WorldWideScience

Sample records for glial cells involves

  1. Ghrelin is involved in the paracrine communication between neurons and glial cells.

    Science.gov (United States)

    Avau, B; De Smet, B; Thijs, T; Geuzens, A; Tack, J; Vanden Berghe, P; Depoortere, I

    2013-09-01

    Ghrelin is the only known peripherally active orexigenic hormone produced by the stomach that activates vagal afferents to stimulate food intake and to accelerate gastric emptying. Vagal sensory neurons within the nodose ganglia are surrounded by glial cells, which are able to receive and transmit chemical signals. We aimed to investigate whether ghrelin activates or influences the interaction between both types of cells. The effect of ghrelin was compared with that of leptin and cholecystokinin (CCK). Cultures of rat nodose ganglia were characterized by immunohistochemistry and the functional effects of peptides, neurotransmitters, and pharmacological blockers were measured by Ca(2+) imaging using Fluo-4-AM as an indicator. Neurons responded to KCl and were immunoreactive for PGP-9.5 whereas glial cells responded to lysophosphatidic acid and had the typical SOX-10-positive nuclear staining. Neurons were only responsive to CCK (31 ± 5%) whereas glial cells responded equally to the applied stimuli: ghrelin (27 ± 2%), leptin (21 ± 2%), and CCK (30 ± 2%). In contrast, neurons stained more intensively for the ghrelin receptor than glial cells. ATP induced [Ca(2+) ]i rises in 90% of the neurons whereas ACh and the NO donor, SIN-1, mainly induced [Ca(2+) ]i changes in glial cells (41 and 51%, respectively). The percentage of ghrelin-responsive glial cells was not affected by pretreatment with suramin, atropine, hexamethonium or 1400 W, but was reduced by l-NAME and by tetrodotoxin. Neurons were shown to be immunoreactive for neuronal NO-synthase (nNOS). Our data show that ghrelin induces Ca(2+) signaling in glial cells of the nodose ganglion via the release of NO originating from the neurons. © 2013 John Wiley & Sons Ltd.

  2. Involvement of glial cells in the neurotoxicity of parathion and chlorpyrifos

    International Nuclear Information System (INIS)

    Zurich, M.-G.; Honegger, P.; Schilter, B.; Costa, L.G.; Monnet-Tschudi, F.

    2004-01-01

    An in vitro model, the aggregating brain cell culture of fetal rat telencephalon, has been used to investigate the influence of glial cells on the neurotoxicity of two organophosphorus pesticides (OPs), chlorpyrifos and parathion. Mixed-cell aggregate cultures were treated continuously for 10 days between DIV 5 and 15. Parathion induced astrogliosis at concentration at which MAP-2 immunostaining, found here to be more sensitive than neuron-specific enzyme activities, was not affected. In contrast, chlorpyrifos induced a comparatively weak gliotic reaction, and only at concentrations at which neurons were already affected. After similar treatments, increased neurotoxicity of parathion and chlorpyrifos was found in aggregate cultures deprived of glial cells. These results suggest that glial cells provide neuroprotection against OPs toxicity. To address the question of the difference in toxicity between parathion and chlorpyrifos, the toxic effects of their leaving groups, p-nitrophenol and trichloropyridinol, were studied in mixed-cell aggregates. General cytotoxicity was more pronounced for trichloropyridinol and both compounds had similar toxic effects on neuron-specific enzyme activities. In contrast, trichloropyridinol induced a much stronger decrease in glutamine synthetase activity, the enzymatic marker of astrocytes. Trichloropyridinol may exert a toxic effect on astrocytes, compromising their neuroprotective function, thus exacerbating the neurotoxicity of chlorpyrifos. This is in line with the suggestion that glial cells may contribute to OPs neurotoxicity, and with the view that OPs may exert their neurotoxic effects through different mechanisms

  3. A New Outlook on Mental Illnesses: Glial Involvement Beyond the Glue

    KAUST Repository

    Elsayed, Maha

    2015-12-16

    Mental illnesses have long been perceived as the exclusive consequence of abnormalities in neuronal functioning. Until recently, the role of glial cells in the pathophysiology of mental diseases has largely been overlooked. However recently, multiple lines of evidence suggest more diverse and significant functions of glia with behavior-altering effects. The newly ascribed roles of astrocytes, oligodendrocytes and microglia have led to their examination in brain pathology and mental illnesses. Indeed, abnormalities in glial function, structure and density have been observed in postmortem brain studies of subjects diagnosed with mental illnesses. In this review, we discuss the newly identified functions of glia and highlight the findings of glial abnormalities in psychiatric disorders. We discuss these preclinical and clinical findings implicating the involvement of glial cells in mental illnesses with the perspective that these cells may represent a new target for treatment.

  4. A New Outlook on Mental Illnesses: Glial Involvement Beyond the Glue

    KAUST Repository

    Elsayed, Maha; Magistretti, Pierre J.

    2015-01-01

    Mental illnesses have long been perceived as the exclusive consequence of abnormalities in neuronal functioning. Until recently, the role of glial cells in the pathophysiology of mental diseases has largely been overlooked. However recently, multiple lines of evidence suggest more diverse and significant functions of glia with behavior-altering effects. The newly ascribed roles of astrocytes, oligodendrocytes and microglia have led to their examination in brain pathology and mental illnesses. Indeed, abnormalities in glial function, structure and density have been observed in postmortem brain studies of subjects diagnosed with mental illnesses. In this review, we discuss the newly identified functions of glia and highlight the findings of glial abnormalities in psychiatric disorders. We discuss these preclinical and clinical findings implicating the involvement of glial cells in mental illnesses with the perspective that these cells may represent a new target for treatment.

  5. Radiation adaptive response for the growth of cultured glial cells

    International Nuclear Information System (INIS)

    Suzuki, S.; Miura, Y.; Kano, M.; Toda, T.; Urano, S.

    2003-01-01

    Full text: To examine the molecular mechanism of radiation adaptive response (RAR) for the growth of cultured glial cells and to investigate the influence of aging on the response, glial cells were cultured from young and aged rats (1 month and 24 months old). RAR for the growth of glial cells conditioned with a low dose of X-rays and subsequently exposed to a high dose of X-rays was examined for cell number and BrdU incorporation. Involvement of the subcellular signaling pathway factors in RAR was investigated using their inhibitors, activators and mutated glial cells. RAR was observed in cells cultured from young rats, but was not in cells from aged rats. The inhibitors of protein kinase C (PKC) and DNA-dependent protein kinase (DNA-PK) or phosphatidylinositol 3-kinase (PI3K) suppressed RAR. The activators of PKC instead of low dose irradiation also caused RAR. Moreover, glial cells cultured from severe combined immunodeficiency (scid) mice (CB-17 scid) and ataxia-telangiectasia (AT) cells from AT patients showed no RAR. These results indicated that PKC, ATM, DNAPK and/or PI3K were involved in RAR for growth and BrdU incorporation of cultured glial cells and RAR decreased with aging. Proteomics data of glial cells exposed to severe stress of H 2 O 2 or X-rays also will be presented in the conference since little or no difference has not been observed with slight stress yet

  6. The Purinergic System and Glial Cells: Emerging Costars in Nociception

    Directory of Open Access Journals (Sweden)

    Giulia Magni

    2014-01-01

    Full Text Available It is now well established that glial cells not only provide mechanical and trophic support to neurons but can directly contribute to neurotransmission, for example, by release and uptake of neurotransmitters and by secreting pro- and anti-inflammatory mediators. This has greatly changed our attitude towards acute and chronic disorders, paving the way for new therapeutic approaches targeting activated glial cells to indirectly modulate and/or restore neuronal functions. A deeper understanding of the molecular mechanisms and signaling pathways involved in neuron-to-glia and glia-to-glia communication that can be pharmacologically targeted is therefore a mandatory step toward the success of this new healing strategy. This holds true also in the field of pain transmission, where the key involvement of astrocytes and microglia in the central nervous system and satellite glial cells in peripheral ganglia has been clearly demonstrated, and literally hundreds of signaling molecules have been identified. Here, we shall focus on one emerging signaling system involved in the cross talk between neurons and glial cells, the purinergic system, consisting of extracellular nucleotides and nucleosides and their membrane receptors. Specifically, we shall summarize existing evidence of novel “druggable” glial purinergic targets, which could help in the development of innovative analgesic approaches to chronic pain states.

  7. Primary culture of glial cells from mouse sympathetic cervical ganglion: a valuable tool for studying glial cell biology.

    Science.gov (United States)

    de Almeida-Leite, Camila Megale; Arantes, Rosa Maria Esteves

    2010-12-15

    Central nervous system glial cells as astrocytes and microglia have been investigated in vitro and many intracellular pathways have been clarified upon various stimuli. Peripheral glial cells, however, are not as deeply investigated in vitro despite its importance role in inflammatory and neurodegenerative diseases. Based on our previous experience of culturing neuronal cells, our objective was to standardize and morphologically characterize a primary culture of mouse superior cervical ganglion glial cells in order to obtain a useful tool to study peripheral glial cell biology. Superior cervical ganglia from neonatal C57BL6 mice were enzymatically and mechanically dissociated and cells were plated on diluted Matrigel coated wells in a final concentration of 10,000cells/well. Five to 8 days post plating, glial cell cultures were fixed for morphological and immunocytochemical characterization. Glial cells showed a flat and irregular shape, two or three long cytoplasm processes, and round, oval or long shaped nuclei, with regular outline. Cell proliferation and mitosis were detected both qualitative and quantitatively. Glial cells were able to maintain their phenotype in our culture model including immunoreactivity against glial cell marker GFAP. This is the first description of immunocytochemical characterization of mouse sympathetic cervical ganglion glial cells in primary culture. This work discusses the uses and limitations of our model as a tool to study many aspects of peripheral glial cell biology. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. NMDA Receptors in Glial Cells: Pending Questions.

    Science.gov (United States)

    Dzamba, David; Honsa, Pavel; Anderova, Miroslava

    2013-05-01

    Glutamate receptors of the N-methyl-D-aspartate (NMDA) type are involved in many cognitive processes, including behavior, learning and synaptic plasticity. For a long time NMDA receptors were thought to be the privileged domain of neurons; however, discoveries of the last 25 years have demonstrated their active role in glial cells as well. Despite the large number of studies in the field, there are many unresolved questions connected with NMDA receptors in glia that are still a matter of debate. The main objective of this review is to shed light on these controversies by summarizing results from all relevant works concerning astrocytes, oligodendrocytes and polydendrocytes (also known as NG2 glial cells) in experimental animals, further extended by studies performed on human glia. The results are divided according to the study approach to enable a better comparison of how findings obtained at the mRNA level correspond with protein expression or functionality. Furthermore, special attention is focused on the NMDA receptor subunits present in the particular glial cell types, which give them special characteristics different from those of neurons - for example, the absence of Mg(2+) block and decreased Ca(2+) permeability. Since glial cells are implicated in important physiological and pathophysiological roles in the central nervous system (CNS), the last part of this review provides an overview of glial NMDA receptors with respect to ischemic brain injury.

  9. Connecting Malfunctioning Glial Cells and Brain Degenerative Disorders.

    Science.gov (United States)

    Kaminsky, Natalie; Bihari, Ofer; Kanner, Sivan; Barzilai, Ari

    2016-06-01

    The DNA damage response (DDR) is a complex biological system activated by different types of DNA damage. Mutations in certain components of the DDR machinery can lead to genomic instability disorders that culminate in tissue degeneration, premature aging, and various types of cancers. Intriguingly, malfunctioning DDR plays a role in the etiology of late onset brain degenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases. For many years, brain degenerative disorders were thought to result from aberrant neural death. Here we discuss the evidence that supports our novel hypothesis that brain degenerative diseases involve dysfunction of glial cells (astrocytes, microglia, and oligodendrocytes). Impairment in the functionality of glial cells results in pathological neuro-glial interactions that, in turn, generate a "hostile" environment that impairs the functionality of neuronal cells. These events can lead to systematic neural demise on a scale that appears to be proportional to the severity of the neurological deficit. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  10. Connecting Malfunctioning Glial Cells and Brain Degenerative Disorders

    Directory of Open Access Journals (Sweden)

    Natalie Kaminsky

    2016-06-01

    Full Text Available The DNA damage response (DDR is a complex biological system activated by different types of DNA damage. Mutations in certain components of the DDR machinery can lead to genomic instability disorders that culminate in tissue degeneration, premature aging, and various types of cancers. Intriguingly, malfunctioning DDR plays a role in the etiology of late onset brain degenerative disorders such as Parkinson’s, Alzheimer’s, and Huntington’s diseases. For many years, brain degenerative disorders were thought to result from aberrant neural death. Here we discuss the evidence that supports our novel hypothesis that brain degenerative diseases involve dysfunction of glial cells (astrocytes, microglia, and oligodendrocytes. Impairment in the functionality of glial cells results in pathological neuro-glial interactions that, in turn, generate a “hostile” environment that impairs the functionality of neuronal cells. These events can lead to systematic neural demise on a scale that appears to be proportional to the severity of the neurological deficit.

  11. Glial hemichannels and their involvement in aging and neurodegenerative diseases.

    Science.gov (United States)

    Orellana, Juan A; von Bernhardi, Rommy; Giaume, Christian; Sáez, Juan C

    2012-01-26

    During the last two decades, it became increasingly evident that glial cells accomplish a more important role in brain function than previously thought. Glial cells express pannexins and connexins, which are member subunits of two protein families that form membrane channels termed hemichannels. These channels communicate intra- and extracellular compartments and allow the release of autocrine/paracrine signaling molecules [e.g., adenosine triphosphate (ATP), glutamate, nicotinamide adenine dinucleotide, and prostaglandin E2] to the extracellular milieu, as well as the uptake of small molecules (e.g., glucose). An increasing body of evidence has situated glial hemichannels as potential regulators of the beginning and maintenance of homeostatic imbalances observed in diverse brain diseases. Here, we review and discuss the current evidence about the possible role of glial hemichannels on neurodegenerative diseases. A subthreshold pathological threatening condition leads to microglial activation, which keeps active defense and restores the normal function of the central nervous system. However, if the stimulus is deleterious, microglial cells and the endothelium become overactivated, both releasing bioactive molecules (e.g., glutamate, cytokines, prostaglandins, and ATP), which increase the activity of glial hemichannels, reducing the astroglial neuroprotective functions, and further reducing neuronal viability. Because ATP and glutamate are released via glial hemichannels in neurodegenerative conditions, it is expected that they contribute to neurotoxicity. More importantly, toxic molecules released via glial hemichannels could increase the Ca2+ entry in neurons also via neuronal hemichannels, leading to neuronal death. Therefore, blockade of hemichannels expressed by glial cells and/or neurons during neuroinflammation might prevent neurodegeneration.

  12. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Glial Cells: The Other Cells of the Nervous System - An Introduction to Glial Cells. Medha S Rajadhyaksha Yasmin Khan. Series Article Volume 7 Issue 1 January 2002 pp 4-10 ...

  13. The glia doctrine: addressing the role of glial cells in healthy brain ageing.

    Science.gov (United States)

    Nagelhus, Erlend A; Amiry-Moghaddam, Mahmood; Bergersen, Linda H; Bjaalie, Jan G; Eriksson, Jens; Gundersen, Vidar; Leergaard, Trygve B; Morth, J Preben; Storm-Mathisen, Jon; Torp, Reidun; Walhovd, Kristine B; Tønjum, Tone

    2013-10-01

    Glial cells in their plurality pervade the human brain and impact on brain structure and function. A principal component of the emerging glial doctrine is the hypothesis that astrocytes, the most abundant type of glial cells, trigger major molecular processes leading to brain ageing. Astrocyte biology has been examined using molecular, biochemical and structural methods, as well as 3D brain imaging in live animals and humans. Exosomes are extracelluar membrane vesicles that facilitate communication between glia, and have significant potential for biomarker discovery and drug delivery. Polymorphisms in DNA repair genes may indirectly influence the structure and function of membrane proteins expressed in glial cells and predispose specific cell subgroups to degeneration. Physical exercise may reduce or retard age-related brain deterioration by a mechanism involving neuro-glial processes. It is most likely that additional information about the distribution, structure and function of glial cells will yield novel insight into human brain ageing. Systematic studies of glia and their functions are expected to eventually lead to earlier detection of ageing-related brain dysfunction and to interventions that could delay, reduce or prevent brain dysfunction. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. The role of glial cells in neuronal acetylcholine synthesis

    International Nuclear Information System (INIS)

    Kasa, P.

    1986-01-01

    This paper presents data on the role of glial cells in neuronal ACh synthesis. It is noted that central neurons fare better in cultures when in contact with non-neuronal cells, and especially glial cells. Since neither the fate of the Ch released from the glial cells nor the role of the contact between glial cells and neurons has yet been elucidated, the author investigates these phenomena. Glial cells from 14-day-old chickbrain were cultured for 14 days. ( 14 C) - choline incorporated into lipids, phosphocholine, betaine and ACh, as well as the free ( 14 C) -choline, were determined in the pure glial cell cultures after 24 h, and in the combined cultures after 7 days. The ( 14 C) - choline influx into the incubation medium and the uptake by the neurons were measured. Results are presented

  15. Distinct types of glial cells populate the Drosophila antenna

    Directory of Open Access Journals (Sweden)

    Jhaveri Dhanisha

    2005-11-01

    Full Text Available Abstract Background The development of nervous systems involves reciprocal interactions between neurons and glia. In the Drosophila olfactory system, peripheral glial cells arise from sensory lineages specified by the basic helix-loop-helix transcription factor, Atonal. These glia wrap around the developing olfactory axons early during development and pattern the three distinct fascicles as they exit the antenna. In the moth Manduca sexta, an additional set of central glia migrate to the base of the antennal nerve where axons sort to their glomerular targets. In this work, we have investigated whether similar types of cells exist in the Drosophila antenna. Results We have used different P(Gal4 lines to drive Green Fluorescent Protein (GFP in distinct populations of cells within the Drosophila antenna. Mz317::GFP, a marker for cell body and perineural glia, labels the majority of peripheral glia. An additional ~30 glial cells detected by GH146::GFP do not derive from any of the sensory lineages and appear to migrate into the antenna from the brain. Their appearance in the third antennal segment is regulated by normal function of the Epidermal Growth Factor receptor and small GTPases. We denote these distinct populations of cells as Mz317-glia and GH146-glia respectively. In the adult, processes of GH146-glial cells ensheath the olfactory receptor neurons directly, while those of the Mz317-glia form a peripheral layer. Ablation of GH146-glia does not result in any significant effects on the patterning of the olfactory receptor axons. Conclusion We have demonstrated the presence of at least two distinct populations of glial cells within the Drosophila antenna. GH146-glial cells originate in the brain and migrate to the antenna along the newly formed olfactory axons. The number of cells populating the third segment of the antenna is regulated by signaling through the Epidermal Growth Factor receptor. These glia share several features of the sorting

  16. Glial cell biology in the Great Lakes region.

    Science.gov (United States)

    Feinstein, Douglas L; Skoff, Robert P

    2016-03-31

    We report on the tenth bi-annual Great Lakes Glial meeting, held in Traverse City, Michigan, USA, September 27-29 2015. The GLG meeting is a small conference that focuses on current research in glial cell biology. The array of functions that glial cells (astrocytes, microglia, oligodendrocytes, Schwann cells) play in health and disease is constantly increasing. Despite this diversity, GLG meetings bring together scientists with common interests, leading to a better understanding of these cells. This year's meeting included two keynote speakers who presented talks on the regulation of CNS myelination and the consequences of stress on Schwann cell biology. Twenty-two other talks were presented along with two poster sessions. Sessions covered recent findings in the areas of microglial and astrocyte activation; age-dependent changes to glial cells, Schwann cell development and pathology, and the role of stem cells in glioma and neural regeneration.

  17. Sox2 promotes survival of satellite glial cells in vitro

    International Nuclear Information System (INIS)

    Koike, Taro; Wakabayashi, Taketoshi; Mori, Tetsuji; Hirahara, Yukie; Yamada, Hisao

    2015-01-01

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling

  18. Sox2 promotes survival of satellite glial cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Taro, E-mail: koiket@hirakata.kmu.ac.jp; Wakabayashi, Taketoshi; Mori, Tetsuji; Hirahara, Yukie; Yamada, Hisao

    2015-08-14

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling.

  19. Advancements in the Underlying Pathogenesis of Schizophrenia: Implications of DNA Methylation in Glial Cells.

    Science.gov (United States)

    Chen, Xing-Shu; Huang, Nanxin; Michael, Namaka; Xiao, Lan

    2015-01-01

    Schizophrenia (SZ) is a chronic and severe mental illness for which currently there is no cure. At present, the exact molecular mechanism involved in the underlying pathogenesis of SZ is unknown. The disease is thought to be caused by a combination of genetic, biological, psychological, and environmental factors. Recent studies have shown that epigenetic regulation is involved in SZ pathology. Specifically, DNA methylation, one of the earliest found epigenetic modifications, has been extensively linked to modulation of neuronal function, leading to psychiatric disorders such as SZ. However, increasing evidence indicates that glial cells, especially dysfunctional oligodendrocytes undergo DNA methylation changes that contribute to the pathogenesis of SZ. This review primarily focuses on DNA methylation involved in glial dysfunctions in SZ. Clarifying this mechanism may lead to the development of new therapeutic interventional strategies for the treatment of SZ and other illnesses by correcting abnormal methylation in glial cells.

  20. Advancements in the Underlying Pathogenesis of Schizophrenia: Implications of DNA Methylation in Glial Cells

    Directory of Open Access Journals (Sweden)

    Xin-Shu eChen

    2015-12-01

    Full Text Available Schizophrenia (SZ)is a chronic and severe mental illness for which currently there is no cure. At present, the exact molecular mechanism involved in the underlying pathogenesis of SZ is unknown. The disease is thought to be caused by a combination of genetic, biological, psychological, and environmental factors. Recent studies have shown that epigenetic regulation is involved in SZ pathology. Specifically, DNA methylation, one of the earliest found epigenetic modifications, has been extensively linked to modulation of neuronal function, leading to psychiatric disorders such as SZ. However, increasing evidence indicates that glial cells, especially dysfunctional oligodendrocytes undergo DNA methylation changes that contribute to the pathogenesis of SZ. This review primarily focuses on DNA methylation involved in glial dysfunctions in SZ. Clarifying this mechanism may lead to the development of new therapeutic interventional strategies for the treatment of SZ and other illnesses by correcting abnormal methylation in glial cells.

  1. Photodynamic damage of glial cells in crayfish ventral nerve cord

    Science.gov (United States)

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2011-03-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  2. Macrophage-Mediated Glial Cell Elimination in the Postnatal Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    LaShardai N. Brown

    2017-12-01

    Full Text Available Hearing relies on the transmission of auditory information from sensory hair cells (HCs to the brain through the auditory nerve. This relay of information requires HCs to be innervated by spiral ganglion neurons (SGNs in an exclusive manner and SGNs to be ensheathed by myelinating and non-myelinating glial cells. In the developing auditory nerve, mistargeted SGN axons are retracted or pruned and excessive cells are cleared in a process referred to as nerve refinement. Whether auditory glial cells are eliminated during auditory nerve refinement is unknown. Using early postnatal mice of either sex, we show that glial cell numbers decrease after the first postnatal week, corresponding temporally with nerve refinement in the developing auditory nerve. Additionally, expression of immune-related genes was upregulated and macrophage numbers increase in a manner coinciding with the reduction of glial cell numbers. Transient depletion of macrophages during early auditory nerve development, using transgenic CD11bDTR/EGFP mice, resulted in the appearance of excessive glial cells. Macrophage depletion caused abnormalities in myelin formation and transient edema of the stria vascularis. Macrophage-depleted mice also showed auditory function impairment that partially recovered in adulthood. These findings demonstrate that macrophages contribute to the regulation of glial cell number during postnatal development of the cochlea and that glial cells play a critical role in hearing onset and auditory nerve maturation.

  3. Neocortical glial cell numbers in human brains

    DEFF Research Database (Denmark)

    Pelvig, D.P.; Pakkenberg, H.; Stark, A.K.

    2008-01-01

    Stereological cell counting was applied to post-mortem neocortices of human brains from 31 normal individuals, age 18-93 years, 18 females (average age 65 years, range 18-93) and 13 males (average age 57 years, range 19-87). The cells were differentiated in astrocytes, oligodendrocytes, microglia...... while the total astrocyte number is constant through life; finally males have a 28% higher number of neocortical glial cells and a 19% higher neocortical neuron number than females. The overall total number of neocortical neurons and glial cells was 49.3 billion in females and 65.2 billion in males...... and neurons and counting were done in each of the four lobes. The study showed that the different subpopulations of glial cells behave differently as a function of age; the number of oligodendrocytes showed a significant 27% decrease over adult life and a strong correlation to the total number of neurons...

  4. Glial K(+) Clearance and Cell Swelling

    DEFF Research Database (Denmark)

    Macaulay, Nanna; Zeuthen, Thomas

    2012-01-01

    An important feature of neuronal signalling is the increased concentration of K(+) in the extracellular space. The K(+) concentration is restored to its original basal level primarily by uptake into nearby glial cells. The molecular mechanisms by which K(+) is transferred from the extracellular...... space into the glial cell are debated. Although spatial buffer currents may occur, their quantitative contribution to K(+) clearance is uncertain. The concept of spatial buffering of K(+) precludes intracellular K(+) accumulation and is therefore (i) difficult to reconcile with the K(+) accumulation...

  5. Glial progenitor cell-based treatment of the childhood leukodystrophies

    DEFF Research Database (Denmark)

    Osório, M. Joana; Goldman, Steven A.

    2016-01-01

    stem cell-derived human neural or glial progenitor cells may comprise a promising strategy for both structural remyelination and metabolic rescue. A broad variety of pediatric white matter disorders, including the primary hypomyelinating disorders, the lysosomal storage disorders, and the broader group...... genetic editing of pluripotent stem cells. Yet these challenges notwithstanding, the promise of glial progenitor cell-based treatment of the childhood myelin disorders offers hope to the many victims of this otherwise largely untreatable class of disease....... and astrocytes are the major affected cell populations, and are either structurally impaired or metabolically compromised through cell-intrinsic pathology, or are the victims of mis-accumulated toxic byproducts of metabolic derangement. In either case, glial cell replacement using implanted tissue or pluripotent...

  6. Neocortical glial cell numbers in human brains.

    Science.gov (United States)

    Pelvig, D P; Pakkenberg, H; Stark, A K; Pakkenberg, B

    2008-11-01

    Stereological cell counting was applied to post-mortem neocortices of human brains from 31 normal individuals, age 18-93 years, 18 females (average age 65 years, range 18-93) and 13 males (average age 57 years, range 19-87). The cells were differentiated in astrocytes, oligodendrocytes, microglia and neurons and counting were done in each of the four lobes. The study showed that the different subpopulations of glial cells behave differently as a function of age; the number of oligodendrocytes showed a significant 27% decrease over adult life and a strong correlation to the total number of neurons while the total astrocyte number is constant through life; finally males have a 28% higher number of neocortical glial cells and a 19% higher neocortical neuron number than females. The overall total number of neocortical neurons and glial cells was 49.3 billion in females and 65.2 billion in males, a difference of 24% with a high biological variance. These numbers can serve as reference values in quantitative studies of the human neocortex.

  7. GABA and glutamate uptake and metabolism in retinal glial (Müller cells

    Directory of Open Access Journals (Sweden)

    Andreas eBringmann

    2013-04-01

    Full Text Available Müller cells, the principal glial cells of the retina, support the synaptic activity by the uptake and metabolization of extracellular neurotransmitters. Müller cells express uptake and exchange systems for various neurotransmitters including glutamate and -aminobutyric acid (GABA. Müller cells remove the bulk of extracellular glutamate in the inner retina and contribute to the glutamate clearance around photoreceptor terminals. By the uptake of glutamate, Müller cells are involved in the shaping and termination of the synaptic activity, particularly in the inner retina. Reactive Müller cells are neuroprotective, e.g., by the clearance of excess extracellular glutamate, but may also contribute to neuronal degeneration by a malfunctioning or even reversal of glial glutamate transporters, or by a downregulation of the key enzyme, glutamine synthetase. This review summarizes the present knowledge about the role of Müller cells in the clearance and metabolization of extracellular glutamate and GABA. Some major pathways of GABA and glutamate metabolism in Müller cells are described; these pathways are involved in the glutamate-glutamine cycle of the retina, in the defense against oxidative stress via the production of glutathione, and in the production of substrates for the neuronal energy metabolism.

  8. Enteric glial cells and their role in gastrointestinal motor abnormalities: Introducing the neuro-gliopathies

    Institute of Scientific and Technical Information of China (English)

    Gabrio Bassotti; Vincenzo Villanacci; Simona Fisogni; Elisa Rossi; Paola Baronio; Carlo Clerici; Christoph A Maurer; Gieri Cathomas; Elisabetta Antonelli

    2007-01-01

    The role of enteric glial cells has somewhat changed from that of mere mechanical support elements, gluing together the various components of the enteric nervous system, to that of active participants in the complex interrelationships of the gut motor and inflammatory events. Due to their multiple functions, spanning from supporting elements in the myenteric plexuses to neurotransmitters, to neuronal homeostasis, to antigen presenting cells, this cell population has probably more intriguing abilities than previously thought. Recently,some evidence has been accumulating that shows how these cells may be involved in the pathophysiological aspects of some diseases. This review will deal with the properties of the enteric glial cells more strictly related to gastrointestinal motor function and the human pathological conditions in which these cells may play a role, suggesting the possibility of enteric neurogliopathies.

  9. Differentiation of a bipotential glial progenitor cell in a single cell microculture.

    Science.gov (United States)

    Temple, S; Raff, M C

    Although it is known that most cells of the vertebrate central nervous system (CNS) are derived from the neuroepithelial cells of the neural tube, the factors determining whether an individual neuroepithelial cell develops into a particular type of neurone or glial cell remain unknown. A promising model for studying this problem is the bipotential glial progenitor cell in the developing rat optic nerve; this cell differentiates into a particular type of astrocyte (a type-2 astrocyte) if cultured in 10% fetal calf serum (FCS) and into an oligodendrocyte if cultured in serum-free medium. As the oligodendrocyte-type-2 astrocyte (0-2A) progenitor cell can differentiate along either glial pathway in neurone-free cultures, living axons clearly are not required for its differentiation, at least in vitro. However, the studies on 0-2A progenitor cells were carried out in bulk cultures of optic nerve, and so it was possible that other cell-cell interactions were required for differentiation in culture. We show here that 0-2A progenitor cells can differentiate into type-2 astrocytes or oligodendrocytes when grown as isolated cells in microculture, indicating that differentiation along either glial pathway in vitro does not require signals from other CNS cells, apart from the signals provided by components of the culture medium. We also show that single 0-2A progenitor cells can differentiate along either pathway without dividing, supporting our previous studies using 3H-thymidine and suggesting that DNA replication is not required for these cells to choose between the two differentiation programmes.

  10. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    nervous system and that glial cells were a mere glue holding neurons in place, Schleich ... fact that these cells did not show any electrical activity like neurons or muscles ... membrane potential higher than that of the surrounding neu- rons.

  11. Distinctive response of CNS glial cells in oro-facial pain associated with injury, infection and inflammation

    Directory of Open Access Journals (Sweden)

    Ribeiro-da-Silva Alfredo

    2010-11-01

    Full Text Available Abstract Oro-facial pain following injury and infection is frequently observed in dental clinics. While neuropathic pain evoked by injury associated with nerve lesion has an involvement of glia/immune cells, inflammatory hyperalgesia has an exaggerated sensitization mediated by local and circulating immune mediators. To better understand the contribution of central nervous system (CNS glial cells in these different pathological conditions, in this study we sought to characterize functional phenotypes of glial cells in response to trigeminal nerve injury (loose ligation of the mental branch, infection (subcutaneous injection of lipopolysaccharide-LPS and to sterile inflammation (subcutaneous injection of complete Freund's adjuvant-CFA on the lower lip. Each of the three insults triggered a specific pattern of mechanical allodynia. In parallel with changes in sensory response, CNS glial cells reacted distinctively to the challenges. Following ligation of the mental nerve, both microglia and astrocytes in the trigeminal nuclear complex were highly activated, more prominent in the principal sensory nucleus (Pr5 and subnucleus caudalis (Sp5C area. Microglial response was initiated early (days 3-14, followed by delayed astrocytes activation (days 7-28. Although the temporal profile of microglial and astrocyte reaction corresponded respectively to the initiation and chronic stage of neuropathic pain, these activated glial cells exhibited a low profile of cytokine expression. Local injection of LPS in the lower lip skin also triggered a microglial reaction in the brain, which started in the circumventricular organs (CVOs at 5 hours post-injection and diffused progressively into the brain parenchyma at 48 hours. This LPS-induced microglial reaction was accompanied by a robust induction of IκB-α mRNA and pro-inflammatory cytokines within the CVOs. However, LPS induced microglial activation did not specifically occur along the pain signaling pathway. In

  12. Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate

    International Nuclear Information System (INIS)

    Tsacopoulos, M.; Evequoz-Mercier, V.; Perrottet, P.; Buchner, E.

    1988-01-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy[ 3 H]glucose convert this glucose analogue to 2-deoxy[ 3 H]glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O 2 and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system

  13. Honeybee Retinal Glial Cells Transform Glucose and Supply the Neurons with Metabolic Substrate

    Science.gov (United States)

    Tsacopoulos, M.; Evequoz-Mercier, V.; Perrottet, P.; Buchner, E.

    1988-11-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy[3H]glucose convert this glucose analogue to 2-deoxy[3H]glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O2 and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system.

  14. Peripheral Glial Cells in the Development of Diabetic Neuropathy

    Science.gov (United States)

    Gonçalves, Nádia Pereira; Vægter, Christian Bjerggaard; Pallesen, Lone Tjener

    2018-01-01

    The global prevalence of diabetes is rapidly increasing, affecting more than half a billion individuals within the next few years. As diabetes negatively affects several physiological systems, this dramatic increase represents not only impaired quality of life on the individual level but also a huge socioeconomic challenge. One of the physiological consequences affecting up to half of diabetic patients is the progressive deterioration of the peripheral nervous system, resulting in spontaneous pain and eventually loss of sensory function, motor weakness, and organ dysfunctions. Despite intense research on the consequences of hyperglycemia on nerve functions, the biological mechanisms underlying diabetic neuropathy are still largely unknown, and treatment options lacking. Research has mainly focused directly on the neuronal component, presumably from the perspective that this is the functional signal-transmitting unit of the nerve. However, it is noteworthy that each single peripheral sensory neuron is intimately associated with numerous glial cells; the neuronal soma is completely enclosed by satellite glial cells and the length of the longest axons covered by at least 1,000 Schwann cells. The glial cells are vital for the neuron, but very little is still known about these cells in general and especially how they respond to diabetes in terms of altered neuronal support. We will discuss current knowledge of peripheral glial cells and argue that increased research in these cells is imperative for a better understanding of the mechanisms underlying diabetic neuropathy. PMID:29770116

  15. Comparative study of muscarinic acetylcholine receptors of human and rat cortical glial cells

    International Nuclear Information System (INIS)

    Demushkin, V.P.; Burbaeva, G.S.; Dzhaliashvili, T.A.; Plyashkevich, Y.G.

    1985-01-01

    The aim of the present investigation was a comparative studyof muscarinic acetylcholine receptors in human and rat glial cells. ( 3 H)Quinuclidinyl-benzylate (( 3 H)-QB), atropine, platiphylline, decamethonium, carbamylcholine, tubocurarine, and nicotine were used. The glial cell fraction was obtained from the cerebral cortex of rats weighing 130-140 g and from the frontal pole of the postmortem brain from men aged 60-70 years. The use of the method of radioimmune binding of ( 3 H)-QB with human and rat glial cell membranes demonstrated the presence of a muscarinic acetylcholine receptor in the glial cells

  16. Progenitor cell-based treatment of glial disease

    DEFF Research Database (Denmark)

    Goldman, Steven A

    2017-01-01

    -based neurodegenerative conditions may now be compelling targets for cell-based therapy. As such, glial cell-based therapies may offer potential benefit to a broader range of diseases than ever before contemplated, including disorders such as Huntington's disease and the motor neuron degeneration of amyotrophic lateral...

  17. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    secrete growth factors that act on neurons and other glial cells. from activated microglia. .... Microglia in Alzheimer's disease: Alzheimer's disease is charac- terized by deposition of ... trigger the recruitment ofT lymphocytes into the inflammatory.

  18. Glial alterations from early to late stages in a model of Alzheimer's disease: Evidence of autophagy involvement in Aβ internalization.

    Science.gov (United States)

    Pomilio, Carlos; Pavia, Patricio; Gorojod, Roxana Mayra; Vinuesa, Angeles; Alaimo, Agustina; Galvan, Veronica; Kotler, Monica Lidia; Beauquis, Juan; Saravia, Flavia

    2016-02-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease without effective therapy. Brain amyloid deposits are classical histopathological hallmarks that generate an inflammatory reaction affecting neuronal and glial function. The identification of early cell responses and of brain areas involved could help to design new successful treatments. Hence, we studied early alterations of hippocampal glia and their progression during the neuropathology in PDAPP-J20 transgenic mice, AD model, at 3, 9, and 15 months (m) of age. At 3 m, before deposits formation, microglial Iba1+ cells from transgenic mice already exhibited signs of activation and larger soma size in the hilus, alterations appearing later on stratum radiatum. Iba1 immunohistochemistry revealed increased cell density and immunoreactive area in PDAPP mice from 9 m onward selectively in the hilus, in coincidence with prominent amyloid Congo red + deposition. At pre-plaque stages, GFAP+ astroglia showed density alterations while, at an advanced age, the presence of deposits was associated with important glial volume changes and apparently being intimately involved in amyloid degradation. Astrocytes around plaques were strongly labeled for LC3 until 15 m in Tg mice, suggestive of increased autophagic flux. Moreover, β-Amyloid fibrils internalization by astrocytes in in vitro conditions was dependent on autophagy. Co-localization of Iba1 with ubiquitin or p62 was exclusively found in microglia contacting deposits from 9 m onward, suggesting torpid autophagy. Our work characterizes glial changes at early stages of the disease in PDAPP-J20 mice, focusing on the hilus as an especially susceptible hippocampal subfield, and provides evidence that glial autophagy could play a role in amyloid processing at advanced stages. © 2015 Wiley Periodicals, Inc.

  19. Minocycline blocks glial cell activation and ventilatory acclimatization to hypoxia.

    Science.gov (United States)

    Stokes, Jennifer A; Arbogast, Tara E; Moya, Esteban A; Fu, Zhenxing; Powell, Frank L

    2017-04-01

    Ventilatory acclimatization to hypoxia (VAH) is the time-dependent increase in ventilation, which persists upon return to normoxia and involves plasticity in both central nervous system respiratory centers and peripheral chemoreceptors. We investigated the role of glial cells in VAH in male Sprague-Dawley rats using minocycline, an antibiotic that inhibits microglia activation and has anti-inflammatory properties, and barometric pressure plethysmography to measure ventilation. Rats received either minocycline (45mg/kg ip daily) or saline beginning 1 day before and during 7 days of chronic hypoxia (CH, Pi O 2  = 70 Torr). Minocycline had no effect on normoxic control rats or the hypercapnic ventilatory response in CH rats, but minocycline significantly ( P minocycline administration during only the last 3 days of CH did not reverse VAH. Microglia and astrocyte activation in the nucleus tractus solitarius was quantified from 30 min to 7 days of CH. Microglia showed an active morphology (shorter and fewer branches) after 1 h of hypoxia and returned to the control state (longer filaments and extensive branching) after 4 h of CH. Astrocytes increased glial fibrillary acidic protein antibody immunofluorescent intensity, indicating activation, at both 4 and 24 h of CH. Minocycline had no effect on glia in normoxia but significantly decreased microglia activation at 1 h of CH and astrocyte activation at 24 h of CH. These results support a role for glial cells, providing an early signal for the induction but not maintenance of neural plasticity underlying ventilatory acclimatization to hypoxia. NEW & NOTEWORTHY The signals for neural plasticity in medullary respiratory centers underlying ventilatory acclimatization to chronic hypoxia are unknown. We show that chronic hypoxia activates microglia and subsequently astrocytes. Minocycline, an antibiotic that blocks microglial activation and has anti-inflammatory properties, also blocks astrocyte activation in respiratory

  20. TDP-43 causes differential pathology in neuronal versus glial cells in the mouse brain.

    Science.gov (United States)

    Yan, Sen; Wang, Chuan-En; Wei, Wenjie; Gaertig, Marta A; Lai, Liangxue; Li, Shihua; Li, Xiao-Jiang

    2014-05-15

    Mutations in TAR DNA-binding protein 43 (TDP-43) are associated with familial forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Although recent studies have revealed that mutant TDP-43 in neuronal and glial cells is toxic, how mutant TDP-43 causes primarily neuronal degeneration in an age-dependent manner remains unclear. Using adeno-associated virus (AAV) that expresses mutant TDP-43 (M337V) ubiquitously, we found that mutant TDP-43 accumulates preferentially in neuronal cells in the postnatal mouse brain. We then ubiquitously or selectively expressed mutant TDP-43 in neuronal and glial cells in the striatum of adult mouse brains via stereotaxic injection of AAV vectors and found that it also preferentially accumulates in neuronal cells. Expression of mutant TDP-43 in neurons in the striatum causes more severe degeneration, earlier death and more robust symptoms in mice than expression of mutant TDP-43 in glial cells; however, aging increases the expression of mutant TDP-43 in glial cells, and expression of mutant TDP-43 in older mice caused earlier onset of phenotypes and more severe neuropathology than that in younger mice. Although expression of mutant TDP-43 in glial cells via stereotaxic injection does not lead to robust neurological phenotypes, systemic inhibition of the proteasome activity via MG132 in postnatal mice could exacerbate glial TDP-43-mediated toxicity and cause mice to die earlier. Consistently, this inhibition increases the expression of mutant TDP-43 in glial cells in mouse brains. Thus, the differential accumulation of mutant TDP-43 in neuronal versus glial cells contributes to the preferential toxicity of mutant TDP-43 in neuronal cells and age-dependent pathology.

  1. Downregulation of DmMANF in Glial Cells Results in Neurodegeneration and Affects Sleep and Lifespan in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Lucyna Walkowicz

    2017-11-01

    Full Text Available In Drosophila melanogaster, mesencephalic astrocyte-derived neurotrophic factor (DmMANF is an evolutionarily conserved ortholog of mammalian MANF and cerebral dopamine neurotrophic factor (CDNF, which have been shown to promote the survival of dopaminergic neurons in the brain. We observed especially high levels of DmMANF in the visual system of Drosophila, particularly in the first optic neuropil (lamina. In the lamina, DmMANF was found in glial cells (surface and epithelial glia, photoreceptors and interneurons. Interestingly, silencing of DmMANF in all neurons or specifically in photoreceptors or L2 interneurons had no impact on the structure of the visual system. However, downregulation of DmMANF in glial cells induced degeneration of the lamina. Remarkably, this degeneration in the form of holes and/or tightly packed membranes was observed only in the lamina epithelial glial cells. Those membranes seem to originate from the endoplasmic reticulum, which forms autophagosome membranes. Moreover, capitate projections, the epithelial glia invaginations into photoreceptor terminals that are involved in recycling of the photoreceptor neurotransmitter histamine, were less numerous after DmMANF silencing either in neurons or glial cells. The distribution of the alpha subunit of Na+/K+-ATPase protein in the lamina cell membranes was also changed. At the behavioral level, silencing of DmMANF either in neurons or glial cells affected the daily activity/sleep pattern, and flies showed less activity during the day but higher activity during the night than did controls. In the case of silencing in glia, the lifespan of flies was also shortened. The obtained results showed that DmMANF regulates many functions in the brain, particularly those dependent on glial cells.

  2. Protein kinase A and Epac activation by cAMP regulates the expression of glial fibrillary acidic protein in glial cells

    Directory of Open Access Journals (Sweden)

    Sugimoto Naotoshi

    2016-01-01

    Full Text Available Cyclic adenosine monophosphate (cAMP controls differentiation in several types of cells during brain development. However, the molecular mechanism of cAMP-controlled differentiation is not fully understood. We investigated the role of protein kinase A (PKA and exchange protein directly activated by cAMP (Epac on cAMP-induced glial fibrillary acidic protein (GFAP, an astrocyte marker, in cultured glial cells. B92 glial cells were treated with cAMP-elevating drugs, an activator of adenylate cyclase, phosphodiesterase inhibitor and a ß adrenal receptor agonist. These cAMP-elevating agents induced dramatic morphological changes and expression of GFAP. A cAMP analog, 8-Br-cAMP, which activates Epac as well as PKA, induced GFAP expression and morphological changes, while another cAMP analog, 8-CPT-cAMP, which activates Epac with greater efficacy when compared to PKA, induced GFAP expression but very weak morphological changes. Most importantly, the treatment with a PKA inhibitor partially reduced cAMP-induced GFAP expression. Taken together, these results indicate that cAMP-elevating drugs lead to the induction of GFAP via PKA and/or Epac activation in B92 glial cells.

  3. Distinct angiotensin II receptor in primary cultures of glial cells from rat brain

    International Nuclear Information System (INIS)

    Raizada, M.K.; Phillips, M.I.; Crews, F.T.; Sumners, C.

    1987-01-01

    Angiotensin II (Ang-II) has profound effects on the brain. Receptors for Ang-II have been demonstrated on neurons, but no relationship between glial cells and Agn-II has been established. Glial cells (from the hypothalamus and brain stem of 1-day-old rat brains) in primary culture have been used to demonstrate the presence of specific Ang-II receptors. Binding of 125 I-Ang-II to glial cultures was rapid, reversible, saturable, and specific for Ang-II. The rank order of potency of 125 I-Ang-II binding was determined. Scatchard analysis revealed a homogeneous population of high-affinity binding sites with a B/sub max/ of 110 fmol/mg of protein. Light-microscopic autoradiography of 125 I-Ang-II binding supported the kinetic data, documenting specific Ang-II receptors on the glial cells. Ang-II stimulated a dose-dependent hydrolysis of phosphatidylinositols in glial cells, an effect mediated by Ang-II receptors. However, Ang-II failed to influence [ 3 H] norepinephrine uptake, and catecholamines failed to regulate Ang-II receptors, effects that occur in neurons. These observations demonstrate the presence of specific Ang-II receptors on the glial cells in primary cultures derived from normotensive rat brain. The receptors are kinetically similar to, but functionally distinct from, the neuronal Ang-II receptors

  4. An in vitro clonogenic assay to assess radiation damage in rat CNS glial progenitor cells

    International Nuclear Information System (INIS)

    Maazen, R.W.M. van der; Verhagen, I.; Kogel, A.J. van der

    1990-01-01

    Normal glial progenitor cells can be isolated from the rat central nervous system (CNS) and cultured in vitro on a monolayer of type-1 astrocytes. These monolayers are able to support and stimulate explanted glial progenitor cells to proliferate. Employing these in vitro interactions of specific glial cell types, an in vivo-in vitro clonogenic assay has been developed. This method offers the possibility to study the intrinsic radiosensitivity, repair and regeneration of glial progenitor cells after in vitro or in vivo irradiation. (author)

  5. Satellite glial cell P2Y12 receptor in the trigeminal ganglion is involved in lingual neuropathic pain mechanisms in rats

    Directory of Open Access Journals (Sweden)

    Katagiri Ayano

    2012-03-01

    Full Text Available Abstract Background It has been reported that the P2Y12 receptor (P2Y12R is involved in satellite glial cells (SGCs activation, indicating that P2Y12R expressed in SGCs may play functional roles in orofacial neuropathic pain mechanisms. However, the involvement of P2Y12R in orofacial neuropathic pain mechanisms is still unknown. We therefore studied the reflex to noxious mechanical or heat stimulation of the tongue, P2Y12R and glial fibrillary acidic protein (GFAP immunohistochemistries in the trigeminal ganglion (TG in a rat model of unilateral lingual nerve crush (LNC to evaluate role of P2Y12R in SGC in lingual neuropathic pain. Results The head-withdrawal reflex thresholds to mechanical and heat stimulation of the lateral tongue were significantly decreased in LNC-rats compared to sham-rats. These nocifensive effects were apparent on day 1 after LNC and lasted for 17 days. On days 3, 9, 15 and 21 after LNC, the mean relative number of TG neurons encircled with GFAP-immunoreactive (IR cells significantly increased in the ophthalmic, maxillary and mandibular branch regions of TG. On day 3 after LNC, P2Y12R expression occurred in GFAP-IR cells but not neuronal nuclei (NeuN-IR cells (i.e. neurons in TG. After 3 days of successive administration of the P2Y12R antagonist MRS2395 into TG in LNC-rats, the mean relative number of TG neurons encircled with GFAP-IR cells was significantly decreased coincident with a significant reversal of the lowered head-withdrawal reflex thresholds to mechanical and heat stimulation of the tongue compared to vehicle-injected rats. Furthermore, after 3 days of successive administration of the P2YR agonist 2-MeSADP into the TG in naïve rats, the mean relative number of TG neurons encircled with GFAP-IR cells was significantly increased and head-withdrawal reflex thresholds to mechanical and heat stimulation of the tongue were significantly decreased in a dose-dependent manner compared to vehicle-injected rats

  6. Glial Alterations From Early to Late Stages in a Model of Alzheimer’s Disease: Evidence of Autophagy Involvement in Aβ Internalization

    Science.gov (United States)

    Pomilio, Carlos; Pavia, Patricio; Gorojod, Roxana Mayra; Vinuesa, Angeles; Alaimo, Agustina; Galvan, Veronica; Kotler, Monica Lidia; Beauquis, Juan; Saravia, Flavia

    2017-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease without effective therapy. Brain amyloid deposits are classical histopathological hallmarks that generate an inflammatory reaction affecting neuronal and glial function. The identification of early cell responses and of brain areas involved could help to design new successful treatments. Hence, we studied early alterations of hippocampal glia and their progression during the neuropathology in PDAPP-J20 transgenic mice, AD model, at 3, 9, and 15 months (m) of age. At 3 m, before deposits formation, microglial Iba1 + cells from transgenic mice already exhibited signs of activation and larger soma size in the hilus, alterations appearing later on stratum radiatum. Iba1 immunohistochemistry revealed increased cell density and immunoreactive area in PDAPP mice from 9 m onward selectively in the hilus, in coincidence with prominent amyloid Congo red + deposition. At pre-plaque stages, GFAP+ astroglia showed density alterations while, at an advanced age, the presence of deposits was associated with important glial volume changes and apparently being intimately involved in amyloid degradation. Astrocytes around plaques were strongly labeled for LC3 until 15 m in Tg mice, suggestive of increased autophagic flux. Moreover, β-Amyloid fibrils internalization by astrocytes in in vitro conditions was dependent on autophagy. Co-localization of Iba1 with ubiquitin or p62 was exclusively found in microglia contacting deposits from 9 m onward, suggesting torpid autophagy. Our work characterizes glial changes at early stages of the disease in PDAPP-J20 mice, focusing on the hilus as an especially susceptible hippocampal subfield, and provides evidence that glial autophagy could play a role in amyloid processing at advanced stages. PMID:26235241

  7. [Activity of glial cells in trigeminal nervous system in rats with experimental pulpitis].

    Science.gov (United States)

    Gu, Bin; Liu, Na; Liu, Hongchen

    2014-04-29

    To observe the activity change of astrocyte in related nucleus caused by acute pulpitis in rats. Rat acute pulpitis model was induced by lipopolysaccharides (LPS). And, according to processing time, a total of 30 rats were divided into 5 groups of control, 6, 12, 24 and 48 h. Immunohistochemistry and Western blot were employed to detect the dynamic expression of glial fibrillary acidic protein (GFAP) in spinal nucleus of trigeminal nerve (Vc). The relative gray value of ipsilateral Vc GFAP expression in experimental groups was 153 ± 11 at 12 h. And it significantly increased versus the control group (100 ± 4)(P pulpitis model, activated glial cells are probably involved in the processes of pulpitis and hyperalgesia.

  8. HIV-1 Tat protein induces glial cell autophagy through enhancement of BAG3 protein levels.

    Science.gov (United States)

    Bruno, Anna Paola; De Simone, Francesca Isabella; Iorio, Vittoria; De Marco, Margot; Khalili, Kamel; Sariyer, Ilker Kudret; Capunzo, Mario; Nori, Stefania Lucia; Rosati, Alessandra

    2014-01-01

    BAG3 protein has been described as an anti-apoptotic and pro-autophagic factor in several neoplastic and normal cells. We previously demonstrated that BAG3 expression is elevated upon HIV-1 infection of glial and T lymphocyte cells. Among HIV-1 proteins, Tat is highly involved in regulating host cell response to viral infection. Therefore, we investigated the possible role of Tat protein in modulating BAG3 protein levels and the autophagic process itself. In this report, we show that transfection with Tat raises BAG3 levels in glioblastoma cells. Moreover, BAG3 silencing results in highly reducing Tat- induced levels of LC3-II and increasing the appearance of sub G0/G1 apoptotic cells, in keeping with the reported role of BAG3 in modulating the autophagy/apoptosis balance. These results demonstrate for the first time that Tat protein is able to stimulate autophagy through increasing BAG3 levels in human glial cells.

  9. Giant Glial Cell: New Insight Through Mechanism-Based Modeling

    DEFF Research Database (Denmark)

    Postnov, D. E.; Ryazanova, L. S.; Brazhe, Nadezda

    2008-01-01

    The paper describes a detailed mechanism-based model of a tripartite synapse consisting of P- and R-neurons together with a giant glial cell in the ganglia of the medical leech (Hirudo medicinalis), which is a useful object for experimental studies in situ. We describe the two main pathways...... of the glial cell activation: (1) via IP3 production and Ca2+ release from the endoplasmic reticulum and (2) via increase of the extracellular potassium concentration, glia depolarization, and opening of voltage-dependent Ca2+ channels. We suggest that the second pathway is the more significant...

  10. Glial Cells: The Other Cells of the Nervous System-Microglia–The ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 10. Glial Cells: The Other Cells of the Nervous System - Microglia – The Guardians of the CNS. Medha S Rajadhyaksha Daya Manghani. Series Article Volume 7 Issue 10 October 2002 pp 23-29 ...

  11. Complex and differential glial responses in Alzheimer's disease and ageing.

    Science.gov (United States)

    Rodríguez, José J; Butt, Arthur M; Gardenal, Emanuela; Parpura, Vladimir; Verkhratsky, Alexei

    2016-01-01

    Glial cells and their association with neurones are fundamental for brain function. The emergence of complex neurone-glial networks assures rapid information transfer, creating a sophisticated circuitry where both types of neural cells work in concert, serving different activities. All glial cells, represented by astrocytes, oligodendrocytes, microglia and NG2-glia, are essential for brain homeostasis and defence. Thus, glia are key not only for normal central nervous system (CNS) function, but also to its dysfunction, being directly associated with all forms of neuropathological processes. Therefore, the progression and outcome of neurological and neurodegenerative diseases depend on glial reactions. In this review, we provide a concise account of recent data obtained from both human material and animal models demonstrating the pathological involvement of glia in neurodegenerative processes, including Alzheimer's disease (AD), as well as physiological ageing.

