with the carrier gas of oxygen and the external resistance of 50 kOmega independent of type of PAHs. Furthermore, experimental results suggest that destruction energy efficiency of gliding arc plasma would be improved by treating higher concentration pollutants. Based on the analysis of experimental results, possible destruction mechanisms in different gas discharge are discussed. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Destruction of acenaphthene, fluorene, anthracene and pyrene by a dc gliding arc plasma reactor

    Yu Liang; Tu Xin; Li Xiaodong; Wang Yu; Chi Yong; Yan Jianhua

    2010-01-01

    In this study, four kinds of PAHs (polycyclic aromatic hydrocarbons) i.e. acenaphthene, fluorene, anthracene and pyrene are used as targets for investigation of PAHs treatment process assisted by dc gliding arc discharge. The effects of carrier gas and external resistance on the PAHs decomposition process are discussed. The results indicate that the destruction rate can be achieved to the highest with the carrier gas of oxygen and the external resistance of 50 kΩ independent of type of PAHs. Furthermore, experimental results suggest that destruction energy efficiency of gliding arc plasma would be improved by treating higher concentration pollutants. Based on the analysis of experimental results, possible destruction mechanisms in different gas discharge are discussed.

  18. Optimization geometries of a vortex gliding-arc reactor for partial oxidation of methane

    Guofeng, Xu; Xinwei, Ding

    2012-01-01

    The effects of the geometry of gliding-arc reactor – such as distance between the electrodes, outlet diameter, and inlet position – on the reactor characteristics (methane conversion, hydrogen yield, and energy efficiency) have not been fully investigated. In this paper, AC gliding-arc reactors including the vortex flow configuration are designed to produce hydrogen from the methane by partial oxidation. The influence of vortex flow configuration on the reactor characteristics is also studied by varying the inlet position. When the inlet of the gliding-arc reactor is positioned close to the outlet, reverse vortex flow reactor (RVFR), the maximum energy efficiency reaches 50% and the yields of hydrogen and carbon monoxide are 40% and 65%, respectively. As the distance between electrodes increases from 5 mm to 15 mm, both hydrogen yield and energy efficiency increase approximately 10% for the RVFR. The energy efficiency and hydrogen yield are highest when the ratio of the outlet diameter to the inner diameter is 0.5 for the RVFR. Experimental results indicate that the flow field in the plasma reactor has an important influence on the reactor performance. Furthermore, hydrogen production increases as the number of feed gas flows in contact with the plasma zone increases. -- Highlights: ► Gliding-arc reactors were designed to produce hydrogen for studying the characteristics of the vortex flow reactor. ► Hydrogen yield of reverse vortex flow reactor was 10% higher than that of forward vortex flow reactor. ► Maximum energy efficiency was 50% for reverse vortex flow reactor. ► If discharge power was supplied to the reactors, the reactor performance increased with increasing distance between electrodes. ► Optimum ratio of the outlet and inner diameter was 1/2.

  19. Postoperative pain after manual and mechanical glide path: a randomized clinical trial.

    Pasqualini, Damiano; Mollo, Livio; Scotti, Nicola; Cantatore, Giuseppe; Castellucci, Arnaldo; Migliaretti, Giuseppe; Berutti, Elio

    2012-01-01

    This prospective randomized clinical trial evaluated the incidence of postoperative pain after glide path performed with PathFile (PF) (Dentsply Maillefer, Ballaigues, Switzerland) versus stainless-steel K-file (KF). In 149 subjects, the mechanical glide path was performed with nickel-titanium (NiTi) rotary PF; in 146 subjects, the manual glide path was performed with stainless-steel KFs. Postoperative pain, analgesics consumption, and the number of days to complete pain resolution were evaluated in the following 7 days. An analysis of variance model for repeated measures was used to compare the variation of pain-scale values (P < .05). The Student's t test for continuous variables normally distributed, the nonparametric Mann-Whitney U test for the nonnormally distributed variables, and the chi-square test for dichotomous variables were used (P < .05). Despite homogeneous baseline conditions at diagnosis, tooth type, pain prevalence, and scores, the postoperative pain prevalence curves in PF group evidenced a more favorable trend in terms of time to pain resolution compared with the KF group (P = .004). The difference was also evident in the model adjusted for analgesics consumption in both groups (P = .012). The mean analgesics intake per subject was significantly higher in the KF group (3.7 ± 2.2) compared with the PF group (2 ± 1.7) (P < .001). Mean pain stop values were also significantly higher in the KF group (2.7) compared with the PF group (1.7) (P = .001). The glide path with NiTi Rotary PF leads to less postoperative pain and faster symptom resolution. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Using physical models to study the gliding performance of extinct animals.

    Koehl, M A R; Evangelista, Dennis; Yang, Karen

    2011-12-01

    Aerodynamic studies using physical models of fossil organisms can provide quantitative information about how performance of defined activities, such as gliding, depends on specific morphological features. Such analyses allow us to rule out hypotheses about the function of extinct organisms that are not physically plausible and to determine if and how specific morphological features and postures affect performance. The purpose of this article is to provide a practical guide for the design of dynamically scaled physical models to study the gliding of extinct animals using examples from our research on the theropod dinosaur, †Microraptor gui, which had flight feathers on its hind limbs as well as on its forelimbs. Analysis of the aerodynamics of †M. gui can shed light on the design of gliders with large surfaces posterior to the center of mass and provide functional information to evolutionary biologists trying to unravel the origins of flight in the dinosaurian ancestors and sister groups to birds. Measurements of lift, drag, side force, and moments in pitch, roll, and yaw on models in a wind tunnel can be used to calculate indices of gliding and parachuting performance, aerodynamic static stability, and control effectiveness in maneuvering. These indices permit the aerodynamic performance of bodies of different shape, size, stiffness, texture, and posture to be compared and thus can provide insights about the design of gliders, both biological and man-made. Our measurements of maximum lift-to-drag ratios of 2.5-3.1 for physical models of †M. gui suggest that its gliding performance was similar to that of flying squirrels and that the various leg postures that might have been used by †M. gui make little difference to that aspect of aerodynamic performance. We found that body orientation relative to the movement of air past the animal determines whether it is difficult or easy to maneuver.

  1. Relationship of Total Motile Sperm Count and Percentage Motile Sperm to Successful Pregnancy Rates Following Intrauterine Insemination

    Pasqualotto, Eleonora B.; Daitch, James A.; Hendin, Benjamin N.; Falcone, Tommaso; Thomas, Anthony J.; Nelson, David R.; Agarwal, Ashok

    1999-01-01

    Purpose:This study sought (i) to investigate the relationship between postwash total motile sperm count and postwash percentage motile sperm in predicting successful intrauterine insemination and (ii) to determine the minimal postwash total motile sperm count required to achieve pregnancy with intrauterine insemination.

  2. Anteroposterior glide versus rotating platform low contact stress (LCS knee arthroplasty: a randomised controlled trial

    Wynn-Jones Charles

    2007-08-01

    Full Text Available Abstract Background Fifty thousand knee replacements are performed annually in the UK at an estimated cost of £150 million. Post-operative improvement depends on a number of factors including implant design and patient associated factors. To our knowledge there are no published study's comparing the results of AP glide and rotating platform designs of LCS knee arthroplasty. Therefore we feel that a study is required to investigate and compare the effects of two types of LCS total knee arthroplasty on joint proprioception and range of motion. Methods/Design Patients will be randomised to receive either a LCS AP glide or Rotating platform prosthesis. Clinical scores (Oxford knee score, American knee society score, EuroQol, range of motion and proprioception will be assessed prior to and at 3,6, 12 and 24 months after the operation. Proprioception will be assessed in terms of absolute error angle (mean difference between the target angle and the response angle. Knee angles will be measured in degrees using an electromagnetic tracking device, Polhemus 3Space Fastrak that detects positions of sensors placed on the test limb. Student's t-test will be used to compare the mean of two groups. Discussion Evidence is lacking concerning the best prosthesis to use for patients undergoing total knee replacement. This pragmatic randomised trial will test the null hypothesis that anteroposterior glide LCS knee arthroplasty does not result in better post operative knee motion and proprioception as compared to rotating platform LCS knee. Trial Registration ISRCTN52943804

  3. Ultrasound-guided hydrodissection decreases gliding resistance of the median nerve within the carpal tunnel.

    Evers, Stefanie; Thoreson, Andrew R; Smith, Jay; Zhao, Chunfeng; Geske, Jennifer R; Amadio, Peter C

    2018-01-01

    The aim of this study was to assess alterations in median nerve (MN) biomechanics within the carpal tunnel resulting from ultrasound-guided hydrodissection in a cadaveric model. Twelve fresh frozen human cadaver hands were used. MN gliding resistance was measured at baseline and posthydrodissection, by pulling the nerve proximally and then returning it to the origin. Six specimens were treated with hydrodissection, and 6 were used as controls. In the hydrodissection group there was a significant reduction in mean peak gliding resistance of 92.9 ± 34.8 mN between baseline and immediately posthydrodissection (21.4% ± 10.5%; P = 0.001). No significant reduction between baseline and the second cycle occurred in the control group: 9.6 ± 29.8 mN (0.4% ± 5.3%; P = 0.467). Hydrodissection can decrease the gliding resistance of the MN within the carpal tunnel, at least in wrists unaffected by carpal tunnel syndrome. A clinical trial of hydrodissection seems justified. Muscle Nerve 57: 25-32, 2018. © 2017 Wiley Periodicals, Inc.

  4. A theoretical analysis of pitch stability during gliding in flying snakes

    Jafari, Farid; Ross, Shane D; Socha, John J; Vlachos, Pavlos P

    2014-01-01

    Flying snakes use their entire body as a continuously morphing ‘wing’ to produce lift and shallow their glide trajectory. Their dominant behavior during gliding is aerial undulation, in which lateral waves are sent posteriorly down the body. This highly dynamic behavior, which is unique among animal gliders, should have substantial effects on the flight dynamics and stability of the snakes, resulting from the continuous redistribution of mass and aerodynamic forces. In this study, we develop two-dimensional theoretical models to assess the stability characteristics of snakes in the pitch direction. Previously measured force coefficients are used to simulate aerodynamic forces acting on the models, and undulation is simulated by varying mass. Model 1 is a simple three-airfoil representation of the snake’s body that possesses a passively stable equilibrium solution, whose basin of stability contains initial conditions observed in experimental gliding trajectories. Model 2 is more sophisticated, with more degrees of freedom allowing for postural changes to better represent the snake’s real kinematics; in addition, a restoring moment is added to simulate potential active control. The application of static and dynamic stability criteria show that Model 2 is passively unstable, but can be stabilized with a restoring moment. Overall, these models suggest that undulation does not contribute to stability in pitch, and that flying snakes require a closed-loop control system formed around a passively stable dynamical framework. (papers)

  5. Gliding and Quasi-harmonic Tremor Behaviour of Raung Volcano: November 2014 Crisis Period Case Study

    Vico Luthfi Ipmawan

    2018-01-01

    Full Text Available DOI: 10.17014/ijog.5.1.13-21The seismic activity of Raung Volcano was raised on 11 November 2014. As many as 1709 tremors were recorded followed by continuous tremors appearing in late November 2014. Quasi-harmonic and gliding tremors appeared in a spectrogram on 12 November 2014. The quasi-harmonic tremors refer to tremors that have no fully harmonic form in spectrum. The gliding harmonic tremors refer to harmonic tremors that have frequency jumps with either positive or negative increment. After signal restitution processing, the Maximum Entropy Spectral Analysis (MESA method was applied in Raung recordings resulting the spectrum and the spectrogram of tremors. The quasi-harmonic tremors have the monotonic spectrum in its head and centre segment, and the harmonic one in its tails. There are twenty-four spectrums that show frequency changes between the monotonic and harmonic. The similarity between the fundamental frequency range of the monotonic and harmonic ones suggests that both signals are excited from a common resonator. The alternating of monotonic and harmonic respectively over this period is qualitatively similar with Julian’s synthetic time series about the nonlinear oscillator model. It is suggested that Raung Volcano magma pressure is sizeable to make a chaotic vibration. A pressure increasing in Raung magmatic conduit causes the increasing of P-wave velocity and makes a positive gliding frequency.

  6. Use of glide-ins in CMS for production and analysis

    Bradley, D; Hahn, K; Holzman, B; Padhi, S; Pi, H; Spiga, D; Sfiligoi, I; Vaandering, E; Würthwein, F

    2010-01-01

    With the evolution of various grid federations, the Condor glide-ins represent a key feature in providing a homogeneous pool of resources using late-binding technology. The CMS collaboration uses the glide-in based Workload Management System, glideinWMS, for production (ProdAgent) and distributed analysis (CRAB) of the data. The Condor glide-in daemons traverse to the worker nodes, submitted via Condor-G. Once activated, they preserve the Master-Worker relationships, with the worker first validating the execution environment on the worker node before pulling the jobs sequentially until the expiry of their lifetimes. The combination of late-binding and validation significantly reduces the overall failure rate visible to CMS physicists. We discuss the extensive use of the glideinWMS since the computing challenge, CCRC-08, in order to prepare for the forthcoming LHC data-taking period. The key features essential to the success of large-scale production and analysis on CMS resources across major grid federations,...

  7. A theoretical analysis of pitch stability during gliding in flying snakes.

    Jafari, Farid; Ross, Shane D; Vlachos, Pavlos P; Socha, John J

    2014-06-01

    Flying snakes use their entire body as a continuously morphing 'wing' to produce lift and shallow their glide trajectory. Their dominant behavior during gliding is aerial undulation, in which lateral waves are sent posteriorly down the body. This highly dynamic behavior, which is unique among animal gliders, should have substantial effects on the flight dynamics and stability of the snakes, resulting from the continuous redistribution of mass and aerodynamic forces. In this study, we develop two-dimensional theoretical models to assess the stability characteristics of snakes in the pitch direction. Previously measured force coefficients are used to simulate aerodynamic forces acting on the models, and undulation is simulated by varying mass. Model 1 is a simple three-airfoil representation of the snake's body that possesses a passively stable equilibrium solution, whose basin of stability contains initial conditions observed in experimental gliding trajectories. Model 2 is more sophisticated, with more degrees of freedom allowing for postural changes to better represent the snake's real kinematics; in addition, a restoring moment is added to simulate potential active control. The application of static and dynamic stability criteria show that Model 2 is passively unstable, but can be stabilized with a restoring moment. Overall, these models suggest that undulation does not contribute to stability in pitch, and that flying snakes require a closed-loop control system formed around a passively stable dynamical framework.

  8. On low temperature glide of dissociated 〈1 1 0〉 dislocations in strontium titanate

    Ritterbex, Sebastian; Hirel, Pierre; Carrez, Philippe

    2018-05-01

    An elastic interaction model is presented to quantify low temperature plasticity of SrTiO3 via glide of dissociated 〈1 1 0〉{1 1 0} screw dislocations. Because 〈1 1 0〉 dislocations are dissociated, their glide, controlled by the kink-pair mechanism at T good quantitative agreement with the observed non-monotonic mechanical behaviour of SrTiO3. This agreement allows to explain the experimental results in terms of a (progressive) change in 〈1 1 0〉{1 1 0} glide mechanism, from simultaneous nucleation of two kink-pairs along both partials at low stress, towards nucleation of single kink-pairs on individual partials if resolved shear stress exceeds a critical value of 95 MPa. High resolved shear stress allows thus for the activation of extra nucleation mechanisms on dissociated dislocations impossible to occur under the sole action of thermal activation. We suggest that stress condition in conjunction with core dissociation is key to the origin of non-monotonic plastic behaviour of SrTiO3 at low temperatures.

  9. New advances in gastrointestinal motility research

    Pullan, A; Farrugia, G

    2013-01-01

    Research into gastrointestinal motility has received renewed interest in part due to recent advances in the techniques for measuring the structure and function of gastrointestinal cells, tissue and organs. The integration of this wealth of data into biophysically based computation models can aid in interpretation of experimental and clinical measurements and the refinement of measurement techniques. The contents of this book span multiple scales - from cell, tissue, organ, to whole body and is divided into four broad sections covering: i) gastrointestinal cellular activity and tissue structure; (ii) techniques for measuring, analyzing and visualizing high-resolution extra-cellular recordings; (iii) methods for sensing gastroelectrical activity using non-invasive bio-electro-magnetic fields and for modulating the underlying gastric electrical activity, and finally; (iv) methods for assessing manometric and videographic motility patterns and the application of these data for predicting the flow and mixing behav...

  10. Automated measurement of cell motility and proliferation

    Goff Julie

    2005-04-01

    Full Text Available Abstract Background Time-lapse microscopic imaging provides a powerful approach for following changes in cell phenotype over time. Visible responses of whole cells can yield insight into functional changes that underlie physiological processes in health and disease. For example, features of cell motility accompany molecular changes that are central to the immune response, to carcinogenesis and metastasis, to wound healing and tissue regeneration, and to the myriad developmental processes that generate an organism. Previously reported image processing methods for motility analysis required custom viewing devices and manual interactions that may introduce bias, that slow throughput, and that constrain the scope of experiments in terms of the number of treatment variables, time period of observation, replication and statistical options. Here we describe a fully automated system in which images are acquired 24/7 from 384 well plates and are automatically processed to yield high-content motility and morphological data. Results We have applied this technology to study the effects of different extracellular matrix compounds on human osteoblast-like cell lines to explore functional changes that may underlie processes involved in bone formation and maintenance. We show dose-response and kinetic data for induction of increased motility by laminin and collagen type I without significant effects on growth rate. Differential motility response was evident within 4 hours of plating cells; long-term responses differed depending upon cell type and surface coating. Average velocities were increased approximately 0.1 um/min by ten-fold increases in laminin coating concentration in some cases. Comparison with manual tracking demonstrated the accuracy of the automated method and highlighted the comparative imprecision of human tracking for analysis of cell motility data. Quality statistics are reported that associate with stage noise, interference by non

  11. Esophageal motility abnormalities in gastroesophageal reflux disease

    Martinucci, Irene; de Bortoli, Nicola; Giacchino, Maria; Bodini, Giorgia; Marabotto, Elisa; Marchi, Santino; Savarino, Vincenzo; Savarino, Edoardo

    2014-01-01

    Esophageal motility abnormalities are among the main factors implicated in the pathogenesis of gastroesophageal reflux disease. The recent introduction in clinical and research practice of novel esophageal testing has markedly improved our understanding of the mechanisms contributing to the development of gastroesophageal reflux disease, allowing a better management of patients with this disorder. In this context, the present article intends to provide an overview of the current literature about esophageal motility dysfunctions in patients with gastroesophageal reflux disease. Esophageal manometry, by recording intraluminal pressure, represents the gold standard to diagnose esophageal motility abnormalities. In particular, using novel techniques, such as high resolution manometry with or without concurrent intraluminal impedance monitoring, transient lower esophageal sphincter (LES) relaxations, hypotensive LES, ineffective esophageal peristalsis and bolus transit abnormalities have been better defined and strongly implicated in gastroesophageal reflux disease development. Overall, recent findings suggest that esophageal motility abnormalities are increasingly prevalent with increasing severity of reflux disease, from non-erosive reflux disease to erosive reflux disease and Barrett’s esophagus. Characterizing esophageal dysmotility among different subgroups of patients with reflux disease may represent a fundamental approach to properly diagnose these patients and, thus, to set up the best therapeutic management. Currently, surgery represents the only reliable way to restore the esophagogastric junction integrity and to reduce transient LES relaxations that are considered to be the predominant mechanism by which gastric contents can enter the esophagus. On that ground, more in depth future studies assessing the pathogenetic role of dysmotility in patients with reflux disease are warranted. PMID:24868489

  12. Asian Motility Studies in Irritable Bowel Syndrome

    Lee, Oh Young

    2010-01-01

    Altered motility remains one of the important pathophysiologic factors in patients with irritable bowel syndrome (IBS) who commonly complain of abdominal pain and stool changes such as diarrhea and constipation. The prevalence of IBS has increased among Asian populations these days. Gastrointestinal (GI) physiology may vary between Asian and Western populations because of differences in diets, socio-cultural backgrounds, and genetic factors. The characteristics and differences of GI dysmotili...

  13. Surface Topography Hinders Bacterial Surface Motility.

    Chang, Yow-Ren; Weeks, Eric R; Ducker, William A

    2018-03-21

    We demonstrate that the surface motility of the bacterium, Pseudomonas aeruginosa, is hindered by a crystalline hemispherical topography with wavelength in the range of 2-8 μm. The motility was determined by the analysis of time-lapse microscopy images of cells in a flowing growth medium maintained at 37 °C. The net displacement of bacteria over 5 min is much lower on surfaces containing 2-8 μm hemispheres than on flat topography, but displacement on the 1 μm hemispheres is not lower. That is, there is a threshold between 1 and 2 μm for response to the topography. Cells on the 4 μm hemispheres were more likely to travel parallel to the local crystal axis than in other directions. Cells on the 8 μm topography were less likely to travel across the crowns of the hemispheres and were also more likely to make 30°-50° turns than on flat surfaces. These results show that surface topography can act as a significant barrier to surface motility and may therefore hinder surface exploration by bacteria. Because surface exploration can be a part of the process whereby bacteria form colonies and seek nutrients, these results help to elucidate the mechanism by which surface topography hinders biofilm formation.

  14. Effect of total laryngectomy on esophageal motility

    Hanks, J.B.; Fisher, S.R.; Meyers, W.C.; Christian, K.C.; Postlethwait, R.W.; Jones, R.S.

    1981-01-01

    Total laryngectomy for cancer can result in dysphagia and altered esophageal motility. Manometric changes in the upper esophageal sphincter (UES), and in proximal and distal esophageal function have been reported. However, most studies have failed to take into account radiation therapy and appropriate controls. We selected ten male patients (54.3 +/- 1.9 yr) for longitudinal manometric evaluation prior to laryngectomy then at two weeks and again six months later. No patient received preoperative radiation therapy, had a previous history of esophageal surgery, or developed a postoperative wound infection or fistula. Seven of ten patients had positive nodes and received 6,000-6,600 rads postoperative radiation therapy. Preoperatively 4 of 10 patients complained of dysphagia which did not significantly change following surgery and radiation. Two of three patients who did not complain of dysphagia preoperatively and received radiation postoperatively developed dysphagia. No patient without dysphagia preoperatively who received no radiation therapy developed symptoms. Our studies show that laryngectomy causes alterations in the UES resting and peak pressures but not in the proximal or distal esophagus, or the lower esophageal sphincter. These data also imply radiation therapy may be associated with progressive alterations in motility and symptomatology. Further study regarding the effects of radiation on esophageal motility and function are urged

  15. Type IX secretion: the generation of bacterial cell surface coatings involved in virulence, gliding motility and the degradation of complex biopolymers.

    Veith, Paul D; Glew, Michelle D; Gorasia, Dhana G; Reynolds, Eric C

    2017-10-01

    The Type IX secretion system (T9SS) is present in over 1000 sequenced species/strains of the Fibrobacteres-Chlorobi-Bacteroidetes superphylum. Proteins secreted by the T9SS have an N-terminal signal peptide for translocation across the inner membrane via the SEC translocon and a C-terminal signal for secretion across the outer membrane via the T9SS. Nineteen protein components of the T9SS have been identified including three, SigP, PorX and PorY that are involved in regulation. The inner membrane proteins PorL and PorM and the outer membrane proteins PorK and PorN interact and a complex comprising PorK and PorN forms a large ring structure of 50 nm in diameter. PorU, PorV, PorQ and PorZ form an attachment complex on the cell surface of the oral pathogen, Porphyromonas gingivalis. P. gingivalis T9SS substrates bind to PorV suggesting that after translocation PorV functions as a shuttle protein to deliver T9SS substrates to the attachment complex. The PorU component of the attachment complex is a novel Gram negative sortase which catalyses the cleavage of the C-terminal signal and conjugation of the protein substrates to lipopolysaccharide, anchoring them to the cell surface. This review presents an overview of the T9SS focusing on the function of T9SS substrates and machinery components. © 2017 John Wiley & Sons Ltd.

  16. Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli.

    Pesavento, Christina; Becker, Gisela; Sommerfeldt, Nicole; Possling, Alexandra; Tschowri, Natalia; Mehlis, Anika; Hengge, Regine

    2008-09-01

    During the transition from post-exponential to stationary phase, Escherichia coli changes from the motile-planktonic to the adhesive-sedentary "lifestyle." We demonstrate this transition to be controlled by mutual inhibition of the FlhDC/motility and sigma(S)/adhesion control cascades at two distinct hierarchical levels. At the top level, motility gene expression and the general stress response are inversely coordinated by sigma(70)/sigma(FliA)/sigma(S) competition for core RNA polymerase and the FlhDC-controlled FliZ protein acting as a sigma(S) inhibitor. At a lower level, the signaling molecule bis-(3'-5')-cyclic-diguanosine monophosphate (c-di-GMP) reduces flagellar activity and stimulates transcription of csgD, which encodes an essential activator of adhesive curli fimbriae expression. This c-di-GMP is antagonistically controlled by sigma(S)-regulated GGDEF proteins (mainly YegE) and YhjH, an EAL protein and c-di-GMP phosphodiesterase under FlhDC/FliA control. The switch from motility-based foraging to the general stress response and curli expression requires sigma(S)-modulated down-regulation of expression of the flagellar regulatory cascade as well as proteolysis of the flagellar master regulator FlhDC. Control of YhjH by FlhDC and of YegE by sigma(S) produces a fine-tuned checkpoint system that "unlocks" curli expression only after down-regulation of flagellar gene expression. In summary, these data reveal the logic and sequence of molecular events underlying the motile-to-adhesive "lifestyle" switch in E. coli.

  17. Motility versus fluctuations in mixtures of self-motile and passive agents.

    Hinz, Denis F; Panchenko, Alexander; Kim, Tae-Yeon; Fried, Eliot

    2014-12-07

    Many biological systems consist of self-motile and passive agents both of which contribute to overall functionality. However, little is known about the properties of such mixtures. Here we formulate a model for mixtures of self-motile and passive agents and show that the model gives rise to three different dynamical phases: a disordered mesoturbulent phase, a polar flocking phase, and a vortical phase characterized by large-scale counter rotating vortices. We use numerical simulations to construct a phase diagram and compare the statistical properties of the different phases with observed features of self-motile bacterial suspensions. Our findings afford specific insights regarding the interaction of microorganisms and passive particles and provide novel strategic guidance for efficient technological realizations of artificial active matter.

  18. Comparison of apical extrusion of intracanal bacteria by various glide-path establishing systems: an in vitro study

    Alberto Dagna

    2017-11-01

    Full Text Available Objectives This study compared the amount of apically extruded bacteria during the glide-path preparation by using multi-file and single-file glide-path establishing nickel-titanium (NiTi rotary systems. Materials and Methods Sixty mandibular first molar teeth were used to prepare the test apparatus. They were decoronated, blocked into glass vials, sterilized in ethylene oxide gas, infected with a pure culture of Enterococcus faecalis, randomly assigned to 5 experimental groups, and then prepared using manual stainless-steel files (group KF and glide-path establishing NiTi rotary files (group PF with PathFiles, group GF with G-Files, group PG with ProGlider, and group OG with One G. At the end of canal preparation, 0.01 mL NaCl solution was taken from the experimental vials. The suspension was plated on brain heart infusion agar and colonies of bacteria were counted, and the results were given as number of colony-forming units (CFU. Results The manual instrumentation technique tested in group KF extruded the highest number of bacteria compared to the other 4 groups (p < 0.05. The 4 groups using rotary glide-path establishing instruments extruded similar amounts of bacteria. Conclusions All glide-path establishment instrument systems tested caused a measurable apical extrusion of bacteria. The manual glide-path preparation showed the highest number of bacteria extruded compared to the other NiTi glide-path establishing instruments.

  19. Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements

    Zhu, Jiajian; Sun, Zhiwei; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Salewski, Mirko; Leipold, Frank; Kusano, Yukihiro

    2014-01-01

    We demonstrate a plasma discharge which is generated between two diverging electrodes and extended into a gliding arc in non-equilibrium condition by an air flow at atmospheric pressure. Effects of the air flow rates on the dynamics, ground-state OH distributions and spectral characterization of UV emission of the gliding arc were investigated by optical methods. High-speed photography was utilized to reveal flow-rate dependent dynamics such as ignitions, propagation, short-cutting events, extinctions and conversions of the discharge from glowtype to spark-type. Short-cutting events and ignitions occur more frequently at higher flow rates. The anchor points of the gliding arc are mostly steady at the top of the electrodes at lower flow rates whereas at higher flow rates they glide up along the electrodes most of the time. The afterglow of fully developed gliding arcs is observed to decay over hundreds of microseconds after being electronically short-cut by a newly ignited arc. The extinction time decreases with the increase of the flow rate. The frequency of the conversion of a discharge from glow-type to spark-type increases with the flow rate. Additionally, spatial distributions of ground-state OH were investigated using planar laser-induced fluorescence. The results show that the shape, height, intensity and thickness of ground-state OH distribution vary significantly with air flow rates. Finally, UV emission of the gliding arc is measured using optical emission spectroscopy and it is found that the emission intensity of NO γ (A-X), OH (A-X) and N 2 (C-B) increase with the flow rates showing more characteristics of spark-type arcs. The observed phenomena indicate the significance of the interaction between local turbulence and the gliding arc. (paper)

  20. Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements

    Zhu, Jiajian; Sun, Zhiwei; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Salewski, Mirko; Leipold, Frank; Kusano, Yukihiro

    2014-07-01

    We demonstrate a plasma discharge which is generated between two diverging electrodes and extended into a gliding arc in non-equilibrium condition by an air flow at atmospheric pressure. Effects of the air flow rates on the dynamics, ground-state OH distributions and spectral characterization of UV emission of the gliding arc were investigated by optical methods. High-speed photography was utilized to reveal flow-rate dependent dynamics such as ignitions, propagation, short-cutting events, extinctions and conversions of the discharge from glowtype to spark-type. Short-cutting events and ignitions occur more frequently at higher flow rates. The anchor points of the gliding arc are mostly steady at the top of the electrodes at lower flow rates whereas at higher flow rates they glide up along the electrodes most of the time. The afterglow of fully developed gliding arcs is observed to decay over hundreds of microseconds after being electronically short-cut by a newly ignited arc. The extinction time decreases with the increase of the flow rate. The frequency of the conversion of a discharge from glow-type to spark-type increases with the flow rate. Additionally, spatial distributions of ground-state OH were investigated using planar laser-induced fluorescence. The results show that the shape, height, intensity and thickness of ground-state OH distribution vary significantly with air flow rates. Finally, UV emission of the gliding arc is measured using optical emission spectroscopy and it is found that the emission intensity of NO γ (A-X), OH (A-X) and N2 (C-B) increase with the flow rates showing more characteristics of spark-type arcs. The observed phenomena indicate the significance of the interaction between local turbulence and the gliding arc.

  1. Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory

    Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan

    2015-01-01

    Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ (EM) or ‘group motion’ (GM). In “EM,” the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in “GM,” both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50–230 ms) in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role. PMID:26042055

  2. Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory

    Qingcui eWang

    2015-05-01

    Full Text Available Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ or ‘group motion’. In element motion, the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in group motion, both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside. Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of group motion as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50-230 ms in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps. The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role.

  3. The identification of genes specific to Prevotella intermedia and Prevotella nigrescens using genomic subtractive hybridization.

    Masakiyo, Yoshiaki; Yoshida, Akihiro; Shintani, Yasuyuki; Takahashi, Yusuke; Ansai, Toshihiro; Takehara, Tadamichi

    2010-06-01

    Prevotella intermedia and Prevotella nigrescens, which are often isolated from periodontal sites, were once considered two different genotypes of P. intermedia. Although the genomic sequence of P. intermedia was determined recently, little is known about the genetic differences between P. intermedia and P. nigrescens. The subtractive hybridization technique is a powerful method for generating a set of DNA fragments differing between two closely related bacterial strains or species. We used subtractive hybridization to identify the DNA regions specific to P. intermedia ATCC 25611 and P. nigrescens ATCC 25261. Using this method, four P. intermedia ATCC 25611-specific and three P. nigrescens ATCC 25261-specific regions were determined. From the species-specific regions, insertion sequence (IS) elements were isolated for P. intermedia. IS elements play an important role in the pathogenicity of bacteria. For the P. intermedia-specific regions, the genes adenine-specific DNA-methyltransferase and 8-amino-7-oxononanoate synthase were isolated. The P. nigrescens-specific region contained a Flavobacterium psychrophilum SprA homologue, a cell-surface protein involved in gliding motility, Prevotella melaninogenica ATCC 25845 glutathione peroxide, and Porphyromonas gingivalis ATCC 33277 leucyl-tRNA synthetase. The results demonstrate that the subtractive hybridization technique was useful for distinguishing between the two closely related species. Furthermore, this technique will contribute to our understanding of the virulence of these species. 2009 Elsevier Ltd. All rights reserved.

  4. Loss of Dishevelleds disrupts planar polarity in ependymal motile cilia and results in hydrocephalus

    Ohata, Shinya; Nakatani, Jin; Herranz-Pérez, Vicente; Cheng, JrGang; Belinson, Haim; Inubushi, Toshiro; Snider, William D.; García-Verdugo, Jose Manuel; Wynshaw-Boris, Anthony; Álvarez-Buylla, Arturo

    2014-01-01

    SUMMARY Defects in ependymal (E) cells, which line the ventricle and generate cerebrospinal fluid flow through ciliary beating, can cause hydrocephalus. Dishevelled genes (Dvls) are essential for Wnt signaling and Dvl2 has been shown to localize to the rootlet of motile cilia. Using the hGFAP-Cre;Dvl1−/−;2flox/flox;3+/− mouse, we show that compound genetic ablation of Dvls causes hydrocephalus. In hGFAP-Cre;Dvl1−/−;2flox/flox;3+/− mutants, E cells differentiated normally, but the intracellular and intercellular rotational alignments of ependymal motile cilia were disrupted. As a consequence, the fluid flow generated by the hGFAP-Cre;Dvl1−/−;2flox/flox;3+/− E cells was significantly slower than that observed in control mice. Dvls were also required for the proper positioning of motile cilia on the apical surface. Tamoxifen-induced conditional removal of Dvls in adult mice also resulted in defects in intracellular rotational alignment and positioning of ependymal motile cilia. These results suggest that Dvls are continuously required for E cell planar polarity and may prevent hydrocephalus. PMID:25043421

  5. Dynamic localization of HmpF regulates type IV pilus activity and directional motility in the filamentous cyanobacterium Nostoc punctiforme.

    Cho, Ye Won; Gonzales, Alfonso; Harwood, Thomas V; Huynh, Jessica; Hwang, Yeji; Park, Jun Sang; Trieu, Anthony Q; Italia, Parth; Pallipuram, Vivek K; Risser, Douglas D

    2017-10-01

    Many cyanobacteria exhibit surface motility powered by type 4 pili (T4P). In the model filamentous cyanobacterium Nostoc punctiforme, the T4P systems are arrayed in static, bipolar rings in each cell. The chemotaxis-like Hmp system is essential for motility and the coordinated polar accumulation of PilA on cells in motile filaments, while the Ptx system controls positive phototaxis. Using transposon mutagenesis, a gene, designated hmpF, was identified as involved in motility. Synteny among filamentous cyanobacteria and the similar expression patterns for hmpF and hmpD imply that HmpF is part of the Hmp system. Deletion of hmpF produced a phenotype distinct from other hmp genes, but indistinguishable from pilB or pilQ. Both an HmpF-GFPuv fusion protein, and PilA, as assessed by in situ immunofluorescence, displayed coordinated, unipolar localization at the leading pole of each cell. Reversals were modulated by changes in light intensity and preceded by the migration of HmpF-GFPuv to the lagging cell poles. These results are consistent with a model where direct interaction between HmpF and the T4P system activates pilus extension, the Hmp system facilitates coordinated polarity of HmpF to establish motility, and the Ptx system modulates HmpF localization to initiate reversals in response to changes in light intensity. © 2017 John Wiley & Sons Ltd.

  6. Effects of radiation upon gastrointestinal motility

    Mary F Otterson

    2007-01-01

    Whether due to therapeutic or belligerent exposure, the gastrointestinal effects of irradiation produce symptoms dreaded by a majority of the population. Nausea, vomiting, diarrhea and abdominal cramping are hallmarks of the prodromal phase of radiation sickness, occurring hours to days following radiation exposure. The prodromal phase is distinct from acute radiation sickness in that the absorptive, secretory and anatomic changes associated with radiation damage are not easily identifiable. It is during this phase of radiation sickness that gastrointestinal motility significantly changes. In addition, there is evidence that motor activity of the gut contributes to some of the acute and chronic effects of radiation.

  7. How Informative are the Vertical Buoyancy and the Prone Gliding Tests to Assess Young Swimmers’ Hydrostatic and Hydrodynamic Profiles?

    Barbosa, Tiago M.; Costa, Mário J.; Morais, Jorge E; Moreira, Marc; Silva, António J.; Marinho, Daniel A.

    2012-01-01

    The aim of this research was to develop a path-flow analysis model to highlight the relationships between buoyancy and prone gliding tests and some selected anthropometrical and biomechanical variables. Thirty-eight young male swimmers (12.97 ± 1.05 years old) with several competitive levels were evaluated. It were assessed the body mass, height, fat mass, body surface area, vertical buoyancy, prone gliding after wall push-off, stroke length, stroke frequency and velocity after a maximal 25 [m] swim. The confirmatory model included the body mass, height, fat mass, prone gliding test, stroke length, stroke frequency and velocity. All theoretical paths were verified except for the vertical buoyancy test that did not present any relationship with anthropometrical and biomechanical variables nor with the prone gliding test. The good-of-fit from the confirmatory path-flow model, assessed with the standardized root mean square residuals (SRMR), is considered as being close to the cut-off value, but even so not suitable of the theory (SRMR = 0.11). As a conclusion, vertical buoyancy and prone gliding tests are not the best techniques to assess the swimmer’s hydrostatic and hydrodynamic profile, respectively. PMID:23486528

  8. Effect of condensation temperature glide on the performance of organic Rankine cycles with zeotropic mixture working fluids

    Liu, Qiang; Duan, Yuanyuan; Yang, Zhen

    2014-01-01

    Highlights: • A condensation pressure determination method for ORC with zeotropic mixture is given. • The effects of condensation temperature glide on the ORC performance are analyzed. • Mixture mole fractions for the maximum power output of a geothermal ORC are identified. • The biomass ORC performance with part of the latent heat transferred in the IHE is analyzed. - Abstract: The organic Rankine cycle (ORC) has been widely used to convert low-grade ( 2 M) selected as working fluids for the cogenerative ORC driven by the biomass energy. Two optimal working fluid mole fractions maximize the cycle efficiency, exergy efficiency and net power output for cooling water temperature increases less than the maximum condensation temperature glide, while the highest net power output appears at the higher mole fraction of the more volatile component for the geothermal ORC when the condensation temperature glide of the working fluid mixture matches the cooling water temperature increase. Higher condensation temperature glides result in large thermal loss to the heat sink and exergy destruction in the condenser. There is only one optimal working fluid mole fraction that maximizes the thermal efficiency, exergy efficiency and net power output when the cooling water temperature increase is greater than the condensation temperature glide

  9. Destruction of tributylphosphate by cold plasma. Use of a gliding arc reactor

    Moussa, David

    1999-01-01

    The nuclear industry uses the Purex process for reprocessing spent nuclear fuel by plutonium and uranium separation. This process uses complexing properties of tributylphosphate. This solvent is aged by the high radioactivity and acidity of the medium and loses its extracting properties. Thus it becomes an highly radioactive liquid organic waste and it must be degraded before its conditioning. We have elaborated a new method for mineralizing TBP by exposure to the plasma produced by a wet air gliding arc. Electric discharges in wet air give rise to very reactive species like excited molecules and radicals. Such species can accelerate oxidation and degradation of organic compounds. The gliding arc discharge is obtained by applying high voltage between two divergent metal electrodes disposed around a blowing nozzle. The arc formed between the electrodes is blown by the air flow with growing in length. Thus a quenched wet air plasma trail is formed and licks an upper layer of TBP while the lower layer is water. Our device can degrade almost 40 percent of the treated TBP. The main degradation product is phosphoric acid for which we have monitored the production kinetics and suggested a model of a surface oxidation process to explain it. Another part of the TBP is converted into a phosphate layer found on the electrodes and phosphorus oxide white smokes present in exhaust fumes. By means of chromatography and spectroscopic analysis we have found the dibutyl-phosphoric acid as the main partial degradation product. The gliding arc device presents several advantages towards other plasma processes which are a low cost and especially for the present task i.e. an easy building and use, operating at atmospheric pressure and moderate temperature, and the possibility to use high powers (several kW for one unit). (author) [fr

  10. The Effects of One-Dimensional Glide on the Reaction Kinetics of Interstitial Clusters

    Heinisch, Howard L.; Singh, B N.; Golubov, S I.