  12. Sodium channels in axons and glial cells of the optic nerve of Necturus maculosa.

    Science.gov (United States)

    Tang, C M; Strichartz, G R; Orkand, R K

    1979-11-01

    Experiments investigating both the binding of radioactively labelled saxitoxin (STX) and the electrophysiological response to drugs that increase the sodium permeability of excitable membranes were conducted in an effort to detect sodium channels in glial cells of the optic nerve of Necturus maculosa, the mudpuppy. Glial cells in nerves from chronically enucleated animals, which lack optic nerve axons, show no saturable uptake of STX whereas a saturable uptake is clearly present in normal optic nerves. The normal nerve is depolarized by aconitine, batrachotoxin, and veratridine (10(-6)-10(-5) M), whereas the all-glial preparation is only depolarized by veratridine and at concentrations greater than 10(-3) M. Unlike the depolarization caused by veratridine in normal nerves, the response in the all-glial tissue is not blocked by tetrodotoxin nor enhanced by scorpion venom (Leiurus quinquestriatus). In glial cells of the normal nerve, where axons are also present, the addition of 10(-5) M veratridine does lead to a transient depolarization; however, it is much briefer than the axonal response to veratridine in this same tissue. This glial response to veratridine could be caused by the efflux of K+ from the drug-depolarized axons, and is similar to the glial response to extracellular K+ accumulation resulting from action potentials in the axon.

  13. Immunohistochemical demonstration of glial markers in retinoblastomas

    DEFF Research Database (Denmark)

    Schrøder, H D

    1987-01-01

    Twenty retinoblastomas were studied immunohistochemically in order to visualize glial cells. In the retina, the glial cells in the ganglion cell layer and the Müller cells were GFAP positive, while only the glial cells of the ganglion cell layer expressed S-100 reactivity. In the tumours S-100/GFAP...... cells reactive for both S-100 and GFAP were demonstrated. The latter findings may represent differentiation in a glial direction in the more mature parts of retinoblastoma....

  14. Flavonoids Modulate the Proliferation of Neospora caninum in Glial Cell Primary Cultures

    Science.gov (United States)

    Barbosa de Matos, Rosan; Braga-de-Souza, Suzana; Pena Seara Pitanga, Bruno; Amaral da Silva, Victor Diógenes; Viana de Jesus, Erica Etelvina; Morales Pinheiro, Alexandre; Dias Costa, Maria de Fátima; dos Santos El-Bacha, Ramon; de Oliveira Ribeiro, Cátia Suse

    2014-01-01

    Neospora caninum (Apicomplexa; Sarcocystidae) is a protozoan that causes abortion in cattle, horses, sheep, and dogs as well as neurological and dermatological diseases in dogs. In the central nervous system of dogs infected with N. caninum, cysts were detected that exhibited gliosis and meningitis. Flavonoids are polyphenolic compounds that exhibit antibacterial, antiparasitic, antifungal, and antiviral properties. In this study, we investigated the effects of flavonoids in a well-established in vitro model of N. caninum infection in glial cell cultures. Glial cells were treated individually with 10 different flavonoids, and a subset of cultures was also infected with the NC-1 strain of N. caninum. All of the flavonoids tested induced an increase in the metabolism of glial cells and many of them increased nitrite levels in cultures infected with NC-1 compared to controls and uninfected cultures. Among the flavonoids tested, 3',4'-dihydroxyflavone, 3',4',5,7-tetrahydroxyflavone (luteolin), and 3,3',4',5,6-pentahydroxyflavone (quercetin), also inhibited parasitophorous vacuole formation. Taken together, our findings show that flavonoids modulate glial cell responses, increase NO secretion, and interfere with N. caninum infection and proliferation. PMID:25548412

  15. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pennisi, C P; Sevcencu, C; Yoshida, K [Center for Sensory-Motor Interaction (SMI), Aalborg University, Aalborg (Denmark); Dolatshahi-Pirouz, A; Foss, M; Larsen, A Nylandsted; Besenbacher, F [Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus (Denmark); Hansen, J Lundsgaard [Department of Physics and Astronomy, Aarhus University, Aarhus (Denmark); Zachar, V, E-mail: cpennisi@hst.aau.d [Laboratory for Stem Cell Research, Aalborg University (Denmark)

    2009-09-23

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  16. Astrocyte-like glial cells physiologically regulate olfactory processing through the modification of ORN-PN synaptic strength in Drosophila.

    Science.gov (United States)

    Liu, He; Zhou, Bangyu; Yan, Wenjun; Lei, Zhengchang; Zhao, Xiaoliang; Zhang, Ke; Guo, Aike

    2014-09-01

    Astrocyte-like glial cells are abundant in the central nervous system of adult Drosophila and exhibit morphology similar to astrocytes of mammals. Previous evidence has shown that astrocyte-like glial cells are strongly associated with synapses in the antennal lobe (AL), the first relay of the olfactory system, where olfactory receptor neurons (ORNs) transmit information into projection neurons (PNs). However, the function of astrocyte-like glia in the AL remains obscure. In this study, using in vivo calcium imaging, we found that astrocyte-like glial cells exhibited spontaneous microdomain calcium elevations. Using simultaneous manipulation of glial activity and monitoring of neuronal function, we found that the astrocyte-like glial activation, but not ensheathing glial activation, could inhibit odor-evoked responses of PNs. Ensheathing glial cells are another subtype of glia, and are of functional importance in the AL. Electrophysiological experiments indicated that astrocyte-like glial activation decreased the amplitude and slope of excitatory postsynaptic potentials evoked through electrical stimulation of the antennal nerve. These results suggest that astrocyte-like glial cells may regulate olfactory processing through negative regulation of ORN-PN synaptic strength. Beyond the antennal lobe we observed astrocyte-like glial spontaneous calcium activities in the ventromedial protocerebrum, indicating that astrocyte-like glial spontaneous calcium elevations might be general in the adult fly brain. Overall, our study demonstrates a new function for astrocyte-like glial cells in the physiological modulation of olfactory information transmission, possibly through regulating ORN-PN synapse strength. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Human iPSC Glial Mouse Chimeras Reveal Glial Contributions to Schizophrenia

    DEFF Research Database (Denmark)

    Windrem, Martha S.; Osipovitch, Mikhail; Liu, Zhengshan

    2017-01-01

    with childhood-onset SCZ. After neonatal implantation into myelin-deficient shiverer mice, SCZ GPCs showed premature migration into the cortex, leading to reduced white matter expansion and hypomyelination relative to controls. The SCZ glial chimeras also showed delayed astrocytic differentiation and abnormal...... astrocytic morphologies. When established in myelin wild-type hosts, SCZ glial mice showed reduced prepulse inhibition and abnormal behavior, including excessive anxiety, antisocial traits, and disturbed sleep. RNA-seq of cultured SCZ human glial progenitor cells (hGPCs) revealed disrupted glial...

  18. Temporomandibular joint inflammation activates glial and immune cells in both the trigeminal ganglia and in the spinal trigeminal nucleus

    Directory of Open Access Journals (Sweden)

    Jasmin Luc

    2010-12-01

    Full Text Available Abstract Background Glial cells have been shown to directly participate to the genesis and maintenance of chronic pain in both the sensory ganglia and the central nervous system (CNS. Indeed, glial cell activation has been reported in both the dorsal root ganglia and the spinal cord following injury or inflammation of the sciatic nerve, but no data are currently available in animal models of trigeminal sensitization. Therefore, in the present study, we evaluated glial cell activation in the trigeminal-spinal system following injection of the Complete Freund's Adjuvant (CFA into the temporomandibular joint, which generates inflammatory pain and trigeminal hypersensitivity. Results CFA-injected animals showed ipsilateral mechanical allodynia and temporomandibular joint edema, accompanied in the trigeminal ganglion by a strong increase in the number of GFAP-positive satellite glial cells encircling neurons and by the activation of resident macrophages. Seventy-two hours after CFA injection, activated microglial cells were observed in the ipsilateral trigeminal subnucleus caudalis and in the cervical dorsal horn, with a significant up-regulation of Iba1 immunoreactivity, but no signs of reactive astrogliosis were detected in the same areas. Since the purinergic system has been implicated in the activation of microglial cells during neuropathic pain, we have also evaluated the expression of the microglial-specific P2Y12 receptor subtype. No upregulation of this receptor was detected following induction of TMJ inflammation, suggesting that any possible role of P2Y12 in this paradigm of inflammatory pain does not involve changes in receptor expression. Conclusions Our data indicate that specific glial cell populations become activated in both the trigeminal ganglia and the CNS following induction of temporomandibular joint inflammation, and suggest that they might represent innovative targets for controlling pain during trigeminal nerve sensitization.

  19. DNA synthesis during development and proliferation of glial cells in organotypic rat cerebellar culture

    International Nuclear Information System (INIS)

    Renkawek, K.

    1977-01-01

    DNA synthesis was investigated in glial cells in vitro with 3 H thymidine in concentration 1 μCi/ml medium. Incorporation of isotope into the glial nuclei has been found both in the explant (7-21%) and in the outgrowth (22-56%). DNA synthesis was dependent on the age of culture and due to the contact inhibition in the outgrowth. Results point out that marked DNA synthesis is a characteristic feature of glia differentiation and of reactive character of glial cells in vitro. (author)

  20. Environmental stress, ageing and glial cell senescence: a novel mechanistic link to Parkinson's disease?

    Science.gov (United States)

    Chinta, S J; Lieu, C A; Demaria, M; Laberge, R-M; Campisi, J; Andersen, J K

    2013-05-01

    Exposure to environmental toxins is associated with a variety of age-related diseases including cancer and neurodegeneration. For example, in Parkinson's disease (PD), chronic environmental exposure to certain toxins has been linked to the age-related development of neuropathology. Neuronal damage is believed to involve the induction of neuroinflammatory events as a consequence of glial cell activation. Cellular senescence is a potent anti-cancer mechanism that occurs in a number of proliferative cell types and causes the arrest of proliferation of cells at risk of malignant transformation following exposure to potentially oncogenic stimuli. With age, senescent cells accumulate and express a senescence-associated secretory phenotype (SASP; that is the robust secretion of many inflammatory cytokines, growth factors and proteases). Whereas cell senescence in peripheral tissues has been causally linked to a number of age-related pathologies, little is known about the induction of cellular senescence and the SASP in the brain. On the basis of recently reported findings, we propose that environmental stressors associated with PD may act in part by eliciting senescence and the SASP within non neuronal glial cells in the ageing brain, thus contributing to the characteristic decline in neuronal integrity that occurs in this disorder. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  1. Glial Cells - The Key Elements of Alzheimer's Disease

    Czech Academy of Sciences Publication Activity Database

    Džamba, Dávid; Harantová, Lenka; Butenko, Olena; Anděrová, Miroslava

    2016-01-01

    Roč. 13, č. 8 (2016), s. 894-911 ISSN 1567-2050 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:68378041 Keywords : alzheimer 's disease * astrocytes * glial cells Subject RIV: ED - Physiology Impact factor: 2.952, year: 2016

  2. Neuron-Derived ADAM10 Production Stimulates Peripheral Nerve Injury-Induced Neuropathic Pain by Cleavage of E-Cadherin in Satellite Glial Cells.

    Science.gov (United States)

    Li, Jian; Ouyang, Qing; Chen, Cheng-Wen; Chen, Qian-Bo; Li, Xiang-Nan; Xiang, Zheng-Hua; Yuan, Hong-Bin

    2017-09-01

    Increasing evidence suggests the potential involvement of metalloproteinase family proteins in the pathogenesis of neuropathic pain, although the underlying mechanisms remain elusive. Using the spinal nerve ligation model, we investigated whether ADAM10 proteins participate in pain regulation. By implementing invitro methods, we produced a purified culture of satellite glial cells to study the underlying mechanisms of ADAM10 in regulating neuropathic pain. Results showed that the ADAM10 protein was expressed in calcitonin gene-related peptide (CGRP)-containing neurons of the dorsal root ganglia, and expression was upregulated following spinal nerve ligation surgery invivo. Intrathecal administration of GI254023X, an ADAM10 selective inhibitor, to the rats one to three days after spinal nerve ligation surgery attenuated the spinal nerve ligation-induced mechanical allodynia and thermal hyperalgesia. Intrathecal injection of ADAM10 recombinant protein simulated pain behavior in normal rats to a similar extent as those treated by spinal nerve ligation surgery. These results raised a question about the relative contribution of ADAM10 in pain regulation. Further results showed that ADAM10 might act by cleaving E-cadherin, which is mainly expressed in satellite glial cells. GI254023X reversed spinal nerve ligation-induced downregulation of E-cadherin and activation of cyclooxygenase 2 after spinal nerve ligation. β-catenin, which creates a complex with E-cadherin in the membranes of satellite glial cells, was also downregulated by spinal nerve ligation surgery in satellite glial cells. Finally, knockdown expression of β-catenin by lentiviral infection in purified satellite glial cells increased expression of inducible nitric oxide synthase and cyclooxygenase 2. Our findings indicate that neuron-derived ADAM10 production stimulates peripheral nerve injury-induced neuropathic pain by cleaving E-cadherin in satellite glial cells. © 2017 American Academy of Pain Medicine

  3. How Does Transcranial Magnetic Stimulation Influence Glial Cells in the Central Nervous System?

    Directory of Open Access Journals (Sweden)

    Carlie L Cullen

    2016-04-01

    Full Text Available Transcranial magnetic stimulation (TMS is widely used in the clinic, and while it has a direct effect on neuronal excitability, the beneficial effects experienced by patients are likely to include the indirect activation of other cell types. Research conducted over the past two decades has made it increasingly clear that a population of non-neuronal cells, collectively known as glia, respond to and facilitate neuronal signalling. Each glial cell type has the ability to respond to electrical activity directly or indirectly, making them likely cellular effectors of TMS. TMS has been shown to enhance adult neural stem and progenitor cell proliferation, but the effect on cell survival and differentiation is less certain. Furthermore there is limited information regarding the response of astrocytes and microglia to TMS, and a complete paucity of data relating to the response of oligodendrocyte-lineage cells to this treatment. However, due to the critical and yet multifaceted role of glial cells in the CNS, the influence that TMS has on glial cells is certainly an area that warrants careful examination.

  4. Schwann cell-mediated delivery of glial cell line-derived neurotrophic factor restores erectile function after cavernous nerve injury.

    Science.gov (United States)

    May, Florian; Buchner, Alexander; Schlenker, Boris; Gratzke, Christian; Arndt, Christian; Stief, Christian; Weidner, Norbert; Matiasek, Kaspar

    2013-03-01

    To evaluate the time-course of functional recovery after cavernous nerve injury using glial cell line-derived neurotrophic factor-transduced Schwann cell-seeded silicon tubes. Sections of the cavernous nerves were excised bilaterally (5 mm), followed by immediate bilateral surgical repair. A total of 20 study nerves per group were reconstructed by interposition of empty silicon tubes and silicon tubes seeded with either glial cell line-derived neurotrophic factor-overexpressing or green fluorescent protein-expressing Schwann cells. Control groups were either sham-operated or received bilateral nerve transection without nerve reconstruction. Erectile function was evaluated by relaparotomy, electrical nerve stimulation and intracavernous pressure recording after 2, 4, 6, 8 and 10 weeks. The animals underwent re-exploration only once, and were killed afterwards. The nerve grafts were investigated for the maturation state of regenerating nerve fibers and the fascular composition. Recovery of erectile function took at least 4 weeks in the current model. Glial cell line-derived neurotrophic factor-transduced Schwann cell grafts restored erectile function better than green fluorescent protein-transduced controls and unseeded conduits. Glial cell line-derived neurotrophic factor-transduced grafts promoted an intact erectile response (4/4) at 4, 6, 8 and 10 weeks that was overall significantly superior to negative controls (P cell line-derived neurotrophic factor-transduced grafts compared with negative controls (P = 0.018) and unseeded tubes (P = 0.034). Return of function was associated with the electron microscopic evidence of preganglionic myelinated nerve fibers and postganglionic unmyelinated axons. Schwann cell-mediated delivery of glial cell line-derived neurotrophic factor presents a viable approach for the treatment of erectile dysfunction after cavernous nerve injury. © 2013 The Japanese Urological Association.

  5. The effects of centrally administered fluorocitrate via inhibiting glial cells on working memory in rats

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Although prefrontal and hippocampal neurons are critical for spatial working memory,the function of glial cells in spatial working memory remains uncertain.In this study we investigated the function of glial cells in rats’ working memory.The glial cells of rat brain were inhibited by intracerebroventricular(icv) injection of fluorocitrate(FC).The effects of FC on the glial cells were examined by using electroencephalogram(EEG) recordings and delayed spatial alternation tasks.After icv injection of 10 μL of 0.5 nmol/L or 5 nmol/L FC,the EEG power spectrum recorded from the hippocampus increased,but the power spectrum for the prefrontal cortex did not change,and working memory was unaffected.Following an icv injection of 10 μL of 20 nmol/L FC,the EEG power spectra in both the prefrontal cortex and the hippocampus increased,and working memory improved.The icv injection of 10 μL of 50 nmol/L FC,the EEG power spectra in both the prefrontal cortex and in the hippocampus decreased,and working memory was impaired.These results suggest that spatial working memory is affected by centrally administered FC,but only if there are changes in the EEG power spectrum in the prefrontal cortex.Presumably,the prefrontal glial cells relate to the working memory.

  6. Environmental stress, ageing and glial cell senescence: a novel mechanistic link to Parkinson’s disease?

    Science.gov (United States)

    Chinta, Shankar J; Lieu, Christopher A; DeMaria, Marco; Laberge, Remi-Martin; Campisi, Judith; Andersen, Julie K

    2013-01-01

    Exposure to environmental toxins is associated with a variety of age-related diseases including cancer and neurodegeneration. For example, in Parkinson’s disease (PD), chronic environmental exposure to certain toxins has been linked to the age-related development of neuropathology. Neuronal damage is believed to involve the induction of neuroinflammatory events as a consequence of glial cell activation. Cellular senescence is a potent anti-cancer mechanism that occurs in a number of proliferative cell types and causes the arrest of proliferation of cells at risk of malignant transformation following exposure to potentially oncogenic stimuli. With age, senescent cells accumulate and express a senescence-associated secretory phenotype (SASP; i.e. the robust secretion of many inflammatory cytokines, growth factors and proteases). Whereas cell senescence in peripheral tissues has been causally linked to a number of age-related pathologies, little is known about the induction of cellular senescence and the SASP in the brain. Based on recently reported findings, we propose that environmental stressors associated with PD may act in part by eliciting senescence and the SASP within non-neuronal glial cells in the ageing brain, thus contributing to the characteristic decline in neuronal integrity that occurs in this disorder. PMID:23600398

  7. Characterization of a cis-acting element involved in cell-specific expression of the zebrafish brain aromatase gene.

    Science.gov (United States)

    Le Page, Yann; Menuet, Arnaud; Kah, Olivier; Pakdel, Farzad

    2008-10-01

    The cytochrome P450 Aromatase is the key enzyme catalyzing the conversion of androgens into estrogens. In zebrafish, the brain aromatase is encoded by cyp19b. Expression of cyp19b is restricted to radial glial cells bordering forebrain ventricles and is strongly stimulated by estrogens during development. At the promoter level, we have previously shown that an estrogen responsive element (ERE) is required for induction by estrogens. Here, we investigated the role of ERE flanking regions in the control of cell-specific expression. First, we show that a 20 bp length motif, named G x RE (glial x responsive element), acts in synergy with the ERE to mediate the estrogenic induction specifically in glial cells. Second, we demonstrate that, in vitro, this sequence binds factors exclusively present in glial or neuro-glial cells and is able to confer a glial specificity to an artificial estrogen-dependent gene. Taken together, these results contribute to the understanding of the molecular mechanisms allowing cyp19b regulation by estrogens and allowed to identify a promoter sequence involved in the strong estrogen inducibility of cyp19b which is specific for glial cells. The exceptional aromatase activity measured in the brain of teleost fish could rely on such mechanisms.

  8. LPS-induced expression of a novel chemokine receptor (L-CCR) in mouse glial cells in vitro and in vivo

    NARCIS (Netherlands)

    Zuurman, MW; Heeroma, J; Brouwer, N; Boddeke, HWGM; Biber, K

    There is increasing evidence that chemokines, specialized regulators of the peripheral immune system, are also involved in the physiology and pathology of the CNS. It is known that glial cells (astrocytes and microglia) express various chemokine receptors like CCR1, -3, -5, and CXCR4. We have

  9. Spatial organization of NG2 glial cells and astrocytes in rat hippocampal CA1 region.

    Science.gov (United States)

    Xu, Guangjin; Wang, Wei; Zhou, Min

    2014-04-01

    Similar to astrocytes, NG2 glial cells are uniformly distributed in the central nervous system (CNS). However, little is known about the interspatial relationship, nor the functional interactions between these two star-shaped glial subtypes. Confocal morphometric analysis showed that NG2 immunostained cells are spatially organized as domains in rat hippocampal CA1 region and that each NG2 glial domain occupies a spatial volume of ∼178, 364 μm(3) . The processes of NG2 glia and astrocytes overlap extensively; each NG2 glial domain interlaces with the processes deriving from 5.8 ± 0.4 neighboring astrocytes, while each astrocytic domain accommodates processes stemming from 4.5 ± 0.3 abutting NG2 glia. In CA1 stratum radiatum, the cell bodies of morphologically identified glial cells often appear to make direct somatic-somata contact, termed as doublets. We used dual patch recording and postrecording NG2/GFAP double staining to determine the glial identities of these doublets. We show that among 44 doublets, 50% were NG2 glia-astrocyte pairs, while another 38.6% and 11.4% were astrocyte-astrocyte and NG2 glia-NG2 glia pairs, respectively. In dual patch recording, neither electrical coupling nor intercellular biocytin transfer was detected in astrocyte-NG2 glia or NG2 glia-NG2 glia doublets. Altogether, although NG2 glia and astrocytes are not gap junction coupled, their cell bodies and processes are interwoven extensively. The anatomical and physiological relationships revealed in this study should facilitate future studies to understand the metabolic coupling and functional communication between NG2 glia and astrocytes. Copyright © 2013 Wiley Periodicals, Inc.

  10. Neural Mobilization Treatment Decreases Glial Cells and Brain-Derived Neurotrophic Factor Expression in the Central Nervous System in Rats with Neuropathic Pain Induced by CCI in Rats

    Directory of Open Access Journals (Sweden)

    Aline Carolina Giardini

    2017-01-01

    Full Text Available Background. Glial cells are implicated in the development of chronic pain and brain-derived neurotropic factor (BDNF released from activated microglia contributes to the nociceptive transmission. Neural mobilization (NM technique is a method clinically effective in reducing pain sensitivity. Here we examined the involvement of glial cells and BDNF expression in the thalamus and midbrain after NM treatment in rats with chronic constriction injury (CCI. CCI was induced and rats were subsequently submitted to 10 sessions of NM, every other day, beginning 14 days after CCI. Thalamus and midbrain were analyzed for glial fibrillary acidic protein (GFAP, microglial cell OX-42, and BDNF using Immunohistochemistry and Western blot assays. Results. Thalamus and midbrain of CCI group showed increases in GFAP, OX-42, and BDNF expression compared with control group and, in contrast, showed decreases in GFAP, OX-42, and BDNF after NM when compared with CCI group. The decreased immunoreactivity for GFAP, OX-42, and BDNF in ventral posterolateral nucleus in thalamus and the periaqueductal gray in midbrain was shown by immunohistochemistry. Conclusions. These findings may improve the knowledge about the involvement of astrocytes, microglia, and BDNF in the chronic pain and show that NM treatment, which alleviates neuropathic pain, affects glial cells and BDNF expression.

  11. Electron microscopy of glial cells of the central nervous system in the crab Ucides cordatus

    Directory of Open Access Journals (Sweden)

    Allodi S.

    1999-01-01

    Full Text Available Invertebrate glial cells show a variety of morphologies depending on species and location. They have been classified according to relatively general morphological or functional criteria and also to their location. The present study was carried out to characterize the organization of glial cells and their processes in the zona fasciculata and in the protocerebral tract of the crab Ucides cordatus. We performed routine and cytochemical procedures for electron microscopy analysis. Semithin sections were observed at the light microscope. The Thiéry procedure indicated the presence of carbohydrates, particularly glycogen, in tissue and in cells. To better visualize the axonal ensheathment at the ultrastructural level, we employed a method to enhance the unsaturated fatty acids present in membranes. Our results showed that there are at least two types of glial cells in these nervous structures, a light one and a dark one. Most of the dark cell processes have been mentioned in the literature as extracellular matrix, but since they presented an enveloping membrane, glycogen and mitochondria - intact and with different degrees of disruption - they were considered to be glial cells in the present study. We assume that they correspond to the perineurial cells on the basis of their location. The light cells must correspond to the periaxonal cells. Some characteristics of the axons such as their organization, ensheathment and subcellular structures are also described.

  12. Glial modulation by N-acylethanolamides in brain injury and neurodegeneration

    Directory of Open Access Journals (Sweden)

    María Inés Herrera

    2016-04-01

    Full Text Available Neuroinflammation involves the activation of glial cells and represents a key element in normal aging and pathophysiology of brain damage. N-acylethanolamides (NAEs, naturally occurring amides, are known for their pro-homeostatic effects. An increase of NAEs has been reported in vivo and in vitro in the aging brain and in brain injury. Treatment with NAEs may promote neuroprotection and exert anti-inflammatory actions via PPARα activation and/or by counteracting gliosis. This review aims to provide an overview of endogenous and exogenous properties of NAEs in neuroinflammation and to discuss their interaction with glial cells.

  13. Glial-glial and glial-neuronal interfaces in radiation-induced, glia-depleted spinal cord

    International Nuclear Information System (INIS)

    Gilmore, S.A.; Sims, T.J.

    1997-01-01

    This review summarises some of the major findings derived from studies using the model of a glia-depleted environment developed and characterised in this laboratory. Glial depletion is achieved by exposure of the immature rodent spinal cord to x-radiation which markedly reduces both astrocyte and oligodendrocyte populations and severely impairs myelination. This glia-depleted, hypomylinated state presents a unique opportunity to examine aspects of spinal cord maturation in the absence of a normal glial population. An associated sequela within 2-3 wk following irradiation is the appearance of Schwann cells in the dorsal portion of the spinal cord. Characteristics of these intraspinal Schwann cells, their patterns of myelination or ensheathment, and their interrelations with the few remaining central glia have been examined. A later sequela is the development of Schwann cells in the ventral aspect of the spinal cord where they occur predominantly in the grey matter. (author)

  14. Flow Cytometric Detection of PrPSc in Neurons and Glial Cells from Prion-Infected Mouse Brains.

    Science.gov (United States)

    Yamasaki, Takeshi; Suzuki, Akio; Hasebe, Rie; Horiuchi, Motohiro

    2018-01-01

    In prion diseases, an abnormal isoform of prion protein (PrP Sc ) accumulates in neurons, astrocytes, and microglia in the brains of animals affected by prions. Detailed analyses of PrP Sc -positive neurons and glial cells are required to clarify their pathophysiological roles in the disease. Here, we report a novel method for the detection of PrP Sc in neurons and glial cells from the brains of prion-infected mice by flow cytometry using PrP Sc -specific staining with monoclonal antibody (MAb) 132. The combination of PrP Sc staining and immunolabeling of neural cell markers clearly distinguished neurons, astrocytes, and microglia that were positive for PrP Sc from those that were PrP Sc negative. The flow cytometric analysis of PrP Sc revealed the appearance of PrP Sc -positive neurons, astrocytes, and microglia at 60 days after intracerebral prion inoculation, suggesting the presence of PrP Sc in the glial cells, as well as in neurons, from an early stage of infection. Moreover, the kinetic analysis of PrP Sc revealed a continuous increase in the proportion of PrP Sc -positive cells for all cell types with disease progression. Finally, we applied this method to isolate neurons, astrocytes, and microglia positive for PrP Sc from a prion-infected mouse brain by florescence-activated cell sorting. The method described here enables comprehensive analyses specific to PrP Sc -positive neurons, astrocytes, and microglia that will contribute to the understanding of the pathophysiological roles of neurons and glial cells in PrP Sc -associated pathogenesis. IMPORTANCE Although formation of PrP Sc in neurons is associated closely with neurodegeneration in prion diseases, the mechanism of neurodegeneration is not understood completely. On the other hand, recent studies proposed the important roles of glial cells in PrP Sc -associated pathogenesis, such as the intracerebral spread of PrP Sc and clearance of PrP Sc from the brain. Despite the great need for detailed analyses

  15. The saucor, a new stereological tool for analysing the spatial distributions of cells, exemplified by human neocortical neurons and glial cells

    DEFF Research Database (Denmark)

    Stark, Anette K; Gundersen, Hans Jørgen Gottlieb; Gardi, Jonathan Eyal

    2011-01-01

    The 3D spatial arrangement of particles or cells, for example glial cells, with respect to other particles or cells, for example neurons, can be characterized by the radial number density function, which expresses the number density of so-called ‘secondary’ particles as a function of their distance...... formulae based on the Horvitz–Thompson theorem are derived for both isotropic uniform random and vertical uniform random designs. The method is illustrated with an example where the radial number density of neurons and glial cells around neurons in the human neocortex is estimated using thick vertical...... sections for light microscopy. The results indicate that the glial cells are clustered around the neurons and the neurons have a tendency towards repulsion from each other....

  16. Vacuolar H+ -ATPase c protects glial cell death induced by sodium nitroprusside under glutathione-depleted condition.

    Science.gov (United States)

    Byun, Yu Jeong; Lee, Seong-Beom; Lee, Hwa Ok; Son, Min Jeong; Kim, Ho-Shik; Kwon, Oh-Joo; Jeong, Seong-Whan

    2011-08-01

    We examined the role of the c subunit (ATP6L) of vacuolar H(+) -ATPase and its molecular mechanisms in glial cell death induced by sodium nitroprusside (SNP). ATP6L siRNA-transfected cells treated with SNP showed a significant increase in cytotoxicity under glutathione (GSH)-depleted conditions after pretreatment with buthionine sulfoximine, but reduction of ATP6L did not affect the regulation of lysosomal pH in analyses with lysosomal pH-dependent fluorescence probes. Photodegraded SNP and ferrous sulfate induced cytotoxicity with the same pattern as that of SNP, but SNAP and potassium cyanide did not show activity. Pretreatment of the transfected cells with deferoxamine (DFO) reduced ROS production and significantly inhibited the cytotoxicity, which indicates that primarily iron rather than nitric oxide or cyanide from SNP contributes to cell death. Involvement of apoptotic processes in the cells was not shown. Pretreatment with JNK or p38 chemical inhibitor significantly inhibited the cytotoxicity, and we also confirmed that the MAPKs were activated in the cells by immunoblot analysis. Significant increase of LC3-II conversion was observed in the cells, and the conversions were inhibited by cotransfection of the MAPK siRNAs and pretreatment with DFO. Introduction of Atg5 siRNA inhibited the cytotoxicity and inhibited the activation of MAPKs and the conversion of LC3. We finally confirmed autophagic cell death and involvement of MAPKs by observation of autophagic vacuoles via electron microscopy. These data suggest that ATP6L has a protective role against SNP-induced autophagic cell death via inhibition of JNK and p38 in GSH-depleted glial cells. Copyright © 2011 Wiley-Liss, Inc.

  17. Rapid method for culturing embryonic neuron-glial cell cocultures

    DEFF Research Database (Denmark)

    Svenningsen, Åsa Fex; Shan, Wei-Song; Colman, David R

    2003-01-01

    neurons is seen after 3 weeks (2 weeks in ascorbic acid), suggesting that basal lamina production is important even for glial ensheathment in the enteric nervous system. No overgrowth of fibroblasts or other nonneuronal cells was noted in any cultures, and myelination of the peripheral nervous system...

  18. Alcohol alters hypothalamic glial-neuronal communications involved in the neuroendocrine control of puberty: In vivo and in vitro assessments.

    Science.gov (United States)

    Dees, W L; Hiney, J K; Srivastava, V K

    2015-11-01

    The onset of puberty is the result of the increased secretion of hypothalamic luteinizing hormone-releasing hormone (LHRH). The pubertal process can be altered by substances that can affect the prepubertal secretion of this peptide. Alcohol is one such substance known to diminish LHRH secretion and delay the initiation of puberty. The increased secretion of LHRH that normally occurs at the time of puberty is due to a decrease of inhibitory tone that prevails prior to the onset of puberty, as well as an enhanced development of excitatory inputs to the LHRH secretory system. Additionally, it has become increasingly clear that glial-neuronal communications are important for pubertal development because they play an integral role in facilitating the pubertal rise in LHRH secretion. Thus, in recent years attempts have been made to identify specific glial-derived components that contribute to the development of coordinated communication networks between glia and LHRH cell bodies, as well as their nerve terminals. Transforming growth factor-α and transforming growth factor-β1 are two such glial substances that have received attention in this regard. This review summarizes the use of multiple neuroendocrine research techniques employed to assess these glial-neuronal communication pathways involved in regulating prepubertal LHRH secretion and the effects that alcohol can have on their respective functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The saucor, a new stereological tool for analysing the spatial distributions of cells, exemplified by human neocortical neurons and glial cells

    DEFF Research Database (Denmark)

    Stark, Anette K.; Gundersen, Hans Jørgen Gottlieb; Gardi, Jonathan Eyal

    The three dimensional spatial arrangement of particles or cells, for example glial cells, with respect to other particles or cells, for example neurons, can be characterized by the radial number density function, which expresses the number density of so called “secondary” particles as a function....... Estimation formulae based on the Horvitz-Thompson theorem are derived for both IUR and VUR designs. The method is illustrated with an example where the radial number density of neurons and glial cells around neurons in the human neocortex is estimated using thick vertical sections for light microscopy....... The results indicate that the glial cells are clustered around the neurons and the neurons have a tendency towards repulsion from each other....

  20. Effects of X-irradiation on glial cells in the developing rat brain

    International Nuclear Information System (INIS)

    Ferrer, I.; Borras, D.

    1994-01-01

    Sprague-Dawley rats were given a single dose of 2Gy X-rays when 1 or 3 days of age. Dying cells in the germinal layer of the telencephalon reached peak values 6h after irradiation; dead cells were cleared 48h later. These effects were almost abolished with the injection of cyclohexamide (1 μg/g body weight) given at the time of irradiation. PCNA-immunoreactive cells (cells in late G 1 and S phases of the cell cycle) and PCNA-negative cells were sensitive to X-rays. Long-term effects on glial cell populations in the subcortical white matter of the cingulum were examined in irradiated rats, killed at postnatal day 30 (P30), by means of glial fibrillary acidic protein, vimentin and S-100 immunohistochemistry, as well as with anti-TGF-α (transformerly growth factor) antibodies that are used as putative oligodendrogial cell markers in the white matter of rat. (author)

  1. Tricyclic Antidepressant Amitriptyline-induced Glial Cell Line-derived Neurotrophic Factor Production Involves Pertussis Toxin-sensitive Gαi/o Activation in Astroglial Cells.

    Science.gov (United States)

    Hisaoka-Nakashima, Kazue; Miyano, Kanako; Matsumoto, Chie; Kajitani, Naoto; Abe, Hiromi; Okada-Tsuchioka, Mami; Yokoyama, Akinobu; Uezono, Yasuhito; Morioka, Norimitsu; Nakata, Yoshihiro; Takebayashi, Minoru

    2015-05-29

    Further elaborating the mechanism of antidepressants, beyond modulation of monoaminergic neurotransmission, this study sought to elucidate the mechanism of amitriptyline-induced production of glial cell line-derived neurotrophic factor (GDNF) in astroglial cells. Previous studies demonstrated that an amitriptyline-evoked matrix metalloproteinase (MMP)/FGF receptor (FGFR)/FGFR substrate 2α (FRS2α)/ERK cascade is crucial for GDNF production, but how amitriptyline triggers this cascade remains unknown. MMP is activated by intracellular mediators such as G proteins, and this study sought to clarify the involvement of G protein signaling in amitriptyline-evoked GDNF production in rat C6 astroglial cells (C6 cells), primary cultured rat astrocytes, and normal human astrocytes. Amitriptyline-evoked GDNF mRNA expression and release were inhibited by pertussis toxin (PTX), a Gα(i/o) inhibitor, but not by NF449, a Gα(s) inhibitor, or YM-254890, a Gαq inhibitor. The activation of the GDNF production cascade (FGFR/FRS2α/ERK) was also inhibited by PTX. Deletion of Gα(ο1) and Gα(i3) by RNAi demonstrated that these G proteins play important roles in amitriptyline signaling. G protein activation was directly analyzed by electrical impedance-based biosensors (CellKey(TM) assay), using a label-free (without use of fluorescent proteins/probes or radioisotopes) and real time approach. Amitriptyline increased impedance, indicating Gα(i/o) activation that was suppressed by PTX treatment. The impedance evoked by amitriptyline was not affected by inhibitors of the GDNF production cascade. Furthermore, FGF2 treatment did not elicit any effect on impedance, indicating that amitriptyline targets PTX-sensitive Gα(i/o) upstream of the MMP/FGFR/FRS2α/ERK cascade. These results suggest novel targeting for the development of antidepressants. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Several synthetic progestins disrupt the glial cell specific-brain aromatase expression in developing zebra fish

    International Nuclear Information System (INIS)

    Cano-Nicolau, Joel; Garoche, Clémentine; Hinfray, Nathalie; Pellegrini, Elisabeth; Boujrad, Noureddine; Pakdel, Farzad; Kah, Olivier; Brion, François

    2016-01-01

    The effects of some progestins on fish reproduction have been recently reported revealing the hazard of this class of steroidal pharmaceuticals. However, their effects at the central nervous system level have been poorly studied until now. Notwithstanding, progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. Herein, we investigated the effects of a large set of synthetic ligands of the nuclear progesterone receptor on the glial-specific expression of the zebrafish brain aromatase (cyp19a1b) using zebrafish mechanism-based assays. Progesterone and 24 progestins were first screened on transgenic cyp19a1b-GFP zebrafish embryos. We showed that progesterone, dydrogesterone, drospirenone and all the progesterone-derived progestins had no effect on GFP expression. Conversely, all progestins derived from 19-nortesterone induced GFP in a concentration-dependent manner with EC 50 ranging from the low nM range to hundreds nM. The 19-nortestosterone derived progestins levonorgestrel (LNG) and norethindrone (NET) were further tested in a radial glial cell context using U251-MG cells co-transfected with zebrafish ER subtypes (zfERα, zfERβ1 or zfERβ2) and cyp19a1b promoter linked to luciferase. Progesterone had no effect on luciferase activity while NET and LNG induced luciferase activity that was blocked by ICI 182,780. Zebrafish-ERs competition assays showed that NET and LNG were unable to bind to ERs, suggesting that the effects of these compounds on cyp19a1b require metabolic activation prior to elicit estrogenic activity. Overall, we demonstrate that 19-nortestosterone derived progestins elicit estrogenic activity by inducing cyp19a1b expression in radial glial cells. Given the crucial role of radial glial cells and neuro-estrogens in early development of brain, the consequences of exposure of fish to these compounds require further investigation. - Highlights: • P4 + 24 progestins

  3. Several synthetic progestins disrupt the glial cell specific-brain aromatase expression in developing zebra fish

    Energy Technology Data Exchange (ETDEWEB)

    Cano-Nicolau, Joel [Team NEED, Institut de recherche en Santé Environnement et Travail (Irset), INSERM U1085, Université de Rennes 1, Campus de Beaulieu, SFR Biosit, 35042 Rennes cedex (France); Garoche, Clémentine; Hinfray, Nathalie [Unité d' Ecotoxicologie in vitro et in vivo , Institut National de l' Environnement Industriel et des Risques (INERIS), BP 2, 60550 Verneuil-en-Halatte (France); Pellegrini, Elisabeth [Team NEED, Institut de recherche en Santé Environnement et Travail (Irset), INSERM U1085, Université de Rennes 1, Campus de Beaulieu, SFR Biosit, 35042 Rennes cedex (France); Boujrad, Noureddine; Pakdel, Farzad [TREK, Institut de recherche en Santé Environnement et Travail (Irset), INSERM U1085, Université de Rennes 1, Campus de Beaulieu, SFR Biosit, 35042 Rennes cedex (France); Kah, Olivier, E-mail: oliver.kah@univ-rennes1.fr [Team NEED, Institut de recherche en Santé Environnement et Travail (Irset), INSERM U1085, Université de Rennes 1, Campus de Beaulieu, SFR Biosit, 35042 Rennes cedex (France); Brion, François, E-mail: francois.brion@ineris.fr [Unité d' Ecotoxicologie in vitro et in vivo , Institut National de l' Environnement Industriel et des Risques (INERIS), BP 2, 60550 Verneuil-en-Halatte (France)

    2016-08-15

    The effects of some progestins on fish reproduction have been recently reported revealing the hazard of this class of steroidal pharmaceuticals. However, their effects at the central nervous system level have been poorly studied until now. Notwithstanding, progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. Herein, we investigated the effects of a large set of synthetic ligands of the nuclear progesterone receptor on the glial-specific expression of the zebrafish brain aromatase (cyp19a1b) using zebrafish mechanism-based assays. Progesterone and 24 progestins were first screened on transgenic cyp19a1b-GFP zebrafish embryos. We showed that progesterone, dydrogesterone, drospirenone and all the progesterone-derived progestins had no effect on GFP expression. Conversely, all progestins derived from 19-nortesterone induced GFP in a concentration-dependent manner with EC{sub 50} ranging from the low nM range to hundreds nM. The 19-nortestosterone derived progestins levonorgestrel (LNG) and norethindrone (NET) were further tested in a radial glial cell context using U251-MG cells co-transfected with zebrafish ER subtypes (zfERα, zfERβ1 or zfERβ2) and cyp19a1b promoter linked to luciferase. Progesterone had no effect on luciferase activity while NET and LNG induced luciferase activity that was blocked by ICI 182,780. Zebrafish-ERs competition assays showed that NET and LNG were unable to bind to ERs, suggesting that the effects of these compounds on cyp19a1b require metabolic activation prior to elicit estrogenic activity. Overall, we demonstrate that 19-nortestosterone derived progestins elicit estrogenic activity by inducing cyp19a1b expression in radial glial cells. Given the crucial role of radial glial cells and neuro-estrogens in early development of brain, the consequences of exposure of fish to these compounds require further investigation. - Highlights: • P4 + 24

  4. Reappraisal of Bergmann glial cells as modulators of cerebellar circuit function

    Directory of Open Access Journals (Sweden)

    Chris I De Zeeuw

    2015-07-01

    Full Text Available Just as there is a huge morphological and functional diversity of neuron types specialized for specific aspects of information processing in the brain, astrocytes have equally distinct morphologies and functions that aid optimal functioning of the circuits in which they are embedded. One type of astrocyte, the Bergmann glial cell of the cerebellum, is a prime example of a highly diversified astrocyte type, the architecture of which is adapted to the cerebellar circuit and facilitates an impressive range of functions that optimize information processing in the adult brain. In this review we expand on the function of the Bergmann glial cell in the cerebellum to highlight the importance of astrocytes not only in housekeeping functions, but also in contributing to plasticity and information processing in the cerebellum.

  5. Acute morphine activates satellite glial cells and up-regulates IL-1β in dorsal root ganglia in mice via matrix metalloprotease-9

    Directory of Open Access Journals (Sweden)

    Berta Temugin

    2012-03-01

    Full Text Available Abstract Background Activation of spinal cord glial cells such as microglia and astrocytes has been shown to regulate chronic opioid-induced antinociceptive tolerance and hyperalgesia, due to spinal up-regulation of the proinflammatory cytokines such as interleukin-1 beta (IL-1β. Matrix metalloprotease-9 (MMP-9 has been implicated in IL-1β activation in neuropathic pain. However, it is unclear whether acute opioid treatment can activate glial cells in the peripheral nervous system. We examined acute morphine-induced activation of satellite glial cells (SGCs and up-regulation of IL-1β in dorsal root ganglia (DRGs, and further investigated the involvement of MMP-9 in these opioid-induced peripheral changes. Results Subcutaneous morphine injection (10 mg/kg induced robust peripheral glial responses, as evidenced by increased GFAP expression in DRGs but not in spinal cords. The acute morphine-induced GFAP expression is transient, peaking at 2 h and declining after 3 h. Acute morphine treatment also increased IL-1β immunoreactivity in SGCs and IL-1β activation in DRGs. MMP-9 and GFAP are expressed in DRG neurons and SGCs, respectively. Confocal analysis revealed a close proximity of MMP-9 and GFAP immunostaining. Importantly, morphine-induced DRG up-regulation of GFAP expression and IL-1β activation was abolished after Mmp9 deletion or naloxone pre-treatment. Finally, intrathecal injections of IL-1β-selective siRNA not only reduced DRG IL-1β expression but also prolonged acute morphine-induced analgesia. Conclusions Acute morphine induces opioid receptors- and MMP-9-dependent up-regulation of GFAP expression and IL-1β activation in SGCs of DRGs. MMP-9 could mask and shorten morphine analgesia via peripheral neuron-glial interactions. Targeting peripheral glial activation might prolong acute opioid analgesia.

  6. Gemfibrozil, a Lipid-lowering Drug, Induces Suppressor of Cytokine Signaling 3 in Glial Cells

    Science.gov (United States)

    Ghosh, Arunava; Pahan, Kalipada

    2012-01-01

    Glial inflammation is an important feature of several neurodegenerative disorders. Suppressor of cytokine signaling (SOCS) proteins play a crucial role in inhibiting cytokine signaling and inflammatory gene expression in various cell types, including glial cells. However, mechanisms by which SOCS genes could be up-regulated are poorly understood. This study underlines the importance of gemfibrozil, a Food and Drug Administration-approved lipid-lowering drug, in up-regulating the expression of SOCS3 in glial cells. Gemfibrozil increased the expression of Socs3 mRNA and protein in mouse astroglia and microglia in both a time- and dose-dependent manner. Interestingly, gemfibrozil induced the activation of type IA phosphatidylinositol (PI) 3-kinase and AKT. Accordingly, inhibition of PI 3-kinase and AKT by chemical inhibitors abrogated gemfibrozil-mediated up-regulation of SOCS3. Furthermore, we demonstrated that gemfibrozil induced the activation of Krüppel-like factor 4 (KLF4) via the PI 3-kinase-AKT pathway and that siRNA knockdown of KLF4 abrogated gemfibrozil-mediated up-regulation of SOCS3. Gemfibrozil also induced the recruitment of KLF4 to the distal, but not proximal, KLF4-binding site of the Socs3 promoter. This study delineates a novel property of gemfibrozil in up-regulating SOCS3 in glial cells via PI 3-kinase-AKT-mediated activation of KLF4 and suggests that gemfibrozil may find therapeutic application in neuroinflammatory and neurodegenerative disorders. PMID:22685291

  7. Stereological analysis of neuron, glial and endothelial cell numbers in the human amygdaloid complex.

    Directory of Open Access Journals (Sweden)

    María García-Amado

    Full Text Available Cell number alterations in the amygdaloid complex (AC might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL, corticomedial and central groups, 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm(3 and mean cell numbers (x10(6 were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals' age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions.

  8. Stereological analysis of neuron, glial and endothelial cell numbers in the human amygdaloid complex.

    Science.gov (United States)

    García-Amado, María; Prensa, Lucía

    2012-01-01

    Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm(3) and mean cell numbers (x10(6)) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals' age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions.

  9. Transglial transmission at the dorsal root ganglion sandwich synapse: glial cell to postsynaptic neuron communication.

    Science.gov (United States)

    Rozanski, Gabriela M; Li, Qi; Stanley, Elise F

    2013-04-01

    The dorsal root ganglion (DRG) contains a subset of closely-apposed neuronal somata (NS) separated solely by a thin satellite glial cell (SGC) membrane septum to form an NS-glial cell-NS trimer. We recently reported that stimulation of one NS with an impulse train triggers a delayed, noisy and long-lasting response in its NS pair via a transglial signaling pathway that we term a 'sandwich synapse' (SS). Transmission could be unidirectional or bidirectional and facilitated in response to a second stimulus train. We have shown that in chick or rat SS the NS-to-SGC leg of the two-synapse pathway is purinergic via P2Y2 receptors but the second SGC-to-NS synapse mechanism remained unknown. A noisy evoked current in the target neuron, a reversal potential close to 0 mV, and insensitivity to calcium scavengers or G protein block favored an ionotropic postsynaptic receptor. Selective block by D-2-amino-5-phosphonopentanoate (AP5) implicated glutamatergic transmission via N-methyl-d-aspartate receptors. This agent also blocked NS responses evoked by puff of UTP, a P2Y2 agonist, directly onto the SGC cell, confirming its action at the second synapse of the SS transmission pathway. The N-methyl-d-aspartate receptor NR2B subunit was implicated by block of transmission with ifenprodil and by its immunocytochemical localization to the NS membrane, abutting the glial septum P2Y2 receptor. Isolated DRG cell clusters exhibited daisy-chain and branching NS-glial cell-NS contacts, suggestive of a network organization within the ganglion. The identification of the glial-to-neuron transmitter and receptor combination provides further support for transglial transmission and completes the DRG SS molecular transmission pathway. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  10. Connexin43 Hemichannels in Satellite Glial Cells, Can They Influence Sensory Neuron Activity?

    Directory of Open Access Journals (Sweden)

    Mauricio A. Retamal

    2017-11-01

    Full Text Available In this review article, we summarize the current insight on the role of Connexin- and Pannexin-based channels as modulators of sensory neurons. The somas of sensory neurons are located in sensory ganglia (i.e., trigeminal and nodose ganglia. It is well known that within sensory ganglia, sensory neurons do not form neither electrical nor chemical synapses. One of the reasons for this is that each soma is surrounded by glial cells, known as satellite glial cells (SGCs. Recent evidence shows that connexin43 (Cx43 hemichannels and probably pannexons located at SGCs have an important role in paracrine communication between glial cells and sensory neurons. This communication may be exerted via the release of bioactive molecules from SGCs and their subsequent action on receptors located at the soma of sensory neurons. The glio-neuronal communication seems to be relevant for the establishment of chronic pain, hyperalgesia and pathologies associated with tissue inflammation. Based on the current literature, it is possible to propose that Cx43 hemichannels expressed in SGCs could be a novel pharmacological target for treating chronic pain, which need to be directly evaluated in future studies.

  11. Restraining reactive oxygen species in Listeria monocytogenes promotes the apoptosis of glial cells.

    Science.gov (United States)

    Li, Sen; Li, Yixuan; Chen, Guowei; Zhang, Jingchen; Xu, Fei; Wu, Man

    2017-07-01

    Listeria monocytogenes is a facultative anaerobic foodborne pathogen that can traverse the blood-brain barrier and cause brain infection. L. monocytogenes infection induces host cell apoptosis in several cell types. In this study, we investigated the apoptosis of human glioma cell line U251 invaded by L. monocytogenes and evaluated the function of bacterial reactive oxygen species (ROS) during infection. Bacterial ROS level was reduced by carrying out treatment with N-acetyl cysteine (NAC) and diphenyleneiodonium chloride (DPI). After infection, the apoptosis of U251 cells was examined by flow cytometry assay and propidium iodide staining. DPI and NAC efficiently decreased ROS level in L. monocytogenes without affecting bacterial growth. Moreover, the apoptosis of glial cells was enhanced upon invasion of DPI- and NAC-pretreated L. monocytogenes. Results indicate that the apoptosis of glial cells can be induced by L. monocytogenes, and that the inhibition of bacterial ROS increases the apoptosis of host cells.

  12. The Comparative Utility of Viromer RED and Lipofectamine for Transient Gene Introduction into Glial Cells

    Directory of Open Access Journals (Sweden)

    Sudheendra Rao

    2015-01-01

    Full Text Available The introduction of genes into glial cells for mechanistic studies of cell function and as a therapeutic for gene delivery is an expanding field. Though viral vector based systems do exhibit good delivery efficiency and long-term production of the transgene, the need for transient gene expression, broad and rapid gene setup methodologies, and safety concerns regarding in vivo application still incentivize research into the use of nonviral gene delivery methods. In the current study, aviral gene delivery vectors based upon cationic lipid (Lipofectamine 3000 lipoplex or polyethylenimine (Viromer RED polyplex technologies were examined in cell lines and primary glial cells for their transfection efficiencies, gene expression levels, and toxicity. The transfection efficiencies of polyplex and lipoplex agents were found to be comparable in a limited, yet similar, transfection setting, with or without serum across a number of cell types. However, differential effects on cell-specific transgene expression and reduced viability with cargo loaded polyplex were observed. Overall, our data suggests that polyplex technology could perform comparably to the market dominant lipoplex technology in transfecting various cells lines including glial cells but also stress a need for further refinement of polyplex reagents to minimize their effects on cell viability.

  13. Age-Related Changes in the Expression of the Circadian Clock Protein PERIOD in Drosophila Glial Cells

    Directory of Open Access Journals (Sweden)

    Dani M. Long

    2018-01-01

    Full Text Available Circadian clocks consist of molecular negative feedback loops that coordinate physiological, neurological, and behavioral variables into “circa” 24-h rhythms. Rhythms in behavioral and other circadian outputs tend to weaken during aging, as evident in progressive disruptions of sleep-wake cycles in aging organisms. However, less is known about the molecular changes in the expression of clock genes and proteins that may lead to the weakening of circadian outputs. Western blot studies have demonstrated that the expression of the core clock protein PERIOD (PER declines in the heads of aged Drosophila melanogaster flies. This age-related decline in PER does not occur in the central pacemaker neurons but has been demonstrated so far in retinal photoreceptors. Besides photoreceptors, clock proteins are also expressed in fly glia, which play important roles in neuronal homeostasis and are further categorized into subtypes based on morphology and function. While previous studies of mammalian glial cells have demonstrated the presence of functional clocks in astrocytes and microglia, it is not known which glial cell types in Drosophila express clock proteins and how their expression may change in aged individuals. Here, we conducted immunocytochemistry experiments to identify which glial subtypes express PER protein suggestive of functional circadian clocks. Glial cell subtypes that showed night-time accumulation and day-time absence in PER consistent with oscillations reported in the pacemaker neurons were selected to compare the level of PER protein between young and old flies. Our data demonstrate that some glial subtypes show rhythmic PER expression and the relative PER levels become dampened with advanced age. Identification of glial cell types that display age-related dampening of PER levels may help to understand the cellular changes that contribute to the loss of homeostasis in the aging brain.

  14. Poly-thymidine oligonucleotides mediate activation of murine glial cells primarily through TLR7, not TLR8.

    Directory of Open Access Journals (Sweden)

    Min Du

    Full Text Available The functional role of murine TLR8 in the inflammatory response of the central nervous system (CNS remains unclear. Murine TLR8 does not appear to respond to human TLR7/8 agonists, due to a five amino acid deletion in the ectodomain. However, recent studies have suggested that murine TLR8 may be stimulated by alternate ligands, which include vaccinia virus DNA, phosphothioate oligodeoxynucleotides (ODNs or the combination of phosphothioate poly-thymidine oligonucleotides (pT-ODNs with TLR7/8 agonists. In the current study, we analyzed the ability of pT-ODNs to induce activation of murine glial cells in the presence or absence of TLR7/8 agonists. We found that TLR7/8 agonists induced the expression of glial cell activation markers and induced the production of multiple proinflammatory cytokines and chemokines in mixed glial cultures. In contrast, pT-ODNs alone induced only low level expression of two cytokines, CCL2 and CXCL10. The combination of pT-ODNs along with TLR7/8 agonists induced a synergistic response with substantially higher levels of proinflammatory cytokines and chemokines compared to CL075. This enhancement was not due to cellular uptake of the agonist, indicating that the pT-ODN enhancement of cytokine responses was due to effects on an intracellular process. Interestingly, this response was also not due to synergistic stimulation of both TLR7 and TLR8, as the loss of TLR7 abolished the activation of glial cells and cytokine production. Thus, pT-ODNs act in synergy with TLR7/8 agonists to induce strong TLR7-dependent cytokine production in glial cells, suggesting that the combination of pT-ODNs with TLR7 agonists may be a useful mechanism to induce pronounced glial activation in the CNS.

  15. DMPD: Multifunctional effects of bradykinin on glial cells in relation to potentialanti-inflammatory effects. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17669557 Multifunctional effects of bradykinin on glial cells in relation to potent... Epub 2007 Jun 27. (.png) (.svg) (.html) (.csml) Show Multifunctional effects of bradykinin on glial cells i...n relation to potentialanti-inflammatory effects. PubmedID 17669557 Title Multifunction

  16. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells

    Science.gov (United States)

    Brew, Helen; Attwell, David

    1987-06-01

    Glutamate is taken up avidly by glial cells in the central nervous system1. Glutamate uptake may terminate the transmitter action of glutamate released from neurons1, and keep extracellular glutamate at concentrations below those which are neurotoxic. We report here that glutamate evokes a large inward current in retinal glial cells which have their membrane potential and intracellular ion concentrations controlled by the whole-cell patch-clamp technique2. This current seems to be due to an electrogenic glutamate uptake carrier, which transports at least two sodium ions with every glutamate anion carried into the cell. Glutamate uptake is strongly voltage-dependent, decreasing at depolarized potentials: when fully activated, it contributes almost half of the conductance in the part of the glial cell membrane facing the retinal neurons. The spatial localization, glutamate affinity and magnitude of the uptake are appropriate for terminating the synaptic action of glutamate released from photoreceptors and bipolar cells. These data challenge present explanations of how the b-wave of the electroretinogram is generated, and suggest a mechanism for non-vesicular voltage-dependent release of glutamate from neurons.

  17. Glucose transporter 1 and monocarboxylate transporters 1, 2, and 4 localization within the glial cells of shark blood-brain-barriers.

    Directory of Open Access Journals (Sweden)

    Carolina Balmaceda-Aguilera

    Full Text Available Although previous studies showed that glucose is used to support the metabolic activity of the cartilaginous fish brain, the distribution and expression levels of glucose transporter (GLUT isoforms remained undetermined. Optic/ultrastructural immunohistochemistry approaches were used to determine the expression of GLUT1 in the glial blood-brain barrier (gBBB. GLUT1 was observed solely in glial cells; it was primarily located in end-feet processes of the gBBB. Western blot analysis showed a protein with a molecular mass of 50 kDa, and partial sequencing confirmed GLUT1 identity. Similar approaches were used to demonstrate increased GLUT1 polarization to both apical and basolateral membranes in choroid plexus epithelial cells. To explore monocarboxylate transporter (MCT involvement in shark brain metabolism, the expression of MCTs was analyzed. MCT1, 2 and 4 were expressed in endothelial cells; however, only MCT1 and MCT4 were present in glial cells. In neurons, MCT2 was localized at the cell membrane whereas MCT1 was detected within mitochondria. Previous studies demonstrated that hypoxia modified GLUT and MCT expression in mammalian brain cells, which was mediated by the transcription factor, hypoxia inducible factor-1. Similarly, we observed that hypoxia modified MCT1 cellular distribution and MCT4 expression in shark telencephalic area and brain stem, confirming the role of these transporters in hypoxia adaptation. Finally, using three-dimensional ultrastructural microscopy, the interaction between glial end-feet and leaky blood vessels of shark brain was assessed in the present study. These data suggested that the brains of shark may take up glucose from blood using a different mechanism than that used by mammalian brains, which may induce astrocyte-neuron lactate shuttling and metabolic coupling as observed in mammalian brain. Our data suggested that the structural conditions and expression patterns of GLUT1, MCT1, MCT2 and MCT4 in shark

  18. Effect of glial cell line-derived neurotrophic factor on retinal function after experimental branch retinal vein occlusion

    DEFF Research Database (Denmark)

    Ejstrup, Rasmus; Dornonville de la Cour, Morten; Kyhn, Maria Voss

    2012-01-01

    The objective of the study was to investigate the effect of glial cell line-derived neurotrophic factor (GDNF) on the multifocal electroretinogram (mfERG) following an induced branch retinal vein occlusion (BRVO) in pigs.......The objective of the study was to investigate the effect of glial cell line-derived neurotrophic factor (GDNF) on the multifocal electroretinogram (mfERG) following an induced branch retinal vein occlusion (BRVO) in pigs....

  19. The Drosophila blood-brain barrier: Development and function of a glial endothelium

    Directory of Open Access Journals (Sweden)

    Stefanie eLimmer

    2014-11-01

    Full Text Available The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

  20. The Drosophila blood-brain barrier: development and function of a glial endothelium.

    Science.gov (United States)

    Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian

    2014-01-01

    The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

  1. Isolation of skin-derived precursors from human foreskin and their differentiation into neurons and glial cells

    Directory of Open Access Journals (Sweden)

    Bakhtiari M

    2010-12-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Skin-derived precursors (SKPs are a type of progenitor cells extracted from mammalian dermal tissue and can be differentiate to neural and mesodermal lineage in vitro. These cells can introduce an accessible autologos source of neural precursor cells for treatment of different neurodegenerative diseases. This research was done in order to set up isolation, culture, proliferation and differentiation of human skin derived precursors (hSKPs."n"nMethods: Human foreskin samples were cut into smaller pieces and cultured in proliferation medium after enzymatic digestion. To induce neural differentiation, cells were cultured in neural differentiation medium after fifth passage. We used immunocytochemistry and RT-PCR for characterization of the cells. Neuron and glial cell differentiation potential was assessed by immunofloresence using specific antibodies. The experiments were carried out in triplicate."n"nResults: After differentiation, βΙΙΙ- tubulin and neurofilament-M positive cells were observed that are specific markers for neurons. Moreover, glial fibrillary acid protein (GFAP and S100 positive cells were identified that are markers specifically express in glial cells. Detected neurons and glials were

  2. Anti-inflammatory effect by lentiviral-mediated overexpression of IL-10 or IL-1 receptor antagonist in rat glial cells and macrophages

    NARCIS (Netherlands)

    van Strien, N.M.; Mercier, D.; Drukarch, B.; Breve, J.J.P.; Poole, S.; Binnekade, R.; Bol, J.G.J.M.; Blits, B.; Verhaagen, J.; van Dam, A.M.W.

    2010-01-01

    Neuroinflammation, as defined by activation of local glial cells and production of various inflammatory mediators, is an important feature of many neurological disorders. Expression of pro-inflammatory mediators produced by glial cells in the central nervous system (CNS) is considered to contribute

  3. Post-proliferative immature radial glial cells female-specifically express aromatase in the medaka optic tectum.

    Directory of Open Access Journals (Sweden)

    Akio Takeuchi

    Full Text Available Aromatase, the key enzyme responsible for estrogen biosynthesis, is present in the brain of all vertebrates. Much evidence has accumulated that aromatase is highly and exclusively expressed in proliferating mature radial glial cells in the brain of teleost fish even in adulthood, unlike in other vertebrates. However, the physiological significance of this expression remains unknown. We recently found that aromatase is female-specifically expressed in the optic tectum of adult medaka fish. In the present study, we demonstrated that, contrary to the accepted view of the teleost brain, female-specific aromatase-expressing cells in the medaka optic tectum represent a transient subset of post-proliferative immature radial glial cells in the neural stem cell lineage. This finding led us to hypothesize that female-specific aromatase expression and consequent estrogen production causes some sex difference in the life cycle of tectal cells. As expected, the female tectum exhibited higher expression of genes indicative of cell proliferation and radial glial maturation and lower expression of an anti-apoptotic gene than did the male tectum, suggesting a female-biased acceleration of the cell life cycle. Complicating the interpretation of this result, however, is the additional observation that estrogen administration masculinized the expression of these genes in the optic tectum, while simultaneously stimulating aromatase expression. Taken together, these results provide evidence that a unique subpopulation of neural stem cells female-specifically express aromatase in the optic tectum and suggest that this aromatase expression and resultant estrogen synthesis have an impact on the life cycle of tectal cells, whether stimulatory or inhibitory.

  4. Glial cell morphological and density changes through the lifespan of rhesus macaques.

    Science.gov (United States)

    Robillard, Katelyn N; Lee, Kim M; Chiu, Kevin B; MacLean, Andrew G

    2016-07-01

    How aging impacts the central nervous system (CNS) is an area of intense interest. Glial morphology is known to affect neuronal and immune function as well as metabolic and homeostatic balance. Activation of glia, both astrocytes and microglia, occurs at several stages during development and aging. The present study analyzed changes in glial morphology and density through the entire lifespan of rhesus macaques, which are physiologically and anatomically similar to humans. We observed apparent increases in gray matter astrocytic process length and process complexity as rhesus macaques matured from juveniles through adulthood. These changes were not attributed to cell enlargement because they were not accompanied by proportional changes in soma or process volume. There was a decrease in white matter microglial process length as rhesus macaques aged. Aging was shown to have a significant effect on gray matter microglial density, with a significant increase in aged macaques compared with adults. Overall, we observed significant changes in glial morphology as macaques age indicative of astrocytic activation with subsequent increase in microglial density in aged macaques. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications

    International Nuclear Information System (INIS)

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane–polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane–polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. - Highlights: • Polyurethane–polylactide blends exhibit different characteristics from pure polymers. • Pure PU and PLA negatively influence on morphology of glial and mesenchymal cells. • PU/PLA blend was neutral for glial and mesenchymal cell proliferation and morphology

  6. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    Grzesiak, Jakub, E-mail: grzesiak.kuba@gmail.com [Electron Microscopy Laboratory, University of Environmental and Life Sciences, Kozuchowska 5b, 51-631 Wroclaw (Poland); Marycz, Krzysztof [Electron Microscopy Laboratory, University of Environmental and Life Sciences, Kozuchowska 5b, 51-631 Wroclaw (Poland); Szarek, Dariusz [Department of Neurosurgery, Lower Silesia Specialist Hospital of T. Marciniak, Emergency Medicine Center, Traugutta 116, 50-420 Wroclaw (Poland); Bednarz, Paulina [State Higher Vocational School in Tarnów, Mickiewicza 8, 33-100 Tarnów (Poland); Laska, Jadwiga [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Kraków (Poland)

    2015-07-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane–polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane–polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. - Highlights: • Polyurethane–polylactide blends exhibit different characteristics from pure polymers. • Pure PU and PLA negatively influence on morphology of glial and mesenchymal cells. • PU/PLA blend was neutral for glial and mesenchymal cell proliferation and morphology.

  7. The contribution of spinal glial cells to chronic pain behaviour in the monosodium iodoacetate model of osteoarthritic pain

    Directory of Open Access Journals (Sweden)

    Sagar Devi

    2011-11-01

    Full Text Available Abstract Background Clinical studies of osteoarthritis (OA suggest central sensitization may contribute to the chronic pain experienced. This preclinical study used the monosodium iodoacetate (MIA model of OA joint pain to investigate the potential contribution of spinal sensitization, in particular spinal glial cell activation, to pain behaviour in this model. Experimental OA was induced in the rat by the intra-articular injection of MIA and pain behaviour (change in weight bearing and distal allodynia was assessed. Spinal cord microglia (Iba1 staining and astrocyte (GFAP immunofluorescence activation were measured at 7, 14 and 28 days post MIA-treatment. The effects of two known inhibitors of glial activation, nimesulide and minocycline, on pain behaviour and activation of microglia and astrocytes were assessed. Results Seven days following intra-articular injection of MIA, microglia in the ipsilateral spinal cord were activated (p Conclusions Here we provide evidence for a contribution of spinal glial cells to pain behaviour, in particular distal allodynia, in this model of osteoarthritic pain. Our data suggest there is a potential role of glial cells in the central sensitization associated with OA, which may provide a novel analgesic target for the treatment of OA pain.

  8. Dopamine D1 receptor activation regulates the expression of the estrogen synthesis gene aromatase B in radial glial cell

    Directory of Open Access Journals (Sweden)

    Lei eXing

    2015-09-01

    Full Text Available Radial glial cells (RGCs are abundant stem-like non-neuronal progenitors that are important for adult neurogenesis and brain repair, yet little is known about their regulation by neurotransmitters. Here we provide evidence for neuronal-glial interactions via a novel role for dopamine to stimulate RGC function. Goldfish were chosen as the model organism due to the abundance of RGCs and regenerative abilities of the adult central nervous system. A close anatomical relationship was observed between tyrosine hydroxylase-positive catecholaminergic cell bodies and axons and dopamine-D1 receptor expressing RGCs along the ventricular surface of telencephalon, a site of active neurogenesis. A primary cell culture model was established and immunofluorescence analysis indicates that in vitro RGCs from female goldfish retain their major characteristics in vivo, including expression of glial fibrillary acidic protein and brain lipid binding protein. The estrogen synthesis enzyme aromatase B is exclusively found in RGCs, but this is lost as cells differentiate to neurons and other glial types in adult teleost brain. Pharmacological experiments using the cultured RGCs established that specific activation of dopamine D1 receptors up-regulates aromatase B mRNA through a cyclic adenosine monophosphate-dependent molecular mechanism. These data indicate that dopamine enhances the steroidogenic function of this neuronal progenitor cell.

  9. Micropit: a new cell culturing approach for characterization of solitary astrocytes and small networks of these glial cells

    Directory of Open Access Journals (Sweden)

    William Lee

    2008-12-01

    Full Text Available Astrocytes play an important role in cell-cell signaling in the mammalian central nervous system. The ability of astrocytes to communicate with surrounding cells through gap-junctional coupling or signaling via the release of transmitters makes characterization of these cells difficult in vitro and even more so in vivo. To simplify the complexity of common in vitro systems, introduced by intercellular communication between astrocytes, we developed a novel cell culturing method, in which purified rat visual cortical astrocytes were grown in spatially defined cell-adhesion wells which we termed micropits. We showed that astrocytes cultured in micropit regions were viable and exhibited similar characteristics of Ca2+ dynamics and astrocytic marker expression to those of cells cultured in non-micropit regions. Examination of intracellular Ca2+ oscillations in solitary astrocytes cultured in micropits revealed less variable oscillations than those of non-micropit grouped astrocytes, which were in contact with their neighbors. Solitary cells in micropit regions can undergo ATP-mediated astrocyte-microglia signaling, demonstrating that this culturing method can also be used to investigate glial-glial interactions in a spatially well-defined microenvironment.

  10. Radiosensitivity of glial progenitor cells of the perinatal and adult rat optic nerve studied by an in vitro clonogenic assay

    International Nuclear Information System (INIS)

    Maazen, R.W.M. van der; Verhagen, I.; Kleiboer, B.J.; Kogel, A.J. van der

    1991-01-01

    The cellular basis of radiation-induced demyelination and white matter necrosis of the central nervous system (CNS), is poorly understood. Glial cells responsible for myelination in the CNS might be the target cells of this type of damage. Glial cells with stem cell properties derived from the perinatal and adult rat CNS can be cultured in vitro. These cells are able to differentiate into oligodendrocytes or type-2 astrocytes (O-2A) depending on the culture conditions. Growth factors produced by monolayers of type-1 astrocytes inhibit premature differentiation of O-2A progenitor cells and allow colony formation. A method which employs these monolayers of type-1 astrocytes to culture O-2A progenitor cells has been adapted to allow the analysis of colonies of surviving cells after X-irradiation. In vitro survival curves were obtained for glial progenitor cells derived from perinatal and adult optic nerves. The intrinsic radiosensitivity of perinatal and adult O-2A progenitor cells showed a large difference. Perinatal O-2A progenitor cells are quite radiosensitive, in contrast to adult O-2A progenitor cells. For both cell types an inverse relationship was found between the dose and the size of colonies derived from surviving cells. Surviving O-2A progenitor cells maintain their ability to differentiate into oligo-dendrocytes or type-2 astrocytes. This system to assess radiation-induced damage to glial progenitor cells in vitro systems to have a great potential in unraveling the cellular basis of radiation-induced demyelinating syndromes of the CNS. (author). 28 refs.; 4 figs.; 1 tab

  11. A diphenyl diselenide-supplemented diet and swimming exercise promote neuroprotection, reduced cell apoptosis and glial cell activation in the hypothalamus of old rats.

    Science.gov (United States)

    Leite, Marlon R; Cechella, José L; Pinton, Simone; Nogueira, Cristina W; Zeni, Gilson

    2016-09-01

    Aging is a process characterized by deterioration of the homeostasis of various physiological systems; although being a process under influence of multiple factors, the mechanisms involved in aging are not well understood. Here we investigated the effect of a (PhSe)2-supplemented diet (1ppm, 4weeks) and swimming exercise (1% of body weight, 20min per day, 4weeks) on proteins related to glial cells activation, apoptosis and neuroprotection in the hypothalamus of old male Wistar rats (27month-old). Old rats had activation of astrocytes and microglia which was demonstrated by the increase in the levels of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (Iba-1) in hypothalamus. A decrease of B-cell lymphoma 2 (Bcl-2) and procaspase-3 levels as well as an increase of the cleaved PARP/full length PARP ratio (poly (ADP-ribose) polymerase, PARP) and the pJNK/JNK ratio (c-Jun N-terminal kinase, JNK) were observed. The levels of mature brain-derived neurotrophic factor (mBDNF), the pAkt/Akt ratio (also known as protein kinase B) and NeuN (neuronal nuclei), a neuron marker, were decreased in the hypothalamus of old rats. Old rats that received a (PhSe)2-supplemented diet and performed swimming exercise had the hypothalamic levels of Iba-1 and GFAP decreased. The combined treatment also increased the levels of Bcl-2 and procaspase-3 and decreased the ratios of cleaved PARP/full length PARP and pJNK/JNK in old rats. The levels of mBDNF and NeuN, but not the pAkt/Akt ratio, were increased by combined treatment. In conclusion, a (PhSe)2-supplemented diet and swimming exercise promoted neuroprotection in the hypothalamus of old rats, reducing apoptosis and glial cell activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Role of T cellglial cell interactions in creating and amplifying Central Nervous System inflammation and Multiple Sclerosis disease symptoms

    Directory of Open Access Journals (Sweden)

    Eric S. Huseby

    2015-08-01

    Full Text Available Multiple Sclerosis (MS is an inflammatory disease of the Central Nervous System (CNS that causes the demyelination of nerve cells and destroys oligodendrocytes, neurons and axons. Historically, MS has been thought of as a T cell-mediated autoimmune disease of CNS white matter. However, recent studies have identified gray matter lesions in MS patients, suggesting that CNS antigens other than myelin proteins may be involved during the MS disease process. We have recently found that T cells targeting astrocyte-specific antigens can drive unique aspects of inflammatory CNS autoimmunity, including the targeting of gray matter and white matter of the brain and inducing heterogeneous clinical disease courses. In addition to being a target of T cells, astrocytes play a critical role in propagating the inflammatory response within the CNS through cytokine induced NF-ΚB signaling. Here, we will discuss the pathophysiology of CNS inflammation mediated by T cellglial cell interactions and its contributions to CNS autoimmunity.

  13. Pediatric Glial Heterotopia in the Medial Canthus.

    Science.gov (United States)

    Kim, Soung Min; Amponsah, Emmanuel Kofi; Eo, Mi Young; Cho, Yun Ju; Lee, Suk Keun

    2017-11-01

    Glial heterotopias are rare, benign, congenital, midline, and nonteratomatous extracranial glial tissue. They may be confused as encephalocele or dermoid cysts and are mostly present in the nose.An 8-month-old African female child presented with a slow growing paranasal mass. The mass had been present at the left upper medial canthus since birth and had slowly and progressively enlarged. There was no communication between the mass and the cranial cavity during the operational procedure. The mass was immunohistochemically positive for S-100 protein as well as for glial fibrillary acidic protein, but negative for proliferating cell nuclear antigen. This suggested that the mass was composed of benign glial tissues with many astrocytes.The purpose of this report is to demonstrate the first patient with pediatric glial heterotopic tissue in the medial canthus and to report the clinical importance of its immunohistochemical findings.

  14. Gemfibrozil, a lipid-lowering drug, induces suppressor of cytokine signaling 3 in glial cells: implications for neurodegenerative disorders.

    Science.gov (United States)

    Ghosh, Arunava; Pahan, Kalipada

    2012-08-03

    Glial inflammation is an important feature of several neurodegenerative disorders. Suppressor of cytokine signaling (SOCS) proteins play a crucial role in inhibiting cytokine signaling and inflammatory gene expression in various cell types, including glial cells. However, mechanisms by which SOCS genes could be up-regulated are poorly understood. This study underlines the importance of gemfibrozil, a Food and Drug Administration-approved lipid-lowering drug, in up-regulating the expression of SOCS3 in glial cells. Gemfibrozil increased the expression of Socs3 mRNA and protein in mouse astroglia and microglia in both a time- and dose-dependent manner. Interestingly, gemfibrozil induced the activation of type IA phosphatidylinositol (PI) 3-kinase and AKT. Accordingly, inhibition of PI 3-kinase and AKT by chemical inhibitors abrogated gemfibrozil-mediated up-regulation of SOCS3. Furthermore, we demonstrated that gemfibrozil induced the activation of Krüppel-like factor 4 (KLF4) via the PI 3-kinase-AKT pathway and that siRNA knockdown of KLF4 abrogated gemfibrozil-mediated up-regulation of SOCS3. Gemfibrozil also induced the recruitment of KLF4 to the distal, but not proximal, KLF4-binding site of the Socs3 promoter. This study delineates a novel property of gemfibrozil in up-regulating SOCS3 in glial cells via PI 3-kinase-AKT-mediated activation of KLF4 and suggests that gemfibrozil may find therapeutic application in neuroinflammatory and neurodegenerative disorders.

  15. Promotion of seminomatous tumors by targeted overexpression of glial cell line-derived neurotrophic factor in mouse testis

    NARCIS (Netherlands)

    Meng, X.; de rooij, D. G.; Westerdahl, K.; Saarma, M.; Sariola, H.

    2001-01-01

    We show with transgenic mice that targeted overexpression of glial cell line-derived neurotrophic factor (GDNF) in undifferentiated spermatogonia promotes malignant testicular tumors, which express germ-cell markers. The tumors are invasive and contain aneuploid cells, but no distant metastases have

  16. Understanding the NG2 glial scar after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Amber R Hackett

    2016-11-01

    Full Text Available NG2 cells, also known as oligodendrocyte progenitor cells, are located throughout the central nervous system and serve as a pool of progenitors to differentiate into oligodendrocytes. In response to spinal cord injury, NG2 cells increase their proliferation and differentiation into remyelinating oligodendrocytes. While astrocytes are typically associated with being the major cell type in the glial scar, many NG2 cells also accumulate within the glial scar but their function remains poorly understood. Similar to astrocytes, these cells hypertrophy, upregulate expression of chondroitin sulfate proteoglycans, inhibit axon regeneration, contribute to the glial-fibrotic scar border, and some even differentiate into astrocytes. Whether NG2 cells also have a role in other astrocyte functions, such as preventing the spread of infiltrating leukocytes and expression of inflammatory cytokines, is not yet known. Thus, NG2 cells are not only important for remyelination after spinal cord injury, but are also a major component of the glial scar with functions that overlap with astrocytes in this region. In this review, we describe the signaling pathways important for the proliferation and differentiation of NG2 cells, as well as the role of NG2 cells in scar formation and tissue repair.

  17. Cytokine-induced activation of glial cells in the mouse brain is enhanced at an advanced age.

    Science.gov (United States)

    Deng, X-H; Bertini, G; Xu, Y-Z; Yan, Z; Bentivoglio, M

    2006-08-25

    Numerous neurological diseases which include neuroinflammatory components exhibit an age-related prevalence. The aging process is characterized by an increase of inflammatory mediators both systemically and in the brain, which may prime glial cells. However, little information is available on age-related changes in the glial response of the healthy aging brain to an inflammatory challenge. This problem was here examined using a mixture of the proinflammatory cytokines interferon-gamma and tumor necrosis factor-alpha, which was injected intracerebroventricularly in young (2-3.5 months), middle-aged (10-11 months) and aged (18-21 months) mice. Vehicle (phosphate-buffered saline) was used as control. After a survival of 1 or 2 days (all age groups) or 4 days (young and middle-aged animals), immunohistochemically labeled astrocytes and microglia were investigated both qualitatively and quantitatively. In all age groups, astrocytes were markedly activated in periventricular as well as in deeper brain regions 2 days following cytokine treatment, whereas microglia activation was already evident at 24 h. Interestingly, cytokine-induced activation of both astrocytes and microglia was significantly more marked in the brain of aged animals, in which it included numerous ameboid microglia, than of younger age groups. Moderate astrocytic activation was also seen in the hippocampal CA1 field of vehicle-treated aged mice. FluoroJade B histochemistry and the terminal deoxynucleotidyl transferase-mediated UTP nick-end labeling technique, performed at 2 days after cytokine administration, did not reveal ongoing cell death phenomena in young or aged animals. This indicated that glial cell changes were not secondary to neuronal death. Altogether, the findings demonstrate for the first time enhanced activation of glial cells in the old brain, compared with young and middle-aged subjects, in response to cytokine exposure. Interestingly, the results also suggest that such enhancement

  18. Enteric nervous system specific deletion of Foxd3 disrupts glial cell differentiation and activates compensatory enteric progenitors.

    Science.gov (United States)

    Mundell, Nathan A; Plank, Jennifer L; LeGrone, Alison W; Frist, Audrey Y; Zhu, Lei; Shin, Myung K; Southard-Smith, E Michelle; Labosky, Patricia A

    2012-03-15

    The enteric nervous system (ENS) arises from the coordinated migration, expansion and differentiation of vagal and sacral neural crest progenitor cells. During development, vagal neural crest cells enter the foregut and migrate in a rostro-to-caudal direction, colonizing the entire gastrointestinal tract and generating the majority of the ENS. Sacral neural crest contributes to a subset of enteric ganglia in the hindgut, colonizing the colon in a caudal-to-rostral wave. During this process, enteric neural crest-derived progenitors (ENPs) self-renew and begin expressing markers of neural and glial lineages as they populate the intestine. Our earlier work demonstrated that the transcription factor Foxd3 is required early in neural crest-derived progenitors for self-renewal, multipotency and establishment of multiple neural crest-derived cells and structures including the ENS. Here, we describe Foxd3 expression within the fetal and postnatal intestine: Foxd3 was strongly expressed in ENPs as they colonize the gastrointestinal tract and was progressively restricted to enteric glial cells. Using a novel Ednrb-iCre transgene to delete Foxd3 after vagal neural crest cells migrate into the midgut, we demonstrated a late temporal requirement for Foxd3 during ENS development. Lineage labeling of Ednrb-iCre expressing cells in Foxd3 mutant embryos revealed a reduction of ENPs throughout the gut and loss of Ednrb-iCre lineage cells in the distal colon. Although mutant mice were viable, defects in patterning and distribution of ENPs were associated with reduced proliferation and severe reduction of glial cells derived from the Ednrb-iCre lineage. Analyses of ENS-lineage and differentiation in mutant embryos suggested activation of a compensatory population of Foxd3-positive ENPs that did not express the Ednrb-iCre transgene. Our findings highlight the crucial roles played by Foxd3 during ENS development including progenitor proliferation, neural patterning, and glial

  19. Glial heterotopia in an adult: A rare orbital mass.

    Science.gov (United States)

    Sundaresh, Divya Dabir; Mangala Gouri, S R

    2016-11-01

    Heterotopic glial tissue is very rare in the orbit. Our case was an adult, which is unique since most cases reported in literature involve children. We describe a case of a 60-year-old man who presented with an orbital mass, which histopathologically revealed heterotopic glial tissue.

  20. Endothelium in brain: Receptors, mitogenesis, and biosynthesis in glial cells

    International Nuclear Information System (INIS)

    MacCumber, M.W.; Ross, C.A.; Snyder, S.H.

    1990-01-01

    The authors have explored the cellular loci of endothelin (ET) actions and formation in the brain, using cerebellar mutant mice was well as primary and continuous cell cultures. A glial role is favored by several observations: (1) mutant mice lacking neuronal Purkinje cells display normal ET receptor binding and enhanced stimulation by ET of inositolphospholipid turnover; (ii) in weaver mice lacking neuronal granule cells, ET stimulation of inositolphospholipid turnover is not significantly diminished; (iii) C 6 glioma cells and primary cultures of cerebellar astroglia exhibit substantial ET receptor binding and ET-induced stimulation of inositolphospholipid turnover; (iv) ET promotes mitogenesis of C 6 glioma cells and primary cerebellar astroglia; and (v) primary cultures of cerebellar astroglia contain ET mRNA. ET also appears to have a neuronal role, since it stimulates inositolphospholipid turnover in primary cultures of cerebellar granule cells, and ET binding declines in granule cell-deficient mice. Thus, ET can be produced by glia and act upon both glia and neurons in a paracrine fashion

  1. Genetic deletion of afadin causes hydrocephalus by destruction of adherens junctions in radial glial and ependymal cells in the midbrain.

    Directory of Open Access Journals (Sweden)

    Hideaki Yamamoto

    Full Text Available Adherens junctions (AJs play a role in mechanically connecting adjacent cells to maintain tissue structure, particularly in epithelial cells. The major cell-cell adhesion molecules at AJs are cadherins and nectins. Afadin binds to both nectins and α-catenin and recruits the cadherin-β-catenin complex to the nectin-based cell-cell adhesion site to form AJs. To explore the role of afadin in radial glial and ependymal cells in the brain, we generated mice carrying a nestin-Cre-mediated conditional knockout (cKO of the afadin gene. Newborn afadin-cKO mice developed hydrocephalus and died neonatally. The afadin-cKO brain displayed enlarged lateral ventricles and cerebral aqueduct, resulting from stenosis of the caudal end of the cerebral aqueduct and obliteration of the ventral part of the third ventricle. Afadin deficiency further caused the loss of ependymal cells from the ventricular and aqueductal surfaces. During development, radial glial cells, which terminally differentiate into ependymal cells, scattered from the ventricular zone and were replaced by neurons that eventually covered the ventricular and aqueductal surfaces of the afadin-cKO midbrain. Moreover, the denuded ependymal cells were only occasionally observed in the third ventricle and the cerebral aqueduct of the afadin-cKO midbrain. Afadin was co-localized with nectin-1 and N-cadherin at AJs of radial glial and ependymal cells in the control midbrain, but these proteins were not concentrated at AJs in the afadin-cKO midbrain. Thus, the defects in the afadin-cKO midbrain most likely resulted from the destruction of AJs, because AJs in the midbrain were already established before afadin was genetically deleted. These results indicate that afadin is essential for the maintenance of AJs in radial glial and ependymal cells in the midbrain and is required for normal morphogenesis of the cerebral aqueduct and ventral third ventricle in the midbrain.

  2. The Impact of Oxidative Stress Factors on the Viability, Senescence, and Methylation Status of Olfactory Bulb-Derived Glial Cells Isolated from Human Cadaver Donors.

    Science.gov (United States)

    Marycz, Krzysztof; Kornicka, Katarzyna; Grzesiak, Jakub; Tomaszewski, Krzysztof A; Szarek, Dariusz; Kopacz, Paweł

    2017-01-01

    The olfactory bulb (OB) is a unique structure in the central nervous system that retains the ability to create new neuronal connections. Glial cells isolated from the OB have been recently considered as a novel and promising tool to establish an effective therapy for central nervous system injuries. Due to the hindered access to autologous tissue for cell isolation, an allogeneic source of tissues obtained postmortem has been proposed. In this study, we focused on the morphological and molecular characteristics of human OB-derived glial cells isolated postmortem, at different time points after a donor's death. We evaluated the proliferative activity of the isolated cells, and investigated the ultrastructure of the mitochondria, the accumulation of intracellular reactive oxygen species, and the activity of superoxide dismutase. The data obtained clearly indicate that the duration of ischemia is crucial for the viability/senescence rate of OB-derived glial cells. The OB can be isolated during autopsy and still stand as a source of viable glial cells, but ischemia duration is a major factor limiting its potential usefulness in therapies. © 2017 S. Karger AG, Basel.

  3. Titanium dioxide nanoparticles inhibit proliferation and induce morphological changes and apoptosis in glial cells

    International Nuclear Information System (INIS)

    Márquez-Ramírez, Sandra Gissela; Delgado-Buenrostro, Norma Laura; Chirino, Yolanda Irasema; Iglesias, Gisela Gutiérrez; López-Marure, Rebeca

    2012-01-01

    Titanium dioxide nanoparticles (TiO 2 NPs) are widely used in the chemical, electrical and electronic industries. TiO 2 NPs can enter directly into the brain through the olfactory bulb and be deposited in the hippocampus region. We determined the effect of TiO 2 NPs on rat and human glial cells, C6 and U373, respectively. We evaluated proliferation by crystal violet staining, internalization of TiO 2 NPs, and cellular morphology by TEM analysis, as well as F-actin distribution by immunostaining and cell death by detecting active caspase-3 and DNA fragmentation. TiO 2 NPs inhibited proliferation and induced morphological changes that were related with a decrease in immuno-location of F-actin fibers. TiO 2 NPs were internalized and formation of vesicles was observed. TiO 2 NPs induced apoptosis after 96 h of treatment. Hence, TiO 2 NPs had a cytotoxic effect on glial cells, suggesting that exposure to TiO 2 NPs could cause brain injury and be hazardous to health.

  4. Glial heterotopia in an adult: A rare orbital mass

    Directory of Open Access Journals (Sweden)

    Divya Dabir Sundaresh

    2016-01-01

    Full Text Available Heterotopic glial tissue is very rare in the orbit. Our case was an adult, which is unique since most cases reported in literature involve children. We describe a case of a 60-year-old man who presented with an orbital mass, which histopathologically revealed heterotopic glial tissue.

  5. Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain.

    Science.gov (United States)

    Hatten, M E

    1990-05-01

    In vitro studies from our laboratory indicate that granule neurons, purified from early postnatal mouse cerebellum, migrate on astroglial fibers by forming a 'migration junction' with the glial fiber along the length of the neuronal soma and extending a motile 'leading process' in the direction of migration. Similar dynamics are seen for hippocampal neurons migrating along hippocampal astroglial fibers in vitro. In heterotypic recombinations of neurons and glia from mouse cerebellum and rat hippocampus, neurons migrate on astroglial processes with a cytology and neuron-glia relationship identical to that of homotypic neuronal migration in vitro. In all four cases, the migrating neuron presents a stereotyped posture, speed and mode of movement, suggesting that glial fibers provide a generic pathway for neuronal migration in developing brain. Studies on the molecular basis of glial-guided migration suggest that astrotactin, a neuronal antigen that functions as a neuron-glia ligand, is likely to play a crucial role in the locomotion of the neuron along glial fibers. The navigation of neurons from glial fibers into cortical layers, in turn, is likely to involve neuron-neuron adhesion ligands.

  6. Establishment of a long-term spiral ganglion neuron culture with reduced glial cell number: Effects of AraC on cell composition and neurons.

    Science.gov (United States)

    Schwieger, Jana; Esser, Karl-Heinz; Lenarz, Thomas; Scheper, Verena

    2016-08-01

    Sensorineural deafness is mainly caused by damage to hair cells and degeneration of the spiral ganglion neurons (SGN). Cochlear implants can functionally replace lost hair cells and stimulate the SGN electrically. The benefit from cochlear implantation depends on the number and excitability of these neurons. To identify potential therapies for SGN protection, in vitro tests are carried out on spiral ganglion cells (SGC). A glial cell-reduced and neuron-enhanced culture of neonatal rat SGC under mitotic inhibition (cytarabine (AraC)) for up to seven days is presented. Serum containing and neurotrophin-enriched cultures with and without AraC-addition were analyzed after 4 and 7 days. The total number of cells was significantly reduced, while the proportion of neurons was greatly increased by AraC-treatment. Cell type-specific labeling demonstrated that nearly all fibroblasts and most of the glial cells were removed. Neither the neuronal survival, nor the neurite outgrowth or soma diameter were negatively affected. Additionally neurites remain partly free of surrounding non-neuronal cells. Recent culture conditions allow only for short-term cultivation of neonatal SGC and lack information on the influence of non-neuronal cells on SGN and of direct contact of neurites with test-materials. AraC-addition reduces the number of non-neuronal cells and increases the ratio of SGN in culture, without negative impact on neuronal viability. This treatment allows longer-term cultivation of SGC and provides deeper insight into SGN-glial cell interaction and the attachment of neurites on test-material surfaces. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Pathophysiology of NG2-glia:a ‘Chicken and Egg’ scenario of altered neurotransmission and disruption of NG2-glial cell function

    OpenAIRE

    Rivera, Andrea Domenico; De La Rocha, Irene Chacon; Neville, Rebekah; Butt, Arthur Morgan

    2016-01-01

    Classically, the central nervous system (CNS) was considered to contain neurons and three main types of glial cells - astrocytes, oligodendrocytes, and microglia. Now, it has been clearly established that NG2-glia are a fourth glial cell type that are defined by their expression of the NG2 chondroitin sulfate proteoglycan (Cspg4). NG2-glia are also known as oligodendrocyte precursor cells (OPCs) and express the alpha receptor for platelet-derived growth factor (Pdgfra) as well as other oligod...

  8. Long term effects of lipopolysaccharide on satellite glial cells in mouse dorsal root ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Blum, E. [Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240 (Israel); Procacci, P.; Conte, V.; Sartori, P. [Dipartimento di Scienze Biomediche per la Salute, University of Milan, via Mangiagalli 14, I-20133 Milano (Italy); Hanani, M., E-mail: hananim@cc.huji.ac.il [Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240 (Israel)

    2017-01-01

    Lipopolysaccharide (LPS) has been used extensively to study neuroinflammation, but usually its effects were examined acutely (24 h<). We have shown previously that a single intraperitoneal LPS injection activated satellite glial cells (SGCs) in mouse dorsal root ganglia (DRG) and altered several functional parameters in these cells for at least one week. Here we asked whether the LPS effects would persist for 1 month. We injected mice with a single LPS dose and tested pain behavior, assessed SGCs activation in DRG using glial fibrillary acidic protein (GFAP) immunostaining, and injected a fluorescent dye intracellularly to study intercellular coupling. Electron microscopy was used to quantitate changes in gap junctions. We found that at 30 days post-LPS the threshold to mechanical stimulation was lower than in controls. GFAP expression, as well as the magnitude of dye coupling among SGCs were greater than in controls. Electron microscopy analysis supported these results, showing a greater number of gap junctions and an abnormal growth of SGC processes. These changes were significant, but less prominent than at 7 days post-LPS. We conclude that a single LPS injection exerts long-term behavioral and cellular changes. The results are consistent with the idea that SGC activation contributes to hyperalgesia. - Highlights: • A single lipopolysaccharides injection activated glia in mouse dorsal root ganglia for 30 days. • This was accompanied by increased communications by gap junctions among glia and by hyperalgesia. • Glial activation and coupling may contribute to chronic pain.

  9. Axon Guidance of Sympathetic Neurons to Cardiomyocytes by Glial Cell Line-Derived Neurotrophic Factor (GDNF)

    NARCIS (Netherlands)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Hirabayashi, Masumi; Watabe, Kazuhiko; Jimbo, Yasuhiko; Kodama, Itsuo; Komuro, Issei

    2013-01-01

    Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF) promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs) and sympathetic neurons (SNs) isolated from neonatal

  10. The Touch and Zap method for in vivo whole-cell patch recording of intrinsic and visual responses of cortical neurons and glial cells.

    Science.gov (United States)

    Schramm, Adrien E; Marinazzo, Daniele; Gener, Thomas; Graham, Lyle J

    2014-01-01

    Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe "Touch and Zap", an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the "Touch". By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or "Zap", as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell's intrinsic properties and local network. Because the Touch and Zap method is performed semi

  11. The Touch and Zap Method for In Vivo Whole-Cell Patch Recording of Intrinsic and Visual Responses of Cortical Neurons and Glial Cells

    Science.gov (United States)

    Schramm, Adrien E.; Marinazzo, Daniele; Gener, Thomas; Graham, Lyle J.

    2014-01-01

    Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe “Touch and Zap”, an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the “Touch”. By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or “Zap”, as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell's intrinsic properties and local network. Because the Touch and Zap method is performed semi

  12. Neuronal-glial trafficking

    International Nuclear Information System (INIS)

    Bachelard, H.S.

    2001-01-01

    Full text: The name 'glia' originates from the Greek word for glue, because astro glia (or astrocytes) were thought only to provide an anatomical framework for the electrically-excitable neurones. However, awareness that astrocytes perform vital roles in protecting the neurones, which they surround, emerged from evidence that they act as neuroprotective K + -sinks, and that they remove potentially toxic extracellular glutamate from the vicinity of the neurones. The astrocytes convert the glutamate to non-toxic glutamine which is returned to the neurones and used to replenish transmitter glutamate. This 'glutamate-glutamine cycle' (established in the 1960s by Berl and his colleagues) also contributes to protecting the neurones against a build-up of toxic ammonia. Glial cells also supply the neurones with components for free-radical scavenging glutathione. Recent studies have revealed that glial cells play a more positive interactive role in furnishing the neurones with fuels. Studies using radioactive 14 C, 13 C-MRS and 15 N-GCMS have revealed that glia produce alanine, lactate and proline for consumption by neurones, with increased formation of neurotransmitter glutamate. On neuronal activation the release of NH 4 + and glutamate from the neurones stimulates glucose uptake and glycolysis in the glia to produce more alanine, which can be regarded as an 'alanine-glutamate cycle' Use of 14 C-labelled precursors provided early evidence that neurotransmitter GABA may be partly derived from glial glutamine, and this has been confirmed recently in vivo by MRS isotopomer analysis of the GABA and glutamine labelled from 13 C-acetate. Relative rates of intermediary metabolism in glia and neurones can be calculated using a combination of [1- 13 C] glucose and [1,2- 13 C] acetate. When glutamate is released by neurones there is a net neuronal loss of TCA intermediates which have to be replenished. Part of this is derived from carboxylation of pyruvate, (pyruvate carboxylase

  13. Transplantation of germ cells from glial cell line-derived neurotrophic factor-overexpressing mice to host testes depleted of endogenous spermatogenesis by fractionated irradiation

    NARCIS (Netherlands)

    Creemers, L. B.; Meng, X.; den Ouden, K.; van Pelt, A. M. M.; Izadyar, F.; Santoro, M.; Sariola, H.; de rooij, D. G.

    2002-01-01

    With a novel method of eliminating spermatogenesis in host animals, male germ cells isolated from mice with targeted overexpression of glial cell line-derived neurotrophic factor (GDNF) were transplanted to evaluate their ability to reproduce the phenotype previously found in the transgenic animals.

  14. How do glial cells contribute to motor control?

    DEFF Research Database (Denmark)

    Christensen, Rasmus Kordt; Petersen, Anders Victor; Perrier, Jean-Francois Marie

    2013-01-01

    that glia play an active role in several physiological functions. The discovery that a bidirectional communication takes place between astrocytes (the star shaped glial cell of the brain) and neurons, was a major breakthrough in the field of synaptic physiology. Astrocytes express receptors that get...... activated by neurotransmitters during synaptic transmission. In turn they release other transmitters - called gliotransmitters - that bind to neuronal receptors and modulate synaptic transmission. This feedback, which led to the concept of the tripartite synapse, has been reported with various transmitters...... including glutamate, ATP, GABA or serine. In the present review we will focus on astrocytes and review the evidence suggesting and demonstrating their role in motor control. Rhythmic motor behaviors such as locomotion, swimming or chewing are generated by networks of neurons termed central pattern...

  15. Trans-activation of the JC virus late promoter by the tat protein of type 1 human immunodeficiency virus in glial cells

    International Nuclear Information System (INIS)

    Tada, Hiroomi; Lashgari, M.; Amini, S.; Khalili, K.; Rappaport, J.; Wong-Staal, F.

    1990-01-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system caused by the JC virus (JCV), a human papovavirus. PML is a relatively rare disease seen predominantly in immunocompromised individuals and is a frequent complication observed in AIDS patients. The significantly higher incidence of PML in AIDS patients than in other immunosuppressive disorders has suggested that the presence of human immunodeficiency virus type 1 (HIV-1) in the brain may directly or indirectly contribute to the pathogenesis of this disease. In the present study the authors have examined the expression of the JCV genome in both glial and non-glial cells in the presence of HIV-1 regulatory proteins. They find that the HIV-1-encoded trans-regulatory protein tat increases the basal activity of the JCV late promoter, JCV L , in glial cells. They conclude that the presence of the HIV-1-encoded tat protein may positively affect the JCV lytic cycle in glial cells by stimulating JCV gene expression. The results suggest a mechanism for the relatively high incidence of PML in AIDS patients than in other immunosuppressive disorders. Furthermore, the findings indicate that the HIV-1 regulatory protein tat may stimulate other viral and perhaps cellular promoters, in addition to its own

  16. Modelling cell cycle synchronisation in networks of coupled radial glial cells.

    Science.gov (United States)

    Barrack, Duncan S; Thul, Rüdiger; Owen, Markus R

    2015-07-21

    Radial glial cells play a crucial role in the embryonic mammalian brain. Their proliferation is thought to be controlled, in part, by ATP mediated calcium signals. It has been hypothesised that these signals act to locally synchronise cell cycles, so that clusters of cells proliferate together, shedding daughter cells in uniform sheets. In this paper we investigate this cell cycle synchronisation by taking an ordinary differential equation model that couples the dynamics of intracellular calcium and the cell cycle and extend it to populations of cells coupled via extracellular ATP signals. Through bifurcation analysis we show that although ATP mediated calcium release can lead to cell cycle synchronisation, a number of other asynchronous oscillatory solutions including torus solutions dominate the parameter space and cell cycle synchronisation is far from guaranteed. Despite this, numerical results indicate that the transient and not the asymptotic behaviour of the system is important in accounting for cell cycle synchronisation. In particular, quiescent cells can be entrained on to the cell cycle via ATP mediated calcium signals initiated by a driving cell and crucially will cycle in near synchrony with the driving cell for the duration of neurogenesis. This behaviour is highly sensitive to the timing of ATP release, with release at the G1/S phase transition of the cell cycle far more likely to lead to near synchrony than release during mid G1 phase. This result, which suggests that ATP release timing is critical to radial glia cell cycle synchronisation, may help us to understand normal and pathological brain development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Intracellular recordings from isolated rabbit retinal Müller (glial) cells.

    Science.gov (United States)

    Reichenbach, A; Eberhardt, W

    1986-09-01

    Müller (glial) cells were isolated from rabbit retinae by papaine and mechanical dissociation. The cells were fixed on a gelatine-covered glass slide by means of concanavalin A, and the slide was mounted in a perfusion chamber under a light microscope with modified optics. Besides the recording microelectrode, two other micropipettes could be adjusted with their tips near the cell. These micropipettes were used for application of test solutions into the environment of the cells. On application of high K+ solutions, the cell depolarized strongly but during prolonged application there was a marked repolarization. After the end of high K+ application the cells showed a hyperpolarization which was enhanced in both amplitude and duration with prolongation of the K+ exposure. Both repolarization and afterhyperpolarization disappeared under ouabain. Ouabain application itself caused a small reversible depolarization. Na+ free solution caused hyperpolarization. The results suggest the existence of an active membrane pump mechanism in our cells. This pump seems to be electrogenic under our experimental conditions and seems to be activated even in the absence of sodium. The cell membrane is demonstrated to contain a significant Na+ conductance.

  18. Allergic Inflammation Leads to Neuropathic Pain via Glial Cell Activation.

    Science.gov (United States)

    Yamasaki, Ryo; Fujii, Takayuki; Wang, Bing; Masaki, Katsuhisa; Kido, Mizuho A; Yoshida, Mari; Matsushita, Takuya; Kira, Jun-Ichi

    2016-11-23

    Allergic and atopic disorders have increased over the past few decades and have been associated with neuropsychiatric conditions, such as autism spectrum disorder and asthmatic amyotrophy. Myelitis presenting with neuropathic pain can occur in patients with atopic disorder; however, the relationship between allergic inflammation and neuropathic pain, and the underlying mechanism, remains to be established. We studied whether allergic inflammation affects the spinal nociceptive system. We found that mice with asthma, atopic dermatitis, or atopic diathesis had widespread and significantly more activated microglia and astroglia in the spinal cord than those without atopy, and displayed tactile allodynia. Microarray analysis of isolated microglia revealed a dysregulated phenotype showing upregulation of M1 macrophage markers and downregulation of M2 markers in atopic mice. Among the cell surface protein genes, endothelin receptor type B (EDNRB) was most upregulated. Immunohistochemical analysis revealed that EDNRB expression was enhanced in microglia and astroglia, whereas endothelin-1, an EDNRB ligand, was increased in serum, lungs, and epidermis of atopic mice. No EDNRA expression was found in the spinal cord. Expression of FBJ murine osteosarcoma viral oncogene homolog B was significantly higher in the dorsal horn neurons of asthma mice than nonatopic mice. The EDNRB antagonist BQ788 abolished glial and neural activation and allodynia. We found increased serum endothelin-1 in atopic patients with myelitis and neuropathic pain, and activation of spinal microglia and astroglia with EDNRB upregulation in an autopsied case. These results suggest that allergic inflammation induces diffuse glial activation, influencing the nociceptive system via the EDNRB pathway. The prevalence of allergic disorders has markedly increased over the past few decades. Allergic disorders are associated with neuropsychiatric conditions; however, the relationship between allergic inflammation

  19. Possible role of glial cells in the relationship between thyroid dysfunction and mental disorders

    Directory of Open Access Journals (Sweden)

    Mami eNoda

    2015-06-01

    Full Text Available It is widely accepted that there is a close relationship between the endocrine system and the central nervous system (CNS. Among hormones closely related to the nervous system, thyroid hormones (THs are critical for the development and function of the CNS; not only for neuronal cells but also for glial development and differentiation. Any impairment of TH supply to the developing CNS causes severe and irreversible changes in the overall architecture and function of human brain, leading to various neurological dysfunctions. In adult brain, impairment of THs, such as hypothyroidism and hyperthyroidism, can cause psychiatric disorders such as schizophrenia, bipolar disorder, anxiety and depression. Though hypothyroidism impairs synaptic transmission and plasticity, its effect on glial cells and cellular mechanisms are unknown. This mini-review article summarizes how THs are transported to the brain, metabolized in astrocytes and affect microglia and oligodendrocytes, showing an example of glioendocrine system. It may help to understand physiological and/or pathophysiological functions of THs in the CNS and how hypo- and hyper-thyroidism may cause mental disorders.

  20. Lipid metabolism in myelinating glial cells: lessons from human inherited disorders and mouse models.

    Science.gov (United States)

    Chrast, Roman; Saher, Gesine; Nave, Klaus-Armin; Verheijen, Mark H G

    2011-03-01

    The integrity of central and peripheral nervous system myelin is affected in numerous lipid metabolism disorders. This vulnerability was so far mostly attributed to the extraordinarily high level of lipid synthesis that is required for the formation of myelin, and to the relative autonomy in lipid synthesis of myelinating glial cells because of blood barriers shielding the nervous system from circulating lipids. Recent insights from analysis of inherited lipid disorders, especially those with prevailing lipid depletion and from mouse models with glia-specific disruption of lipid metabolism, shed new light on this issue. The particular lipid composition of myelin, the transport of lipid-associated myelin proteins, and the necessity for timely assembly of the myelin sheath all contribute to the observed vulnerability of myelin to perturbed lipid metabolism. Furthermore, the uptake of external lipids may also play a role in the formation of myelin membranes. In addition to an improved understanding of basic myelin biology, these data provide a foundation for future therapeutic interventions aiming at preserving glial cell integrity in metabolic disorders.

  1. Imaging of glial cell morphology, SOD1 distribution and elemental composition in the brainstem and hippocampus of the ALS hSOD1G93A rat.

    Science.gov (United States)

    Stamenković, Stefan; Dučić, Tanja; Stamenković, Vera; Kranz, Alexander; Andjus, Pavle R

    2017-08-15

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor and cognitive domains of the CNS. Mutations in the Cu,Zn-superoxide dismutase (SOD1) cause 20% of familial ALS and provoke formation of intracellular aggregates and copper and zinc unbinding, leading to glial activation and neurodegeneration. Therefore, we investigated glial cell morphology, intracellular SOD1 distribution, and elemental composition in the brainstem and hippocampus of the hSOD1 G93A transgenic rat model of ALS. Immunostaining for astrocytes, microglia and SOD1 revealed glial proliferation and progressive tissue accumulation of SOD1 in both brain regions of ALS rats starting already at the presymptomatic stage. Glial cell morphology analysis in the brainstem of ALS rats revealed astrocyte activation occurring before disease symptoms onset, followed by activation of microglia. Hippocampal ALS astrocytes exhibited an identical reactive profile, while microglial morphology was unchanged. Additionally, ALS brainstem astrocytes demonstrated progressive SOD1 accumulation in the cell body and processes, while microglial SOD1 levels were reduced and its distribution limited to distal cell processes. In the hippocampus both glial cell types exhibited SOD1 accumulation in the cell body. X-ray fluorescence imaging revealed decreased P and increased Ca, Cl, K, Ni, Cu and Zn in the brainstem, and higher levels of Cl, Ni and Cu, but lower levels of Zn in the hippocampus of symptomatic ALS rats. These results bring new insights into the glial response during disease development and progression in motor as well as in non-motor CNS structures, and indicate disturbed tissue elemental homeostasis as a prominent hallmark of disease pathology. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells

    International Nuclear Information System (INIS)

    Kim, Yongbae; Olivi, Luisa; Cheong, Jae Hoon; Maertens, Alex; Bressler, Joseph P.

    2007-01-01

    Aluminum and other trivalent metals were shown to stimulate uptake of transferrin bound iron and nontransferrin bound iron in erytholeukemia and hepatoma cells. Because of the association between aluminum and Alzheimer's Disease, and findings of higher levels of iron in Alzheimer's disease brains, the effects of aluminum on iron homeostasis were examined in a human glial cell line. Aluminum stimulated dose- and time-dependent uptake of nontransferrin bound iron and iron bound to transferrin. A transporter was likely involved in the uptake of nontransferrin iron because uptake reached saturation, was temperature-dependent, and attenuated by inhibitors of protein synthesis. Interestingly, the effects of aluminum were not blocked by inhibitors of RNA synthesis. Aluminum also decreased the amount of iron bound to ferritin though it did not affect levels of divalent metal transporter 1. These results suggest that aluminum disrupts iron homeostasis in Brain by several mechanisms including the transferrin receptor, a nontransferrin iron transporter, and ferritin

  3. Enteric Glial Cells: A New Frontier in Neurogastroenterology and Clinical Target for Inflammatory Bowel Diseases.

    Science.gov (United States)

    Ochoa-Cortes, Fernando; Turco, Fabio; Linan-Rico, Andromeda; Soghomonyan, Suren; Whitaker, Emmett; Wehner, Sven; Cuomo, Rosario; Christofi, Fievos L

    2016-02-01

    The word "glia" is derived from the Greek word "γλoια," glue of the enteric nervous system, and for many years, enteric glial cells (EGCs) were believed to provide mainly structural support. However, EGCs as astrocytes in the central nervous system may serve a much more vital and active role in the enteric nervous system, and in homeostatic regulation of gastrointestinal functions. The emphasis of this review will be on emerging concepts supported by basic, translational, and/or clinical studies, implicating EGCs in neuron-to-glial (neuroglial) communication, motility, interactions with other cells in the gut microenvironment, infection, and inflammatory bowel diseases. The concept of the "reactive glial phenotype" is explored as it relates to inflammatory bowel diseases, bacterial and viral infections, postoperative ileus, functional gastrointestinal disorders, and motility disorders. The main theme of this review is that EGCs are emerging as a new frontier in neurogastroenterology and a potential therapeutic target. New technological innovations in neuroimaging techniques are facilitating progress in the field, and an update is provided on exciting new translational studies. Gaps in our knowledge are discussed for further research. Restoring normal EGC function may prove to be an efficient strategy to dampen inflammation. Probiotics, palmitoylethanolamide (peroxisome proliferator-activated receptor-α), interleukin-1 antagonists (anakinra), and interventions acting on nitric oxide, receptor for advanced glycation end products, S100B, or purinergic signaling pathways are relevant clinical targets on EGCs with therapeutic potential.