    2000-01-01

    Collision cascades in metals produce small interstitial clusters and perfect dislocation loops that glide in thermally activated one-dimensional (1D) random walks. These gliding defects can change their Burgers vectors by thermal activation or by interactions with other defects. Their migration is therefore''mixed 1D/3D migration'' along a 3D path consisting of 1D segments. The defect reaction kinetics under mixed 1D/3D diffusion are different from pure 1D diffusion and pure 3D diffusion, both of which can be formulated within analytical rate theory models of microstructure evolution under irradiation. Atomic-scale kinetic Monte Carlo (kMC) defect migration simulations are used to investigate the effects of mixed 1D/3D migration on defect reaction kinetics as a guide for implementing mixed 1D/3D migration into the analytical rate theory. The functional dependence of the sink strength on the sixe and concentration of sinks under mixed 1D/3D migration is shown to lie between that for pure 1D and pure 3D migration and varies with L, the average distance between direction changes of the gliding defects. It is shown that the sink strength in simulations for spherical sinks of radius R under mixed 1D/3D migration for values of L greater than R can be approximated by an expression that varies directly as R2. For small L, the form of the transition from mixed 1D/3D to pure 3D diffusion as L decreases is demonstrated in the simulations, the results of which can be used in the future development of an analytical expression describing this transition region

  11. Kinematics of ram filter feeding and beat-glide swimming in the northern anchovy Engraulis mordax.

    Carey, Nicholas; Goldbogen, Jeremy A

    2017-08-01

    In the dense aquatic environment, the most adept swimmers are streamlined to reduce drag and increase the efficiency of locomotion. However, because they open their mouth to wide gape angles to deploy their filtering apparatus, ram filter feeders apparently switch between diametrically opposite swimming modes: highly efficient, streamlined 'beat-glide' swimming, and ram filter feeding, which has been hypothesized to be a high-cost feeding mode because of presumed increased drag. Ram filter-feeding forage fish are thought to play an important role in the flux of nutrients and energy in upwelling ecosystems; however, the biomechanics and energetics of this feeding mechanism remain poorly understood. We quantified the kinematics of an iconic forage fish, the northern anchovy, Engraulis mordax , during ram filter feeding and non-feeding, mouth-closed beat-glide swimming. Although many kinematic parameters between the two swimming modes were similar, we found that swimming speeds and tailbeat frequencies were significantly lower during ram feeding. Rather than maintain speed with the school, a speed which closely matches theoretical optimum filter-feeding speeds was consistently observed. Beat-glide swimming was characterized by high variability in all kinematic parameters, but variance in kinematic parameters was much lower during ram filter feeding. Under this mode, body kinematics are substantially modified, and E. mordax swims more slowly and with decreased lateral movement along the entire body, but most noticeably in the anterior. Our results suggest that hydrodynamic effects that come with deployment of the filtering anatomy may limit behavioral options during foraging and result in slower swimming speeds during ram filtration. © 2017. Published by The Company of Biologists Ltd.

  12. Glide path preparation in S-shaped canals with rotary pathfinding nickel-titanium instruments.

    Ajuz, Natasha C C; Armada, Luciana; Gonçalves, Lucio S; Debelian, Gilberto; Siqueira, José F

    2013-04-01

    This study compared the incidence of deviation along S-shaped (double-curved) canals after glide path preparation with 2 nickel-titanium (NiTi) rotary pathfinding instruments and hand K-files. S-shaped canals from 60 training blocks were filled with ink, and preinstrumentation images were obtained by using a stereomicroscope. Glide path preparation was performed by an endodontist who used hand stainless steel K-files (up to size 20), rotary NiTi PathFile instruments (up to size 19), or rotary NiTi Scout RaCe instruments (up to size 20). Postinstrumentation images were taken by using exactly the same conditions as for the preinstrumentation images, and both pictures were superimposed. Differences along the S-shaped canal for the mesial and distal aspects were measured to evaluate the occurrence of deviation. Intragroup analysis showed that all instruments promoted some deviation in virtually all levels. Overall, regardless of the group, deviations were observed in the mesial wall at the canal terminus and at levels 4, 5, 6 and 7 mm and in the distal wall at levels 1, 2, and 3 mm. These levels corresponded to the inner walls of each curvature. Both rotary NiTi instruments performed significantly better than hand K-files at all levels (P instruments showed significantly better results than PathFiles at levels 0, 2, 3, 5, and 6 mm (P rotary NiTi instruments are suitable for adequate glide path preparation because they promoted less deviation from the original canal anatomy when compared with hand-operated instruments. Of the 2 rotary pathfinding instruments, Scout RaCe showed an overall significantly better performance. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Effect of repetitive pecking at working length for glide path preparation using G-file

    Jung-Hong Ha

    2015-05-01

    Full Text Available Objectives Glide path preparation is recommended to reduce torsional failure of nickel-titanium (NiTi rotary instruments and to prevent root canal transportation. This study evaluated whether the repetitive insertions of G-files to the working length maintain the apical size as well as provide sufficient lumen as a glide path for subsequent instrumentation. Materials and Methods The G-file system (Micro-Mega composed of G1 and G2 files for glide path preparation was used with the J-shaped, simulated resin canals. After inserting a G1 file twice, a G2 file was inserted to the working length 1, 4, 7, or 10 times for four each experimental group, respectively (n = 10. Then the canals were cleaned by copious irrigation, and lubricated with a separating gel medium. Canal replicas were made using silicone impression material, and the diameter of the replicas was measured at working length (D0 and 1 mm level (D1 under a scanning electron microscope. Data was analysed by one-way ANOVA and post-hoc tests (p = 0.05. Results The diameter at D0 level did not show any significant difference between the 1, 2, 4, and 10 times of repetitive pecking insertions of G2 files at working length. However, 10 times of pecking motion with G2 file resulted in significantly larger canal diameter at D1 (p < 0.05. Conclusions Under the limitations of this study, the repetitive insertion of a G2 file up to 10 times at working length created an adequate lumen for subsequent apical shaping with other rotary files bigger than International Organization for Standardization (ISO size 20, without apical transportation at D0 level.

  14. Evidence and characterization of a glide-vowel distinction in American English

    Zachary Scott Jaggers

    2018-02-01

    Full Text Available This study tests whether native speakers of American English exhibit a glide-vowel distinction ([j]-[i] in a speech elicitation experiment. When reading sentences out loud, participants’ pronunciations of 4 near-minimal pairs of pre-existing lexical items (e.g., 'Eston'[iə] vs. 'pneumon'[jə] exhibit significant differences when acoustically measured, confirming the presence of a [j]-[i] distinction. This distinction is also found to be productively extended to the production of 20 near-minimal pairs of nonce words (e.g., 'Súmia '→ [sumiə] vs. 'Fímya '→ [fimjə], diversified and balanced along different phonologically relevant factors of the surrounding environment. Multiple acoustic measurements are compared to test what aspects most consistently convey the distinction: F2 (frontness, F1 (height, intensity, vocalic sequence duration, transition earliness, and transition speed. This serves the purpose of documenting the distinction’s acoustic phonetic realization. It also serves in the comparison of phonological representations. Multiple types of previously proposed phonological representations are considered along with the competing predictions they generate regarding the acoustic measurements performed. Results suggest that the primary and most consistent characteristic of the distinction is earliness of transition into the following vowel, with results also suggesting that the [j] glide has a greater degree of constriction. The [j] glide is found to have a significantly 'less 'anterior articulation, challenging the application of a representation based on place or articulator differences that would predict [j] to be 'more 'anterior.

  15. Large Gaps in Canopy Reduce Road Crossing by a Gliding Mammal

    Rodney van der Ree

    2010-12-01

    Full Text Available Roads and traffic reduce landscape connectivity and increase rates of mortality for many species of wildlife. Species that glide from tree to tree may be strongly affected by roads and traffic if the size of the gap between trees exceeds their gliding capability. Not only are wide roads likely to reduce crossing rates, but mortality may also be increased if gliders that do cross have poor landing opportunities. The road-crossing behavior of 47 squirrel gliders (Petaurus norfolcensis was investigated in southeast Australia using radio-tracking. The proportion of gliders crossing one or both roadways of a freeway where trees were present or absent from the center median was compared to that at single-lane country roads (control. The proportion of gliders crossing the road at control sites (77% was similar to the proportion that crossed one or both roadways at the freeway with trees in the median (67%, whereas only a single male (6% crossed the freeway where trees were absent from the median. The frequency of crossing for each individual was also similar at control sites and freeway sites with trees in the median. The almost complete lack of crossing at sites where trees were absent from the median was attributed to the wider gap in canopy (50 - 64 m vs. 5 - 13 m at sites with trees in the median. This suggests that traffic volume, up to 5,000 vehicles per day on each roadway, and the other characteristics of the freeway we studied are not in themselves complete deterrents to road crossing by squirrel gliders. This study demonstrates that retaining and facilitating the growth of tall trees in the center median of two-way roads may mitigate the barrier effect of roads on gliders, thus contributing positively to mobility and potentially to connectivity. This information will be essential for the assessment of road impacts on gliding species using population viability models.

  16. The barrier to misfit dislocation glide in continuous, strained, epitaxial layers on patterned substrates

    Watson, G.P.; Ast, D.G.; Anderson, T.J.; Pathangey, B.

    1993-01-01

    In a previous report [G. P. Watson, D. G. Ast, T. J. Anderson, and Y. Hayakawa, Appl. Phys. Lett. 58, 2517 (1991)] we demonstrated that the motion of misfit dislocations in InGaAs, grown by organometallic vapor phase epitaxy on patterned GaAs substrates, can be impeded even if the strained epitaxial layer is continuous. Trenches etched into GaAs before growth are known to act as a barrier to misfit dislocation propagation [E. A. Fitzgerald, G. P. Watson, R. E. Proano, D. G. Ast, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, J. Appl. Phys. 65, 2220 (1989)] when those trenches create discontinuities in the epitaxial layers; but even shallow trenches, with continuous strained layers following the surface features, can act as barriers. By considering the strain energy required to change the length of the dislocation glide segments that stretch from the interface to the free surface, a simple model is developed that explains the major features of the unique blocking action observed at the trench edges. The trench wall angle is found to be an important parameter in determining whether or not a trench will block dislocation glide. The predicted blocking angles are consistent with observations made on continuous 300 and 600 nm thick In 0.04 Ga 0.96 As films on patterned GaAs. Based on the model, a structure is proposed that may be used as a filter to yield misfit dislocations with identical Burgers vectors or dislocations which slip in only one glide plane

  17. Flagellar motility confers epiphytic fitness advantages upon Pseudomonas syringae

    Haefele, D.M.; Lindow, S.E.

    1987-01-01

    The role of flagellar motility in determining the epiphytic fitness of an ice-nucleation-active strain of Pseudomonas syringae was examined. The loss of flagellar motility reduced the epiphytic fitness of a normally motile P. syringae strain as measured by its growth, survival, and competitive ability on bean leaf surfaces. Equal population sizes of motile parental or nonmotile mutant P. syringae strains were maintained on bean plants for at least 5 days following the inoculation of fully expanded primary leaves. However, when bean seedlings were inoculated before the primary leaves had expanded and bacterial populations on these leaves were quantified at full expansion, the population size of the nonmotile derivative strain reached only 0.9% that of either the motile parental or revertant strain. When fully expanded bean primary leaves were coinoculated with equal numbers of motile and nonmotile cells, the population size of a nonmotile derivative strain was one-third of that of the motile parental or revertant strain after 8 days. Motile and nonmotile cells were exposed in vitro and on plants to UV radiation and desiccating conditions. The motile and nonmotile strains exhibited equal resistance to both stresses in vitro. However, the population size of a nonmotile strain on leaves was less than 20% that of a motile revertant strain when sampled immediately after UV irradiation. Epiphytic populations of both motile and nonmotile P. syringae declined under desiccating conditions on plants, and after 8 days, the population size of a nonmotile strain was less than one-third that of the motile parental or revertant strain

  18. Aging and intestinal motility: a review of factors that affect intestinal motility in the aged.

    O'Mahony, Denis

    2012-02-03

    Normal aging is associated with significant changes in the function of most organs and tissues. In this regard, the gastrointestinal tract is no exception. The purpose of this review is to detail the important age-related changes in motor function of the various parts of the gastrointestinal tract and to highlight some of the important motility changes that may occur, either in relation to common age-related disorders, or as a result of certain drugs commonly prescribed in the aged. A major confounding factor in the interpretation of motor phenomena throughout the gastrointestinal tract in this age group is the frequent coexistence of neurological, endocrinological and other disease states, which may be independently associated with dysmotility. Overall, current data are insufficient to implicate normal aging as a cause of dysmotility in the elderly. Normal aging is associated with various changes in gastrointestinal motility, but the clinical significance of such changes remains unclear. More important is the impact of various age-related diseases on gastrointestinal motility in the elderly: for example, long-standing diabetes mellitus may reduce gastric emptying in up to 50% of patients; depression significantly prolongs whole-gut transit time; hypothyroidism may prolong oro-caecal transit time; and chronic renal failure is associated with impaired gastric emptying. In addition, various, frequently used drugs in the elderly cause disordered gastrointestinal motility. These drugs include anticholinergics, especially antidepressants with an anticholinergic effect, opioid analgesics and calcium antagonists.

  19. Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2015-01-01

    A non-thermal gliding arc discharge was generated at atmospheric pressure in an air flow. The dynamics of the plasma column and tracer particles were recorded using two synchronized high-speed cameras. Whereas the data analysis for such systems has previously been performed in 2D (analyzing......, gives more realistic insight into the convection cooling process. Additionally, with the determination of the 3D slip velocity and the 3D length of the plasma column, we give more accurate estimates for the drag force, the electric field strength, the power per unit length, and the radius...

  20. In situ TEM study on elastic interaction between a prismatic loop and a gliding dislocation

    Matsukawa, Yoshitaka; Liu, Grace S.

    2012-01-01

    In situ straining in a transmission electron microscope was performed in order to investigate dislocation interactions with a prismatic loop, which as a mobile obstacle is expected to be displaced by the strain-field of dislocation prior to physical contact. It was found that when a gliding dislocation approached a critical distance, the prismatic loop was certainly attracted to the dislocation. The captured loop disrupted the dislocation motion and was not dragged along with the mobile dislocation. Instead, the dislocation bypassed the loop via cross-slip to another slip plane with a resolved shear stress estimated to be 40% lower than that of the original plane.

  1. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan

    2014-01-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating...... current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column...

  2. Ribbon and gliding type parachutes evaluated in the 7 by 10 foot transonic wind tunnel

    Ottensoser, J.

    1975-09-01

    An experiment has been conducted in the NSRDC 7- x 10-foot transonic tunnel for the Sandia Corporation to evaluate various parachute parameters. The experiment consisted of three main parts: the first phase evaluated the disreefing characteristics of the various parachutes as well as the drag forces before, during, and after disreefing; the second phase measured the pressure distribution around the chute as well as the drag forces; and the final phase evaluated the disreefing and drag characteristics of gliding type parachutes. The free stream dynamic pressure varied from 65 to 500 psf. 12 figures, 1 table. (auth)

  3. A Prospective Observational Study of Technical Difficulty With GlideScope-Guided Tracheal Intubation in Children.

    Zhang, Bin; Gurnaney, Harshad G; Stricker, Paul A; Galvez, Jorge A; Isserman, Rebecca S; Fiadjoe, John E

    2018-05-09

    The GlideScope Cobalt is one of the most commonly used videolaryngoscopes in pediatric anesthesia. Although visualization of the airway may be superior to direct laryngoscopy, users need to learn a new indirect way to insert the tracheal tube. Learning this indirect approach requires focused practice and instruction. Identifying the specific points during tube placement, during which clinicians struggle, would help with targeted education. We conducted this prospective observational study to determine the incidence and location of technical difficulties using the GlideScope, the success rates of various corrective maneuvers used, and the impact of technical difficulty on success rate. We conducted this observational study at our quaternary pediatric hospital between February 2014 and August 2014. We observed 200 GlideScope-guided intubations and documented key intubation-related outcomes. Inclusion criteria for patients were the number of advancement maneuvers required to intubate the trachea, the location where technical difficulty occurred, the types of maneuvers used to address difficulties, and the tracheal intubation success rate. We used a bias-corrected bootstrapping method with 300 replicates to determine the 95% confidence interval (CI) around the rate of difficulty with an intubation attempt. After excluding attempts by inexperienced clinicians, there were 225 attempts in 187 patients, 58% (131 of 225; bootstrap CI, 51.6%-64.6%]) of the attempts had technical difficulties. Technical difficulty was most likely to occur when inserting the tracheal tube between the plane of the arytenoid cartilages to just beyond the vocal cords: "zone 3." Clockwise rotation of the tube was the most common successful corrective maneuver in zone 3. The overall tracheal intubation success rate was 98% (CI, 95%-99%); however, the first attempt success rate was only 80% (CI, 74%-86%). Patients with technical difficulty had more attempts (median [interquartile range], 2 [1

  4. Marine myxobacteria as a source of antibiotics--comparison of physiology, polyketide-type genes and antibiotic production of three new isolates of Enhygromyxa salina.

    Schäberle, Till F; Goralski, Emilie; Neu, Edith; Erol, Ozlem; Hölzl, Georg; Dörmann, Peter; Bierbaum, Gabriele; König, Gabriele M

    2010-09-03

    Three myxobacterial strains, designated SWB004, SWB005 and SWB006, were obtained from beach sand samples from the Pacific Ocean and the North Sea. The strains were cultivated in salt water containing media and subjected to studies to determine their taxonomic status, the presence of genes for the biosynthesis of polyketides and antibiotic production. 16S rDNA sequence analysis revealed the type strain Enhygromyxa salina SHK-1(T) as their closest homolog, displaying between 98% (SWB005) and 99% (SWB004 and SWB006) sequence similarity. All isolates were rod-shaped cells showing gliding motility and fruiting body formation as is known for myxobacteria. They required NaCl for growth, with an optimum concentration of around 2% [w/v]. The G + C-content of genomic DNA ranged from 63.0 to 67.3 mol%. Further, the strains were analyzed for their potential to produce polyketide-type structures. PCR amplified ketosynthase-like gene fragments from all three isolates enhances the assumption that these bacteria produce polyketides. SWB005 was shown to produce metabolites with prominent antibacterial activity, including activity towards methicillin resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE).

  5. Marine Myxobacteria as a Source of Antibiotics—Comparison of Physiology, Polyketide-Type Genes and Antibiotic Production of Three New Isolates of Enhygromyxa salina

    Gabriele Bierbaum

    2010-09-01

    Full Text Available Three myxobacterial strains, designated SWB004, SWB005 and SWB006, were obtained from beach sand samples from the Pacific Ocean and the North Sea. The strains were cultivated in salt water containing media and subjected to studies to determine their taxonomic status, the presence of genes for the biosynthesis of polyketides and antibiotic production. 16S rDNA sequence analysis revealed the type strain Enhygromyxa salina SHK-1T as their closest homolog, displaying between 98% (SWB005 and 99% (SWB004 and SWB006 sequence similarity. All isolates were rod-shaped cells showing gliding motility and fruiting body formation as is known for myxobacteria. They required NaCl for growth, with an optimum concentration of around 2% [w/v]. The G + C-content of genomic DNA ranged from 63.0 to 67.3 mol%. Further, the strains were analyzed for their potential to produce polyketide-type structures. PCR amplified ketosynthase-like gene fragments from all three isolates enhances the assumption that these bacteria produce polyketides. SWB005 was shown to produce metabolites with prominent antibacterial activity, including activity towards methicillin resistant Staphylococcus aureus (MRSA and Staphylococcus epidermidis (MRSE.

  6. Active motility in bimodular bacterial aggregates

    Zeng, Yu; Liu, Bin

    2017-11-01

    Dispersal capability is essential for microorganisms to achieve long-distance translocation, thus crucial for their abundance in various environments. In general, active dispersals are attributed to the movements of self-powered planktonic cells, while sessile cells that live a colonial life often disperse passively through flow entrainments. Here, we report another means of active dispersal employed by aggregates of sessile cells. The spherical rosette colonies of the bacterium Caulobacter crescentus are aggregates of sessile stalked cells, of which a small proportion undergo cell division, grow active flagella and effect whole-rosette motility. We show that these rosettes actively disperse both in bulk water and near the solid-liquid interface. In particular, the proximity of a self-powered rosette to the solid surface promotes a rolling movement, leading to its persistent transportation along the solid boundary. The active dispersal of these rosettes demonstrated a novel mode of colonial transportation that is based on the division of labor between sessile and motile cells. The authors thank the support of National Science Foundation CREST: Center for Cellular and Biomolecular Machines at UC Merced (NSF-HRD-1547848).

  7. Transcriptomic analysis displays the effect of (-)-roemerine on the motility and nutrient uptake in Escherichia coli.

    Ayyildiz, Dilara; Arga, Kazim Yalcin; Avci, Fatma Gizem; Altinisik, Fatma Ece; Gurer, Caglayan; Gulsoy Toplan, Gizem; Kazan, Dilek; Wozny, Katharina; Brügger, Britta; Mertoglu, Bulent; Sariyar Akbulut, Berna

    2017-08-01

    Among the different families of plant alkaloids, (-)-roemerine, an aporphine type, was recently shown to possess significant antibacterial activity in Escherichia coli. Based on the increasing demand for antibacterials with novel mechanisms of action, the present work investigates the potential of the plant-derived alkaloid (-)-roemerine as an antibacterial in E. coli cells using microarray technology. Analysis of the genome-wide transcriptional reprogramming in cells after 60 min treatment with 100 μg/mL (-)-roemerine showed significant changes in the expression of 241 genes (p value 2). Expression of selected genes was confirmed by qPCR. Differentially expressed genes were classified into functional categories to map biological processes and molecular pathways involved. Cellular activities with roles in carbohydrate transport and metabolism, energy production and conversion, lipid transport and metabolism, amino acid transport and metabolism, two-component signaling systems, and cell motility (in particular, the flagellar organization and motility) were among metabolic processes altered in the presence of (-)-roemerine. The down-regulation of the outer membrane proteins probably led to a decrease in carbohydrate uptake rate, which in turn results in nutrient limitation. Consequently, energy metabolism is slowed down. Interestingly, the majority of the expressional alterations were found in the flagellar system. This suggested reduction in motility and loss in the ability to form biofilms, thus affecting protection of E. coli against host cell defense mechanisms. In summary, our findings suggest that the antimicrobial action of (-)-roemerine in E. coli is linked to disturbances in motility and nutrient uptake.

  8. Differential recognition of pitch patterns in discrete and gliding stimuli in congenital amusia: evidence from Mandarin speakers.

    Liu, Fang; Xu, Yi; Patel, Aniruddh D; Francart, Tom; Jiang, Cunmei

    2012-08-01

    This study examined whether "melodic contour deafness" (insensitivity to the direction of pitch movement) in congenital amusia is associated with specific types of pitch patterns (discrete versus gliding pitches) or stimulus types (speech syllables versus complex tones). Thresholds for identification of pitch direction were obtained using discrete or gliding pitches in the syllable /ma/ or its complex tone analog, from nineteen amusics and nineteen controls, all healthy university students with Mandarin Chinese as their native language. Amusics, unlike controls, had more difficulty recognizing pitch direction in discrete than in gliding pitches, for both speech and non-speech stimuli. Also, amusic thresholds were not significantly affected by stimulus types (speech versus non-speech), whereas controls showed lower thresholds for tones than for speech. These findings help explain why amusics have greater difficulty with discrete musical pitch perception than with speech perception, in which continuously changing pitch movements are prevalent. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Dislocation glide in Ni-Al solid solutions from the atomic scale up: a molecular dynamics study

    Rodary, E.

    2003-01-01

    The glide of an edge dislocation in solid solutions is studied by molecular dynamics, at fixed temperature and imposed external stress. We have optimized an EAM potential for Ni(1 a 8% A1): it well reproduces the lattice expansion, local atomic order, stacking fault energy as a function of composition, as well as the elastic properties of the γ' phase with L1 2 structure. On increasing the stress, the dislocation is first immobile, then glides with a velocity proportional to the stress and the velocity saturates on reaching the transverse sound velocity. However, only beyond a static threshold stress, σ s , does the dislocation glide a distance large enough to allow macroscopic shear; the linear part of the velocity-stress curve extrapolates to zero at a dynamical threshold stress, σ d , The friction coefficient, and the threshold stresses (σ s and σ d ), increase with the A1 concentration and decrease with temperature (300 and 500 K). Close to the critical shear stress, σ s , the dislocation glide is analysed with a 'stop and go' model. The latter yields the flight velocity between obstacles, the mean obstacle density and the distribution of the waiting time on each obstacle as a function of stress, composition and temperature. The obstacle to the glide is proposed to be the strong repulsion between Al atoms brought into nearest neighbour position by the glide process, and not the dislocation-solute interaction. The microscopic parameters so defined are introduced into a micro-mechanical model, which well reproduces the known behaviour of nickel base solid solutions. (author)

  10. A mannequin study of intubation with the AP advance and GlideScope Ranger videolaryngoscopes and the Macintosh laryngoscope.

    Hodd, Jack A R; Doyle, D John; Gupta, Shipra; Dalton, Jarrod E; Cata, Juan P; Brewer, Edward J; James, Monyulona; Sessler, Daniel I

    2011-10-01

    The AP Advance (APA) is a videolaryngoscope with interchangeable blades: intubators can choose standard Macintosh blades or a difficult-airway blade with increased curvature and a channel to guide the tube to the larynx. The APA may therefore be comparably effective in both normal and difficult airways. We tested the hypotheses that intubation with the APA is no slower than Macintosh laryngoscopy for normal mannequin airways, and that it is no slower than videolaryngoscopy using a GlideScope Ranger in difficult mannequin airways. Medical professionals whose roles potentially include tracheal intubation were trained with each device. Participants intubated simulated (Laerdal SimMan) normal and difficult airways with the APA, GlideScope, and a conventional Macintosh blade. Speed of intubation was compared using Cox proportional hazards regression, with a hazard ratio >0.8 considered noninferior. We also compared laryngeal visualization, failures, and participant preferences. Unadjusted intubation times in the normal airway with the APA and Macintosh were virtually identical (median, 22 vs 23 seconds); after adjustment for effects of experience, order, and period, the hazard ratio (95% confidence interval) comparing APA with Macintosh laryngoscopy was 0.87 (0.65, 1.17), which was not significantly more than our predefined noninferiority boundary of 0.8 (P = 0.26). Intubation with the APA was faster than with the GlideScope in difficult airways (hazard ratio = 7.6 [5.0, 11.3], P APA, whereas 33% and 37% failed with the GlideScope and Macintosh, respectively. In the difficult airway, 99% of participants achieved a Cormack and Lehane grade I to II view with the APA, versus 85% and 33% with the GlideScope and Macintosh, respectively. When asked to choose 1 device overall, 82% chose the APA. Intubation times were similar with the APA and Macintosh laryngoscopes in mannequins with normal airways. However, intubation with the APA was significantly faster than with the Glide

  11. A rolling-gliding wear simulator for the investigation of tribological material pairings for application in total knee arthroplasty

    Denkena Berend

    2010-06-01

    Full Text Available Abstract Background Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only. Methods A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made. Results The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures. Conclusions The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in

  12. A rolling-gliding wear simulator for the investigation of tribological material pairings for application in total knee arthroplasty.

    Richter, Berna I; Ostermeier, Sven; Turger, Anke; Denkena, Berend; Hurschler, Christof

    2010-06-15

    Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only. A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made. The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures. The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants.

  13. A rolling-gliding wear simulator for the investigation of tribological material pairings for application in total knee arthroplasty

    2010-01-01

    Background Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only. Methods A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made. Results The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures. Conclusions The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement

  14. Energy consumption of ProTaper Next X1 after glide path with PathFiles and ProGlider.

    Berutti, Elio; Alovisi, Mario; Pastorelli, Michele Angelo; Chiandussi, Giorgio; Scotti, Nicola; Pasqualini, Damiano

    2014-12-01

    Instrument failure caused by excessive torsional stress can be controlled by creating a manual or mechanical glide path. The ProGlider single-file system (Dentsply Maillefer, Ballaigues, Switzerland) was recently introduced to perform a mechanical glide path. This study was designed to compare the effect of a glide path performed with PathFiles (Dentsply Maillefer) and ProGlider on torque, time, and pecking motion required for ProTaper Next X1 (Dentsply Maillefer) to reach the full working length in simulated root canals. Forty Endo Training Blocks (Dentsply Maillefer) were used. Twenty were prepared with a mechanical glide path using PathFiles 1 and 2 (the PathFile group), and 20 were prepared with a mechanical glide path using a ProGlider single file (the ProGlider group). All samples were shaped with ProTaper Next X1 driven by an endodontic motor connected to a digital wattmeter. The required torque for root canal instrumentation was analyzed by evaluating the electrical power consumption of the endodontic engine. Electric power consumption (mW/h), elapsed time (seconds), and number of pecking motions required to reach the full working length with ProTaper Next X1 were calculated. Differences among groups were analyzed with the parametric Student t test for independent data (P < .05). Elapsed time and electric power consumption were significantly different between groups (P = .0001 for both). ProGlider appears to perform more efficiently than PathFiles in decreasing electric power consumption of ProTaper Next X1 to reach the full working length. This study confirmed the ability of ProGlider to reduce stress in ProTaper Next X1 during shaping through a glide path and preliminary middle and coronal preflaring. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Isolation, Culture, and Motility Measurements of Epidermal Melanocytes from GFP-Expressing Reporter Mice.

    Dagnino, Lina; Crawford, Melissa

    2018-03-27

    In this article, we provide a method to isolate primary epidermal melanocytes from reporter mice, which also allow targeted gene inactivation. The mice from which these cells are isolated are bred into a Rosa26 mT/mG reporter background, which results in GFP expression in the targeted melanocytic cell population. These cells are isolated and cultured to >95% purity. The cells can be used for gene expression studies, clonogenic experiments, and biological assays, such as capacity for migration. Melanocytes are slow moving cells, and we also provide a method to measure motility using individual cell tracking and data analysis.

  16. A systematic review on the safety of Prostar XL versus ProGlide after TAVR and EVAR

    Maniotis, Christos [2nd Cardiology Department, Hellenic Red Cross Hospital of Athens, Athens (Greece); Andreou, Constantinos; Karalis, Ioannis [Interventional Cardiology Department, University Hospital of Leiden, Leiden (Netherlands); Koutouzi, Giasemi [Interventional Radiology Department, Sahlgrenska University Hospital, Gothenburg (Sweden); Agelaki, Maria [2nd Cardiology Department, Hellenic Red Cross Hospital of Athens, Athens (Greece); Koutouzis, Michael, E-mail: koutouzismike@yahoo.gr [2nd Cardiology Department, Hellenic Red Cross Hospital of Athens, Athens (Greece)

    2017-03-15

    Background: Endovascular aortic aneurysm repair (EVAR) and transfemoral transcatheter aortic valve replacement (TAVR) are widely spreading minimally invasive procedures performed mainly through the femoral artery. Prostar XL and ProGlide vascular closure devices are used in clinical practice for the hemostasis in these procedures and they have been shown to be safe and effective. Purpose: The aim of our systematic review is to compare the safety of these two devices for percutaneous closure of large arteriotomies in patients undergoing TAVR and EVAR. Methods: We searched PubMed, EMBASE, Google Scholar and the Cochrane Central Register of Controlled Trials for all randomized and observational published studies that compared Prostar XL vs. ProGlide. Relative risk was calculated by random-effects model. Review Manager 5.1 was used for statistical analysis. Results: A total number of 2909 patients were included in our analysis. The rate of overall vascular complications did not differ between Prostar XL and ProGlide {RR 1.35 (0.80–2.29), p = 0.27}. In contrary, the risk ratio of all bleeding complications with Prostar XL compared to ProGlide was 1.82 (1.47–2.24, p < 0.001) and for major and life-threatening bleeding complications was 2.48 (1.65–3.73, p < 0001, suggesting a lower bleeding risk with ProGlide). No statistical difference was found between groups for end-stage acute kidney injury (AKI), with a risk ratio of 2.14 (0.81–5.66), p = 0.05. Finally, there were no differences in in-hospital and 30-days mortality rate between the two groups (1.41, 0.56–3.54, p = 0.46 and 1.43, 0.55–3.73, p = 0.47, respectively). Conclusions: Prostar XL is associated with greater risk of any bleeding as well as life threatening bleeding compared to the ProGlide device. However, no significant differences were observed in the rate of overall vascular complications, end stage AKI and in-hospital and 30-days mortality. - Highlights: • We present a systematic review

  17. A systematic review on the safety of Prostar XL versus ProGlide after TAVR and EVAR

    Maniotis, Christos; Andreou, Constantinos; Karalis, Ioannis; Koutouzi, Giasemi; Agelaki, Maria; Koutouzis, Michael

    2017-01-01

    Background: Endovascular aortic aneurysm repair (EVAR) and transfemoral transcatheter aortic valve replacement (TAVR) are widely spreading minimally invasive procedures performed mainly through the femoral artery. Prostar XL and ProGlide vascular closure devices are used in clinical practice for the hemostasis in these procedures and they have been shown to be safe and effective. Purpose: The aim of our systematic review is to compare the safety of these two devices for percutaneous closure of large arteriotomies in patients undergoing TAVR and EVAR. Methods: We searched PubMed, EMBASE, Google Scholar and the Cochrane Central Register of Controlled Trials for all randomized and observational published studies that compared Prostar XL vs. ProGlide. Relative risk was calculated by random-effects model. Review Manager 5.1 was used for statistical analysis. Results: A total number of 2909 patients were included in our analysis. The rate of overall vascular complications did not differ between Prostar XL and ProGlide {RR 1.35 (0.80–2.29), p = 0.27}. In contrary, the risk ratio of all bleeding complications with Prostar XL compared to ProGlide was 1.82 (1.47–2.24, p < 0.001) and for major and life-threatening bleeding complications was 2.48 (1.65–3.73, p < 0001, suggesting a lower bleeding risk with ProGlide). No statistical difference was found between groups for end-stage acute kidney injury (AKI), with a risk ratio of 2.14 (0.81–5.66), p = 0.05. Finally, there were no differences in in-hospital and 30-days mortality rate between the two groups (1.41, 0.56–3.54, p = 0.46 and 1.43, 0.55–3.73, p = 0.47, respectively). Conclusions: Prostar XL is associated with greater risk of any bleeding as well as life threatening bleeding compared to the ProGlide device. However, no significant differences were observed in the rate of overall vascular complications, end stage AKI and in-hospital and 30-days mortality. - Highlights: • We present a systematic review

  18. Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements

    Zhu, Jiajian; Sun, Zhiwei; Li, Zhongshan

    2014-01-01

    -state OH were investigated using planar laser-induced fluorescence. The results show that the shape, height, intensity and thickness of ground-state OH distribution vary significantly with air flow rates. Finally, UV emission of the gliding arc is measured using optical emission spectroscopy......We demonstrate a plasma discharge which is generated between two diverging electrodes and extended into a gliding arc in non-equilibrium condition by an air flow at atmospheric pressure. Effects of the air flow rates on the dynamics, ground-state OH distributions and spectral characterization of UV...

  19. Conversion of Methane to C2 Hydrocarbons and Hydrogen Using a Gliding Arc Reactor

    Hu Shuanghui; Wang Baowei; Lv Yijun; Yan Wenjuan

    2013-01-01

    Methane conversion has been studied using gliding arc plasma in the presence of argon. The process was conducted at atmospheric pressure and ambient temperature. The focus of this research was to develop a process of converting methane to C 2 hydrocarbons and hydrogen. The main parameters, including the CH 4 /Ar mole ratio, the CH 4 flow rate, the input voltage, and the minimum electrode gap, were varied to investigate their effects on methane conversion rate, product distribution, energy consumption, carbon deposit, and reaction stability. The specific energy requirement (SER) was used to express the energy utilization efficiency of the process and provided a practical guidance for optimizing reaction conditions for improving energy efficiency. It was found that the carbon deposition was not conducive to methane conversion, and the gliding arc plasma discharge reached a stable state twelve minutes later. Optimum conditions for methane conversion were suggested. The maximum methane conversion rate of 43.39% was obtained under the optimum conditions. Also, C 2 hydrocarbons selectivity, C 2 hydrocarbons yield, H 2 selectivity, H 2 yield and SER were 87.20%, 37.83%, 81.28%, 35.27%, and 2.09 MJ/mol, respectively.

  20. Instantaneous imaging of ozone in a gliding arc discharge using photofragmentation laser-induced fluorescence

    Larsson, Kajsa; Hot, Dina; Gao, Jinlong; Kong, Chengdong; Li, Zhongshan; Aldén, Marcus; Bood, Joakim; Ehn, Andreas

    2018-04-01

    Ozone vapor, O3, is here visualized in a gliding arc discharge using photofragmentation laser-induced fluorescence. Ozone is imaged by first photodissociating the O3 molecule into an O radical and a vibrationally hot O2 fragment by a pump photon. Thereafter, the vibrationally excited O2 molecule absorbs a second (probe) photon that further transits the O2-molecule to an excited electronic state, and hence, fluorescence from the deexcitation process in the molecule can be detected. Both the photodissociation and excitation processes are achieved within one 248 nm KrF excimer laser pulse that is formed into a laser sheet and the fluorescence is imaged using an intensified CCD camera. The laser-induced signal in the vicinity of the plasma column formed by the gliding arc is confirmed to stem from O3 rather than plasma produced vibrationally hot O2. While both these products can be produced in plasmas a second laser pulse at 266 nm was utilized to separate the pump- from the probe-processes. Such arrangement allowed lifetime studies of vibrationally hot O2, which under these conditions were several orders of magnitude shorter than the lifetime of plasma-produced ozone.

  1. CO2 Dissociation by Low Current Gliding Discharge in the Reverse Vortex Flow

    Gutsol, Alexander

    2012-10-01

    If performed with high energy efficiency, plasma-chemical dissociation of carbon dioxide can be a way of converting and storing energy when there is an excess of electric energy, for example generated by solar elements of wind turbines. CO2 dissociation with efficiency of up to 90% was reported earlier for low pressure microwave discharge in supersonic flow. A new plasma-chemical system uses a low current gliding discharge in the reverse vortex flow of plasma gas. The system is a development of the Gliding Arc in Tornado reactor. The system was used to study dissociation of CO2 in wide ranges of the following experimental parameters: reactor pressure (15-150 kPa), discharge current (50-500 mA), gas flow rate (3-30 liters per minute), and electrode gap length (1-10 cm). Additionally, the effect of thermal energy recuperation on CO2 dissociation efficiency was tested. Plasma chemical efficiency of CO2 dissociation is very low (about 3%) in a short discharge at low pressures (about 15 kPa) when it is defined by electronic excitation. The highest efficiency (above 40%) was reached at pressures 50-70 kPa in a long discharge with thermal energy recuperation. It means that the process is controlled by thermal dissociation with subsequent effective quenching. Plasma chemical efficiency was determined from the data of chromatographic analysis and oscilloscope electric power integration, and also was checked calorimetrically by the thermal balance of the system.

  2. Degradation of gas-liquid gliding arc discharge on Acid Orange II

    Yan, J.H.; Liu, Y.N.; Bo, Zh.; Li, X.D.; Cen, K.F.

    2008-01-01

    The effects of pH value, initial concentration of dye solution and temperature on the degradation efficiency of Acid Orange II (AO7) using gas-liquid gliding arc discharge were investigated. The influences of pH value and temperature on degradation efficiency were not apparent. Increasing initial solution concentration caused the decrease of degradation rate and the increase of absolute degradation quantity. Considering energy efficiency and absolute degradation quantity, the gas-liquid gliding arc discharge is fit for treating high concentration organic wastewater. A possible mineralization pathway was proposed through the analysis of intermediate products detected by gas chromatograph coupled with mass spectrophotometer (GC-MS) and ion chromatograph (IC). Hydroxyl radicals reacted with the azo linkage-bearing carbon of a hydroxy-substituted ring, leading to the cleavage of -C-N- and degradation of AO7. The solution biodegradability was significantly improved (BOD 5 /COD from 0.02 to 0.43). The toxicity of intermediate products was lower than that of the initial Acid Orange II

  3. Arc dynamics of a pulsed DC nitrogen rotating gliding arc discharge

    Zhu, Fengsen; Zhang, Hao; Li, Xiaodong; Wu, Angjian; Yan, Jianhua; Ni, Mingjiang; Tu, Xin

    2018-03-01

    In this study, a novel pulsed direct current (DC) rotating gliding arc (RGA) plasma reactor co-driven by an external magnetic field and a tangential gas flow has been developed. The dynamic characteristics of the rotating gliding arc have been investigated by means of numerical simulation and experiment. The simulation results show that a highly turbulent vortex flow can be generated at the bottom of the RGA reactor to accelerate the arc rotation after arc ignition, whereas the magnitude of gas velocity declined significantly along the axial direction of the RGA reactor. The calculated arc rotation frequency (14.4 Hz) is reasonably close to the experimental result (18.5 Hz) at a gas flow rate of 10 l min-1. In the presence of an external magnet, the arc rotation frequency is around five times higher than that of the RGA reactor without using a magnet, which suggests that the external magnetic field plays a dominant role in the maintenance of the arc rotation in the upper zone of the RGA reactor. In addition, when the magnet is placed outside the reactor reversely to form a reverse external magnetic field, the arc can be stabilized at a fixed position in the inner wall of the outer electrode at a critical gas flow rate of 16 l min-1.