  4. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Directory of Open Access Journals (Sweden)

    Feng Xue

    2015-01-01

    Full Text Available We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker and glial fibrillary acidic protein (glial cell marker at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  5. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Science.gov (United States)

    Xue, Feng; Wu, Er-jun; Zhang, Pei-xun; Li-ya, A; Kou, Yu-hui; Yin, Xiao-feng; Han, Na

    2015-01-01

    We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury. PMID:25788929

  6. Derivation of a JC virus-resistant human glial cell line: implications for the identification of host cell factors that determine viral tropism

    International Nuclear Information System (INIS)

    Gee, Gretchen V.; Manley, Kate; Atwood, Walter J.

    2003-01-01

    JC virus (JCV) is a common human polyomavirus that infects 70-80% of the population worldwide. In immunosuppressed individuals, JCV infects oligodendrocytes and causes a fatal demyelinating disease known as progressive multifocal leukoencephalopathy (PML). The tropism of JCV is restricted to oligodendrocytes, astrocytes, and B lymphocytes. Several mechanisms may contribute to the restricted tropism of JCV, including the presence or absence of cell-type-specific transcription and replication factors and the presence or absence of cell-type-specific receptors. We have established a system to investigate cellular factors that influence viral tropism by selecting JCV-resistant cells from a susceptible glial cell line (SVG-A). SVG-A cells were subjected to several rounds of viral infection using JC virus (M1/SVEΔ). A population of resistant cells emerged (SVGR2) that were refractory to infection with the Mad-4 strain of JCV, the hybrid virus M1/SVEΔ, as well as to the related polyomavirus SV40. SVGR2 cells were as susceptible as the SVG-A cells to infection with an unrelated amphotropic retrovirus. The stage at which these cells are resistant to infection was investigated and the block appears to be at early viral gene transcription. This system should ultimately allow us to identify glial specific factors that influence the tropism of JCV

  7. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish

    Science.gov (United States)

    Mokalled, Mayssa H.; Patra, Chinmoy; Dickson, Amy L.; Endo, Toyokazu; Stainier, Didier Y. R.; Poss, Kenneth D.

    2016-01-01

    Unlike mammals, zebrafish efficiently regenerate functional nervous system tissue after major spinal cord injury. Whereas glial scarring presents a roadblock for mammalian spinal cord repair, glial cells in zebrafish form a bridge across severed spinal cord tissue and facilitate regeneration, a relatively unexplored process. Here, we performed a genome-wide profiling screen for secreted factors that are upregulated during zebrafish spinal cord regeneration. We find that connective tissue growth factor a (ctgfa) is induced in and around glial cells that participate in initial bridging events. Mutations in ctgfa disrupt spinal cord repair, while transgenic ctgfa overexpression and local human CTGF recombinant protein delivery accelerate bridging and functional regeneration. Our study reveals that CTGF is necessary and sufficient to stimulate glial bridging and natural spinal cord regeneration. PMID:27811277

  8. Glial cell activity is maintained during prolonged inflammatory challenge in rats

    Energy Technology Data Exchange (ETDEWEB)

    Borges, B.C.; Rorato, R.; Antunes-Rodrigues, J.; Elias, L.L.K. [Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP (Brazil)

    2012-05-04

    We evaluated the expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), ionized calcium binding adaptor protein-1 (Iba-1), and ferritin in rats after single or repeated lipopolysaccharide (LPS) treatment, which is known to induce endotoxin tolerance and glial activation. Male Wistar rats (200-250 g) received ip injections of LPS (100 µg/kg) or saline for 6 days: 6 saline (N = 5), 5 saline + 1 LPS (N = 6) and 6 LPS (N = 6). After the sixth injection, the rats were perfused and the brains were collected for immunohistochemistry. After a single LPS dose, the number of GFAP-positive cells increased in the hypothalamic arcuate nucleus (ARC; 1 LPS: 35.6 ± 1.4 vs control: 23.1 ± 2.5) and hippocampus (1 LPS: 165.0 ± 3.0 vs control: 137.5 ± 2.5), and interestingly, 6 LPS injections further increased GFAP expression in these regions (ARC = 52.5 ± 4.3; hippocampus = 182.2 ± 4.1). We found a higher GS expression only in the hippocampus of the 6 LPS injections group (56.6 ± 0.8 vs 46.7 ± 1.9). Ferritin-positive cells increased similarly in the hippocampus of rats treated with a single (49.2 ± 1.7 vs 28.1 ± 1.9) or repeated (47.6 ± 1.1 vs 28.1 ± 1.9) LPS dose. Single LPS enhanced Iba-1 in the paraventricular nucleus (PVN: 92.8 ± 4.1 vs 65.2 ± 2.2) and hippocampus (99.4 ± 4.4 vs 73.8 ± 2.1), but had no effect in the retrochiasmatic nucleus (RCA) and ARC. Interestingly, 6 LPS increased the Iba-1 expression in these hypothalamic and hippocampal regions (RCA: 57.8 ± 4.6 vs 36.6 ± 2.2; ARC: 62.4 ± 6.0 vs 37.0 ± 2.2; PVN: 100.7 ± 4.4 vs 65.2 ± 2.2; hippocampus: 123.0 ± 3.8 vs 73.8 ± 2.1). The results suggest that repeated LPS treatment stimulates the expression of glial activation markers, protecting neuronal activity during prolonged inflammatory challenges.

  9. The central nervous system of sea cucumbers (Echinodermata: Holothuroidea shows positive immunostaining for a chordate glial secretion

    Directory of Open Access Journals (Sweden)

    Grondona Jesus M

    2009-06-01

    Full Text Available Abstract Background Echinoderms and chordates belong to the same monophyletic taxon, the Deuterostomia. In spite of significant differences in body plan organization, the two phyla may share more common traits than was thought previously. Of particular interest are the common features in the organization of the central nervous system. The present study employs two polyclonal antisera raised against bovine Reissner's substance (RS, a secretory product produced by glial cells of the subcomissural organ, to study RS-like immunoreactivity in the central nervous system of sea cucumbers. Results In the ectoneural division of the nervous system, both antisera recognize the content of secretory vacuoles in the apical cytoplasm of the radial glia-like cells of the neuroepithelium and in the flattened glial cells of the non-neural epineural roof epithelium. The secreted immunopositive material seems to form a thin layer covering the cell apices. There is no accumulation of the immunoreactive material on the apical surface of the hyponeural neuroepithelium or the hyponeural roof epithelium. Besides labelling the supporting cells and flattened glial cells of the epineural roof epithelium, both anti-RS antisera reveal a previously unknown putative glial cell type within the neural parenchyma of the holothurian nervous system. Conclusion Our results show that: a the glial cells of the holothurian tubular nervous system produce a material similar to Reissner's substance known to be synthesized by secretory glial cells in all chordates studied so far; b the nervous system of sea cucumbers shows a previously unrealized complexity of glial organization. Our findings also provide significant clues for interpretation of the evolution of the nervous system in the Deuterostomia. It is suggested that echinoderms and chordates might have inherited the RS-producing radial glial cell type from the central nervous system of their common ancestor, i.e., the last common

  10. Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies.

    Directory of Open Access Journals (Sweden)

    Nofar Torika

    Full Text Available The circulating renin-angiotensin system (RAS, including the biologically active angiotensin II, is a fundamental regulatory mechanism of blood pressure conserved through evolution. Angiotensin II components of the RAS have also been identified in the brain. In addition to pro-inflammatory cytokines, neuromodulators, such as angiotensin II can induce (through angiotensin type 1 receptor (AT1R some of the inflammatory actions of brain glial cells and influence brain inflammation. Moreover, in Alzheimer's disease (AD models, where neuroinflammation occurs, increased levels of cortical AT1Rs have been shown. Still, the precise role of RAS in neuroinflammation is not completely clear. The overall aim of the present study was to elucidate the role of RAS in the modulation of glial functions and AD pathology. To reach this goal, the specific aims of the present study were a. to investigate the long term effect of telmisartan (AT1R blocker on tumor necrosis factor-α (TNF-α, interleukin 1-β (IL1-β and nitric oxide (NO release from glial cells. b. to examine the effect of intranasally administered telmisartan on amyloid burden and microglial activation in 5X familial AD (5XFAD mice. Telmisartan effects in vivo were compared to those of perindopril (angiotensin converting enzyme inhibitor. Long-term-exposure of BV2 microglia to telmisartan significantly decreased lipopolysaccharide (LPS -induced NO, inducible NO synthase, TNF-α and IL1-β synthesis. The effect of Telmisartan on NO production in BV2 cells was confirmed also in primary neonatal rat glial cells. Intranasal administration of telmisartan (1 mg/kg/day for up to two months significantly reduced amyloid burden and CD11b expression (a marker for microglia both in the cortex and hipoccampus of 5XFAD. Based on the current view of RAS and our data, showing reduced amyloid burden and glial activation in the brains of 5XFAD transgenic mice, one may envision potential intervention with the

  11. Acquisition of glial cells missing 2 enhancers contributes to a diversity of ionocytes in zebrafish.

    Directory of Open Access Journals (Sweden)

    Takanori Shono

    Full Text Available Glial cells missing 2 (gcm2 encoding a GCM-motif transcription factor is expressed in the parathyroid in amniotes. In contrast, gcm2 is expressed in pharyngeal pouches (a homologous site of the parathyroid, gills, and H(+-ATPase-rich cells (HRCs, a subset of ionocytes on the skin surface of the teleost fish zebrafish. Ionocytes are specialized cells that are involved in osmotic homeostasis in aquatic vertebrates. Here, we showed that gcm2 is essential for the development of HRCs and Na(+-Cl(- co-transporter-rich cells (NCCCs, another subset of ionocytes in zebrafish. We also identified gcm2 enhancer regions that control gcm2 expression in ionocytes of zebrafish. Comparisons of the gcm2 locus with its neighboring regions revealed no conserved elements between zebrafish and tetrapods. Furthermore, We observed gcm2 expression patterns in embryos of the teleost fishes Medaka (Oryzias latipes and fugu (Fugu niphobles, the extant primitive ray-finned fishes Polypterus (Polypterus senegalus and sturgeon (a hybrid of Huso huso × Acipenser ruhenus, and the amphibian Xenopus (Xenopus laevis. Although gcm2-expressing cells were observed on the skin surface of Medaka and fugu, they were not found in Polypterus, sturgeon, or Xenopus. Our results suggest that an acquisition of enhancers for the expression of gcm2 contributes to a diversity of ionocytes in zebrafish during evolution.

  12. Total numbers of neurons and glial cells in cortex and basal ganglia of aged brains with Down syndrome--a stereological study.

    Science.gov (United States)

    Karlsen, Anna Schou; Pakkenberg, Bente

    2011-11-01

    The total numbers of neurons and glial cells in the neocortex and basal ganglia in adults with Down syndrome (DS) were estimated with design-based stereological methods, providing quantitative data on brains affected by delayed development and accelerated aging. Cell numbers, volume of regions, and densities of neurons and glial cell subtypes were estimated in brains from 4 female DS subjects (mean age 66 years) and 6 female controls (mean age 70 years). The DS subjects were estimated to have about 40% fewer neocortical neurons in total (11.1 × 10(9) vs. 17.8 × 10(9), 2p ≤ 0.001) and almost 30% fewer neocortical glial cells with no overlap to controls (12.8 × 10(9) vs. 18.2 × 10(9), 2p = 0.004). In contrast, the total number of neurons in the basal ganglia was the same in the 2 groups, whereas the number of oligodendrocytes in the basal ganglia was reduced by almost 50% in DS (405 × 10(6) vs. 816 × 10(6), 2p = 0.01). We conclude that trisomy 21 affects cortical structures more than central gray matter emphasizing the differential impairment of brain development. Despite concomitant Alzheimer-like pathology, the neurodegenerative outcome in a DS brain deviates from common Alzheimer disease.

  13. Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival.

    NARCIS (Netherlands)

    Coderre, J.A.; Morris, G.M.; Micca, P.L.; Hopewell, J.W.; Verhagen, I.; Kleiboer, B.J.; Kogel, A.J. van der

    2006-01-01

    Selective irradiation of the vasculature of the rat spinal cord was used in this study, which was designed specifically to address the question as to whether it is the endothelial cell or the glial progenitor cell that is the target responsible for late white matter necrosis in the CNS. Selective

  14. Spinal NF-κB and chemokine ligand 5 expression during spinal glial cell activation in a neuropathic pain model.

    Directory of Open Access Journals (Sweden)

    Qin Yin

    Full Text Available BACKGROUND: The NF-κB pathway and chemokine (C-C motif ligand 5 (CCL5 are involved in pain modulation; however, the precise mechanisms of their interactions in chronic neuropathic pain have yet to be established. METHODS: The present study examined the roles of spinal NF-κB and CCL5 in a neuropathic pain model after chronic constriction injury (CCI surgery. CCI-induced pain facilitation was evaluated using the Plantar and von Frey tests. The changes in NF-κB and CCL5 expression were analyzed by immunohistochemistry and Western blot analyses. RESULTS: Spinal NF-κB and CCL5 expression increased after CCI surgery. Repeated intrathecal infusions of pyrrolidine dithiocarbamate (PDTC, a NF-κB inhibitor decreased CCL5 expression, inhibited the activation of microglia and astrocytes, and attenuated CCI-induced allodynia and hyperalgesia. Intrathecal injection of a CCL5-neutralizing antibody attenuated CCI-induced pain facilitation and also suppressed spinal glial cell activation after CCI surgery. However, the CCL5-neutralizing antibody did not affect NF-κB expression. Furthermore, selective glial inhibitors, minocycline and fluorocitrate, attenuated the hyperalgesia induced by intrathecal CCL5. CONCLUSIONS: The inhibition of spinal CCL5 expression may provide a new method to prevent and treat nerve injury-induced neuropathic pain.

  15. Investigations on contribution of glial inwardly-rectifying K+ current to membrane potential and ion flux: An experimental and theoretical study

    Directory of Open Access Journals (Sweden)

    Sheng-Nan Wu

    2015-01-01

    Full Text Available The inwardly rectifying K+ current [IK(IR] allows large inward K+ currents at potentials negative to K+ equilibrium potential (EK and it becomes small outward K+ currents at those positive to EK. How changes of such currents enriched in glial cells can influence the functions of glial cell, neurons, or both is not clearly defined, although mutations of Kir4.1 channels have been demonstrated to cause serious neurological disorders. In this study, we identified the presence of IK(IR in human glioma cells (U373 and U87 cells. The amplitude of IK(IR in U373 cells was subject to inhibition by amitriptyline, arecoline, or BaCl2. The activity of inwardly rectifying K+ channels was also clearly detected, and single-channel conductance of these channels was calculated to be around 23 pS. Moreover, based on a simulation model derived from neuron–glial interaction mediated by ion flux, we further found out that incorporation of glial IK(IR conductance into the model can significantly contribute to regulation of extracellular K+ concentrations and glial resting potential, particularly during high-frequency stimulation. Glial cells and neurons can mutually modulate their expression of ion channels through K+ ions released into the extracellular space. It is thus anticipated that glial IK(IR may be a potential target utilized to influence the activity of neuronal and glial cells as well as their interaction.

  16. Proliferation of differentiated glial cells in the brain stem

    Directory of Open Access Journals (Sweden)

    P.C. Barradas

    1998-02-01

    Full Text Available Classical studies of macroglial proliferation in muride rodents have provided conflicting evidence concerning the proliferating capabilities of oligodendrocytes and microglia. Furthermore, little information has been obtained in other mammalian orders and very little is known about glial cell proliferation and differentiation in the subclass Metatheria although valuable knowledge may be obtained from the protracted period of central nervous system maturation in these forms. Thus, we have studied the proliferative capacity of phenotypically identified brain stem oligodendrocytes by tritiated thymidine radioautography and have compared it with known features of oligodendroglial differentiation as well as with proliferation of microglia in the opossum Didelphis marsupialis. We have detected a previously undescribed ephemeral, regionally heterogeneous proliferation of oligodendrocytes expressing the actin-binding, ensheathment-related protein 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNPase, that is not necessarily related to the known regional and temporal heterogeneity of expression of CNPase in cell bodies. On the other hand, proliferation of microglia tagged by the binding of Griffonia simplicifolia B4 isolectin, which recognizes an alpha-D-galactosyl-bearing glycoprotein of the plasma membrane of macrophages/microglia, is known to be long lasting, showing no regional heterogeneity and being found amongst both ameboid and differentiated ramified cells, although at different rates. The functional significance of the proliferative behavior of these differentiated cells is unknown but may provide a low-grade cell renewal in the normal brain and may be augmented under pathological conditions.

  17. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications.

    Science.gov (United States)

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane-polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane-polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. Copyright © 2015. Published by Elsevier B.V.

  18. A dual role for microglia in promoting tissue inhibitor of metalloproteinase (TIMP expression in glial cells in response to neuroinflammatory stimuli

    Directory of Open Access Journals (Sweden)

    Milner Richard

    2011-06-01

    Full Text Available Abstract Background By neutralizing the effect of the matrix metalloproteinases (MMPs, the tissue inhibitors of matrix metalloproteinases (TIMPs play a critical role in maintaining tissue proteolysis in balance. As the major reactive glial cell types in the central nervous system (CNS, microglia and astrocytes play fundamental roles in mediating tissue breakdown and repair. As such, it is important to define the TIMP expression profile in these cells, as well as the mechanisms of regulation by neuroinflammatory stimuli. Methods Primary mixed glial cultures (MGC, pure microglia, and pure astrocytes were used in this study. To study astrocytes, we employed a recently described pure astrocyte culture system, which has the major advantage of totally lacking microglia. The three different types of culture were treated with lipopolysaccharide (LPS or individual cytokines, and cell culture supernatants assayed for TIMP-1 or TIMP-2 protein expression by western blot. Results LPS induced TIMP-1 expression in MGC, but not in pure astrocyte or microglial cultures. When pure astrocytes were treated with the cytokines IL-1β, IFN-γ, TNF or TGF-β1, only IL-1β induced TIMP-1 expression. Significantly, astrocyte TIMP-1 expression was restored in LPS-treated astrocyte cultures after the addition of microglia, or conditioned medium taken from LPS-activated microglia (MG-CM. Furthermore, this effect was lost after depletion of IL-1β from MG-CM. By contrast, TIMP-2 was constitutively expressed by astrocytes, whereas microglia expressed TIMP-2 only after exposure to serum. Conclusions Taken together, these results demonstrate an important concept in glial interactions, by showing that microglia play a central role in regulating glial cell expression of TIMPs, and identify microglial IL-1β as playing a key role in mediating microglial-astrocyte communication.

  19. Müller Glial Cell-Provided Cellular Light Guidance through the Vital Guinea-Pig Retina

    Science.gov (United States)

    Agte, Silke; Junek, Stephan; Matthias, Sabrina; Ulbricht, Elke; Erdmann, Ines; Wurm, Antje; Schild, Detlev; Käs, Josef A.; Reichenbach, Andreas

    2011-01-01

    In vertebrate eyes, images are projected onto an inverted retina where light passes all retinal layers on its way to the photoreceptor cells. Light scattering within this tissue should impair vision. We show that radial glial (Müller) cells in the living retina minimize intraretinal light scatter and conserve the diameter of a beam that hits a single Müller cell endfoot. Thus, light arrives at individual photoreceptors with high intensity. This leads to an optimized signal/noise ratio, which increases visual sensitivity and contrast. Moreover, we show that the ratio between Müller cells and cones—responsible for acute vision—is roughly 1. This suggests that high spatiotemporal resolution may be achieved by each cone receiving its part of the image via its individual Müller cell-light guide. PMID:22261048

  20. Cytotopographical specialization of enzymatically isolated rabbit retinal Müller (glial) cells: K+ conductivity of the cell membrane.

    Science.gov (United States)

    Reichenbach, A; Eberhardt, W

    1988-01-01

    Müller (radial glial) cells were isolated from rabbit retinae by means of papaine and mechanical dissociation. Regional membrane properties of these cells were studied by intracellular microelectrode recordings of potential responses to local application of high K+ solutions. When different parts of the cell membrane were exposed to high K+, the amplitude of the depolarizing responses varied greatly, indicating a strong regional specialization of the membrane properties. Using morphometrical data of isolated rabbit Müller cells, and a simple circuit model, we calculated the endfoot membrane to constitute more than 80% of the total K+ conductance of the cell; the specific resistivity of the endfoot membrane was about 400 omega cm2, i.e., more than 40 times less than that of the membrane of the vitread process, which is immediately adjacent. This kind of regional membrane specialization seems to be optimized in respect to the Müller cells' ability to carry spatial buffering K+ currents.

  1. Healthy human CSF promotes glial differentiation of hESC-derived neural cells while retaining spontaneous activity in existing neuronal networks

    Directory of Open Access Journals (Sweden)

    Heikki Kiiski

    2013-05-01

    The possibilities of human pluripotent stem cell-derived neural cells from the basic research tool to a treatment option in regenerative medicine have been well recognized. These cells also offer an interesting tool for in vitro models of neuronal networks to be used for drug screening and neurotoxicological studies and for patient/disease specific in vitro models. Here, as aiming to develop a reductionistic in vitro human neuronal network model, we tested whether human embryonic stem cell (hESC-derived neural cells could be cultured in human cerebrospinal fluid (CSF in order to better mimic the in vivo conditions. Our results showed that CSF altered the differentiation of hESC-derived neural cells towards glial cells at the expense of neuronal differentiation. The proliferation rate was reduced in CSF cultures. However, even though the use of CSF as the culture medium altered the glial vs. neuronal differentiation rate, the pre-existing spontaneous activity of the neuronal networks persisted throughout the study. These results suggest that it is possible to develop fully human cell and culture-based environments that can further be modified for various in vitro modeling purposes.

  2. Lack of connexin43-mediated Bergmann glial gap junctional coupling does not affect cerebellar long-term depression, motor coordination, or eyeblink conditioning

    Directory of Open Access Journals (Sweden)

    Mika Tanaka

    2008-04-01

    Full Text Available Bergmann glial cells are specialized astrocytes in the cerebellum. In the mature cerebellar molecular layer, Bergmann glial processes are closely associated with Purkinje cells, enclosing Purkinje cell dendritic synapses with a glial sheath. There is intensive gap junctional coupling between Bergmann glial processes, but their significance in cerebellar functions is not known. Connexin43 (Cx43, a major component of astrocytic gap junction channels, is abundantly expressed in Bergmann glial cells. To examine the role of Cx43-mediated gap junctions between Bergmann glial cells in cerebellar functions, we generated Cx43 conditional knockout mice with the S100b-Cre transgenic line (Cx43fl/fl:S100b-Cre, which exhibited a significant loss of Cx43 in the Bergmann glial cells and astrocytes in the cerebellum with a postnatal onset. The Cx43fl/fl:S100b-Cre mice had normal cerebellar architecture. Although gap junctional coupling between the Bergmann glial cells measured by spreading of microinjected Lucifer yellow was virtually abolished in Cx43fl/fl:S100b-Cre mice, electrophysiologic analysis revealed that cerebellar long-term depression could be induced and maintained normally in thier cerebellar slices. In addition, at the behavioral level, Cx43fl/fl:S100b-Cre mice had normal motor coordination in the rotarod task and normal conditioned eyelid response. Our findings suggest that Cx43-mediated gap junctional coupling between Bergmann glial cells is not necessary for the neuron-glia interactions required for cerebellum-dependent motor coordination and motor learning.

  3. Progressive supranuclear palsy: neuronal and glial cytoskeletal pathology in the higher order processing autonomic nuclei of the lower brainstem.

    Science.gov (United States)

    Rüb, U; Del Tredici, K; Schultz, C; de Vos, R A I; Jansen Steur, E N H; Arai, K; Braak, H

    2002-02-01

    The medial and lateral parabrachial nuclei (MPB, LPB), the gigantocellular reticular nucleus (GI), the raphes magnus (RMG) and raphes obscurus nuclei (ROB), as well as the intermediate reticular zone (IRZ) represent pivotal subordinate brainstem centres, all of which control autonomic functions. In this study, we investigated the occurrence and severity of the neuronal and glial cytoskeletal pathology in these six brainstem nuclei from 17 individuals with clinically diagnosed and neuropathologically confirmed progressive supranuclear palsy (PSP). The association between the severity of the pathology and the duration of the disease was investigated by means of correlation analysis. The brainstem nuclei in all of the PSP cases were affected by the neuronal cytoskeletal pathology, with the IRZ and GI regularly showing severe involvement, the MPB, RMG, and ROB marked involvement, and the LPB mild involvement. In the six nuclear greys studied, glial cells undergo alterations of their cytoskeleton on an irregular basis, whereby diseased oligodendrocytes predominantly presented as coiled bodies and affected astrocytes as thorn-shaped astrocytes. In all six nuclei, the severity of the neuronal or glial cytoskeletal pathology showed no correlation with the duration of PSP. In view of their functional role, the neuronal pathology in the nuclei studied offers a possible explanation for the autonomic dysfunctions that eventually develop in the course of PSP.

  4. MALDI mass spectrometry based molecular phenotyping of CNS glial cells for prediction in mammalian brain tissue

    DEFF Research Database (Denmark)

    Hanrieder, Jørg; Wicher, Grzegorz; Bergquist, Jonas

    2011-01-01

    . Complementary proteomic experiments revealed the identity of these signature proteins that were predominantly expressed in the different glial cell types, including histone H4 for oligodendrocytes and S100-A10 for astrocytes. MALDI imaging MS was performed, and signature masses were employed as molecular...... tracers for prediction of oligodendroglial and astroglial localization in brain tissue. The different cell type specific protein distributions in tissue were validated using immunohistochemistry. ICMS of intact neuroglia is a simple and straightforward approach for characterization and discrimination...

  5. Possible role of glial cells in the relationship between thyroid dysfunction and mental disorders

    OpenAIRE

    Noda, Mami

    2015-01-01

    It is widely accepted that there is a close relationship between the endocrine system and the central nervous system (CNS). Among hormones closely related to the nervous system, thyroid hormones (THs) are critical for the development and function of the CNS; not only for neuronal cells but also for glial development and differentiation. Any impairment of TH supply to the developing CNS causes severe and irreversible changes in the overall architecture and function of the human brain, leading ...

  6. Radiation-induced reduction of the glial population during development disrupts the formation of olfactory glomeruli in an insect

    International Nuclear Information System (INIS)

    Oland, L.A.; Tolbert, L.P.; Mossman, K.L.

    1988-01-01

    Interactions between neurons and between neurons and glial cells have been shown by a number of investigators to be critical for normal development of the nervous system. In the olfactory system of Manduca sexta, sensory axons have been shown to induce the formation of synaptic glomeruli in the antennal lobe of the brain. Oland and Tolbert (1987) found that the growth of sensory axons into the developing antennal lobe causes changes in glial shape and disposition that presage the establishment of glomeruli, each surrounded by a glial envelope. Several lines of evidence lead us to hypothesize that the glial cells of the lobe may be acting as intermediaries in developmental interactions between sensory axons and neurons of the antennal lobe. In the present study, we have tested this hypothesis by using gamma-radiation to reduce the number of glial cells at a time when neurons of the antennal system are postmitotic but glomeruli have not yet developed. When glial numbers are severely reduced, the neuropil of the resulting lobe lacks glomeruli. Despite the presence of afferent axons, the irradiated lobe has many of the features of a lobe that developed in the absence of afferent axons. Our findings indicate that the glial cells must play a necessary role in the inductive influence of the afferent axons

  7. Internalization of titanium dioxide nanoparticles by glial cells is given at short times and is mainly mediated by actin reorganization-dependent endocytosis.

    Science.gov (United States)

    Huerta-García, Elizabeth; Márquez-Ramírez, Sandra Gissela; Ramos-Godinez, María Del Pilar; López-Saavedra, Alejandro; Herrera, Luis Alonso; Parra, Alberto; Alfaro-Moreno, Ernesto; Gómez, Erika Olivia; López-Marure, Rebeca

    2015-12-01

    Many nanoparticles (NPs) have toxic effects on multiple cell lines. This toxicity is assumed to be related to their accumulation within cells. However, the process of internalization of NPs has not yet been fully characterized. In this study, the cellular uptake, accumulation, and localization of titanium dioxide nanoparticles (TiO2 NPs) in rat (C6) and human (U373) glial cells were analyzed using time-lapse microscopy (TLM) and transmission electron microscopy (TEM). Cytochalasin D (Cyt-D) was used to evaluate whether the internalization process depends of actin reorganization. To determine whether the NP uptake is mediated by phagocytosis or macropinocytosis, nitroblue tetrazolium (NBT) reduction was measured and the 5-(N-ethyl-N-isopropyl)-amiloride was used. Expression of proteins involved with endocytosis and exocytosis such as caveolin-1 (Cav-1) and cysteine string proteins (CSPs) was also determined using flow cytometry. TiO2 NPs were taken up by both cell types, were bound to cellular membranes and were internalized at very short times after exposure (C6, 30 min; U373, 2h). During the uptake process, the formation of pseudopodia and intracellular vesicles was observed, indicating that this process was mediated by endocytosis. No specific localization of TiO2 NPs into particular organelles was found: in contrast, they were primarily localized into large vesicles in the cytoplasm. Internalization of TiO2 NPs was strongly inhibited by Cyt-D in both cells and by amiloride in U373 cells; besides, the observed endocytosis was not associated with NBT reduction in either cell type, indicating that macropinocytosis is the main process of internalization in U373 cells. In addition, increases in the expression of Cav-1 protein and CSPs were observed. In conclusion, glial cells are able to internalize TiO2 NPs by a constitutive endocytic mechanism which may be associated with their strong cytotoxic effect in these cells; therefore, TiO2 NPs internalization and their

  8. SUMO-1 is associated with a subset of lysosomes in glial protein aggregate diseases.

    Science.gov (United States)

    Wong, Mathew B; Goodwin, Jacob; Norazit, Anwar; Meedeniya, Adrian C B; Richter-Landsberg, Christiane; Gai, Wei Ping; Pountney, Dean L

    2013-01-01

    Oligodendroglial inclusion bodies characterize a subset of neurodegenerative diseases. Multiple system atrophy (MSA) is characterized by α-synuclein glial cytoplasmic inclusions and progressive supranuclear palsy (PSP) is associated with glial tau inclusions. The ubiquitin homologue, SUMO-1, has been identified in inclusion bodies in MSA, located in discrete sub-domains in α-synuclein-positive inclusions. We investigated SUMO-1 associated with oligodendroglial inclusion bodies in brain tissue from MSA and PSP and in glial cell models. We examined MSA and PSP cases and compared to age-matched normal controls. Fluorescence immunohistochemistry revealed frequent SUMO-1 sub-domains within and surrounding inclusions bodies in both diseases and showed punctate co-localization of SUMO-1 and the lysosomal marker, cathepsin D, in affected brain regions. Cell counting data revealed that 70-75 % of lysosomes in inclusion body-positive oligodendrocytes were SUMO-1-positive consistently across MSA and PSP cases, compared to 20 % in neighbouring inclusion body negative oligodendrocytes and 10 % in normal brain tissue. Hsp90 co-localized with some SUMO-1 puncta. We examined the SUMO-1 status of lysosomes in 1321N1 human glioma cells over-expressing α-synuclein and in immortalized rat oligodendrocyte cells over-expressing the four repeat form of tau following treatment with the proteasome inhibitor, MG132. We also transfected 1321N1 cells with the inherently aggregation-prone huntingtin exon 1 mutant, HttQ74-GFP. Each cell model showed the association of SUMO-1-positive lysosomes around focal cytoplasmic accumulations of α-synuclein, tau or HttQ74-GFP, respectively. Association of SUMO-1 with lysosomes was also detected in glial cells bearing α-synuclein aggregates in a rotenone-lesioned rat model. SUMO-1 labelling of lysosomes showed a major increase between 24 and 48 h post-incubation of 1321N1 cells with MG132 resulting in an increase in a 90 kDa SUMO-1-positive band

  9. Resveratrol confers protection against rotenone-induced neurotoxicity by modulating myeloperoxidase levels in glial cells.

    Directory of Open Access Journals (Sweden)

    Chi Young Chang

    Full Text Available Myeloperoxidase (MPO functions as a key molecular component of the host defense system against diverse pathogens. We have previously reported that increased MPO levels and activity is a distinguishing feature of rotenone-exposed glial cells, and that either overactivation or deficiency of MPO leads to pathological conditions in the brain. Here, we provide that modulation of MPO levels in glia by resveratrol confers protective effects on rotenone-induced neurotoxicity. We show that resveratrol significantly reduced MPO levels but did not trigger abnormal nitric oxide (NO production in microglia and astrocytes. Resveratrol-induced down-regulation of MPO, in the absence of an associated overproduction of NO, markedly attenuated rotenone-triggered inflammatory responses including phagocytic activity and reactive oxygen species production in primary microglia and astrocytes. In addition, impaired responses of primary mixed glia from Mpo (-/- mice to rotenone were relieved by treatment with resveratrol. We further show that rotenone-induced neuronal injury, particularly dopaminergic cell death, was attenuated by resveratrol in neuron-glia co-cultures, but not in neurons cultured alone. Similar regulatory effects of resveratrol on MPO levels were observed in microglia treated with MPP(+, another Parkinson's disease-linked neurotoxin, supporting the beneficial effects of resveratrol on the brain. Collectively, our findings provide that resveratrol influences glial responses to rotenone by regulating both MPO and NO, and thus protects against rotenone-induced neuronal injury.

  10. Nuclear progesterone receptors are up-regulated by estrogens in neurons and radial glial progenitors in the brain of zebrafish.

    Directory of Open Access Journals (Sweden)

    Nicolas Diotel

    Full Text Available In rodents, there is increasing evidence that nuclear progesterone receptors are transiently expressed in many regions of the developing brain, notably outside the hypothalamus. This suggests that progesterone and/or its metabolites could be involved in functions not related to reproduction, particularly in neurodevelopment. In this context, the adult fish brain is of particular interest, as it exhibits constant growth and high neurogenic activity that is supported by radial glia progenitors. However, although synthesis of neuroprogestagens has been documented recently in the brain of zebrafish, information on the presence of progesterone receptors is very limited. In zebrafish, a single nuclear progesterone receptor (pgr has been cloned and characterized. Here, we demonstrate that this pgr is widely distributed in all regions of the zebrafish brain. Interestingly, we show that Pgr is strongly expressed in radial glial cells and more weakly in neurons. Finally, we present evidence, based on quantitative PCR and immunohistochemistry, that nuclear progesterone receptor mRNA and proteins are upregulated by estrogens in the brain of adult zebrafish. These data document for the first time the finding that radial glial cells are preferential targets for peripheral progestagens and/or neuroprogestagens. Given the crucial roles of radial glial cells in adult neurogenesis, the potential effects of progestagens on their activity and the fate of daughter cells require thorough investigation.

  11. Transcriptional differences between normal and glioma-derived glial progenitor cells identify a core set of dysregulated genes.

    Science.gov (United States)

    Auvergne, Romane M; Sim, Fraser J; Wang, Su; Chandler-Militello, Devin; Burch, Jaclyn; Al Fanek, Yazan; Davis, Danielle; Benraiss, Abdellatif; Walter, Kevin; Achanta, Pragathi; Johnson, Mahlon; Quinones-Hinojosa, Alfredo; Natesan, Sridaran; Ford, Heide L; Goldman, Steven A

    2013-06-27

    Glial progenitor cells (GPCs) are a potential source of malignant gliomas. We used A2B5-based sorting to extract tumorigenic GPCs from human gliomas spanning World Health Organization grades II-IV. Messenger RNA profiling identified a cohort of genes that distinguished A2B5+ glioma tumor progenitor cells (TPCs) from A2B5+ GPCs isolated from normal white matter. A core set of genes and pathways was substantially dysregulated in A2B5+ TPCs, which included the transcription factor SIX1 and its principal cofactors, EYA1 and DACH2. Small hairpin RNAi silencing of SIX1 inhibited the expansion of glioma TPCs in vitro and in vivo, suggesting a critical and unrecognized role of the SIX1-EYA1-DACH2 system in glioma genesis or progression. By comparing the expression patterns of glioma TPCs with those of normal GPCs, we have identified a discrete set of pathways by which glial tumorigenesis may be better understood and more specifically targeted. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Opioid-dependent growth of glial cultures: Suppression of astrocyte DNA synthesis by met-enkephalin

    International Nuclear Information System (INIS)

    Stiene-Martin, A.; Hauser, K.F.

    1990-01-01

    The action of met-enkephalin on the growth of astrocytes in mixed-glial cultures was examined. Primary, mixed-glial cultures were isolated from 1 day-old mouse cerebral hemispheres and continuously treated with either basal growth media, 1 μM met-enkephalin, 1 μM met-enkephalin plus the opioid antagonist naloxone, or naloxone alone. Absolute numbers of neural cells were counted in unstained preparations, while combined [ 3 H]-thymidine autoradiography and glial fibrillary acid protein (GFAP) immunocytochemistry was performed to identify specific changes in astrocytes. When compared to control and naloxone treated cultures, met-enkephalin caused a significant decrease in both total cell numbers, and in [ 3 H]-thymidine incorporation by GFAP-positive cells with flat morphology. These results indicate that met-enkephalin suppresses astrocyte growth in culture

  13. Opioid-dependent growth of glial cultures: Suppression of astrocyte DNA synthesis by met-enkephalin

    Energy Technology Data Exchange (ETDEWEB)

    Stiene-Martin, A.; Hauser, K.F. (Univ. of Kentucky, Lexington (USA))

    1990-01-01

    The action of met-enkephalin on the growth of astrocytes in mixed-glial cultures was examined. Primary, mixed-glial cultures were isolated from 1 day-old mouse cerebral hemispheres and continuously treated with either basal growth media, 1 {mu}M met-enkephalin, 1 {mu}M met-enkephalin plus the opioid antagonist naloxone, or naloxone alone. Absolute numbers of neural cells were counted in unstained preparations, while combined ({sup 3}H)-thymidine autoradiography and glial fibrillary acid protein (GFAP) immunocytochemistry was performed to identify specific changes in astrocytes. When compared to control and naloxone treated cultures, met-enkephalin caused a significant decrease in both total cell numbers, and in ({sup 3}H)-thymidine incorporation by GFAP-positive cells with flat morphology. These results indicate that met-enkephalin suppresses astrocyte growth in culture.

  14. Characterization of rat primary trigeminal satellite glial cells and associated extracellular vesicles under normal and inflammatory conditions

    DEFF Research Database (Denmark)

    Vinterhøj, Hye Sook Han; Stensballe, Allan; Duroux, Meg

    2018-01-01

    Satellite glial cells (SGCs) in sensory ganglia contribute to the pathogenesis of chronic pain, potentially through mediating extracellular or paracrine signaling. Recently, extracellular vesicles (EVs) in the form of exosomes have been found to play an important role in cell-cell communication....... Results demonstrated that SGCs shed vesicles in the size range of exosomes (>150 nm) but with altered protein expression upon LPS-activation. Proteomic profiling of SGCs-shed EVs showed that a number of proteins were differentially regulated upon LPS stimulation such as junction plakoglobin and myosin 9...

  15. Lithium and brain plasticity - studies on glial cell changes and electroconvulsive treatment-induced amnesia in rats

    OpenAIRE

    Orre, Karin

    2013-01-01

    Depression and bipolar disorder, collectively known as mood disorders, are devastating, common and often chronic illnesses. Imaging studies of patients with mood disorders have demonstrated structural changes in several brain regions implicated in mood regulation. Furthermore, bipolar disorder is associated with white matter abnormalities and post mortem analysis of brain tissue from patients with mood disorders have shown glial cell pathology. Electroconvulsive therapy (ECT) and pharmacologi...

  16. Identification of raw as a regulator of glial development.

    Directory of Open Access Journals (Sweden)

    Diana Luong

    Full Text Available Glial cells perform numerous functions to support neuron development and function, including axon wrapping, formation of the blood brain barrier, and enhancement of synaptic transmission. We have identified a novel gene, raw, which functions in glia of the central and peripheral nervous systems in Drosophila. Reducing Raw levels in glia results in morphological defects in the brain and ventral nerve cord, as well as defects in neuron function, as revealed by decreased locomotion in crawling assays. Examination of the number of glia along peripheral nerves reveals a reduction in glial number upon raw knockdown. The reduced number of glia along peripheral nerves occurs as a result of decreased glial proliferation. As Raw has been shown to negatively regulate Jun N-terminal kinase (JNK signaling in other developmental contexts, we examined the expression of a JNK reporter and the downstream JNK target, matrix metalloproteinase 1 (mmp1, and found that raw knockdown results in increased reporter activity and Mmp1 levels. These results are consistent with previous studies showing increased Mmp levels lead to nerve cord defects similar to those observed upon raw knockdown. In addition, knockdown of puckered, a negative feedback regulator of JNK signaling, also causes a decrease in glial number. Thus, our studies have resulted in the identification of a new regulator of gliogenesis, and demonstrate that increased JNK signaling negatively impacts glial development.

  17. Secretoneurin A Directly Regulates the Proteome of Goldfish Radial Glial Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Dillon F. Da Fonte

    2018-03-01

    Full Text Available Radial glial cells (RGCs are the main macroglia in the teleost brain and have established roles in neurogenesis and neurosteroidogenesis. They are the only brain cell type expressing aromatase B (cyp19a1b, the enzyme that synthesizes estrogens from androgen precursors. There are few studies on the regulation of RGC functions, but our previous investigations demonstrated that dopamine stimulates cyp19a1b expression in goldfish RGCs, while secretoneurin A (SNa inhibits the expression of this enzyme. Here, we determine the range of proteins and cellular processes responsive to SNa treatments in these steroidogenic cells. The focus here is on SNa, because this peptide is derived from selective processing of secretogranin II in magnocellular cells embedded within the RGC-rich preoptic nucleus. Primary cultures of RGCs were treated (24 h with 10, 100, or 1,000 nM SNa. By using isobaric tagging for relative and absolute quantitation and a Hybrid Quadrupole Obritrap Mass Spectrometry system, a total of 1,363 unique proteins were identified in RGCs, and 609 proteins were significantly regulated by SNa at one or more concentrations. Proteins that showed differential expression with all three concentrations of SNa included H1 histone, glutamyl-prolyl-tRNA synthetase, Rho GDP dissociation inhibitor γ, vimentin A2, and small nuclear ribonucleoprotein-associated protein. At 10, 100, and 1,000 nM SNa, there were 5, 195, and 489 proteins that were downregulated, respectively, whereas the number of upregulated proteins were 72, 44, and 51, respectively. Subnetwork enrichment analysis of differentially regulated proteins revealed that processes such as actin organization, cytoskeleton organization and biogenesis, apoptosis, mRNA processing, RNA splicing, translation, cell growth, and proliferation are regulated by SNa based on the proteomic response. Moreover, we observed that, at the low concentration of SNa, there was an increase in the abundance of

  18. Neuron-glial communication mediated by TNF-α and glial activation in dorsal root ganglia in visceral inflammatory hypersensitivity.

    Science.gov (United States)

    Song, Dan-dan; Li, Yong; Tang, Dong; Huang, Li-ya; Yuan, Yao-zong

    2014-05-01

    Communication between neurons and glia in the dorsal root ganglia (DRG) and the central nervous system is critical for nociception. Both glial activation and proinflammatory cytokine induction underlie this communication. We investigated whether satellite glial cell (SGC) and tumor necrosis factor-α (TNF-α) activation in DRG participates in a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced rat model of visceral hyperalgesia. In TNBS-treated rats, TNF-α expression increased in DRG and was colocalized to SGCs enveloping a given neuron. These SGCs were activated as visualized under electron microscopy: they had more elongated processes projecting into the connective tissue space and more gap junctions. When nerves attached to DRG (L6-S1) were stimulated with a series of electrical stimulations, TNF-α were released from DRG in TNBS-treated animals compared with controls. Using a current clamp, we noted that exogenous TNF-α (2.5 ng/ml) increased DRG neuron activity, and visceral pain behavioral responses were reversed by intrathecal administration of anti-TNF-α (10 μg·kg(-1)·day(-1)). Based on our findings, TNF-α and SGC activation in neuron-glial communication are critical in inflammatory visceral hyperalgesia.

  19. Cell-Type Specific Changes in Glial Morphology and Glucocorticoid Expression During Stress and Aging in the Medial Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Thomas E. Chan

    2018-05-01

    Full Text Available Repeated exposure to stressors is known to produce large-scale remodeling of neurons within the prefrontal cortex (PFC. Recent work suggests stress-related forms of structural plasticity can interact with aging to drive distinct patterns of pyramidal cell morphological changes. However, little is known about how other cellular components within PFC might be affected by these challenges. Here, we examined the effects of stress exposure and aging on medial prefrontal cortical glial subpopulations. Interestingly, we found no changes in glial morphology with stress exposure but a profound morphological change with aging. Furthermore, we found an upregulation of non-nuclear glucocorticoid receptors (GR with aging, while nuclear levels remained largely unaffected. Both changes are selective for microglia, with no stress or aging effect found in astrocytes. Lastly, we show that the changes found within microglia inversely correlated with the density of dendritic spines on layer III pyramidal cells. These findings suggest microglia play a selective role in synaptic health within the aging brain.

  20. Activation of Satellite Glial Cells in Rat Trigeminal Ganglion after Upper Molar Extraction

    International Nuclear Information System (INIS)

    Gunjigake, Kaori K.; Goto, Tetsuya; Nakao, Kayoko; Kobayashi, Shigeru; Yamaguchi, Kazunori

    2009-01-01

    The neurons in the trigeminal ganglion (TG) are surrounded by satellite glial cells (SGCs), which passively support the function of the neurons, but little is known about the interactions between SGCs and TG neurons after peripheral nerve injury. To examine the effect of nerve injury on SGCs, we investigated the activation of SGCs after neuronal damage due to the extraction of the upper molars in rats. Three, 7, and 10 days after extraction, animals were fixed and the TG was removed. Cryosections of the ganglia were immunostained with antibodies against glial fibrillary acidic protein (GFAP), a marker of activated SGCs, and ATF3, a marker of damaged neurons. After tooth extraction, the number of ATF3-immunoreactive (IR) neurons enclosed by GFAP-IR SGCs had increased in a time-dependent manner in the maxillary nerve region of the TG. Although ATF3-IR neurons were not detected in the mandibular nerve region, the number of GFAP-IR SGCs increased in both the maxillary and mandibular nerve regions. Our results suggest that peripheral nerve injury affects the activation of TG neurons and the SGCs around the injured neurons. Moreover, our data suggest the existence of a neuronal interaction between maxillary and mandibular neurons via SGC activation

  1. Effects of piracetam on the incorporation of 32P into the phospholipids of neurons and glial cells isolated from rabbit cerebral cortex

    International Nuclear Information System (INIS)

    Woelk, H.

    1979-01-01

    In the search for the biochemical basis of the action of Piracetam, the effects of this encephalotropic substance on the neuronal and glial phospholipid metabolism was investigated. Piracetam increases the incorporation of 32 P into phosphatidylinositol and phosphatidyl choline of both glia and neuronal cell bodies. When taking the important role of phosphatidylinoitol in the processes of synaptic transmission and axonal conduction into consideration, the data obtained in the present work suggest that piracetam may stimulate excitatory neurons and may be involved in the process of synaptic transmission. The stimulatory effect of piracetam on the incorporation of 32 P into phosphatidylinositol and phosphatidyl choline appears to be mediated by norepinephrine or another neurotransmitter. (orig.) [de

  2. Occlusion of retinal capillaries caused by glial cell proliferation in chronic ocular inflammation.

    Science.gov (United States)

    Bianchi, E; Ripandelli, G; Feher, J; Plateroti, A M; Plateroti, R; Kovacs, I; Plateroti, P; Taurone, S; Artico, M

    2015-01-01

    The inner blood-retinal barrier is a gliovascular unit in which glial cells surround capillary endothelial cells and regulate retinal capillaries by paracrine interactions. During chronic ocular inflammation, microvascular complications can give rise to vascular proliferative lesions, which compromise visual acuity. This pathologic remodelling caused by proliferating Müller cells determines occlusion of retinal capillaries. The aim of the present study was to identify qualitative and quantitative alterations in the retinal capillaries in patients with post-traumatic chronic ocular inflammation or post-thrombotic vascular glaucoma. Moreover, we investigated the potential role of vascular endothelial growth factor (VEGF) and pro-inflammatory cytokines in retinal inflammation. Our electron microscopy findings demonstrated that during chronic ocular inflammation, thickening of the basement membrane, loss of pericytes and endothelial cells and proliferation of Müller cells occur with irreversible occlusion of retinal capillaries. Angiogenesis takes place as part of a regenerative reaction that results in fibrosis. We believe that VEGF and pro-inflammatory cytokines may be potential therapeutic targets in the treatment of this disease although further studies are required to confirm these findings.

  3. The multifaceted effects of agmatine on functional recovery after spinal cord injury through Modulations of BMP-2/4/7 expressions in neurons and glial cells.

    Directory of Open Access Journals (Sweden)

    Yu Mi Park

    Full Text Available Presently, few treatments for spinal cord injury (SCI are available and none have facilitated neural regeneration and/or significant functional improvement. Agmatine (Agm, a guanidinium compound formed from decarboxylation of L-arginine by arginine decarboxylase, is a neurotransmitter/neuromodulator and been reported to exert neuroprotective effects in central nervous system injury models including SCI. The purpose of this study was to demonstrate the multifaceted effects of Agm on functional recovery and remyelinating events following SCI. Compression SCI in mice was produced by placing a 15 g/mm(2 weight for 1 min at thoracic vertebra (Th 9 segment. Mice that received an intraperitoneal (i.p. injection of Agm (100 mg/kg/day within 1 hour after SCI until 35 days showed improvement in locomotor recovery and bladder function. Emphasis was made on the analysis of remyelination events, neuronal cell preservation and ablation of glial scar area following SCI. Agm treatment significantly inhibited the demyelination events, neuronal loss and glial scar around the lesion site. In light of recent findings that expressions of bone morphogenetic proteins (BMPs are modulated in the neuronal and glial cell population after SCI, we hypothesized whether Agm could modulate BMP- 2/4/7 expressions in neurons, astrocytes, oligodendrocytes and play key role in promoting the neuronal and glial cell survival in the injured spinal cord. The results from computer assisted stereological toolbox analysis (CAST demonstrate that Agm treatment dramatically increased BMP- 2/7 expressions in neurons and oligodendrocytes. On the other hand, BMP- 4 expressions were significantly decreased in astrocytes and oligodendrocytes around the lesion site. Together, our results reveal that Agm treatment improved neurological and histological outcomes, induced oligodendrogenesis, protected neurons, and decreased glial scar formation through modulating the BMP- 2/4/7 expressions following

  4. The Multifaceted Effects of Agmatine on Functional Recovery after Spinal Cord Injury through Modulations of BMP-2/4/7 Expressions in Neurons and Glial Cells

    Science.gov (United States)

    Park, Yu Mi; Lee, Won Taek; Bokara, Kiran Kumar; Seo, Su Kyoung; Park, Seung Hwa; Kim, Jae Hwan; Yenari, Midori A.; Park, Kyung Ah; Lee, Jong Eun

    2013-01-01

    Presently, few treatments for spinal cord injury (SCI) are available and none have facilitated neural regeneration and/or significant functional improvement. Agmatine (Agm), a guanidinium compound formed from decarboxylation of L-arginine by arginine decarboxylase, is a neurotransmitter/neuromodulator and been reported to exert neuroprotective effects in central nervous system injury models including SCI. The purpose of this study was to demonstrate the multifaceted effects of Agm on functional recovery and remyelinating events following SCI. Compression SCI in mice was produced by placing a 15 g/mm2 weight for 1 min at thoracic vertebra (Th) 9 segment. Mice that received an intraperitoneal (i.p.) injection of Agm (100 mg/kg/day) within 1 hour after SCI until 35 days showed improvement in locomotor recovery and bladder function. Emphasis was made on the analysis of remyelination events, neuronal cell preservation and ablation of glial scar area following SCI. Agm treatment significantly inhibited the demyelination events, neuronal loss and glial scar around the lesion site. In light of recent findings that expressions of bone morphogenetic proteins (BMPs) are modulated in the neuronal and glial cell population after SCI, we hypothesized whether Agm could modulate BMP- 2/4/7 expressions in neurons, astrocytes, oligodendrocytes and play key role in promoting the neuronal and glial cell survival in the injured spinal cord. The results from computer assisted stereological toolbox analysis (CAST) demonstrate that Agm treatment dramatically increased BMP- 2/7 expressions in neurons and oligodendrocytes. On the other hand, BMP- 4 expressions were significantly decreased in astrocytes and oligodendrocytes around the lesion site. Together, our results reveal that Agm treatment improved neurological and histological outcomes, induced oligodendrogenesis, protected neurons, and decreased glial scar formation through modulating the BMP- 2/4/7 expressions following SCI. PMID

  5. Histological and immunohistochemical characterization of the inflammatory and glial cells in the central nervous system of goat fetuses and adult male goats naturally infected with Neospora caninum.

    Science.gov (United States)

    Costa, Rafael Carneiro; Orlando, Débora Ribeiro; Abreu, Camila Costa; Nakagaki, Karen Yumi Ribeiro; Mesquita, Leonardo Pereira; Nascimento, Lismara Castro; Silva, Aline Costa; Maiorka, Paulo César; Peconick, Ana Paula; Raymundo, Djeison Lutier; Varaschin, Mary Suzan

    2014-12-14

    Neospora caninum is an apicomplexan protozoan that is considered one of the main agents responsible for abortion in ruminants. The lesions found in the central nervous system (CNS) of aborted fetuses show multifocal necrosis, gliosis, and perivascular cuffs of mononuclear cells, but the inflammatory and glial cells have not been immunophenotypically characterized. The lesions in the CNS of infected adult animals have rarely been described. Therefore, in this study, we characterized the lesions, the immunophenotypes of the inflammatory and glial cells and the expression of MHC-II and PCNA in the CNS of goats infected with N. caninum. The CNS of eight aborted fetuses and six adult male goats naturally infected with N. caninum were analyzed with lectin histochemistry (RCA1) and immunohistochemistry (with anti-CD3, -CD79α, -GFAP, -MHC-II, and -PCNA antibodies). All animals were the offspring of dams naturally infected with N. caninum. The microscopic lesions in the CNS of the aborted fetuses consisted of perivascular cuffs composed mainly of macrophages (RCA1(+)), rare T lymphocytes (CD3(+)), and rare B lymphocytes (CD79α(+)). Multifocal necrosis surrounded by astrocytes (GFAP(+)), gliosis composed predominantly of monocytic-lineage cells (macrophages and microglia, RCA1(+)), and the cysts of N. caninum, related (or not) to the lesions were present. Similar lesions were found in four of the six male goats, and multinucleate giant cells related to focal gliosis were also found in three adult goats. Anti-GFAP immunostaining showed astrocytes characterizing areas of glial scarring. Cysts of N. caninum were found in three adult male goats. The presence of N. caninum was evaluated with histopathology, immunohistochemistry, and PCR. Immunohistochemistry demonstrated anti-PCNA labeling of macrophages and microglia in the perivascular cuffs and the expression of MHC-II by microglia and endothelial cells in the CNS of the aborted fetuses and adult male goats. Macrophages and

  6. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    Science.gov (United States)

    Nguon, K.; Li, G.-H.; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum [Exp. Biol. Med. 226 (2000) 790]. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion moiecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum.

  7. Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Ribeiro-Resende Victor

    2012-07-01

    Full Text Available Abstract Background Among the essential biological roles of bone marrow-derived cells, secretion of many soluble factors is included and these small molecules can act upon specific receptors present in many tissues including the nervous system. Some of the released molecules can induce proliferation of Schwann cells (SC, satellite cells and lumbar spinal cord astrocytes during early steps of regeneration in a rat model of sciatic nerve transection. These are the major glial cell types that support neuronal survival and axonal growth following peripheral nerve injury. Fibroblast growth factor-2 (FGF-2 is the main mitogenic factor for SCs and is released in large amounts by bone marrow-derived cells, as well as by growing axons and endoneurial fibroblasts during development and regeneration of the peripheral nervous system (PNS. Results Here we show that bone marrow-derived cell treatment induce an increase in the expression of FGF-2 in the sciatic nerve, dorsal root ganglia and the dorsolateral (DL region of the lumbar spinal cord (LSC in a model of sciatic nerve transection and connection into a hollow tube. SCs in culture in the presence of bone marrow derived conditioned media (CM resulted in increased proliferation and migration. This effect was reduced when FGF-2 was neutralized by pretreating BMMC or CM with a specific antibody. The increased expression of FGF-2 was validated by RT-PCR and immunocytochemistry in co-cultures of bone marrow derived cells with sciatic nerve explants and regenerating nerve tissue respectivelly. Conclusion We conclude that FGF-2 secreted by BMMC strongly increases early glial proliferation, which can potentially improve PNS regeneration.

  8. Studying the glial cell response to biomaterials and surface topography for improving the neural electrode interface

    Science.gov (United States)

    Ereifej, Evon S.

    Neural electrode devices hold great promise to help people with the restoration of lost functions, however, research is lacking in the biomaterial design of a stable, long-term device. Current devices lack long term functionality, most have been found unable to record neural activity within weeks after implantation due to the development of glial scar tissue (Polikov et al., 2006; Zhong and Bellamkonda, 2008). The long-term effect of chronically implanted electrodes is the formation of a glial scar made up of reactive astrocytes and the matrix proteins they generate (Polikov et al., 2005; Seil and Webster, 2008). Scarring is initiated when a device is inserted into brain tissue and is associated with an inflammatory response. Activated astrocytes are hypertrophic, hyperplastic, have an upregulation of intermediate filaments GFAP and vimentin expression, and filament formation (Buffo et al., 2010; Gervasi et al., 2008). Current approaches towards inhibiting the initiation of glial scarring range from altering the geometry, roughness, size, shape and materials of the device (Grill et al., 2009; Kotov et al., 2009; Kotzar et al., 2002; Szarowski et al., 2003). Literature has shown that surface topography modifications can alter cell alignment, adhesion, proliferation, migration, and gene expression (Agnew et al., 1983; Cogan et al., 2005; Cogan et al., 2006; Merrill et al., 2005). Thus, the goals of the presented work are to study the cellular response to biomaterials used in neural electrode fabrication and assess surface topography effects on minimizing astrogliosis. Initially, to examine astrocyte response to various materials used in neural electrode fabrication, astrocytes were cultured on platinum, silicon, PMMA, and SU-8 surfaces, with polystyrene as the control surface. Cell proliferation, viability, morphology and gene expression was measured for seven days in vitro. Results determined the cellular characteristics, reactions and growth rates of astrocytes

  9. Plasticity of Neuron-Glial Transmission: Equipping Glia for Long-Term Integration of Network Activity

    Directory of Open Access Journals (Sweden)

    Wayne Croft

    2015-01-01

    Full Text Available The capacity of synaptic networks to express activity-dependent changes in strength and connectivity is essential for learning and memory processes. In recent years, glial cells (most notably astrocytes have been recognized as active participants in the modulation of synaptic transmission and synaptic plasticity, implicating these electrically nonexcitable cells in information processing in the brain. While the concept of bidirectional communication between neurons and glia and the mechanisms by which gliotransmission can modulate neuronal function are well established, less attention has been focussed on the computational potential of neuron-glial transmission itself. In particular, whether neuron-glial transmission is itself subject to activity-dependent plasticity and what the computational properties of such plasticity might be has not been explored in detail. In this review, we summarize current examples of plasticity in neuron-glial transmission, in many brain regions and neurotransmitter pathways. We argue that induction of glial plasticity typically requires repetitive neuronal firing over long time periods (minutes-hours rather than the short-lived, stereotyped trigger typical of canonical long-term potentiation. We speculate that this equips glia with a mechanism for monitoring average firing rates in the synaptic network, which is suited to the longer term roles proposed for astrocytes in neurophysiology.

  10. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced hepatic steatosis by suppressing hepatic PPAR-γ expression.

    Science.gov (United States)

    Mwangi, Simon Musyoka; Peng, Sophia; Nezami, Behtash Ghazi; Thorn, Natalie; Farris, Alton B; Jain, Sanjay; Laroui, Hamed; Merlin, Didier; Anania, Frank; Srinivasan, Shanthi

    2016-01-15

    Glial cell line-derived neurotrophic factor (GDNF) protects against high-fat diet (HFD)-induced hepatic steatosis in mice, however, the mechanisms involved are not known. In this study we investigated the effects of GDNF overexpression and nanoparticle delivery of GDNF in mice on hepatic steatosis and fibrosis and the expression of genes involved in the regulation of hepatic lipid uptake and de novo lipogenesis. Transgenic overexpression of GDNF in liver and other metabolically active tissues was protective against HFD-induced hepatic steatosis. Mice overexpressing GDNF had significantly reduced P62/sequestosome 1 protein levels suggestive of accelerated autophagic clearance. They also had significantly reduced peroxisome proliferator-activated receptor-γ (PPAR-γ) and CD36 gene expression and protein levels, and lower expression of mRNA coding for enzymes involved in de novo lipogenesis. GDNF-loaded nanoparticles were protective against short-term HFD-induced hepatic steatosis and attenuated liver fibrosis in mice with long-standing HFD-induced hepatic steatosis. They also suppressed the liver expression of steatosis-associated genes. In vitro, GDNF suppressed triglyceride accumulation in Hep G2 cells through enhanced p38 mitogen-activated protein kinase-dependent signaling and inhibition of PPAR-γ gene promoter activity. These results show that GDNF acts directly in the liver to protect against HFD-induced cellular stress and that GDNF may have a role in the treatment of nonalcoholic fatty liver disease.

  11. Glial cell adhesion and protein adsorption on SAM coated semiconductor and glass surfaces of a microfluidic structure

    Science.gov (United States)

    Sasaki, Darryl Y.; Cox, Jimmy D.; Follstaedt, Susan C.; Curry, Mark S.; Skirboll, Steven K.; Gourley, Paul L.

    2001-05-01

    The development of microsystems that merge biological materials with microfabricated structures is highly dependent on the successful interfacial interactions between these innately incompatible materials. Surface passivation of semiconductor and glass surfaces with thin organic films can attenuate the adhesion of proteins and cells that lead to biofilm formation and biofouling of fluidic structures. We have examined the adhesion of glial cells and serum albumin proteins to microfabricated glass and semiconductor surfaces coated with self-assembled monolayers of octadecyltrimethoxysilane and N-(triethoxysilylpropyl)-O- polyethylene oxide urethane, to evaluate the biocompatibility and surface passivation those coatings provide.

  12. Cerebral radiation necrosis: vascular and glial features

    Energy Technology Data Exchange (ETDEWEB)

    Husain, M M; Garcia, J H

    1976-12-21

    Glial and vascular abnormalities in brain, simulating intracranial neoplasia, are described in a patient who received radiation to the pituitary region for treatment of an adenoma, 13 months before death. In addition to the expected changes of cerebral radionecrosis, four interesting features are cited: (1) diffuse hyperplasia of capillaries in the cerebral cortex with marked endothelial hypertrophy; (2) abundant, large multipolar bizarre cells in the perivascular connective tissues; (3) focal astrocytic proliferation with many cells resembling either Alzheimer type I astrocytes or neoplastic cells, and (4) radiation changes in the non-irradiated brain.

  13. Primary glia expressing the G93A-SOD1 mutation present a neuroinflammatory phenotype and provide a cellular system for studies of glial inflammation

    Directory of Open Access Journals (Sweden)

    Qi Min

    2006-01-01

    Full Text Available Abstract Detailed study of glial inflammation has been hindered by lack of cell culture systems that spontaneously demonstrate the "neuroinflammatory phenotype". Mice expressing a glycine → alanine substitution in cytosolic Cu, Zn-superoxide dismutase (G93A-SOD1 associated with familial amyotrophic lateral sclerosis (ALS demonstrate age-dependent neuroinflammation associated with broad-spectrum cytokine, eicosanoid and oxidant production. In order to more precisely study the cellular mechanisms underlying glial activation in the G93A-SOD1 mouse, primary astrocytes were cultured from 7 day mouse neonates. At this age, G93A-SOD1 mice demonstrated no in vivo hallmarks of neuroinflammation. Nonetheless astrocytes cultured from G93A-SOD1 (but not wild-type human SOD1-expressing transgenic mouse pups demonstrated a significant elevation in either the basal or the tumor necrosis alpha (TNFα-stimulated levels of proinflammatory eicosanoids prostaglandin E2 (PGE2 and leukotriene B4 (LTB4; inducible nitric oxide synthase (iNOS and •NO (indexed by nitrite release into the culture medium; and protein carbonyl products. Specific cytokine- and TNFα death-receptor-associated components were similarly upregulated in cultured G93A-SOD1 cells as assessed by multiprobe ribonuclease protection assays (RPAs for their mRNA transcripts. Thus, endogenous glial expression of G93A-SOD1 produces a metastable condition in which glia are more prone to enter an activated neuroinflammatory state associated with broad-spectrum increased production of paracrine-acting substances. These findings support a role for active glial involvement in ALS and may provide a useful cell culture tool for the study of glial inflammation.

  14. Controlled adhesion and growth of long term glial and neuronal cultures on Parylene-C.

    Directory of Open Access Journals (Sweden)

    Evangelos Delivopoulos

    Full Text Available This paper explores the long term development of networks of glia and neurons on patterns of Parylene-C on a SiO(2 substrate. We harvested glia and neurons from the Sprague-Dawley (P1-P7 rat hippocampus and utilized an established cell patterning technique in order to investigate cellular migration, over the course of 3 weeks. This work demonstrates that uncontrolled glial mitosis gradually disrupts cellular patterns that are established early during culture. This effect is not attributed to a loss of protein from the Parylene-C surface, as nitrogen levels on the substrate remain stable over 3 weeks. The inclusion of the anti-mitotic cytarabine (Ara-C in the culture medium moderates glial division and thus, adequately preserves initial glial and neuronal conformity to underlying patterns. Neuronal apoptosis, often associated with the use of Ara-C, is mitigated by the addition of brain derived neurotrophic factor (BDNF. We believe that with the right combination of glial inhibitors and neuronal promoters, the Parylene-C based cell patterning method can generate structured, active neural networks that can be sustained and investigated over extended periods of time. To our knowledge this is the first report on the concurrent application of Ara-C and BDNF on patterned cell cultures.

  15. Ammonia modifies enteric neuromuscular transmission through glial γ-aminobutyric acid signaling.

    Science.gov (United States)

    Fried, David E; Watson, Ralph E; Robson, Simon C; Gulbransen, Brian D

    2017-12-01

    Impaired gut motility may contribute, at least in part, to the development of systemic hyperammonemia and systemic neurological disorders in inherited metabolic disorders, or in severe liver and renal disease. It is not known whether enteric neurotransmission regulates intestinal luminal and hence systemic ammonia levels by induced changes in motility. Here, we propose and test the hypothesis that ammonia acts through specific enteric circuits to influence gut motility. We tested our hypothesis by recording the effects of ammonia on neuromuscular transmission in tissue samples from mice, pigs, and humans and investigated specific mechanisms using novel mutant mice, selective drugs, cellular imaging, and enzyme-linked immunosorbent assays. Exogenous ammonia increased neurogenic contractions and decreased neurogenic relaxations in segments of mouse, pig, and human intestine. Enteric glial cells responded to ammonia with intracellular Ca 2+ responses. Inhibition of glutamine synthetase and the deletion of glial connexin-43 channels in hGFAP :: Cre ER T2+/- /connexin43 f/f mice potentiated the effects of ammonia on neuromuscular transmission. The effects of ammonia on neuromuscular transmission were blocked by GABA A receptor antagonists, and ammonia drove substantive GABA release as did the selective pharmacological activation of enteric glia in GFAP::hM3Dq transgenic mice. We propose a novel mechanism whereby local ammonia is operational through GABAergic glial signaling to influence enteric neuromuscular circuits that regulate intestinal motility. Therapeutic manipulation of these mechanisms may benefit a number of neurological, hepatic, and renal disorders manifesting hyperammonemia. NEW & NOTEWORTHY We propose that local circuits in the enteric nervous system sense and regulate intestinal ammonia. We show that ammonia modifies enteric neuromuscular transmission to increase motility in human, pig, and mouse intestine model systems. The mechanisms underlying the

  16. Therapeutic effects of NogoA vaccine and olfactory ensheathing glial cell implantation on acute spinal cord injury

    Directory of Open Access Journals (Sweden)

    Zhang Z

    2013-10-01

    Full Text Available Zhicheng Zhang, Fang Li, Tiansheng Sun, Dajiang Ren, Xiumei Liu PLA Institute of Orthopedics, Beijing Army General Hospital, Beijing, People's Republic of China Background: Many previous studies have focused on the effects of IN-1, a monoclonal antibody that neutralizes Nogo (a neurite growth inhibitory protein, on neurologic regeneration in spinal cord injury (SCI. However, safety problems and the short half-life of the exogenous antibody are still problematic. In the present study, the NogoA polypeptide was used as an antigen to make a therapeutic NogoA vaccine. Rats were immunized with this vaccine and were able to secrete the polyclonal antibody before SCI. The antibody can block NogoA within the injured spinal cord when the antibody gains access to the spinal cord due to a compromised blood–spinal cord barrier. Olfactory ensheathing glial cell transplantation has been used in a spinal cord contusion model to promote the recovery of SCI. The present study was designed to verify the efficacy and safety of NogoA polypeptide vaccine, the effects of immunotherapy with this vaccine, and the synergistic effects of the vaccine and olfactory ensheathing glial cells in repair of SCI. Methods: A 13-polypeptide fragment of NogoA was synthesized. This fragment was then coupled with keyhole limpet hemocyanin to improve the immunogenicity of the polypeptide vaccine. Immunization via injection into the abdominal cavity was performed in rats before SCI. The serum antibody level and ability of the vaccine to bind with Nogo were detected by enzyme-linked immunosorbent assay. The safety of the vaccine was evaluated according to the incidence and severity of experimental autoimmune encephalomyelitis. Olfactory ensheathing glia cells were obtained, purified, and subsequently implanted into a Wistar rat model of thoracic spinal cord contusion injury. The rats were divided into four groups, ie, an SCI model group, an olfactory ensheathing glia group, a vaccine

  17. Juliprosopine and juliprosine from prosopis juliflora leaves induce mitochondrial damage and cytoplasmic vacuolation on cocultured glial cells and neurons.

    Science.gov (United States)

    Silva, Victor Diogenes A; Pitanga, Bruno P S; Nascimento, Ravena P; Souza, Cleide S; Coelho, Paulo Lucas C; Menezes-Filho, Noélio; Silva, André Mário M; Costa, Maria de Fátima D; El-Bachá, Ramon S; Velozo, Eudes S; Costa, Silvia L

    2013-12-16

    Prosopis juliflora is a shrub largely used for animal and human consumption. However, ingestion has been shown to induce intoxication in animals, which is characterized by neuromuscular alterations induced by mechanisms that are not yet well understood. In this study, we investigated the cytotoxicity of a total alkaloid extract (TAE) and one alkaloid fraction (F32) obtained from P. juliflora leaves to rat cortical neurons and glial cells. Nuclear magnetic resonance characterization of F32 showed that this fraction is composed of a mixture of two piperidine alkaloids, juliprosopine (majority constituent) and juliprosine. TAE and F32 at concentrations between 0.3 and 45 μg/mL were tested for 24 h on neuron/glial cell primary cocultures. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test revealed that TAE and F32 were cytotoxic to cocultures, and their IC50 values were 31.07 and 7.362 μg/mL, respectively. Exposure to a subtoxic concentration of TAE or F32 (0.3-3 μg/mL) induced vacuolation and disruption of the astrocyte monolayer and neurite network, ultrastructural changes, characterized by formation of double-membrane vacuoles, and mitochondrial damage, associated with changes in β-tubulin III and glial fibrillary acidic protein expression. Microglial proliferation was also observed in cultures exposed to TAE or F32, with increasing levels of OX-42-positive cells. Considering that F32 was more cytotoxic than TAE and that F32 reproduced in vitro the main morphologic and ultrastructural changes of "cara torta" disease, we can also suggest that piperidine alkaloids juliprosopine and juliprosine are primarily responsible for the neurotoxic damage observed in animals after they have consumed the plant.

  18. P2Y12 receptor upregulation in satellite glial cells is involved in neuropathic pain induced by HIV glycoprotein 120 and 2',3'-dideoxycytidine.

    Science.gov (United States)

    Yi, Zhihua; Xie, Lihui; Zhou, Congfa; Yuan, Huilong; Ouyang, Shuai; Fang, Zhi; Zhao, Shanhong; Jia, Tianyu; Zou, Lifang; Wang, Shouyu; Xue, Yun; Wu, Bing; Gao, Yun; Li, Guilin; Liu, Shuangmei; Xu, Hong; Xu, Changshui; Zhang, Chunping; Liang, Shangdong

    2018-03-01

    The direct neurotoxicity of HIV and neurotoxicity of combination antiretroviral therapy medications both contribute to the development of neuropathic pain. Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in mechanical and thermal hyperalgesia. The P2Y 12 receptor expressed in SGCs of the DRG is involved in pain transmission. In this study, we explored the role of the P2Y 12 receptor in neuropathic pain induced by HIV envelope glycoprotein 120 (gp120) combined with ddC (2',3'-dideoxycytidine). A rat model of gp120+ddC-induced neuropathic pain was used. Peripheral nerve exposure to HIV-gp120+ddC increased mechanical and thermal hyperalgesia in gp120+ddC-treated model rats. The gp120+ddC treatment increased expression of P2Y 12 receptor mRNA and protein in DRG SGCs. In primary cultured DRG SGCs treated with gp120+ddC, the levels of [Ca 2+ ] i activated by the P2Y 12 receptor agonist 2-(Methylthio) adenosine 5'-diphosphate trisodium salt (2-MeSADP) were significantly increased. P2Y 12 receptor shRNA treatment inhibited 2-MeSADP-induced [Ca 2+ ] i in primary cultured DRG SGCs treated with gp120+ddC. Intrathecal treatment with a shRNA against P2Y 12 receptor in DRG SGCs reduced the release of pro-inflammatory cytokines, decreased phosphorylation of p38 MAPK in the DRG of gp120+ddC-treated rats. Thus, downregulating the P2Y 12 receptor relieved mechanical and thermal hyperalgesia in gp120+ddC-treated rats.

  19. Ultrastructural changes in the glial cells at neuromuscular synapses of Locusta migratoria occurring after nerve stimulation and subsequent rest: a morphometric analysis.

    Science.gov (United States)

    Reinecke, M

    1979-10-01

    The glial processes ensheathing the motor nerve terminals on the retractor unguis muscle of Locusta migratoria are described. Ultrastructural changes observed after electrical nerve stimulation (20 Hz, 7 min) without or with subsequent rest (2 min, 1 h) are analysed morphometrically. Immediately after stimulation both the average terminal circumference (+ 23%) and its proportion covered by glial processes (+ 16%) are significantly increased. The mean number of Schwann cell processes per micron of terminal circumference (without stimulation: 0.86 +/- 0.04) is also affected: Immediately after stimulation it is increased by about 15% and after 2 min of rest even by 36%. The periaxonal cleft (without stimulation: 16.5 nm +/- 0.36) becomes wider immediately after stimulation by about 19%, an effect which is almost reversed after 1 h of rest. It is suggested that these changes are a consequence of the enlargement of the nerve terminal's surface upon massive exocytotic activity and that they are possibly mediated by mechanical attachment between glial and terminal plasma membranes.

  20. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices

    Science.gov (United States)

    Tremblay, Marie-Ève; Zettel, Martha L.; Ison, James R.; Allen, Paul D.; Majewska, Ania K.

    2011-01-01

    Normal aging is often accompanied by a progressive loss of receptor sensitivity in hearing and vision, whose consequences on cellular function in cortical sensory areas have remained largely unknown. By examining the primary auditory (A1) and visual (V1) cortices in two inbred strains of mice undergoing either age-related loss of audition (C57BL/6J) or vision (CBA/CaJ), we were able to describe cellular and subcellular changes that were associated with normal aging (occurring in A1 and V1 of both strains) or specifically with age-related sensory loss (only in A1 of C57BL/6J or V1 of CBA/CaJ), using immunocytochemical electron microscopy and light microscopy. While the changes were subtle in neurons, glial cells and especially microglia were transformed in aged animals. Microglia became more numerous and irregularly distributed, displayed more variable cell body and process morphologies, occupied smaller territories, and accumulated phagocytic inclusions that often displayed ultrastructural features of synaptic elements. Additionally, evidence of myelination defects were observed, and aged oligodendrocytes became more numerous and were more often encountered in contiguous pairs. Most of these effects were profoundly exacerbated by age-related sensory loss. Together, our results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity-driven central mechanisms that result from an age-related loss of peripheral sensitivity. In light of our observations, these age-related changes in sensory function should be considered when investigating cellular, cortical and behavioral functions throughout the lifespan in these commonly used C57BL/6J and CBA/CaJ mouse models. PMID:22223464

  1. Glial tumors with neuronal differentiation.

    Science.gov (United States)

    Park, Chul-Kee; Phi, Ji Hoon; Park, Sung-Hye

    2015-01-01

    Immunohistochemical studies for neuronal differentiation in glial tumors revealed subsets of tumors having both characteristics of glial and neuronal lineages. Glial tumors with neuronal differentiation can be observed with diverse phenotypes and histologic grades. The rosette-forming glioneuronal tumor of the fourth ventricle and papillary glioneuronal tumor have been newly classified as distinct disease entities. There are other candidates for classification, such as the glioneuronal tumor without pseudopapillary architecture, glioneuronal tumor with neuropil-like islands, and the malignant glioneuronal tumor. The clinical significance of these previously unclassified tumors should be confirmed. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Extracellular Membrane Vesicles as Vehicles for Brain Cell-to-Cell Interactions in Physiological as well as Pathological Conditions

    Directory of Open Access Journals (Sweden)

    Gabriella Schiera

    2015-01-01

    Full Text Available Extracellular vesicles are involved in a great variety of physiological events occurring in the nervous system, such as cross talk among neurons and glial cells in synapse development and function, integrated neuronal plasticity, neuronal-glial metabolic exchanges, and synthesis and dynamic renewal of myelin. Many of these EV-mediated processes depend on the exchange of proteins, mRNAs, and noncoding RNAs, including miRNAs, which occurs among glial and neuronal cells. In addition, production and exchange of EVs can be modified under pathological conditions, such as brain cancer and neurodegeneration. Like other cancer cells, brain tumours can use EVs to secrete factors, which allow escaping from immune surveillance, and to transfer molecules into the surrounding cells, thus transforming their phenotype. Moreover, EVs can function as a way to discard material dangerous to cancer cells, such as differentiation-inducing proteins, and even drugs. Intriguingly, EVs seem to be also involved in spreading through the brain of aggregated proteins, such as prions and aggregated tau protein. Finally, EVs can carry useful biomarkers for the early diagnosis of diseases. Herein we summarize possible roles of EVs in brain physiological functions and discuss their involvement in the horizontal spreading, from cell to cell, of both cancer and neurodegenerative pathologies.

  3. Neuronal and glial release of (3H)GABA from the rat olfactory bulb

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, E.H.; Cuello, A.C.

    1981-12-01

    Neuronal versus glial components of the (3H)gamma-aminobutyric acid ((3H)GABA) release studies were performed with two different microdissected layers of the olfactory bulb of the rat. In some experiments substantia nigra was used as a GABAergic axonal system and the trigeminal ganglia as a peripheral glial model. Spontaneous release of (3H)GABA was always lower in neuronal elements as compared with glial cells. A veratridine-evoked release was observed from the ONL but not from the trigeminal ganglia. Tetrodotoxin (TTX) abolished the veratridine-evoked release from the ONL, which also showed a partial inhibition when high magnesium concentrations were used in a Ca2+-free solution. beta-Alanine was strongly exchanged with (3H)GABA from the ONL of animals with the olfactory nerve lesioned and from animals with no lesion; but only a small heteroexchange was found from the external plexiform layer. The beta-alanine heteroexchange was able to deplete the releasable GABA store from the ONL of lesioned animals. In nonlesioned animals and the external plexiform layer, the veratridine-stimulated release of (3H)GABA was not significantly reduced after the beta-alanine heteroexchange. Stimulation of the (3H)GABA release by high concentrations of potassium elicited a higher release rate from axonal terminals than from dendrites or glia. Neurones and glia showed a similar inhibition of (3H)GABA release when a high magnesium concentration was added to a calcium-free solution. When D-600 was used as a calcium-flux blocker no inhibition of the release was observed in glial cells, whereas an almost complete blockage was found in both neuronal preparations (substantia nigra and EPL). These results provide further evidence for differential release mechanisms of GABA from CNS neurones and glial cells.

  4. Inhibition of casein kinase 2 modulates XBP1-GRP78 arm of unfolded protein responses in cultured glial cells.

    Directory of Open Access Journals (Sweden)

    Toru Hosoi

    Full Text Available Stress signals cause abnormal proteins to accumulate in the endoplasmic reticulum (ER. Such stress is known as ER stress, which has been suggested to be involved in neurodegenerative diseases, diabetes, obesity and cancer. ER stress activates the unfolded protein response (UPR to reduce levels of abnormal proteins by inducing the production of chaperon proteins such as GRP78, and to attenuate translation through the phosphorylation of eIF2α. However, excessive stress leads to apoptosis by generating transcription factors such as CHOP. Casein kinase 2 (CK2 is a serine/threonine kinase involved in regulating neoplasia, cell survival and viral infections. In the present study, we investigated a possible linkage between CK2 and ER stress using mouse primary cultured glial cells. 4,5,6,7-tetrabromobenzotriazole (TBB, a CK2-specific inhibitor, attenuated ER stress-induced XBP-1 splicing and subsequent induction of GRP78 expression, but was ineffective against ER stress-induced eIF2α phosphorylation and CHOP expression. Similar results were obtained when endogenous CK2 expression was knocked-down by siRNA. Immunohistochemical analysis suggested that CK2 was present at the ER. These results indicate CK2 to be linked with UPR and to resist ER stress by activating the XBP-1-GRP78 arm of UPR.

  5. Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties.

    Science.gov (United States)

    Kubota, Hiroshi; Wu, Xin; Goodyear, Shaun M; Avarbock, Mary R; Brinster, Ralph L

    2011-08-01

    Previous studies suggest that exogenous factors crucial for spermatogonial stem cell (SSC) self-renewal are conserved among several mammalian species. Since glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are critical for rodent SSC self-renewal, we hypothesized that they might promote self-renewal of nonrodent SSCs. Therefore, we cultured testicular germ cells from prepubertal rabbits in the presence of GDNF and FGF2 and found they proliferated indefinitely as cellular clumps that displayed characteristics previously identified for rodent SSCs. The rabbit germ cells could not be maintained on mouse embryonic fibroblast (STO) feeders that support rodent SSC self-renewal in vitro but were rather supported on mouse yolk sac-derived endothelial cell (C166) feeder layers. Proliferation of rabbit germ cells was dependent on GDNF. Of critical importance was that clump-forming rabbit germ cells colonized seminiferous tubules of immunodeficient mice, proliferated for at least 6 mo, while retaining an SSC phenotype in the testes of recipient mice, indicating that they were rabbit SSCs. This study demonstrates that GDNF is a mitogenic factor promoting self-renewal that is conserved between rodent and rabbit SSCs; with an evolutionary separation of ∼ 60 million years. These findings provide a foundation to study the mechanisms governing SSC self-renewal in nonrodent species.

  6. Age-related changes in the hippocampus (loss of synaptophysin and glial-synaptic interaction) are modified by systemic treatment with an NCAM-derived peptide, FGL.

    Science.gov (United States)

    Ojo, Bunmi; Rezaie, Payam; Gabbott, Paul L; Davies, Heather; Colyer, Frances; Cowley, Thelma R; Lynch, Marina; Stewart, Michael G

    2012-07-01

    Altered synaptic morphology, progressive loss of synapses and glial (astrocyte and microglial) cell activation are considered as characteristic hallmarks of aging. Recent evidence suggests that there is a concomitant age-related decrease in expression of the presynaptic protein, synaptophysin, and the neuronal glycoprotein CD200, which, by interacting with its receptor, plays a role in maintaining microglia in a quiescent state. These age-related changes may be indicative of reduced neuroglial support of synapses. FG Loop (FGL) peptide synthesized from the second fibronectin type III module of neural cell adhesion molecule (NCAM), has previously been shown to attenuate age-related glial cell activation, and to 'restore' cognitive function in aged rats. The mechanisms by which FGL exerts these neuroprotective effects remain unclear, but could involve regulation of CD200, modifying glial-synaptic interactions (affecting neuroglial 'support' at synapses), or impacting directly on synaptic function. Light and electron microscopic (EM) analyses were undertaken to investigate whether systemic treatment with FGL (i) alters CD200, synaptophysin (presynaptic) and PSD-95 (postsynaptic) immunohistochemical expression levels, (ii) affects synaptic number, or (iii) exerts any effects on glial-synaptic interactions within young (4 month-old) and aged (22 month-old) rat hippocampus. Treatment with FGL attenuated the age-related loss of synaptophysin immunoreactivity (-ir) within CA3 and hilus (with no major effect on PSD-95-ir), and of CD200-ir specifically in the CA3 region. Ultrastructural morphometric analyses showed that FGL treatment (i) prevented age-related loss in astrocyte-synaptic contacts, (ii) reduced microglia-synaptic contacts in the CA3 stratum radiatum, but (iii) had no effect on the mean number of synapses in this region. These data suggest that FGL mediates its neuroprotective effects by regulating glial-synaptic interaction. Copyright © 2011 Elsevier Inc. All

  7. Glial Draper Rescues Aβ Toxicity in a Drosophila Model of Alzheimer's Disease.

    Science.gov (United States)

    Ray, Arpita; Speese, Sean D; Logan, Mary A

    2017-12-06

    Pathological hallmarks of Alzheimer's disease (AD) include amyloid-β (Aβ) plaques, neurofibrillary tangles, and reactive gliosis. Glial cells offer protection against AD by engulfing extracellular Aβ peptides, but the repertoire of molecules required for glial recognition and destruction of Aβ are still unclear. Here, we show that the highly conserved glial engulfment receptor Draper/MEGF10 provides neuroprotection in an AD model of Drosophila (both sexes). Neuronal expression of human Aβ42 arc in adult flies results in robust Aβ accumulation, neurodegeneration, locomotor dysfunction, and reduced lifespan. Notably, all of these phenotypes are more severe in draper mutant animals, whereas enhanced expression of glial Draper reverses Aβ accumulation, as well as behavioral phenotypes. We also show that the signal transducer and activator of transcription (Stat92E), c-Jun N-terminal kinase (JNK)/AP-1 signaling, and expression of matrix metalloproteinase-1 (Mmp1) are activated downstream of Draper in glia in response to Aβ42 arc exposure. Furthermore, Aβ42-induced upregulation of the phagolysosomal markers Atg8 and p62 was notably reduced in draper mutant flies. Based on our findings, we propose that glia clear neurotoxic Aβ peptides in the AD model Drosophila brain through a Draper/STAT92E/JNK cascade that may be coupled to protein degradation pathways such as autophagy or more traditional phagolysosomal destruction methods. SIGNIFICANCE STATEMENT Alzheimer's disease (AD) and similar dementias are common incurable neurodegenerative disorders in the aging population. As the primary immune responders in the brain, glial cells are implicated as key players in the onset and progression of AD and related disorders. Here we show that the glial engulfment receptor Draper is protective in a Drosophila model of AD, reducing levels of amyloid β (Aβ) peptides, reversing locomotor defects, and extending lifespan. We further show that protein degradation pathways are

  8. Andrographolide - A promising therapeutic agent, negatively regulates glial cell derived neurodegeneration of prefrontal cortex, hippocampus and working memory impairment.

    Science.gov (United States)

    Das, Sudeshna; Mishra, K P; Ganju, Lilly; Singh, S B

    2017-12-15

    Over activation of glial cell derived innate immune factors induces neuro-inflammation that results in neurodegenerative disease, like working memory impairment. In this study, we have investigated the role of andrographolide, a major constituent of Andrographis paniculata plant, in reduction of reactive glial cell derived working memory impairment. Real time PCR, Western bloting, flow cytometric and immunofluorescence studies demonstrated that andrographolide inhibited lipopolysaccharide (LPS)-induced overexpression of HMGB1, TLR4, NFκB, COX-2, iNOS, and release of inflammatory mediators in primary mix glial culture, adult mice prefrontal cortex and hippocampus region. Active microglial and reactive astrocytic makers were also downregulated after andrographolide treatment. Andrographolide suppressed overexpression of microglial MIP-1α, P2X7 receptor and its downstream signaling mediators including-inflammasome NLRP3, caspase1 and mature IL-1β. Furthermore, in vivo maze studies suggested that andrographolide treatment reversed LPS-induced behavioural and working memory disturbances including regulation of expression of protein markers like PKC, p-CREB, amyloid beta, APP, p-tau, synapsin and PSD-95. Andrographolide, by lowering expression of pro apoptotic genes and enhancing the expression of anti-apoptotic gene showed its anti-apoptotic nature that in turn reduces neurodegeneration. Morphology studies using Nissl and FJB staining also showed the neuroprotective effect of andrographolide in the prefrontal cortex region. The above studies indicated that andrographolide prevented neuroinflammation-associated neurodegeneration and improved synaptic plasticity markers in cortical as well as hippocampal region which suggests that andrographolide could be a novel pharmacological countermeasure for the treatment of neuroinflammation and neurological disorders related to memory impairment. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Combination effects of epidermal growth factor and glial cell line-derived neurotrophic factor on the in vitro developmental potential of porcine oocytes

    DEFF Research Database (Denmark)

    Valleh, Mehdi Vafaye; Rasmussen, Mikkel Aabech; Hyttel, Poul

    2016-01-01

    of improving this issue, the single and combined effects of epidermal growth factor (EGF) and glial cell line-derived neurotrophic factor (GDNF) on oocyte developmental competence were investigated. Porcine cumulus–oocyte cell complexes (COCs) were matured in serum-free medium supplemented with EGF (0, 10...... with the combination of EGF and GDNF was shown to significantly improve oocyte competence in terms of blastocyst formation, blastocyst cell number and blastocyst hatching rate (P

  10. Matrix metalloproteinase-9 expression in the nuclear compartment of neurons and glial cells in aging and stroke.

    Science.gov (United States)

    Pirici, Daniel; Pirici, Ionica; Mogoanta, Laurentiu; Margaritescu, Otilia; Tudorica, Valerica; Margaritescu, Claudiu; Ion, Daniela A; Simionescu, Cristiana; Coconu, Marieta

    2012-10-01

    Matrix metalloproteinases (MMPs) are well-recognized denominators for extracellular matrix remodeling in the pathology of both ischemic and hemorrhagic strokes. Recent data on non-nervous system tissue showed intracellular and even intranuclear localizations for different MMPs, and together with this, a plethora of new functions have been proposed for these intracellular active enzymes, but are mostly related to apoptosis induction and malign transformation. In neurons and glial cells, on human tissue, animal models and cell cultures, different active MMPs have been also proven to be located in the intra-cytoplasmic or intra-nuclear compartments, with no clear-cut function. In the present study we show for the first time on human tissue the nuclear expression of MMP-9, mainly in neurons and to a lesser extent in astrocytes. We have studied ischemic and hemorrhagic stroke patients, as well as aged control patients. Age and ischemic suffering seemed to be the best predictors for an elevated MMP-9 nuclear expression, and there was no evidence of a clear-cut extracellular proteolytic activity for this compartment, as revealed by intact vascular basement membranes and assessment of vascular densities. More, the majority of the cells expressing MMP-9 in the nuclear compartment also co-expressed activated-caspase 3, indicating a possible link between nuclear MMP-9 localization and apoptosis in neuronal and glial cells following an ischemic or hemorrhagic event. These results, besides showing for the first time the nuclear localization of MMP-9 on a large series of human stroke and aged brain tissues, raise new questions regarding the unknown spectrum of the functions MMPs in human CNS pathology. © 2011 Japanese Society of Neuropathology.

  11. Submucosal neurons and enteric glial cells expressing the P2X7 receptor in rat experimental colitis.

    Science.gov (United States)

    da Silva, Marcos Vinícius; Marosti, Aline Rosa; Mendes, Cristina Eusébio; Palombit, Kelly; Castelucci, Patricia

    2017-06-01

    The aim of this study was to evaluate the effect of ulcerative colitis on the submucosal neurons and glial cells of the submucosal ganglia of rats. 2,4,6-Trinitrobenzene sulfonic acid (TNBS; colitis group) was administered in the colon to induce ulcerative colitis, and distal colons were collected after 24h. The colitis rats were compared with those in the sham and control groups. Double labelling of the P2X7 receptor with calbindin (marker for intrinsic primary afferent neurons, IPANs, submucosal plexus), calretinin (marker for secretory and vasodilator neurons of the submucosal plexus), HuC/D and S100β was performed in the submucosal plexus. The density (neurons per area) of submucosal neurons positive for the P2X7 receptor, calbindin, calretinin and HuC/D decreased by 21%, 34%, 8.2% and 28%, respectively, in the treated group. In addition, the density of enteric glial cells in the submucosal plexus decreased by 33%. The profile areas of calbindin-immunoreactive neurons decreased by 25%. Histological analysis revealed increased lamina propria and decreased collagen in the colitis group. This study demonstrated that ulcerative colitis affected secretory and vasodilatory neurons, IPANs and enteric glia of the submucosal plexus expressing the P2X7 receptor. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Direct Regulation of Aromatase B Expression by 17β-Estradiol and Dopamine D1 Receptor Agonist in Adult Radial Glial Cells

    OpenAIRE

    Xing, Lei; Esau, Crystal; Trudeau, Vance L.

    2016-01-01

    Aromatase cytochrome P450arom (cyp19) is the only enzyme that has the ability to convert androgens into estrogens. Estrogens, which are produced locally in the vertebrate brain play many fundamental roles in neuroendocrine functions, reproductive functions, socio-sexual behaviors, and neurogenesis. Radial glial cells (RGCs) are neuronal progenitor cells that are abundant in fish brains and are the exclusive site of aromatase B expression and neuroestrogen synthesis. Using a novel in vitro RGC...

  13. c-erbA and v-erbA modulate growth and gene expression of a mouse glial precursor cell line.

    Science.gov (United States)

    Iglesias, T; Llanos, S; López-Barahona, M; Pérez-Aranda, A; Rodríguez-Peña, A; Bernal, J; Höhne, A; Seliger, B; Muñoz, A

    1994-07-01

    The c-erbA alpha protooncogene coding for the thyroid hormone (T3) receptor (TR alpha 1) and the viral, mutated v-erbA oncogene were expressed in an immortal mouse glial cell line (B3.1) using retroviral vectors. c-erbA alpha expression led to a decrease in cell proliferation in high and low serum conditions, both in the presence and in the absence of T3. In serum-free medium, c-erbA-expressing cells (B3.1 + TR alpha 1) were completely arrested, whereas cells expressing v-erbA (B3.1 + v-erbA) showed a higher DNA synthesis rate than normal B3.1 cells. Although proliferation of all three cell types was stimulated by platelet-derived growth factor and basic fibroblast growth factor, differences were also observed in the response to these agents. B3.1 + TR alpha 1 cells were more sensitive to platelet-derived growth factor than B3.1 and B3.1 + v-erbA cells. In contrast, B3.1 cells responded to basic fibroblast growth factor better than B3.1 + TR alpha 1 or B3.1 + v-erbA cells. Insulin-like growth factor I potentiated the action of platelet-derived growth factor and basic fibroblast growth factor. Again, different responses to treatment with insulin-like growth factor I alone were observed; B3.1 + TR alpha 1 cells did not respond to it, whereas B3.1 + v-erbA cells showed a dramatic stimulation by this agent. Interestingly, in the presence of T3, the blockade in B3.1 + TR alpha 1 cell proliferation was accompanied by the down-regulation of the typical astrocytic genes, glial fibrillary acidic protein and vimentin. These hormone effects were not found in v-erbA-expressing cells. In addition, v-erbA inhibited the basal expression of the cyclic nucleotide phosphodiesterase gene, an oligodendrocytic marker.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Sleep and immune function: glial contributions and consequences of aging.

    Science.gov (United States)

    Ingiosi, Ashley M; Opp, Mark R; Krueger, James M

    2013-10-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5'-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. Copyright © 2013. Published by Elsevier Ltd.

  15. NANOS2 acts downstream of glial cell line-derived neurotrophic factor signaling to suppress differentiation of spermatogonial stem cells.

    Science.gov (United States)

    Sada, Aiko; Hasegawa, Kazuteru; Pin, Pui Han; Saga, Yumiko

    2012-02-01

    Stem cells are maintained by both stem cell-extrinsic niche signals and stem cell-intrinsic factors. During murine spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) signal emanated from Sertoli cells and germ cell-intrinsic factor NANOS2 represent key regulators for the maintenance of spermatogonial stem cells. However, it remains unclear how these factors intersect in stem cells to control their cellular state. Here, we show that GDNF signaling is essential to maintain NANOS2 expression, and overexpression of Nanos2 can alleviate the stem cell loss phenotype caused by the depletion of Gfra1, a receptor for GDNF. By using an inducible Cre-loxP system, we show that NANOS2 expression is downregulated upon the conditional knockout (cKO) of Gfra1, while ectopic expression of Nanos2 in GFRA1-negative spermatogonia does not induce de novo GFRA1 expression. Furthermore, overexpression of Nanos2 in the Gfra1-cKO testes prevents precocious differentiation of the Gfra1-knockout stem cells and partially rescues the stem cell loss phenotypes of Gfra1-deficient mice, indicating that the stem cell differentiation can be suppressed by NANOS2 even in the absence of GDNF signaling. Taken together, we suggest that NANOS2 acts downstream of GDNF signaling to maintain undifferentiated state of spermatogonial stem cells. Copyright © 2011 AlphaMed Press.

  16. Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue.

    Science.gov (United States)

    Tamashiro, Tami T; Dalgard, Clifton Lee; Byrnes, Kimberly R

    2012-08-15

    Microglia account for approximately 12% of the total cellular population in the mammalian brain. While neurons and astrocytes are considered the major cell types of the nervous system, microglia play a significant role in normal brain physiology by monitoring tissue for debris and pathogens and maintaining homeostasis in the parenchyma via phagocytic activity. Microglia are activated during a number of injury and disease conditions, including neurodegenerative disease, traumatic brain injury, and nervous system infection. Under these activating conditions, microglia increase their phagocytic activity, undergo morpohological and proliferative change, and actively secrete reactive oxygen and nitrogen species, pro-inflammatory chemokines and cytokines, often activating a paracrine or autocrine loop. As these microglial responses contribute to disease pathogenesis in neurological conditions, research focused on microglia is warranted. Due to the cellular heterogeneity of the brain, it is technically difficult to obtain sufficient microglial sample material with high purity during in vivo experiments. Current research on the neuroprotective and neurotoxic functions of microglia require a routine technical method to consistently generate pure and healthy microglia with sufficient yield for study. We present, in text and video, a protocol to isolate pure primary microglia from mixed glia cultures for a variety of downstream applications. Briefly, this technique utilizes dissociated brain tissue from neonatal rat pups to produce mixed glial cell cultures. After the mixed glial cultures reach confluency, primary microglia are mechanically isolated from the culture by a brief duration of shaking. The microglia are then plated at high purity for experimental study. The principle and protocol of this methodology have been described in the literature. Additionally, alternate methodologies to isolate primary microglia are well described. Homogenized brain tissue may be separated

  17. Clonal Heterogeneity in the Neuronal and Glial Differentiation of Dental Pulp Stem/Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Fraser I. Young

    2016-01-01

    Full Text Available Cellular heterogeneity presents an important challenge to the development of cell-based therapies where there is a fundamental requirement for predictable and reproducible outcomes. Transplanted Dental Pulp Stem/Progenitor Cells (DPSCs have demonstrated early promise in experimental models of spinal cord injury and stroke, despite limited evidence of neuronal and glial-like differentiation after transplantation. Here, we report, for the first time, on the ability of single cell-derived clonal cultures of murine DPSCs to differentiate in vitro into immature neuronal-like and oligodendrocyte-like cells. Importantly, only DPSC clones with high nestin mRNA expression levels were found to successfully differentiate into Map2 and NF-positive neuronal-like cells. Neuronally differentiated DPSCs possessed a membrane capacitance comparable with primary cultured striatal neurons and small inward voltage-activated K+ but not outward Na+ currents were recorded suggesting a functionally immature phenotype. Similarly, only high nestin-expressing clones demonstrated the ability to adopt Olig1, Olig2, and MBP-positive immature oligodendrocyte-like phenotype. Together, these results demonstrate that appropriate markers may be used to provide an early indication of the suitability of a cell population for purposes where differentiation into a specific lineage may be beneficial and highlight that further understanding of heterogeneity within mixed cellular populations is required.

  18. Chronic lead intoxication affects glial and neural systems and induces hypoactivity in adult rat.

    Science.gov (United States)

    Sansar, Wafa; Ahboucha, Samir; Gamrani, Halima

    2011-10-01

    Lead is an environmental toxin and its effects are principally manifested in the brain. Glial and neuronal changes have been described during development following chronic or acute lead intoxication, however, little is known about the effects of chronic lead intoxication in adults. In this study we evaluated immunohistochemically the glial and dopaminergic systems in adult male Wistar rats. 0.5% (v/v) lead acetate in drinking water was administrated chronically over a 3-month period. Hypertrophic immunoreactive astrocytes were observed in the frontal cortex and other brain structures of the treated animals. Analysis of the astroglial features showed increased number of astrocyte cell bodies and processes in treated rats, an increase confirmed by Western blot. Particular distribution of glial fibrillary acidic protein immunoreactivity was observed within the blood vessel walls in which dense immunoreactive glial processes emanate from astrocytes. Glial changes in the frontal cortex were concomitant with reduced tyrosine hydroxylase immunoreactive neuronal processes, which seem to occur as a consequence of significantly reduced dopaminergic neurons within the nucleus of origin in the substantia nigra. These glial and neuronal changes following lead intoxication may affect animal behavior as evidenced by reduced locomotor activity in an open field test. These findings demonstrate that chronic lead exposure induces astroglial changes, which may compromise neuronal function and consequently animal behavior. Copyright © 2010 Elsevier GmbH. All rights reserved.

  19. Differentiation of Inflammation-Responsive Astrocytes from Glial Progenitors Generated from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Renata Santos

    2017-06-01

    Full Text Available Astrocyte dysfunction and neuroinflammation are detrimental features in multiple pathologies of the CNS. Therefore, the development of methods that produce functional human astrocytes represents an advance in the study of neurological diseases. Here we report an efficient method for inflammation-responsive astrocyte generation from induced pluripotent stem cells (iPSCs and embryonic stem cells. This protocol uses an intermediate glial progenitor stage and generates functional astrocytes that show levels of glutamate uptake and calcium activation comparable with those observed in human primary astrocytes. Stimulation of stem cell-derived astrocytes with interleukin-1β or tumor necrosis factor α elicits a strong and rapid pro-inflammatory response. RNA-sequencing transcriptome profiling confirmed that similar gene expression changes occurred in iPSC-derived and primary astrocytes upon stimulation with interleukin-1β. This protocol represents an important tool for modeling in-a-dish neurological diseases with an inflammatory component, allowing for the investigation of the role of diseased astrocytes in neuronal degeneration.

  20. Focal Transplantation of Human iPSC-Derived Glial-Rich Neural Progenitors Improves Lifespan of ALS Mice

    Directory of Open Access Journals (Sweden)

    Takayuki Kondo

    2014-08-01

    Full Text Available Transplantation of glial-rich neural progenitors has been demonstrated to attenuate motor neuron degeneration and disease progression in rodent models of mutant superoxide dismutase 1 (SOD1-mediated amyotrophic lateral sclerosis (ALS. However, translation of these results into a clinical setting requires a renewable human cell source. Here, we derived glial-rich neural progenitors from human iPSCs and transplanted them into the lumbar spinal cord of ALS mouse models. The transplanted cells differentiated into astrocytes, and the treated mouse group showed prolonged lifespan. Our data suggest a potential therapeutic mechanism via activation of AKT signal. The results demonstrated the efficacy of cell therapy for ALS by the use of human iPSCs as cell source.

  1. MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor.

    Science.gov (United States)

    Lee, Hae Kyung; Bier, Ariel; Cazacu, Simona; Finniss, Susan; Xiang, Cunli; Twito, Hodaya; Poisson, Laila M; Mikkelsen, Tom; Slavin, Shimon; Jacoby, Elad; Yalon, Michal; Toren, Amos; Rempel, Sandra A; Brodie, Chaya

    2013-01-01

    Glioblastomas (GBM), the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs) compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF) as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3'-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3'-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors.

  2. MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor.

    Directory of Open Access Journals (Sweden)

    Hae Kyung Lee

    Full Text Available Glioblastomas (GBM, the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3'-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3'-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors.

  3. Glial heterotopia of the oral cavity

    Directory of Open Access Journals (Sweden)

    Radhames E. Lizardo

    2015-07-01

    Full Text Available We report an unusual case of a glial heterotopia arising from the oral cavity of an African neonate. The patient presented with an external pedunculated oral mass which was connected to the anterior hard palate by a firm, rubbery stalk of mucosal tissue. While the mass appeared painless, it interfered with the infant's feeding and was disturbing to the parents. After a computed tomography scan excluded an intracranial connection, the mass was excised at its base and sent for biopsy. Histopathology examination confirmed glial heterotopia. Glial heterotopias should be included in the differential diagnosis of congenital masses in the oral region.

  4. The niche-derived glial cell line-derived neurotrophic factor (GDNF induces migration of mouse spermatogonial stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Lisa Dovere

    Full Text Available In mammals, the biological activity of the stem/progenitor compartment sustains production of mature gametes through spermatogenesis. Spermatogonial stem cells and their progeny belong to the class of undifferentiated spermatogonia, a germ cell population found on the basal membrane of the seminiferous tubules. A large body of evidence has demonstrated that glial cell line-derived neurotrophic factor (GDNF, a Sertoli-derived factor, is essential for in vivo and in vitro stem cell self-renewal. However, the mechanisms underlying this activity are not completely understood. In this study, we show that GDNF induces dose-dependent directional migration of freshly selected undifferentiated spermatogonia, as well as germline stem cells in culture, using a Boyden chamber assay. GDNF-induced migration is dependent on the expression of the GDNF co-receptor GFRA1, as shown by migration assays performed on parental and GFRA1-transduced GC-1 spermatogonial cell lines. We found that the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP is specifically expressed in undifferentiated spermatogonia. VASP belongs to the ENA/VASP family of proteins implicated in actin-dependent processes, such as fibroblast migration, axon guidance, and cell adhesion. In intact seminiferous tubules and germline stem cell cultures, GDNF treatment up-regulates VASP in a dose-dependent fashion. These data identify a novel role for the niche-derived factor GDNF, and they suggest that GDNF may impinge on the stem/progenitor compartment, affecting the actin cytoskeleton and cell migration.

  5. Molecular mechanism of the relation of monoamine oxidase B and its inhibitors to Parkinson's disease: possible implications of glial cells.

    Science.gov (United States)

    Nagatsu, T; Sawada, M

    2006-01-01

    Monoamine oxidases A and B (MAO A and MAO B) are the major enzymes that catalyze the oxidative deamination of monoamine neurotaransmitters such as dopamine (DA), noradrenaline, and serotonin in the central and peripheral nervous systems. MAO B is mainly localized in glial cells. MAO B also oxidizes the xenobiotic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to a parkinsonism-producing neurotoxin, 1-methyl-4-phenyl-pyridinium (MPP+). MAO B may be closely related to the pathogenesis of Parkinson's disease (PD), in which neuromelanin-containing DA neurons in the substantia nigra projecting to the striatum in the brain selectively degenerate. MAO B degrades the neurotransmitter DA that is deficient in the nigro-striatal region in PD, and forms H2O2 and toxic aldehyde metabolites of DA. H2O2 produces highly toxic reactive oxygen species (ROS) by Fenton reaction that is catalyzed by iron and neuromelanin. MAO B inhibitors such as L-(-)-deprenyl (selegiline) and rasagiline are effective for the treatment of PD. Concerning the mechanism of the clinical efficacy of MAO B inhibitors in PD, the inhibition of DA degradation (a symptomatic effect) and also the prevention of the formation of neurotoxic DA metabolites, i.e., ROS and dopamine derived aldehydes have been speculated. As another mechanism of clinical efficacy, MAO B inhibitors such as selegiline are speculated to have neuroprotective effects to prevent progress of PD. The possible mechanism of neuroprotection of MAO B inhibitors may be related not only to MAO B inhibition but also to induction and activation of multiple factors for anti-oxidative stress and anti-apoptosis: i.e., catalase, superoxide dismutase 1 and 2, thioredoxin, Bcl-2, the cellular poly(ADP-ribosyl)ation, and binding to glyceraldehydes-3-phosphate dehydrogenase (GAPDH). Furthermore, it should be noted that selegiline increases production of neurotrophins such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial

  6. Pur-Alpha Induces JCV Gene Expression and Viral Replication by Suppressing SRSF1 in Glial Cells.

    Directory of Open Access Journals (Sweden)

    Ilker Kudret Sariyer

    Full Text Available PML is a rare and fatal demyelinating disease of the CNS caused by the human polyomavirus, JC virus (JCV, which occurs in AIDS patients and those on immunosuppressive monoclonal antibody therapies (mAbs. We sought to identify mechanisms that could stimulate reactivation of JCV in a cell culture model system and targeted pathways which could affect early gene transcription and JCV T-antigen production, which are key steps of the viral life cycle for blocking reactivation of JCV. Two important regulatory partners we have previously identified for T-antigen include Pur-alpha and SRSF1 (SF2/ASF. SRSF1, an alternative splicing factor, is a potential regulator of JCV whose overexpression in glial cells strongly suppresses viral gene expression and replication. Pur-alpha has been most extensively characterized as a sequence-specific DNA- and RNA-binding protein which directs both viral gene transcription and mRNA translation, and is a potent inducer of the JCV early promoter through binding to T-antigen.Pur-alpha and SRSF1 both act directly as transcriptional regulators of the JCV promoter and here we have observed that Pur-alpha is capable of ameliorating SRSF1-mediated suppression of JCV gene expression and viral replication. Interestingly, Pur-alpha exerted its effect by suppressing SRSF1 at both the protein and mRNA levels in glial cells suggesting this effect can occur independent of T-antigen. Pur-alpha and SRSF1 were both localized to oligodendrocyte inclusion bodies by immunohistochemistry in brain sections from patients with HIV-1 associated PML. Interestingly, inclusion bodies were typically positive for either Pur-alpha or SRSF1, though some cells appeared to be positive for both proteins.Taken together, these results indicate the presence of an antagonistic interaction between these two proteins in regulating of JCV gene expression and viral replication and suggests that they play an important role during viral reactivation leading to

  7. A preliminary investigation into the impact of a pesticide combination on human neuronal and glial cell lines in vitro.