  4. Cell motility as persistent random motion: Theories from experiments

    Selmeczi, D.; Mosler, S.; Hagedorn, P.H.

    2005-01-01

    Experimental time series for trajectories of motile cells may contain so much information that a systematic analysis will yield cell-type- specific motility models. Here we demonstrate how, using human keratinocytes and fibroblasts as examples. The two resulting models reflect the cells' differen...

  5. The management of motility disorders in critical illness | Retief ...

    Gastric motility disorders in the intensive care unit (ICU) are a reality leading to many complications including inadequate EN delivery. Care should be taken to understand what type of gastric motility disorder is present and therapy should be prescribed early to prevent worsening of clinical outcomes.

  6. Mechanics model for actin-based motility.

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  7. Seeking sunlight: rapid phototactic motility of filamentous mat-forming cyanobacteria optimize photosynthesis and enhance carbon burial in Lake Huron’s submerged sinkholes

    Biddanda, Bopaiah A.; McMillan, Adam C.; Long, Stephen A.; Snider, Michael J.; Weinke, Anthony D.

    2015-01-01

    We studied the motility of filamentous mat-forming cyanobacteria consisting primarily of Oscillatoria-like cells growing under low-light, low-oxygen, and high-sulfur conditions in Lake Huron’s submerged sinkholes using in situ observations, in vitro measurements and time-lapse microscopy. Gliding movement of the cyanobacterial trichomes (100–10,000 μm long filaments, composed of cells ∼10 μm wide and ∼3 μm tall) revealed individual as well as group-coordinated motility. When placed in a petri dish and dispersed in ground water from the sinkhole, filaments re-aggregated into defined colonies within minutes, then dispersed again. Speed of individual filaments increased with temperature from ∼50 μm min-1 or ∼15 body lengths min-1 at 10°C to ∼215 μm min-1 or ∼70 body lengths min-1 at 35°C – rates that are rapid relative to non-flagellated/ciliated microbes. Filaments exhibited precise and coordinated positive phototaxis toward pinpoints of light and congregated under the light of foil cutouts. Such light-responsive clusters showed an increase in photosynthetic yield – suggesting phototactic motility aids in light acquisition as well as photosynthesis. Once light source was removed, filaments slowly spread out evenly and re-aggregated, demonstrating coordinated movement through inter-filament communication regardless of light. Pebbles and pieces of broken shells placed upon intact mat were quickly covered by vertically motile filaments within hours and became fully buried in the anoxic sediments over 3–4 diurnal cycles – likely facilitating the preservation of falling debris. Coordinated horizontal and vertical filament motility optimize mat cohesion and dynamics, photosynthetic efficiency and sedimentary carbon burial in modern-day sinkhole habitats that resemble the shallow seas in Earth’s early history. Analogous cyanobacterial motility may have played a key role in the oxygenation of the planet by optimizing photosynthesis while

  8. Thyroxin Is Useful to Improve Sperm Motility

    Mendeluk Gabriela Ruth

    2016-07-01

    Full Text Available Background The aim of this study was to evaluate the non-genomic action of thyroxin on sperm kinetic and its probable use to improve sperm recovery after applying an en- richment method like “swim-up” in comparison with the available one, pentoxifylline. Materials and Methods This is an experimental study. A total of 50 patients were re- cruited, followed by infertility consultation. Conventional sperm assays were performed according to World Health Organization criteria-2010 (WHO-2010. A Computer Aided Semen Analysis System was employed to assess kinetic parameters and concentrations. Number of the motile sperm recovered after preparation technique was calculated. Results Addition of T4 (0.002 µg/ml to semen samples increased hypermotility at 20 minutes (control: 14.18 ± 5.1% vs. 17.66 ± 8.88%, P<0.03, data expressed as mean ± SD and remained unchanged after 40 minutes. Significant differences were found in the motile sperm recovered after swim-up (control: 8.93×106 ± 9.52× 06vs. 17.20×106 ± 21.16×106, P<0.03, achieving all of the tested samples a desirable threshold value for artificial insemination outcome, while adding pentoxifylline increased the number of recovered sperm after swim-up in 60% of the studied cases. No synergism between two treatments could be determined. Conclusion We propose a new physiological tool to artificially improve insemination. The discussion opens windows to investigate unknown pathways involved in sperm ca- pacitation and gives innovative arguments to better understand infertility mechanisms.

  9. Motility of copepod nauplii and implications for food encounter

    Titelman, Josefin; Kiørboe, Thomas

    2003-01-01

    (Centropages typicus, Calanus helgolandicus, Temora longicornis, Acartia tonsa, Eurytemora affinis and Euterpina acutifrons). Behaviors of individual nauphi were divided into sequences of sinking, swimming and jumping events. Motility behavior is both stage- and species-specific in terms of appearance......Velocity differences drive all encounter processes. Therefore, knowledge of both prey and predator motility are essential in order to understand feeding behavior and predict food acquisition rates. Here, we describe and quantify the motility behavior of young and old naupliar stages of 6 copepods...... of tracks, speeds, durations and frequencies of events as well as time budgets. Motility mode often changes drastically during naupliar ontogeny. Crudely, nauplii can be divided into those moving with a jump-sink type of motility of various frequencies (1 min(-1) to 3 s(-1)) and those swimming...

  10. High motility reduces grazing mortality of planktonic bacteria

    Matz, Carsten; Jurgens, K.

    2005-01-01

    We tested the impact of bacterial swimming speed on the survival of planktonic bacteria in the presence of protozoan grazers. Grazing experiments with three common bacterivorous nanoflagellates revealed low clearance rates for highly motile bacteria. High-resolution video microscopy demonstrated...... size revealed highest grazing losses for moderately motile bacteria with a cell size between 0.2 and 0.4 mum(3). Grazing mortality was lowest for cells of >0.5 mum(3) and small, highly motile bacteria. Survival efficiencies of >95% for the ultramicrobacterial isolate CP-1 (less than or equal to0.1 mum......(3), >50 mum s(-1)) illustrated the combined protective action of small cell size and high motility. Our findings suggest that motility has an important adaptive function in the survival of planktonic bacteria during protozoan grazing....

  11. Mitochondrial respiratory efficiency is positively correlated with human sperm motility.

    Ferramosca, Alessandra; Provenzano, Sara Pinto; Coppola, Lamberto; Zara, Vincenzo

    2012-04-01

    To correlate sperm mitochondrial respiratory efficiency with variations in sperm motility and with sperm morphologic anomalies. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically-treated sperm cells. A possible relationship among sperm mitochondrial respiratory efficiency, sperm motility, and morphologic anomalies was investigated. Mitochondrial respiratory efficiency was positively correlated with sperm motility and negatively correlated with the percentage of immotile spermatozoa. Moreover, midpiece defects impaired mitochondrial functionality. Our data indicate that an increase in sperm motility requires a parallel increase in mitochondrial respiratory capacity, thereby supporting the fundamental role played by mitochondrial oxidative phosphorylation in sperm motility of normozoospermic subjects. These results are of physiopathological relevance because they suggest that disturbances of sperm mitochondrial function and of energy production could be responsible for asthenozoospermia. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. BMP-2 Overexpression Augments Vascular Smooth Muscle Cell Motility by Upregulating Myosin Va via Erk Signaling

    Ming Zhang

    2014-01-01

    Full Text Available Background. The disruption of physiologic vascular smooth muscle cell (VSMC migration initiates atherosclerosis development. The biochemical mechanisms leading to dysfunctional VSMC motility remain unknown. Recently, cytokine BMP-2 has been implicated in various vascular physiologic and pathologic processes. However, whether BMP-2 has any effect upon VSMC motility, or by what manner, has never been investigated. Methods. VSMCs were adenovirally transfected to genetically overexpress BMP-2. VSMC motility was detected by modified Boyden chamber assay, confocal time-lapse video assay, and a colony wounding assay. Gene chip array and RT-PCR were employed to identify genes potentially regulated by BMP-2. Western blot and real-time PCR detected the expression of myosin Va and the phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2. Immunofluorescence analysis revealed myosin Va expression locale. Intracellular Ca2+ oscillations were recorded. Results. VSMC migration was augmented in VSMCs overexpressing BMP-2 in a dose-dependent manner. siRNA-mediated knockdown of myosin Va inhibited VSMC motility. Both myosin Va mRNA and protein expression significantly increased after BMP-2 administration and were inhibited by Erk1/2 inhibitor U0126. BMP-2 induced Ca2+ oscillations, generated largely by a “cytosolic oscillator”. Conclusion. BMP-2 significantly increased VSMCs migration and myosin Va expression, via the Erk signaling pathway and intracellular Ca2+ oscillations. We provide additional insight into the pathophysiology of atherosclerosis, and inhibition of BMP-2-induced myosin Va expression may represent a potential therapeutic strategy.

  13. CCN5 modulates the antiproliferative effect of heparin and regulates cell motility in vascular smooth muscle cells

    Castellot John J

    2003-11-01

    Full Text Available Abstract Background Vascular smooth muscle cell (VSMC hyperplasia plays an important role in both chronic and acute vascular pathologies including atherosclerosis and restenosis. Considerable work has focused on the mechanisms regulating VSMC proliferation and motility. Earlier work in our lab revealed a novel growth arrest-specific (gas gene induced in VSMC exposed to the antiproliferative agent heparin. This gene is a member of the CCN family and has been given the name CCN5. The objective of the present study is to elucidate the function of CCN5 protein and to explore its mechanism of action in VSMC. Results Using RNA interference (RNAi, we first demonstrate that CCN5 is required for the antiproliferative effect of heparin in VSMC. We also use this gene knockdown approach to show that CCN5 is an important negative regulator of motility. To explore the mechanism of action of CCN5 on VSMC motility, we use RNAi to demonstrate that knock down of CCN5 up regulates expression of matrix metalloproteinase-2 (MMP-2, an important stimulator of motility in VSMC. In addition, forced expression of CCN5 via adenovirus results in reduced MMP-2 activity, this also corroborates the gene knock down results. Finally, we show that loss of CCN5 expression in VSMC causes changes in VSMC morphology and cytoskeletal organization, including a reduction in the amount and macromolecular assembly of smooth muscle cell α-actin. Conclusions This work provides important new insights into the regulation of smooth muscle cell proliferation and motility by CCN5 and may aid the development of therapies for vascular diseases.

  14. Differential Recognition of Pitch Patterns in Discrete and Gliding Stimuli in Congenital Amusia: Evidence from Mandarin Speakers

    Liu, Fang; Xu, Yi; Patel, Aniruddh D.; Francart, Tom; Jiang, Cunmei

    2012-01-01

    This study examined whether "melodic contour deafness" (insensitivity to the direction of pitch movement) in congenital amusia is associated with specific types of pitch patterns (discrete versus gliding pitches) or stimulus types (speech syllables versus complex tones). Thresholds for identification of pitch direction were obtained using discrete…

  15. Estimating intratidal nonlinearity of respiratory system mechanics: a model study using the enhanced gliding-SLICE method

    Schumann, Stefan; Burcza, Boris; Guttmann, Josef; Haberthür, Christoph; Lichtwarck-Aschoff, Michael

    2009-01-01

    In the clinical situation and in most research work, the analysis of respiratory system mechanics is limited to the estimation of single-value compliances during static or quasi-static conditions. In contrast, our SLICE method analyses intratidal nonlinearity under the dynamic conditions of mechanical ventilation by calculating compliance and resistance for six conjoined volume portions (slices) of the pressure–volume loop by multiple linear regression analysis. With the gliding-SLICE method we present a new approach to determine continuous intratidal nonlinear compliance. The performance of the gliding-SLICE method was tested both in computer simulations and in a physical model of the lung, both simulating different intratidal compliance profiles. Compared to the original SLICE method, the gliding-SLICE method resulted in smaller errors when calculating the compliance or pressure course (all p 2 O s L −1 to 0.8 ± 0.3 cmH 2 O s L −1 (mathematical model) and from 7.2 ± 3.9 cmH 2 O s L −1 to 0.4 ± 0.2 cmH 2 O s L −1 (physical model) (all p < 0.001). We conclude that the new gliding-SLICE method allows detailed assessment of intratidal nonlinear respiratory system mechanics without discontinuity error

  16. Gene

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  17. Coordinated motility of cyanobacteria favor mat formation, photosynthesis and carbon burial in low-oxygen, high-sulfur shallow sinkholes of Lake Huron; whereas deep-water aphotic sinkholes are analogs of deep-sea seep and vent ecosystems

    Biddanda, B. A.; McMillan, A. C.; Long, S. A.; Snider, M. J.; Weinke, A. D.; Dick, G.; Ruberg, S. A.

    2016-02-01

    Microbial life in submerged sinkhole ecosystems of the Laurentian Great Lakes is relatively understudied in comparison to seeps and vents of the deep-sea. We studied the filamentous benthic mat-forming cyanobacteria consisting primarily of Oscillatoria-like cells growing under low-light, low-oxygen and high-sulfur conditions in Lake Huron's submerged sinkholes using in situ observations, in vitro measurements and time-lapse microscopy. Gliding movement of the cyanobacterial trichomes revealed individual as well as group-coordinated motility. When placed in a petri dish and dispersed in ground water from the sinkhole, filaments re-aggregated into defined colonies within minutes. Measured speed of individual filaments ranged from 50 µm minute-1 or 15 body lengths minute-1 to 215 µm minute-1 or 70 body lengths minute-1 - rates that are rapid relative to non-flagellated/ciliated microbes. Filaments exhibited precise and coordinated positive phototaxis towards pinpoints of light and congregated under the light of foil cutouts. Such light-responsive clusters showed an increase in photosynthetic yield - suggesting phototactic motility aids in light acquisition as well as photosynthesis. Pebbles and pieces of broken shells placed upon the mat in intact sediemnt cores were quickly covered by vertically motile filaments within hours and became fully buried in the anoxic sediments over 3-4 diurnal cycles - likely facilitating the preservation of falling plankton debris. Coordinated horizontal and vertical filament motility optimize mat cohesion and dynamics, photosynthetic efficiency and sedimentary carbon burial in modern-day sinkhole habitats where life operates across sharp redox gradients. Analogous cyanobacterial motility in the shallow seas during Earth's early history, may have played a key role in the oxygenation of the planet by optimizing photosynthesis while favoring carbon burial. We are now eagerly mapping and exploring life in deep-water aphotic sinkholes of

  18. Exploratory Research on Latent Esophageal Motility Disorders in Dysphagia Patients.

    Kawaguchi, Shinpei; Takeuchi, Toshihisa; Inoue, Yousuke; Takahashi, Yoshiaki; Ozaki, Haruhiko; Ota, Kazuhiro; Harada, Satoshi; Edogawa, Shoko; Kojima, Yuichi; Yamashita, Hiroshi; Fukuchi, Takumi; Ashida, Kiyoshi; Higuchi, Kazuhide

    2017-01-01

    High-resolution manometry (HRM) has been applied to assess esophageal motility disorders. However, the frequency and types of motility disorders in patients with dysphagia, which are frequently seen in clinical practice, are not clear. We evaluated latent esophageal motility disorders associated with dysphagia. The study included patients without erosive esophageal mucosal damage and with dysphagia symptoms refractory to at least 8 weeks of standard-dose proton pump inhibitors. After enrolment, HRM was used to evaluate for esophageal motility disorder based on the Chicago classification. Esophageal motility disorder was found in 58 of 100 patients and was classified based on the causes: achalasia (13%), esophagogastric junction outflow obstruction (16%), distal esophageal spasms (3%), weak peristalsis (14%), frequently failed peristalsis (5%), and hypertensive peristalsis (7%). Primary esophageal motility disorder was found in approximately 50% of cases in dysphagia patients. Therefore, esophageal motility disorder is not an uncommon condition and should be sought for in order to elucidate precisely the cause of dysphagia. © 2017 S. Karger AG, Basel.

  19. Gliding lizards use the position of the sun to enhance social display.

    Klomp, Danielle A; Stuart-Fox, Devi; Das, Indraneil; Ord, Terry J

    2017-02-01

    Effective communication requires animal signals to be readily detected by receivers in the environments in which they are typically given. Certain light conditions enhance the visibility of colour signals and these conditions can vary depending on the orientation of the sun and the position of the signaller. We tested whether Draco sumatranus gliding lizards modified their position relative to the sun to enhance the conspicuousness of their throat-fan (dewlap) during social display to conspecifics. The dewlap was translucent, and we found that lizards were significantly more likely to orient themselves perpendicular to the sun when displaying. This increases the dewlap's radiance, and likely, its conspicuousness, by increasing the amount of light transmitted through the ornament. This is a rare example of a behavioural adaptation for enhancing the visibility of an ornament to distant receivers. © 2017 The Author(s).

  20. Improved MPSP Method-based Cooperative Re-entry Guidance for Hypersonic Gliding Vehicles

    Chu Haiyan

    2017-01-01

    Full Text Available A computationally sufficient technique is used to solve the 3-D cooperative re-entry guidance problem for hypersonic gliding vehicles. Due to the poor surrounding adaptive ability of the traditional cooperative guidance methods, a novel methodology, named as model predictive static programming (MPSP, is used to solve a class of finite-horizon optimal control problems with hard terminal constraints. The main feature of this guidance law is that it is capable of hitting the target with high accuracy for each one of the cooperative vehicles at the same time. In addition, it accurately satisfies variable constraints. Performance of the proposed MPSP-based guidance is demonstrated in 3-D nonlinear dynamics scenario. The numerical simulation results show that the proposed cooperative re-entry guidance methodology has the advantage of computational efficiency and better robustness against the perturbations.

  1. Treatment by gliding arc of epoxy resin: preliminary analysis of surface modifications

    Faubert, F.; Wartel, M.; Pellerin, N.; Pellerin, S.; Cochet, V.; Regnier, E.; Hnatiuc, B.

    2016-12-01

    Treatments with atmospheric pressure non-thermal plasma are easy to implement and inexpensive. Among them gliding arc (GlidArc) remains rarely used in surface treatment of polymers. However, it offers economic and flexible way to treat quickly large areas. In addition the choice of carrier gas makes it possible to bring the active species and other radicals allowing different types of grafting and functionalization of the treated surfaces, for example in order to apply for anti-biofouling prevention. This preliminary work includes analysis of the surface of epoxy resins by infrared spectroscopy: the different affected chemical bonds were studied depending on the duration of treatment. The degree of oxidation (the C/O ratio) is obtained by X-ray microanalysis and contact angle analysis have been performed to determinate the wettability properties of the treated surface. A spectroscopic study of the plasma allows to determine the possible active species in the different zones of the discharge.

  2. Non-planar dislocations: 3D models and thermally-activated glide processes

    Ngan, A.H.W.

    2005-01-01

    In recent years, there has been a renewed interest in studying the cross-slip of screw dislocations in the simple face-centred cubic (FCC) structure. This paper serves to address parallel developments in modelling the cross-slip of screw dislocations in the body-centred cubic (BCC) structure and the ordered L1 2 structure. In the latter two cases, the dislocation cores have non-planar spreading offering high intrinsic Peierls stresses. The flow behaviours of these materials, such as the non-Schmid behaviour and temperature-dependence of flow stress, are largely due to the behaviours of single dislocations. 3D atomistic modelling of the minimum-energy path for the glide processes in these cases is performed with an aim to reconcile with experimentally determined activation energies for slip

  3. Coordination of glioblastoma cell motility by PKCι

    Baldwin R Mitchell

    2010-09-01

    Full Text Available Abstract Background Glioblastoma is one of the deadliest forms of cancer, in part because of its highly invasive nature. The tumor suppressor PTEN is frequently mutated in glioblastoma and is known to contribute to the invasive phenotype. However the downstream events that promote invasion are not fully understood. PTEN loss leads to activation of the atypical protein kinase C, PKCι. We have previously shown that PKCι is required for glioblastoma cell invasion, primarily by enhancing cell motility. Here we have used time-lapse videomicroscopy to more precisely define the role of PKCι in glioblastoma. Results Glioblastoma cells in which PKCι was either depleted by shRNA or inhibited pharmacologically were unable to coordinate the formation of a single leading edge lamellipod. Instead, some cells generated multiple small, short-lived protrusions while others generated a diffuse leading edge that formed around the entire circumference of the cell. Confocal microscopy showed that this behavior was associated with altered behavior of the cytoskeletal protein Lgl, which is known to be inactivated by PKCι phosphorylation. Lgl in control cells localized to the lamellipod leading edge and did not associate with its binding partner non-muscle myosin II, consistent with it being in an inactive state. In PKCι-depleted cells, Lgl was concentrated at multiple sites at the periphery of the cell and remained in association with non-muscle myosin II. Videomicroscopy also identified a novel role for PKCι in the cell cycle. Cells in which PKCι was either depleted by shRNA or inhibited pharmacologically entered mitosis normally, but showed marked delays in completing mitosis. Conclusions PKCι promotes glioblastoma motility by coordinating the formation of a single leading edge lamellipod and has a role in remodeling the cytoskeleton at the lamellipod leading edge, promoting the dissociation of Lgl from non-muscle myosin II. In addition PKCι is required

  4. [fs-Lentotomy: presbyopia reversal by generating gliding planes inside the crystalline lens].

    Lubatschowski, H; Schumacher, S; Wegener, A; Fromm, M; Oberheide, U; Hoffmann, H; Gerten, G

    2009-12-01

    Based on the Helmholtz theory for accommodation, increasing sclerosis of the lens nucleus and cortex is the main cause for the development of presbyopia. Existing therapies, however, do not reverse the stiffness of the crystalline lens and thus do not regain real accommodation ability. A new approach to restore the flexibility of the lens has been realised by utilising the non-linear interaction of ultrafast laser pulses with transparent tissue, the so-called photodisruption. This process has been used to create micro-incisions which act as gliding planes inside the crystalline lens without opening the eye globe. This treatment method, known as fs-lentotomy, enables regeneration of real dynamic accommodation. For the first time, 3D structures for gliding planes were successfully generated in experiments with human donor lenses of different ages. An average increase in anterior-posterior lens thickness of 100 mum accompanied by a decrease of equatorial lens diameter was observed as a direct consequence of fs-lentotomy. This is attributed to the increased flexibility, as the force of the capsule bag moulds the lens tissue more spherically. Moreover, in vivo experiments on rabbit eye lenses did not induce an increasing opacification (cataract) over a six-month follow-up period. However, the incisions were still detectable using Scheimpflug imaging and histopathological techniques, although the visibility of the incisions was declining. Furthermore, no side effects were observed during the wound healing process and during a six-months follow-up period. Based on these findings fs-lentotomy might have the potential to become a procedure for the reversal of presbyopia. Copyright Georg Thieme Verlag KG Stuttgart . New York.

  5. Defective glycinergic synaptic transmission in zebrafish motility mutants

    Hiromi Hirata

    2010-01-01

    Full Text Available Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs.

  6. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2009-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho) mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch-once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch-once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs. PMID:20161699

  7. Radiological evaluation of esophageal motility and gastroesophageal reflux disease

    Schima, W.; Pokieser, P.; Schober, E.

    1995-01-01

    Radiological evaluation of esophageal motility and the lower esophageal sphincter has gained increased attention in recent years. Videofluoroscopic investigation of esophageal motor function is superior to static film radiography, as repeated analysis of the videotaped recordings is possible. With emphasis on radiological techniques, normal esophagel physiology and motility and a variety of esophageal motor disorders are discussed in this review paper. Radiological evaluation of gastroesophageal reflux and reflux esophagitis is described. Clinical and radiological findings in esophageal motility disorders and gastroesophageal reflux disease and the radiological efficacy compared to that of manometry and pH-metry are discussed. (orig.) [de

  8. The Chicago classification of motility disorders: an update.

    Roman, Sabine; Gyawali, C Prakash; Xiao, Yinglian; Pandolfino, John E; Kahrilas, Peter J

    2014-10-01

    The Chicago Classification defines esophageal motility disorders in high resolution manometry. This is based on individual scoring of 10 swallows performed in supine position. Disorders of esophago-gastric junction (EGJ) outflow obstruction are defined by a median integrated relaxation pressure above the limit of normal and divided into 3 achalasia subtypes and EGJ outflow obstruction. Major motility disorders (aperistalsis, distal esophageal spasm, and hypercontractile esophagus) are patterns not encountered in controls in the context of normal EGJ relaxation. Finally with the latest version of the Chicago Classification, only two minor motor disorders are considered: ineffective esophageal motility and fragmented peristalsis. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Bacterial motility in the sea and its ecological implications

    Grossart, Hans-Peter; Riemann, Lasse; Azam, F.

    2001-01-01

    the coast of La Jolla, California, as well as a mesocosm study to examine bacterial motility and its relationship to environmental variables. Dark-field microscopy revealed periods of sustained low (fall and winter, ...). Bacteria in natural seawater did not swim constantly nor at constant speeds; over 40% swam algae, bacteria...... swimming. Our results show that a variable fraction of marine bacteria is able to respond to loci of organic matter, e.g. organic particles and algae, and that motility underlies dynamic patterns of ecological relationships (symbiosis, competition, parasitism) between bacteria and algae. Since motility may...

  10. PTP1B inhibitor promotes endothelial cell motility by activating the DOCK180/Rac1 pathway.

    Wang, Yuan; Yan, Feng; Ye, Qing; Wu, Xiao; Jiang, Fan

    2016-04-07

    Promoting endothelial cell (EC) migration is important not only for therapeutic angiogenesis, but also for accelerating re-endothelialization after vessel injury. Several recent studies have shown that inhibition of protein tyrosine phosphatase 1B (PTP1B) may promote EC migration and angiogenesis by enhancing the vascular endothelial growth factor receptor-2 (VEGFR2) signalling. In the present study, we demonstrated that PTP1B inhibitor could promote EC adhesion, spreading and migration, which were abolished by the inhibitor of Rac1 but not RhoA GTPase. PTP1B inhibitor significantly increased phosphorylation of p130Cas, and the interactions among p130Cas, Crk and DOCK180; whereas the phosphorylation levels of focal adhesion kinase, Src, paxillin, or Vav2 were unchanged. Gene silencing of DOCK180, but not Vav2, abrogated the effects of PTP1B inhibitor on EC motility. The effects of PTP1B inhibitor on EC motility and p130Cas/DOCK180 activation persisted in the presence of the VEGFR2 antagonist. In conclusion, we suggest that stimulation of the DOCK180 pathway represents an alternative mechanism of PTP1B inhibitor-stimulated EC motility, which does not require concomitant VEGFR2 activation as a prerequisite. Therefore, PTP1B inhibitor may be a useful therapeutic strategy for promoting EC migration in cardiovascular patients in which the VEGF/VEGFR functions are compromised.

  11. Condensed images for evaluating gastric motility patterns

    Tatsch, K.; Schroettle, W.; Kirsch, C.-M. (Munich Univ. (Germany, F.R.). Dept. of Radiology)

    1991-04-01

    A condensed imaging technique was applied to gastric emptying studies to investigate (a) whether different types of motility disorders may be distinguished by characteristic image patterns and (b) whether the findings obtained provide additional information compared to standard quantitative measurements. Condensed images and quantitative data of gastric emptying were evaluated in 75 consecutive patients with normal function and various disorders such as peptic ulcer, postvagotomy, pyloric obstruction, dumping syndrome, gastoparesis etc. Condensed images were generated from a gastric region of interest. They display the distribution and behaviour of a radioactive test meal in a space-time matrix, whose horizontal and vertical dimensions are temporal and spatial, respectively. As shown in a series of representative examples condensed images disclose a variety of well-defined image patterns reflecting different pathophysiological mechanisms. This qualitative characterization of gastric emptying patterns provided in 34 of the 75 patients (45%) important new information compared to quantitative data. The application of condensed imaging techniques to gastric emptying studies (complementary to quantitative measurements) may, therefore, enhance the diagnostic value of scintigraphic techniques. (author).

  12. Scintigraphic evaluation of gastric emptying and motility

    Linke, R.

    2003-01-01

    The stomach consists of two functionally distinct parts. The fundus and upper corpus mainly serve as a reservoir and exert primarily a tonic activity, which presses ingesta towards the antrum and duodenum. The phasic contractility of the lower corpus and antrum cause mechanical breakdown and mixing of the food particels. A complex regulation of these mechanisms provides a regular gastric emptying. Various disorders such as diabetes mellitus, mixed connective tissue diseases, gastritis, tumors, dyspeptic disorders but also drugs and gastric surgery may influence or impair gastric function and may cause typical symptoms such as upper abdominal discomfort, bloating, nausea and vomiting. However, the interpretation of gastrointestinal symptoms often is difficult. Radionuclide studies of gastric emptying and motility are the most physiologic tools available for studying gastric motor function. Gastric scintigraphy is non-invasive, uses physiologic meal and is quantitative. Emptying curves generated from the gastric ROI offer information whether a disorder is accompanied by a regular, fast or slow gastric emptying. Data on gastric contractions (amplitude and frequency) provide additional information to results obtained by conventional emptying studies. Depending on the underlying disorder, gastric emptying and peristalsis showed both corresponding and discrepant findings. Therefore, both parameters should be routinely assessed to further improve characterisation of gastric dysfunction by scintigraphy. (orig.) [de

  13. The Small RNA ErsA of Pseudomonas aeruginosa Contributes to Biofilm Development and Motility through Post-transcriptional Modulation of AmrZ

    Falcone, Marilena; Ferrara, Silvia; Rossi, Elio

    2018-01-01

    . In this study, we show that a knock-out ersA mutant strain forms a flat and uniform biofilm, not characterized by mushroom-multicellular structures typical of a mature biofilm. Conversely, the knock-out mutant strain showed enhanced swarming and twitching motilities. To assess the influence of ErsA on the P....... aeruginosa transcriptome, we performed RNA-seq experiments comparing the knock-out mutant with the wild-type. More than 160 genes were found differentially expressed in the knock-out mutant. Parts of these genes, important for biofilm formation and motility regulation, are known to belong also to the Amr...

  14. Compositional and expression analyses of the glideosome during the Plasmodium life cycle reveal an additional myosin light chain required for maximum motility.

    Green, Judith L; Wall, Richard J; Vahokoski, Juha; Yusuf, Noor A; Ridzuan, Mohd A Mohd; Stanway, Rebecca R; Stock, Jessica; Knuepfer, Ellen; Brady, Declan; Martin, Stephen R; Howell, Steven A; Pires, Isa P; Moon, Robert W; Molloy, Justin E; Kursula, Inari; Tewari, Rita; Holder, Anthony A

    2017-10-27

    Myosin A (MyoA) is a Class XIV myosin implicated in gliding motility and host cell and tissue invasion by malaria parasites. MyoA is part of a membrane-associated protein complex called the glideosome, which is essential for parasite motility and includes the MyoA light chain myosin tail domain-interacting protein (MTIP) and several glideosome-associated proteins (GAPs). However, most studies of MyoA have focused on single stages of the parasite life cycle. We examined MyoA expression throughout the Plasmodium berghei life cycle in both mammalian and insect hosts. In extracellular ookinetes, sporozoites, and merozoites, MyoA was located at the parasite periphery. In the sexual stages, zygote formation and initial ookinete differentiation precede MyoA synthesis and deposition, which occurred only in the developing protuberance. In developing intracellular asexual blood stages, MyoA was synthesized in mature schizonts and was located at the periphery of segmenting merozoites, where it remained throughout maturation, merozoite egress, and host cell invasion. Besides the known GAPs in the malaria parasite, the complex included GAP40, an additional myosin light chain designated essential light chain (ELC), and several other candidate components. This ELC bound the MyoA neck region adjacent to the MTIP-binding site, and both myosin light chains co-located to the glideosome. Co-expression of MyoA with its two light chains revealed that the presence of both light chains enhances MyoA-dependent actin motility. In conclusion, we have established a system to study the interplay and function of the three glideosome components, enabling the assessment of inhibitors that target this motor complex to block host cell invasion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. A novel high throughput assay for anthelmintic drug screening and resistance diagnosis by real-time monitoring of parasite motility.

    Michael J Smout

    Full Text Available BACKGROUND: Helminth parasites cause untold morbidity and mortality to billions of people and livestock. Anthelmintic drugs are available but resistance is a problem in livestock parasites, and is a looming threat for human helminths. Testing the efficacy of available anthelmintic drugs and development of new drugs is hindered by the lack of objective high-throughput screening methods. Currently, drug effect is assessed by observing motility or development of parasites using laborious, subjective, low-throughput methods. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a novel application for a real-time cell monitoring device (xCELLigence that can simply and objectively assess anthelmintic effects by measuring parasite motility in real time in a fully automated high-throughput fashion. We quantitatively assessed motility and determined real time IC(50 values of different anthelmintic drugs against several developmental stages of major helminth pathogens of humans and livestock, including larval Haemonchus contortus and Strongyloides ratti, and adult hookworms and blood flukes. The assay enabled quantification of the onset of egg hatching in real time, and the impact of drugs on hatch rate, as well as discriminating between the effects of drugs on motility of drug-susceptible and -resistant isolates of H. contortus. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that this technique will be suitable for discovery and development of new anthelmintic drugs as well as for detection of phenotypic resistance to existing drugs for the majority of helminths and other pathogens where motility is a measure of pathogen viability. The method is also amenable to use for other purposes where motility is assessed, such as gene silencing or antibody-mediated killing.

  16. RickA expression is not sufficient to promote actin-based motility of Rickettsia raoultii.

    Premanand Balraj

    Full Text Available BACKGROUND: Rickettsia raoultii is a novel Rickettsia species recently isolated from Dermacentor ticks and classified within the spotted fever group (SFG. The inability of R. raoultii to spread within L929 cells suggests that this bacterium is unable to polymerize host cell actin, a property exhibited by all SFG rickettsiae except R. peacocki. This result led us to investigate if RickA, the protein thought to generate actin nucleation, was expressed within this rickettsia species. METHODOLOGY/PRINCIPAL FINDINGS: Amplification and sequencing of R. raoultii rickA showed that this gene encoded a putative 565 amino acid protein highly homologous to those found in other rickettsiae. Using immunofluorescence assays, we determined that the motility pattern (i.e. microcolonies or cell-to-cell spreading of R. raoultii was different depending on the host cell line in which the bacteria replicated. In contrast, under the same experimental conditions, R. conorii shares the same phenotype both in L929 and in Vero cells. Transmission electron microscopy analysis of infected cells showed that non-motile bacteria were free in the cytosol instead of enclosed in a vacuole. Moreover, western-blot analysis demonstrated that the defect of R. raoultii actin-based motility within L929 cells was not related to lower expression of RickA. CONCLUSION/SIGNIFICANCE: These results, together with previously published data about R. typhi, strongly suggest that another factor, apart from RickA, may be involved with be responsible for actin-based motility in bacteria from the Rickettsia genus.

  17. Sperm motility of externally fertilizing fish and amphibians.

    Browne, R K; Kaurova, S A; Uteshev, V K; Shishova, N V; McGinnity, D; Figiel, C R; Mansour, N; Agney, D; Wu, M; Gakhova, E N; Dzyuba, B; Cosson, J

    2015-01-01

    We review the phylogeny, sperm competition, morphology, physiology, and fertilization environments of the sperm of externally fertilizing fish and amphibians. Increased sperm competition in both fish and anurans generally increases sperm numbers, sperm length, and energy reserves. The difference between the internal osmolarity and iconicity of sperm cells and those of the aquatic medium control the activation, longevity, and velocity of sperm motility. Hypo-osmolarity of the aquatic medium activates the motility of freshwater fish and amphibian sperm and hyperosmolarity activates the motility of marine fish sperm. The average longevity of the motility of marine fish sperm (~550 seconds) was significantly (P amphibian sperm in general and anurans reversion from internal to external fertilization. Our findings provide a greater understanding of the reproductive biology of externally fertilizing fish and amphibians, and a biological foundation for the further development of reproduction technologies for their sustainable management.

  18. Appearance and dynamics of rumen motility in newborn calves

    Kostov, Y.; Aleksandrova, V.

    2010-01-01

    The appearance and dynamics of rumen motility in newborn calves were studied by means of radiotelemetry. Rumen contractions were registered right after birth. Their amplitude was growing gradually and that was observed best in the first month after birth

  19. An automatic system to study sperm motility and energetics

    Shi, LZ; Nascimento, JM; Chandsawangbhuwana, C; Botvinick, EL; Berns, MW

    2008-01-01

    An integrated robotic laser and microscope system has been developed to automatically analyze individual sperm motility and energetics. The custom-designed optical system directs near-infrared laser light into an inverted microscope to create a single-point 3-D gradient laser trap at the focal spot of the microscope objective. A two-level computer structure is described that quantifies the sperm motility (in terms of swimming speed and swimming force) and energetics (measuring mid-piece membr...

  20. Neural network for automatic analysis of motility data

    Jakobsen, Erik; Kruse-Andersen, S; Kolberg, Jens Godsk

    1994-01-01

    comparable. However, the neural network recognized pressure peaks clearly generated by muscular activity that had escaped detection by the conventional program. In conclusion, we believe that neurocomputing has potential advantages for automatic analysis of gastrointestinal motility data.......Continuous recording of intraluminal pressures for extended periods of time is currently regarded as a valuable method for detection of esophageal motor abnormalities. A subsequent automatic analysis of the resulting motility data relies on strict mathematical criteria for recognition of pressure...

  1. The Rcs regulon in Proteus mirabilis: implications for motility, biofilm formation, and virulence.

    Howery, Kristen E; Clemmer, Katy M; Rather, Philip N

    2016-11-01

    The overall role of the Rcs phosphorelay in Proteus mirabilis is largely unknown. Previous work had demonstrated that the Rcs phosphorelay represses the flhDC operon and activates the minCDE cell division inhibition system. To identify additional cellular functions regulated by the Rcs phosphorelay, an analysis of RNA-seq data was undertaken. In this report, the results of the RNA-sequencing are discussed with an emphasis on the predicted roles of the Rcs phosphorelay in swarmer cell differentiation, motility, biofilm formation, and virulence. RcsB is shown to activate genes important for differentiation and fimbriae formation, while repressing the expression of genes important for motility and virulence. Additionally, to follow up on the RNA-Seq data, we demonstrate that an rcsB mutant is deficient in its ability to form biofilm and exhibits enhanced virulence in a Galleria mellonella waxworm model. Overall, these results indicate the Rcs regulon in P. mirabilis extends beyond flagellar genes to include those involved in biofilm formation and virulence. Furthermore, the information presented in this study may provide clues to additional roles of the Rcs phosphorelay in other members of the Enterobacteriaceae.

  2. Microfabricated ratchet structures for concentrating and patterning motile bacterial cells

    Kim, Sang Yub; Lee, Eun Se; Lee, Ho Jae; Lee, Se Yeon; Lee, Sung Kuk; Kim, Taesung

    2010-01-01

    We present a novel microfabricated concentrator for Escherichia coli that can be a stand-alone and self-contained microfluidic device because it utilizes the motility of cells. First of all, we characterize the motility of E. coli cells and various ratcheting structures that can guide cells to move in a desired direction in straight and circular channels. Then, we combine these ratcheting microstructures with the intrinsic tendency of cells to swim on the right side in microchannels to enhance the concentration rates up to 180 fold until the concentrators are fully filled with cells. Furthermore, we demonstrate that cells can be positioned and concentrated with a constant spacing distance on a surface, allowing spatial patterning of motile cells. These results can be applied to biosorption or biosensor devices that are powered by motile cells because they can be highly concentrated without any external mechanical and electrical energy sources. Hence, we believe that the concentrator design holds considerable potential to be applied for concentrating and patterning other motile microbes and providing a versatile structure for motility study of bacterial cells.

  3. Evaluation of Esophageal Motility Utilizing the Functional Lumen Imaging Probe.

    Carlson, Dustin A; Kahrilas, Peter J; Lin, Zhiyue; Hirano, Ikuo; Gonsalves, Nirmala; Listernick, Zoe; Ritter, Katherine; Tye, Michael; Ponds, Fraukje A; Wong, Ian; Pandolfino, John E

    2016-12-01

    Esophagogastric junction (EGJ) distensibility and distension-mediated peristalsis can be assessed with the functional lumen imaging probe (FLIP) during a sedated upper endoscopy. We aimed to describe esophageal motility assessment using FLIP topography in patients presenting with dysphagia. In all, 145 patients (aged 18-85 years, 54% female) with dysphagia that completed upper endoscopy with a 16-cm FLIP assembly and high-resolution manometry (HRM) were included. HRM was analyzed according to the Chicago Classification of esophageal motility disorders; major esophageal motility disorders were considered "abnormal". FLIP studies were analyzed using a customized program to calculate the EGJ-distensibility index (DI) and generate FLIP topography plots to identify esophageal contractility patterns. FLIP topography was considered "abnormal" if EGJ-DI was esophageal motility and 29 normal motility. In all, 17 (50%) had abnormal FLIP topography including 13 (37%) with abnormal EGJ-DI. FLIP topography provides a well-tolerated method for esophageal motility assessment (especially to identify achalasia) at the time of upper endoscopy. FLIP topography findings that are discordant with HRM may indicate otherwise undetected abnormalities of esophageal function, thus FLIP provides an alternative and complementary method to HRM for evaluation of non-obstructive dysphagia.

  4. Automatic Bowel Motility Evaluation Technique for Noncontact Sound Recordings

    Ryunosuke Sato

    2018-06-01

    Full Text Available Information on bowel motility can be obtained via magnetic resonance imaging (MRIs and X-ray imaging. However, these approaches require expensive medical instruments and are unsuitable for frequent monitoring. Bowel sounds (BS can be conveniently obtained using electronic stethoscopes and have recently been employed for the evaluation of bowel motility. More recently, our group proposed a novel method to evaluate bowel motility on the basis of BS acquired using a noncontact microphone. However, the method required manually detecting BS in the sound recordings, and manual segmentation is inconvenient and time consuming. To address this issue, herein, we propose a new method to automatically evaluate bowel motility for noncontact sound recordings. Using simulations for the sound recordings obtained from 20 human participants, we showed that the proposed method achieves an accuracy of approximately 90% in automatic bowel sound detection when acoustic feature power-normalized cepstral coefficients are used as inputs to artificial neural networks. Furthermore, we showed that bowel motility can be evaluated based on the three acoustic features in the time domain extracted by our method: BS per minute, signal-to-noise ratio, and sound-to-sound interval. The proposed method has the potential to contribute towards the development of noncontact evaluation methods for bowel motility.

  5. Comparison of orbital prosthesis motility following enucleation or evisceration with sclerotomy with or without a motility coupling post in dogs.

    Yi, Na Young; Park, Shin Ae; Jeong, Man Bok; Kim, Won Tae; Kim, Se Eun; Kim, Ji Youn; Chae, Je Min; Jang, Kyoung Jin; Seong, Je Kyung; Seo, Kang Moon

    2009-01-01

    To evaluate motility of silicone orbital implants and corneoscleral prostheses, with and without use of a motility coupling post (MCP) in dogs. Eighteen mixed-breed dogs. The motility of an orbital silicone implant and corneoscleral prosthesis after enucleation (n = 6), evisceration (n = 6), or use of a MCP with evisceration (n = 6) in dogs were compared. One eye from each dog had surgery whereas the opposite eye was used as a control. Clinical evaluations were performed three times a week. Histopathology of the orbital tissues was performed 8 and 12 weeks after surgery. Implant motility in dogs with evisceration (vertical movement [VM] 8.04 +/- 2.13; horizontal movement [HM] 11 +/- 3.05) and evisceration with MCP (VM 9.61 +/- 1.59); HM was significantly greater than the enucleation group (VM 0.51 +/- 0.5; HM 1.22 +/- 0.68) (P dogs with evisceration with MCP was significantly greater than in dogs with evisceration; dogs with evisceration had significantly greater motility than dogs with enucleation (P dogs. This study supports the use of MCP in silicone orbital implants to enhance corneoscleral prosthesis motility and cosmetics in dogs.

  6. Influence of a glide path on apical extrusion of debris during canal preparation using single-file systems in curved canals.

    Topçuoğlu, H S; Düzgün, S; Akpek, F; Topçuoğlu, G; Aktı, A

    2016-06-01

    To evaluate the effect of a glide path on the amount of apically extruded debris during canal preparation using single-file systems in curved canals. Ninety extracted mandibular molar teeth were randomly assigned to six groups (n = 15 for each group) for canal instrumentation. Endodontic access cavities were prepared in each tooth. In three of the six groups, a glide path was not created whereas a glide path was created using PathFile instruments on the mesial canals of all teeth in the remaining three groups. The mesial canals of the teeth were then instrumented with the following single-file instrument systems: WaveOne, Reciproc and OneShape. Debris extruded apically during instrumentation was collected into pre-weighed Eppendorf tubes. The tubes were then stored in an incubator at 70 °C for 5 days. The weight of the dry extruded debris was established by subtracting the pre-instrumentation and post-instrumentation weight of the Eppendorf tubes for each group. The data obtained were analysed using one-way analysis of variance (anova) and Tukey's post hoc tests. The OneShape file was associated with less debris extrusion than the Reciproc and WaveOne files when canal instrumentation was performed without a glide path (P files (P > 0.05). There was no significant difference amongst the OneShape, Reciproc and WaveOne files when a glide path was created before canal preparation in curved root canals (P > 0.05). All systems extruded significantly less debris in groups with a glide path than in groups without a glide path (P < 0.05). All instruments were associated with apical extrusion of debris. Creating a glide path prior to canal instrumentation reduced the amount of apically extruded debris in curved canals. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  7. Engineering Circular Gliding of Actin Filaments Along Myosin-Patterned DNA Nanotube Rings To Study Long-Term Actin-Myosin Behaviors.

    Hariadi, Rizal F; Appukutty, Abhinav J; Sivaramakrishnan, Sivaraj

    2016-09-27

    Nature has evolved molecular motors that are critical in cellular processes occurring over broad time scales, ranging from seconds to years. Despite the importance of the long-term behavior of molecular machines, topics such as enzymatic lifetime are underexplored due to the lack of a suitable approach for monitoring motor activity over long time periods. Here, we developed an "O"-shaped Myosin Empowered Gliding Assay (OMEGA) that utilizes engineered micron-scale DNA nanotube rings with precise arrangements of myosin VI to trap gliding actin filaments. This circular gliding assay platform allows the same individual actin filament to glide over the same myosin ensemble (50-1000 motors per ring) multiple times. First, we systematically characterized the formation of DNA nanotubes rings with 4, 6, 8, and 10 helix circumferences. Individual actin filaments glide along the nanotube rings with high processivity for up to 12.8 revolutions or 11 min in run time. We then show actin gliding speed is robust to variation in motor number and independent of ring curvature within our sample space (ring diameter of 0.5-4 μm). As a model application of OMEGA, we then analyze motor-based mechanical influence on "stop-and-go" gliding behavior of actin filaments, revealing that the stop-to-go transition probability is dependent on motor flexibility. Our circular gliding assay may provide a closed-loop platform for monitoring long-term behavior of broad classes of molecular motors and enable characterization of motor robustness and long time scale nanomechanical processes.

  8. Sperm motility and morphology as changing parameters linked to sperm count variations.

    Dua A; Vaidya S

    1996-01-01

    Variations in semen analyses of 177 males over a 1 year period were assessed. The average means of total counts, motility, morphology, total motile count and non-motile % were determined for 5 classes of patients ranging from azoospermic to normospermic. Positive relationships between a falling sperm count, a decrease in motility and total motile counts were seen. Also, increasingly, abnormal forms were found with lower sperm counts.

  9. Sperm motility and morphology as changing parameters linked to sperm count variations.

    Dua A

    1996-10-01

    Full Text Available Variations in semen analyses of 177 males over a 1 year period were assessed. The average means of total counts, motility, morphology, total motile count and non-motile % were determined for 5 classes of patients ranging from azoospermic to normospermic. Positive relationships between a falling sperm count, a decrease in motility and total motile counts were seen. Also, increasingly, abnormal forms were found with lower sperm counts.

  10. A novel flagellar sheath protein, FcpA, determines filament coiling, translational motility and virulence for the Leptospira spirochete.

    Wunder, Elsio A; Figueira, Cláudio P; Benaroudj, Nadia; Hu, Bo; Tong, Brian A; Trajtenberg, Felipe; Liu, Jun; Reis, Mitermayer G; Charon, Nyles W; Buschiazzo, Alejandro; Picardeau, Mathieu; Ko, Albert I

    2016-08-01

    Leptospira are unique among bacteria based on their helical cell morphology with hook-shaped ends and the presence of periplasmic flagella (PF) with pronounced spontaneous supercoiling. The factors that provoke such supercoiling, as well as the role that PF coiling plays in generating the characteristic hook-end cell morphology and motility, have not been elucidated. We have now identified an abundant protein from the pathogen L. interrogans, exposed on the PF surface, and named it Flagellar-coiling protein A (FcpA). The gene encoding FcpA is highly conserved among Leptospira and was not found in other bacteria. fcpA(-) mutants, obtained from clinical isolates or by allelic exchange, had relatively straight, smaller-diameter PF, and were not able to produce translational motility. These mutants lost their ability to cause disease in the standard hamster model of leptospirosis. Complementation of fcpA restored the wild-type morphology, motility and virulence phenotypes. In summary, we identified a novel Leptospira 36-kDa protein, the main component of the spirochete's PF sheath, and a key determinant of the flagella's coiled structure. FcpA is essential for bacterial translational motility and to enable the spirochete to penetrate the host, traverse tissue barriers, disseminate to cause systemic infection and reach target organs. © 2016 John Wiley & Sons Ltd.

  11. Apical Transportation, Centering Ability, and Cleaning Effectiveness of Reciprocating Single-file System Associated with Different Glide Path Techniques.

    de Carvalho, Guilherme Moreira; Sponchiado Junior, Emílio Carlos; Garrido, Angela Delfina Bittencourt; Lia, Raphael Carlos Comelli; Garcia, Lucas da Fonseca Roberti; Marques, André Augusto Franco

    2015-12-01

    The aim of this study was to evaluate the apical transportation, the centering ability, and the cleaning effectiveness of a reciprocating single-file system associated to different glide path techniques. The mesial root canals of 52 mandibular molars were randomly distributed into 4 groups (n = 13) according to the different glide path techniques used before biomechanical preparation with Reciproc System (RS): KF/RS (sizes 10 and 15 K-files), NGP/RS (no glide path, only reciprocating system), PF/RS (sizes 13, 16, and 19 PathFile instruments), and NP (no preparation). Cone-beam computed tomography analysis was performed before and after instrumentation for apical third images acquisition. Apical transportation and its direction were evaluated by using the formula D = (X1 - X2) - (Y1 - Y2), and the centering ability was analyzed by the formula CC = (X1 - X2/Y1 - Y2 or Y1 - Y2/X1 - X2). The samples were submitted to histologic processing and analyzed under a digital microscope for debris quantification. The values were statistically analyzed (Kruskal-Wallis, the Dunn multiple comparisons test, P .05). Groups had a tendency toward transportation in the mesial direction. No technique had perfect centering ability (=1.0), with no significant difference among them. KF/RS had larger amount of debris, with statistically significant difference in comparison with NGP/RS (P > .05). The different glide path techniques promoted minimal apical transportation, and the reciprocating single-file system tested remained relatively centralized within the root canal. Also, the different techniques interfered in the cleaning effectiveness of the reciprocating system. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Persistent enhancement of bacterial motility increases tumor penetration.

    Thornlow, Dana N; Brackett, Emily L; Gigas, Jonathan M; Van Dessel, Nele; Forbes, Neil S

    2015-11-01

    Motile bacteria can overcome the transport limitations that hinder many cancer therapies. Active bacteria can penetrate through tissue to deliver treatment to resistant tumor regions. Bacterial therapy has had limited success, however, because this motility is heterogeneous, and within a population many individuals are non-motile. In human trials, heterogeneity led to poor dispersion and incomplete tumor colonization. To address these problems, a swarm-plate selection method was developed to increase swimming velocity. Video microscopy was used to measure the velocity distribution of selected bacteria and a microfluidic tumor-on-a-chip device was used to measure penetration through tumor cell masses. Selection on swarm plates increased average velocity fourfold, from 4.9 to 18.7 μm/s (P < 0.05) and decreased the number of non-motile individuals from 51% to 3% (P < 0.05). The selected phenotype was both robust and stable. Repeating the selection process consistently increased velocity and eliminated non-motile individuals. When selected strains were cryopreserved and subcultured for 30.1 doublings, the high-motility phenotype was preserved. In the microfluidic device, selected Salmonella penetrated deeper into cell masses than unselected controls. By 10 h after inoculation, control bacteria accumulated in the front 30% of cell masses, closest to the flow channel. In contrast, selected Salmonella accumulated in the back 30% of cell masses, farthest from the channel. Selection increased the average penetration distance from 150 to 400 μm (P < 0.05). This technique provides a simple and rapid method to generate high-motility Salmonella that has increased penetration and potential for greater tumor dispersion and clinical efficacy. © 2015 Wiley Periodicals, Inc.

  13. Direct observation of gliding dislocations interactions with defects in irradiated niobium single crystals by means of the high voltage electronic microscopy (HVEM)

    Otero, M.P.

    1985-01-01

    The interactions of gliding dislocations with defects in irradiated niobium that result in the formation of dislocations channels. The effects in the mechanical behaviour of [941]- and [441]- oriented Nb single crystals due to oxygen addition, neutron and electron irradiation was observed either by macroscopic deformation in a Instron machine or 'in-situ' deformation in the HVEM-High Voltage Electron Microscope. Some specimens were irradiated at IPNS-Intense Pulsed Neutron Source, at 325 K, with 5 x 10 17 n/cm 2 , others were irradiated with electrons in the HVEM. The interactions between gliding dislocations with clusters point defects and dislocations were observed. The primary mechanism for removal of the clusters by the gliding dislocations was the 'sweeping' of the clusters along with the gliding dislocations. As to the point defects, they were 'swept' by the gliding dislocations and left as aligned loops close to the intersections of the gliding dislocations with the upper and lower specimen surfaces. For the illustration of this phenomena, a schematic drawing was made. The mechanism of 'bowing-out' interaction of dislocations with defect clusters was also observed. The reported anomalous slip observed to operate in the [941]- oriented Nb was also directly observed and a qualitive explanation along with a schematic drawing was proposed. This would explain the softenig observed after the yield stress in the [941]- oriented Nb deformed in the Instron machine. (Author) [pt

  14. Effect of a high-fat-high-cholesterol diet on gallbladder bile acid composition and gallbladder motility in dogs.

    Kakimoto, Toshiaki; Kanemoto, Hideyuki; Fukushima, Kenjiro; Ohno, Koichi; Tsujimoto, Hajime

    2017-12-01

    OBJCTIVE To investigate the effects of dietary lipid overload on bile acid metabolism and gallbladder motility in healthy dogs. ANIMALS 7 healthy Beagles. PROCEDURES In a crossover study, dogs were fed a high-fat-high-cholesterol diet (HFCD) or a low-fat diet (LFD) for a period of 2 weeks. After a 4-month washout period, dogs were fed the other diet for 2 weeks. Before and at the end of each feeding period, the concentrations of each of the gallbladder bile acids, cholecystokinin (CCK)-induced gallbladder motility, and bile acid metabolism-related hepatic gene expression were examined in all dogs. RESULTS The HFCD significantly increased plasma total cholesterol concentrations. The HFCD also increased the concentration of taurochenodeoxycholic acid and decreased the concentration of taurocholic acid in bile and reduced gallbladder contractility, whereas the LFD significantly decreased the concentration of taurodeoxycholic acid in bile. Gene expression analysis revealed significant elevation of cholesterol 7α-hydroxylase mRNA expression after feeding the HFCD for 2 weeks, but the expression of other genes was unchanged. CONCLUSIONS AND CLINICAL RELEVANCE Feeding the HFCD and LFD for 2 weeks induced changes in gallbladder bile acid composition and gallbladder motility in dogs. In particular, feeding the HFCD caused an increase in plasma total cholesterol concentration, an increase of hydrophobic bile acid concentration in bile, and a decrease in gallbladder sensitivity to CCK. These results suggested that similar bile acid compositional changes and gallbladder hypomotility might be evident in dogs with hyperlipidemia.

  15. CR TKA UHMWPE Wear Tested after Artificial Aging of the Vitamin E Treated Gliding Component by Simulating Daily Patient Activities

    Jens Schwiesau

    2014-01-01

    Full Text Available The wear behaviour of total knee arthroplasty (TKA is dominated by two wear mechanisms: the abrasive wear and the delamination of the gliding components, where the second is strongly linked to aging processes and stress concentration in the material. The addition of vitamin E to the bulk material is a potential way to reduce the aging processes. This study evaluates the wear behaviour and delamination susceptibility of the gliding components of a vitamin E blended, ultra-high molecular weight polyethylene (UHMWPE cruciate retaining (CR total knee arthroplasty. Daily activities such as level walking, ascending and descending stairs, bending of the knee, and sitting and rising from a chair were simulated with a data set received from an instrumented knee prosthesis. After 5 million test cycles no structural failure of the gliding components was observed. The wear rate was with 5.62±0.53 mg/million cycles falling within the limit of previous reports for established wear test methods.

  16. CR TKA UHMWPE wear tested after artificial aging of the vitamin E treated gliding component by simulating daily patient activities.

    Schwiesau, Jens; Fritz, Bernhard; Kutzner, Ines; Bergmann, Georg; Grupp, Thomas M

    2014-01-01

    The wear behaviour of total knee arthroplasty (TKA) is dominated by two wear mechanisms: the abrasive wear and the delamination of the gliding components, where the second is strongly linked to aging processes and stress concentration in the material. The addition of vitamin E to the bulk material is a potential way to reduce the aging processes. This study evaluates the wear behaviour and delamination susceptibility of the gliding components of a vitamin E blended, ultra-high molecular weight polyethylene (UHMWPE) cruciate retaining (CR) total knee arthroplasty. Daily activities such as level walking, ascending and descending stairs, bending of the knee, and sitting and rising from a chair were simulated with a data set received from an instrumented knee prosthesis. After 5 million test cycles no structural failure of the gliding components was observed. The wear rate was with 5.62 ± 0.53 mg/million cycles falling within the limit of previous reports for established wear test methods.

  17. Evaluation of canal transportation after preparation with Reciproc single-file systems with or without glide path files.

    Aydin, Ugur; Karataslioglu, Emrah

    2017-01-01

    Canal transportation is a common sequel caused by rotary instruments. The purpose of the present study is to evaluate the degree of transportation after the use of Reciproc single-file instruments with or without glide path files. Thirty resin blocks with L-shaped canals were divided into three groups ( n = 10). Group 1 - canals were prepared with Reciproc-25 file. Group 2 - glide path file-G1 was used before Reciproc. Group 3 - glide path files-G1 and G2 were used before Reciproc. Pre- and post-instrumentation images were superimposed under microscope, and resin removed from the inner and outer surfaces of the root canal was calculated throughout 10 points. Statistical analysis was performed with Kruskal-Wallis test and post hoc Dunn test. For coronal and middle one-thirds, there was no significant difference among groups ( P > 0.05). For apical section, transportation of Group 1 was significantly higher than other groups ( P files before Reciproc single-file system reduced the degree of apical canal transportation.

  18. Cyclic fatigue resistance of R-Pilot, WaveOne Gold Glider, and ProGlider glide path instruments.

    Keskin, Cangül; İnan, Uğur; Demiral, Murat; Keleş, Ali

    2018-02-17

    The aim of the present study was to compare the cyclic fatigue resistance of R-Pilot (VDW; Munich, Germany) with ProGlider (Denstply Sirona; Ballaigues, Switzerland) and WaveOne Gold Glider (Denstply Sirona; Ballaigues, Switzerland) glide path instruments. R-Pilot, ProGlider, and WaveOne Gold Glider instruments were collected (n = 15) and tested in a dynamic cyclic fatigue test device, which has an artificial canal with 60° angle of curvature and a 5-mm radius of curvature. All instruments were operated until fracture occurred, and both time to fracture (TF) and the lengths of the fractured fragments were recorded. Mean and standard deviations of TF and fragment length were calculated for each reciprocating system. TF data and fractured fragment length data were subjected to one-way ANOVA and post-hoc Tukey tests (P  0.05). Weibull analysis revealed that WaveOne Gold Glider showed the highest predicted TF value for 99% survival rate, which was followed by R-Pilot and ProGlider. Regarding the length of the fractured tips, there were no significant differences among the instruments (P > 0.05). The reciprocating WaveOne Gold Glider and R-Pilot instruments had significantly higher cyclic fatigue resistance than rotary ProGlider instruments. This study reported that novel reciprocating glide path instruments exhibited higher cyclic fatigue resistance than rotating glide path instrument.

  19. T-S Fuzzy Modelling and H∞ Attitude Control for Hypersonic Gliding Vehicles

    Weidong Zhang

    2017-01-01

    Full Text Available This paper addresses the T-S fuzzy modelling and H∞ attitude control in three channels for hypersonic gliding vehicles (HGVs. First, the control-oriented affine nonlinear model has been established which is transformed from the reentry dynamics. Then, based on Taylor’s expansion approach and the fuzzy linearization approach, the homogeneous T-S local modelling technique for HGVs is proposed. Given the approximation accuracy and controller design complexity, appropriate fuzzy premise variables and operating points of interest are selected to construct the T-S homogeneous submodels. With so-called fuzzy blending, the original plant is transformed into the overall T-S fuzzy model with disturbance. By utilizing Lyapunov functional approach, a state feedback fuzzy controller has been designed based on relaxed linear matrix inequality (LMI conditions to stable the original plants with a prescribed H∞ performance of disturbance. Finally, numerical simulations are performed to demonstrate the effectiveness of the proposed H∞ T-S fuzzy controller for the original attitude dynamics; the superiority of the designed T-S fuzzy controller compared with other local controllers based on the constructed fuzzy model is shown as well.

  20. Leaping shampoo glides on a 500-nm-thick lubricating air layer

    Li, Erqiang; Lee, Sanghyun; Marston, Jeremy; Bonito, Andrea; Thoroddsen, Sigurdur

    2013-11-01

    When a stream of shampoo is fed onto a pool in one's hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer [Lee et al., Phys. Rev. E 87, 061001 (2013)]. We identify this layer by looking through the pool liquid and observing its rupture into fine micro-bubbles. The resulting micro-bubble sizes suggest that the thickness of this air layer is around 500 nm. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding, with the shear stress within the thin air layer sufficient for the observed deceleration. Particle tracking within the jet shows uniform velocity, with no pronounced shear, which would be required for shear-thinning effects. The role of the surfactant may primarily be to stabilize the air film.

  1. A Cost-Effective Tracking Algorithm for Hypersonic Glide Vehicle Maneuver Based on Modified Aerodynamic Model

    Yu Fan

    2016-10-01

    Full Text Available In order to defend the hypersonic glide vehicle (HGV, a cost-effective single-model tracking algorithm using Cubature Kalman filter (CKF is proposed in this paper based on modified aerodynamic model (MAM as process equation and radar measurement model as measurement equation. In the existing aerodynamic model, the two control variables attack angle and bank angle cannot be measured by the existing radar equipment and their control laws cannot be known by defenders. To establish the process equation, the MAM for HGV tracking is proposed by using additive white noise to model the rates of change of the two control variables. For the ease of comparison several multiple model algorithms based on CKF are presented, including interacting multiple model (IMM algorithm, adaptive grid interacting multiple model (AGIMM algorithm and hybrid grid multiple model (HGMM algorithm. The performances of these algorithms are compared and analyzed according to the simulation results. The simulation results indicate that the proposed tracking algorithm based on modified aerodynamic model has the best tracking performance with the best accuracy and least computational cost among all tracking algorithms in this paper. The proposed algorithm is cost-effective for HGV tracking.

  2. Sympathetic and parasympathetic regulation of rectal motility in rats.

    Ridolfi, Timothy J; Tong, Wei-Dong; Takahashi, Toku; Kosinski, Lauren; Ludwig, Kirk A

    2009-11-01

    The colon and rectum are regulated by the autonomic nervous system (ANS). Abnormalities of the ANS are associated with diseases of the colon and rectum while its modulation is a putative mechanism for sacral nerve stimulation. The purpose of this study is to establish a rat model elucidating the role of the efferent ANS on rectal motility. Rectal motility following transection or stimulation of parasympathetic pelvic nerves (PN) or sympathetic hypogastric nerves (HGN) was measured with rectal strain gauge transducers and quantified as a motility index (MI). Colonic transit was measured 24 hours after transection by calculating the geometric center (GC) of distribution of (51)Cr Transection of PN and HGN decreased MI to 518 +/- 185 g*s (p < 0.05) and increased MI to 5,029 +/- 1,954 g*s (p < 0.05), respectively, compared to sham (975 +/- 243 g*s). Sectioning of PN and HGN decreased transit with GC = 4.9 +/- 0.2 (p < 0.05) and increased transit with GC = 8.1 +/- 0.7 (p < 0.02), respectively, compared to sham (GC = 5.8 +/- 0.3). Stimulation of PN and HGN increased MI to 831 +/- 157% (p < 0.01) and decreased MI to 251 +/- 24% (p < 0.05), respectively. Rectal motility is significantly altered by sectioning or stimulating either HGN or PN. This model may be useful in studying how sacral nerve stimulation exerts its effects and provide insight into the maladies of colonic motility.

  3. Cellular Scale Anisotropic Topography Guides Schwann Cell Motility

    Mitchel, Jennifer A.; Hoffman-Kim, Diane

    2011-01-01

    Directed migration of Schwann cells (SC) is critical for development and repair of the peripheral nervous system. Understanding aspects of motility specific to SC, along with SC response to engineered biomaterials, may inform strategies to enhance nerve regeneration. Rat SC were cultured on laminin-coated microgrooved poly(dimethyl siloxane) platforms that were flat or presented repeating cellular scale anisotropic topographical cues, 30 or 60 µm in width, and observed with timelapse microscopy. SC motion was directed parallel to the long axis of the topography on both the groove floor and the plateau, with accompanying differences in velocity and directional persistence in comparison to SC motion on flat substrates. In addition, feature dimension affected SC morphology, alignment, and directional persistence. Plateaus and groove floors presented distinct cues which promoted differential motility and variable interaction with the topographical features. SC on the plateau surfaces tended to have persistent interactions with the edge topography, while SC on the groove floors tended to have infrequent contact with the corners and walls. Our observations suggest the capacity of SC to be guided without continuous contact with a topographical cue. SC exhibited a range of distinct motile morphologies, characterized by their symmetry and number of extensions. Across all conditions, SC with a single extension traveled significantly faster than cells with more or no extensions. We conclude that SC motility is complex, where persistent motion requires cellular asymmetry, and that anisotropic topography with cellular scale features can direct SC motility. PMID:21949703

  4. RON kinase isoforms demonstrate variable cell motility in normal cells.

    Greenbaum, Alissa; Rajput, Ashwani; Wan, Guanghua

    2016-09-01

    Aberrant RON (Recepteur d'Origine Nantais) tyrosine kinase activation causes the epithelial cell to evade normal growth pathways, resulting in unregulated cell proliferation, increased cell motility and decreased apoptosis. Wildtype (wt) RON has been shown to play a role in metastasis of epithelial malignancies. It presents an important potential therapeutic target for colorectal, breast, gastric and pancreatic cancer. Little is known about functional differences amongst RON isoforms RON155, RON160 and RON165. The purpose of this study was to determine the effect of various RON kinase isoforms on cell motility. Cell lines with stable expression of wtRON were generated by inserting the coding region of RON in pTagRFP (tagged red fluorescence protein plasmid). The expression constructs of RON variants (RON155, RON160 and RON165) were generated by creating a mutagenesis-based wtRON-pTag RFP plasmid and stably transfected into HEK 293 cells. The wound closure scratch assay was used to investigate the effect on cell migratory capacity of wild type RON and its variants. RON transfected cells demonstrated increased cell motility compared to HEK293 control cells. RON165 cell motility was significantly increased compared to RON160 (mean percentage of wound covered 37.37% vs. 32.40%; p = 0.03). RON tyrosine kinase isoforms have variable cell motility. This may reflect a difference in the behavior of malignant epithelial cells and their capacity for metastasis.

  5. Rac and Rho GTPases in cancer cell motility control

    Parri Matteo

    2010-09-01

    Full Text Available Abstract Rho GTPases represent a family of small GTP-binding proteins involved in cell cytoskeleton organization, migration, transcription, and proliferation. A common theme of these processes is a dynamic reorganization of actin cytoskeleton which has now emerged as a major switch control mainly carried out by Rho and Rac GTPase subfamilies, playing an acknowledged role in adaptation of cell motility to the microenvironment. Cells exhibit three distinct modes of migration when invading the 3 D environment. Collective motility leads to movement of cohorts of cells which maintain the adherens junctions and move by photolytic degradation of matrix barriers. Single cell mesenchymal-type movement is characterized by an elongated cellular shape and again requires extracellular proteolysis and integrin engagement. In addition it depends on Rac1-mediated cell polarization and lamellipodia formation. Conversely, in amoeboid movement cells have a rounded morphology, the movement is independent from proteases but requires high Rho GTPase to drive elevated levels of actomyosin contractility. These two modes of cell movement are interconvertible and several moving cells, including tumor cells, show an high degree of plasticity in motility styles shifting ad hoc between mesenchymal or amoeboid movements. This review will focus on the role of Rac and Rho small GTPases in cell motility and in the complex relationship driving the reciprocal control between Rac and Rho granting for the opportunistic motile behaviour of aggressive cancer cells. In addition we analyse the role of these GTPases in cancer progression and metastatic dissemination.

  6. Bidirectional motility of the fission yeast kinesin-5, Cut7

    Edamatsu, Masaki, E-mail: cedam@mail.ecc.u-tokyo.ac.jp

    2014-03-28

    Highlights: • Motile properties of Cut7 (fission yeast kinesin-5) were studied for the first time. • Half-length Cut7 moved toward plus-end direction of microtubule. • Full-length Cut7 moved toward minus-end direction of microtubule. • N- and C-terminal microtubule binding sites did not switch the motile direction. - Abstract: Kinesin-5 is a homotetrameric motor with its motor domain at the N-terminus. Kinesin-5 crosslinks microtubules and functions in separating spindle poles during mitosis. In this study, the motile properties of Cut7, fission yeast kinesin-5, were examined for the first time. In in vitro motility assays, full-length Cut7 moved toward minus-end of microtubules, but the N-terminal half of Cut7 moved toward the opposite direction. Furthermore, additional truncated constructs lacking the N-terminal or C-terminal regions, but still contained the motor domain, did not switch the motile direction. These indicated that Cut7 was a bidirectional motor, and microtubule binding regions at the N-terminus and C-terminus were not involved in its directionality.

  7. Microscopic Analysis of Bacterial Motility at High Pressure

    Nishiyama, Masayoshi; Sowa, Yoshiyuki

    2012-01-01

    The bacterial flagellar motor is a molecular machine that converts an ion flux to the rotation of a helical flagellar filament. Counterclockwise rotation of the filaments allows them to join in a bundle and propel the cell forward. Loss of motility can be caused by environmental factors such as temperature, pH, and solvation. Hydrostatic pressure is also a physical inhibitor of bacterial motility, but the detailed mechanism of this inhibition is still unknown. Here, we developed a high-pressure microscope that enables us to acquire high-resolution microscopic images, regardless of applied pressures. We also characterized the pressure dependence of the motility of swimming Escherichia coli cells and the rotation of single flagellar motors. The fraction and speed of swimming cells decreased with increased pressure. At 80 MPa, all cells stopped swimming and simply diffused in solution. After the release of pressure, most cells immediately recovered their initial motility. Direct observation of the motility of single flagellar motors revealed that at 80 MPa, the motors generate torque that should be sufficient to join rotating filaments in a bundle. The discrepancy in the behavior of free swimming cells and individual motors could be due to the applied pressure inhibiting the formation of rotating filament bundles that can propel the cell body in an aqueous environment. PMID:22768943

  8. A novel regulator controls Clostridium difficile sporulation, motility and toxin production.

    Edwards, Adrianne N; Tamayo, Rita; McBride, Shonna M

    2016-06-01

    Clostridium difficile is an anaerobic pathogen that forms spores which promote survival in the environment and transmission to new hosts. The regulatory pathways by which C. difficile initiates spore formation are poorly understood. We identified two factors with limited similarity to the Rap sporulation proteins of other spore-forming bacteria. In this study, we show that disruption of the gene CD3668 reduces sporulation and increases toxin production and motility. This mutant was more virulent and exhibited increased toxin gene expression in the hamster model of infection. Based on these phenotypes, we have renamed this locus rstA, for regulator of sporulation and toxins. Our data demonstrate that RstA is a bifunctional protein that upregulates sporulation through an unidentified pathway and represses motility and toxin production by influencing sigD transcription. Conserved RstA orthologs are present in other pathogenic and industrial Clostridium species and may represent a key regulatory protein controlling clostridial sporulation. © 2016 John Wiley & Sons Ltd.

  9. Changes in Swallowing Symptoms and Esophageal Motility After Thyroid Surgery

    Sorensen, Jesper Roed; Markoew, Simone; Døssing, Helle

    2018-01-01

    INTRODUCTION: Swallowing difficulties, the pathophysiology behind which is incompletely understood, have been reported in 47-83% of goiter patients referred for thyroidectomy. We aimed at examining the influence of thyroid surgery on swallowing symptoms and esophageal motility. METHODS: Thirty-th...... to esophageal motility disturbances. This information is essential when interpreting dysphagia in patients with nodular goiter, and when balancing patients' expectations to surgical goiter therapy. REGISTRATION NUMBER: NCT03100357 ( www.clinicaltrials.org ).......INTRODUCTION: Swallowing difficulties, the pathophysiology behind which is incompletely understood, have been reported in 47-83% of goiter patients referred for thyroidectomy. We aimed at examining the influence of thyroid surgery on swallowing symptoms and esophageal motility. METHODS: Thirty......-three patients with benign nodular goiter undergoing thyroid surgery were included. All completed high-resolution esophageal manometry examinations and the goiter symptom scale score, assessed by the thyroid-specific patient-reported outcome measure. The evaluations were performed before and 6 months after...

  10. Motility, Force Generation, and Energy Consumption of Unicellular Parasites.

    Hochstetter, Axel; Pfohl, Thomas

    2016-07-01

    Motility is a key factor for pathogenicity of unicellular parasites, enabling them to infiltrate and evade host cells, and perform several of their life-cycle events. State-of-the-art methods of motility analysis rely on a combination of optical tweezers with high-resolution microscopy and microfluidics. With this technology, propulsion forces, energies, and power generation can be determined so as to shed light on the motion mechanisms, chemotactic behavior, and specific survival strategies of unicellular parasites. With these new tools in hand, we can elucidate the mechanisms of motility and force generation of unicellular parasites, and identify ways to manipulate and eventually inhibit them. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Model for self-polarization and motility of keratocyte fragments

    Ziebert, F.; Swaminathan, S.; Aranson, I. S.

    2011-01-01

    Computational modelling of cell motility on substrates is a formidable challenge; regulatory pathways are intertwined and forces that influence cell motion are not fully quantified. Additional challenges arise from the need to describe a moving deformable cell boundary. Here, we present a simple mathematical model coupling cell shape dynamics, treated by the phase-field approach, to a vector field describing the mean orientation (polarization) of the actin filament network. The model successfully reproduces the primary phenomenology of cell motility: discontinuous onset of motion, diversity of cell shapes and shape oscillations. The results are in qualitative agreement with recent experiments on motility of keratocyte cells and cell fragments. The asymmetry of the shapes is captured to a large extent in this simple model, which may prove useful for the interpretation of experiments.

  12. Gastrointestinal Motility Disorders and Their Clinical Implications in Cirrhosis

    Eleni Theocharidou

    2017-01-01

    Full Text Available Gastrointestinal motility is impaired in a substantial proportion of patients with cirrhosis. Cirrhosis-related autonomic neuropathy, increased nitric oxide production, and gut hormonal changes have been implicated. Oesophageal dysmotility has been associated with increased frequency of abnormal gastro-oesophageal reflux. Impaired gastric emptying and accommodation may result in early satiety and may have an impact on the nutritional status of these patients. Small intestinal dysmotility might be implicated in small intestinal bacterial overgrowth and increased bacterial translocation. The latter has been implicated in the pathophysiology of hepatic encephalopathy and spontaneous bacterial peritonitis. Enhanced colonic motility is usually associated with the use of lactulose. Pharmacological interventions aiming to alter gastrointestinal motility in cirrhosis could potentially have a beneficial effect reducing the risk of hepatic decompensation and improving prognosis.

  13. Model for self-polarization and motility of keratocyte fragments

    Ziebert, F.

    2011-10-19

    Computational modelling of cell motility on substrates is a formidable challenge; regulatory pathways are intertwined and forces that influence cell motion are not fully quantified. Additional challenges arise from the need to describe a moving deformable cell boundary. Here, we present a simple mathematical model coupling cell shape dynamics, treated by the phase-field approach, to a vector field describing the mean orientation (polarization) of the actin filament network. The model successfully reproduces the primary phenomenology of cell motility: discontinuous onset of motion, diversity of cell shapes and shape oscillations. The results are in qualitative agreement with recent experiments on motility of keratocyte cells and cell fragments. The asymmetry of the shapes is captured to a large extent in this simple model, which may prove useful for the interpretation of experiments.

  14. The effect of loss of O-antigen ligase on phagocytic susceptibility of motile and non-motile Pseudomonas aeruginosa.

    Demirdjian, Sally; Schutz, Kristin; Wargo, Matthew J; Lam, Joseph S; Berwin, Brent

    2017-12-01

    The bacterial pathogen Pseudomonas aeruginosa undergoes adaptation and selection over the course of chronic respiratory tract infections which results in repeatedly-observed phenotypic changes that are proposed to enable its persistence. Two of the clinically significant P. aeruginosa phenotypic changes are loss of flagellar motility and modifications to LPS structure, including loss of O-antigen expression. The effect of loss of O-antigen, frequently described as conversion from smooth to rough LPS, and the combined effect of loss of motility and O-antigen on phagocytic susceptibility by immune cells remain unknown. To address this, we generated genetic deletion mutants of waaL, which encodes the O-antigen ligase responsible for linking O-antigen to lipid A-core oligosaccharide, in both motile and non-motile P. aeruginosa strains. With the use of these bacterial strains we provide the first demonstration that, despite a progressive selection for P. aeruginosa with rough LPS during chronic pulmonary infections, loss of the LPS O-antigen does not confer phagocytic resistance in vitro. However, use of the waaLmotABmotCD mutant revealed that loss of motility confers resistance to phagocytosis regardless of the smooth or rough LPS phenotype. These findings reveal how the O-antigen of P. aeruginosa can influence bacterial clearance during infection and expand our current knowledge about the impact of bacterial phenotypic changes during chronic infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The role of the tissue microenvironment in the regulation of cancer cell motility and invasion

    Brábek Jan

    2010-09-01

    Full Text Available Abstract During malignant neoplastic progression the cells undergo genetic and epigenetic cancer-specific alterations that finally lead to a loss of tissue homeostasis and restructuring of the microenvironment. The invasion of cancer cells through connective tissue is a crucial prerequisite for metastasis formation. Although cell invasion is foremost a mechanical process, cancer research has focused largely on gene regulation and signaling that underlie uncontrolled cell growth. More recently, the genes and signals involved in the invasion and transendothelial migration of cancer cells, such as the role of adhesion molecules and matrix degrading enzymes, have become the focus of research. In this review we discuss how the structural and biomechanical properties of extracellular matrix and surrounding cells such as endothelial cells influence cancer cell motility and invasion. We conclude that the microenvironment is a critical determinant of the migration strategy and the efficiency of cancer cell invasion.

  16. Enhancement of mouse sperm motility by trophinin-binding peptide

    Park Seong

    2012-11-01

    Full Text Available Abstract Background Trophinin is an intrinsic membrane protein that forms a complex in the cytoplasm with bystin and tastin, linking it microtubule-associated motor dynein (ATPase in some cell types. Previously, we found that human sperm tails contain trophinin, bystin and tastin proteins, and that trophinin-binding GWRQ (glycine, tryptophan, arginine, glutamine peptide enhanced motility of human sperm. Methods Immunohistochemistry was employed to determine trophinin protein in mouse spermatozoa from wild type mouse, by using spermatozoa from trophinin null mutant mice as a negative control. Multivalent 8-branched GWRQ (glycine, tryptophan, arginine, glutamine peptide or GWRQ-MAPS, was chemically synthesized, purified by HPLC and its structure was confirmed by MALDI-TOF mass spectrometry. Effect of GWRQ-MAPS on mouse spermatozoa from wild type and trophinin null mutant was assessed by a computer-assisted semen analyzer (CASA. Results Anti-trophinin antibody stained the principal (central piece of the tail of wild type mouse sperm, whereas the antibody showed no staining on trophinin null sperm. Phage particles displaying GWRQ bound to the principal piece of sperm tail from wild type but not trophinin null mice. GWRQ-MAPS enhanced motility of spermatozoa from wild type but not trophinin null mice. CASA showed that GWRQ-MAPS enhanced both progressive motility and rapid motility in wild type mouse sperm. Conclusions Present study established the expression of trophinin in the mouse sperm tail and trophinin-dependent effect of GWRQ-MAPS on sperm motility. GWRQ causes a significant increase in sperm motility.