    Directory of Open Access Journals (Sweden)

    Michael D Coleman

    Full Text Available Many pesticides are used increasingly in combinations during crop protection and their stability ensures the presence of such combinations in foodstuffs. The effects of three fungicides, pyrimethanil, cyprodinil and fludioxonil, were investigated together and separately on U251 and SH-SY5Y cells, which can be representative of human CNS glial and neuronal cells respectively. Over 48h, all three agents showed significant reductions in cellular ATP, at concentrations that were more than tenfold lower than those which significantly impaired cellular viability. The effects on energy metabolism were reflected in their marked toxic effects on mitochondrial membrane potential. In addition, evidence of oxidative stress was seen in terms of a fall in cellular thiols coupled with increases in the expression of enzymes associated with reactive species formation, such as GSH peroxidase and superoxide dismutase. The glial cell line showed significant responsiveness to the toxin challenge in terms of changes in antioxidant gene expression, although the neuronal SH-SY5Y line exhibited greater vulnerability to toxicity, which was reflected in significant increases in caspase-3 expression, which is indicative of the initiation of apoptosis. Cyprodinil was the most toxic agent individually, although oxidative stress-related enzyme gene expression increases appeared to demonstrate some degree of synergy in the presence of the combination of agents. This report suggests that the impact of some pesticides, both individually and in combinations, merits further study in terms of their impact on human cellular health.

  8. Activation of retinal glial (Müller cells by extracellular ATP induces pronounced increases in extracellular H+ flux.

    Directory of Open Access Journals (Sweden)

    Boriana K Tchernookova

    Full Text Available Small alterations in extracellular acidity are potentially important modulators of neuronal signaling within the vertebrate retina. Here we report a novel extracellular acidification mechanism mediated by glial cells in the retina. Using self-referencing H+-selective microelectrodes to measure extracellular H+ fluxes, we show that activation of retinal Müller (glial cells of the tiger salamander by micromolar concentrations of extracellular ATP induces a pronounced extracellular H+ flux independent of bicarbonate transport. ADP, UTP and the non-hydrolyzable analog ATPγs at micromolar concentrations were also potent stimulators of extracellular H+ fluxes, but adenosine was not. The extracellular H+ fluxes induced by ATP were mimicked by the P2Y1 agonist MRS 2365 and were significantly reduced by the P2 receptor blockers suramin and PPADS, suggesting activation of P2Y receptors. Bath-applied ATP induced an intracellular rise in calcium in Müller cells; both the calcium rise and the extracellular H+ fluxes were significantly attenuated when calcium re-loading into the endoplasmic reticulum was inhibited by thapsigargin and when the PLC-IP3 signaling pathway was disrupted with 2-APB and U73122. The anion transport inhibitor DIDS also markedly reduced the ATP-induced increase in H+ flux while SITS had no effect. ATP-induced H+ fluxes were also observed from Müller cells isolated from human, rat, monkey, skate and lamprey retinae, suggesting a highly evolutionarily conserved mechanism of potential general importance. Extracellular ATP also induced significant increases in extracellular H+ flux at the level of both the outer and inner plexiform layers in retinal slices of tiger salamander which was significantly reduced by suramin and PPADS. We suggest that the novel H+ flux mediated by ATP-activation of Müller cells and of other glia as well may be a key mechanism modulating neuronal signaling in the vertebrate retina and throughout the brain.

  9. Nasal Glial Heterotopia with Cleft Palate.

    Science.gov (United States)

    Chandna, Sudhir; Mehta, Milind A; Kulkarni, Abhishek Kishore

    2018-01-01

    Congenital midline nasal masses are rare anomalies of which nasal glial heterotopia represents an even rarer subset. We report a case of a 25-day-old male child with nasal glial heterotopia along with cleft palate suggesting embryonic fusion anomaly which was treated with excision and primary closure for nasal mass followed by palatal repair at later date.

  10. Glial heterotopia of the lip: A rare presentation.

    Science.gov (United States)

    Dadaci, Mehmet; Bayram, Fazli Cengiz; Ince, Bilsev; Bilgen, Fatma

    2016-01-01

    Glial heterotopia represents collections of normal glial tissue in an abnormal location distant to the central nervous system or spinal canal with no intracranial connectivity. Nasal gliomas are non-neoplastic midline tumours, with limited growth potential and no similarity to the central nervous system gliomas. The nose and the nasopharynx are the most common sites of location. Existence of glial heterotopia in the lip region is a rare developmental disorder. We report a case of large glial heterotopia in the upper lip region in a full-term female newborn which had intracranial extension with a fibrotic band. After the surgery, there was no recurrence in the follow-up period of 3 years. When glial heterotopia, which is a rare midline anomaly, is suspected, possible intracranial connection and properties of the mass should be evaluated by magnetic resonance imaging. By this way, lower complication rate and better aesthetic results can be achieved with early diagnosis and proper surgery.

  11. Glial heterotopia of the lip: A rare presentation

    Directory of Open Access Journals (Sweden)

    Mehmet Dadaci

    2016-01-01

    Full Text Available Glial heterotopia represents collections of normal glial tissue in an abnormal location distant to the central nervous system or spinal canal with no intracranial connectivity. Nasal gliomas are non-neoplastic midline tumours, with limited growth potential and no similarity to the central nervous system gliomas. The nose and the nasopharynx are the most common sites of location. Existence of glial heterotopia in the lip region is a rare developmental disorder. We report a case of large glial heterotopia in the upper lip region in a full-term female newborn which had intracranial extension with a fibrotic band. After the surgery, there was no recurrence in the follow-up period of 3 years. When glial heterotopia, which is a rare midline anomaly, is suspected, possible intracranial connection and properties of the mass should be evaluated by magnetic resonance imaging. By this way, lower complication rate and better aesthetic results can be achieved with early diagnosis and proper surgery.

  12. 40 CFR 79.67 - Glial fibrillary acidic protein assay.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Glial fibrillary acidic protein assay... Glial fibrillary acidic protein assay. (a) Purpose. Chemical-induced injury of the nervous system, i.e... paragraph (e)(3) in this section). Assays of glial fibrillary acidic protein (GFAP), the major intermediate...

  13. Nasal glial heterotopia with cleft palate

    Directory of Open Access Journals (Sweden)

    Sudhir Chandna

    2018-01-01

    Full Text Available Congenital midline nasal masses are rare anomalies of which nasal glial heterotopia represents an even rarer subset. We report a case of a 25-day-old male child with nasal glial heterotopia along with cleft palate suggesting embryonic fusion anomaly which was treated with excision and primary closure for nasal mass followed by palatal repair at later date.

  14. An Adenosine-Mediated Glial-Neuronal Circuit for Homeostatic Sleep.

    Science.gov (United States)

    Bjorness, Theresa E; Dale, Nicholas; Mettlach, Gabriel; Sonneborn, Alex; Sahin, Bogachan; Fienberg, Allen A; Yanagisawa, Masashi; Bibb, James A; Greene, Robert W

    2016-03-30

    Sleep homeostasis reflects a centrally mediated drive for sleep, which increases during waking and resolves during subsequent sleep. Here we demonstrate that mice deficient for glial adenosine kinase (AdK), the primary metabolizing enzyme for adenosine (Ado), exhibit enhanced expression of this homeostatic drive by three independent measures: (1) increased rebound of slow-wave activity; (2) increased consolidation of slow-wave sleep; and (3) increased time constant of slow-wave activity decay during an average slow-wave sleep episode, proposed and validated here as a new index for homeostatic sleep drive. Conversely, mice deficient for the neuronal adenosine A1 receptor exhibit significantly decreased sleep drive as judged by these same indices. Neuronal knock-out of AdK did not influence homeostatic sleep need. Together, these findings implicate a glial-neuronal circuit mediated by intercellular Ado, controlling expression of homeostatic sleep drive. Because AdK is tightly regulated by glial metabolic state, our findings suggest a functional link between cellular metabolism and sleep homeostasis. The work presented here provides evidence for an adenosine-mediated regulation of sleep in response to waking (i.e., homeostatic sleep need), requiring activation of neuronal adenosine A1 receptors and controlled by glial adenosine kinase. Adenosine kinase acts as a highly sensitive and important metabolic sensor of the glial ATP/ADP and AMP ratio directly controlling intracellular adenosine concentration. Glial equilibrative adenosine transporters reflect the intracellular concentration to the extracellular milieu to activate neuronal adenosine receptors. Thus, adenosine mediates a glial-neuronal circuit linking glial metabolic state to neural-expressed sleep homeostasis. This indicates a metabolically related function(s) for this glial-neuronal circuit in the buildup and resolution of our need to sleep and suggests potential therapeutic targets more directly related to

  15. Hippocampal kindling alters the concentration of glial fibrillary acidic protein and other marker proteins in rat brain

    DEFF Research Database (Denmark)

    Hansen, A; Jørgensen, Ole Steen; Bolwig, T G

    1990-01-01

    The effect of hippocampal kindling on neuronal and glial marker proteins was studied in the rat by immunochemical methods. In hippocampus, pyriform cortex and amygdala there was an increase in glial fibrillary acidic protein (GFAP), indicating reactive gliosis, and an increase in the glycolytic...... enzyme NSE, suggesting increased anaerobic metabolism. Neuronal cell adhesion molecule (NCAM) decreased in pyriform cortex and amygdala of kindled rats, indicating neuronal degeneration....

  16. Differentiation of Inflammation-Responsive Astrocytes from Glial Progenitors Generated from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Santos, Renata; Vadodaria, Krishna C; Jaeger, Baptiste N; Mei, Arianna; Lefcochilos-Fogelquist, Sabrina; Mendes, Ana P D; Erikson, Galina; Shokhirev, Maxim; Randolph-Moore, Lynne; Fredlender, Callie; Dave, Sonia; Oefner, Ruth; Fitzpatrick, Conor; Pena, Monique; Barron, Jerika J; Ku, Manching; Denli, Ahmet M; Kerman, Bilal E; Charnay, Patrick; Kelsoe, John R; Marchetto, Maria C; Gage, Fred H

    2017-06-06

    Astrocyte dysfunction and neuroinflammation are detrimental features in multiple pathologies of the CNS. Therefore, the development of methods that produce functional human astrocytes represents an advance in the study of neurological diseases. Here we report an efficient method for inflammation-responsive astrocyte generation from induced pluripotent stem cells (iPSCs) and embryonic stem cells. This protocol uses an intermediate glial progenitor stage and generates functional astrocytes that show levels of glutamate uptake and calcium activation comparable with those observed in human primary astrocytes. Stimulation of stem cell-derived astrocytes with interleukin-1β or tumor necrosis factor α elicits a strong and rapid pro-inflammatory response. RNA-sequencing transcriptome profiling confirmed that similar gene expression changes occurred in iPSC-derived and primary astrocytes upon stimulation with interleukin-1β. This protocol represents an important tool for modeling in-a-dish neurological diseases with an inflammatory component, allowing for the investigation of the role of diseased astrocytes in neuronal degeneration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. A competitive advantage by neonatally engrafted human glial progenitors yields mice whose brains are chimeric for human glia.

    Science.gov (United States)

    Windrem, Martha S; Schanz, Steven J; Morrow, Carolyn; Munir, Jared; Chandler-Militello, Devin; Wang, Su; Goldman, Steven A

    2014-11-26

    Neonatally transplanted human glial progenitor cells (hGPCs) densely engraft and myelinate the hypomyelinated shiverer mouse. We found that, in hGPC-xenografted mice, the human donor cells continue to expand throughout the forebrain, systematically replacing the host murine glia. The differentiation of the donor cells is influenced by the host environment, such that more donor cells differentiated as oligodendrocytes in the hypomyelinated shiverer brain than in myelin wild-types, in which hGPCs were more likely to remain as progenitors. Yet in each recipient, both the number and relative proportion of mouse GPCs fell as a function of time, concomitant with the mitotic expansion and spread of donor hGPCs. By a year after neonatal xenograft, the forebrain GPC populations of implanted mice were largely, and often entirely, of human origin. Thus, neonatally implanted hGPCs outcompeted and ultimately replaced the host population of mouse GPCs, ultimately generating mice with a humanized glial progenitor population. These human glial chimeric mice should permit us to define the specific contributions of glia to a broad variety of neurological disorders, using human cells in vivo. Copyright © 2014 the authors 0270-6474/14/3416153-09$15.00/0.

  18. Glial heterotopia of maxilla: A clinical surprise

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Mahalik

    2011-01-01

    Full Text Available Glial heterotopia is a rare congenital mass lesion which often presents as a clinical surprise. We report a case of extranasal glial heterotopia in a neonate with unusual features. The presentation, management strategy, etiopathogenesis and histopathology of the mass lesion has been reviewed.

  19. Glial Heterotopia of the orbit: A rare presentation

    Science.gov (United States)

    2011-01-01

    Background Glial heterotopias are rare, benign, congenital, midline, non-teratomatous extracranial glial tissue. They may masquerade as encephalocoele or dermoid cyst and mostly present in nose. Herein, we present an unusual case of glial heterotopia of the orbit with unilateral blindness. Case presentation A 6 year-old-boy presented with a progressive painless mass over the nose and medial aspect of the left eye noticed since birth. On examination, the globe was displaced laterally by a firm, regular, mobile, non-pulsatile and non-tender medial mass. The affected eye had profound loss of vision. Computed tomography scan showed a large hypodense mass in the extraconal space with no intracranial connectivity and bony erosion. The child underwent total surgical excision of the mass and histopathological examination confirmed glial heterotopia of the orbit. Conclusion Though the incidence of this condition is rare, the need of appropriate diagnosis and management of such mass to prevent the visual and cosmetic deterioration is warranted. To our knowledge this is the first reported case of Glial heterotopia of orbit causing unilateral blindness. PMID:22088230

  20. Glial Heterotopia of the orbit: A rare presentation

    Directory of Open Access Journals (Sweden)

    Sitaula Ranju

    2011-11-01

    Full Text Available Abstract Background Glial heterotopias are rare, benign, congenital, midline, non-teratomatous extracranial glial tissue. They may masquerade as encephalocoele or dermoid cyst and mostly present in nose. Herein, we present an unusual case of glial heterotopia of the orbit with unilateral blindness. Case presentation A 6 year-old-boy presented with a progressive painless mass over the nose and medial aspect of the left eye noticed since birth. On examination, the globe was displaced laterally by a firm, regular, mobile, non-pulsatile and non-tender medial mass. The affected eye had profound loss of vision. Computed tomography scan showed a large hypodense mass in the extraconal space with no intracranial connectivity and bony erosion. The child underwent total surgical excision of the mass and histopathological examination confirmed glial heterotopia of the orbit. Conclusion Though the incidence of this condition is rare, the need of appropriate diagnosis and management of such mass to prevent the visual and cosmetic deterioration is warranted. To our knowledge this is the first reported case of Glial heterotopia of orbit causing unilateral blindness.

  1. ­Glial and stem cell expression of murine Fibroblast Growth Factor Receptor 1 in the embryonic and perinatal nervous system

    Directory of Open Access Journals (Sweden)

    Jantzen C. Collette

    2017-06-01

    Full Text Available Background Fibroblast growth factors (FGFs and their receptors (FGFRs are involved in the development and function of multiple organs and organ systems, including the central nervous system (CNS. FGF signaling via FGFR1, one of the three FGFRs expressed in the CNS, stimulates proliferation of stem cells during prenatal and postnatal neurogenesis and participates in regulating cell-type ratios in many developing regions of the brain. Anomalies in FGFR1 signaling have been implicated in certain neuropsychiatric disorders. Fgfr1 expression has been shown, via in situ hybridization, to vary spatially and temporally throughout embryonic and postnatal development of the brain. However, in situ hybridization lacks sufficient resolution to identify which cell-types directly participate in FGF signaling. Furthermore, because antibodies raised against FGFR1 commonly cross-react with other members of the FGFR family, immunocytochemistry is not alone sufficient to accurately document Fgfr1 expression. Here, we elucidate the identity of Fgfr1 expressing cells in both the embryonic and perinatal mouse brain. Methods To do this, we utilized a tgFGFR1-EGFPGP338Gsat BAC line (tgFgfr1-EGFP+ obtained from the GENSAT project. The tgFgfr1-EGFP+ line expresses EGFP under the control of a Fgfr1 promoter, thereby causing cells endogenously expressing Fgfr1 to also present a positive GFP signal. Through simple immunostaining using GFP antibodies and cell-type specific antibodies, we were able to accurately determine the cell-type of Fgfr1 expressing cells. Results This technique revealed Fgfr1 expression in proliferative zones containing BLBP+ radial glial stem cells, such as the cortical and hippocampal ventricular zones, and cerebellar anlage of E14.5 mice, in addition to DCX+ neuroblasts. Furthermore, our data reveal Fgfr1 expression in proliferative zones containing BLBP+ cells of the anterior midline, hippocampus, cortex, hypothalamus, and cerebellum of P0.5 mice

  2. Cancer stem cells from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall

    Directory of Open Access Journals (Sweden)

    Li Shengwen

    2012-09-01

    Full Text Available Abstract Background The cancer stem cell (CSC hypothesis posits that deregulated neural stem cells (NSCs form the basis of brain tumors such as glioblastoma multiforme (GBM. GBM, however, usually forms in the cerebral white matter while normal NSCs reside in subventricular and hippocampal regions. We attempted to characterize CSCs from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall. Methods We described isolating CSCs from a GBM involving the lateral ventricles and characterized these cells with in vitro molecular biomarker profiling, cellular behavior, ex vivo and in vivo techniques. Results The patient’s MRI revealed a heterogeneous mass with associated edema, involving the left subventricular zone. Histological examination of the tumor established it as being a high-grade glial neoplasm, characterized by polygonal and fusiform cells with marked nuclear atypia, amphophilic cytoplasm, prominent nucleoli, frequent mitotic figures, irregular zones of necrosis and vascular hyperplasia. Recurrence of the tumor occurred shortly after the surgical resection. CD133-positive cells, isolated from the tumor, expressed stem cell markers including nestin, CD133, Ki67, Sox2, EFNB1, EFNB2, EFNB3, Cav-1, Musashi, Nucleostemin, Notch 2, Notch 4, and Pax6. Biomarkers expressed in differentiated cells included Cathepsin L, Cathepsin B, Mucin18, Mucin24, c-Myc, NSE, and TIMP1. Expression of unique cancer-related transcripts in these CD133-positive cells, such as caveolin-1 and −2, do not appear to have been previously reported in the literature. Ex vivo organotypic brain slice co-culture showed that the CD133+ cells behaved like tumor cells. The CD133-positive cells also induced tumor formation when they were stereotactically transplanted into the brains of the immune-deficient NOD/SCID mice. Conclusions This brain tumor involving the neurogenic lateral ventricular wall was comprised of tumor-forming, CD133-positive cancer

  3. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain.

    Science.gov (United States)

    Zhang, Zhi-Jun; Jiang, Bao-Chun; Gao, Yong-Jing

    2017-09-01

    Neuropathic pain resulting from damage or dysfunction of the nervous system is a highly debilitating chronic pain state and is often resistant to currently available treatments. It has become clear that neuroinflammation, mainly mediated by proinflammatory cytokines and chemokines, plays an important role in the establishment and maintenance of neuropathic pain. Chemokines were originally identified as regulators of peripheral immune cell trafficking and were also expressed in neurons and glial cells in the central nervous system. In recent years, accumulating studies have revealed the expression, distribution and function of chemokines in the spinal cord under chronic pain conditions. In this review, we provide evidence showing that several chemokines are upregulated after peripheral nerve injury and contribute to the pathogenesis of neuropathic pain via different forms of neuron-glia interaction in the spinal cord. First, chemokine CX3CL1 is expressed in primary afferents and spinal neurons and induces microglial activation via its microglial receptor CX3CR1 (neuron-to-microglia signaling). Second, CCL2 and CXCL1 are expressed in spinal astrocytes and act on CCR2 and CXCR2 in spinal neurons to increase excitatory synaptic transmission (astrocyte-to-neuron signaling). Third, we recently identified that CXCL13 is highly upregulated in spinal neurons after spinal nerve ligation and induces spinal astrocyte activation via receptor CXCR5 (neuron-to-astrocyte signaling). Strategies that target chemokine-mediated neuron-glia interactions may lead to novel therapies for the treatment of neuropathic pain.

  4. [Nasal glial heterotopia: Clinical and morphological characteristics].

    Science.gov (United States)

    Bykova, V P; Bakhtin, A A; Polyakov, D P; Yunusov, A S; Daikhes, N A

    The paper describes a case of nasal glial heterotopia in a 10-month-old girl with a mixed (intranasal and subcutaneous) localization, which is accompanied by the divergence of the nasal bones. Histological examination supplemented by immunohistochemical reactions with antibodies to vimentin, S100 protein, neuron-specific enolase, as well as Ki-67 and smooth muscle actin confirmed the neural nature of the tumor. Fields of mature astrocytic glia including individual cells with neuronal differentiation were found among the fibrous and fibrovascular tissues. The paper provides a brief overview of the discussed pathology.

  5. Crosstalk between insulin-like growth factor-1 and angiotensin-II in dopaminergic neurons and glial cells: role in neuroinflammation and aging

    Science.gov (United States)

    Rodriguez-Perez, Ana I.; Borrajo, Ana; Diaz-Ruiz, Carmen; Garrido-Gil, Pablo; Labandeira-Garcia, Jose L.

    2016-01-01

    The local renin-angiotensin system (RAS) and insulin-like growth factor 1 (IGF-1) have been involved in longevity, neurodegeneration and aging-related dopaminergic degeneration. However, it is not known whether IGF-1 and angiotensin-II (AII) activate each other. In the present study, AII, via type 1 (AT1) receptors, exacerbated neuroinflammation and dopaminergic cell death. AII, via AT1 receptors, also increased the levels of IGF-1 and IGF-1 receptors in microglial cells. IGF-1 inhibited RAS activity in dopaminergic neurons and glial cells, and also inhibited the AII-induced increase in markers of the M1 microglial phenotype. Consistent with this, IGF-1 decreased dopaminergic neuron death induced by the neurotoxin MPP+ both in the presence and in the absence of glia. Intraventricular administration of AII to young rats induced a significant increase in IGF-1 expression in the nigral region. However, aged rats showed decreased levels of IGF-1 relative to young controls, even though RAS activity is known to be enhanced in aged animals. The study findings show that IGF-1 and the local RAS interact to inhibit or activate neuroinflammation (i.e. transition from the M1 to the M2 phenotype), oxidative stress and dopaminergic degeneration. The findings also show that this mechanism is impaired in aged animals. PMID:27167199

  6. Potassium accumulation by the glial membrane pump as revealed by membrane potential recording from isolated rabbit retinal Müller cells.

    Science.gov (United States)

    Reichenbach, A; Nilius, B; Eberhardt, W

    1986-01-30

    Müller (glial) cells were isolated from rabbit retinae by papaine and mechanical dissociation. In a special perfusion chamber, the cells were penetrated with a recording electrode. When high-K+ solutions were applied into the environment of the cells by means of a second micropipette, the cell membrane depolarized strongly. During prolonged application of high-K+ solutions, however, there occurred a marked repolarization, and after cessation of high-K+ application, a strong hyperpolarization was observed. Both effects disappeared under the influence of ouabain, suggesting the accumulation of intracellular K+ by an active membrane pump. The data were used for calculation of the membrane's Na+:K+ permeability ratio, the intracellular K+ concentration, the pump rate and the mean pump site density. The calculated values are in good agreement with published data from mammalian astrocytes and are compared with those from amphibian Müller cells.

  7. Disruption of spinal cord white matter and sciatic nerve geometry inhibits axonal growth in vitro in the absence of glial scarring

    Directory of Open Access Journals (Sweden)

    Crutcher Keith A

    2001-05-01

    Full Text Available Abstract Background Axons within the mature mammalian central nervous system fail to regenerate following injury, usually resulting in long-lasting motor and sensory deficits. Studies involving transplantation of adult neurons into white matter implicate glial scar-associated factors in regeneration failure. However, these studies cannot distinguish between the effects of these factors and disruption of the spatial organization of cells and molecular factors (disrupted geometry. Since white matter can support or inhibit neurite growth depending on the geometry of the fiber tract, the present study sought to determine whether disrupted geometry is sufficient to inhibit neurite growth. Results Embryonic chick sympathetic neurons were cultured on unfixed longitudinal cryostat sections of mature rat spinal cord or sciatic nerve that had been crushed with forceps ex vivo then immediately frozen to prevent glial scarring. Neurite growth on uncrushed portions of spinal cord white matter or sciatic nerve was extensive and highly parallel with the longitudinal axis of the fiber tract but did not extend onto crushed portions. Moreover, neurite growth from neurons attached directly to crushed white matter or nerve tissue was shorter and less parallel compared with neurite growth on uncrushed tissue. In contrast, neurite growth appeared to be unaffected by crushed spinal cord gray matter. Conclusions These observations suggest that glial scar-associated factors are not necessary to block axonal growth at sites of injury. Disruption of fiber tract geometry, perhaps involving myelin-associated neurite-growth inhibitors, may be sufficient to pose a barrier to regenerating axons in spinal cord white matter and peripheral nerves.

  8. HDAC1 regulates the proliferation of radial glial cells in the developing Xenopus tectum.

    Directory of Open Access Journals (Sweden)

    Yi Tao

    Full Text Available In the developing central nervous system (CNS, progenitor cells differentiate into progeny to form functional neural circuits. Radial glial cells (RGs are a transient progenitor cell type that is present during neurogenesis. It is thought that a combination of neural trophic factors, neurotransmitters and electrical activity regulates the proliferation and differentiation of RGs. However, it is less clear how epigenetic modulation changes RG proliferation. We sought to explore the effect of histone deacetylase (HDAC activity on the proliferation of RGs in the visual optic tectum of Xenopus laevis. We found that the number of BrdU-labeled precursor cells along the ventricular layer of the tectum decrease developmentally from stage 46 to stage 49. The co-labeling of BrdU-positive cells with brain lipid-binding protein (BLBP, a radial glia marker, showed that the majority of BrdU-labeled cells along the tectal midline are RGs. BLBP-positive cells are also developmentally decreased with the maturation of the brain. Furthermore, HDAC1 expression is developmentally down-regulated in tectal cells, especially in the ventricular layer of the tectum. Pharmacological blockade of HDACs using Trichostatin A (TSA or Valproic acid (VPA decreased the number of BrdU-positive, BLBP-positive and co-labeling cells. Specific knockdown of HDAC1 by a morpholino (HDAC1-MO decreased the number of BrdU- and BLBP-labeled cells and increased the acetylation level of histone H4 at lysine 12 (H4K12. The visual deprivation-induced increase in BrdU- and BLBP-positive cells was blocked by HDAC1 knockdown at stage 49 tadpoles. These data demonstrate that HDAC1 regulates radial glia cell proliferation in the developing optical tectum of Xenopus laevis.

  9. Efficient K+ buffering by mammalian retinal glial cells is due to cooperation of specialized ion channels.

    Science.gov (United States)

    Nilius, B; Reichenbach, A

    1988-06-01

    Radial glial (Müller) cells were isolated from rabbit retinae by papaine and mechanical dissociation. Regional membrane properties of these cells were studied by using the patch-clamp technique. In the course of our experiments, we found three distinct types of large K+ conducting channels. The vitread process membrane was dominated by high conductance inwardly rectifying (HCR) channels which carried, in the open state, inward currents along a conductance of about 105 pS (symmetrical solutions with 140 mM K+) but almost no outward currents. In the membrane of the soma and the proximal distal process, we found low conductance inwardly rectifying (LCR) channels which had an open state-conductance of about 60 pS and showed rather weak rectification. The endfoot membrane, on the other hand, was found to contain non-rectifying very high conductance (VHC) channels with an open state-conductance of about 360 pS (same solutions). These results suggest that mammalian Müller cells express regional membrane specializations which are optimized to carry spatial buffering currents of excess K+ ions.

  10. Müller glial cells contribute to dim light vision in the spectacled caiman (Caiman crocodilus fuscus): Analysis of retinal light transmission.

    Science.gov (United States)

    Agte, Silke; Savvinov, Alexey; Karl, Anett; Zayas-Santiago, Astrid; Ulbricht, Elke; Makarov, Vladimir I; Reichenbach, Andreas; Bringmann, Andreas; Skatchkov, Serguei N

    2018-05-16

    In this study, we show the capability of Müller glial cells to transport light through the inverted retina of reptiles, specifically the retina of the spectacled caimans. Thus, confirming that Müller cells of lower vertebrates also improve retinal light transmission. Confocal imaging of freshly isolated retinal wholemounts, that preserved the refractive index landscape of the tissue, indicated that the retina of the spectacled caiman is adapted for vision under dim light conditions. For light transmission experiments, we used a setup with two axially aligned objectives imaging the retina from both sides to project the light onto the inner (vitreal) surface and to detect the transmitted light behind the retina at the receptor layer. Simultaneously, a confocal microscope obtained images of the Müller cells embedded within the vital tissue. Projections of light onto several representative Müller cell trunks within the inner plexiform layer, i.e. (i) trunks with a straight orientation, (ii) trunks which are formed by the inner processes and (iii) trunks which get split into inner processes, were associated with increases in the intensity of the transmitted light. Projections of light onto the periphery of the Müller cell endfeet resulted in a lower intensity of transmitted light. In this way, retinal glial (Müller) cells support dim light vision by improving the signal-to-noise ratio which increases the sensitivity to light. The field of illuminated photoreceptors mainly include rods reflecting the rod dominance of the of tissue. A subpopulation of Müller cells with downstreaming cone cells led to a high-intensity illumination of the cones, while the surrounding rods were illuminated by light of lower intensity. Therefore, Müller cells that lie in front of cones may adapt the intensity of the transmitted light to the different sensitivities of cones and rods, presumably allowing a simultaneous vision with both receptor types under dim light conditions

  11. Neuronal activity in the hub of extrasynaptic Schwann cell-axon interactions

    Directory of Open Access Journals (Sweden)

    Chrysanthi eSamara

    2013-11-01

    Full Text Available The integrity and function of neurons depend on their continuous interactions with glial cells. In the peripheral nervous system glial functions are exerted by Schwann cells (SCs. SCs sense synaptic and extrasynaptic manifestations of action potential propagation and adapt their physiology to support neuronal activity. We review here existing literature data on extrasynaptic bidirectional axon-SC communication, focusing particularly on neuronal activity implications. To shed light on underlying mechanisms, we conduct a thorough analysis of microarray data from SC-rich mouse sciatic nerve at different developmental stages and in neuropathic models. We identify molecules that are potentially involved in SC detection of neuronal activity signals inducing subsequent glial responses. We further suggest that alterations in the activity-dependent axon-SC crosstalk impact on peripheral neuropathies. Together with previously reported data, these observations open new perspectives for deciphering glial mechanisms of neuronal function support.

  12. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila.

    Science.gov (United States)

    Sousa-Nunes, Rita; Yee, Lih Ling; Gould, Alex P

    2011-03-24

    Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated. The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system, multipotent self-renewing progenitors called neuroblasts undergo quiescence in a stereotypical spatiotemporal pattern. Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer. Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids. Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called the fat body. Here we provide in vivo evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size but do not reactivate neuroblasts. Drosophila thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body-glia-neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour.

  13. Depression as a Glial-Based Synaptic Dysfunction

    Directory of Open Access Journals (Sweden)

    Daniel eRial

    2016-01-01

    Full Text Available Recent studies combining pharmacological, behavioral, electrophysiological and molecular approaches indicate that depression results from maladaptive neuroplastic processing occurring in defined frontolimbic circuits responsible for emotional processing such as the prefrontal cortex, hippocampus, amygdala and ventral striatum. However, the exact mechanisms controlling synaptic plasticity that are disrupted to trigger depressive conditions have not been elucidated. Since glial cells (astrocytes and microglia tightly and dynamically interact with synapses, engaging a bi-directional communication critical for the processing of synaptic information, we now revisit the role of glial cells in the etiology of depression focusing on a dysfunction of the ‘quad-partite’ synapse. This interest is supported by the observations that depressive-like conditions are associated with a decreased density and hypofunction of astrocytes and with an increase microglia ‘activation’ in frontolimbic regions, which is expected to contribute for the synaptic dysfunction present in depression. Furthermore, the traditional culprits of depression (glucocorticoids, biogenic amines, BDNF affect glia functioning, whereas antidepressant treatments (SSRIs, electroshock, deep brain stimulation recover glia functioning. In this context of a quad-partite synapse, systems modulating glia-synapse bidirectional communication - such as the purinergic neuromodulation system operated by ATP and adenosine - emerge as promising candidates to re-normalize synaptic function by combining direct synaptic effects with an ability to also control astrocyte and microglia function. This proposed triple action of purines to control aberrant synaptic function illustrates the rationale to consider the interference with glia dysfunction as a mechanism of action driving the design of future pharmacological tools to manage depression.

  14. Efficient Transduction of Feline Neural Progenitor Cells for Delivery of Glial Cell Line-Derived Neurotrophic Factor Using a Feline Immunodeficiency Virus-Based Lentiviral Construct

    Directory of Open Access Journals (Sweden)

    X. Joann You

    2011-01-01

    Full Text Available Work has shown that stem cell transplantation can rescue or replace neurons in models of retinal degenerative disease. Neural progenitor cells (NPCs modified to overexpress neurotrophic factors are one means of providing sustained delivery of therapeutic gene products in vivo. To develop a nonrodent animal model of this therapeutic strategy, we previously derived NPCs from the fetal cat brain (cNPCs. Here we use bicistronic feline lentiviral vectors to transduce cNPCs with glial cell-derived neurotrophic factor (GDNF together with a GFP reporter gene. Transduction efficacy is assessed, together with transgene expression level and stability during induction of cellular differentiation, together with the influence of GDNF transduction on growth and gene expression profile. We show that GDNF overexpressing cNPCs expand in vitro, coexpress GFP, and secrete high levels of GDNF protein—before and after differentiation—all qualities advantageous for use as a cell-based approach in feline models of neural degenerative disease.

  15. Aggravation of Alzheimer's disease due to the COX-2-mediated reciprocal regulation of IL-1β and Aβ between glial and neuron cells.

    Science.gov (United States)

    Wang, Pu; Guan, Pei-Pei; Wang, Tao; Yu, Xin; Guo, Jian-Jun; Wang, Zhan-You

    2014-08-01

    Alzheimer's disease (AD) is the most common form of dementia and displays the characteristics of chronic neurodegenerative disorders; amyloid plaques (AP) that contain amyloid β-protein (Aβ) accumulate in AD, which is also characterized by tau phosphorylation. Epidemiological evidence has demonstrated that long-term treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) markedly reduces the risk of AD by inhibiting the expression of cyclooxygenase 2 (COX-2). Although the levels of COX-2 and its metabolic product prostaglandin (PG)E2 are elevated in the brain of AD patients, the mechanisms for the development of AD remain unknown. Using human- or mouse-derived glioblastoma and neuroblastoma cell lines as model systems, we delineated the signaling pathways by which COX-2 mediates the reciprocal regulation of interleukin-1β (IL-1β) and Aβ between glial and neuron cells. In glioblastoma cells, COX-2 regulates the synthesis of IL-1β in a PGE2 -dependent manner. Moreover, COX-2-derived PGE2 signals the activation of the PI3-K/AKT and PKA/CREB pathways via cyclic AMP; these pathways transactivate the NF-κB p65 subunit via phosphorylation at Ser 536 and Ser 276, leading to IL-1β synthesis. The secretion of IL-1β from glioblastoma cells in turn stimulates the expression of COX-2 in human or mouse neuroblastoma cells. Similar regulatory mechanisms were found for the COX-2 regulation of BACE-1 expression in neuroblastoma cells. More importantly, Aβ deposition mediated the inflammatory response of glial cells via inducing the expression of COX-2 in glioblastoma cells. These findings not only provide new insights into the mechanisms of COX-2-induced AD but also initially define the therapeutic targets of AD. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. Glial processes at the Drosophila larval neuromuscular junction match synaptic growth.

    Directory of Open Access Journals (Sweden)

    Deidre L Brink

    Full Text Available Glia are integral participants in synaptic physiology, remodeling and maturation from blowflies to humans, yet how glial structure is coordinated with synaptic growth is unknown. To investigate the dynamics of glial development at the Drosophila larval neuromuscular junction (NMJ, we developed a live imaging system to establish the relationship between glia, neuronal boutons, and the muscle subsynaptic reticulum. Using this system we observed processes from two classes of peripheral glia present at the NMJ. Processes from the subperineurial glia formed a blood-nerve barrier around the axon proximal to the first bouton. Processes from the perineurial glial extended beyond the end of the blood-nerve barrier into the NMJ where they contacted synapses and extended across non-synaptic muscle. Growth of the glial processes was coordinated with NMJ growth and synaptic activity. Increasing synaptic size through elevated temperature or the highwire mutation increased the extent of glial processes at the NMJ and conversely blocking synaptic activity and size decreased the presence and size of glial processes. We found that elevated temperature was required during embryogenesis in order to increase glial expansion at the nmj. Therefore, in our live imaging system, glial processes at the NMJ are likely indirectly regulated by synaptic changes to ensure the coordinated growth of all components of the tripartite larval NMJ.

  17. Combined treatment with ribavirin and tiazofurin attenuates response of glial cells in experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Nedeljković Nadežda

    2012-01-01

    Full Text Available Experimental autoimmune encephalomyelitis (EAE is an animal model of multiple sclerosis (MS, a human inflammatory and demyelinating disease. Microglia and astrocytes are glial cells of the central nervous system (CNS that play a dual role in MS and EAE pathology. The aim of this study was to examine the effect of combined treatment with two nucleoside analogues, ribavirin and tiazofurin, on microglia and astrocytes in actively induced EAE. Therapeutic treatment with a combination of these two nucleoside analogues reduced disease severity, mononuclear cell infiltration and demyelination. The obtained histological results indicate that ribavirin and tiazofurin changed activated microglia into an inactive type and attenuated astrocyte reactivity at the end of the treatment period. Since reduction of reactive microgliosis and astrogliosis correlated with EAE suppression, the present study also suggests that the obtained beneficial effect of ribavirin and tiazofurin could be a consequence of their action inside as well as outside the CNS. [Acknowledgments. This work was supported by the Serbian Ministry of Education and Science, Project No: III41014.

  18. Peripheral nerve injury induces glial activation in primary motor cortex

    OpenAIRE

    Julieta Troncoso; Julieta Troncoso; Efraín Buriticá; Efraín Buriticá

    2015-01-01

    Preliminary evidence suggests that peripheral facial nerve injuries are associated with sensorimotor cortex reorganization. We have characterized facial nerve lesion-induced structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with glial cell density using a rodent facial paralysis model. First, we used adult transgenic mice expressing green fluorescent protein in microglia and yellow fluorescent protein in pyramidal neurons which were subjected to eithe...

  19. Neurospheres induced from bone marrow stromal cells are multipotent for differentiation into neuron, astrocyte, and oligodendrocyte phenotypes

    International Nuclear Information System (INIS)

    Suzuki, Hidenori; Taguchi, Toshihiko; Tanaka, Hiroshi; Kataoka, Hideo; Li Zhenglin; Muramatsu, Keiichi; Gondo, Toshikazu; Kawai, Shinya

    2004-01-01

    Bone marrow stromal cells (MSCs) can be expanded rapidly in vitro and have the potential to be differentiated into neuronal, glial and endodermal cell types. However, induction for differentiation does not always have stable result. We present a new method for efficient induction and acquisition of neural progenitors, neuronal- and glial-like cells from MSCs. We demonstrate that rat MSCs can be induced to neurospheres and most cells are positive for nestin, which is an early marker of neuronal progenitors. In addition, we had success in proliferation of these neurospheres with undifferentiated characteristics and finally we could obtain large numbers of neuronal and glial phenotypes. Many of the cells expressed β-tubulin III when they were cultivated with our method. MSCs can become a valuable cell source as an autograft for clinical application involving regeneration of the central nervous system

  20. Effect of iron deficiency on the expression of insulin-like growth factor-II and its receptor in neuronal and glial cells.

    Science.gov (United States)

    Morales González, E; Contreras, I; Estrada, J A

    2014-09-01

    Many studies have demonstrated that iron deficiency modifies the normal function of the central nervous system and alters cognitive abilities. When cellular damage occurs in the central nervous system, neuroprotective mechanisms, such as the production of neurotrophic factors, are essential in order for nervous tissue to function correctly. Insulin-like growth factor II (IGF- II) is a neurotrophic factor that was recently shown to be involved in the normal functioning of cognitive processes in animal models. However, the impact of iron deficiency on the expression and function of this molecule has not yet been clarified. Mixed primary cell cultures from the central nervous system were collected to simulate iron deficiency using deferoxamine. The expression of IGF-I, IGF-II, IGF-IR, and IGF-IIR was determined with the western blot test. We observed increased expression of IGF-II, along with a corresponding decrease in the expression of IGF-IIR, in iron-deficient mixed primary cell cultures. We did not observe alterations in the expression of these proteins in isolated microglia or neuronal cultures under the same conditions. We did not detect differences in the expression of IGF-I and IGF-IR in iron-deficient cultures. In vitro iron deficiency increases the expression of IGF-II in mixed glial cell cultures, which may have a beneficial effect on brain tissue homeostasis in a situation in which iron availability is decreased. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  1. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Mariko Saito

    2016-08-01

    Full Text Available Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD. While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy. Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7 mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.

  2. Low-dose/dose-rate γ radiation depresses neural differentiation and alters protein expression profiles in neuroblastoma SH-SY5Y cells and C17.2 neural stem cells.

    Science.gov (United States)

    Bajinskis, Ainars; Lindegren, Heléne; Johansson, Lotta; Harms-Ringdahl, Mats; Forsby, Anna

    2011-02-01

    The effects of low doses of ionizing radiation on cellular development in the nervous system are presently unclear. The focus of the present study was to examine low-dose γ-radiation-induced effects on the differentiation of neuronal cells and on the development of neural stem cells to glial cells. Human neuroblastoma SH-SY5Y cells were exposed to (137)Cs γ rays at different stages of retinoic acid-induced neuronal differentiation, and neurite formation was determined 6 days after exposure. When SH-SY5Y cells were exposed to low-dose-rate γ rays at the onset of differentiation, the number of neurites formed per cell was significantly less after exposure to either 10, 30 or 100 mGy compared to control cells. Exposure to 10 and 30 mGy attenuated differentiation of immature C17.2 mouse-derived neural stem cells to glial cells, as verified by the diminished expression of glial fibrillary acidic protein. Proteomic analysis of the neuroblastoma cells by 2D-PAGE after 30 mGy irradiation showed that proteins involved in neuronal development were downregulated. Proteins involved in cell cycle and proliferation were altered in both cell lines after exposure to 30 mGy; however, the rate of cell proliferation was not affected in the low-dose range. The radiation-induced attenuation of differentiation and the persistent changes in protein expression is indicative of an epigenetic rather than a cytotoxic mechanism.

  3. On Variations in the Level of PER in Glial Clocks of Drosophila Optic Lobe and Its Negative Regulation by PDF Signaling.

    Science.gov (United States)

    Górska-Andrzejak, Jolanta; Chwastek, Elżbieta M; Walkowicz, Lucyna; Witek, Kacper

    2018-01-01

    We show that the level of the core protein of the circadian clock Period (PER) expressed by glial peripheral oscillators depends on their location in the Drosophila optic lobe. It appears to be controlled by the ventral lateral neurons (LNvs) that release the circadian neurotransmitter Pigment Dispersing Factor (PDF). We demonstrate that glial cells of the distal medulla neuropil (dMnGl) that lie in the vicinity of the PDF-releasing terminals of the LNvs possess receptors for PDF (PDFRs) and express PER at significantly higher level than other types of glia. Surprisingly, the amplitude of PER molecular oscillations in dMnGl is increased twofold in PDF-free environment, that is in Pdf 0 mutants. The Pdf 0 mutants also reveal an increased level of glia-specific protein REPO in dMnGl. The photoreceptors of the compound eye (R-cells) of the PDF-null flies, on the other hand, exhibit de-synchrony of PER molecular oscillations, which manifests itself as increased variability of PER-specific immunofluorescence among the R-cells. Moreover, the daily pattern of expression of the presynaptic protein Bruchpilot (BRP) in the lamina terminals of the R-cells is changed in Pdf 0 mutant. Considering that PDFRs are also expressed by the marginal glia of the lamina that surround the R-cell terminals, the LNv pacemakers appear to be the likely modulators of molecular cycling in the peripheral clocks of both the glial cells and the photoreceptors of the compound eye. Consequently, some form of PDF-based coupling of the glial clocks and the photoreceptors of the eye with the central LNv pacemakers must be operational.

  4. Possible role of glial cells in the onset and progression of Lyme neuroborreliosis

    Directory of Open Access Journals (Sweden)

    Jacobs Mary B

    2009-08-01

    Full Text Available Abstract Background Lyme neuroborreliosis (LNB may present as meningitis, cranial neuropathy, acute radiculoneuropathy or, rarely, as encephalomyelitis. We hypothesized that glia, upon exposure to Borrelia burgdorferi, the Lyme disease agent, produce inflammatory mediators that promote the acute cellular infiltration of early LNB. This inflammatory context could potentiate glial and neuronal apoptosis. Methods We inoculated live B. burgdorferi into the cisterna magna of rhesus macaques and examined the inflammatory changes induced in the central nervous system (CNS, and dorsal root nerves and ganglia (DRG. Results ELISA of the cerebrospinal fluid (CSF showed elevated IL-6, IL-8, CCL2, and CXCL13 as early as one week post-inoculation, accompanied by primarily lymphocytic and monocytic pleocytosis. In contrast, onset of the acquired immune response, evidenced by anti-B. burgdorferi C6 serum antibodies, was first detectable after 3 weeks post-inoculation. CSF cell pellets and CNS tissues were culture-positive for B. burgdorferi. Histopathology revealed signs of acute LNB: severe multifocal leptomeningitis, radiculitis, and DRG inflammatory lesions. Immunofluorescence staining and confocal microscopy detected B. burgdorferi antigen in the CNS and DRG. IL-6 was observed in astrocytes and neurons in the spinal cord, and in neurons in the DRG of infected animals. CCL2 and CXCL13 were found in microglia as well as in endothelial cells, macrophages and T cells. Importantly, the DRG of infected animals showed significant satellite cell and neuronal apoptosis. Conclusion Our results support the notion that innate responses of glia to B. burgdorferi initiate/mediate the inflammation seen in acute LNB, and show that neuronal apoptosis occurs in this context.

  5. Inhibition of TRPA1 channel activity in sensory neurons by the glial cell line-derived neurotrophic factor family member, artemin

    Directory of Open Access Journals (Sweden)

    Wang Shenglan

    2011-05-01

    Full Text Available Abstract Background The transient receptor potential (TRP channel subtype A1 (TRPA1 is known to be expressed on sensory neurons and respond to changes in temperature, pH and local application of certain noxious chemicals such as allyl isothiocyanate (AITC. Artemin is a neuronal survival and differentiation factor and belongs to the glial cell line-derived neurotrophic factor (GDNF family. Both TRPA1 and artemin have been reported to be involved in pathological pain initiation and maintenance. In the present study, using whole-cell patch clamp recording technique, in situ hybridization and behavioral analyses, we examined the functional interaction between TRPA1 and artemin. Results We found that 85.8 ± 1.9% of TRPA1-expressing neurons also expressed GDNF family receptor alpha 3 (GFR α3, and 87.5 ± 4.1% of GFRα3-expressing neurons were TRPA1-positive. In whole-cell patch clamp analysis, a short-term treatment of 100 ng/ml artemin significantly suppressed the AITC-induced TRPA1 currents. A concentration-response curve of AITC resulting from the effect of artemin showed that this inhibition did not change EC50 but did lower the AITC-induced maximum response. In addition, pre-treatment of artemin significantly suppressed the number of paw lifts induced by intraplantar injection of AITC, as well as the formalin-induced pain behaviors. Conclusions These findings that a short-term application of artemin inhibits the TRPA1 channel's activity and the sequential pain behaviors suggest a role of artemin in regulation of sensory neurons.

  6. New Implications for the Melanocortin System in Alcohol Drinking Behavior in Adolescents: The Glial Dysfunction Hypothesis

    Science.gov (United States)

    Orellana, Juan A.; Cerpa, Waldo; Carvajal, Maria F.; Lerma-Cabrera, José M.; Karahanian, Eduardo; Osorio-Fuentealba, Cesar; Quintanilla, Rodrigo A.

    2017-01-01

    Alcohol dependence causes physical, social, and moral harms and currently represents an important public health concern. According to the World Health Organization (WHO), alcoholism is the third leading cause of death worldwide, after tobacco consumption and hypertension. Recent epidemiologic studies have shown a growing trend in alcohol abuse among adolescents, characterized by the consumption of large doses of alcohol over a short time period. Since brain development is an ongoing process during adolescence, short- and long-term brain damage associated with drinking behavior could lead to serious consequences for health and wellbeing. Accumulating evidence indicates that alcohol impairs the function of different components of the melanocortin system, a major player involved in the consolidation of addictive behaviors during adolescence and adulthood. Here, we hypothesize the possible implications of melanocortins and glial cells in the onset and progression of alcohol addiction. In particular, we propose that alcohol-induced decrease in α-MSH levels may trigger a cascade of glial inflammatory pathways that culminate in altered gliotransmission in the ventral tegmental area and nucleus accumbens (NAc). The latter might potentiate dopaminergic drive in the NAc, contributing to increase the vulnerability to alcohol dependence and addiction in the adolescence and adulthood. PMID:28424592

  7. Glial heterotopia of the orbit: a rare cause of proptosis.

    Science.gov (United States)

    Bakhti, Souad; Terkmani, Fella; Tighilt, Nabila; Benmouma, Youcef; Boumehdi, Nazim; Djennas, Mohamed

    2016-11-01

    Glial heterotopia is defined as presence of normal glial tissue in an unusual location without connection with the brain. It is a very rare clinical entity occuring mostly in the head and neck region which is generally present at birth. Orbital location is very rare. We report a case of a 4-month-old girl presenting congenital proptosis with progressive increase. CT scan revealed an intraorbital mass without bony defect. The patient was operated, and resection was subtotal. Histologically, the tumor was composed of glial tissue with plexus choroid and pathologist concluded glial heterotopia. The child is under constant medical supervision because recurrences can be observed after incomplete resection; she had no new clinical signs at 18 months follow-up.

  8. Modeling cognition and disease using human glial chimeric mice

    DEFF Research Database (Denmark)

    Goldman, Steven A.; Nedergaard, Maiken; Windrem, Martha S.

    2015-01-01

    , oligodendrocytes as well. As a result, the recipient brains may become inexorably humanized with regards to their resident glial populations, yielding human glial chimeric mouse brains. These brains provide us a fundamentally new tool by which to assess the species-specific attributes of glia in modulating human...... for studying the human-specific contributions of glia to psychopathology, as well as to higher cognition. As such, the assessment of human glial chimeric mice may provide us new insight into the species-specific contributions of glia to human cognitive evolution, as well as to the pathogenesis of human...

  9. Modeling glial contributions to seizures and epileptogenesis: cation-chloride cotransporters in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Zeid M Rusan

    Full Text Available Flies carrying a kcc loss-of-function mutation are more seizure-susceptible than wild-type flies. The kcc gene is the highly conserved Drosophila melanogaster ortholog of K+/Cl- cotransporter genes thought to be expressed in all animal cell types. Here, we examined the spatial and temporal requirements for kcc loss-of-function to modify seizure-susceptibility in flies. Targeted RNA interference (RNAi of kcc in various sets of neurons was sufficient to induce severe seizure-sensitivity. Interestingly, kcc RNAi in glia was particularly effective in causing seizure-sensitivity. Knockdown of kcc in glia or neurons during development caused a reduction in seizure induction threshold, cell swelling, and brain volume increase in 24-48 hour old adult flies. Third instar larval peripheral nerves were enlarged when kcc RNAi was expressed in neurons or glia. Results suggest that a threshold of K+/Cl- cotransport dysfunction in the nervous system during development is an important determinant of seizure-susceptibility in Drosophila. The findings presented are the first attributing a causative role for glial cation-chloride cotransporters in seizures and epileptogenesis. The importance of elucidating glial cell contributions to seizure disorders and the utility of Drosophila models is discussed.

  10. A competitive advantage by neonatally engrafted human glial progenitors yields mice whose brains are chimeric for human glia

    DEFF Research Database (Denmark)

    Windrem, Martha S; Schanz, Steven J; Morrow, Carolyn

    2014-01-01

    Neonatally transplanted human glial progenitor cells (hGPCs) densely engraft and myelinate the hypomyelinated shiverer mouse. We found that, in hGPC-xenografted mice, the human donor cells continue to expand throughout the forebrain, systematically replacing the host murine glia. The differentiat...

  11. Curcumin-loaded chitosan-alginate-STPP nanoparticles ameliorate memory deficits and reduce glial activation in pentylenetetrazol-induced kindling model of epilepsy.