  17. High-resolution esophageal pressure topography for esophageal motility disorders

    Hashem Fakhre Yaseri

    2016-04-01

    Full Text Available Background: High-resolution manometer (HRM of the esophagus has become the main diagnostic test in the evaluation of esophageal motility disorders. The development of high-resolution manometry catheters and software displays of manometry recordings in color-coded pressure plots have changed the diagnostic assessment of esophageal disease. The first step of the Chicago classification described abnormal esophagogastric junction deglutitive relaxation. The latest classification system, proposed by Pandolfino et al, includes contraction patterns and peristalsis integrity based on integrated relaxation pressure 4 (IRP4. It can be discriminating the achalasia from non-achalasia esophageal motility disorders. The aim of this study was to assessment of clinical findings in non-achalasia esophageal motility disorders based on the most recent Chicago classification. Methods: We conducted a prospective cross-sectional study of 963 patients that had been referred to manometry department of Gastrointestinal and Liver Research Center, Firozgar Hospital, Tehran, Iran, from April, 2012 to April, 2015. They had upper GI disorder (Dysphasia, non-cardiac chest pain, regurgitation, heartburn, vomiting and asthma and weight loss. Data were collected from clinical examinations as well as patient questionnaires. Manometry, water-perfused, was done for all patients. Manometry criteria of the patients who had integrated relaxation pressure 4 (IRP4 ≤ 15 mmHg were studied. Results: Our finding showed that the non-achalasia esophageal motility disorders (58% was more common than the achalasia (18.2%. Heartburn (68.5%, regurgitation (65.4% and non-cardiac chest pain (60.6% were the most common clinical symptoms. Although, vomiting (91.7% and weight loss (63% were the most common symptoms in referring patients but did not discriminate this disorders from each other’s. Borderline motor function (67.2% was the most common, absent peristalsis (97% and the hyper

  18. Cell motility and antibiotic tolerance of bacterial swarms

    Zuo, Wenlong

    Many bacteria species can move across moist surfaces in a coordinated manner known as swarming. It is reported that swarm cells show higher tolerance to a wide variety of antibiotics than planktonic cells. We used the model bacterium E. coli to study how motility affects the antibiotic tolerance of swarm cells. Our results provide new insights for the control of pathogenic invasion via regulating cell motility. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: zwlong@live.com.

  19. The PorX Response Regulator of the Porphyromonas gingivalis PorXY Two-Component System Does Not Directly Regulate the Type IX Secretion Genes but Binds the PorL Subunit

    Vincent, Maxence S.; Durand, Eric; Cascales, Eric

    2016-01-01

    The Type IX secretion system (T9SS) is a versatile multi-protein complex restricted to bacteria of the Bacteriodetes phylum and responsible for the secretion or cell surface exposition of diverse proteins that participate to S-layer formation, gliding motility or pathogenesis. The T9SS is poorly characterized but a number of proteins involved in the assembly of the secretion apparatus in the oral pathogen Porphyromonas gingivalis have been identified based on genome substractive analyses. Among these proteins, PorY, and PorX encode typical two-component system (TCS) sensor and CheY-like response regulator respectively. Although the porX and porY genes do not localize at the same genetic locus, it has been proposed that PorXY form a bona fide TCS. Deletion of porX in P. gingivalis causes a slight decrease of the expression of a number of other T9SS genes, including sov, porT, porP, porK, porL, porM, porN, and porY. Here, we show that PorX and the soluble cytoplasmic domain of PorY interact. Using electrophoretic mobility shift, DNA-protein co-purification and heterologous host expression assays, we demonstrate that PorX does not bind T9SS gene promoters and does not directly regulate expression of the T9SS genes. Finally, we show that PorX interacts with the cytoplasmic domain of PorL, a component of the T9SS membrane core complex and propose that the CheY-like PorX protein might be involved in the dynamics of the T9SS. PMID:27630829

  20. The Sensor Kinase GacS Negatively Regulates Flagellar Formation and Motility in a Biocontrol Bacterium, Pseudomonas chlororaphis O6

    Ji Soo Kim

    2014-06-01

    Full Text Available The GacS/GacA two component system regulates various traits related to the biocontrol potential of plant-associated pseudomonads. The role of the sensor kinase, GacS, differs between strains in regulation of motility. In this study, we determined how a gacS mutation changed cell morphology and motility in Pseudomonas chlororaphis O6. The gacS mutant cells were elongated in stationary-phase compared to the wild type and the complemented gacS mutant, but cells did not differ in length in logarithmic phase. The gacS mutant had a two-fold increase in the number of flagella compared with the wild type strain; flagella number was restored to that of the wild type in the complemented gacS mutant. The more highly flagellated gacS mutant cells had greater swimming motilities than that of the wild type strain. Enhanced flagella formation in the gacS mutant correlated with increased expression of three genes, fleQ, fliQ and flhF, involved in flagellar formation. Expression of these genes in the complemented gacS mutant was similar to that of the wild type. These findings show that this root-colonizing pseudomonad adjusts flagella formation and cell morphology in stationary-phase using GacS as a major regulator.

  1. The use of flagella and motility for plant colonization and fitness by different strains of the foodborne pathogen Listeria monocytogenes.

    Lisa Gorski

    Full Text Available The role of flagella and motility in the attachment of the foodborne pathogen Listeria monocytogenes to various surfaces is mixed with some systems requiring flagella for an interaction and others needing only motility for cells to get to the surface. In nature this bacterium is a saprophyte and contaminated produce is an avenue for infection. Previous studies have documented the ability of this organism to attach to and colonize plant tissue. Motility mutants were generated in three wild type strains of L. monocytogenes by deleting either flaA, the gene encoding flagellin, or motAB, genes encoding part of the flagellar motor, and tested for both the ability to colonize sprouts and for the fitness of that colonization. The motAB mutants were not affected in the colonization of alfalfa, radish, and broccoli sprouts; however, some of the flaA mutants showed reduced colonization ability. The best colonizing wild type strain was reduced in colonization on all three sprout types as a result of a flaA deletion. A mutant in another background was only affected on alfalfa. The third, a poor alfalfa colonizer was not affected in colonization ability by any of the deletions. Fitness of colonization was measured in experiments of competition between mixtures of mutant and parent strains on sprouts. Here the flaA and motAB mutants of the three strain backgrounds were impaired in fitness of colonization of alfalfa and radish sprouts, and one strain background showed reduced fitness of both mutant types on broccoli sprouts. Together these data indicate a role for flagella for some strains to physically colonize some plants, while the fitness of that colonization is positively affected by motility in almost all cases.

  2. Mechanical stress as a regulator of cell motility

    Putelat, T.; Recho, P.; Truskinovsky, L.

    2018-01-01

    The motility of a cell can be triggered or inhibited not only by an applied force but also by a mechanically neutral force couple. This type of loading, represented by an applied stress and commonly interpreted as either squeezing or stretching, can originate from extrinsic interaction of a cell with its neighbors. To quantify the effect of applied stresses on cell motility we use an analytically transparent one-dimensional model accounting for active myosin contraction and induced actin turnover. We show that stretching can polarize static cells and initiate cell motility while squeezing can symmetrize and arrest moving cells. We show further that sufficiently strong squeezing can lead to the loss of cell integrity. The overall behavior of the system depends on the two dimensionless parameters characterizing internal driving (chemical activity) and external loading (applied stress). We construct a phase diagram in this parameter space distinguishing between static, motile, and collapsed states. The obtained results are relevant for the mechanical understanding of contact inhibition and the epithelial-to-mesenchymal transition.

  3. Effect of zinc treatment on intestinal motility in experimentally ...

    Effect of zinc treatment on intestinal motility in experimentally induced diarrhea in rats. ... Zinc supplementation is a critical new intervention for treating diarrheal episodes in children. Recent studies suggest that administration of zinc along with new low osmolarity oral rehydration solutions / salts (ORS) can reduce the ...

  4. Photoacclimation state determines the photobehaviour of motile microalgae

    Ezequiel, João; Laviale, Martin; Frankenbach, Silja

    2015-01-01

    High productivity in intertidal microphytobenthic communities is achieved despite exposure to extreme and dynamic conditions (e.g. light, salinity, temperature). As an adaptation to this hostile environment, most of the microalgae species inhabiting fine-sediment habitats are motile, being able...

  5. Chromatographic and anti-motility studies on extracts of Loranthus ...

    The anti-motility properties of the leaves of African mistletoe, Loranthus micranthus (Linn), Loranthaceae harvested from Kola acuminate host tree was studied by the charcoal meal test in mice. The intraperitoneal LD50 of the methanol extract was determined in mice by the Locke's method. The phytochemical constituents of ...

  6. in human sperm motility and level of calcium and magnesium

    J. Valsa

    2015-11-06

    Nov 6, 2015 ... Calcium carbonate (AR Grade) (Brittish Drug House,. Bombay), for standard .... able for storage of sample used for chemical study.41,42. Subjects collected .... iod indicated a serious problem even if the sperm count and original motility were ..... Bhattacharya RD. Circadian rhythm of urinary electrolytes from.

  7. Spermometer: electrical characterization of single boar sperm motility

    de Wagenaar, B.; Geijs, Daan J.; de Boer, Hans L.; Bomer, Johan G.; Olthuis, Wouter; van den Berg, Albert; Segerink, Loes Irene

    2016-01-01

    Objective: To study single sperm boar motility using electrical impedance measurements in a microfluidic system. Design: Comparison of the optical data and electrical impedance data. Setting: Research laboratory at a university. Animal(s): Boar semen sample were used. Intervention(s): A microfluidic

  8. Esophageal motility after peroral endoscopic myotomy for achalasia.

    Hu, Yue; Li, Meng; Lu, Bin; Meng, Lina; Fan, Yihong; Bao, Haibiao

    2016-05-01

    Peroral endoscopic myotomy (POEM) has been introduced as a novel endoscopic treatment for achalasia. The aim of this work is to assess the changes in esophageal motility caused by POEM in patients with achalasia. Forty-one patients with achalasia underwent POEM from September 2012 to November 2014. Esophageal motility of all patients was evaluated preoperatively and 1 month after POEM utilizing high-resolution manometry, which was performed with ten water swallows, ten steamed bread swallows, and multiple rapid swallows (MRS). In single swallows, including liquid swallows and bread swallows, all the parameters of lower esophagus sphincter resting pressure (LESP), 4-s integrated relaxation pressure (4sIRP), and intra-bolus pressure (IBP) were decreased between pre- and post-POEM patients (all p 0.05), but increased in subtype I (subtype I: p > 0.05). In liquid swallows, the Eckardt score of subtype II patients decreased with DCI, and distal esophageal peristaltic amplitude after POEM was significantly lower compared with those showing increased values of those two parameters (p achalasia patients. POEM reduces LES pressure in achalasia, and partly restores esophageal motility. POEM displayed varying effect on esophageal motility in patients with different patterns of swallowing. In addition, the changes in parameters associated with esophageal peristalsis correlated with decreases in Eckardt score.

  9. Opiate Modulation of Gastrointestinal Motility and the Actions of Trimebutine

    Stephen M Collins

    1991-01-01

    novel therapeutic approaches to the treatment of motility disorders, including postoperative ileus and pseudo-obstruction. Finally, the effect of the drug on the colon supports the use of trimcbutine in irritable bowel syndrome patients who have constipation due to colonic inertia.

  10. Villous motility and unstirred water layers in canine intestine

    Mailman, D.; Womack, W.A.; Kvietys, P.R.; Granger, D.N.

    1990-01-01

    The possibility that villous motility reduces the mucosal unstirred water layer by mechanical stirring was examined. The frequency of contraction of villi was measured by using videomicroscopic techniques while a segment of anesthetized canine jejunum or ileum with its nerve and blood supply intact was maintained in a sealed chamber through which Tyrode solution was perfused. Radioisotopically labeled inulin, H 2 O, and butyric and lauric acid were used to measure net and/or unidirectional fluxes from the chamber. The unidirectional absorptive transport of H 2 O and butyric acid but not lauric acid by jejunal segments was significantly correlated with flow through the chamber. Plasma volume expansion increased villous motility but decreased the absorption of H 2 O and lauric acid. Absorption of butyric acid from the ileum was little different than from the jejunum although the degree of villous motility was less and net water absorption was greater from the ileum. Absorption of butyric acid into dead tissue indicated that passive diffusion into the tissue accounted for between 7 and 25%, depending on flow rate, of the absorption in intact tissue and that nonspecific binding was low. It was concluded that villous motility did not stir the unstirred water layers and was not directly associated with altered transport

  11. Bacillus subtilis Hfq: A role in chemotaxis and motility

    2016-07-16

    Jul 16, 2016 ... motility, thus assigning a new function for Hfq in B. subtilis. 1. Introduction. Hfq in ... to play a role in pathogenecity in mice, tolerance to osmotic and ethanol stress ...... in B. subtilis is characterized by events like surfactin pro- duction .... SM Cutting (New York: John Wiley and Sons Inc) pp 442–444. Nicolas P ...

  12. Oesophageal motility disorders - diagnosis with a barium-rice study

    Schwickert, H.C.; Schadmand-Fischer, S.; Klose, P.; Staritz, M.; Ueberschaer, B.; Thelen, M.

    1993-01-01

    The purpose of this study was to evaluate the role of a 'barium-rice' study for diagnosis of dysphagia and oesophageal motility disorders. Material and methods: 203 patients with oesophageal motility disorders of various aetiologies were examined by both conventional barium study and a 'barium-rice' study. During the latter, oesophageal clearance of a defined mixture of barium sulfate and boiled rice was measured. Results: The conventional barium study revealed prolonged transit time in only 15.8% (32 of 203 cases), whereas barium-rice study was pathological in 50.8% (103 of 203 cases). In 71 of 171 patients (41.5%) with a normal barium study, barium-rice passage was prolonged. In 23 patients, radiological results were confirmed by manometric measurements. Conclusion: Oesophageal motility disorders are detected by a barim-rice study with high sensitivity independent of the underlying disease. The barium-rice study offers a simple diagnostic tool revealing quantitative and reliable results. The barium-rice study is a suitable method for screening and follow-up of patients with dysphagia and oesophageal motility disorders. (orig.) [de

  13. Intestinal mast cells in gut inflammation and motility disturbances

    de Winter, Benedicte Y.; van den Wijngaard, Rene M.; de Jonge, Wouter J.

    2012-01-01

    Mast cells may be regarded as prototypes of innate immune cells that can be controlled by neuronal mediators. Their activation has been implicated in many types of neuro-inflammatory responses, and related disturbances of gut motility, via direct or indirect mechanisms that involve several

  14. Gastrointestinal motility during cardiopulmonary bypass : A sonomicrometric study

    Gu, YJ; de Kroon, TL; Elstrodt, JM; Rakhorst, G

    Cardiopulmonary bypass (CPB) is known to impair the integrity of the gastrointestinal tract. However, little is known about the movement behavior of the gastrointestinal tract during CPB. This study was aimed to assess the gastrointestinal motility with sonomicrometry, a distance measurement using

  15. Bacterial growth and motility in sub-micron constrictions

    Männik, J.; Driessen, R.; Galajda, P.; Keymer, J.E.; Dekker, C.

    2009-01-01

    In many naturally occurring habitats, bacteria live in micrometer-size confined spaces. Although bacterial growth and motility in such constrictions is of great interest to fields as varied as soil microbiology, water purification, and biomedical research, quantitative studies of the effects of

  16. Control of exoenzyme production, motility and cell differentiation in Serratia liquefaciens

    Givskov, Michael Christian; Eberl, Leo; Molin, Søren

    1997-01-01

    Serratia liquefaciens secretes a broad spectrum of hydrolytic enzymes to the surrounding medium and possesses the ability to differentiate into specialized swarmer cells capable of rapid surface motility. Control of exoenzyme production and swarming motility is governed by similar regulatory...

  17. Cyclic fatigue resistances of several nickel-titanium glide path rotary and reciprocating instruments at body temperature.

    Yılmaz, K; Uslu, G; Gündoğar, M; Özyürek, T; Grande, N M; Plotino, G

    2018-01-31

    To compare the cyclic fatigue resistance of the One G, ProGlider, HyFlex EDM and R-Pilot glide path NiTi files at body temperature. Twenty One G (size 14, .03 taper), 20 ProGlider (size 16, .02 taper), 20 HyFlex EDM (size 10, .05 taper) and 20 R-Pilot (size 12.5, .04 taper) instruments were operated in rotation at 300 rpm (One G, ProGlider and HyFlex) or in reciprocation (R-Pilot) at 35 °C in artificial canals that were manufactured by reproducing the size and taper of the instrument until fracture occurred. The time to fracture was recorded in seconds using a digital chronometer, and the length of the fractured fragments was registered. Mean data were analysed statistically using the Kruskal-Wallis test and post hoc Tukey tests via SPSS 21.0 software. The statistical significance level was set at 5%. The cyclic fatigue resistance of the R-Pilot files was significantly greater than the other instruments, and the One G was significantly lower (P EDM and the ProGlider (P > 0.05). No significant difference (P > 0.05) was evident in the mean length of the fractured fragments of the various instruments. The cyclic fatigue resistance of the R-Pilot reciprocating glide path file was significantly greater than that of the rotary HyFlex EDM, ProGlider and One G glide path files. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  18. A Middle Triassic thoracopterid from China highlights the evolutionary origin of overwater gliding in early ray-finned fishes.

    Xu, Guang-Hui; Zhao, Li-Jun; Shen, Chen-Chen

    2015-01-01

    Gliding adaptations in thoracopterid flying fishes represent a remarkable case of convergent evolution of overwater gliding strategy with modern exocoetid flying fishes, but the evolutionary origin of this strategy was poorly known in the thoracopterids because of lack of transitional forms. Until recently, all thoracopterids, from the Late Triassic of Austria and Italy and the Middle Triassic of South China, were highly specialized 'four-winged' gliders in having wing-like paired fins and an asymmetrical caudal fin with the lower caudal lobe notably larger than the upper lobe. Here, we show that the new genus Wushaichthys and the previously alleged 'peltopleurid' Peripeltopleurus, from the Middle Triassic (Ladinian, 235-242 Ma) of South China and near the Ladinian/Anisian boundary of southern Switzerland and northern Italy, respectively, represent the most primitive and oldest known thoracopterids. Wushaichthys, the most basal thoracopterid, shows certain derived features of this group in the skull. Peripeltopleurus shows a condition intermediate between Wushaichthys and Thoracopterus in having a slightly asymmetrical caudal fin but still lacking wing-like paired fins. Phylogenetic studies suggest that the evolution of overwater gliding of thoracopterids was gradual in nature; a four-stage adaption following the 'cranial specialization-asymmetrical caudal fin-enlarged paired fins-scale reduction' sequence has been recognized in thoracopterid evolution. Moreover, Wushaichthys and Peripeltopleurus bear hooklets on the anal fin of supposed males, resembling those of modern viviparious teleosts. Early thoracopterids probably had evolved a live-bearing reproductive strategy. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Esophageal Motility Disorders: Current Concepts of Pathogenesis and Treatment

    Peter J Kahrilas

    2000-01-01

    Full Text Available Current concepts of esophageal motility disorders are summarized. Primary data sources were located via MEDLINE or cross-citation. No attempt was made to be comprehensive or inclusive of the literature because fewer than 10% of citations are discussed. Instead, emphasis was placed on new developments in diagnosis, therapeutics, and practice patterns. Controlled therapeutic trials and pathophysiological observations are emphasized. Achalasia is a rare disease of failed lower sphincter relaxation and aperistalsis. Diffuse esophageal spasm (DES, an equally rare disease, is defined by non-propagated esophageal contractions. Nonspecific motility disorders, including nutcracker esophagus and hypertensive lower esophageal sphincter, are identified only by manometry and are ten times as prevalent. Neuromuscular pathology is evident only with achalasia (myenteric plexus neurons destruction. Pharmacological therapies have limited efficacy with achalasia; more limited with DES; and none with the nonspecific motility disorders. More efficacious therapies for the nonspecific disorders are directed at associated reflux disease or psychiatric disorders. Pneumatic dilation is effective therapy for achalasia 72% of instances, but frequently requires repeat dilation and is complicated by a 3% perforation rate. Surgical myotomy is effective in 88% of achalasics; morbidity from thoracotomy has been the major limitation but this has been sharply reduced with a laparoscopic approach. In conclusion, although it has been suggested that esophageal motility disorders are distinct clinical entities, critical review of the literature supports this only in the case of achalasia, a disease of well defined pathophysiology, functional disturbance, and therapies. This clarity diminishes progressively for DES and non-specific esophageal motility disorders.

  20. Polymyxin B effects on motility parameters of cryopreserved bull semen

    Mojtaba Rashedi

    2017-01-01

    Full Text Available Objective: To evaluate the effect of adding different values of polymyxin B (PMB to bull semen on various motility parameters of post-thawed semen such as total motility, progressive motility and velocity parameters using kinetic parameters of sperm by Computer Assisted Sperm Analysis.Methods: Gram negative bacteria release lipopolysaccharide, which induces the apoptotic pathway. Antibiotics are added to semen in order to prevent bacterial contaminations in bovine semen. These antibiotics kill the bacteria especially gram negative bacteria. Therefore, their endotoxins are released during bacteriolysis and bind to the head region and midpiece of sperm. PMB is a bactericidal antibiotic against multidrug resistant gram-negative bacteria and is able to neutralize the toxic effects of the released endotoxin. This study was performed on 3-year old Taleshi bulls.Results: The results showed both positive and negative significant effects of PMB on semen quality. Total motility and progressive motility were significantly increased (P<0.000 1 by 100 μg per mL of PMB (55.2% and 48.8% respectively against the control groups (43.5% and 37.7%, respectively. Moreover, they were significantly decreased (P<0.000 1 by 1 000 μg per mL of PMB (35.2% and 28.8% respectively against the control groups (43.5% and 37.7% respectively in above-mentioned parameters. In Computer Assisted Semen Analyzer, parameter VAP was significantly decreased (P<0.04 in 1 000 μg (69.6 μm/s against the control group (78.7 μm/s. Finally, using PMB in processing cryopreserved bull semen is advised, but before using it, the rate of endotoxins must be measured.Conclusions: We advise using PMB after measuring endotoxin concentration; In vitro, in vivo and in field fertilization, adding other sperm evaluation factors such as acrosomal integrity, DNA integrity, mitochondrial function to PMB treated semen.

  1. Inhibitory Activity of (+-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility.

    Yi Yang

    Full Text Available Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+-usnic acid and cetuximab. These results implied that (+-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action.

  2. Hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity in oral squamous cell carcinoma derived cells.

    Chaudhari, Pratik Rajeev; Charles, Silvania Emlit; D'Souza, Zinia Charlotte; Vaidya, Milind Murlidhar

    2017-11-15

    BPAG1e and Plectin are hemidesmosomal linker proteins which anchor intermediate filament proteins to the cell surface through β4 integrin. Recent reports indicate that these proteins play a role in various cellular processes apart from their known anchoring function. However, the available literature is inconsistent. Further, the previous study from our laboratory suggested that Keratin8/18 pair promotes cell motility and tumor progression by deregulating β4 integrin signaling in oral squamous cell carcinoma (OSCC) derived cells. Based on these findings, we hypothesized that linker proteins may have a role in neoplastic progression of OSCC. Downregulation of hemidesmosomal linker proteins in OSCC derived cells resulted in reduced cell migration accompanied by alterations in actin organization. Further, decreased MMP9 activity led to reduced cell invasion in linker proteins knockdown cells. Moreover, loss of these proteins resulted in reduced tumorigenic potential. SWATH analysis demonstrated upregulation of N-Myc downstream regulated gene 1 (NDRG1) in linker proteins downregulated cells as compared to vector control cells. Further, the defects in phenotype upon linker proteins ablation were rescued upon loss of NDRG1 in linker proteins knockdown background. These data together indicate that hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity possibly through NDRG1 in OSCC derived cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Reptin/Ruvbl2 is a Lrrc6/Seahorse interactor essential for cilia motility.

    Zhao, Lu; Yuan, Shiaulou; Cao, Ying; Kallakuri, Sowjanya; Li, Yuanyuan; Kishimoto, Norihito; DiBella, Linda; Sun, Zhaoxia

    2013-07-30

    Primary ciliary dyskinesia (PCD) is an autosomal recessive disease caused by defective cilia motility. The identified PCD genes account for about half of PCD incidences and the underlying mechanisms remain poorly understood. We demonstrate that Reptin/Ruvbl2, a protein known to be involved in epigenetic and transcriptional regulation, is essential for cilia motility in zebrafish. We further show that Reptin directly interacts with the PCD protein Lrrc6/Seahorse and this interaction is critical for the in vivo function of Lrrc6/Seahorse in zebrafish. Moreover, whereas the expression levels of multiple dynein arm components remain unchanged or become elevated, the density of axonemal dynein arms is reduced in reptin(hi2394) mutants. Furthermore, Reptin is highly enriched in the cytosol and colocalizes with Lrrc6/Seahorse. Combined, these results suggest that the Reptin-Lrrc6/Seahorse complex is involved in dynein arm formation. We also show that although the DNA damage response is induced in reptin(hi2394) mutants, it remains unchanged in cilia biogenesis mutants and lrrc6/seahorse mutants, suggesting that increased DNA damage response is not intrinsic to ciliary defects and that in vertebrate development, Reptin functions in multiple processes, both cilia specific and cilia independent.

  4. Hypoxic stellate cells of pancreatic cancer stroma regulate extracellular matrix fiber organization and cancer cell motility.

    Sada, Masafumi; Ohuchida, Kenoki; Horioka, Kohei; Okumura, Takashi; Moriyama, Taiki; Miyasaka, Yoshihiro; Ohtsuka, Takao; Mizumoto, Kazuhiro; Oda, Yoshinao; Nakamura, Masafumi

    2016-03-28

    Desmoplasia and hypoxia in pancreatic cancer mutually affect each other and create a tumor-supportive microenvironment. Here, we show that microenvironment remodeling by hypoxic pancreatic stellate cells (PSCs) promotes cancer cell motility through alteration of extracellular matrix (ECM) fiber architecture. Three-dimensional (3-D) matrices derived from PSCs under hypoxia exhibited highly organized parallel-patterned matrix fibers compared with 3-D matrices derived from PSCs under normoxia, and promoted cancer cell motility by inducing directional migration of cancer cells due to the parallel fiber architecture. Microarray analysis revealed that procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) in PSCs was the gene that potentially regulates ECM fiber architecture under hypoxia. Stromal PLOD2 expression in surgical specimens of pancreatic cancer was confirmed by immunohistochemistry. RNA interference-mediated knockdown of PLOD2 in PSCs blocked parallel fiber architecture of 3-D matrices, leading to decreased directional migration of cancer cells within the matrices. In conclusion, these findings indicate that hypoxia-induced PLOD2 expression in PSCs creates a permissive microenvironment for migration of cancer cells through architectural regulation of stromal ECM in pancreatic cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  6. Modulation of ingestive behavior and gastrointestinal motility by ghrelin in diabetic animals and humans.

    Chen, Chih-Yen; Fujimiya, Mineko; Laviano, Alessandro; Chang, Full-Young; Lin, Han-Chieh; Lee, Shou-Dong

    2010-05-01

    Acyl ghrelin, a 28-amino acid peptide hormone, is the endogenous cognate ligand for the growth hormone secretagogue receptor. Ghrelin is involved in stimulating growth hormone release, eliciting feeding behavior, inducing adiposity and stimulating gastrointestinal motility. Ghrelin is unique for its post-translational modification of O-n-octanoylation at serine 3 through ghrelin O-acyltransferase, and is the only peripheral signal to enhance food intake. Plasma ghrelin levels manifest "biphasic changes" in diabetes mellitus (DM). In the early stage of DM, the stomach significantly increases the secretion of ghrelin into the plasma, and elevated plasma ghrelin levels are correlated with diabetic hyperphagic feeding and accelerated gastrointestinal motility. In the late stage of DM, plasma ghrelin levels may be lower, which might be linked with anorexia/muscle wasting, delayed gastrointestinal transit, and even gastroparesis. Therefore, the unique ghrelin system may be the most important player compared to the other hindgut hormones participating in the "entero-insular axis". Further studies using either knockdown or knockout of ghrelin gene products and ghrelin O-acyltransferase may unravel the pathogenesis of DM, and show benefits in combating this disease and metabolic syndrome. Copyright 2010 Elsevier. Published by Elsevier B.V. All rights reserved.

  7. Modulation of Ingestive Behavior and Gastrointestinal Motility by Ghrelin in Diabetic Animals and Humans

    Chih-Yen Chen

    2010-05-01

    Full Text Available Acyl ghrelin, a 28-amino acid peptide hormone, is the endogenous cognate ligand for the growth hormone secretagogue receptor. Ghrelin is involved in stimulating growth hormone release, eliciting feeding behavior, inducing adiposity and stimulating gastrointestinal motility. Ghrelin is unique for its post-translational modification of O-n-octanoylation at serine 3 through ghrelin O-acyltransferase, and is the only peripheral signal to enhance food intake. Plasma ghrelin levels manifest “biphasic changes” in diabetes mellitus (DM. In the early stage of DM, the stomach significantly increases the secretion of ghrelin into the plasma, and elevated plasma ghrelin levels are correlated with diabetic hyperphagic feeding and accelerated gastrointestinal motility. In the late stage of DM, plasma ghrelin levels may be lower, which might be linked with anorexia/muscle wasting, delayed gastrointestinal transit, and even gastroparesis. Therefore, the unique ghrelin system may be the most important player compared to the other hindgut hormones participating in the “entero-insular axis”. Further studies using either knockdown or knockout of ghrelin gene products and ghrelin O-acyltransferase may unravel the pathogenesis of DM, and show benefits in combating this disease and metabolic syndrome.

  8. Functional proteomic analysis reveals the involvement of KIAA1199 in breast cancer growth, motility and invasiveness

    Jami, Mohammad-Saeid; Huang, Xin; Peng, Hong; Fu, Kai; Li, Yan; Singh, Rakesh K; Ding, Shi-Jian; Hou, Jinxuan; Liu, Miao; Varney, Michelle L; Hassan, Hesham; Dong, Jixin; Geng, Liying; Wang, Jing; Yu, Fang

    2014-01-01

    KIAA1199 is a recently identified novel gene that is up-regulated in human cancer with poor survival. Our proteomic study on signaling polarity in chemotactic cells revealed KIAA1199 as a novel protein target that may be involved in cellular chemotaxis and motility. In the present study, we examined the functional significance of KIAA1199 expression in breast cancer growth, motility and invasiveness. We validated the previous microarray observation by tissue microarray immunohistochemistry using a TMA slide containing 12 breast tumor tissue cores and 12 corresponding normal tissues. We performed the shRNA-mediated knockdown of KIAA1199 in MDA-MB-231 and HS578T cells to study the role of this protein in cell proliferation, migration and apoptosis in vitro. We studied the effects of KIAA1199 knockdown in vivo in two groups of mice (n = 5). We carried out the SILAC LC-MS/MS based proteomic studies on the involvement of KIAA1199 in breast cancer. KIAA1199 mRNA and protein was significantly overexpressed in breast tumor specimens and cell lines as compared with non-neoplastic breast tissues from large-scale microarray and studies of breast cancer cell lines and tumors. To gain deeper insights into the novel role of KIAA1199 in breast cancer, we modulated KIAA1199 expression using shRNA-mediated knockdown in two breast cancer cell lines (MDA-MB-231 and HS578T), expressing higher levels of KIAA1199. The KIAA1199 knockdown cells showed reduced motility and cell proliferation in vitro. Moreover, when the knockdown cells were injected into the mammary fat pads of female athymic nude mice, there was a significant decrease in tumor incidence and growth. In addition, quantitative proteomic analysis revealed that knockdown of KIAA1199 in breast cancer (MDA-MB-231) cells affected a broad range of cellular functions including apoptosis, metabolism and cell motility. Our findings indicate that KIAA1199 may play an important role in breast tumor growth and invasiveness, and that it

  9. [Effectiveness of the GlideScope video laryngoscope in a case of unexpected difficult airway due to lingual tonsil hypertrophy].

    Cruz, P; Alarcón, L; Del Castillo, T; Cabrerizo, P; Díaz, S

    2015-05-01

    Lingual tonsil hypertrophy can cause varying degrees of airway obstruction and is considered a risk factor for difficult mask ventilation and tracheal intubation. We report a case of unexpected difficult airway in a patient with unknown lingual tonsil hypertrophy that was solved with the use of the GlideScope video laryngoscope. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Competitive Advantage Provided by Bacterial Motility in the Formation of Nodules by Rhizobium meliloti

    Ames, Peter; Bergman, Kostia

    1981-01-01

    The effect of motility on the competitive success of Rhizobium meliloti in nodule production was investigated. A motile strain formed more nodules than expected when mixed at various unfavorable ratios with either flagellated or nonflagellated nonmotile derivatives. We conclude that motility confers a selective advantage on rhizobia when competing with nonmotile strains. PMID:7298580

  11. Nickel and low CO2-controlled motility in Chlamydomonas through complementation of a paralyzed flagella mutant with chemically regulated promoters

    Rosenbaum Joel L

    2011-01-01

    Full Text Available Abstract Background Chlamydomonas reinhardtii is a model system for the biology of unicellular green algae. Chemically regulated promoters, such as the nickel-inducible CYC6 or the low CO2-inducible CAH1 promoter, may prove useful for expressing, at precise times during its cell cycle, proteins with relevant biological functions, or complementing mutants in genes encoding such proteins. To this date, this has not been reported for the above promoters. Results We fused the CYC6 and CAH1 promoters to an HA-tagged RSP3 gene, encoding a protein of the flagellar radial spoke complex. The constructs were used for chemically regulated complementation of the pf14 mutant, carrying an ochre mutation in the RSP3 gene. 7 to 8% of the transformants showed cells with restored motility after induction with nickel or transfer to low CO2 conditions, but not in non-inducing conditions. Maximum complementation (5% motile cells was reached with very different kinetics (5-6 hours for CAH1, 48 hours for CYC6. The two inducible promoters drive much lower levels of RSP3 protein expression than the constitutive PSAD promoter, which shows almost complete rescue of motility. Conclusions To our knowledge, this is the first example of the use of the CYC6 or CAH1 promoters to perform a chemically regulated complementation of a Chlamydomonas mutant. Based on our data, the CYC6 and CAH1 promoters should be capable of fully complementing mutants in genes whose products exert their biological activity at low concentrations.

  12. Self-interstitial atom clusters as obstacles to glide of 1/3{11-bar 00} edge dislocations in α-zirconium

    Voskoboynikov, R.E.; Osetsky, Yu.N.; Bacon, D.J.

    2005-01-01

    Atomic-scale details of interaction of a 1/3 {11-bar 00} edge dislocation with clusters of self-interstitial atoms (SIAs) in α-zirconium has been studied by computer simulation. Four typical clusters are considered. A triangular cluster of five SIAs lying within a basal plane bisected by the dislocation glide plane is not absorbed by the dislocation but acts as a moderately strong obstacle. A 3-D SIA cluster lying across the glide plane is completely absorbed by the dislocation by creation of super-jogs, and is a weak obstacle. Interaction of the dislocation with glissile SIA loops with perfect Burgers vector inclined at 60 deg. to the dislocation glide plane shows that the process depends on the vector orientation. Defects of the two orientations are strong obstacles, and one, which initially forms a sessile segment on the dislocation line, is particularly so

  13. Sailplane Glide Performance and Control Using Fixed and Articulating Winglets. M.S. Thesis

    Colling, James David

    1995-01-01

    An experimental study was conducted to investigate the effects of controllable articulating winglets on glide performance and yawing moments of high performance sailplanes. Testing was conducted in the Texas A&M University 7 x 10 foot Low Speed Wind Tunnel using a full-scale model of the outboard 5.6 feet of a 15 meter class high performance sailplane wing. Different wing tip configurations could be easily mounted to the wing model. A winglet was designed in which the cant and toe angles as well as a rudder on the winglet could be adjusted to a range of positions. Cant angles used in the investigation consisted of 5, 25, and 40 degrees measured from the vertical axis. Toe-out angles ranged from 0 to 22.5 degrees. A rudder on the winglet was used to study the effects of changing the camber of the winglet airfoil on wing performance and wing yawing moments. Rudder deflections consisted of-10, 0, and 10 degrees. Test results for a fixed geometry winglet and a standard wing tip are presented to show the general behavior of winglets on sailplane wings, and the effects of boundary-layer turbulators on the winglets are also presented. By tripping the laminar boundary-layer to turbulent before laminar separation occurs, the wing performance was increased at low Reynolds numbers. The effects on the lift and drag, yawing moment, pitching moment, and wing root bending moment of the model are presented. Oil flows were used on the wing model with the fixed geometry winglet and the standard wing tip to visualize flow directions and areas of boundary layer transition. A cant angle of 25 degrees and a toe-out angle of 2.5 degrees provided an optimal increase in wing performance for the cant and toe angles tested. Maximum performance was obtained when the winglet rudder remained in the neutral position of zero degrees. By varying the cant, toe, and rudder angles from their optimized positions, wing performance decreases. Although the winglet rudder proved to be more effective in

  14. The PorX response regulator of the Porphyromonas gingivalis PorXY two-component system does not directly regulate the Type IX secretion genes but binds the PorL subunit.

    Maxence S Vincent

    2016-08-01

    Full Text Available The Type IX secretion system (T9SS is a versatile multi-protein complex restricted to bacteria of the Bacteriodetes phylum and responsible for the secretion of surface attachment of diverse proteins that participate to S-layer formation, gliding motility or pathogenesis. The T9SS is poorly characterized but a number of proteins involved in the assembly of the secretion apparatus in the oral pathogen Porphyromonas gingivalis have been identified based on genome substractive analyses. Among these proteins, PorY and PorX encode typical two-component system (TCS sensor and CheY-like response regulator respectively. Although the porX and porY genes do not localize at the same genetic locus, it has been proposed that PorXY form a bona fide TCS. Deletion of the porX in P. gingivalis causes a slight decrease of the expression of a number of other T9SS genes, including sov, porT, porP, porK, porL, porM, porN and porY. Here, we show that PorX and the soluble cytoplasmic domain of PorY interact. Using electrophoretic mobility shift, DNA-protein co-purification and heterologous host expression assays, we showed that PorX does not bind and does not directly regulate expression of the T9SS genes. Finally, we show that PorX interacts with the cytoplasmic domain of PorL, a component of the T9SS membrane core complex and propose that the CheY-like PorX protein might be involved in the dynamics of the T9SS.

  15. Torsional Performance of ProTaper Gold Rotary Instruments during Shaping of Small Root Canals after 2 Different Glide Path Preparations.

    Arias, Ana; de Vasconcelos, Rafaela Andrade; Hernández, Alexis; Peters, Ove A

    2017-03-01

    The purpose of this study was to assess the ex vivo torsional performance of a novel rotary system in small root canals after 2 different glide path preparations. Each independent canal of 8 mesial roots of mandibular molars was randomly assigned to achieve a reproducible glide path with a new set of either PathFile #1 (Dentsply Maillefer, Ballaigues, Switzerland) and #2 or ProGlider (Dentsply Maillefer) after negotiation with a 10 K-file. After glide path preparation, root canals in both groups were shaped with the same sequence of ProTaper Gold (Dentsply Tulsa Dental Specialties, Tulsa, OK) following the directions for use recommended by the manufacturer. A total of 16 new sets of each instrument of the ProTaper Gold (PTG) system were used. The tests were run in a standardized fashion in a torque-testing platform. Peak torque (Ncm) and force (N) were registered during the shaping procedure and compared with Student t tests after normal distribution of data was confirmed. No significant differences were found for any of the instruments in peak torque or force after the 2 different glide path preparations (P > .05). Data presented in this study also serve as a basis for the recommended torque for the use of PTG instruments. Under the conditions of this study, differences in the torsional performance of PTG rotary instruments after 2 different glide path preparations could not be shown. The different geometry of glide path rotary systems seemed to have no effect on peak torque and force induced by PTG rotary instruments when shaping small root canals in extracted teeth. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Influence of glide path on the screw-in effect and torque of nickel-titanium rotary files in simulated resin root canals

    Jung-Hong Ha

    2012-11-01

    Full Text Available Objectives The purpose of this study was to investigate the screw-in effect and torque generation depending on the size of glide path during root canal preparation. Materials and Methods Forty Endo-Training Blocks (REF A 0177, Dentsply Maillefer were used. They were divided into 4 groups. For groups 1, 2, 3, and 4, the glide path was established with ISO #13 Path File (Dentsply Maillefer, #15 NiTi K-file NITIFLEX (Dentsply Maillefer, modified #16 Path File (equivalent to #18, and #20 NiTi K-file NITIFLEX, respectively. The screw-in force and resultant torque were measured using a custom-made experimental apparatus while canals were instrumented with ProTaper S1 (Dentsply Maillefer at a constant speed of 300 rpm with an automated pecking motion. A statistical analysis was performed using one-way analysis of variance and the Duncan post hoc comparison test. Results Group 4 showed lowest screw-in effect (2.796 ± 0.134 among the groups (p < 0.05. Torque was inversely proportional to the glide path of each group. In #20 glide path group, the screw-in effect and torque decreased at the last 1 mm from the apical terminus. However, in the other groups, the decrease of the screw-in effect and torque did not occur in the last 1 mm from the apical terminus. Conclusions The establishment of a larger glide path before NiTi rotary instrumentation appears to be appropriate for safely shaping the canal. It is recommended to establish #20 glide path with NiTi file when using ProTaper NiTi rotary instruments system safely.

  17. Effects of transforming growth factor-beta1 on cell motility, collagen gel contraction, myofibroblastic differentiation, and extracellular matrix expression of human adipose-derived stem cell.

    Kakudo, Natsuko; Kushida, Satoshi; Suzuki, Kenji; Ogura, Tsunetaka; Notodihardjo, Priscilla Valentin; Hara, Tomoya; Kusumoto, Kenji

    2012-12-01

    Human adipose-derived stem cells (ASCs) are adult pluripotent stem cells, and their usefulness in plastic surgery has garnered attention in recent years. Although, there have been expectations that ASCs might function in wound repair and regeneration, no studies to date have examined the role of ASCs in the mechanism that promotes wound-healing. Transforming growth factor-beta1 (TGF-β1) is a strong candidate cytokine for the triggering of mesenchymal stem cell migration, construction of extracellular matrices, and differentiation of ASCs into myofibroblasts. Cell proliferation, motility, and differentiation, as well as extracellular matrix production, play an important role in wound-healing. We have evaluated the capacity of ASCs to proliferate and their potential to differentiate into phenotypic myofibroblasts, as well as their cell motility and collagen gel contraction ability, when cultured with TGF-β1. Cell motility was analyzed using a wound-healing assay. ASCs that differentiated into myofibroblasts expressed the gene for alpha-smooth muscle actin, and its protein expression was detected immunohistochemically. The extracellular matrix expression in ASCs was evaluated using real-time RT-PCR. Based on the results, we conclude that human ASCs have the potential for cell motility, extracellular matrix gene expression, gel contraction, and differentiation into myofibroblasts and, therefore, may play an important role in the wound-healing process.

  18. The Screw-Like Movement of a Gliding Bacterium Is Powered by Spiral Motion of Cell-Surface Adhesins.

    Shrivastava, Abhishek; Roland, Thibault; Berg, Howard C

    2016-09-06

    Flavobacterium johnsoniae, a rod-shaped bacterium, glides over surfaces at speeds of ∼2 μm/s. The propulsion of a cell-surface adhesin, SprB, is known to enable gliding. We used cephalexin to generate elongated cells with irregular shapes and followed their displacement in three dimensions. These cells rolled about their long axes as they moved forward, following a right-handed trajectory. We coated gold nanoparticles with an SprB antibody and tracked them in three dimensions in an evanescent field where the nanoparticles appeared brighter when they were closer to the glass. The nanoparticles followed a right-handed spiral trajectory on the surface of the cell. Thus, if SprB were to adhere to the glass rather than to a nanoparticle, the cell would move forward along a right-handed trajectory, as observed, but in a direction opposite to that of the nanoparticle. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Evaluation of selected mechanical properties of NiTi rotary glide path files manufactured from controlled memory wires.

    Nishijo, Miki; Ebihara, Arata; Tokita, Daisuke; Doi, Hisashi; Hanawa, Takao; Okiji, Takashi

    2018-03-28

    This study aimed to investigate mechanical properties related to flexibility and fracture resistance of controlled memory wiremanufactured nickel-titanium rotary glide path files [HyFlex EDM Glide Path File (EDM) and HyFlex GPF (GPF)]. Scout RaCe (RaCe) served as control. Bending loads, torsional/cyclic fatigue resistance, and screw-in forces were measured. EDM showed a significantly larger torque at fracture, a longer time to cyclic fracture in reciprocation and a larger screw-in force compared with GPF and RaCe. GPF showed significantly lower bending loads and higher angular deflection values than EDM and RaCe, and a significantly longer time to cyclic fracture than RaCe. The time to cyclic fracture was significantly longer in reciprocation compared with continuous rotation in EDM and GPF. It can be concluded that EDM and/or GPF showed higher flexibility and cyclic/torsional fatigue resistance compared with RaCe; and that reciprocation conferred better cyclic fatigue resistance to EDM and GPF.

  20. Le tecnologie mobili dell’apprendimento permanente, il progetto MOTILL

    Marco Arrigo

    2013-03-01

    Full Text Available In questo articolo vengono presentati alcuni dei risultati del progetto MOTILL. MOTILL, ovvero «Le Tecnologie Mobili nell’apprendimento permanente: buone pratiche», è un progetto finanziato dalla Comunità Europea, nell’ambito del National Lifelong Learning Strategies (NLLS. Il progetto, durato un anno e terminato a Marzo 2010, si è focalizzato sull’uso delle tecnologie mobili in contesti di lifelong learning (LLL. L’articolo sarà dedicato a una breve introduzione del progetto, dei suoi obiettivi e delle azioni portate avanti, e a un rapido riassunto dei principali risultati ottenuti, i quali sono stati resi disponibili online alla comunità scientifica e diffusi ai policy makers impegnati nei programmi di apprendimento permanente.

  1. Multifaceted role of galectin-3 on human glioblastoma cell motility

    Debray, Charles; Vereecken, Pierre; Belot, Nathalie; Teillard, Peggy; Brion, Jean-Pierre; Pandolfo, Massimo; Pochet, Roland

    2004-01-01

    Astrocytic tumors' aggressiveness results from an imbalance between cell proliferation and cell death favoring growth, but also from the propensity of tumor cells to detach from the primary tumor site, migrate, and invade the surrounding parenchyma. Astrocytic tumor progression is known to be associated with an increased expression of galectin-3. We investigated in cell culture how galectin-3 expression affects astrocytoma cell motility. Galectin-3 deficient cells were obtained by stable transfection of the U373 glioblastoma cell line with a specific expression antisense plasmid. Cultured galectin-3 deficient glioblastoma cells showed increased motility potential on laminin and modifications in the cytoskeleton reorganization. In addition, c-DNA microarrays and quantitative immunofluorescence analysis showed that galectin-3 deficient U373 cells have an increased expression of integrins-α6 and -β1, proteins known to be implicated in the regulation of cell adhesion

  2. Hydration-controlled bacterial motility and dispersal on surfaces

    Dechesne, Arnaud; Wang, G.; Gulez, Gamze

    2010-01-01

    hydrated habitats, where water dynamics result in fragmented aquatic habitats connected by micrometric films, is debated. Here, we quantify the spatial dynamics of Pseudomonas putida KT2440 and its nonflagellated isogenic mutant as affected by the hydration status of a rough porous surface using......Flagellar motility, a mode of active motion shared by many prokaryotic species, is recognized as a key mechanism enabling population dispersal and resource acquisition in microbial communities living in marine, freshwater, and other liquid-replete habitats. By contrast, its role in variably...... an experimental system that mimics aquatic habitats found in unsaturated soils. The flagellar motility of the model soil bacterium decreased sharply within a small range of water potential (0 to −2 kPa) and nearly ceased in liquid films of effective thickness smaller than 1.5 μm. However, bacteria could rapidly...

  3. Radionuclide Esophageal Transit Study in the Esophageal Motility Disorders

    Choi, Jae Gol; Lee, Min Jae; Song, Chi Wook [Korea University College of Medicine, Seoul (Korea, Republic of)

    1993-07-15

    Esophageal motility was evaluated from the analysis of 10 consecutive swallows using liquid bolus containing 0.5 mCi of {sup 99m}Tc tin colloid. We have reviewed our experience of esophageal transit study in the 20 normal volunteers and 55 patients with dysphagia that was not related to mechanical obstruction. The purpose of this study is to measure the esophageal transit in normal subjects and in patients with various esophageal motility disorders. The overall sensitivity and specificity of radionuclide esophageal transit study in detecting esophageal motor abnormality were compared with manometric results as a gold standard, which were 80% and 100% respectively. Radionuclide transit study is a safe, rapid, noninvasive test and suitable as a screening test for esophageal motor disorders.

  4. Radionuclide Esophageal Transit Study in the Esophageal Motility Disorders

    Choi, Jae Gol; Lee, Min Jae; Song, Chi Wook

    1993-01-01

    Esophageal motility was evaluated from the analysis of 10 consecutive swallows using liquid bolus containing 0.5 mCi of 99m Tc tin colloid. We have reviewed our experience of esophageal transit study in the 20 normal volunteers and 55 patients with dysphagia that was not related to mechanical obstruction. The purpose of this study is to measure the esophageal transit in normal subjects and in patients with various esophageal motility disorders. The overall sensitivity and specificity of radionuclide esophageal transit study in detecting esophageal motor abnormality were compared with manometric results as a gold standard, which were 80% and 100% respectively. Radionuclide transit study is a safe, rapid, noninvasive test and suitable as a screening test for esophageal motor disorders.

  5. Dopaminergic and beta-adrenergic effects on gastric antral motility

    Bech, K; Hovendal, C P; Gottrup, F

    1984-01-01

    of bethanechol or pentagastrin inducing motor activity patterns as in the phase III of the MMC and the digestive state respectively. The stimulated antral motility was dose-dependently inhibited by dopamine. The effect was significantly blocked by specifically acting dopaminergic blockers, while alpha- and beta......-adrenergic blockers were without any significant effects. Dose-response experiments with bethanechol and dopamine showed inhibition of a non-competitive type. Isoprenaline was used alone and in conjunction with selective blockade of beta 1- and beta 2-receptors during infusion of bethanechol which induces a pattern...... similar to phase III in the migrating myoelectric complex. The stimulated antral motility was dose-dependently inhibited by isoprenaline. The effect could be significantly blocked by propranolol (beta 1 + beta 2-adrenoceptor blocker) and by using in conjunction the beta 1-adrenoceptor blocker practolol...

  6. Microbial Morphology and Motility as Biosignatures for Outer Planet Missions

    Nadeau, Jay; Lindensmith, Chris; Deming, Jody W.; Fernandez, Vicente I.; Stocker, Roman

    2016-10-01

    Meaningful motion is an unambiguous biosignature, but because life in the Solar System is most likely to be microbial, the question is whether such motion may be detected effectively on the micrometer scale. Recent results on microbial motility in various Earth environments have provided insight into the physics and biology that determine whether and how microorganisms as small as bacteria and archaea swim, under which conditions, and at which speeds. These discoveries have not yet been reviewed in an astrobiological context. This paper discusses these findings in the context of Earth analog environments and environments expected to be encountered in the outer Solar System, particularly the jovian and saturnian moons. We also review the imaging technologies capable of recording motility of submicrometer-sized organisms and discuss how an instrument would interface with several types of sample-collection strategies.

  7. Motility of vestibular hair cells in the chick.

    Ogata, Y; Sekitani, T

    1993-01-01

    Recent studies of the outer hair cells in cochlea have demonstrated active motilities. However, very little study has been done on the vestibular hair cells (VHCs). The present study shows the motile response of the VHCs induced by application of Ca2+/ATP promoting contraction. Reversible cell shape changes could be shown in 10 of 16 isolated type I hair cells and 9 of 15 isolated type II hair cells by applying the contraction solution. Furthermore, the sensory hair bundles in the utricular epithelium pivoted around the base and stood perpendicularly to the apical borderline of the epithelium in response to the application of the same solution. It is suggested that the contraction of the isolated VHCs may be transferred to tension which causes the sensory hair bundles to restrict their motion in normal tissue, instead of changing the cell shape.

  8. Motility precedes egress of malaria parasites from oocysts

    Klug, Dennis; Frischknecht, Friedrich

    2017-01-01

    Malaria is transmitted when an infected Anopheles mosquito deposits Plasmodium sporozoites in the skin during a bite. Sporozoites are formed within oocysts at the mosquito midgut wall and are released into the hemolymph, from where they invade the salivary glands and are subsequently transmitted to the vertebrate host. We found that a thrombospondin-repeat containing sporozoite-specific protein named thrombospondin-releated protein 1 (TRP1) is important for oocyst egress and salivary gland invasion, and hence for the transmission of malaria. We imaged the release of sporozoites from oocysts in situ, which was preceded by active motility. Parasites lacking TRP1 failed to migrate within oocysts and did not egress, suggesting that TRP1 is a vital component of the events that precede intra-oocyst motility and subsequently sporozoite egress and salivary gland invasion. DOI: http://dx.doi.org/10.7554/eLife.19157.001 PMID:28115054

  9. Impedance planimetric description of normal rectoanal motility in humans

    Andersen, Inge S; Michelsen, Hanne B; Krogh, Klaus

    2007-01-01

    PURPOSE: Manometry and pressure-volume measurements are commonly used to study anorectal physiology. However, the methods are limited by several sources of error. Recently, a new impedance planimetric system has been introduced in a porcine model. It allows simultaneous determination of anorectal...... pressures and multiple rectal luminal cross-sectional areas. This study was designed to study normal human rectoanal motility by means of impedance planimetry with multiple rectal cross-sectional areas and rectal and anal pressure. METHODS: Twelve healthy volunteers (10 females), aged 24 to 53 years, were...... the experiment, the cross-sectional area at all channels showed strong cyclic contractile activity and the anal pressure increased by approximately 100 percent. CONCLUSIONS: The new rectal impedance planimetry system allows highly detailed description of rectoanal motility patterns. It has promise as a new...

  10. Endothelial cell motility, coordination and pattern formation during vasculogenesis.

    Czirok, Andras

    2013-01-01

    How vascular networks assemble is a fundamental problem of developmental biology that also has medical importance. To explain the organizational principles behind vascular patterning, we must understand how can tissue level structures be controlled through cell behavior patterns like motility and adhesion that, in turn, are determined by biochemical signal transduction processes? We discuss the various ideas that have been proposed as mechanisms for vascular network assembly: cell motility guided by extracellular matrix alignment (contact guidance), chemotaxis guided by paracrine and autocrine morphogens, and multicellular sprouting guided by cell-cell contacts. All of these processes yield emergent patterns, thus endothelial cells can form an interconnected structure autonomously, without guidance from an external pre-pattern. © 2013 Wiley Periodicals, Inc.

  11. Where to Go: Breaking the Symmetry in Cell Motility

    2016-01-01

    Cell migration in the “correct” direction is pivotal for many biological processes. Although most work is devoted to its molecular mechanisms, the cell’s preference for one direction over others, thus overcoming intrinsic random motility, epitomizes a profound principle that underlies all complex systems: the choice of one axis, in structure or motion, from a uniform or symmetric set of options. Explaining directional motility by an external chemo-attractant gradient does not solve but only shifts the problem of causation: whence the gradient? A new study in PLOS Biology shows cell migration in a self-generated gradient, offering an opportunity to take a broader look at the old dualism of extrinsic instruction versus intrinsic symmetry-breaking in cell biology. PMID:27196433

  12. SMAD4 regulates cell motility through transcription of N-cadherin in human pancreatic ductal epithelium.

    Ya'an Kang

    Full Text Available Expression of the cellular adhesion protein N-cadherin is a critical event during epithelial-mesenchymal transition (EMT. The SMAD4 protein has been identified as a mediator of transforming growth factor-β (TGF-β superfamily signaling, which regulates EMT, but the mechanisms linking TGF-β signaling to N-cadherin expression remain unclear. When the TGF-β pathway is activated, SMAD proteins, including the common mediator SMAD4, are subsequently translocated into the nucleus, where they influence gene transcription via SMAD binding elements (SBEs. Here we describe a mechanism for control of CDH2, the gene encoding N-cadherin, through the canonical TGFβ-SMAD4 pathway. We first identified four previously undescribed SBEs within the CDH2 promoter. Using telomerase immortalized human pancreatic ductal epithelium, we found that TGF-β stimulation prompted specific SMAD4 binding to all four SBEs. Luciferase reporter and SMAD4-knockdown experiments demonstrated that specific SMAD4 binding to the SBE located at -3790 bp to -3795 bp within the promoter region of CDH2 was necessary for TGF-β-stimulated transcription. Expression of N-cadherin on the surface of epithelial cells facilitates motility and invasion, and we demonstrated that knockdown of SMAD4 causes decreased N-cadherin expression, which results in diminished migration and invasion of human pancreatic ductal epithelial cells. Similar reduction of cell motility was produced after CDH2 knockdown. Together, these findings suggest that SMAD4 is critical for the TGF-β-driven upregulation of N-cadherin and the resultant invasive phenotype of human pancreatic ductal epithelial cells during EMT.

  13. Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells

    Zeng, Guo-fang; Cai, Shao-xi; Wu, Guang-Jer

    2011-01-01

    Conflicting research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM) in the Ig-like gene super-family, as both a tumor promoter and a tumor suppressor in the development of breast cancer. To resolve this, we have re-investigated the role of this CAM in the progression of human breast cancer cells. Three breast cancer cell lines were used for the tests: one luminal-like breast cancer cell line, MCF7, which did not express any METCAM/MUC18, and two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which expressed moderate levels of the protein. MCF7 cells were transfected with the human METCAM/MUC18 cDNA to obtain G418-resistant clones which expressed the protein and were used for testing effects of human METCAM/MUC18 expression on in vitro motility and invasiveness, and in vitro and in vivo tumorigenesis. Both MDA-MB-231 and MDA-MB-468 cells already expressed METCAM/MUC18. They were directly used for in vitro tests in the presence and absence of an anti-METCAM/MUC18 antibody. In MCF7 cells, enforced METCAM/MUC18 expression increased in vitro motility, invasiveness, anchorage-independent colony formation (in vitro tumorigenesis), and in vivo tumorigenesis. In both MDA-MB-231 and MDA-MB-468 cells, the anti-METCAM/MUC18 antibody inhibited both motility and invasiveness. Though both MDA-MB-231 and MDA-MB-468 cells established a disorganized growth in 3D basement membrane culture assay, the introduction of the anti-METCAM/MUC18 antibody completely destroyed their growth in the 3D culture. These findings support the notion that human METCAM/MUC18 expression promotes the progression of human breast cancer cells by increasing their motility, invasiveness and tumorigenesis

  14. Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells

    Cai Shao-xi

    2011-03-01

    Full Text Available Abstract Background Conflicting research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM in the Ig-like gene super-family, as both a tumor promoter and a tumor suppressor in the development of breast cancer. To resolve this, we have re-investigated the role of this CAM in the progression of human breast cancer cells. Methods Three breast cancer cell lines were used for the tests: one luminal-like breast cancer cell line, MCF7, which did not express any METCAM/MUC18, and two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which expressed moderate levels of the protein. MCF7 cells were transfected with the human METCAM/MUC18 cDNA to obtain G418-resistant clones which expressed the protein and were used for testing effects of human METCAM/MUC18 expression on in vitro motility and invasiveness, and in vitro and in vivo tumorigenesis. Both MDA-MB-231 and MDA-MB-468 cells already expressed METCAM/MUC18. They were directly used for in vitro tests in the presence and absence of an anti-METCAM/MUC18 antibody. Results In MCF7 cells, enforced METCAM/MUC18 expression increased in vitro motility, invasiveness, anchorage-independent colony formation (in vitro tumorigenesis, and in vivo tumorigenesis. In both MDA-MB-231 and MDA-MB-468 cells, the anti-METCAM/MUC18 antibody inhibited both motility and invasiveness. Though both MDA-MB-231 and MDA-MB-468 cells established a disorganized growth in 3D basement membrane culture assay, the introduction of the anti-METCAM/MUC18 antibody completely destroyed their growth in the 3D culture. Conclusion These findings support the notion that human METCAM/MUC18 expression promotes the progression of human breast cancer cells by increasing their motility, invasiveness and tumorigenesis.

  15. The Semen pH Affects Sperm Motility and Capacitation.

    Zhou, Ji; Chen, Li; Li, Jie; Li, Hongjun; Hong, Zhiwei; Xie, Min; Chen, Shengrong; Yao, Bing

    2015-01-01

    As the chemical environment of semen can have a profound effect on sperm quality, we examined the effect of pH on the motility, viability and capacitation of human sperm. The sperm in this study was collected from healthy males to avoid interference from other factors. The spermatozoa cultured in sperm nutrition solution at pH 5.2, 6.2, 7.2 and 8.2 were analyzed for sperm total motility, progressive motility (PR), hypo-osmotic swelling (HOS) rate, and sperm penetration. Our results showed that these parameters were similar in pH 7.2 and 8.2 sperm nutrition solutions, but decreased in pH 5.2 and 6.2 solutions. The HOS rate exhibited positive correlation with the sperm total motility and PR. In addition, the sperm Na(+)/K(+)-ATPase activity at different pHs was measured, and the enzyme activity was significantly lower in pH 5.2 and 6.2 media, comparing with that in pH 8.2 and pH 7.2 solutions. Using flow cytometry (FCM) and laser confocal scanning microscopy (LCSM) analysis, the intracellular Ca2(+ )concentrations of sperm cultured in sperm capacitation solution at pH 5.2, 6.2, 7.2 and 8.2 were determined. Compared with that at pH 7.2, the mean fluorescence intensity of sperm in pH 5.2 and 6.2 media decreased significantly, while that of pH 8.2 group showed no difference. Our results suggested that the declined Na(+)/K(+)-ATPase activity at acidic pHs result in decreased sperm movement and capacitation, which could be one of the mechanisms of male infertility.

  16. High-resolution esophageal pressure topography for esophageal motility disorders

    Hashem Fakhre Yaseri; Gholamreza Hamsi; Tayeb Ramim

    2016-01-01

    Background: High-resolution manometer (HRM) of the esophagus has become the main diagnostic test in the evaluation of esophageal motility disorders. The development of high-resolution manometry catheters and software displays of manometry recordings in color-coded pressure plots have changed the diagnostic assessment of esophageal disease. The first step of the Chicago classification described abnormal esophagogastric junction deglutitive relaxation. The latest classification system, proposed...

  17. A mechanical microcompressor for high resolution imaging of motile specimens

    Zinskie, Jessica A.; Shribak, Michael; Bruist, Michael F.; Aufderheide, Karl J.; Janetopoulos, Chris

    2015-01-01

    In order to obtain fine details in 3 dimensions (3D) over time, it is critical for motile biological specimens to be appropriately immobilized. Of the many immobilization options available, the mechanical microcompressor offers many benefits. Our device, previously described, achieves gentle flattening of a cell, allowing us to image finely detailed structures of numerous organelles and physiological processes in living cells. We have imaged protozoa and other small metazoans using differenti...

  18. Interactions among motility, fertilizing ability, and testosterone binding on spermatozoa of bonnet monkey (Macaca radiata).

    Warikoo, P K; Majumdar, S S; Allag, I S; Das, R P; Roy, S

    1986-01-01

    Fresh ejaculates of bonnet monkeys were separated into fractions rich with highly motile and sluggishly motile spermatozoa. The motility, ability to fertilize zona-free hamster eggs, and distribution of testosterone-binding sites on spermatozoa were assessed to determine the relation between these sperm functions. Two parameters of objective assessment of motility--velocity and degree of flagellar bending--were significantly correlated with the ability to form pronuclei in zona-free hamster eggs. Only spermatozoa with good motility could form pronuclei, which might be important for assessment of the fertilizing ability. The motility was directly related to the distribution of testosterone-binding sites; the fraction having mostly motile spermatozoa was distributed over the sperm surface. The technique is simple and may be used to evaluate semen of nonhuman primates.

  19. Parasites in motion: flagellum-driven cell motility in African trypanosomes

    Hill, Kent L.

    2011-01-01

    SUMMARY Motility of the sleeping sickness parasite, Trypanosoma brucei, impacts disease transmission and pathogenesis. Trypanosome motility is driven by a flagellum that harbors a canonical 9 + 2 axoneme, together with trypanosome-specific elaborations. Trypanosome flagellum biology and motility have been the object of intense research over the last two years. These studies have led to the discovery of a novel form of motility, termed social motility, and provided revision of long-standing models for cell propulsion. Recent work has also uncovered novel structural features and motor proteins associated with the flagellar apparatus and has identified candidate signaling molecules that are predicted to regulate flagellar motility. Together with earlier inventories of flagellar proteins from proteomic and genomic studies, the stage is now set to move forward with functional studies to elucidate molecular mechanisms and investigate parasite motility in the context of host-parasite interactions. PMID:20591724

  20. Emergence of coherent motion in aggregates of motile coupled maps

    Garcia Cantu Ros, A.; Antonopoulos, Ch.G.; Basios, V.

    2011-01-01

    Highlights: → A minimal model of motile particles with adjustable intrinsic steering is presented. → Collective motion emerges due to self-adaptation of each particle's intrinsic state. → Adaptation is achieved by a map which behavior ranges from periodic to chaotic. → Higher cohesion occurs in a balanced combination of ordered and chaotic motion. → Exhibits an abrupt change in degree of coherence as a function of particle density. - Abstract: In this paper we study the emergence of coherence in collective motion described by a system of interacting motiles endowed with an inner, adaptative, steering mechanism. By means of a nonlinear parametric coupling, the system elements are able to swing along the route to chaos. Thereby, each motile can display different types of behavior, i.e. from ordered to fully erratic motion, accordingly with its surrounding conditions. The appearance of patterns of collective motion is shown to be related to the emergence of interparticle synchronization and the degree of coherence of motion is quantified by means of a graph representation. The effects related to the density of particles and to interparticle distances are explored. It is shown that the higher degrees of coherence and group cohesion are attained when the system elements display a combination of ordered and chaotic behaviors, which emerges from a collective self-organization process.

  1. Apprenticeship-based training in neurogastroenterology and motility.

    Vasant, Dipesh H; Sharma, Amol; Bhagatwala, Jigar; Viswanathan, Lavanya; Rao, Satish S C

    2018-03-01

    Although neurogastroenterology and motility (NGM) disorders affect 50% of patients seen in clinics, many gastroenterologists receive limited NGM training. One-month apprenticeship-based NGM training has been provided at ten centers in the USA for a decade, however, outcomes of this training are unclear. Our goal was to describe the effectiveness of this program from a trainees perspective. Areas covered: We describe the training model, learning experiences, and outcomes of one-month apprenticeship-based training in NGM at a center of excellence, using a detailed individual observer account and data from 12 consecutive trainees that completed the program. During a one-month training period, 302 procedures including; breath tests (BT) n = 132, anorectal manometry (ARM) n = 29 and esophageal manometry (EM) n = 28, were performed. Post-training, all trainees (n = 12) knew indications for motility tests, and the majority achieved independence in basic interpretation of BT, EM and ARM. Additionally, in a multiple-choice NGM written-test paper, trainees achieved significant improvements in test scores post-training (P = 0.003). Expert commentary: One-month training at a high-volume center can facilitate rapid learning of NGM and the indications, basic interpretation and utility of motility tests. Trainees demonstrate significant independence, and this training model provides an ideal platform for those interested in sub-specialty NGM.

  2. Effects of Lizhong Tang on gastrointestinal motility in mice.

    Lee, Min Cheol; Ha, Wooram; Park, Jinhyeong; Kim, Junghoon; Jung, Yunjin; Kim, Byung Joo

    2016-09-14

    To investigate the effects of Lizhong Tang, a traditional Chinese medicine formula, on gastrointestinal motility in mice. The in vivo effects of Lizhong Tang on GI motility were investigated by measuring the intestinal transit rates (ITRs) and gastric emptying (GE) values in normal mice and in mice with experimentally induced GI motility dysfunction (GMD). In normal ICR mice, the ITR and GE values were significantly and dose-dependently increased by Lizhong Tang (ITR values: 54.4% ± 1.9% vs 65.2% ± 1.8%, P Tang and 54.4% ± 1.9% vs 83.8% ± 1.9%, P Tang; GE values: 60.7% ± 1.9% vs 66.8% ± 2.1%, P Tang and 60.7% ± 1.9% vs 72.5% ± 1.7%, P Tang). The ITRs of the GMD mice were significantly reduced compared with those of the normal mice, which were significantly and dose-dependently reversed by Lizhong Tang. Additionally, in loperamide- and cisplatin-induced models of GE delay, Lizhong Tang administration reversed the GE deficits. These results suggest that Lizhong Tang may be a novel candidate for development as a prokinetic treatment for the GI tract.

  3. Radiation-induced motility alterations in medulloblastoma cells

    Rieken, Stefan; Rieber, Juliane; Brons, Stephan

    2015-01-01

    Photon irradiation has been repeatedly suspected of increasing tumor cell motility and promoting locoregional recurrence of disease. This study was set up to analyse possible mechanisms underlying the potentially radiation-altered motility in medulloblastoma cells. Medulloblastoma cell lines D425 and Med8A were analyzed in migration and adhesion experiments with and without photon and carbon ion irradiation. Expression of integrins was determined by quantitative FACS analysis. Matrix metalloproteinase concentrations within cell culture supernatants were investigated by enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using Student's t-test. Both photon and carbon ion irradiation significantly reduced chemotactic medulloblastoma cell transmigration through 8-μm pore size membranes, while simultaneously increasing adherence to fibronectin- and collagen I- and IV-coated surfaces. Correspondingly, both photon and carbon ion irradiation downregulate soluble MMP9 concentrations, while upregulating cell surface expression of proadhesive extracellular matrix protein-binding integrin α 5 . The observed phenotype of radiation-altered motility is more pronounced following carbon ion than photon irradiation. Both photon and (even more so) carbon ion irradiation are effective in inhibiting medulloblastoma cell migration through downregulation of matrix metalloproteinase 9 and upregulation of proadhesive cell surface integrin α 5 , which lead to increased cell adherence to extracellular matrix proteins. (author)

  4. Biofilm Formation and Motility Are Promoted by Cj0588-Directed Methylation of rRNA in Campylobacter jejuni

    Sałamaszyńska-Guz, Agnieszka; Rose, Simon; Lykkebo, Claus A

    2018-01-01

    specific function is retained by Cj0588 bothin vitroand also when expressed inEscherichia coli. Deletion of thecj0588gene inC. jejunior substitution with alanine of K80, D162, or K188in the catalytic center of the enzyme cause complete loss of 2'-O-methylation activity. Cofactor interactions remain.......C. jejunistrains expressing catalytically inactive versions of Cj0588 have the same phenotype ascj0588-null mutants, and show altered tolerance to capreomycin due to perturbed ribosomal subunit association, reduced motility and impaired ability to form biofilms. These functions are reestablished when...

  5. Influence of the dislocation core on the glide of the 1/2 < 111 >{110} edge dislocation in bcc-iron: An embedded atom method study

    Haghighat, S.M.H.; von Pezold, J.; Race, C. P.; Kormann, F.; Friák, Martin; Neugebauer, J.; Raabe, D.

    2014-01-01

    Roč. 87, MAY (2014), s. 274-282 ISSN 0927-0256 Institutional support: RVO:68081723 Keywords : Molecular dynamics * Edge dislocation * Core structure * Dislocation glide * Iron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.131, year: 2014

  6. Anatomy and histochemistry of spread-wing posture in birds. 2. Gliding flight in the California gull, Larus californicus: a paradox of fast fibers and posture.

    Meyers, R A; Mathias, E

    1997-09-01

    Gliding flight is a postural activity which requires the wings to be held in a horizontal position to support the weight of the body. Postural behaviors typically utilize isometric contractions in which no change in length takes place. Due to longer actin-myosin interactions, slow contracting muscle fibers represent an economical means for this type of contraction. In specialized soaring birds, such as vultures and pelicans, a deep layer of the pectoralis muscle, composed entirely of slow fibers, is believed to perform this function. Muscles involved in gliding posture were examined in California gulls (Larus californicus) and tested for the presence of slow fibers using myosin ATPase histochemistry and antibodies. Surprisingly small numbers of slow fibers were found in the M. extensor metacarpi radialis, M. coracobrachialis cranialis, and M. coracobrachialis caudalis, which function in wrist extension, wing protraction, and body support, respectively. The low number of slow fibers in these muscles and the absence of slow fibers in muscles associated with wing extension and primary body support suggest that gulls do not require slow fibers for their postural behaviors. Gulls also lack the deep belly to the pectoralis found in other gliding birds. Since bird muscle is highly oxidative, we hypothesize that fast muscle fibers may function to maintain wing position during gliding flight in California gulls.

  7. MTSS1 is epigenetically regulated in glioma cells and inhibits glioma cell motility

    Daniel Luxen

    2017-02-01

    Full Text Available Epigenetic silencing by DNA methylation in brain tumors has been reported for many genes, however, their function on pathogenesis needs to be evaluated. We investigated the MTSS1 gene, identified as hypermethylated by differential methylation hybridization (DMH. Fifty-nine glioma tissue samples and seven glioma cell lines were examined for hypermethylation of the MTSS1 promotor, MTSS1 expression levels and gene dosage. GBM cell lines were treated with demethylating agents and interrogated for functional consequences of MTSS1 expression after transient transfection. Hypermethylation was significantly associated with IDH1/2 mutation. Comparative SNP analysis indicates higher incidence of loss of heterozygosity of MTSS1 in anaplastic astrocytomas and secondary glioblastomas as well as hypermethylation of the remaining allele. Reversal of promoter hypermethylation results in an increased MTSS1 expression. Cell motility was significantly inhibited by MTSS1 overexpression without influencing cell growth or apoptosis. Immunofluorescence analysis of MTSS1 in human astrocytes indicates co-localization with actin filaments. MTSS1 is down-regulated by DNA methylation in glioblastoma cell lines and is part of the G-CIMP phenotype in primary glioma tissues. Our data on normal astrocytes suggest a function of MTSS1 at focal contact structures with an impact on migratory capacity but no influence on apoptosis or cellular proliferation.

  8. Analysis of the impact of cryopreservation and theophylline on motility of sperm

    Elaheh Gorji

    2018-06-01

    Full Text Available Objective: Sperm parameters, particularly motility, decrease during cryopreservation. Theophylline generally enhances sperm motility. We analyzed effects of theophylline and freezing on sperm motility.Design: Experimental study.Setting: Private IVF lab.Setting: IVF lab of Mehrgan Hospital. Method: 22–55 year-old men participated in this study (30 fresh ejaculation and 8 TESE samples. After sperm analysis, we added theophylline (40 mM to half of our samples as case group to compare motility with the remaining samples as control group. Cryopreservation was performed in two groups. After thawing, motility of both groups was recorded. Furthermore, theophylline (40 mM was applied to both groups after thawing again. Result: After adding theophylline, sperm motility improved significantly in all samples. Sperm motility reduced in control group more than the study group after freeze-thaw procedure (P < 0.002, normal morphology <5%. Sperm motility was not enhanced significantly by re-adding of theophylline to the two groups. Interactions between stages and groups were statistically significant in semen and biopsy samples (p < 0.001. Conclusion: Adding theophylline before freezing can preserve motility of sperms in samples with different parameters and even sperms extracted in testicular biopsy. Theophylline may have protective impact on sperms in freezing procedure. Keywords: Sperm motility, Theophylline, Freezing, Morphology, Biopsy

  9. Effects of environment factors on initiation of sperm motility in sea cucumber Apostichopus japonicus (Selenka)

    Yu, Li; Shao, Mingyu; Bao, Zhenmin; Hu, Jingjie; Zhang, Zhifeng

    2011-06-01

    Sperm of sea cucumber Apostichopus japonicus (Selenka) were quiescent in electrolyte NaCl solution and artificial seawater (ASW) and nonelectrolyte glucose and mannitol solutions when the osmolality was less than 200 mOsm kg-1. The sperm started to be motile as a result of increased osmolality, indicating an osmolality-dependent initiation of sperm motility in sea cucumber. After a brief incubation in hypotonic NaCl and glucose solutions with osmolalities of 200 and 400 mOsm kg-1, sperm lost partial motile ability. Sperm became immobilized when pH was 6.0 in NaCl, glucose and mannitol solutions, suggesting that an H+ release is involved in sperm activation. The decreased pH had no effect on the percentage of motile sperm in ASW, whereas it delayed the time period to reach the maximum motility (motilitymax). Extracellular Ca2+ in electrolyte solutions was not essential for motility stimulation but shortened the time of reaching motilitymax. When Ca2+ was mixed in nonelectrolyte solutions the sperm motility was completely suppressed. The K+ channel blocker, quinine, suppressed the sperm motility in electrolyte solution, showing a possible involvement of K+ transport in the process. High K+ concentration did not affect the sperm motility in NaCl solution, but decreased it in ASW and almost entirely suppressed it in nonelectrolyte solutions. The different effects of pH and K+ in ASW and NaCl solution indicate that external ions may also regulate sperm motility.

  10. Morphology of single Shockley-type stacking faults generated by recombination enhanced dislocation glide in 4H-SiC

    Matsuhata, Hirofumi; Sekiguchi, Takashi

    2018-04-01

    Morphology of single Shockley-type stacking faults (SFs) generated by recombination enhanced dislocation glide (REDG) in 4H-SiC are discussed and analysed. A complete set of the 12 different dissociated states of basal-plane dislocation loops is obtained using the crystallographic space group operations. From this set, six different double rhombic-shaped SFs are derived. These tables indicate the rules that connect shapes of SFs with the locations of partial dislocations having different core structures, the positions of slip planes in a unit cell, and the Burgers vectors of partial dislocations. We applied these tables for the analysis of SFs generated by the REDG effect reported in the past articles. Shapes, growing process of SFs and perfect dislocations for origins of SFs were well analysed systematically.

  11. Solid solution hardening in face centered binary alloys: Gliding statistics of a dislocation in random solid solution by atomistic simulation

    Patinet, S.

    2009-12-01

    The glide of edge and screw dislocation in solid solution is modeled through atomistic simulations in two model alloys of Ni(Al) and Al(Mg) described within the embedded atom method. Our approach is based on the study of the elementary interaction between dislocations and solutes to derive solid solution hardening of face centered cubic binary alloys. We identify the physical origins of the intensity and range of the interaction between a dislocation and a solute atom. The thermally activated crossing of a solute atom by a dislocation is studied at the atomistic scale. We show that hardening of edge and screw segments are similar. We develop a line tension model that reproduces quantitatively the atomistic calculations of the flow stress. We identify the universality class to which the dislocation depinning transition in solid solution belongs. (author)

  12. Atomic-scale nanoindentation: detection and identification of single glide events in three dimensions by force microscopy

    Egberts, P; Bennewitz, R

    2011-01-01

    Indentation experiments on the nanometre scale have been performed by means of atomic force microscopy in ultra-high vacuum on KBr(100) surfaces. The surfaces yield in the form of discrete surface displacements with a typical length scale of 1 A. These surface displacements are detected in both normal and lateral directions. Measurement of the lateral tip displacement requires a load-dependent calibration due to the load dependence of the effective lateral compliance. Correlation of the lateral and normal displacements for each glide event allow identification of the activated slip system. The results are discussed in terms of the resolved shear stress in indentation experiments and of typical results in atomistic simulations of nanometre-scale indentation.

  13. Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats

    D'Amelio, E. D.; Cohen, Y.; Des Marais, D. J.

    1987-01-01

    An unidentified filamentous purple bacterium, probably belonging to a new genus or even a new family, is found in close association with the filamentous, mat-forming cyanobacterium Microcoleus chthonoplastes in a hypersaline pond at Guerrero Negro, Baja California Sur, Mexico, and in Solar Lake, Sinai, Egypt. This organism is a gliding, segmented trichome, 0.8-0.9 micrometer wide. It contains intracytoplasmic stacked lamellae which are perpendicular and obliquely oriented to the cell wall, similar to those described for the purple sulfur bacteria Ectothiorhodospira. These bacteria are found inside the cyanobacterial bundle, enclosed by the cyanobacterial sheath. Detailed transmission electron microscopical analyses carried out in horizontal sections of the upper 1.5 mm of the cyanobacterial mat show this cyanobacterial-purple bacterial association at depths of 300-1200 micrometers, corresponding to the zone below that of maximal oxygenic photosynthesis. Sharp gradients of oxygen and sulfide are established during the day at this microzone in the two cyanobacterial mats studied. The close association, the distribution pattern of this association and preliminary physiological experiments suggest a co-metabolism of sulfur by the two-membered community. This probable new genus of purple bacteria may also grow photoheterotrophically using organic carbon excreted by the cyanobacterium. Since the chemical gradients in the entire photic zone fluctuate widely in a diurnal cycle, both types of metabolism probably take place. During the morning and afternoon, sulfide migrates up to the photic zone allowing photoautotrophic metabolism with sulfide as the electron donor. During the day the photic zone is highly oxygenated and the purple bacteria may either use oxidized species of sulfur such as elemental sulfur and thiosulfate in the photoautotrophic mode or grow photoheterotrophically using organic carbon excreted by M. chthonoplastes. The new type of filamentous purple sulfur

  14. Mutations in the β-Subunit of the RNA Polymerase Impair the Surface-Associated Motility and Virulence of Acinetobacter baumannii.