    Science.gov (United States)

    Hashemian, Mona; Anissian, Diana; Ghasemi-Kasman, Maryam; Akbari, Atefeh; Khalili-Fomeshi, Mohsen; Ghasemi, Shahram; Ahmadi, Fatemeh; Moghadamnia, Ali Akbar; Ebrahimpour, Anahita

    2017-10-03

    Despite several beneficial effects of curcumin, its medical application has been hampered due to low water solubility. To improve the aqueous solubility of curcumin, it has been loaded on chitosan (CS)-alginate (ALG) - sodium tripolyphosphate (STPP) nanoparticles (NPs). Then, the effect of curcumin NPs on memory improvement and glial activation was investigated in pentylenetetrazol (PTZ)-induced kindling model. Male NMRI mice have received the daily injection of curcumin NPs at dose of 12.5 or 25mg/kg. All interventions were injected intraperitoneally (i.p), 10days before PTZ administration and the injections were continued until 1h before each PTZ injection. Spatial learning and memory was evaluated using Morris water maze test after the 7th PTZ injection. Animals have received 10 injections of PTZ and then, brain tissues were removed for histological evaluation. Nissl staining was used to determine the level of cell death in hippocampus and immunostaining method was performed against NeuN and GFAP/Iba1 for assessment of neuronal density and glial activation respectively. Behavioral results showed that curcumin NPs exhibit anticonvulsant activity and prevent cognitive impairment in fully kindled animals. The level of cell death and glial activation reduced in animals which have received curcumin NPs compared to those received free curcumin. To conclude, these findings suggest that curcumin NPs effectively ameliorate memory impairment and attenuate the level of activated glial cells in a mice model of chronic epilepsy. Copyright © 2017. Published by Elsevier Inc.

  12. The glial scar-monocyte interplay: a pivotal resolution phase in spinal cord repair.

    Directory of Open Access Journals (Sweden)

    Ravid Shechter

    Full Text Available The inflammatory response in the injured spinal cord, an immune privileged site, has been mainly associated with the poor prognosis. However, recent data demonstrated that, in fact, some leukocytes, namely monocytes, are pivotal for repair due to their alternative anti-inflammatory phenotype. Given the pro-inflammatory milieu within the traumatized spinal cord, known to skew monocytes towards a classical phenotype, a pertinent question is how parenchymal-invading monocytes acquire resolving properties essential for healing, under such unfavorable conditions. In light of the spatial association between resolving (interleukin (IL-10 producing monocytes and the glial scar matrix chondroitin sulfate proteoglycan (CSPG, in this study we examined the mutual relationship between these two components. By inhibiting the de novo production of CSPG following spinal cord injury, we demonstrated that this extracellular matrix, mainly known for its ability to inhibit axonal growth, serves as a critical template skewing the entering monocytes towards the resolving phenotype. In vitro cell culture studies demonstrated that this matrix alone is sufficient to induce such monocyte polarization. Reciprocal conditional ablation of the monocyte-derived macrophages concentrated at the lesion margins, using diphtheria toxin, revealed that these cells have scar matrix-resolving properties. Replenishment of monocytic cell populations to the ablated mice demonstrated that this extracellular remodeling ability of the infiltrating monocytes requires their expression of the matrix-degrading enzyme, matrix metalloproteinase 13 (MMP-13, a property that was found here to be crucial for functional recovery. Altogether, this study demonstrates that the glial scar-matrix, a known obstacle to regeneration, is a critical component skewing the encountering monocytes towards a resolving phenotype. In an apparent feedback loop, monocytes were found to regulate scar resolution. This

  13. Lin28B promotes Müller glial cell de-differentiation and proliferation in the regenerative rat retinas

    Science.gov (United States)

    Tao, Zui; Zhao, Chen; Jian, Qian; Gillies, Mark; Xu, Haiwei; Yin, Zheng Qin

    2016-01-01

    Retinal regeneration and repair are severely impeded in higher mammalian animals. Although Müller cells can be activated and show some characteristics of progenitor cells when injured or under pathological conditions, they quickly form gliosis scars. Unfortunately, the basic mechanisms that impede retinal regeneration remain unknown. We studied retinas from Royal College of Surgeon (RCS) rats and found that let-7 family molecules, let-7e and let-7i, were significantly overexpressed in Müller cells of degenerative retinas. It demonstrated that down-regulation of the RNA binding protein Lin28B was one of the key factors leading to the overexpression of let-7e and let-7i. Lin28B ectopic expression in the Müller cells suppressed overexpression of let-7e and let-7i, stimulated and mobilized Müller glia de-differentiation, proliferation, promoted neuronal commitment, and inhibited glial fate acquisition of de-differentiated Müller cells. ERG recordings revealed that the amplitudes of a-wave and b-wave were improved significantly after Lin28B was delivered into the subretinal space of RCS rats. In summary, down-regulation of Lin28B as well as up-regulation of let-7e and let-7i may be the main factors that impede Müller cell de-differentiation and proliferation in the retina of RCS rats. PMID:27384999

  14. Soman poisoning increases neural progenitor proliferation and induces long-term glial activation in mouse brain

    International Nuclear Information System (INIS)

    Collombet, Jean-Marc; Four, Elise; Bernabe, Denis; Masqueliez, Catherine; Burckhart, Marie-France; Baille, Valerie; Baubichon, Dominique; Lallement, Guy

    2005-01-01

    To date, only short-term glial reaction has been extensively studied following soman or other warfare neurotoxicant poisoning. In a context of cell therapy by neural progenitor engraftment to repair brain damage, the long-term effect of soman on glial reaction and neural progenitor division was analyzed in the present study. The effect of soman poisoning was estimated in mouse brains at various times ranging from 1 to 90 days post-poisoning. Using immunochemistry and dye staining techniques (hemalun-eosin staining), the number of degenerating neurons, the number of dividing neural progenitors, and microglial, astroglial or oligodendroglial cell activation were studied. Soman poisoning led to rapid and massive (post-soman day 1) death of mature neurons as assessed by hemalun-eosin staining. Following this acute poisoning phase, a weak toxicity effect on mature neurons was still observed for a period of 1 month after poisoning. A massive short-termed microgliosis peaked on day 3 post-poisoning. Delayed astrogliosis was observed from 3 to 90 days after soman poisoning, contributing to glial scar formation. On the other hand, oligodendroglial cells or their precursors were practically unaffected by soman poisoning. Interestingly, neural progenitors located in the subgranular zone of the dentate gyrus (SGZ) or in the subventricular zone (SVZ) of the brain survived soman poisoning. Furthermore, soman poisoning significantly increased neural progenitor proliferation in both SGZ and SVZ brain areas on post-soman day 3 or day 8, respectively. This increased proliferation rate was detected up to 1 month after poisoning

  15. A three dimensional in vitro glial scar model to investigate the local strain effects from micromotion around neural implants.

    Science.gov (United States)

    Spencer, Kevin C; Sy, Jay C; Falcón-Banchs, Roberto; Cima, Michael J

    2017-02-28

    Glial scar formation remains a significant barrier to the long term success of neural probes. Micromotion coupled with mechanical mismatch between the probe and tissue is believed to be a key driver of the inflammatory response. In vitro glial scar models present an intermediate step prior to conventional in vivo histology experiments as they enable cell-device interactions to be tested on a shorter timescale, with the ability to conduct broader biochemical assays. No established in vitro models have incorporated methods to assess device performance with respect to mechanical factors. In this study, we describe an in vitro glial scar model that combines high-precision linear actuators to simulate axial micromotion around neural implants with a 3D primary neural cell culture in a collagen gel. Strain field measurements were conducted to visualize the local displacement within the gel in response to micromotion. Primary brain cell cultures were found to be mechanically responsive to micromotion after one week in culture. Astrocytes, as determined by immunohistochemical staining, were found to have significantly increased in cell areas and perimeters in response to micromotion compared to static control wells. These results demonstrate the importance of micromotion when considering the chronic response to neural implants. Going forward, this model provides advantages over existing in vitro models as it will enable critical mechanical design factors of neural implants to be evaluated prior to in vivo testing.

  16. ATP-dependent paracrine communication between enteric neurons and glia in a primary cell culture derived from embryonic mice.

    Science.gov (United States)

    Gomes, P; Chevalier, J; Boesmans, W; Roosen, L; van den Abbeel, V; Neunlist, M; Tack, J; Vanden Berghe, P

    2009-08-01

    The importance of dynamic interactions between glia and neurons is increasingly recognized, both in the central and enteric nervous system. However, apart from their protective role, little is known about enteric neuro-glia interaction. The aim was to investigate neuro-glia intercellular communication in a mouse culture model using optical techniques. Complete embryonic (E13) guts were enzymatically dissociated, seeded on coverslips and studied with immunohistochemistry and Ca(2+)-imaging. Putative progenitor-like cells (expressing both PGP9.5 and S-100) differentiated over approximately 5 days into glia or neurons expressing typical cell-specific markers. The glia-neuron ratio could be manipulated by specific supplements (N2, G5). Neurons and glia were functionally identified both by their Ca(2+)-response to either depolarization (high K(+)) or lysophosphatidic acid and by the expression of typical markers. Neurons responded to ACh, DMPP, 5-HT, ATP and electrical stimulation, while glia responded to ATP and ADPbetas. Inhibition of glial responses by MRS2179 suggests involvement of P2Y1 receptors. Neuronal stimulation also caused delayed glial responses, which were reduced by suramin and by exogenous apyrases that catalyse nucleotide breakdown. Conversely, glial responses were enhanced by ARL-67156, an ecto-ATPase inhibitor. In this mouse enteric co-culture, functional glia and neurons can be easily monitored using optical techniques. Glial cells can be activated directly by ATP or ADPbetas. Activation of neuronal cells (DMPP, K(+)) causes secondary responses in glial cells, which can be modulated by tuning ATP and ADP breakdown. This strongly supports the involvement of paracrine purinergic communication between enteric neurons and glia.

  17. Evidence that stress activates glial lactate formation in vivo assessed with rat hippocampus lactography

    NARCIS (Netherlands)

    Elekes, O; Venema, K; Postema, F; Dringen, R; Hamprecht, B; Korf, J

    1996-01-01

    Extracellular lactate of the rat hippocampus is inter alia increased by immobilization stress. The origin of lactate is, however, not well established, so it is not known whether it is mainly derived form neurons or glial cells. Dialysates were collected shortly (1 or 2 days) or with a delay (14 or

  18. Antihyperalgesic effects of dexketoprofen and tramadol in a model of postoperative pain in mice - effects on glial cell activation.

    Science.gov (United States)

    Romero-Alejo, Elizabeth; Puig, Margarita M; Romero, Asunción

    2016-08-01

    To define likely targets (i.e. glia) and protocols (analgesic combinations) to improve postoperative pain outcomes and reduce chronic pain after surgery. Specifically, to assess the antihyperalgesic effects of the dexketoprofen : tramadol (DEX : TRM) combination, exploring the implication of glial activation. In a mouse model of postincisional pain, we evaluated mechanical nociceptive thresholds (Von Frey) for 21 days postoperatively. We assessed DEX and TRM alone and combined (1 : 1 ratio) on postoperative hyperalgesia (POH, day 1) and delayed latent pain sensitisation (substantiated by a naloxone challenge; PS, day 21). The interactions were analysed using isobolograms, and concomitant changes in spinal glial cell activation were measured. On day 1, DEX completely blocked POH, whereas TRM induced 32% inhibition. TRM, but not DEX, partially (47%) protected against PS, at 21 days. Co-administration of DEX : TRM (1 : 1 ratio) showed additivity for antihyperalgesia. Both drugs and their combination totally inhibited surgery-induced microglia activation on day 1, but had no effect on surgery-induced astrocyte activation (1 day) or re-activation after naloxone (21 days). The DEX : TRM combination could have clinical advantages: a complete prevention of POH after surgery, together with a substantial (48%) inhibition of the development of PS by TRM. Microglia, but not astrocyte activation, could play a relevant role in the development of postoperative pain hypersensitivity. © 2016 Royal Pharmaceutical Society.

  19. Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS

    DEFF Research Database (Denmark)

    Babcock, Alicia A; Kuziel, William A; Rivest, Serge

    2003-01-01

    Innate responses in the CNS are critical to first line defense against infection and injury. Leukocytes migrate to inflammatory sites in response to chemokines. We studied leukocyte migration and glial chemokine expression within the denervated hippocampus in response to axonal injury caused by e...

  20. [Infecting glial cells with antimony resistant Leishmania tropica: A new ex-vivo model].

    Science.gov (United States)

    Zorbozan, Orçun; Harman, Mehmet; Evren, Vedat; Erdoğan, Mümin Alper; Kılavuz, Aslı; Tunalı, Varol; Çavuş, İbrahim; Yılmaz, Özlem; Özbilgin, Ahmet; Turgay, Nevin

    2018-01-01

    glial cell model, as far as we know, is the first model in the literature produced by L.tropica. The occurrence of L.tropica amastigote forms in glia cells may be indicative of the ability of Leishmania species to infect the central nervous system. The central nervous system may be an area for the Leishmania amastigotes to escape from the immune system in cases of leishmaniasis without a treatment response. Our study is important because it is the first study to show the infection of glia cells with L.tropica amastigotes.

  1. Opposite patterns of age-associated changes in neurons and glial cells of the thalamus of human brain.

    Science.gov (United States)

    Guidolin, D; Zunarelli, E; Genedani, S; Trentini, G P; De Gaetani, C; Fuxe, K; Benegiamo, C; Agnati, L F

    2008-06-01

    In an autopsy series of 19 individuals, age-ranged 24-94, a relatively age-spared region, the anterior-ventral thalamus, was analyzed by immunohistochemical techniques to visualize neurons (neurofilament protein), astrocytes (glial fibrillary acidic protein), microglial cells (CD68) and amyloid precursor protein. The pattern of immunoreactivity was determined by surface fractal dimension and lacunarity, the size by the field area (FA) and the spatial uniformity by the uniformity index. From the normalized FA values of immunoreactivity for the four markers studied, a global parameter was defined to give an overall characterization of the age-dependent changes in the glio-neuronal networks. A significant exponential decline of the GP was observed with increasing age. This finding suggests that early in life (ageage>70 years) could be due to the non-trophic reserve still available.

  2. Glial overexpression of Dube3a causes seizures and synaptic impairments in Drosophila concomitant with down regulation of the Na+/K+ pump ATPα.

    Science.gov (United States)

    Hope, Kevin A; LeDoux, Mark S; Reiter, Lawrence T

    2017-12-01

    Duplication 15q syndrome (Dup15q) is an autism-associated disorder co-incident with high rates of pediatric epilepsy. Additional copies of the E3 ubiquitin ligase UBE3A are thought to cause Dup15q phenotypes, yet models overexpressing UBE3A in neurons have not recapitulated the epilepsy phenotype. We show that Drosophila endogenously expresses Dube3a (fly UBE3A homolog) in glial cells and neurons, prompting an investigation into the consequences of glial Dube3a overexpression. Here we expand on previous work showing that the Na + /K + pump ATPα is a direct ubiquitin ligase substrate of Dube3a. A robust seizure-like phenotype was observed in flies overexpressing Dube3a in glial cells, but not neurons. Glial-specific knockdown of ATPα also produced seizure-like behavior, and this phenotype was rescued by simultaneously overexpressing ATPα and Dube3a in glia. Our data provides the basis of a paradigm shift in Dup15q research given that clinical phenotypes have long been assumed to be due to neuronal UBE3A overexpression. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Development of cardiac parasympathetic neurons, glial cells, and regional cholinergic innervation of the mouse heart.

    Science.gov (United States)

    Fregoso, S P; Hoover, D B

    2012-09-27

    Very little is known about the development of cardiac parasympathetic ganglia and cholinergic innervation of the mouse heart. Accordingly, we evaluated the growth of cholinergic neurons and nerve fibers in mouse hearts from embryonic day 18.5 (E18.5) through postnatal day 21(P21). Cholinergic perikarya and varicose nerve fibers were identified in paraffin sections immunostained for the vesicular acetylcholine transporter (VAChT). Satellite cells and Schwann cells in adjacent sections were identified by immunostaining for S100β calcium binding protein (S100) and brain-fatty acid binding protein (B-FABP). We found that cardiac ganglia had formed in close association to the atria and cholinergic innervation of the atrioventricular junction had already begun by E18.5. However, most cholinergic innervation of the heart, including the sinoatrial node, developed postnatally (P0.5-P21) along with a doubling of the cross-sectional area of cholinergic perikarya. Satellite cells were present throughout neonatal cardiac ganglia and expressed primarily B-FABP. As they became more mature at P21, satellite cells stained strongly for both B-FABP and S100. Satellite cells appeared to surround most cardiac parasympathetic neurons, even in neonatal hearts. Mature Schwann cells, identified by morphology and strong staining for S100, were already present at E18.5 in atrial regions that receive cholinergic innervation at later developmental times. The abundance and distribution of S100-positive Schwann cells increased postnatally along with nerve density. While S100 staining of cardiac Schwann cells was maintained in P21 and older mice, Schwann cells did not show B-FABP staining at these times. Parallel development of satellite cells and cholinergic perikarya in the cardiac ganglia and the increase in abundance of Schwann cells and varicose cholinergic nerve fibers in the atria suggest that neuronal-glial interactions could be important for development of the parasympathetic nervous

  4. Differential effect of maternal diet supplementation with α-Linolenic adcid or n-3 long-chain polyunsaturated fatty acids on glial cell phosphatidylethanolamine and phosphatidylserine fatty acid profile in neonate rat brains

    Directory of Open Access Journals (Sweden)

    Cruz-Hernandez Cristina

    2010-01-01

    Full Text Available Abstract Background Dietary long-chain polyunsaturated fatty acids (LC-PUFA are of crucial importance for the development of neural tissues. The aim of this study was to evaluate the impact of a dietary supplementation in n-3 fatty acids in female rats during gestation and lactation on fatty acid pattern in brain glial cells phosphatidylethanolamine (PE and phosphatidylserine (PS in the neonates. Methods Sprague-Dawley rats were fed during the whole gestation and lactation period with a diet containing either docosahexaenoic acid (DHA, 0.55% and eicosapentaenoic acid (EPA, 0.75% of total fatty acids or α-linolenic acid (ALA, 2.90%. At two weeks of age, gastric content and brain glial cell PE and PS of rat neonates were analyzed for their fatty acid and dimethylacetal (DMA profile. Data were analyzed by bivariate and multivariate statistics. Results In the neonates from the group fed with n-3 LC-PUFA, the DHA level in gastric content (+65%, P Conclusion The present study confirms that early supplementation of maternal diet with n-3 fatty acids supplied as LC-PUFA is more efficient in increasing n-3 in brain glial cell PE and PS in the neonate than ALA. Negative correlation between n-6 DPA, a conventional marker of DHA deficiency, and DMA in PE suggests n-6 DPA that potentially be considered as a marker of tissue ethanolamine plasmalogen status. The combination of multivariate and bivariate statistics allowed to underline that the accretion pattern of n-3 LC-PUFA in PE and PS differ.

  5. Measuring Glial Metabolism in Repetitive Brain Trauma and Alzheimer’s Disease

    Science.gov (United States)

    2016-09-01

    stages of repetitive brain trauma as well. Current methods of measure brain glutamate using proton spectroscopy is not specific to different cell...covering a representative range of clinical cases: a young female , young male , middle-aged male (all healthy volunteers) and a male patient with...AWARD NUMBER: W81XWH-15-1-0412 TITLE: Measuring Glial Metabolism in Repetitive Brain Trauma and Alzheimer’s Disease PRINCIPAL INVESTIGATOR

  6. Analysis of gene expression in a human-derived glial cell line exposed to 2.45 GHz continuous radiofrequency electromagnetic fields

    International Nuclear Information System (INIS)

    Sakurai, Tomonori; Narita, Eijiro; Miyakoshi, Junji; Kiyokawa, Tomoko; Suzuki, Yukihisa; Taki, Masao

    2011-01-01

    The increasing use of mobile phones has aroused public concern regarding the potential health risks of radiofrequency (RF) fields. We investigated the effects of exposure to RF fields (2.45 GHz, continuous wave) at specific absorption rate (SAR) of 1, 5, and 10 W/kg for 1, 4, and 24 h on gene expression in a normal human glial cell line, SVGp12, using DNA microarray. Microarray analysis revealed 23 assigned gene spots and 5 non-assigned gene spots as prospective altered gene spots. Twenty-two genes out of the 23 assigned gene spots were further analyzed by reverse transcription-polymerase chain reaction to validate the results of microarray, and no significant alterations in gene expression were observed. Under the experimental conditions used in this study, we found no evidence that exposure to RF fields affected gene expression in SVGp12 cells. (author)

  7. TOTAL NUMBER, DISTRIBUTION, AND PHENOTYPE OF CELLS EXPRESSING CHONDROITIN SULPHATE PROTEOGLYCANS IN THE NORMAL HUMAN AMYGDALA

    Science.gov (United States)

    Pantazopoulos, Harry; Murray, Elisabeth A.; Berretta, Sabina

    2009-01-01

    Chondroitin sulphate proteoglycans (CSPGs) are a key structural component of the brain extracellular matrix. They are involved in critical neurodevelopmental functions and are one of the main components of pericellular aggregates known as perineuronal nets. As a step toward investigating their functional and pathophysiological roles in the human amygdala, we assessed the pattern of CSPG expression in the normal human amygdala using wisteria floribunda agglutinin (WFA) lectin-histochemistry. Total numbers of WFA-labeled elements were measured in the lateral (LN), basal (BN), accessory basal (ABN) and cortical (CO) nuclei of the amygdala from 15 normal adult human subjects. For interspecies qualitative comparison, we also investigated the pattern of WFA labeling in the amygdala of naïve rats (n=32) and rhesus monkeys (Macaca mulatta; n=6). In human amygdala, WFA lectin-histochemistry resulted in labeling of perineuronal nets and cells with clear glial morphology, while neurons did not show WFA-labeling. Total numbers of WFA-labeled glial cells showed high interindividual variability. These cells aggregated in clusters with a consistent between-subjects spatial distribution. In a subset of human subjects (n=5), dual color fluorescence using an antibody raised against glial fibrillary acidic protein (GFAP) and WFA showed that the majority (93.7%) of WFA-labeled glial cells correspond to astrocytes. In rat and monkey amygdala, WFA histochemistry labeled perineuronal nets, but not glial cells. These results suggest that astrocytes are the main cell type expressing CSPGs in the adult human amygdala. Their highly segregated distribution pattern suggests that these cells serve specialized functions within human amygdalar nuclei. PMID:18374308

  8. Indoxyl Sulfate Affects Glial Function Increasing Oxidative Stress and Neuroinflammation in Chronic Kidney Disease: Interaction between Astrocytes and Microglia

    Directory of Open Access Journals (Sweden)

    Simona Adesso

    2017-06-01

    Full Text Available Indoxyl sulfate (IS is a protein-bound uremic toxin resulting from the metabolism of dietary tryptophan which accumulates in patients with impaired renal function, such as chronic kidney disease (CKD. IS is a well-known nephrovascular toxin but little is known about its effects on central nervous system (CNS cells. Considering the growing interest in the field of CNS comorbidities in CKD, we studied the effect of IS on CNS cells. IS (15–60 μM treatment in C6 astrocyte cells increased reactive oxygen species release and decreased nuclear factor (erythroid-derived 2-like 2 (Nrf2 activation, and heme oxygenase-1 (HO-1 and NAD(PH dehydrogenase quinone 1 expression. Moreover, IS increased Aryl hydrocarbon Receptor (AhR and Nuclear Factor-kB (NF-kB activation in these cells. Similiar observations were made in primary mouse astrocytes and mixed glial cells. Inducible nitric oxide synthase and cyclooxygenase-2 (COX-2 expression, tumor necrosis factor-α and interleukin-6 release and nitrotyrosine formation were increased by IS (15–60 μM in primary mouse astrocytes and mixed glial cells. IS increased AhR and NF-kB nuclear translocation and reduced Nrf2 translocation and HO-1 expression in primary glial cells. In addition, IS induced cell death in neurons in a dose dependent fashion. Injection of IS (800 mg/kg, i.p. into mice induced histological changes and increased COX-2 expression and nitrotyrosine formation in thebrain tissue. Taken together, our results show a significant contribution of IS in generating a neurotoxic enviroment and it could also have a potential role in neurodegeneration. IS could be considered also a potential therapeutical target for CKD-associated neurodegenerative complications.

  9. Low-level bisphenol A increases production of glial fibrillary acidic protein in differentiating astrocyte progenitor cells through excessive STAT3 and Smad1 activation

    International Nuclear Information System (INIS)

    Yamaguchi, Hideaki; Zhu, Jun; Yu, Tao; Sasaki, Kazuo; Umetsu, Hironori; Kidachi, Yumi; Ryoyama, Kazuo

    2006-01-01

    The effects of bisphenol A (BPA) on the differentiation of serum-free mouse embryo (SFME) cells, the astrocyte progenitor cells in the central nervous system, were examined. SFME cells were exposed to 10 ng/ml leukemia inhibitory factor (LIF) and 10 ng/ml bone morphogenetic protein 2 (BMP2) to increase glial fibrillary acidic protein (GFAP) expression and induce cell differentiation. Various concentrations of BPA (0.1 pg/ml-1 μg/ml) were then added to determine their effects on the cell differentiation. SFME cells were effectively differentiated by LIF and BMP2 in completely serum-free cultures. Cell proliferation following cell differentiation was not significantly affected by low-level BPA. However, GFAP expression was significantly increased in SFME cells in the presence of 1-100 pg/ml BPA. These increases were due to excessive activation of signal transducer and activator of transcription 3 (STAT3) and mothers against decapentaplegic homolog 1 (Smad1) by the low-level BPA

  10. A Unique Model System for Tumor Progression in GBM Comprising Two Developed Human Neuro-Epithelial Cell Lines with Differential Transforming Potential and Coexpressing Neuronal and Glial Markers

    Directory of Open Access Journals (Sweden)

    Anjali Shiras

    2003-11-01

    Full Text Available The molecular mechanisms involved in tumor progression from a low-grade astrocytoma to the most malignant glioblastoma multiforme (GBM have been hampered due to lack of suitable experimental models. We have established a model of tumor progression comprising of two cell lines derived from the same astrocytoma tumor with a set of features corresponding to low-grade glioma (as in HNGC-1 and high-grade GBM (as in HNGC-2. The HNGC-1 cell line is slowgrowing, contact-inhibited, nontumorigenic, and noninvasive, whereas HNGC-2 is a rapidly proliferating, anchorage-independent, highly tumorigenic, and invasive cell line. The proliferation of cell lines is independent of the addition of exogenous growth factors. Interestingly, the HNGC-2 cell line displays a near-haploid karyotype except for a disomy of chromosome 2. The two cell lines express the neuronal precursor and progenitor markers vimentin, nestin, MAP-2, and NFP160, as well as glial differentiation protein S100μ. The HNGC-1 cell line also expresses markers of mature neurons like Tuj1 and GFAP, an astrocytic differentiation marker, hence contributing toward a more morphologically differentiated phenotype with a propensity for neural differentiation in vitro. Additionally, overexpression of epidermal growth factor receptor and c-erbB2, and loss of fibronectin were observed only in the HNGC-2 cell line, implicating the significance of these pathways in tumor progression. This in vitro model system assumes importance in unraveling the cellular and molecular mechanisms in differentiation, transformation, and gliomagenesis.

  11. Glial Tissue Mechanics and Mechanosensing by Glial Cells

    Directory of Open Access Journals (Sweden)

    Katarzyna Pogoda

    2018-02-01

    Full Text Available Understanding the mechanical behavior of human brain is critical to interpret the role of physical stimuli in both normal and pathological processes that occur in CNS tissue, such as development, inflammation, neurodegeneration, aging, and most common brain tumors. Despite clear evidence that mechanical cues influence both normal and transformed brain tissue activity as well as normal and transformed brain cell behavior, little is known about the links between mechanical signals and their biochemical and medical consequences. A multi-level approach from whole organ rheology to single cell mechanics is needed to understand the physical aspects of human brain function and its pathologies. This review summarizes the latest achievements in the field.

  12. Involvement of Astrocytes in Mediating the Central Effects of Ghrelin

    Science.gov (United States)

    Frago, Laura M.; Chowen, Julie A.

    2017-01-01

    Although astrocytes are the most abundant cells in the mammalian brain, much remains to be learned about their molecular and functional features. Astrocytes express receptors for numerous hormones and metabolic factors, including the appetite-promoting hormone ghrelin. The metabolic effects of ghrelin are largely opposite to those of leptin, as it stimulates food intake and decreases energy expenditure. Ghrelin is also involved in glucose-sensing and glucose homeostasis. The widespread expression of the ghrelin receptor in the central nervous system suggests that this hormone is not only involved in metabolism, but also in other essential functions in the brain. In fact, ghrelin has been shown to promote cell survival and neuroprotection, with some studies exploring the use of ghrelin as a therapeutic agent against metabolic and neurodegenerative diseases. In this review, we highlight the possible role of glial cells as mediators of ghrelin’s actions within the brain. PMID:28257088

  13. Downregulation of the Glial GLT1 Glutamate Transporter and Purkinje Cell Dysfunction in a Mouse Model of Myotonic Dystrophy

    Directory of Open Access Journals (Sweden)

    Géraldine Sicot

    2017-06-01

    Full Text Available Brain function is compromised in myotonic dystrophy type 1 (DM1, but the underlying mechanisms are not fully understood. To gain insight into the cellular and molecular pathways primarily affected, we studied a mouse model of DM1 and brains of adult patients. We found pronounced RNA toxicity in the Bergmann glia of the cerebellum, in association with abnormal Purkinje cell firing and fine motor incoordination in DM1 mice. A global proteomics approach revealed downregulation of the GLT1 glutamate transporter in DM1 mice and human patients, which we found to be the result of MBNL1 inactivation. GLT1 downregulation in DM1 astrocytes increases glutamate neurotoxicity and is detrimental to neurons. Finally, we demonstrated that the upregulation of GLT1 corrected Purkinje cell firing and motor incoordination in DM1 mice. Our findings show that glial defects are critical in DM1 brain pathophysiology and open promising therapeutic perspectives through the modulation of glutamate levels.

  14. Substance P spinal signaling induces glial activation and nociceptive sensitization after fracture

    OpenAIRE

    Li, Wen-Wu; Guo, Tian-Zhi; Shi, Xiaoyou; Sun, Yuan; Wei, Tzuping; Clark, David J; Kingery, Wade S

    2015-01-01

    Tibia fracture in rodents induces substance P (SP)-dependent keratinocyte activation and inflammatory changes in the hindlimb, similar to those seen in complex regional pain syndrome (CRPS). In animal pain models spinal glial cell activation results in nociceptive sensitization. This study tested the hypothesis that limb fracture triggers afferent C-fiber SP release in the dorsal horn, resulting in chronic glia activation and central sensitization. At 4 weeks after tibia fracture and casting ...

  15. Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype.

    Directory of Open Access Journals (Sweden)

    Liang Lei

    Full Text Available Tumor heterogeneity is a major obstacle for finding effective treatment of Glioblastoma (GBM. Based on global expression analysis, GBM can be classified into distinct subtypes: Proneural, Neural, Classical and Mesenchymal. The signatures of these different tumor subtypes may reflect the phenotypes of cells giving rise to them. However, the experimental evidence connecting any specific subtype of GBM to particular cells of origin is lacking. In addition, it is unclear how different genetic alterations interact with cells of origin in determining tumor heterogeneity. This issue cannot be addressed by studying end-stage human tumors.To address this issue, we used retroviruses to deliver transforming genetic lesions to glial progenitors in adult mouse brain. We compared the resulting tumors to human GBM. We found that different initiating genetic lesions gave rise to tumors with different growth rates. However all mouse tumors closely resembled the human Proneural GBM. Comparative analysis of these mouse tumors allowed us to identify a set of genes whose expression in humans with Proneural GBM correlates with survival.This study offers insights into the relationship between adult glial progenitors and Proneural GBM, and allows us to identify molecular alterations that lead to more aggressive tumor growth. In addition, we present a new preclinical model that can be used to test treatments directed at a specific type of GBM in future studies.

  16. Neuron–Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region

    Science.gov (United States)

    Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi

    2017-01-01

    Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate–glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron–glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP. PMID:28954391

  17. Neuron-Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region.

    Science.gov (United States)

    Hossain, Mohammad Zakir; Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi

    2017-09-26

    Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate-glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron-glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP.

  18. Plasma glial cell line-derived neurotrophic factor in patients with major depressive disorder: a preliminary study.

    Science.gov (United States)

    Lee, Bun-Hee; Hong, Jin-Pyo; Hwang, Jung-A; Na, Kyoung-Sae; Kim, Won-Joong; Trigo, Jose; Kim, Yong-Ku

    2016-02-01

    Some clinical studies have reported reduced peripheral glial cell line-derived neurotrophic factor (GDNF) level in elderly patients with major depressive disorder (MDD). We verified whether a reduction in plasma GDNF level was associated with MDD. Plasma GDNF level was measured in 23 healthy control subjects and 23 MDD patients before and after 6 weeks of treatment. Plasma GDNF level in MDD patients at baseline did not differ from that in healthy controls. Plasma GDNF in MDD patients did not differ significantly from baseline to the end of treatment. GDNF level was significantly lower in recurrent-episode MDD patients than in first-episode patients before and after treatment. Our findings revealed significantly lower plasma GDNF level in recurrent-episode MDD patients, although plasma GDNF levels in MDD patients and healthy controls did not differ significantly. The discrepancy between our study and previous studies might arise from differences in the recurrence of depression or the ages of the MDD patients.

  19. Peripheral nerve injury induces glial activation in primary motor cortex

    Directory of Open Access Journals (Sweden)

    Julieta Troncoso

    2015-02-01

    Full Text Available Preliminary evidence suggests that peripheral facial nerve injuries are associated with sensorimotor cortex reorganization. We have characterized facial nerve lesion-induced structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with glial cell density using a rodent facial paralysis model. First, we used adult transgenic mice expressing green fluorescent protein in microglia and yellow fluorescent protein in pyramidal neurons which were subjected to either unilateral lesion of the facial nerve or sham surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1. It was found that facial nerve lesion induced long-lasting changes in dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Pyramidal cells’ dendritic arborization underwent overall shrinkage and transient spine pruning. Moreover, microglial cell density surrounding vM1 layer 5 pyramidal neurons was significantly increased with morphological bias towards the activated phenotype. Additionally, we induced facial nerve lesion in Wistar rats to evaluate the degree and extension of facial nerve lesion-induced reorganization processes in central nervous system using neuronal and glial markers. Immunoreactivity to NeuN (neuronal nuclei antigen, GAP-43 (growth-associated protein 43, GFAP (glial fibrillary acidic protein, and Iba 1 (Ionized calcium binding adaptor molecule 1 were evaluated 1, 3, 7, 14, 28 and 35 days after either unilateral facial nerve lesion or sham surgery. Patches of decreased NeuN immunoreactivity were found bilaterally in vM1 as well as in primary somatosensory cortex (CxS1. Significantly increased GAP-43 immunoreactivity was found bilaterally after the lesion in hippocampus, striatum, and sensorimotor cortex. One day after lesion GFAP immunoreactivity increased bilaterally in hippocampus, subcortical white

  20. A Case of Nasal Glial Heterotopia in an Adult

    Directory of Open Access Journals (Sweden)

    Akira Hagiwara

    2014-01-01

    Full Text Available We report a rare case of nasal glial heterotopia in an adult. After the surgery, frontal lobe cerebral hemorrhage developed. A 58-year-old man had unilateral nasal obstruction that progressed for one year. He had been treated for hypertension, chronic heart failure, and cerebral infarction with aspirin and warfarin. A computed tomography scan showed that the tumor occupied the right nasal cavity and the sinuses with small defect in the cribriform plate. The tumor was removed totally with endoscopy. After the operation, the patient developed convulsions and frontal lobe cerebral hemorrhage. The hemorrhage site was located near a defect in the cribriform plate. Nasal glial heterotopia is a rare developmental abnormality, particularly rare in adult. Only few cases were reported. We could not find any report of adult nasal glial heterotopias that developed cerebral hemorrhage as a complication of the surgery.

  1. Temporal profiles of age-dependent changes in cytokine mRNA expression and glial cell activation after status epilepticus in postnatal rat hippocampus.

    Science.gov (United States)

    Järvelä, Juha T; Lopez-Picon, Francisco R; Plysjuk, Anna; Ruohonen, Saku; Holopainen, Irma E

    2011-04-08

    Status epilepticus (SE) is proposed to lead to an age-dependent acute activation of a repertoire of inflammatory processes, which may contribute to neuronal damage in the hippocampus. The extent and temporal profiles of activation of these processes are well known in the adult brain, but less so in the developing brain. We have now further elucidated to what extent inflammation is activated by SE by investigating the acute expression of several cytokines and subacute glial reactivity in the postnatal rat hippocampus. SE was induced by an intraperitoneal (i.p.) injection of kainic acid (KA) in 9- and 21-day-old (P9 and P21) rats. The mRNA expression of interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), matrix metalloproteinase-9 (MMP-9), glial-derived neurotrophic factor (GDNF), interferon gamma (IFN-γ), and transforming growth factor-beta 1 (TGF-β1) were measured from 4 h up to 3 days after KA injection with real-time quantitative PCR (qPCR). IL-1β protein expression was studied with ELISA, GFAP expression with western blotting, and microglial and astrocyte morphology with immunohistochemistry 3 days after SE. SE increased mRNA expression of IL-1β, TNF-α and IL-10 mRNA in hippocampus of both P9 and P21 rats, their induction being more rapid and pronounced in P21 than in P9 rats. MMP-9 expression was augmented similarly in both age groups and GDNF expression augmented only in P21 rats, whereas neither IFN-γ nor TGF-β1 expression was induced in either age group. Microglia and astrocytes exhibited activated morphology in the hippocampus of P21 rats, but not in P9 rats 3 d after SE. Microglial activation was most pronounced in the CA1 region and also detected in the basomedial amygdala. Our results suggest that SE provokes an age-specific cytokine expression in the acute phase, and age-specific glial cell activation in the subacute phase as verified now in the postnatal rat hippocampus. In the juvenile hippocampus

  2. Human glial chimeric mice reveal astrocytic dependence of JC virus infection

    DEFF Research Database (Denmark)

    Kondo, Yoichi; Windrem, Martha S; Zou, Lisa

    2014-01-01

    with humanized white matter by engrafting human glial progenitor cells (GPCs) into neonatal immunodeficient and myelin-deficient mice. Intracerebral delivery of JCV resulted in infection and subsequent demyelination of these chimeric mice. Human GPCs and astrocytes were infected more readily than...... that was chimeric for human astrocytes and GPCs. JCV effectively propagated in these mice, which indicates that astroglial infection is sufficient for JCV spread. Sequencing revealed progressive mutation of the JCV capsid protein VP1 after infection, suggesting that PML may evolve with active infection...

  3. Activated microglia induce bone marrow mesenchymal stem cells to produce glial cell-derived neurotrophic factor and protect neurons against oxygen-glucose deprivation injury

    Directory of Open Access Journals (Sweden)

    Bingke Lv

    2016-12-01

    Full Text Available In this study, we investigated interactions among microglia (MG, bone marrow mesenchymal stem cells (BMSCs and neurons in cerebral ischemia and the potential mechanisms using an in vitro oxygen-glucose deprivation (OGD model. Rat BMSCs were incubated with conditioned medium (CM from in vitro cultures of OGD-activated rat MG and murine BV2 MG cells. Effects of glial cell-derived neurotrophic factor (GDNF on rat neuron viability, apoptosis, lactate dehydrogenase (LDH leakage and mitochondrial membrane potential (MMP were analyzed in this model. OGD-activated MG promoted GDNF production by BMSCs (P < 0.01. TNFα, but not IL6 or IL1β, promoted GDNF production by BMSCs (P < 0.001. GDNF or CM pre-treated BMSCs elevated neuronal viability and suppressed apoptosis (P < 0.05 or P < 0.01; these effects were inhibited by the RET antibody. GDNF activated MEK/ERK and PI3K/AKT signaling but not JNK/c-JUN. Furthermore, GDNF upregulated B cell lymphoma 2 (BCL2 and heat shock 60 kDa protein 1 (HSP60 levels, suppressed LDH leakage, and promoted MMP. Thus, activated MG produce TNFα to stimulate GDNF production by BMSCs, which prevents and repairs OGD-induced neuronal injury, possibly via regulating MEK/ERK and PI3K/AKT signaling. These findings will facilitate the prevention and treatment of neuronal injury by cerebral ischemia.

  4. A series of parapharyngeal glial heterotopia mimicking lymphatic malformation.

    Science.gov (United States)

    Haloob, Nora; Pepper, Christopher; Hartley, Benjamin

    2015-12-01

    Otolaryngologists will most frequently encounter extra-cranial glial tissue within the nasal cavity, where it is known as a 'nasal glioma', and may communicate with the dura. However, glial tissue can also present extra-nasally in the form of a neck mass with no intracranial connection. In these rare cases, they can present soon after birth as an enlarging neck mass, causing compressive symptoms with airway obstruction and feeding difficulties. In this way, it is often initially misdiagnosed as a more common lesion such as a lymphatic malformation, teratoma, branchial anomaly or vascular malformation. As with many congenital head and neck masses, offering the most the appropriate management relies heavily on radiological imaging and, where possible, histopathology from a diagnostic biopsy. Once the diagnosis of extra-nasal glial heterotopia has been confirmed, the gold standard management is complete surgical excision. We review three cases of extra-nasal glial heterotopia presenting to our institution over an eleven year period as a large neck mass, which mimicked other congenital neck lumps, and discuss them in the context of those in the literature. We highlight how their clinical and radiological features can easily be confused with lymphatic malformations, and the potential implications of misdiagnosis. Raising awareness of this diagnostic confusion will highlight the need for management of these cases within an appropriate paediatric multidisciplinary setting. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. IFN-beta inhibits T cell activation capacity of central nervous system APCs

    DEFF Research Database (Denmark)

    Teige, Ingrid; Liu, Yawei; Issazadeh-Navikas, Shohreh

    2006-01-01

    We have previously investigated the physiological effects of IFN-beta on chronic CNS inflammation and shown that IFN-beta(-/-) mice develop a more severe experimental autoimmune encephalomyelitis than their IFN-beta(+/-) littermates. This result was shown to be associated with a higher activation...... state of the glial cells and a higher T cell cytokine production in the CNS. Because this state suggested a down-regulatory effect of IFN-beta on CNS-specific APCs, these results were investigated further. We report that IFN-beta pretreatment of astrocytes and microglia (glial cells) indeed down......-modulate their capacity to activate autoreactive Th1 cells. First, we investigated the intrinsic ability of glial cells as APCs and report that glial cells prevent autoreactive Th1 cells expansion while maintaining Ag-specific T cell effector functions. However, when the glial cells are treated with IFN-beta before...

  6. Disruption of type 2 iodothyronine deiodinase activity in cultured human glial cells by polybrominated diphenyl ethers.

    Science.gov (United States)

    Roberts, Simon C; Bianco, Antonio C; Stapleton, Heather M

    2015-06-15

    Polybrominated diphenyl ether (PBDE) flame retardants are endocrine disruptors and suspected neurodevelopmental toxicants. While the direct mechanisms of neurodevelopmental toxicity have not been fully elucidated, it is conceivable that alterations in thyroid hormone levels in the developing brain may contribute to these effects. Cells within the brain locally convert thyroxine (T4) to the biologically active triiodothyronine (T3) through the action of the selenodeiodinase type 2 iodothyronine deiodinase (DIO2). Previous studies have demonstrated that PBDEs can alter hepatic deiodinase activity both in vitro and in vivo; however, the effects of PBDEs on the deiodinase isoforms expressed in the brain are not well understood. Here, we studied the effects of several individual PBDEs and hydroxylated metabolites (OH-BDEs) on DIO2 activity in astrocytes, a specialized glial cell responsible for production of more than 50% of the T3 required by the brain. Primary human astrocytes and H4 glioma cells were exposed to individual PBDEs or OH-BDEs at concentrations up to 5 μM. BDE-99 decreased DIO2 activity by 50% in primary astrocyte cells and by up to 80% in the H4 cells at doses of ≥500 nM. 3-OH-BDE-47, 6-OH-BDE-47, and 5'-OH-BDE-99 also decreased DIO2 activity in cultured H4 glioma cells by 45-80% at doses of approximately 1-5 μM. Multiple mechanisms appear to contribute to the decreased DIO2 activity, including weakened expression of DIO2 mRNA, competitive inhibition of DIO2, and enhanced post-translational degradation of DIO2. We conclude that decreases in DIO2 activity caused by exposure to PBDEs may play a role in the neurodevelopmental deficits caused by these toxicants.

  7. Sex- and age-dependent effects of thyroid hormone on glial morphology and function

    OpenAIRE

    Noda, Mami; Mori, Yuki; Yoshioka, Yusaku

    2016-01-01

    Thyroid hormones (THs) are essential for the development and function of the central nervous system (CNS), not only for neuronal cells but also for glial development and differentiation. In adult CNS, both hypo- and hyper-thyroidism may affect psychological condition and potentially increase the risk of cognitive impairment and neurodegeneration including Alzheimer’s disease (AD). We have reported non-genomic effects of tri-iodothyronine (T3) on microglial functions and its signaling in vitro...

  8. Neuronal and glial expression of inward rectifier potassium channel subunits Kir2.x in rat dorsal root ganglion and spinal cord.

    Science.gov (United States)

    Murata, Yuzo; Yasaka, Toshiharu; Takano, Makoto; Ishihara, Keiko

    2016-03-23

    Inward rectifier K(+) channels of the Kir2.x subfamily play important roles in controlling the neuronal excitability. Although their cellular localization in the brain has been extensively studied, only a few studies have examined their expression in the spinal cord and peripheral nervous system. In this study, immunohistochemical analyses of Kir2.1, Kir2.2, and Kir2.3 expression were performed in rat dorsal root ganglion (DRG) and spinal cord using bright-field and confocal microscopy. In DRG, most ganglionic neurons expressed Kir2.1, Kir2.2 and Kir2.3, whereas satellite glial cells chiefly expressed Kir2.3. In the spinal cord, Kir2.1, Kir2.2 and Kir2.3 were all expressed highly in the gray matter of dorsal and ventral horns and moderately in the white matter also. Within the gray matter, the expression was especially high in the substantia gelatinosa (lamina II). Confocal images obtained using markers for neuronal cells, NeuN, and astrocytes, Sox9, showed expression of all three Kir2 subunits in both neuronal somata and astrocytes in lamina I-III of the dorsal horn and the lateral spinal nucleus of the dorsolateral funiculus. Immunoreactive signals other than those in neuronal and glial somata were abundant in lamina I and II, which probably located mainly in nerve fibers or nerve terminals. Colocalization of Kir2.1 and 2.3 and that of Kir2.2 and 2.3 were present in neuronal and glial somata. In the ventral horn, motor neurons and interneurons were also immunoreactive with the three Kir2 subunits. Our study suggests that Kir2 channels composed of Kir2.1-2.3 subunits are expressed in neuronal and glial cells in the DRG and spinal cord, contributing to sensory transduction and motor control. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Cabergoline decreases alcohol drinking and seeking behaviors via glial cell line-derived neurotrophic factor.

    Science.gov (United States)

    Carnicella, Sebastien; Ahmadiantehrani, Somayeh; He, Dao-Yao; Nielsen, Carsten K; Bartlett, Selena E; Janak, Patricia H; Ron, Dorit

    2009-07-15

    Cabergoline is an ergotamine derivative that increases the expression of glial cell line-derived neurotrophic factor (GDNF) in vitro. We recently showed that GDNF in the ventral tegmental area (VTA) reduces the motivation to consume alcohol. We therefore set out to determine whether cabergoline administration decreases alcohol-drinking and -seeking behaviors via GDNF. Reverse transcription polymerase chain reaction (RT-PCR) and Enzyme-Linked ImmunoSorbent Assay (ELISA) were used to measure GDNF levels. Western blot analysis was used for phosphorylation experiments. Operant self-administration in rats and a two-bottle choice procedure in mice were used to assess alcohol-drinking behaviors. Instrumental performance tested during extinction was used to measure alcohol-seeking behavior. The [35S]GTPgammaS binding assay was used to assess the expression and function of the dopamine D2 receptor (D2R). We found that treatment of the dopaminergic-like cell line SH-SY5Y with cabergoline and systemic administration of cabergoline in rats resulted in an increase in GDNF level and in the activation of the GDNF pathway. Cabergoline treatment decreased alcohol-drinking and -seeking behaviors including relapse, and its action to reduce alcohol consumption was localized to the VTA. Finally, the increase in GDNF expression and the decrease in alcohol consumption by cabergoline were abolished in GDNF heterozygous knockout mice. Together, these findings suggest that cabergoline-mediated upregulation of the GDNF pathway attenuates alcohol-drinking behaviors and relapse. Alcohol abuse and addiction are devastating and costly problems worldwide. This study puts forward the possibility that cabergoline might be an effective treatment for these disorders.

  10. Dampak Hipoksia Sistemik terhadap Malondialdehida, Glial Fibrillary Acidic Protein dan Aktivitas Asetilkolin Esterase Otak Tikus

    Directory of Open Access Journals (Sweden)

    Andriani Andriani

    2016-09-01

    Full Text Available Hipoksia sistemik menyebabkan berkurangnya oksigen dan energi di otak sehingga memicupenglepasan neurotransmiter asetilkolin, meningkatkan radikal bebas dan glial fibrillary acidic protein (GFAPyang berfungsi menjaga kekuatan membran. Tujuan penelitian untuk melihat gambaran adaptasi otak padahipoksia sistemik terhadap fungsi asetilkolin esterase, kerusakan membran sel neuron dan astrosit. Penelitiandilakukan di Laboratorium Biokimia & Biologi Molekuler FK Universitas Indonesia, pada tahun 2013.Penelitian ekperimental ini menggunakan hewan coba tikus spraque dawley yang diinduksi hipoksia sistemikyang diambil jaringan otak bagian korteks dan plasma tikus. Kelompok tikus terdiri atas kelompok kontrol,kelompok perlakuan induksi hipoksia hari ke-1, 3 hari, 5 hari dan hari ke-7. Parameter yang diukur adalahkadar malondialdehida (MDA otak dan plasma, aktivitas spesifik enzim AChE jaringan otak serta kadar GFAPjaringan otak. Hasil menunjukkan bahwa hipoksia sistemik tidak meningkatkankadar MDA otak dan plasma.Induksi hipoksia sistemik meningkatkan aktivitas spesifik enzim AChE dan kadar GFAP jaringan otak secarabermakna. Pada plasma tidak terjadi peningkatan kadar GFAP. Hipoksia sistemik selama hari ke-7 belummenyebabkan kerusakan oksidatif, namun memperlihatkan peningkatan aktivitas AChe dan adaptasi astrositmelalui peningkatan GFAP. Kata kunci: hipoksia, astrosit, glial fibrillary acidic protein, malondialdehida, asetilkolin esterase   Systemic Hypoxia Effect on Rat Brain Malondialdehyde, Glial FibrillaryAcidic Protein, and Acetylcholine Esterase Activity Abstract Sistemic hypoxia causes lack of oxygen and energy in brain that trigger the release of acetylcholine,free radical and Glial fibrillary acidic protein (GFAP, a specific protein in astrocyte cells that act to strenghtenastrocite membrane. The aim of the research was to evaluate the damages of brain in systemic hypoxiathrough activity of acetylcholine esterase, neuron and astrocyte membran

  11. In vitro differentiation of bone marrow stromal cells into neurons and glial cells and differential protein expression in a two-compartment bone marrow stromal cell/neuron co-culture system.

    Science.gov (United States)

    Qi, Xu; Shao, Ming; Peng, Haisheng; Bi, Zhenggang; Su, Zhiqiang; Li, Hulun

    2010-07-01

    This study was performed to establish a bone marrow stromal cell (BMSC)/neuron two-compartment co-culture model in which differentiation of BMSCs into neurons could occur without direct contact between the two cell types, and to investigate protein expression changes during differentiation of this entirely BMSC-derived population. Cultured BMSCs isolated from Wistar rats were divided into three groups: BMSC culture, BMSC/neuron co-culture and BMSC/neuron two-compartment co-culture. Cells were examined for neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) expression. The electrophysiological behavior of the BMSCs was examined using patch clamping. Proteins that had significantly different expression levels in BMSCs cultured alone and co-cultured with neurons were studied using a protein chip-mass spectroscopy technique. Expression of NSE and GFAP were significantly higher in co-culture cells than in two-compartment co-culture cells, and significantly higher in both co-culture groups than in BMSCs cultured alone. Five proteins showed significant changes in expression during differentiation: TIP39_RAT and CALC_RAT underwent increases, and INSL6_RAT, PNOC_RAT and PCSK1_RAT underwent decreases in expression. We conclude that BMSCs can differentiate into neurons during both contact co-culture with neurons and two-compartment co-culture with neurons. The rate at which BMSCs differentiated into neurons was higher in contact co-culture than in non-contact co-culture.

  12. Neurons and satellite glial cells in adult rat lumbar dorsal root ganglia express connexin 36.

    Science.gov (United States)

    Pérez Armendariz, E Martha; Norcini, Monica; Hernández-Tellez, Beatriz; Castell-Rodríguez, Andrés; Coronel-Cruz, Cristina; Alquicira, Raquel Guerrero; Sideris, Alexandra; Recio-Pinto, Esperanza

    2018-04-01

    Previous studies have shown that following peripheral nerve injury there was a downregulation of the gap junction protein connexin 36 (Cx36) in the spinal cord; however, it is not known whether Cx36 protein is expressed in the dorsal root ganglia (DRGs), nor if its levels are altered following peripheral nerve injuries. Here we address these aspects in the adult rat lumbar DRG. Cx36 mRNA was detected using qRT-PCR, and Cx36 protein was identified in DRG sections using immunohistochemistry (IHC) and immunofluorescence (IF). Double staining revealed that Cx36 co-localizes with both anti-β-III tubulin, a neuronal marker, and anti-glutamine synthetase, a satellite glial cell (SGC) marker. In neurons, Cx36 staining was mostly uniform in somata and fibers of all sizes and its intensity increased at the cell membranes. This labeling pattern was in contrast with Cx36 IF dots mainly found at junctional membranes in islet beta cells used as a control tissue. Co-staining with anti-Cx43 and anti-Cx36 showed that whereas mostly uniform staining of Cx36 was found throughout neurons and SGCs, Cx43 IF puncta were localized to SGCs. Cx36 mRNA was expressed in normal lumbar DRG, and it was significantly down-regulated in L4 DRG of rats that underwent sciatic nerve injury resulting in persistent hypersensitivity. Collectively, these findings demonstrated that neurons and SGCs express Cx36 protein in normal DRG, and suggested that perturbation of Cx36 levels may contribute to chronic neuropathic pain resulting from a peripheral nerve injury. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Imaging of intracranial neuronal and mixed neuronal-glial tumours

    International Nuclear Information System (INIS)

    Cui Shimin; Qin Jinxi; Zhang Leili; Liu Meili; Jin Song; Yan Shixin; Liu Li; Dai Weiying; Li Tao; Gao Man

    2001-01-01

    Objective: To investigate the characteristic clinical, imaging , and pathologic findings of intracranial neuronal and mixed neuronal-glial tumours. Methods: The imaging findings of surgery and pathobiology proved intracranial neuronal and mixed neuronal-glial tumours in 14 cases (7 male and 7 female, ranging in age from 6-56 years; mean age 33.8 years) were retrospectively analyzed. Results: Eight gangliogliomas were located in the frontal lobe (4 cases), temporal lobe (1 case), front- temporal lobe (2 cases), and pons (1 case). They appeared as iso-or low density on CT, iso-or low signal intensity on T 1 WI, and high signal intensity on T 2 WI on MR imaging. Two central neurocytomas were located in the supratentorial ventricles. Four desmoplastic gangliogliomas were seen as cystic masses, appearing as low signal intensity on T 1 WI and high signal intensity on T 2 WI. Conclusion: Intracranial neuronal and mixed neuronal-glial tumours had imaging characteristics. Combined with clinical history, it was possible to make a tendency preoperative diagnosis using CT or MR

  14. Nasal glial heterotopia or congenital hemangioma? A case report.

    Science.gov (United States)

    Lartizien, R; Durand, C; Blaise, S; Morand, B

    2017-10-01

    Nasal glial heterotopia (NGH) is a rare benign tumor of the median line. We describe the case of a child presenting a lateral nasal mass. The characteristics of the prenatal ultrasound and the postnatal clinical examination argued in favor of a congenital hemangioma (CH). The MRI performed at 6 weeks of life suggested glial heterotopia. This diagnosis was confirmed by the pathological analysis. Congenital hemangiomas and nasal glial heterotopies have similar clinical presentations. Prenatal ultrasound diagnosis between NGH and CH is difficult. Fetal MRI is not yet highly specific for these two lesions, but it can eliminate an intracerebral connection in cases of NGH. Postnatal exams are more specific. Flow on the Doppler exam is rapid for CH and slow for NGH. On MRI, these two lesions appear as a hypersignal on T2-weighted sequences, but less intense for NGH than for CH. Distinguishing between NGH and CH can be difficult. This does not have a direct incidence on treatment because it is surgical in both cases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Lipoic Acid Treatment after Brain Injury: Study of the Glial Reaction

    Directory of Open Access Journals (Sweden)

    Brenda Rocamonde

    2013-01-01

    Full Text Available After trauma brain injury, oxidative substances released to the medium provoke an enlargement of the initial lesion, increasing glial cell activation and, occasionally, an influx of immune cells into the central nervous system, developing the secondary damage. In response to these stimuli, microglia are activated to perform upregulation of intracellular enzymes and cell surface markers to propagate the immune response and phagocytosis of cellular debris. The phagocytosis of debris and dead cells is essential to limit the inflammatory reaction and potentially prevent extension of the damage to noninjured regions. Lipoic acid has been reported as a neuroprotectant by acting as an antioxidant and anti-inflammatory agent. Furthermore, angiogenic effect promoted by lipoic acid has been recently shown by our group as a crucial process for neural regeneration after brain injury. In this work, we focus our attention on the lipoic acid effect on astroglial and microglial response after brain injury.