    Pérez-Varela, María; Corral, Jordi; Vallejo, Juan Andrés; Rumbo-Feal, Soraya; Bou, Germán; Aranda, Jesús; Barbé, Jordi

    2017-08-01

    Acinetobacter baumannii is a major cause of antibiotic-resistant nosocomial infections worldwide. In this study, several rifampin-resistant spontaneous mutants obtained from the A. baumannii ATCC 17978 strain that differed in their point mutations in the rpoB gene, encoding the β-subunit of the RNA polymerase, were isolated. All the mutants harboring amino acid substitutions in position 522 or 540 of the RpoB protein were impaired in surface-associated motility and had attenuated virulence in the fertility model of Caenorhabditis elegans The transcriptional profile of these mutants included six downregulated genes encoding proteins homologous to transporters and metabolic enzymes widespread among A. baumannii clinical isolates. The construction of knockout mutants in each of the six downregulated genes revealed a significant reduction in the surface-associated motility and virulence of four of them in the A. baumannii ATCC 17978 strain, as well as in the virulent clinical isolate MAR002. Taken together, our results provide strong evidence of the connection between motility and virulence in this multiresistant nosocomial pathogen. Copyright © 2017 American Society for Microbiology.

  15. Effects of diabetes mellitus on gastric motility in rats

    Rafsanjani, F.N.; Adeli, S.; Ardakani, Z.V.; Ardakani, J.V.; Ardakani, J.V.; Ghotbi, P.

    2009-01-01

    Diabetes mellitus is one of the most common endocrine diseases that affects most body organs. Peristaltic disorders and gastric distension have also been observed in diabetes. Because the effect of diabetes on gastric motility has not been fully examined, we decided to determine if gastric motility is also affected by diabetes in rat. This study was carried out at Kerman University of Medical Science, Kerman, Iran from October 2004 to February 2005. Three groups of male wistar rats (control, vehicle, diabetic) weighing 200-250 g were used. Diabetic state was induced by intraperitoneal injection of 45 mg/kg streptozotocin. Animals were anesthetized by intraperitoneal (IP) injection of 50 mg/kg thiopental sodium. After tracheostomy and laparatomy, a balloon was inserted into the stomach, which was attached to a pressure transducer system via a cannula and this whole system was connected to a physiograph. Acetylcholine (Ach) was the stimulant agent which was used intraperitoneally. There was no significant difference between basal intragastric pressures in three groups. Also there was no significant difference in the basal and Ach-stimulated intragastric pressure among the three groups. But Ach-stimulated intragastric pressure was more than the basal state in each group (control 28.3+-1.77 vs 14+-1.4, vehicle 30.8+-2.03 vs 15.9+-1.56 and diabetic 30.6+-0.05 vs 13.7+-0.84 mmHg). Although it has been shown that diabetes can change gastric acid and pepsin secretion in rats, no significant change in gastric motility could be shown. (author)

  16. Analysis of motility in multicellular Chlamydomonas reinhardtii evolved under predation.

    Margrethe Boyd

    Full Text Available The advent of multicellularity was a watershed event in the history of life, yet the transition from unicellularity to multicellularity is not well understood. Multicellularity opens up opportunities for innovations in intercellular communication, cooperation, and specialization, which can provide selective advantages under certain ecological conditions. The unicellular alga Chlamydomonas reinhardtii has never had a multicellular ancestor yet it is closely related to the volvocine algae, a clade containing taxa that range from simple unicells to large, specialized multicellular colonies. Simple multicellular structures have been observed to evolve in C. reinhardtii in response to predation or to settling rate-based selection. Structures formed in response to predation consist of individual cells confined within a shared transparent extracellular matrix. Evolved isolates form such structures obligately under culture conditions in which their wild type ancestors do not, indicating that newly-evolved multicellularity is heritable. C. reinhardtii is capable of photosynthesis, and possesses an eyespot and two flagella with which it moves towards or away from light in order to optimize input of radiant energy. Motility contributes to C. reinhardtii fitness because it allows cells or colonies to achieve this optimum. Utilizing phototaxis to assay motility, we determined that newly evolved multicellular strains do not exhibit significant directional movement, even though the flagellae of their constituent unicells are present and active. In C. reinhardtii the first steps towards multicellularity in response to predation appear to result in a trade-off between motility and differential survivorship, a trade-off that must be overcome by further genetic change to ensure long-term success of the new multicellular organism.

  17. Extending the molecular clutch beyond actin-based cell motility

    Havrylenko, Svitlana; Mezanges, Xavier; Batchelder, Ellen; Plastino, Julie

    2014-01-01

    Many cell movements occur via polymerization of the actin cytoskeleton beneath the plasma membrane at the front of the cell, forming a protrusion called a lamellipodium, while myosin contraction squeezes forward the back of the cell. In what is known as the ‘molecular clutch’ description of cell motility, forward movement results from the engagement of the acto-myosin motor with cell-matrix adhesions, thus transmitting force to the substrate and producing movement. However during cell translocation, clutch engagement is not perfect, and as a result, the cytoskeleton slips with respect to the substrate, undergoing backward (retrograde) flow in the direction of the cell body. Retrograde flow is therefore inversely proportional to cell speed and depends on adhesion and acto-myosin dynamics. Here we asked whether the molecular clutch was a general mechanism by measuring motility and retrograde flow for the Caenorhabditis elegans sperm cell in different adhesive conditions. These cells move by adhering to the substrate and emitting a dynamic lamellipodium, but the sperm cell does not contain an acto-myosin cytoskeleton. Instead the lamellipodium is formed by the assembly of major sperm protein, which has no biochemical or structural similarity to actin. We find that these cells display the same molecular clutch characteristics as acto-myosin containing cells. We further show that retrograde flow is produced both by cytoskeletal assembly and contractility in these cells. Overall this study shows that the molecular clutch hypothesis of how polymerization is transduced into motility via adhesions is a general description of cell movement regardless of the composition of the cytoskeleton. (paper)

  18. Role of motility and chemotaxis in the pathogenesis of Dickeya dadantii 3937 (ex Erwinia chrysanthemi 3937).

    Antúnez-Lamas, María; Cabrera-Ordóñez, Ezequiel; López-Solanilla, Emilia; Raposo, Rosa; Trelles-Salazar, Oswaldo; Rodríguez-Moreno, Andrés; Rodríguez-Palenzuela, Pablo

    2009-02-01

    Dickeya dadantii 3937 (ex Erwinia chrysanthemi), a member of the Enterobacteriaceae, causes soft rot in many economically important crops. A successful pathogen has to reach the interior of the plant in order to cause disease. To study the role of motility and chemotaxis in the pathogenicity of D. dadantii 3937, genes involved in the chemotactic signal transduction system (cheW, cheB, cheY and cheZ) and in the structure of the flagellar motor (motA) were mutagenized. All the mutant strains grew like the wild-type in culture media, and the production and secretion of pectolytic enzymes was not affected. As expected, the swimming ability of the mutant strains was reduced with respect to the wild-type: motA (94%), cheY (80%), cheW (74%), cheB (54%) and cheZ (48%). The virulence of the mutant strains was analysed in chicory, Saintpaulia and potato. The mutant strains were also tested for their capability to enter into Arabidopsis leaves. All the mutants showed a significant decrease of virulence in certain hosts; however, the degree of virulence reduction varied depending on the virulence assay. The ability to penetrate Arabidopsis leaves was impaired in all the mutants, whereas the capacity to colonize potato tubers after artificial inoculation was affected in only two mutant strains. In general, the virulence of the mutants could be ranked as motAmotility plays an important role in the pathogenicity of this bacterium.

  19. Colchicine affects cell motility, pattern formation and stalk cell differentiation in Dictyostelium by altering calcium signaling.

    Poloz, Yekaterina; O'Day, Danton H

    2012-04-01

    Previous work, verified here, showed that colchicine affects Dictyostelium pattern formation, disrupts morphogenesis, inhibits spore differentiation and induces terminal stalk cell differentiation. Here we show that colchicine specifically induces ecmB expression and enhances accumulation of ecmB-expressing cells at the posterior end of multicellular structures. Colchicine did not induce a nuclear translocation of DimB, a DIF-1 responsive transcription factor in vitro. It also induced terminal stalk cell differentiation in a mutant strain that does not produce DIF-1 (dmtA-) and after the treatment of cells with DIF-1 synthesis inhibitor cerulenin (100 μM). This suggests that colchicine induces the differentiation of ecmB-expressing cells independent of DIF-1 production and likely through a signaling pathway that is distinct from the one that is utilized by DIF-1. Depending on concentration, colchicine enhanced random cell motility, but not chemotaxis, by 3-5 fold (10-50 mM colchicine, respectively) through a Ca(2+)-mediated signaling pathway involving phospholipase C, calmodulin and heterotrimeric G proteins. Colchicine's effects were not due to microtubule depolymerization as other microtubule-depolymerizing agents did not have these effects. Finally normal morphogenesis and stalk and spore cell differentiation of cells treated with 10 mM colchicine were rescued through chelation of Ca2+ by BAPTA-AM and EDTA and calmodulin antagonism by W-7 but not PLC inhibition by U-73122. Morphogenesis or spore cell differentiation of cells treated with 50 mM colchicine could not be rescued by the above treatments but terminal stalk cell differentiation was inhibited by BAPTA-AM, EDTA and W-7, but not U-73122. Thus colchicine disrupts morphogenesis and induces stalk cell differentiation through a Ca(2+)-mediated signaling pathway involving specific changes in gene expression and cell motility. Copyright © 2011 International Society of Differentiation. Published by Elsevier B

  20. Norepinephrine and dopamine increase motility, biofilm formation and virulence of Vibrio harveyi

    Qian eYang

    2014-11-01

    Full Text Available Vibrio harveyi is one of the major pathogens of aquatic organisms, affecting both vertebrates and invertebrates, and causes important losses in the aquaculture industry. In order to develop novel methods to control disease caused by this pathogen, we need to obtain a better understanding of pathogenicity mechanisms. Sensing of catecholamines increases both growth and production of virulence-related factors in pathogens of terrestrial animals and humans. However, at this moment, knowledge on the impact of catecholamines on the virulence of pathogens of aquatic organisms is lacking. In the present study, we report that in V. harveyi, norepinephrine and dopamine increased growth in serum-supplemented medium, siderophore production, swimming motility and expression of genes involved in flagellar motility, biofilm formation, and exopolysaccharide production. Consistent with this, pretreatment of V. harveyi with catecholamines prior to inoculation into the rearing water resulted in significantly decreased survival of gnotobiotic brine shrimp larvae, when compared to larvae challenged with untreated V. harveyi. Further, norepinephrine-induced effects could be neutralized by α-adrenergic antagonists or by the bacterial catecholamine receptor antagonist LED209, but not by β-adrenergic or dopaminergic antagonists. Dopamine-induced effects could be neutralized by dopaminergic antagonists or LED209, but not by adrenergic antagonists. Together, our results indicate that catecholamine sensing increases the success of transmission of V. harveyi and that interfering with catecholamine sensing might be an interesting strategy to control vibriosis in aquaculture. We hypothesise that upon tissue and/or hemocyte damage during infection, pathogens come into contact with elevated catecholamine levels, and that this stimulates the expression of virulence factors that are required to colonize a new host.

  1. Norepinephrine and dopamine increase motility, biofilm formation, and virulence of Vibrio harveyi.

    Yang, Qian; Anh, Nguyen D Q; Bossier, Peter; Defoirdt, Tom

    2014-01-01

    Vibrio harveyi is one of the major pathogens of aquatic organisms, affecting both vertebrates and invertebrates, and causes important losses in the aquaculture industry. In order to develop novel methods to control disease caused by this pathogen, we need to obtain a better understanding of pathogenicity mechanisms. Sensing of catecholamines increases both growth and production of virulence-related factors in pathogens of terrestrial animals and humans. However, at this moment, knowledge on the impact of catecholamines on the virulence of pathogens of aquatic organisms is lacking. In the present study, we report that in V. harveyi, norepinephrine (NE) and dopamine (Dopa) increased growth in serum-supplemented medium, siderophore production, swimming motility, and expression of genes involved in flagellar motility, biofilm formation, and exopolysaccharide production. Consistent with this, pretreatment of V. harveyi with catecholamines prior to inoculation into the rearing water resulted in significantly decreased survival of gnotobiotic brine shrimp larvae, when compared to larvae challenged with untreated V. harveyi. Further, NE-induced effects could be neutralized by α-adrenergic antagonists or by the bacterial catecholamine receptor antagonist LED209, but not by β-adrenergic or dopaminergic antagonists. Dopa-induced effects could be neutralized by dopaminergic antagonists or LED209, but not by adrenergic antagonists. Together, our results indicate that catecholamine sensing increases the success of transmission of V. harveyi and that interfering with catecholamine sensing might be an interesting strategy to control vibriosis in aquaculture. We hypothesize that upon tissue and/or hemocyte damage during infection, pathogens come into contact with elevated catecholamine levels, and that this stimulates the expression of virulence factors that are required to colonize a new host.

  2. Rectal motility after sacral nerve stimulation for faecal incontinence

    Michelsen, H B; Worsøe, J; Krogh, K

    2010-01-01

    Sacral nerve stimulation (SNS) is effective against faecal incontinence, but the mode of action is obscure. The aim of this study was to describe the effects of SNS on fasting and postprandial rectal motility. Sixteen patients, 14 women age 33-73 (mean 58), with faecal incontinence of various...... contractions, total time with cyclic rectal contractions, the number of aborally and orally propagating contractions, the number of anal sampling reflexes or rectal wall tension during contractions. Postprandial changes in rectal tone were significantly reduced during SNS (P

  3. Effect of anthraquinone derivatives on canine and rat intestinal motility.

    Garcia Villar, Rafael; Leng-Peschlow, E; Ruckebusch, Y

    1980-01-01

    The effects on gastrointestinal motility of 3 senna preparations containing 18% oxidized Ca-sennosides, 60% Ca-sennosides, or pure sennosides A + B were tested in dogs and rats as measured by electromyography. Oral administration of the oxidized products in the fasted animal increased the activity of the small intestine within 2 h and reduced both caecal and colonic contractions for 24 h. Severe diarrhoea was present 4-6 h after administration and lasted for at least 1 day. Ca-sennosides had ...

  4. Digital radiography in the evaluation of oesophageal motility disorders

    Aly, Yehia A

    2000-07-01

    AIMS: To develop a simple technique for examination of the oesophagus by digital radiography and to assess its role in the evaluation of motility disorders of the oesophagus. MATERIALS AND METHODS: Forty-nine patients and 44 control subjects underwent manometry and digital examination of the oesophagus. The digital study consisted of two parts: firstly examination of the pharynx and cervical oesophagus using 15 ml of fluid barium in anterio-posterior (AP) and lateral views, with image acquisition of four frames/s for 2 s. Secondly, examination of the thoracic oesophagus and oesophagogastric junction using 25 ml of barium in two prone oblique and one supine AP series, with image acquisition of one frame/s for 20 s. Oesophageal transit time (OTT) was measured in each case. Abnormal or non-peristaltic contractions were described regarding their morphology, time of visualization and length. The presence or absence of hiatal hernia, reflux or any associated organic lesions was noted. RESULTS: Digital radiography diagnosed 14 cases of achalasia and 28 cases of non-specific oesophageal motility disorder (NOMD). Normal OTT was 11.95 {+-} 1.304 s. The OTT was prolonged (16 s or more) in all patients except five; four of these were cases of NOMD. Abnormal contractions were classified into circular and longitudinal types. The circular non-obliterating type was commoner. Achalasia was diagnosed in all cases, as failure of relaxation of the inferior oesophageal sphincter was always present and easily depicted by digital radiography. Abnormal contractions in the body of the oesophagus were elicited in 57% of cases of achalasia. The sensitivity of digital radiography in detecting oesophageal motility disorders was 85.7% based on the presence of abnormal contractions and 91.6% by eliciting a prolonged OTT. CONCLUSIONS: Examination of the oesophagus by digital radiography is simple, non-invasive, reproducible, rapid and without discomfort to patients. It allows the diagnosis of

  5. Digital radiography in the evaluation of oesophageal motility disorders

    Aly, Yehia A.

    2000-01-01

    AIMS: To develop a simple technique for examination of the oesophagus by digital radiography and to assess its role in the evaluation of motility disorders of the oesophagus. MATERIALS AND METHODS: Forty-nine patients and 44 control subjects underwent manometry and digital examination of the oesophagus. The digital study consisted of two parts: firstly examination of the pharynx and cervical oesophagus using 15 ml of fluid barium in anterio-posterior (AP) and lateral views, with image acquisition of four frames/s for 2 s. Secondly, examination of the thoracic oesophagus and oesophagogastric junction using 25 ml of barium in two prone oblique and one supine AP series, with image acquisition of one frame/s for 20 s. Oesophageal transit time (OTT) was measured in each case. Abnormal or non-peristaltic contractions were described regarding their morphology, time of visualization and length. The presence or absence of hiatal hernia, reflux or any associated organic lesions was noted. RESULTS: Digital radiography diagnosed 14 cases of achalasia and 28 cases of non-specific oesophageal motility disorder (NOMD). Normal OTT was 11.95 ± 1.304 s. The OTT was prolonged (16 s or more) in all patients except five; four of these were cases of NOMD. Abnormal contractions were classified into circular and longitudinal types. The circular non-obliterating type was commoner. Achalasia was diagnosed in all cases, as failure of relaxation of the inferior oesophageal sphincter was always present and easily depicted by digital radiography. Abnormal contractions in the body of the oesophagus were elicited in 57% of cases of achalasia. The sensitivity of digital radiography in detecting oesophageal motility disorders was 85.7% based on the presence of abnormal contractions and 91.6% by eliciting a prolonged OTT. CONCLUSIONS: Examination of the oesophagus by digital radiography is simple, non-invasive, reproducible, rapid and without discomfort to patients. It allows the diagnosis of

  6. Endogenous Ion Dynamics in Cell Motility and Tissue Regeneration

    Özkucur, N; Perike, S; Epperlein, H H; Funk, R H W

    2011-01-01

    Directional cell migration is an essential process, including regeneration of tissues, wound healing, and embryonic development. Cells achieve persistent directional migration by polarizing the spatiotemporal components involved in the morphological polarity. Ion transporter proteins situated at the cell membrane generates small electric fields that can induce directional cell motility. Besides them, externally applied direct current electric fields induce similar kind of responses as cell orientation and directional migration. However, the bioelectric mechanisms that lead to cellular directedness are poorly understood. Therefore, understanding the bioelectric signaling cues can serve as a powerful modality in controlling the cell behaviour, which can contribute additional insights for development and regeneration.

  7. Leukocyte Motility Models Assessed through Simulation and Multi-objective Optimization-Based Model Selection.

    Mark N Read

    2016-09-01

    Full Text Available The advent of two-photon microscopy now reveals unprecedented, detailed spatio-temporal data on cellular motility and interactions in vivo. Understanding cellular motility patterns is key to gaining insight into the development and possible manipulation of the immune response. Computational simulation has become an established technique for understanding immune processes and evaluating hypotheses in the context of experimental data, and there is clear scope to integrate microscopy-informed motility dynamics. However, determining which motility model best reflects in vivo motility is non-trivial: 3D motility is an intricate process requiring several metrics to characterize. This complicates model selection and parameterization, which must be performed against several metrics simultaneously. Here we evaluate Brownian motion, Lévy walk and several correlated random walks (CRWs against the motility dynamics of neutrophils and lymph node T cells under inflammatory conditions by simultaneously considering cellular translational and turn speeds, and meandering indices. Heterogeneous cells exhibiting a continuum of inherent translational speeds and directionalities comprise both datasets, a feature significantly improving capture of in vivo motility when simulated as a CRW. Furthermore, translational and turn speeds are inversely correlated, and the corresponding CRW simulation again improves capture of our in vivo data, albeit to a lesser extent. In contrast, Brownian motion poorly reflects our data. Lévy walk is competitive in capturing some aspects of neutrophil motility, but T cell directional persistence only, therein highlighting the importance of evaluating models against several motility metrics simultaneously. This we achieve through novel application of multi-objective optimization, wherein each model is independently implemented and then parameterized to identify optimal trade-offs in performance against each metric. The resultant Pareto

  8. The transcriptional regulator, CosR, controls compatible solute biosynthesis and transport, motility and biofilm formation in Vibrio cholerae.

    Shikuma, Nicholas J; Davis, Kimberly R; Fong, Jiunn N C; Yildiz, Fitnat H

    2013-05-01

    Vibrio cholerae inhabits aquatic environments and colonizes the human digestive tract to cause the disease cholera. In these environments, V. cholerae copes with fluctuations in salinity and osmolarity by producing and transporting small, organic, highly soluble molecules called compatible solutes, which counteract extracellular osmotic pressure. Currently, it is unclear how V. cholerae regulates the expression of genes important for the biosynthesis or transport of compatible solutes in response to changing salinity or osmolarity conditions. Through a genome-wide transcriptional analysis of the salinity response of V. cholerae, we identified a transcriptional regulator we name CosR for compatible solute regulator. The expression of cosR is regulated by ionic strength and not osmolarity. A transcriptome analysis of a ΔcosR mutant revealed that CosR represses genes involved in ectoine biosynthesis and compatible solute transport in a salinity-dependent manner. When grown in salinities similar to estuarine environments, CosR activates biofilm formation and represses motility independently of its function as an ectoine regulator. This is the first study to characterize a compatible solute regulator in V. cholerae and couples the regulation of osmotic tolerance with biofilm formation and motility. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  9. Daikenchuto stimulates colonic motility after laparoscopic-assisted colectomy.

    Yaegashi, Mizunori; Otsuka, Koki; Itabashi, Tetsuya; Kimura, Toshimoto; Kato, Kuniyuki; Fujii, Hitoshi; Koeda, Keisuke; Sasaki, Akira; Wakabayashi, Go

    2014-01-01

    Paralytic ileus after laparoscopic-assisted surgery often occurs. We investigated whether daikenchuto (DKT), a traditional Japanese herbal medicine, improves intestinal motility in patients undergoing laparoscopic-assisted colectomy for colon cancer. Fifty-four patients who underwent colectomy at Iwate Medical University Hospital between October 2010 and March 2012 were randomized to either the DKT group (7.5 g/day, p.o.) or the control group (lactobacillus preparation, 3g/day, p.o.). Primary endpoints included time to first flatus, bowel movement, and tolerance of diet after extubation. Secondary endpoints were WBC count, C-reactive protein (CRP) level, length of hospital stay, and postoperative ileus. Colonic transit time was measured using radiopaque markers and abdominal radiographs. Fifty-one patients (DKT, 26 vs. control, 25) were included in the per-protocol analysis. The DKT group had significantly faster time until first flatus (67.5 +/- 13.6h vs. 77.9 +/- 11.8h, P DKT accelerates colonic motility in patients undergoing laparoscopic-assisted colectomy for colon cancer.

  10. Effects of autonomic nerve stimulation on colorectal motility in rats

    Tong, Wei Dong; Ridolfi, Timothy J.; Kosinski, Lauren; Ludwig, Kirk; Takahashi, Toku

    2010-01-01

    Background Several disease processes of the colon and rectum, including constipation and incontinence, have been associated with abnormalities of the autonomic nervous system. However, the autonomic innervation to the colon and rectum are not fully understood. The aims of this study were to investigate the effect of stimulation of vagus nerves, pelvic nerves (PN) and hypogastric nerves (HGN) on colorectal motility in rats. Methods Four strain gauge transducers were implanted on the proximal colon, mid colon, distal colon and rectum to record circular muscle contractions in rats. Electrical stimulation was administered to the efferent distal ends of the cervical vagus nerve, PN and HGN. Motility index (MI) was evaluated before and during stimulation. Key Results Electrical stimulation (5–20 Hz) of the cervical vagus elicited significant contractions in the mid colon and distal colon, whereas less pronounced contractions were observed in the proximal colon. PN stimulation elicited significant contractions in the rectum as well as the mid colon and distal colon. Atropine treatment almost completely abolished the contractions induced by vagus nerve and PN stimulation. HGN stimulation caused relaxations in the rectum, mid colon and distal colon. The relaxations in response to HGN stimulation were abolished by propranolol. Conclusions & Inferences Vagal innervation extends to the distal colon, while the PN has projections in the distribution of the rectum through the mid colon. This suggests a pattern of dual parasympathetic innervation in the left colon. Parasympathetic fibers regulate colorectal contractions via muscarinic receptors. The HGN mainly regulates colorectal relaxations via beta-adrenoceptors. PMID:20067587

  11. The physics of the unconventional motility strategy of euglenids

    Arroyo, Marino; Noselli, Giovanni; Desimone, Antonio

    Euglenids are a family of unicellular protists, which use flagella to move in a fluid. However, they are also capable of performing elegantly concerted large amplitude deformations of the cell shape, in what is known as metaboly. To perform metaboly, euglenids use an elaborate cortical complex capable of actively imposing spatially modulated shear deformations on the cell surface. This mode of cell deformation has been linked to motility, but biophysical studies have demonstrated that it leads to very small swimming velocities as compared to flagellar locomotion. Furthermore, why would these cells possess two elaborate apparatus for the same function remains unclear. In this work, we combine experimental observations of euglena gracilis cells with theoretical models to shed light into the function of metaboly. The theoretical models account for the force generation and shape evolution at the cell envelop, together with the mechanical interaction of the cell with its environment. We characterize the efficiency of the two modes of locomotion of this cells in terms of the physical nature of their environment. ERC AdG 340685 MicroMotility.

  12. Motility-driven glass and jamming transitions in biological tissues

    Bi, Dapeng; Yang, Xingbo; Marchetti, M. Cristina; Manning, M. Lisa

    2017-01-01

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi (SPV) model that simultaneously captures polarized cell motility and multi-body cell-cell interactions in a confluent tissue, where there are no gaps between cells. We demonstrate that the model exhibits a jamming transition from a solid-like state to a fluid-like state that is controlled by three parameters: the single-cell motile speed, the persistence time of single-cell tracks, and a target shape index that characterizes the competition between cell-cell adhesion and cortical tension. In contrast to traditional particulate glasses, we are able to identify an experimentally accessible structural order parameter that specifies the entire jamming surface as a function of model parameters. We demonstrate that a continuum Soft Glassy Rheology model precisely captures this transition in the limit of small persistence times, and explain how it fails in the limit of large persistence times. These results provide a framework for understanding the collective solid-to-liquid transitions that have been observed in embryonic development and cancer progression, which may be associated with Epithelial-to-Mesenchymal transition in these tissues. PMID:28966874

  13. Flagellar motility is critical for Listeria monocytogenes biofilm formation.

    Lemon, Katherine P; Higgins, Darren E; Kolter, Roberto

    2007-06-01

    The food-borne pathogen Listeria monocytogenes attaches to environmental surfaces and forms biofilms that can be a source of food contamination, yet little is known about the molecular mechanisms of its biofilm development. We observed that nonmotile mutants were defective in biofilm formation. To investigate how flagella might function during biofilm formation, we compared the wild type with flagellum-minus and paralyzed-flagellum mutants. Both nonmotile mutants were defective in biofilm development, presumably at an early stage, as they were also defective in attachment to glass during the first few hours of surface exposure. This attachment defect could be significantly overcome by providing exogenous movement toward the surface via centrifugation. However, this centrifugation did not restore mature biofilm formation. Our results indicate that it is flagellum-mediated motility that is critical for both initial surface attachment and subsequent biofilm formation. Also, any role for L. monocytogenes flagella as adhesins on abiotic surfaces appears to be either minimal or motility dependent under the conditions we examined.

  14. [Primary esophageal motility disorders; especially about esophageal achalasia].

    Miyazaki, Tatsuya; Sohda, Makoto; Sakai, Makoto; Tanaka, Naritaka; Suzuki, Shigemasa; Yokobori, Takehiko; Inose, Takanori; Nakajima, Masanobu; Fukuchi, Minoru; Kato, Hiroyuki; Kusano, Motoyasu; Kuwano, Hiroyuki

    2011-07-01

    Esophageal motility disorders are classified primary and secondary, and primary esophageal motility disorders are classified esophageal achalasia and other diseases by manometry. An esophageal emptying disorder associated with insufficient relaxation of the lower esophageal sphincter (LES) and elimination of peristaltic waves on the esophageal body is the major abnormality of achalasia. Esophagogram, endoscopy, and manometry are used for diagnosis. As pharmacological therapy, administration of a calcium channel blocker or nitrate is useful. The pharmacological therapy is not recommended as long-term basic therapy but as a temporary treatment. At 1st, the balloon dilation method is chosen in treatment of achalasia Surgical treatment is indicated in the following cases: (1) Patients uneffected by balloon dilation, (2) Flask type with grade II to III dilation, and sigmoid type, (3) the gradual progression to the pathophysiological stage, (4) young patients, (5) complicated with esophageal cancer. Laparoscopic Heller-Dor procedure is the most popular surgical procedure, recently. It is somewhat difficult to perform surgical treatment for this functional disease. We should select the most suitable individualized treatment with efficient comprehension of the pathophysiological situation.

  15. T cell motility as modulator of interactions with dendritic cells

    Jens Volker Stein

    2015-11-01

    Full Text Available It is well established that the balance of costimulatory and inhibitory signals during interactions with dendritic cells (DCs determines T cell transition from a naïve to an activated or tolerant/anergic status. While many of these molecular interactions are well reproduced in reductionist in vitro assays, the highly dynamic motility of naïve T cells in lymphoid tissue acts as an additional lever to fine-tune their activation threshold. T cell detachment from DCs providing suboptimal stimulation allows them to search for DCs with higher levels of stimulatory signals, while storing a transient memory of short encounters. In turn, adhesion of weakly reactive T cells to DCs presenting pMHC with low affinity is prevented by lipid mediators. Finally, controlled recruitment of CD8+ T cells to cognate DC – CD4+ T cell clusters shapes memory T cell formation and the quality of the immune response. Dynamic physiological lymphocyte motility therefore constitutes a mechanism to mitigate low avidity T cell activation and to improve the search for optimal DCs, while contributing to peripheral tolerance induction in the absence of inflammation.

  16. Finding Freedom: Exploring the Relationship Between Agency, Motility, and Aggression.

    Wooldridge, Tom

    2018-02-01

    After an overview of the opposed concepts of freedom and psychic determinism, and of the compatibilist reconciliation between the two that is most appropriate for psychoanalysis, the importance of agency as a psychoanalytic idea is considered. In particular, two ways in which the term agency may be used are examined: agency as fact and agency as experience. The former refers to the degree of relative freedom an individual possesses from "inner" constraints, whereas the latter refers to the experience of oneself as having an active impact on the self, other people, and/or the world. Importantly, these two senses are not coextensive. With this distinction in place, it is argued that agency as experience is rooted in the infant's earliest experiences of motility. As an extension of Winnicott's reflections (1950) on the relation between motility and aggression, it is argued that inasmuch as it involves the overcoming of opposition, aggression is integral to the developmental unfolding of the experience of agency. Further developmental conditions needed for a full experience of agency are noted. Ultimately, it is suggested, agency is central to the psychoanalytic project itself.

  17. Membrane tension and cytoskeleton organization in cell motility

    Sens, Pierre; Plastino, Julie

    2015-01-01

    Cell membrane shape changes are important for many aspects of normal biological function, such as tissue development, wound healing and cell division and motility. Various disease states are associated with deregulation of how cells move and change shape, including notably tumor initiation and cancer cell metastasis. Cell motility is powered, in large part, by the controlled assembly and disassembly of the actin cytoskeleton. Much of this dynamic happens in close proximity to the plasma membrane due to the fact that actin assembly factors are membrane-bound, and thus actin filaments are generally oriented such that their growth occurs against or near the membrane. For a long time, the membrane was viewed as a relatively passive scaffold for signaling. However, results from the last five years show that this is not the whole picture, and that the dynamics of the actin cytoskeleton are intimately linked to the mechanics of the cell membrane. In this review, we summarize recent findings concerning the role of plasma membrane mechanics in cell cytoskeleton dynamics and architecture, showing that the cell membrane is not just an envelope or a barrier for actin assembly, but is a master regulator controlling cytoskeleton dynamics and cell polarity. (topical review)

  18. Membrane tension and cytoskeleton organization in cell motility.

    Sens, Pierre; Plastino, Julie

    2015-07-15

    Cell membrane shape changes are important for many aspects of normal biological function, such as tissue development, wound healing and cell division and motility. Various disease states are associated with deregulation of how cells move and change shape, including notably tumor initiation and cancer cell metastasis. Cell motility is powered, in large part, by the controlled assembly and disassembly of the actin cytoskeleton. Much of this dynamic happens in close proximity to the plasma membrane due to the fact that actin assembly factors are membrane-bound, and thus actin filaments are generally oriented such that their growth occurs against or near the membrane. For a long time, the membrane was viewed as a relatively passive scaffold for signaling. However, results from the last five years show that this is not the whole picture, and that the dynamics of the actin cytoskeleton are intimately linked to the mechanics of the cell membrane. In this review, we summarize recent findings concerning the role of plasma membrane mechanics in cell cytoskeleton dynamics and architecture, showing that the cell membrane is not just an envelope or a barrier for actin assembly, but is a master regulator controlling cytoskeleton dynamics and cell polarity.

  19. Studies on the ovarian motility of small laboratory rodents.

    Gimeno, M F; Gimeno, A L

    1975-01-01

    Guinea pig ovaries were isolated and immersed in Krebs-Ringer bicarbonate solution, gassed with carbogen and added with glucose as the substrate. The experiments were carried out at 37 degrees C and the preparations were subjected to a basal tension of 500 mg. The spontaneous motility (contractile tension and frequency) of guinea pig ovaries obtained in late proestrus was significantly greater than that of the estrus or early proestrus. The influence of oxytocin on ovarian motility was significantly more marked in late proestrus than in estrus or early proestrus. Both the spontaneous and induced mortility of guinea pig ovaries are augmented in the immediate prevoulatory moment. In isolated rat ovaries, the isometric contractile tension and the frequency of contractions increased as the estral cycle progressed. During late proestrus, left ovaries had a contractile activity of greater intensity and frequency than the right ones, whereas during early proestrus the magnitudes were comparable. Oxytocin elicited greater responses in left than right ovaries of the late proestrus, the effect becoming similar in estrus and early proestrus. Rat ovaries obtained immediately before ovulation are specifically sensitized to the influence of oxytocin and not to other smooth muscle stimulants.

  20. Pharyngeal swallowing and oesophageal motility during a solid meal test: a prospective study in healthy volunteers and patients with major motility disorders.

    Hollenstein, Michael; Thwaites, Philip; Bütikofer, Simon; Heinrich, Henriette; Sauter, Matthias; Ulmer, Irina; Pohl, Daniel; Ang, Daphne; Eberli, Daniel; Schwizer, Werner; Fried, Michael; Distler, Oliver; Fox, Mark; Misselwitz, Benjamin

    2017-09-01

    The factors that determine how people eat when they are healthy or have disease have not been defined. We used high resolution manometry (HRM) to assess pharyngeal swallowing and oesophageal motility during ingestion of a solid test meal (STM) in healthy volunteers and patients with motility disorders. This study was based at University Hospital Zurich (Zürich, Switzerland). Healthy volunteers who responded to an advertisement completed HRM with ten single water swallows (SWS) in recumbent and upright positions followed by a 200 g rice STM in the upright position. Healthy volunteers were stratified for age and sex to ensure a representative population. For comparison, consecutive patients with major motility disorders on SWS and patients with dysphagia but no major motility disorders on SWS (disease controls) were selected from a database that was assembled prospectively; the rice meal data were analysed retrospectively. During STM, pharyngeal swallows were timed and oesophageal contractions were classified as representing normal motility or different types of abnormal motility in accordance with established metrics. Factors that could potentially be associated with eating speed were investigated, including age, sex, body-mass index, and presence of motility disorder. We compared diagnoses based on SWS findings, assessed with the Chicago Classification v3.0, with those based on STM findings, assessed with the Chicago Classification adapted for solids. These studies are registered with ClinicalTrials.gov, numbers NCT02407938 and NCT02397616. Between April 2, 2014, and May 13, 2015, 72 healthy volunteers were recruited and underwent HRM. Additionally, we analysed data from 54 consecutive patients with major motility disorders and 53 with dysphagia but no major motility disorders recruited between April 2, 2013, and Dec 18, 2014. We found important variations in oesophageal motility and eating speed during meal ingestion in healthy volunteers and patients. Increased

  1. Agonists for G-protein-coupled receptor 84 (GPR84) alter cellular morphology and motility but do not induce pro-inflammatory responses in microglia.

    Wei, Li; Tokizane, Kyohei; Konishi, Hiroyuki; Yu, Hua-Rong; Kiyama, Hiroshi

    2017-10-03

    Several G-protein-coupled receptors (GPCRs) have been shown to be important signaling mediators between neurons and glia. In our previous screening for identification of nerve injury-associated GPCRs, G-protein-coupled receptor 84 (GPR84) mRNA showed the highest up-regulation by microglia after nerve injury. GPR84 is a pro-inflammatory receptor of macrophages in a neuropathic pain mouse model, yet its function in resident microglia in the central nervous system is poorly understood. We used endogenous, natural, and surrogate agonists for GPR84 (capric acid, embelin, and 6-OAU, respectively) and examined their effect on mouse primary cultured microglia in vitro. 6-n-Octylaminouracil (6-OAU), embelin, and capric acid rapidly induced membrane ruffling and motility in cultured microglia obtained from C57BL/6 mice, although these agonists failed to promote microglial pro-inflammatory cytokine expression. Concomitantly, 6-OAU suppressed forskolin-induced increase of cAMP in cultured microglia. Pertussis toxin, an inhibitor of Gi-coupled signaling, completely suppressed 6-OAU-induced microglial membrane ruffling and motility. In contrast, no 6-OAU-induced microglial membrane ruffling and motility was observed in microglia from DBA/2 mice, a mouse strain that does not express functional GPR84 protein due to endogenous nonsense mutation of the GPR84 gene. GPR84 mediated signaling causes microglial motility and membrane ruffling but does not promote pro-inflammatory responses. As GPR84 is a known receptor for medium-chain fatty acids, those released from damaged brain cells may be involved in the enhancement of microglial motility through GPR84 after neuronal injury.

  2. The angiotensin converting enzyme (ACE) inhibitor, captopril disrupts the motility activation of sperm from the silkworm, Bombyx mori.

    Nagaoka, Sumiharu; Kawasaki, Saori; Kawasaki, Hideki; Kamei, Kaeko

    2017-11-01

    Angiotensin I-converting enzyme (also known as peptidyl dicarboxypeptidase A, ACE, and EC 3.4.15.1), which is found in a wide range of organisms, cleaves C-terminal dipeptides from relatively short oligopeptides. Mammalian ACE plays an important role in the regulation of blood pressure. However, the precise physiological functions of insect ACE homologs have not been understood. As part of our effort to elucidate new physiological roles of insect ACE, we herein report a soluble ACE protein in male reproductive secretions from the silkmoth, Bombyx mori. Seminal vesicle sperm are quiescent in vitro, but vigorous motility is activated by treatment with either a glandula (g.) prostatica homogenate or trypsin in vitro. When seminal vesicle sperm were pre-incubated with captopril, a strong and specific inhibitor of mammalian ACE, and then stimulated to initiate motility by the addition of the g. prostatica homogenate or trypsin, the overall level of acquired motility was reduced in an inhibitor-concentration-dependent manner. In the course of this project, we detected ACE-related carboxypeptidase activity that was inhibited by captopril in both the vesicular (v.) seminalis of the noncopulative male reproductive tract and in the spermatophore that forms in the female bursa copulatrix at the time of mating, just as in an earlier report on the tomato moth, Lacanobia oleracea, which belongs to a different lepidopteran species (Ekbote et al., 2003a). Two distinct genes encoding ACE-like proteins were identified by analysis of B. mori cDNA, and were named BmAcer and BmAcer2, respectively [the former was previously reported by Quan et al. (2001) and the latter was first isolated in this paper]. RT-qPCR and Western blot analyses indicated that the BmAcer2 was predominantly produced in v. seminalis and transferred to the spermatophore during copulation, while the BmAcer was not detected in the adult male reproductive organs. A recombinant protein of BmAcer2 (devoid of a signal

  3. Increased cell motility and invasion upon knockdown of lipolysis stimulated lipoprotein receptor (LSR in SW780 bladder cancer cells

    Ørntoft Torben F

    2008-07-01

    Full Text Available Abstract Background Mechanisms underlying the malignant development in bladder cancer are still not well understood. Lipolysis stimulated lipoprotein receptor (LSR has previously been found to be upregulated by P53. Furthermore, we have previously found LSR to be differentially expressed in bladder cancer. Here we investigated the role of LSR in bladder cancer. Methods A time course siRNA knock down experiment was performed to investigate the functional role of LSR in SW780 bladder cancer cells. Since LSR was previously shown to be regulated by P53, siRNA against TP53 was included in the experimental setup. We used Affymetrix GeneChips for measuring gene expression changes and we used Ingenuity Pathway Analysis to investigate the relationship among differentially expressed genes upon siRNA knockdown. Results By Ingenuity Pathway analysis of the microarray data from the different timepoints we identified six gene networks containing genes mainly related to the functional categories "cancer", "cell death", and "cellular movement". We determined that genes annotated to the functional category "cellular movement" including "invasion" and "cell motility" were highly significantly overrepresented. A matrigel assay showed that 24 h after transfection the invasion capacity was significantly increased 3-fold (p Conclusion We conclude that LSR may impair bladder cancer cells from gaining invasive properties.

  4. Sperm motility in fishes. (II) Effects of ions and osmolality: a review.

    Alavi, Sayyed Mohammad Hadi; Cosson, Jacky

    2006-01-01

    The spermatozoa of most fish species are immotile in the testis and seminal plasma. Therefore, motility is induced after the spermatozoa are released into the aqueous environment during natural reproduction or into the diluent during artificial reproduction. There are clear relationships between seminal plasma composition and osmolality and the duration of fish sperm motility. Various parameters such as ion concentrations (K+, Na+, and Ca2+), osmotic pressure, pH, temperature and dilution rate affect motility. In the present paper, we review the roles of these ions on sperm motility in Salmonidae, Cyprinidae, Acipenseridae and marine fishes, and their relationship with seminal plasma composition. Results in the literature show that: 1. K+ is a key ion controlling sperm motility in Salmonidae and Acipenseridae in combination with osmotic pressure; this control is more simple in other fish species: sperm motility is prevented when the osmotic pressure is high (Cyprinidae) or low (marine fishes) compared to that of the seminal fluid. 2. Cations (mostly divalent, such as Ca2+) are antagonistic with the inhibitory effect of K+ on sperm motility. 3. In many species, Ca2+ influx and K+ or Na+ efflux through specific ionic channels change the membrane potential and eventually lead to an increase in cAMP concentration in the cell, which constitutes the initiation signal for sperm motility in Salmonidae. 4. Media that are hyper- and hypo-osmotic relative to seminal fluid trigger sperm motility in marine and freshwater fishes, respectively. 5. The motility of fish spermatozoa is controlled through their sensitivity to osmolality and ion concentrations. This phenomenon is related to ionic channel activities in the membrane and governs the motility mechanisms of axonemes.

  5. Different computer-assisted sperm analysis (CASA) systems highly influence sperm motility parameters.

    Boryshpolets, S; Kowalski, R K; Dietrich, G J; Dzyuba, B; Ciereszko, A

    2013-10-15

    In this study, we examined different computer-assisted sperm analysis (CASA) systems (CRISMAS, Hobson Sperm Tracker, and Image J CASA) on the exact same video recordings to evaluate the differences in sperm motility parameters related to the specific CASA used. To cover a wide range of sperm motility parameters, we chose 12-second video recordings at 25 and 50 Hz frame rates after sperm motility activation using three taxonomically distinct fish species (sterlet: Acipenser ruthenus L.; common carp: Cyprinus carpio L.; and rainbow trout: Oncorhynchus mykiss Walbaum) that are characterized by essential differences in sperm behavior during motility. Systematically higher values of velocity and beat cross frequency (BCF) were observed in video recordings obtained at 50 Hz frame frequency compared with 25 Hz for all three systems. Motility parameters were affected by the CASA and species used for analyses. Image J and CRISMAS calculated higher curvilinear velocity (VCL) values for rainbow trout and common carp at 25 Hz frequency compared with the Hobson Sperm Tracker, whereas at 50 Hz, a significant difference was observed only for rainbow trout sperm recordings. No significant difference was observed between the CASA systems for sterlet sperm motility at 25 and 50 Hz. Additional analysis of 1-second segments taken at three time points (1, 6, and 12 seconds of the recording) revealed a dramatic decrease in common carp and rainbow trout sperm speed. The motility parameters of sterlet spermatozoa did not change significantly during the 12-second motility period and should be considered as a suitable model for longer motility analyses. Our results indicated that the CASA used can affect motility results even when the same motility recordings are used. These results could be critically altered by the recording quality, time of analysis, and frame rate of camera, and could result in erroneous conclusions. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. In silico reconstitution of actin-based symmetry breaking and motility.

    Mark J Dayel

    2009-09-01

    Full Text Available Eukaryotic cells assemble viscoelastic networks of crosslinked actin filaments to control their shape, mechanical properties, and motility. One important class of actin network is nucleated by the Arp2/3 complex and drives both membrane protrusion at the leading edge of motile cells and intracellular motility of pathogens such as Listeria monocytogenes. These networks can be reconstituted in vitro from purified components to drive the motility of spherical micron-sized beads. An Elastic Gel model has been successful in explaining how these networks break symmetry, but how they produce directed motile force has been less clear. We have combined numerical simulations with in vitro experiments to reconstitute the behavior of these motile actin networks in silico using an Accumulative Particle-Spring (APS model that builds on the Elastic Gel model, and demonstrates simple intuitive mechanisms for both symmetry breaking and sustained motility. The APS model explains observed transitions between smooth and pulsatile motion as well as subtle variations in network architecture caused by differences in geometry and conditions. Our findings also explain sideways symmetry breaking and motility of elongated beads, and show that elastic recoil, though important for symmetry breaking and pulsatile motion, is not necessary for smooth directional motility. The APS model demonstrates how a small number of viscoelastic network parameters and construction rules suffice to recapture the complex behavior of motile actin networks. The fact that the model not only mirrors our in vitro observations, but also makes novel predictions that we confirm by experiment, suggests that the model captures much of the essence of actin-based motility in this system.

  7. An automatic system to study sperm motility and energetics.

    Shi, Linda Z; Nascimento, Jaclyn M; Chandsawangbhuwana, Charlie; Botvinick, Elliot L; Berns, Michael W

    2008-08-01

    An integrated robotic laser and microscope system has been developed to automatically analyze individual sperm motility and energetics. The custom-designed optical system directs near-infrared laser light into an inverted microscope to create a single-point 3-D gradient laser trap at the focal spot of the microscope objective. A two-level computer structure is described that quantifies the sperm motility (in terms of swimming speed and swimming force) and energetics (measuring mid-piece membrane potential) using real-time tracking (done by the upper-level system) and fluorescent ratio imaging (done by the lower-level system). The communication between these two systems is achieved by a gigabit network. The custom-built image processing algorithm identifies the sperm swimming trajectory in real-time using phase contrast images, and then subsequently traps the sperm by automatically moving the microscope stage to relocate the sperm to the laser trap focal plane. Once the sperm is stably trapped (determined by the algorithm), the algorithm can also gradually reduce the laser power by rotating the polarizer in the laser path to measure the trapping power at which the sperm is capable of escaping the trap. To monitor the membrane potential of the mitochondria located in a sperm's mid-piece, the sperm is treated with a ratiometrically-encoded fluorescent probe. The proposed algorithm can relocate the sperm to the center of the ratio imaging camera and the average ratio value can be measured in real-time. The three parameters, sperm escape power, sperm swimming speed and ratio values of the mid-piece membrane potential of individual sperm can be compared with respect to time. This two-level automatic system to study individual sperm motility and energetics has not only increased experimental throughput by an order of magnitude but also has allowed us to monitor sperm energetics prior to and after exposure to the laser trap. This system should have application in both the

  8. Swimming Motility Mediates the Formation of Neutrophil Extracellular Traps Induced by Flagellated Pseudomonas aeruginosa.

    Madison Floyd

    2016-11-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections often characterized by robust neutrophilic infiltration. Neutrophils provide the first line of defense against P. aeruginosa. Aside from their defense conferred by phagocytic activity, neutrophils also release neutrophil extracellular traps (NETs to immobilize bacteria. Although NET formation is an important antimicrobial process, the details of its mechanism are largely unknown. The identity of the main components of P. aeruginosa responsible for triggering NET formation is unclear. In this study, our focus was to identify the main bacterial factors mediating NET formation and to gain insight into the underlying mechanism. We found that P. aeruginosa in its exponential growth phase promoted strong NET formation in human neutrophils while its NET-inducing ability dramatically decreased at later stages of bacterial growth. We identified the flagellum as the primary component of P. aeruginosa responsible for inducing NET extrusion as flagellum-deficient bacteria remained seriously impaired in triggering NET formation. Purified P. aeruginosa flagellin, the monomeric component of the flagellum, does not stimulate NET formation in human neutrophils. P. aeruginosa-induced NET formation is independent of the flagellum-sensing receptors TLR5 and NLRC4 in both human and mouse neutrophils. Interestingly, we found that flagellar motility, not flagellum binding to neutrophils per se, mediates NET release induced by flagellated bacteria. Immotile, flagellar motor-deficient bacterial strains producing paralyzed flagella did not induce NET formation. Forced contact between immotile P. aeruginosa and neutrophils restored their NET-inducing ability. Both the motAB and motCD genetic loci encoding flagellar motor genes contribute to maximal NET release; however the motCD genes play a more important role. Phagocytosis of P. aeruginosa and superoxide production by neutrophils were also

  9. Parathyroid Hormone Induces Bone Cell Motility and Loss of Mature Osteocyte Phenotype through L-Calcium Channel Dependent and Independent Mechanisms.

    Matthew Prideaux

    Full Text Available Parathyroid Hormone (PTH can exert both anabolic and catabolic effects on the skeleton, potentially through expression of the PTH type1 receptor (PTH1R, which is highly expressed in osteocytes. To determine the cellular and molecular mechanisms responsible, we examined the effects of PTH on osteoblast to osteocyte differentiation using primary osteocytes and the IDG-SW3 murine cell line, which differentiate from osteoblast to osteocyte-like cells in vitro and express GFP under control of the dentin matrix 1 (Dmp1 promoter. PTH treatment resulted in an increase in some osteoblast and early osteocyte markers and a decrease in mature osteocyte marker expression. The gene expression profile of PTH-treated Day 28 IDG-SW3 cells was similar to PTH treated primary osteocytes. PTH treatment induced striking changes in the morphology of the Dmp1-GFP positive cells in IDG-SW3 cultures and primary cells from Dmp1-GFP transgenic mice. The cells changed from a more dendritic to an elongated morphology and showed increased cell motility. E11/gp38 has been shown to be important for cell migration, however, deletion of the E11/gp38/podoplanin gene had no effect on PTH-induced motility. The effects of PTH on motility were reproduced using cAMP, but not with protein kinase A (PKA, exchange proteins activated by cAMP (Epac, protein kinase C (PKC or phosphatidylinositol-4,5-bisphosphonate 3-kinase (Pi3K agonists nor were they blocked by their antagonists. However, the effects of PTH were mediated through calcium signaling, specifically through L-type channels normally expressed in osteoblasts but decreased in osteocytes. PTH was shown to increase expression of this channel, but decrease the T-type channel that is normally more highly expressed in osteocytes. Inhibition of L-type calcium channel activity attenuated the effects of PTH on cell morphology and motility but did not prevent the downregulation of mature osteocyte marker expression. Taken together, these

  10. Rhamnolipid but not motility is associated with the initiation of biofilm ...

    2013-01-10

    Jan 10, 2013 ... In this study, confocal scanning laser microscope combined with .... Images were obtained by ... plates were inverted and incubated at 37°C for 24 h. .... and twitching motility of PAO1; d, e and f represent the motility of PA17.

  11. Time bound changes (in 24 h) in human sperm motility and level of ...

    A detailed sperm motility study for 24 h after collection was done. The level of calcium and magnesium in seminal plasma during this period was also seen to understand the role of these electrolytes on sperm motility. Good care was taken in selection of subjects (young and healthy), collection and pre-physical analysis of ...

  12. Effect of semen extenders on the motility and viability of stored ...

    Clarias gariepinus) spermatozoa. ... The results of the effect of freezing (at -40°C) on motility revealed that no motility was observed in all the cryopreserved trials except the sample containing 10% egg yolk and 10% tomato juice, which recorded ...

  13. Relationship between Porcine Sperm Motility and Sperm Enzymatic Activity using Paper-based Devices

    Matsuura, Koji; Huang, Han-Wei; Chen, Ming-Cheng; Chen, Yu; Cheng, Chao-Min

    2017-04-01

    Mammalian sperm motility has traditionally been analyzed to determine fertility using computer-assisted semen analysis (CASA) systems. To develop low-cost and robust male fertility diagnostics, we created a paper-based MTT assay and used it to estimate motile sperm concentration. When porcine sperm motility was inhibited using sperm enzyme inhibitors for sperm enzymes related to mitochondrial activity and glycolysis, we simultaneously recorded sperm motility and enzymatic reactivity using a portable motility analysis system (iSperm) and a paper-based MTT assay, respectively. When using our paper-based MTT-assay, we calculated the area mean value signal intensity (AMV) to evaluate enzymatic reactivity. Both sperm motility and AMV decreased following treatment with iodoacetamide (IODO) and 3-bromopyruvic acid (3BP), both of which are inhibitors of glycolytic enzymes including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We found a correlation between recorded motility using iSperm and AMV from our paper-based assay (P Based on this inhibitor study, sperm motility can be estimated using our paper-based MTT-assay.

  14. Effect of isoprenaline on bethanechol-stimulated gastric antral motility in dogs with gastric fistula

    Bech, K; Hovendal, C P

    1982-01-01

    The purpose of the present study was to evaluate the effect of isoprenaline on gastric antral motility in conscious dogs with gastric fistula, using intraluminal strain-gauge transducers. Infusion of bethanechol increased the motility for both frequency and strength. Isoprenaline, a beta 1...

  15. Effect of dopamine on bethanechol-stimulated gastric antral motility in dogs with gastric fistula

    Bech, K; Hovendal, C P

    1982-01-01

    The purpose of the present study was to evaluate the effect of dopamine on gastric antral motility in conscious dogs with gastric fistula, using intraluminal strain-gauge transducers. Infusion of bethanechol increased the motility with regard to both frequency and strength. Dopamine, an endogenous...

  16. Spontaneous membrane formation and self-encapsulation of active rods in an inhomogeneous motility field

    Grauer, J.; Löwen, H.; Janssen, L.M.C.

    2018-01-01

    We study the collective dynamics of self-propelled rods in an inhomogeneous motility field. At the interface between two regions of constant but different motility, a smectic rod layer is spontaneously created through aligning interactions between the active rods, reminiscent of an artificial,

  17. hemingway is required for sperm flagella assembly and ciliary motility in Drosophila.

    Soulavie, Fabien; Piepenbrock, David; Thomas, Joëlle; Vieillard, Jennifer; Duteyrat, Jean-Luc; Cortier, Elisabeth; Laurençon, Anne; Göpfert, Martin C; Durand, Bénédicte

    2014-04-01

    Cilia play major functions in physiology and development, and ciliary dysfunctions are responsible for several diseases in humans called ciliopathies. Cilia motility is required for cell and fluid propulsion in organisms. In humans, cilia motility deficiencies lead to primary ciliary dyskinesia, with upper-airways recurrent infections, left-right asymmetry perturbations, and fertility defects. In Drosophila, we identified hemingway (hmw) as a novel component required for motile cilia function. hmw encodes a 604-amino acid protein characterized by a highly conserved coiled-coil domain also found in the human orthologue, KIAA1430. We show that HMW is conserved in species with motile cilia and that, in Drosophila, hmw is expressed in ciliated sensory neurons and spermatozoa. We created hmw-knockout flies and found that they are hearing impaired and male sterile. hmw is implicated in the motility of ciliated auditory sensory neurons and, in the testis, is required for elongation and maintenance of sperm flagella. Because HMW is absent from mature flagella, we propose that HMW is not a structural component of the motile axoneme but is required for proper acquisition of motile properties. This identifies HMW as a novel, evolutionarily conserved component necessary for motile cilium function and flagella assembly.

  18. Gastrointestinal Motility, Part 2: Small-Bowel and Colon Transit.

    Maurer, Alan H

    2016-03-01

    Because of the difficulty often encountered in deciding whether a patient's symptoms originate in the upper or lower gastrointestinal tract, gastrointestinal transit scintigraphy is a uniquely suited noninvasive, quantitative, and physiologic method of determining whether there is a motility disorder affecting the stomach, small bowel, or colon. Small-bowel and colon transit studies can be performed alone or together with gastric emptying studies after oral administration of an appropriately radiolabeled meal. It is hoped that newly published standards for performing these studies and the anticipated arrival of new Current Procedural Terminology codes in the United States for small-bowel and colon transit studies will increase their availability and use. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  19. Hydrogel Walkers with Electro-Driven Motility for Cargo Transport.

    Yang, Chao; Wang, Wei; Yao, Chen; Xie, Rui; Ju, Xiao-Jie; Liu, Zhuang; Chu, Liang-Yin

    2015-08-28

    In this study, soft hydrogel walkers with electro-driven motility for cargo transport have been developed via a facile mould-assisted strategy. The hydrogel walkers consisting of polyanionic poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylamide) exhibit an arc looper-like shape with two "legs" for walking. The hydrogel walkers can reversibly bend and stretch via repeated "on/off" electro-triggers in electrolyte solution. Based on such bending/stretching behaviors, the hydrogel walkers can move their two "legs" to achieve one-directional walking motion on a rough surface via repeated "on/off" electro-triggering cycles. Moreover, the hydrogel walkers loaded with very heavy cargo also exhibit excellent walking motion for cargo transport. Such hydrogel systems create new opportunities for developing electro-controlled soft systems with simple design/fabrication strategies in the soft robotic field for remote manipulation and transportation.

  20. Actin dynamics, architecture, and mechanics in cell motility.

    Blanchoin, Laurent; Boujemaa-Paterski, Rajaa; Sykes, Cécile; Plastino, Julie

    2014-01-01

    Tight coupling between biochemical and mechanical properties of the actin cytoskeleton drives a large range of cellular processes including polarity establishment, morphogenesis, and motility. This is possible because actin filaments are semi-flexible polymers that, in conjunction with the molecular motor myosin, can act as biological active springs or "dashpots" (in laymen's terms, shock absorbers or fluidizers) able to exert or resist against force in a cellular environment. To modulate their mechanical properties, actin filaments can organize into a variety of architectures generating a diversity of cellular organizations including branched or crosslinked networks in the lamellipodium, parallel bundles in filopodia, and antiparallel structures in contractile fibers. In this review we describe the feedback loop between biochemical and mechanical properties of actin organization at the molecular level in vitro, then we integrate this knowledge into our current understanding of cellular actin organization and its physiological roles.

  1. Functional Magnetic Resonance in the Evaluation of Oesophageal Motility Disorders

    Francesco Covotta

    2011-01-01

    Our aim is to assess the role of fMRI as a technique to assess morphological and functional parameters of the esophagus in patients with esophageal motor disorders and in healthy controls. Subsequently, we assessed the diagnostic efficiency of fMRI in comparison to videofluoroscopic and manometric findings in the investigation of patients with esophageal motor disorders. Considering that fMRI was shown to offer valuable information on bolus transit and on the caliber of the esophagus, variations of these two parameters in the different types of esophageal motor alterations have been assessed. fMRI, compared to manometry and videofluoroscopy, showed that a deranged or absent peristalsis is significantly associated with slower transit time and with increased esophageal diameter. Although further studies are needed, fMRI represents a promising noninvasive technique for the integrated functional and morphological evaluation of esophageal motility disorders.

  2. Nonspecific motility disorders, irritable esophagus, and chest pain.

    Krarup, Anne Lund; Liao, Donghua; Gregersen, Hans; Drewes, Asbjørn Mohr; Hejazi, Reza A; McCallum, Richard W; Vega, Kenneth J; Frazzoni, Marzio; Frazzoni, Leonardo; Clarke, John O; Achem, Sami R

    2013-10-01

    This paper presents commentaries on whether Starling's law applies to the esophagus; whether erythromycin affects esophageal motility; the relationship between hypertensive lower esophageal sphincter and vigorous achalasia; whether ethnic- and gender-based norms affect diagnosis and treatment of esophageal motor disorders; health care and epidemiology of chest pain; whether normal pH excludes esophageal pain; the role of high-resolution manometry in noncardiac chest pain; whether pH-impedance should be included in the evaluation of noncardiac chest pain; whether there are there alternative therapeutic options to PPI for treating noncardiac chest pain; and the usefulness of psychological treatment and alternative medicine in noncardiac chest pain. © 2013 New York Academy of Sciences.

  3. Antroduodenal motility in neurologically handicapped children with feeding intolerance

    Werlin Steven L

    2004-09-01

    Full Text Available Abstract Background Dysphagia and feeding intolerance are common in neurologically handicapped children. The aim is to determine the etiologies of feeding intolerance in neurologically handicapped children who are intolerant of tube feedings. Methods Eighteen neurologically handicapped children, followed in the Tube Feeding Clinic at the Children's Hospital of Wisconsin who were intolerant of gastrostomy feedings. The charts of these 18 patients were reviewed. Past medical history, diagnoses, history of fundoplication and results of various tests of gastrointestinal function including barium contrast radiography, endoscopy and antroduodenal manometry were documented. Results Five of 11 children had abnormal barium upper gastrointestinal series. Seven of 14 had abnormal liquid phase gastric emptying tests. Two of 16 had esophagitis on endoscopy. All 18 children had abnormal antroduodenal motility. Conclusions In neurologically handicapped children foregut dysmotility may be more common than is generally recognized and can explain many of the upper gastrointestinal symptoms in neurologically handicapped children.

  4. Motility of magnetotactic bacteria/MTB to Geomagnetic fields

    Hidajatullah-Maksoed, Fatahillah

    2016-03-01

    Bacteria with motility directed by a local geomagnetic fields have been observed in marine sediments'' discussed by R. Blakemore, 1975. Magnetotactic bacteria/MTB discovered in 1963 by Salvatore Bellini. For ``off-axis electron holography in the transmission electron microscope was used to correlates the physical & magnetic microstructure of magnetite nanocrystals in magnetotactic bacteria'' sought ``single-domain magnetite in hemopelagic sediments'' from JF Stolz. Otherwise, for potential source of bioproducts- product meant from result to multiplier -of magnetotactic bacteria[ACV Araujo, et.al, 2014 ] of marine drugs retrieved the `measurement of cellular chemotaxis with ECIS/Taxis, from KM Pietrosimone, 2012, whereas after ``earth magnetic field role on small living models'' are other interpretation of ``taxis'' as a movement of a cell instead usual ``tax'' for yew's taxus cuspidate, hired car & taxes in financial realms. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.

  5. Deployable micro-traps to sequester motile bacteria

    di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-04-01

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria.

  6. Persistence-Driven Durotaxis: Generic, Directed Motility in Rigidity Gradients

    Novikova, Elizaveta A.; Raab, Matthew; Discher, Dennis E.; Storm, Cornelis

    2017-02-01

    Cells move differently on substrates with different rigidities: the persistence time of their motion is higher on stiffer substrates. We show that this behavior—in and of itself—results in a net flux of cells directed up a soft-to-stiff gradient. Using simple random walk models with varying persistence and stochastic simulations, we characterize the propensity to move in terms of the durotactic index also measured in experiments. A one-dimensional model captures the essential features and highlights the competition between diffusive spreading and linear, wavelike propagation. Persistence-driven durokinesis is generic and may be of use in the design of instructive environments for cells and other motile, mechanosensitive objects.

  7. Universal entrainment mechanism controls contact times with motile cells

    Mathijssen, Arnold J. T. M.; Jeanneret, Raphaël; Polin, Marco

    2018-03-01

    Contact between particles and motile cells underpins a wide variety of biological processes, from nutrient capture and ligand binding to grazing, viral infection, and cell-cell communication. The window of opportunity for these interactions depends on the basic mechanism determining contact time, which is currently unknown. By combining experiments on three different species—Chlamydomonas reinhardtii, Tetraselmis subcordiforms, and Oxyrrhis marina—with simulations and analytical modeling, we show that the fundamental physical process regulating proximity to a swimming microorganism is hydrodynamic particle entrainment. The resulting distribution of contact times is derived within the framework of Taylor dispersion as a competition between advection by the cell surface and microparticle diffusion, and predicts the existence of an optimal tracer size that is also observed experimentally. Spatial organization of flagella, swimming speed, and swimmer and tracer size influence entrainment features and provide tradeoffs that may be tuned to optimize the estimated probabilities for microbial interactions like predation and infection.

  8. Peroral Endoscopic Myotomy for Treating Achalasia and Esophageal Motility Disorders

    Youn, Young Hoon; Minami, Hitomi; Chiu, Philip Wai Yan; Park, Hyojin

    2016-01-01

    Peroral endoscopic myotomy (POEM) is the application of esophageal myotomy to the concept of natural orifice transluminal surgery (NOTES) by utilizing a submucosal tunneling method. Since the first case of POEM was performed for treating achalasia in Japan in 2008, this procedure is being more widely used by many skillful endosopists all over the world. Currently, POEM is a spotlighted, emerging treatment option for achalasia, and the indications for POEM are expanding to include long-standing, sigmoid shaped esophagus in achalasia, even previously failed endoscopic treatment or surgical myotomy, and other spastic esophageal motility disorders. Accumulating data about POEM demonstrate excellent short-term outcomes with minimal risk of major adverse events, and some existing long-term data show the efficacy of POEM to be long lasting. In this review article, we review the technical details and clinical outcomes of POEM, and discuss some considerations of POEM in special situations. PMID:26717928

  9. Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation

    Wu, Hong; Lee, Baoleri; Yang, Liang

    2011-01-01

    protected animal models from developing chronic lung infection by P. aeruginosa. In the present study, the effects of ginseng on the formation of P. aeruginosa biofilms were further investigated in vitro and in vivo. Ginseng aqueous extract at concentrations of 0.5-2.0% did not inhibit the growth of P......Biofilm-associated chronic Pseudomonas aeruginosa lung infections in patients with cystic fibrosis are virtually impossible to eradicate with antibiotics because biofilm-growing bacteria are highly tolerant to antibiotics and host defense mechanisms. Previously, we found that ginseng treatments....... aeruginosa, but significantly prevented P. aeruginosa from forming biofilm. Exposure to 0.5% ginseng aqueous extract for 24 h destroyed most 7-day-old mature biofilms formed by both mucoid and nonmucoid P. aeruginosa strains. Ginseng treatment enhanced swimming and twitching motility, but reduced swarming...

  10. LBP based detection of intestinal motility in WCE images

    Gallo, Giovanni; Granata, Eliana

    2011-03-01

    In this research study, a system to support medical analysis of intestinal contractions by processing WCE images is presented. Small intestine contractions are among the motility patterns which reveal many gastrointestinal disorders, such as functional dyspepsia, paralytic ileus, irritable bowel syndrome, bacterial overgrowth. The images have been obtained using the Wireless Capsule Endoscopy (WCE) technique, a patented, video colorimaging disposable capsule. Manual annotation of contractions is an elaborating task, since the recording device of the capsule stores about 50,000 images and contractions might represent only the 1% of the whole video. In this paper we propose the use of Local Binary Pattern (LBP) combined with the powerful textons statistics to find the frames of the video related to contractions. We achieve a sensitivity of about 80% and a specificity of about 99%. The achieved high detection accuracy of the proposed system has provided thus an indication that such intelligent schemes could be used as a supplementary diagnostic tool in endoscopy.

  11. Evaluation of methods for assessment of esophageal motility disorders

    Endert, G.; Nagel, F.; Erler, M.; Hasse, C.; Ritter, E.P.; Nowak, W. (Medical Academy Erfurt, Clinic of Radiology and Clinic of Surgery (Germany))

    1990-01-01

    The purpose of this study is to compare two forms of parametric imaging of esophageal motility, the condensed image and the esophageal kinetogram, with a standard esophageal transit study in 64 patients with gastro-esophageal reflux disease. The diagnosis was confirmed by endoscopy. A multiple swallow test with a liquid tracer of 150 MBq {sup 99m}Tc-DTPA was used. During the investigation-time of 9 min 300 pictures were recorded and with the KANDI DS-system the parametric images generated and the clearance time, the transit time and the index of reflux were determined. The comparison of kinetogram and condensed image shows a higher sensitivity to detect functional disturbances in the multiple swallow test (kinetogram). In the diagnosis of the reflux disease the transit study and the parametric imaging demonstrated a comparable sensitivity. (orig.).

  12. Evaluation of methods for assessment of esophageal motility disorders

    Endert, G.; Nagel, F.; Erler, M.; Hasse, C.; Ritter, E.P.; Nowak, W.

    1990-01-01

    The purpose of this study is to compare two forms of parametric imaging of esophageal motility, the condensed image and the esophageal kinetogram, with a standard esophageal transit study in 64 patients with gastro-esophageal reflux disease. The diagnosis was confirmed by endoscopy. A multiple swallow test with a liquid tracer of 150 MBq 99m Tc-DTPA was used. During the investigation-time of 9 min 300 pictures were recorded and with the KANDI DS-system the parametric images generated and the clearance time, the transit time and the index of reflux were determined. The comparison of kinetogram and condensed image shows a higher sensitivity to detect functional disturbances in the multiple swallow test (kinetogram). In the diagnosis of the reflux disease the transit study and the parametric imaging demonstrated a comparable sensitivity. (orig.)

  13. The effects of posterior talar glide with dorsiflexion of the ankle on mobility, muscle strength and balance in stroke patients: a randomised controlled trial

    Lee, Jin; Kim, Ju-O; Lee, Byoung-Hee

    2017-01-01

    [Purpose] The purpose of this study was to examine the effectiveness of posterior talar glide (PTG) with dorsiflexion of the ankle on stroke patients ankle mobility, muscle strength, and balance ability. [Subjects and Methods] Thirty-four subjects were randomly assigned to either a PTG with dorsiflexion group (PTG; n=17), or a weight-bearing with placebo PTG group (control; n=17). Subjects in the PTG group performed PTG with dorsiflexion, designed to improve ankle mobility, muscle strength an...

  14. Micro-CT evaluation of several glide path techniques and ProTaper Next shaping outcomes in maxillary first molar curved canals.

    Alovisi, M; Cemenasco, A; Mancini, L; Paolino, D; Scotti, N; Bianchi, C C; Pasqualini, D

    2017-04-01

    To evaluate the ability of ProGlider instruments, PathFiles and K-files to maintain canal anatomy during glide path preparation using X-ray computed micro-tomography (micro-CT). Forty-five extracted maxillary first permanent molars were selected. Mesio-buccal canals were randomly assigned (n = 15) to manual K-file, PathFile or ProGlider groups for glide path preparation. Irrigation was achieved with 5% NaOCl and 10% EDTA. After glide path preparation, each canal was shaped with ProTaper Next X1 and X2 to working length. Specimens were scanned (isotropic voxel size 9.1 μm) for matching volumes and surface areas and post-treatment analyses. Canal volume, surface area, centroid shift, canal geometry variation through ratio of diameter ratios and ratio of cross-sectional areas were assessed in the apical and coronal levels and at the point of maximum canal curvature. One-way factorial anovas were used to evaluate the significance of instrument in the various canal regions. Post-glide path analysis revealed that instrument factor was significant at the apical level for both the ratio of diameter ratios and the ratio of cross-sectional areas (P flare the root canal compared with K-file and PathFile. PathFile and ProGlider demonstrated a significantly lower centroid shift compared with K-file at the apical level (P = 0.023). Post-shaping analysis demonstrated a more centred preparation of ProGlider, compared with PathFile and K-files, with no significant differences for other parameters. Use of ProGlider instruments led to less canal transportation than PathFiles and K-files. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  15. Effect of Glide Path Creating on Cyclic Fatigue Resistance of Reciproc and Reciproc Blue Nickel-titanium Files: A Laboratory Study.

    Özyürek, Taha; Uslu, Gülşah; Yılmaz, Koray; Gündoğar, Mustafa

    2018-06-01

    The purpose of this article was to compare the cyclic fatigue resistance of Reciproc and Reciproc Blue files (VDW GmbH, Munich, Germany) that were used to prepare root canals of mandibular molar teeth with or without a glide path. Sixty Reciproc R25 and 60 Reciproc Blue R25 files were used. The Reciproc and Reciproc Blue groups were divided into 3 subgroups (ie, as received condition, used without a glide path, and used with a glide path). All the instruments were rotated in a stainless steel artificial canal with an inner diameter of 1.5 mm, a 60° angle of curvature, and a radius of curvature of 5 mm until fracture occurred. The number of cycle to fracture was calculated, and the length of the fractured segments was measured. The Kruskal-Wallis test was performed to statistically analyze the data using SPSS 21.0 software (IBM Corp, Armonk, NY) at a 5% significance level. The cyclic fatigue resistance of as received condition Reciproc Blue files was found to be higher than as received condition Reciproc files (P  .05). There was no statistically significant difference in the mean length of the fractured fragments of the instruments (P > .05). Within the limitations of this in vitro study, it was concluded that creating a glide path using ProGlider files had no effect on the cyclic fatigue resistance of RPC and RPC Blue files. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Systems level analysis of two-component signal transduction systems in Erwinia amylovora: Role in virulence, regulation of amylovoran biosynthesis and swarming motility

    Sundin George W

    2009-05-01

    Full Text Available Abstract Background Two-component signal transduction systems (TCSTs, consisting of a histidine kinase (HK and a response regulator (RR, represent a major paradigm for signal transduction in prokaryotes. TCSTs play critical roles in sensing and responding to environmental conditions, and in bacterial pathogenesis. Most TCSTs in Erwinia amylovora have either not been identified or have not yet been studied. Results We used a systems approach to identify TCST and related signal transduction genes in the genome of E. amylovora. Comparative genomic analysis of TCSTs indicated that E. amylovora TCSTs were closely related to those of Erwinia tasmaniensis, a saprophytic enterobacterium isolated from apple flowers, and to other enterobacteria. Forty-six TCST genes in E. amylovora including 17 sensor kinases, three hybrid kinases, 20 DNA- or ligand-binding RRs, four RRs with enzymatic output domain (EAL-GGDEF proteins, and two kinases were characterized in this study. A systematic TCST gene-knockout experiment was conducted, generating a total of 59 single-, double-, and triple-mutants. Virulence assays revealed that five of these mutants were non-pathogenic on immature pear fruits. Results from phenotypic characterization and gene expression experiments indicated that several groups of TCST systems in E. amylovora control amylovoran biosynthesis, one of two major virulence factors in E. amylovora. Both negative and positive regulators of amylovoran biosynthesis were identified, indicating a complex network may control this important feature of pathogenesis. Positive (non-motile, EnvZ/OmpR, negative (hypermotile, GrrS/GrrA, and intermediate regulators for swarming motility in E. amylovora were also identified. Conclusion Our results demonstrated that TCSTs in E. amylovora played major roles in virulence on immature pear fruit and in regulating amylovoran biosynthesis and swarming motility. This suggested presence of regulatory networks governing

  17. Oropharyngeal acid reflux and motility abnormalities of the proximal esophagus.

    Passaretti, Sandro; Mazzoleni, Giorgia; Vailati, Cristian; Testoni, Pier Alberto

    2016-10-28

    To investigate the relationship between pathological oropharyngeal (OP) acid exposure and esophageal motility in patients with extra-esophageal syndromes. In this prospective study we enrolled consecutive outpatients with extra-esophageal symptoms suspected to be related to gastroesophageal reflux disease (GERD). We enrolled only patients with a reflux symptom index (RSI) score-higher than 13 and with previous lung, allergy and ear, nose and throat evaluations excluding other specific diagnoses. All patients underwent 24-h OP pH-metry with the Dx probe and esophageal high-resolution manometry (HRM). Patients were divided into two groups on the basis of a normal or pathological pH-metric finding (Ryan Score) and all manometric characteristics of the two groups were compared. We examined 135 patients with chronic extra-esophageal syndromes. Fifty-one were considered eligible for the study. Of these, 42 decided to participate in the protocol. Patients were divided into two groups on the basis of normal or pathological OP acid exposure. All the HRM parameters were compared for the two groups. Significant differences were found in the median upper esophageal sphincter resting pressure (median 71 mmHg vs 126 mmHg, P = 0.004) and the median proximal contractile integral (median 215.5 cm•mmHg•s vs 313.5 cm•mmHg•s, P = 0.039), both being lower in the group with pathological OP acid exposure, and the number of contractions with small or large breaks, which were more frequent in the same group. This group also had a larger number of peristaltic contractions with breaks in the 20 mmHg isobaric contour (38.7% vs 15.38%, P acid exposure was associated with weaker proximal esophageal motility.

  18. Rate controlling mechanisms during hot deformation of Mg–3Gd–1Zn magnesium alloy: Dislocation glide and climb, dynamic recrystallization, and mechanical twinning

    Mirzadeh, H.; Roostaei, M.; Parsa, M.H.; Mahmudi, R.

    2015-01-01

    Highlights: • Hot deformation behavior and dynamic recrystallization of GZ31 magnesium alloy. • Deducing the operative deformation mechanisms by constitutive analysis. • Viscous glide as the rate controlling step during hot working of GZ31 alloy. • Characterization of the effect of mechanical twinning on constitutive relations. - Abstract: The flow behavior of the Mg–3Gd–1Zn (GZ31) magnesium alloy during hot working was critically analyzed and dislocation glide in the form of a viscous drag process (viscous glide) was identified as the rate controlling mechanism due to interaction of rare earth Gd atoms with the moving dislocations. Mechanical twinning was shown to significantly affect the level of flow stress at high Zener–Hollomon parameters, i.e. low forming temperatures and high strain rates. Moreover, dynamic recrystallization (DRX) was found to be another responsible phenomenon for deviation of constitutive equations from the theoretical ones, namely the deformation activation energy based on diffusivity and the pre-defined Garofalo’s type hyperbolic sine power, during high-temperature thermomechanical processing of this creep resistant light alloy

  19. Asymmetric, compressive, SiGe epilayers on Si grown by lateral liquid-phase epitaxy utilizing a distinction between dislocation nucleation and glide critical thicknesses

    O'Reilly, Andrew J.; Quitoriano, Nathaniel

    2018-01-01

    Uniaxially strained Si1-xGex channels have been proposed as a solution for high mobility channels in next-generation MOSFETS to ensure continued device improvement as the benefits from further miniaturisation are diminishing. Previously proposed techniques to deposit uniaxially strained Si1-xGex epilayers on Si (0 0 1) substrates require multiple deposition steps and only yielded thin strips of uniaxially strained films. A lateral liquid-phase epitaxy (LLPE) technique was developed to deposit a blanket epilayer of asymmetrically strained Si97.4Ge2.6 on Si in a single step, where the epilayer was fully strained in the growth direction and 31% strain-relaxed in the orthogonal direction. The LLPE technique promoted the glide of misfit dislocations, which nucleated in a region with an orthogonal misfit dislocation network, into a region where the dislocation nucleation was inhibited. This created an array of parallel misfit dislocations which were the source of the asymmetric strain. By observing the thicknesses at which the dislocation network transitions from orthogonal to parallel and at which point dislocation glide is exhausted, the separate critical thicknesses for dislocation nucleation and dislocation glide can be determined.

  20. A new stem-neopterygian fish from the Middle Triassic of China shows the earliest over-water gliding strategy of the vertebrates.

    Xu, Guang-Hui; Zhao, Li-Jun; Gao, Ke-Qin; Wu, Fei-Xiang

    2013-01-07

    Flying fishes are extraordinary aquatic vertebrates capable of gliding great distances over water by exploiting their enlarged pectoral fins and asymmetrical caudal fin. Some 50 species of extant flying fishes are classified in the Exocoetidae (Neopterygii: Teleostei), which have a fossil record no older than the Eocene. The Thoracopteridae is the only pre-Cenozoic group of non-teleosts that shows an array of features associated with the capability of over-water gliding. Until recently, however, the fossil record of the Thoracopteridae has been limited to the Upper Triassic of Austria and Italy. Here, we report the discovery of exceptionally well-preserved fossils of a new thoracopterid flying fish from the Middle Triassic of China, which represents the earliest evidence of an over-water gliding strategy in vertebrates. The results of a phylogenetic analysis resolve the Thoracopteridae as a stem-group of the Neopterygii that is more crown-ward than the Peltopleuriformes, yet more basal than the Luganoiiformes. As the first record of the Thoracopteride in Asia, this new discovery extends the geographical distribution of this group from the western to eastern rim of the Palaeotethys Ocean, providing new evidence to support the Triassic biological exchanges between Europe and southern China. Additionally, the Middle Triassic date of the new thoracopterid supports the hypothesis that the re-establishment of marine ecosystems after end-Permian mass extinction is more rapid than previously thought.