  16. The "Big-Bang" for modern glial biology: Translation and comments on Pío del Río-Hortega 1919 series of papers on microglia.

    Science.gov (United States)

    Sierra, Amanda; de Castro, Fernando; Del Río-Hortega, Juan; Rafael Iglesias-Rozas, José; Garrosa, Manuel; Kettenmann, Helmut

    2016-11-01

    The word "glia" was coined in the mid-19th century and defined as "the nerve glue". For decades, it was assumed to be a uniform matrix, until cell theorists raised the "neuron doctrine" which stipulated that nervous tissue was composed of individual cells. The term "astrocytes" was introduced in the late 19th century as a synonym for glial cells, but it was Santiago Ramón y Cajal who defined a "third element" distinct from glial cells (astrocytes) and neurons. It was not until 1919 when Pío del Río-Hortega, an alumnus of the Cajal School, introduced the modern terms we use today, and thoroughly described both "oligodendrocytes" and "microglia" to clearly distinguish them from astrocytes. In a series of four papers published that year in Spanish, Río-Hortega described the distribution and morphological phenotype of microglia. He also noted that these cells were the origin of the rod cells described earlier in pathologic tissue, and recognized that resting microglia transformed into an ameboid phenotype in different types of brain diseases and pathologies. He also noted the mesodermal origin of these cells and recognized their phagocytic capacity. We here provide the first English translation of these landmark series of papers, which paved the way for modern glial research. To heighten the value and accessibility of these classic papers and their original figures, an introduction to this critical period of neuroscience is provided, along with unpublished photographs. By adding comments to the translated text, we provide sufficient context so that contemporary scientists may fully appreciate it. GLIA 2016;64:1801-1840. © 2016 Wiley Periodicals, Inc.

  17. Long term imaging of living brain cancer cells

    Science.gov (United States)

    Farias, Patricia M. A.; Galembeck, André; Milani, Raquel; Andrade, Arnaldo C. D. S.; Stingl, Andreas

    2018-02-01

    QDs synthesized in aqueous medium and functionalized with polyethylene glycol were used as fluorescent probes. They label and monitor living healthy and cancer brain glial cells in culture. Physical-chemical characterization was performed. Toxicological studies were performed by in vivo short and long-term inhalation in animal models. Healthy and cancer glial living cells were incubated in culture media with highly controlled QDs. Specific features of glial cancer cells were enhanced by QD labelling. Cytoplasmic labelling pattern was clearly distinct for healthy and cancer cells. Labelled cells kept their normal activity for same period as non-labelled control samples.

  18. Glial Tissue Mechanics and Mechanosensing by Glial Cells

    OpenAIRE

    Katarzyna Pogoda; Katarzyna Pogoda; Paul A. Janmey

    2018-01-01

    Understanding the mechanical behavior of human brain is critical to interpret the role of physical stimuli in both normal and pathological processes that occur in CNS tissue, such as development, inflammation, neurodegeneration, aging, and most common brain tumors. Despite clear evidence that mechanical cues influence both normal and transformed brain tissue activity as well as normal and transformed brain cell behavior, little is known about the links between mechanical signals and their bio...

  19. MCT expression and lactate influx/efflux in tanycytes involved in glia-neuron metabolic interaction.

    Directory of Open Access Journals (Sweden)

    Christian Cortés-Campos

    Full Text Available Metabolic interaction via lactate between glial cells and neurons has been proposed as one of the mechanisms involved in hypothalamic glucosensing. We have postulated that hypothalamic glial cells, also known as tanycytes, produce lactate by glycolytic metabolism of glucose. Transfer of lactate to neighboring neurons stimulates ATP synthesis and thus contributes to their activation. Because destruction of third ventricle (III-V tanycytes is sufficient to alter blood glucose levels and food intake in rats, it is hypothesized that tanycytes are involved in the hypothalamic glucose sensing mechanism. Here, we demonstrate the presence and function of monocarboxylate transporters (MCTs in tanycytes. Specifically, MCT1 and MCT4 expression as well as their distribution were analyzed in Sprague Dawley rat brain, and we demonstrate that both transporters are expressed in tanycytes. Using primary tanycyte cultures, kinetic analyses and sensitivity to inhibitors were undertaken to confirm that MCT1 and MCT4 were functional for lactate influx. Additionally, physiological concentrations of glucose induced lactate efflux in cultured tanycytes, which was inhibited by classical MCT inhibitors. Because the expression of both MCT1 and MCT4 has been linked to lactate efflux, we propose that tanycytes participate in glucose sensing based on a metabolic interaction with neurons of the arcuate nucleus, which are stimulated by lactate released from MCT1 and MCT4-expressing tanycytes.

  20. High glucose alters the expression of genes involved in proliferation and cell-fate specification of embryonic neural stem cells.

    Science.gov (United States)

    Fu, J; Tay, S S W; Ling, E A; Dheen, S T

    2006-05-01

    Maternal diabetes induces neural tube defects during embryogenesis. Since the neural tube is derived from neural stem cells (NSCs), it is hypothesised that in diabetic pregnancy neural tube defects result from altered expression of developmental control genes, leading to abnormal proliferation and cell-fate choice of NSCs. Cell viability, proliferation index and apoptosis of NSCs and differentiated cells from mice exposed to physiological or high glucose concentration medium were examined by a tetrazolium salt assay, 5-bromo-2'-deoxyuridine incorporation, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling and immunocytochemistry. Expression of developmental genes, including sonic hedgehog (Shh), bone morphogenetic protein 4 (Bmp4), neurogenin 1/2 (Neurog1/2), achaete-scute complex-like 1 (Ascl1), oligodendrocyte transcription factor 1 (Olig1), oligodendrocyte lineage transcription factor 2 (Olig2), hairy and enhancer of split 1/5 (Hes1/5) and delta-like 1 (Dll1), was analysed by real-time RT-PCR. Proliferation index and neuronal specification in the forebrain of embryos at embryonic day 11.5 were examined histologically. High glucose decreased the proliferation of NSCs and differentiated cells. The incidence of apoptosis was increased in NSCs treated with high glucose, but not in the differentiated cells. High glucose also accelerated neuronal and glial differentiation from NSCs. The decreased proliferation index and early differentiation of neurons were evident in the telencephalon of embryos derived from diabetic mice. Exposure to high glucose altered the mRNA expression levels of Shh, Bmp4, Neurog1/2, Ascl1, Hes1, Dll1 and Olig1 in NSCs and Shh, Dll1, Neurog1/2 and Hes5 in differentiated cells. The changes in proliferation and differentiation of NSCs exposed to high glucose are associated with altered expression of genes that are involved in cell-cycle progression and cell-fate specification during neurulation. These changes may form the

  1. Monocrotophos Induces the Expression of Xenobiotic Metabolizing Cytochrome P450s (CYP2C8 and CYP3A4) and Neurotoxicity in Human Brain Cells.

    Science.gov (United States)

    Tripathi, Vinay Kumar; Kumar, Vivek; Pandey, Ankita; Vatsa, Pankhi; Dhasmana, Anupam; Singh, Rajat Pratap; Appikonda, Sri Hari Chandan; Hwang, Inho; Lohani, Mohtashim

    2017-07-01

    Expression of various cytochrome P450s (CYPs) in mammalian brain cells is well documented. However, such studies are hampered in neural/glial cells of human origin due to nonavailability of human brain cells. To address this issue, we investigated the expression and inducibility of CYP2C8 and CYP3A4 and their responsiveness against cyclophosphamide (CPA) and organophosphorus pesticide monocrotophos (MCP), a known developmental neurotoxicant in human neural (SH-SY5Y) and glial (U373-MG) cell lines. CPA induced significant expression of CYP2C8 and CYP3A4 in both types of cells in a time-dependent manner. Neural cell line exhibited relatively higher constitutive and inducible expression of CYPs than the glial cell line. MCP exposure alone could not induce the significant expression of CYPs, whereas the cells preexposed to CPA showed a significant response to MCP. Similar to the case of CPA induced expressions, neural cells were found to be more vulnerable than glial cells. Our data indicate differential expressions of CYPs in cultured human neural and glial cell lines. The findings were synchronized with protein ligand docking studies, which showed a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR and PXR. Similarly, the known CYP inducer CPA has also shown significant high docking scores with the two studied CYP regulators. We also observed a significant induction in reactive oxygen species (ROS), lipid peroxides (LPO), micronucleus (MN), chromosomal aberration (CA), and reduction in reduced glutathione (GSH) and catalase following the exposure of MCP. Moreover, the expressions of apoptotic markers such as caspase-3, caspase-9, Bax, and p53 were significantly upregulated, whereas the levels of antiapoptotic marker, Bcl2, was downregulated after the exposure of MCP in both cell lines. These findings confirm the involvement of ROS-mediated oxidative stress, which subsequently triggers apoptosis pathways in both human neural (SH-SY5Y

  2. The neurogenic factor NeuroD1 is expressed in post-mitotic cells during juvenile and adult Xenopus neurogenesis and not in progenitor or radial glial cells.

    Directory of Open Access Journals (Sweden)

    Laure Anne D'Amico

    Full Text Available In contrast to mammals that have limited proliferation and neurogenesis capacities, the Xenopus frog exhibit a great potential regarding proliferation and production of new cells in the adult brain. This ability makes Xenopus a useful model for understanding the molecular programs required for adult neurogenesis. Transcriptional factors that control adult neurogenesis in vertebrate species undergoing widespread neurogenesis are unknown. NeuroD1 is a member of the family of proneural genes, which function during embryonic neurogenesis as a potent neuronal differentiation factor. Here, we study in detail the expression of NeuroD1 gene in the juvenile and adult Xenopus brains by in situ hybridization combined with immunodetections for proliferation markers (PCNA, BrdU or in situ hybridizations for cell type markers (Vimentin, Sox2. We found NeuroD1 gene activity in many brain regions, including olfactory bulbs, pallial regions of cerebral hemispheres, preoptic area, habenula, hypothalamus, cerebellum and medulla oblongata. We also demonstrated by double staining NeuroD1/BrdU experiments, after long post-BrdU administration survival times, that NeuroD1 gene activity was turned on in new born neurons during post-metamorphic neurogenesis. Importantly, we provided evidence that NeuroD1-expressing cells at this brain developmental stage were post-mitotic (PCNA- cells and not radial glial (Vimentin+ or progenitors (Sox2+ cells.

  3. Glial loss of the metallo β-lactamase domain containing protein, SWIP-10, induces age- and glutamate-signaling dependent, dopamine neuron degeneration.

    Directory of Open Access Journals (Sweden)

    Chelsea L Gibson

    2018-03-01

    Full Text Available Across phylogeny, glutamate (Glu signaling plays a critical role in regulating neural excitability, thus supporting many complex behaviors. Perturbed synaptic and extrasynaptic Glu homeostasis in the human brain has been implicated in multiple neuropsychiatric and neurodegenerative disorders including Parkinson's disease, where theories suggest that excitotoxic insults may accelerate a naturally occurring process of dopamine (DA neuron degeneration. In C. elegans, mutation of the glial expressed gene, swip-10, results in Glu-dependent DA neuron hyperexcitation that leads to elevated DA release, triggering DA signaling-dependent motor paralysis. Here, we demonstrate that swip-10 mutations induce premature and progressive DA neuron degeneration, with light and electron microscopy studies demonstrating the presence of dystrophic dendritic processes, as well as shrunken and/or missing cell soma. As with paralysis, DA neuron degeneration in swip-10 mutants is rescued by glial-specific, but not DA neuron-specific expression of wildtype swip-10, consistent with a cell non-autonomous mechanism. Genetic studies implicate the vesicular Glu transporter VGLU-3 and the cystine/Glu exchanger homolog AAT-1 as potential sources of Glu signaling supporting DA neuron degeneration. Degeneration can be significantly suppressed by mutations in the Ca2+ permeable Glu receptors, nmr-2 and glr-1, in genes that support intracellular Ca2+ signaling and Ca2+-dependent proteolysis, as well as genes involved in apoptotic cell death. Our studies suggest that Glu stimulation of nematode DA neurons in early larval stages, without the protective actions of SWIP-10, contributes to insults that ultimately drive DA neuron degeneration. The swip-10 model may provide an efficient platform for the identification of molecular mechanisms that enhance risk for Parkinson's disease and/or the identification of agents that can limit neurodegenerative disease progression.

  4. Prox1 Inhibits Proliferation and Is Required for Differentiation of the Oligodendrocyte Cell Lineage in the Mouse.

    Directory of Open Access Journals (Sweden)

    Kentaro Kato

    Full Text Available Central nervous system injury induces a regenerative response in ensheathing glial cells comprising cell proliferation, spontaneous axonal remyelination, and limited functional recovery, but the molecular mechanisms are not fully understood. In Drosophila, this involves the genes prospero and Notch controlling the balance between glial proliferation and differentiation, and manipulating their levels in glia can switch the response to injury from prevention to promotion of repair. In the mouse, Notch1 maintains NG2 oligodendrocyte progenitor cells (OPCs in a progenitor state, but what factor may enable oligodendrocyte (OL differentiation and functional remyelination is not understood. Here, we asked whether the mammalian homologue of prospero, Prox1, is involved. Our data show that Prox1 is distributed in NG2+ OPCs and in OLs in primary cultured cells, and in the mouse spinal cord in vivo. siRNA prox1 knockdown in primary OPCs increased cell proliferation, increased NG2+ OPC cell number and decreased CC1+ OL number. Prox1 conditional knockout in the OL cell lineage in mice increased NG2+ OPC cell number, and decreased CC1+ OL number. Lysolecithin-induced demyelination injury caused a reduction in CC1+ OLs in homozygous Prox1-/- conditional knockout mice compared to controls. Remarkably, Prox1-/- conditional knockout mice had smaller lesions than controls. Altogether, these data show that Prox1 is required to inhibit OPC proliferation and for OL differentiation, and could be a relevant component of the regenerative glial response. Therapeutic uses of glia and stem cells to promote regeneration and repair after central nervous system injury would benefit from manipulating Prox1.

  5. Hyperthyreosis effects on the learning and glial intermediate filaments of rat brain

    Directory of Open Access Journals (Sweden)

    S. V. Kyrychenko

    2014-03-01

    Full Text Available The influence of hyperthyreosis on oxidative stress, state of glial intermediate filaments and memotry was investigated. Significant increasing of lipid peroxidation products into both hippocampus and cortex and change for the worse of memory was observed. Analysis of the behavioral reactions of rats in the test of passive avoidance conditioned reflex showed that the acquisition of skills of all groups of animals did not differ by time waiting period (latent period. Time saving memory test conditioned reflex of passive avoidance was excellent in the group of rats treated with thyroxine compared with controls. The change of polypeptide GFAP was observed in hippocampus and cortex. Both soluble and filamentous forms of GFAP increased in hippocampus of rat with hyperthyreosis. In filament fractions, increase in the intensity of 49 kDa polypeptide band was found. In the same fraction of insoluble cytoskeleton proteins degraded HFKB polypeptides with molecular weight in the region of 46–41 kDa appeared. Marked increase of degraded polypeptides was found in the soluble fraction of the brain stem. The intensity of the intact polypeptide (49 kDa, as well as in the filament fraction, significantly increased. It is possible that increasing concentrations of soluble subunits glial filaments may be due to dissociation of own filaments during the reorganization of cytoskeleton structures. Given the results of Western blotting for filament fraction, increased content of soluble intact 49 kDa polypeptide is primarily the result of increased expression of HFKB and only partly due to redistribution of existing filament structures. Calculation and analysis of indicators showed high correlation between the increase in content and peroxidation products of HFKB. These results indicate the important role of oxidative stress in the induction of astroglial reactive response under conditions of hyperthyroidism. This data shows the possibility of the glial cell

  6. Cell-type-specific responses of RT4 neural cell lines to dibutyryl-cAMP: branch determination versus maturation

    International Nuclear Information System (INIS)

    Droms, K.; Sueoka, N.

    1987-01-01

    This report describes the induction of cell-type-specific maturation, by dibutyryl-cAMP and testololactone, of neuronal and glial properties in a family of cell lines derived from a rat peripheral neurotumor, RT4. This maturation allows further understanding of the process of determination because of the close lineage relationship between the cell types of the RT4 family. The RT4 family is characterized by the spontaneous conversion of one of the cell types, RT4-AC (stem-cell type), to any of three derivative cell types, RT4-B, RT4-D, or RT4-E, with a frequency of about 10(-5). The RT4-AC cells express some properties characteristic of both neuronal and glial cells. Of these neural properties expressed by RT4-AC cells, only the neuronal properties are expressed by the RT4-B and RT4-E cells, and only the glial properties are expressed by the RT4-D cells. This in vitro cell-type conversion of RT4-AC to three derivative cell types is a branch point for the coordinate regulation of several properties and seems to resemble determination in vivo. In our standard culture conditions, several other neuronal and glial properties are not expressed by these cell types. However, addition of dibutyryl-cAMP induces expression of additional properties, in a cell-type-specific manner: formation of long cellular processes in the RT4-B8 and RT4-E5 cell lines and expression of high-affinity uptake of gamma-aminobutyric acid, by a glial-cell-specific mechanism, in the RT4-D6-2 cell line. These new properties are maximally expressed 2-3 days after addition of dibutyryl-cAMP

  7. The glial cell line-derived neurotrophic factor (GDNF) does not acutely change acetylcholine release in developing and adult neuromuscular junction.

    Science.gov (United States)

    Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Lanuza, Maria A; Besalduch, Nuria; Priego, Merche; Tomàs, Josep

    2010-08-16

    We use immunocytochemistry to show that the trophic molecule glial cell line-derived neurotrophic factor (GDNF) and its receptor GDNF family receptor alpha-1 (GFRalpha-1) are present in both neonatal (P6) and adult (P45) rodent neuromuscular junctions (NMJ) colocalized with several synaptic markers. However, incubation with exogenous GDNF (10-200ng/ml, 1-3h), does not affect spontaneous ACh release. Moreover, GDNF does not change the size of the evoked ACh release from the weak and the strong axonal inputs on dually innervated postnatal endplates nor in the most developed singly-innervated synapses at P6 and P45. Our findings indicate that GDNF (unlike neurotrophins) does not acutely modulate transmitter release during the developmental process of synapse elimination nor as the NMJ matures. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Opioid-Induced Glial Activation: Mechanisms of Activation and Implications for Opioid Analgesia, Dependence, and Reward

    Directory of Open Access Journals (Sweden)

    Mark R. Hutchinson

    2007-01-01

    Full Text Available This review will introduce the concept of toll-like receptor (TLR–mediated glial activation as central to all of the following: neuropathic pain, compromised acute opioid analgesia, and unwanted opioid side effects (tolerance, dependence, and reward. Attenuation of glial activation has previously been demonstrated both to alleviate exaggerated pain states induced by experimental pain models and to reduce the development of opioid tolerance. Here we demonstrate that selective acute antagonism of TLR4 results in reversal of neuropathic pain as well as potentiation of opioid analgesia. Attenuating central nervous system glial activation was also found to reduce the development of opioid dependence, and opioid reward at a behavioral (conditioned place preference and neurochemical (nucleus accumbens microdialysis of morphine-induced elevations in dopamine level of analysis. Moreover, a novel antagonism of TLR4 by (+- and (˗-isomer opioid antagonists has now been characterized, and both antiallodynic and morphine analgesia potentiating activity shown. Opioid agonists were found to also possess TLR4 agonistic activity, predictive of glial activation. Targeting glial activation is a novel and as yet clinically unexploited method for treatment of neuropathic pain. Moreover, these data indicate that attenuation of glial activation, by general or selective TLR antagonistic mechanisms, may also be a clinical method for separating the beneficial (analgesia and unwanted (tolerance, dependence, and reward actions of opioids, thereby improving the safety and efficacy of their use.

  9. Glial degeneration with oxidative damage drives neuronal demise in MPSII disease.

    Science.gov (United States)

    Zalfa, Cristina; Verpelli, Chiara; D'Avanzo, Francesca; Tomanin, Rosella; Vicidomini, Cinzia; Cajola, Laura; Manara, Renzo; Sala, Carlo; Scarpa, Maurizio; Vescovi, Angelo Luigi; De Filippis, Lidia

    2016-08-11

    Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the iduronate 2-sulfatase (IDS) enzyme, causing progressive neurodegeneration in patients. Neural stem cells (NSCs) derived from the IDS-ko mouse can recapitulate MPSII pathogenesis in vitro. In differentiating IDS-ko NSCs and in the aging IDS-ko mouse brain, glial degeneration precedes neuronal degeneration. Here we show that pure IDS-ko NSC-derived astrocytes are selectively able to drive neuronal degeneration when cocultured with healthy neurons. This phenotype suggests concurrent oxidative damage with metabolic dysfunction. Similar patterns were observed in murine IDS-ko animals and in human MPSII brains. Most importantly, the mutant phenotype of IDS-ko astrocytes was reversed by low oxygen conditions and treatment with vitamin E, which also reversed the toxic effect on cocultured neurons. Moreover, at very early stages of disease we detected in vivo the development of a neuroinflammatory background that precedes astroglial degeneration, thus suggesting a novel model of MPSII pathogenesis, with neuroinflammation preceding glial degeneration, which is finally followed by neuronal death. This hypothesis is also consistent with the progression of white matter abnormalities in MPSII patients. Our study represents a novel breakthrough in the elucidation of MPSII brain pathogenesis and suggests the antioxidant molecules as potential therapeutic tools to delay MPSII onset and progression.

  10. Activation of NF-κB is involved in 6-hydroxydopamine-but not MPP+-induced dopaminergic neuronal cell death: its potential role as a survival determinant

    International Nuclear Information System (INIS)

    Park, Seong H.; Choi, Won-Seok; Yoon, So-Young; Ahn, Young Soo; Oh, Young J.

    2004-01-01

    The nuclear factor-kappaB (NF-κB) family plays an important role in the control of the apoptotic response. Its activation has been demonstrated in both neurons and glial cells in many neurological disorders. In the present study, we specifically examined whether and to what extent NF-κB activation is involved in culture models of Parkinson's disease following exposure of MN9D dopaminergic neuronal cells to 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-4-phenylpyridinium ion (MPP + ). Both analysis by immunocytochemistry and of immunoblots revealed that NF-κB-p65 was translocated into the nuclei following 6-OHDA but not MPP + -treatment. A time-dependent activation of NF-κB induced by 6-OHDA but not MPP + was also demonstrated by an electrophoretic mobility shift assay. A competition assay indicated that not only NF-κB-p65 but also -p50 is involved in 6-OHDA-induced NF-κB activity. Co-treatment with an antioxidant, N-acetyl-L-cysteine, blocked 6-OHDA-induced activation of NF-κB signaling. In the presence of an NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), 6-OHDA-induced cell death was accelerated while PDTC did not affect MPP + -induced cell death. Our data may point to a drug-specific activation of NF-κB as a survival determinant for dopaminergic neurons

  11. Regulation of radial glial survival by signals from the meninges.

    Science.gov (United States)

    Radakovits, Randor; Barros, Claudia S; Belvindrah, Richard; Patton, Bruce; Müller, Ulrich

    2009-06-17

    Radial glial cells (RGCs) in the developing cerebral cortex are progenitors for neurons and glia, and their processes serve as guideposts for migrating neurons. So far, it has remained unclear whether RGC processes also control the function of RGCs more directly. Here, we show that RGC numbers and cortical size are reduced in mice lacking beta1 integrins in RGCs. TUNEL stainings and time-lapse video recordings demonstrate that beta1-deficient RGCs processes detach from the meningeal basement membrane (BM) followed by apoptotic death of RGCs. Apoptosis is also induced by surgical removal of the meninges. Finally, mice lacking the BM components laminin alpha2 and alpha4 show defects in the attachment of RGC processes at the meninges, a reduction in cortical size, and enhanced apoptosis of RGC cells. Our findings demonstrate that attachment of RGC processes at the meninges is important for RGC survival and the control of cortical size.

  12. Pathway analyses implicate glial cells in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Laramie E Duncan

    Full Text Available The quest to understand the neurobiology of schizophrenia and bipolar disorder is ongoing with multiple lines of evidence indicating abnormalities of glia, mitochondria, and glutamate in both disorders. Despite high heritability estimates of 81% for schizophrenia and 75% for bipolar disorder, compelling links between findings from neurobiological studies, and findings from large-scale genetic analyses, are only beginning to emerge.Ten publically available gene sets (pathways related to glia, mitochondria, and glutamate were tested for association to schizophrenia and bipolar disorder using MAGENTA as the primary analysis method. To determine the robustness of associations, secondary analyses were performed with: ALIGATOR, INRICH, and Set Screen. Data from the Psychiatric Genomics Consortium (PGC were used for all analyses. There were 1,068,286 SNP-level p-values for schizophrenia (9,394 cases/12,462 controls, and 2,088,878 SNP-level p-values for bipolar disorder (7,481 cases/9,250 controls.The Glia-Oligodendrocyte pathway was associated with schizophrenia, after correction for multiple tests, according to primary analysis (MAGENTA p = 0.0005, 75% requirement for individual gene significance and also achieved nominal levels of significance with INRICH (p = 0.0057 and ALIGATOR (p = 0.022. For bipolar disorder, Set Screen yielded nominally and method-wide significant associations to all three glial pathways, with strongest association to the Glia-Astrocyte pathway (p = 0.002.Consistent with findings of white matter abnormalities in schizophrenia by other methods of study, the Glia-Oligodendrocyte pathway was associated with schizophrenia in our genomic study. These findings suggest that the abnormalities of myelination observed in schizophrenia are at least in part due to inherited factors, contrasted with the alternative of purely environmental causes (e.g. medication effects or lifestyle. While not the primary purpose of our study

  13. Different Levels of Expression of the Clock Protein PER and the Glial Marker REPO in Ensheathing and Astrocyte-Like Glia of the Distal Medulla of Drosophila Optic Lobe.

    Science.gov (United States)

    Krzeptowski, Wojciech; Walkowicz, Lucyna; Płonczyńska, Alicja; Górska-Andrzejak, Jolanta

    2018-01-01

    Circadian plasticity of the visual system of Drosophila melanogaster depends on functioning of both the neuronal and glial oscillators. The clock function of the former is already quite well-recognized. The latter, however, is much less known and documented. In this study we focus on the glial oscillators that reside in the distal part of the second visual neuropil, medulla (dMnGl), in vicinity of the PIGMENT-DISPERSING FACTOR (PDF) releasing terminals of the circadian clock ventral Lateral Neurons (LNvs). We reveal the heterogeneity of the dMnGl, which express the clock protein PERIOD (PER) and the pan-glial marker REVERSED POLARITY (REPO) at higher (P1) or lower (P2) levels. We show that the cells with stronger expression of PER display also stronger expression of REPO, and that the number of REPO-P1 cells is bigger during the day than during the night. Using a combination of genetic markers and immunofluorescent labeling with anti PER and REPO Abs, we have established that the P1 and P2 cells can be associated with two different types of the dMnGl, the ensheathing (EnGl), and the astrocyte-like glia (ALGl). Surprisingly, the EnGl belong to the P1 cells, whereas the ALGl, previously reported to play the main role in the circadian rhythms, display the characteristics of the P2 cells (express very low level of PER and low level of REPO). Next to the EnGl and ALGl we have also observed another type of cells in the distal medulla that express PER and REPO, although at very low levels. Based on their morphology we have identified them as the T1 interneurons. Our study reveals the complexity of the distal medulla circadian network, which appears to consist of different types of glial and neuronal peripheral clocks, displaying molecular oscillations of higher (EnGl) and lower (ALGl and T1) amplitudes.

  14. Distinct regulatory functions of calpain 1 and 2 during neural stem cell self-renewal and differentiation.

    Directory of Open Access Journals (Sweden)

    Daniela M Santos

    Full Text Available Calpains are calcium regulated cysteine proteases that have been described in a wide range of cellular processes, including apoptosis, migration and cell cycle regulation. In addition, calpains have been implicated in differentiation, but their impact on neural differentiation requires further investigation. Here, we addressed the role of calpain 1 and calpain 2 in neural stem cell (NSC self-renewal and differentiation. We found that calpain inhibition using either the chemical inhibitor calpeptin or the endogenous calpain inhibitor calpastatin favored differentiation of NSCs. This effect was associated with significant changes in cell cycle-related proteins and may be regulated by calcium. Interestingly, calpain 1 and calpain 2 were found to play distinct roles in NSC fate decision. Calpain 1 expression levels were higher in self-renewing NSC and decreased with differentiation, while calpain 2 increased throughout differentiation. In addition, calpain 1 silencing resulted in increased levels of both neuronal and glial markers, β-III Tubulin and glial fibrillary acidic protein (GFAP. Calpain 2 silencing elicited decreased levels of GFAP. These results support a role for calpain 1 in repressing differentiation, thus maintaining a proliferative NSC pool, and suggest that calpain 2 is involved in glial differentiation.

  15. Role of IFN-gamma and LPS on Neuron/Glial Co-Cultures Infected by Neospora caninum

    Directory of Open Access Journals (Sweden)

    Erica Etelvina Viana De Jesus

    2014-10-01

    Full Text Available Neospora caninum causes cattle abortion and neurological symptoms in dogs. Although infection is usually asymptomatic, classical neurological symptoms of neosporosis may be associated with encephalitis. This parasite can grow in brain endothelial cells without markedly damages, but it can modulate the cellular environment to promote its survival in the brain. In previous studies, we described that IFN-γ decreased the parasite proliferation and down regulated nitric oxide production in astrocyte/microglia cultures. However, it remains unclear how glial cells respond to N. caninum in the presence of neurons. Therefore, we evaluated the effect of 300 IU/mL IFN-γ or 1.0 μg/mL of LPS on infected rat neuron/glial co-cultures. After 72 hours of infection, LPS did not affect the mitochondrial dehydrogenase activity. However, IFN-γ decreased this parameter by 15.5 and 12.0% in uninfected and infected cells, respectively. The number of tachyzoites decreased 54.1 and 44.3% in cells stimulated with IFN-γ and LPS, respectively. Infection or LPS treatment did not change NO production. On the other hand, IFN-γ induced increased nitrite release in 55.7%, but the infection reverted this induction. IL-10 levels increased only in infected cultures (treated or not, meanwhile PGE2 release was improved in IFN-γ/infected or LPS/infected cells. Although IFN-γ significantly reduced the neurite length in uninfected cultures (42.64%; p < 0.001, this inflammatory cytokine reverted the impairment of neurite outgrowth induced by the infection (81.39%. The results suggest a neuroprotective potential response of glia to N. caninum infection under IFN-γ stimulus. This observation contributes to understand the immune mediated mechanisms of neosporosis in CNS

  16. Novel para-phenyl substituted diindolylmethanes protect against MPTP neurotoxicity and suppress glial activation in a mouse model of Parkinson's disease.

    Science.gov (United States)

    De Miranda, Briana R; Popichak, Katriana A; Hammond, Sean L; Miller, James A; Safe, Stephen; Tjalkens, Ronald B

    2015-02-01

    The orphan nuclear receptor NR4A2 (Nurr1) constitutively regulates inflammatory gene expression in glial cells by suppressing DNA binding activity of NF-κB. We recently reported that novel 1,1-bis(3'-indolyl)-1-(p-substitutedphenyl)methane (C-DIM) compounds that activate NR4A family nuclear receptors in cancer lines also suppress inflammatory gene expression in primary astrocytes and prevent loss of dopaminergic neurons in mice exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTPp). In this study, we postulated that the basis for this neuroprotection involves blockade of glial activation and subsequent expression of NF-κB-regulated inflammatory genes. To examine this mechanism, we treated transgenic NF-κB/EGFP reporter mice with MPTPp for 7 days (MPTPp7d) followed by daily oral gavage with either vehicle (corn oil; MPTPp14d) or C-DIMs containing p-methoxyphenyl (C-DIM5), p-hydroxyphenyl (C-DIM8), or p-chlorophenyl (C-DIM12) groups. Each compound conferred significant protection against progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), even when given after 7 days of dosing with MPTPp. C-DIM12 had the greatest neuroprotective activity in MPTPp-treated mice, and was also the most potent compound in suppressing activation of microglia and astrocytes, expression of cytokines and chemokines in quantitative polymerase chain reaction (qPCR) array studies, and in reducing expression of NF-κB/EGFP in the SN. C-DIM12 prevented nuclear export of Nurr1 in dopaminergic neurons and enhanced expression of the Nurr1-regulated proteins tyrosine hydroxylase and the dopamine transporter. These data indicate that NR4A-active C-DIM compounds protect against loss of dopamine neurons in the MPTPp model of PD by preventing glial-mediated neuronal injury and by supporting a dopaminergic phenotype in TH-positive neurons in the SNpc. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology

  17. Glial activation colocalizes with structural abnormalities in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Alshikho, Mohamad J; Zürcher, Nicole R; Loggia, Marco L; Cernasov, Paul; Chonde, Daniel B; Izquierdo Garcia, David; Yasek, Julia E; Akeju, Oluwaseun; Catana, Ciprian; Rosen, Bruce R; Cudkowicz, Merit E; Hooker, Jacob M; Atassi, Nazem

    2016-12-13

    In this cross-sectional study, we aimed to evaluate brain structural abnormalities in relation to glial activation in the same cohort of participants. Ten individuals with amyotrophic lateral sclerosis (ALS) and 10 matched healthy controls underwent brain imaging using integrated MR/PET and the radioligand [ 11 C]-PBR28. Diagnosis history and clinical assessments including Upper Motor Neuron Burden Scale (UMNB) were obtained from patients with ALS. Diffusion tensor imaging (DTI) analyses including tract-based spatial statistics and tractography were applied. DTI metrics including fractional anisotropy (FA) and diffusivities (mean, axial, and radial) were measured in regions of interest. Cortical thickness was assessed using surface-based analysis. The locations of structural changes, measured by DTI and the areas of cortical thinning, were compared to regional glial activation measured by relative [ 11 C]-PBR28 uptake. In this cohort of individuals with ALS, reduced FA and cortical thinning colocalized with regions demonstrating higher radioligand binding. [ 11 C]-PBR28 binding in the left motor cortex was correlated with FA (r = -0.68, p < 0.05) and cortical thickness (r = -0.75, p < 0.05). UMNB was correlated with glial activation (r = +0.75, p < 0.05), FA (r = -0.77, p < 0.05), and cortical thickness (r = -0.75, p < 0.05) in the motor cortex. Increased uptake of the glial marker [ 11 C]-PBR28 colocalizes with changes in FA and cortical thinning. This suggests a link between disease mechanisms (gliosis and inflammation) and structural changes (cortical thinning and white and gray matter changes). In this multimodal neuroimaging work, we provide an in vivo model to investigate the pathogenesis of ALS. © 2016 American Academy of Neurology.

  18. Local delivery of glial cell line-derived neurotrophic factor improves facial nerve regeneration after late repair.

    Science.gov (United States)

    Barras, Florian M; Kuntzer, Thierry; Zurn, Anne D; Pasche, Philippe

    2009-05-01

    Facial nerve regeneration is limited in some clinical situations: in long grafts, by aged patients, and when the delay between nerve lesion and repair is prolonged. This deficient regeneration is due to the limited number of regenerating nerve fibers, their immaturity and the unresponsiveness of Schwann cells after a long period of denervation. This study proposes to apply glial cell line-derived neurotrophic factor (GDNF) on facial nerve grafts via nerve guidance channels to improve the regeneration. Two situations were evaluated: immediate and delayed grafts (repair 7 months after the lesion). Each group contained three subgroups: a) graft without channel, b) graft with a channel without neurotrophic factor; and c) graft with a GDNF-releasing channel. A functional analysis was performed with clinical observation of facial nerve function, and nerve conduction study at 6 weeks. Histological analysis was performed with the count of number of myelinated fibers within the graft, and distally to the graft. Central evaluation was assessed with Fluoro-Ruby retrograde labeling and Nissl staining. This study showed that GDNF allowed an increase in the number and the maturation of nerve fibers, as well as the number of retrogradely labeled neurons in delayed anastomoses. On the contrary, after immediate repair, the regenerated nerves in the presence of GDNF showed inferior results compared to the other groups. GDNF is a potent neurotrophic factor to improve facial nerve regeneration in grafts performed several months after the nerve lesion. However, GDNF should not be used for immediate repair, as it possibly inhibits the nerve regeneration.

  19. The soft mechanical signature of glial scars in the central nervous system

    Science.gov (United States)

    Moeendarbary, Emad; Weber, Isabell P.; Sheridan, Graham K.; Koser, David E.; Soleman, Sara; Haenzi, Barbara; Bradbury, Elizabeth J.; Fawcett, James; Franze, Kristian

    2017-03-01

    Injury to the central nervous system (CNS) alters the molecular and cellular composition of neural tissue and leads to glial scarring, which inhibits the regrowth of damaged axons. Mammalian glial scars supposedly form a chemical and mechanical barrier to neuronal regeneration. While tremendous effort has been devoted to identifying molecular characteristics of the scar, very little is known about its mechanical properties. Here we characterize spatiotemporal changes of the elastic stiffness of the injured rat neocortex and spinal cord at 1.5 and three weeks post-injury using atomic force microscopy. In contrast to scars in other mammalian tissues, CNS tissue significantly softens after injury. Expression levels of glial intermediate filaments (GFAP, vimentin) and extracellular matrix components (laminin, collagen IV) correlate with tissue softening. As tissue stiffness is a regulator of neuronal growth, our results may help to understand why mammalian neurons do not regenerate after injury.

  20. Quiescent Oct4+ Neural Stem Cells (NSCs) Repopulate Ablated Glial Fibrillary Acidic Protein+ NSCs in the Adult Mouse Brain.

    Science.gov (United States)

    Reeve, Rachel L; Yammine, Samantha Z; Morshead, Cindi M; van der Kooy, Derek

    2017-09-01

    Adult primitive neural stem cells (pNSCs) are a rare population of glial fibrillary acidic protein (GFAP) - Oct4 + cells in the mouse forebrain subependymal zone bordering the lateral ventricles that give rise to clonal neurospheres in leukemia inhibitory factor in vitro. pNSC neurospheres can be passaged to self-renew or give rise to GFAP + NSCs that form neurospheres in epidermal growth factor and fibroblast growth factor 2, which we collectively refer to as definitive NSCs (dNSCs). Label retention experiments using doxycycline-inducible histone-2B (H2B)-green fluorescent protein (GFP) mice and several chase periods of up to 1 year quantified the adult pNSC cell cycle time as 3-5 months. We hypothesized that while pNSCs are not very proliferative at baseline, they may exist as a reserve pool of NSCs in case of injury. To test this function of pNSCs, we obtained conditional Oct4 knockout mice, Oct4 fl/fl ;Sox1 Cre (Oct4 CKO ), which do not yield adult pNSC-derived neurospheres. When we ablated the progeny of pNSCs, namely all GFAP + dNSCs, in these Oct4 CKO mice, we found that dNSCs did not recover as they do in wild-type mice, suggesting that pNSCs are necessary for dNSC repopulation. Returning to the H2B-GFP mice, we observed that the cytosine β-d-arabinofuranoside ablation of proliferating cells including dNSCs-induced quiescent pNSCs to proliferate and significantly dilute their H2B-GFP label. In conclusion, we demonstrate that pNSCs are the most quiescent stem cells in the adult brain reported to date and that their lineage position upstream of GFAP + dNSCs allows them to repopulate a depleted neural lineage. Stem Cells 2017;35:2071-2082. © 2017 AlphaMed Press.

  1. The impact of the glial spatial buffering on the K(+) Nernst potential.

    Science.gov (United States)

    Noori, H R

    2011-09-01

    Astrocytes play a critical role in CNS metabolism, regulation of volume and ion homeostasis of the interstitial space. Of special relevance is their clearance of K(+) that is released by active neurons into the extracellular space. Mathematical analysis of a modified Nernst equation for the electrochemical equilibrium of neuronal plasma membranes, suggests that K(+) uptake by glial cells is not only relevant during neuronal activity but also has a non-neglectable impact on the basic electrical membrane properties, specifically the resting membrane potential, of neurons and might be clinically valuable as a factor in the genetics and epigenetics of the epilepsy and tuberous sclerosis complex.

  2. Enhanced IL-1beta production in response to the activation of hippocampal glial cells impairs neurogenesis in aged mice.

    Science.gov (United States)

    Kuzumaki, Naoko; Ikegami, Daigo; Imai, Satoshi; Narita, Michiko; Tamura, Rie; Yajima, Marie; Suzuki, Atsuo; Miyashita, Kazuhiko; Niikura, Keiichi; Takeshima, Hideyuki; Ando, Takayuki; Ushijima, Toshikazu; Suzuki, Tsutomu; Narita, Minoru

    2010-09-01

    A variety of mechanisms that contribute to the accumulation of age-related damage and the resulting brain dysfunction have been identified. Recently, decreased neurogenesis in the hippocampus has been recognized as one of the mechanisms of age-related brain dysfunction. However, the molecular mechanism of decreased neurogenesis with aging is still unclear. In the present study, we investigated whether aging decreases neurogenesis accompanied by the activation of microglia and astrocytes, which increases the expression of IL-1beta in the hippocampus, and whether in vitro treatment with IL-1beta in neural stem cells directly impairs neurogenesis. Ionized calcium-binding adaptor molecule 1 (Iba1)-positive microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes were increased in the dentate gyrus of the hippocampus of 28-month-old mice. Furthermore, the mRNA level of IL-1beta was significantly increased without related histone modifications. Moreover, a significant increase in lysine 9 on histone H3 (H3K9) trimethylation at the promoter of NeuroD (a neural progenitor cell marker) was observed in the hippocampus of aged mice. In vitro treatment with IL-1beta in neural stem cells prepared from whole brain of E14.5 mice significantly increased H3K9 trimethylation at the NeuroD promoter. These findings suggest that aging may decrease hippocampal neurogenesis via epigenetic modifications accompanied by the activation of microglia and astrocytes with the increased expression of IL-1beta in the hippocampus.

  3. CSF glial markers correlate with survival in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Süssmuth, S D; Sperfeld, A D; Hinz, A; Brettschneider, J; Endruhn, S; Ludolph, A C; Tumani, H

    2010-03-23

    In neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), CSF biomarkers are increasingly studied to evaluate their relevance for differential diagnosis, disease progression, and understanding of pathophysiologic processes. To identify a biomarker profile of neuronal and glial CSF proteins to discriminate ALS from other motor neuron diseases (MND) and to assess whether baseline levels of CSF measures in ALS are associated with the course of the disease. A total of 122 consecutive subjects with MND were included in this cross-sectional study (ALS, n = 75; lower motor neuron syndrome, n = 39; upper motor neuron diseases, n = 8). Clinical follow-up included 76 patients. We determined baseline levels of protein tau and astroglial S100beta in CSF and microglial sCD14 in CSF and serum in relation to diagnosis, duration of disease, and survival. CSF tau was significantly elevated in ALS and upper motor neuron diseases as compared to lower motor neuron diseases and controls. CSF S100beta levels were significantly lower in lower motor neuron diseases as compared to other MND. CSF concentrations of S100beta and sCD14 correlated with the survival time in patients with ALS. In motor neuron diseases, CSF tau elevation indicates the degeneration of upper motor neurons, while S100 beta and sCD14 may indicate the activation of CNS glial cells. Because S100beta and sCD14 concentrations correlate with survival in amyotrophic lateral sclerosis (ALS), we suppose that the combination of both markers may be useful to obtain prognostic information in patients with ALS.

  4. Identification of Glial Activation Markers by Comparison of Transcriptome Changes between Astrocytes and Microglia following Innate Immune Stimulation.

    Science.gov (United States)

    Madeddu, Silvia; Woods, Tyson A; Mukherjee, Piyali; Sturdevant, Dan; Butchi, Niranjan B; Peterson, Karin E

    2015-01-01

    The activation of astrocytes and microglia is often associated with diseases of the central nervous system (CNS). Understanding how activation alters the transcriptome of these cells may offer valuable insight regarding how activation of these cells mediate neurological damage. Furthermore, identifying common and unique pathways of gene expression during activation may provide new insight into the distinct roles these cells have in the CNS during infection and inflammation. Since recent studies indicate that TLR7 recognizes not only viral RNA but also microRNAs that are released by damaged neurons and elevated during neurological diseases, we first examined the response of glial cells to TLR7 stimulation using microarray analysis. Microglia were found to generate a much stronger response to TLR7 activation than astrocytes, both in the number of genes induced as well as fold induction. Although the primary pathways induced by both cell types were directly linked to immune responses, microglia also induced pathways associated with cellular proliferation, while astrocytes did not. Targeted analysis of a subset of the upregulated genes identified unique mRNA, including Ifi202b which was only upregulated by microglia and was found to be induced during both retroviral and bunyavirus infections in the CNS. In addition, other genes including Birc3 and Gpr84 as well as two expressed sequences AW112010 and BC023105 were found to be induced in both microglia and astrocytes and were upregulated in the CNS following virus infection. Thus, expression of these genes may a useful measurement of glial activation during insult or injury to the CNS.

  5. Advanced MR diagnostic imaging in pediatric glial cell tumors: from morphological to pathophysiological evaluation

    International Nuclear Information System (INIS)

    Balev, B.; Georgiev, R.; Novakova, M.

    2013-01-01

    Full text: Introduction: The conventional MR imaging is important, and in most cases necessary imaging tool for studying the macroscopic structure, for localization and distribution of a glial brain tumor. It is an integral part of the optimal MR protocol, which further comprises a diffusion, perfusion techniques, techniques for the permeability and oxygenation assessment, as well as MR spectroscopy to the metabolism assessment. What you will learn: Glial brain tumors in children - incidence, histology, classification, diagnosis; Nature and principles of MR diffusion, perfusion, techniques for permeability and oxygenation assessment, MR spectroscopy; Contemporary techniques allowing to obtain not only MR morphological information but also to evaluate the tumor the pathophysiology: the cellular atypia, cellularity, tumor neovascularization, oxygen consumption, metabolism, status of the blood-brain barrier. This assessment determines the biological potential of the tumor, treatment options and prognosis. Discussion: The findings from conventional MR examinations, incl. administration of gadolinium contrast agents are associated with the degree of glioma and can be useful for their classification. Taking into account that from 20% to 45 % of the unenhanced supratentorial gliomas are malignant, some low-grade gliomas enhance (ganglioglioma, pilocytic astrocytoma, oligodendroglioma), 9% of malignant gliomas have no contrast enhancement, and in general, the contrast enhancement is not seen as a reliable indicator for the infiltration extent. The contemporary MR techniques improve the assessment of the pathophysiology of the tumor which is relevant to its histology and biological potential. Conclusion: Modern MR techniques besides purely diagnostic advantages (determine the extent and distribution of glioma), enable: differentiation of tumor recurrence from radiation necrosis; identification of optimal locations for biopsy or operative resection; prognosis, planning and

  6. Glial-Specific Functions of Microcephaly Protein WDR62 and Interaction with the Mitotic Kinase AURKA Are Essential for Drosophila Brain Growth.

    Science.gov (United States)

    Lim, Nicholas R; Shohayeb, Belal; Zaytseva, Olga; Mitchell, Naomi; Millard, S Sean; Ng, Dominic C H; Quinn, Leonie M

    2017-07-11

    The second most commonly mutated gene in primary microcephaly (MCPH) patients is wd40-repeat protein 62 (wdr62), but the relative contribution of WDR62 function to the growth of major brain lineages is unknown. Here, we use Drosophila models to dissect lineage-specific WDR62 function(s). Interestingly, although neural stem cell (neuroblast)-specific depletion of WDR62 significantly decreased neuroblast number, brain size was unchanged. In contrast, glial lineage-specific WDR62 depletion significantly decreased brain volume. Moreover, loss of function in glia not only decreased the glial population but also non-autonomously caused neuroblast loss. We further demonstrated that WDR62 controls brain growth through lineage-specific interactions with master mitotic signaling kinase, AURKA. Depletion of AURKA in neuroblasts drives brain overgrowth, which was suppressed by WDR62 co-depletion. In contrast, glial-specific depletion of AURKA significantly decreased brain volume, which was further decreased by WDR62 co-depletion. Thus, dissecting relative contributions of MCPH factors to individual neural lineages will be critical for understanding complex diseases such as microcephaly. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  7. White Matter Glial Pathology in Autism

    Science.gov (United States)

    2015-11-01

    AWARD NUMBER: W81XWH-12-1-0302 TITLE: White Matter Glial Pathology in Autism PRINCIPAL INVESTIGATOR: Gregory A. Ordway, Ph.D. CONTRACTING...Pathology in Autism 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0302 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Gregory A. Ordway, Ph.D...Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Methods used to directly study the autism brain include brain

  8. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    pounded the cell theory with M Schleiden, had diverse interests. ... (Courtesy: Dr. Vanaja Shetty, The Foundation for Medical Research, Mumbai) ... Role of Schwann Cells in Myelination ... arrangement of microvilli extending from the Schwann cell embedded in the gap matrix ... Schwann cells Regulate Nerve Development.

  9. Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for molecules associated with metabolism, signaling and regulation in central nervous system mixed glial cell cultures

    Directory of Open Access Journals (Sweden)

    Studzinski Diane

    2009-01-01

    Full Text Available Abstract Background Cytokines secreted by immune cells and activated glia play central roles in both the pathogenesis of and protection from damage to the central nervous system (CNS in multiple sclerosis (MS. Methods We have used gene array analysis to identify the initial direct effects of cytokines on CNS glia by comparing changes in early gene expression in CNS glial cultures treated for 6 hours with cytokines typical of those secreted by Th1 and Th2 lymphocytes and monocyte/macrophages (M/M. Results In two previous papers, we summarized effects of these cytokines on immune-related molecules, and on neural and glial related proteins, including neurotrophins, growth factors and structural proteins. In this paper, we present the effects of the cytokines on molecules involved in metabolism, signaling and regulatory mechanisms in CNS glia. Many of the changes in gene expression were similar to those seen in ischemic preconditioning and in early inflammatory lesions in experimental autoimmune encephalomyelitis (EAE, related to ion homeostasis, mitochondrial function, neurotransmission, vitamin D metabolism and a variety of transcription factors and signaling pathways. Among the most prominent changes, all three cytokine mixtures markedly downregulated the dopamine D3 receptor, while Th1 and Th2 cytokines downregulated neuropeptide Y receptor 5. An unexpected finding was the large number of changes related to lipid metabolism, including several suggesting a switch from diacylglycerol to phosphatidyl inositol mediated signaling pathways. Using QRT-PCR we validated the results for regulation of genes for iNOS, arginase and P glycoprotein/multi-drug resistance protein 1 (MDR1 seen at 6 hours with microarray. Conclusion Each of the three cytokine mixtures differentially regulated gene expression related to metabolism and signaling that may play roles in the pathogenesis of MS, most notably with regard to mitochondrial function and neurotransmitter

  10. Monocrotophos induces the expression and activity of xenobiotic metabolizing enzymes in pre-sensitized cultured human brain cells.

    Directory of Open Access Journals (Sweden)

    Vinay K Tripathi

    Full Text Available The expression and metabolic profile of cytochrome P450s (CYPs is largely missing in human brain due to non-availability of brain tissue. We attempted to address the issue by using human brain neuronal (SH-SY5Y and glial (U373-MG cells. The expression and activity of CYP1A1, 2B6 and 2E1 were carried out in the cells exposed to CYP inducers viz., 3-methylcholanthrene (3-MC, cyclophosphamide (CPA, ethanol and known neurotoxicant- monocrotophos (MCP, a widely used organophosphorous pesticide. Both the cells show significant induction in the expression and CYP-specific activity against classical inducers and MCP. The induction level of CYPs was comparatively lower in MCP exposed cells than cells exposed to classical inducers. Pre-exposure (12 h of cells to classical inducers significantly added the MCP induced CYPs expression and activity. The findings were concurrent with protein ligand docking studies, which show a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR, PXR and AHR. Similarly, the known CYP inducers- 3-MC, CPA and ethanol have also shown significantly high docking scores with all the three studied CYP regulators. The expression of CYPs in neuronal and glial cells has suggested their possible association with the endogenous physiology of the brain. The findings also suggest the xenobiotic metabolizing capabilities of these cells against MCP, if received a pre-sensitization to trigger the xenobiotic metabolizing machinery. MCP induced CYP-specific activity in neuronal cells could help in explaining its effect on neurotransmission, as these CYPs are known to involve in the synthesis/transport of the neurotransmitters. The induction of CYPs in glial cells is also of significance as these cells are thought to be involved in protecting the neurons from environmental insults and safeguard them from toxicity. The data provide better understanding of the metabolizing capability of the human brain cells against

  11. Opposing Actions of Fgf8a on Notch Signaling Distinguish Two Muller Glial Cell Populations that Contribute to Retina Growth and Regeneration

    Directory of Open Access Journals (Sweden)

    Jin Wan

    2017-04-01

    Full Text Available The teleost retina grows throughout life and exhibits a robust regenerative response following injury. Critical to both these events are Muller glia (or, Muller glial cells; MGs, which produce progenitors for retinal growth and repair. We report that Fgf8a may be an MG niche factor that acts through Notch signaling to regulate spontaneous and injury-dependent MG proliferation. Remarkably, forced Fgf8a expression inhibits Notch signaling and stimulates MG proliferation in young tissue but increases Notch signaling and suppresses MG proliferation in older tissue. Furthermore, cessation of Fgf8a signaling enhances MG proliferation in both young and old retinal tissue. Our study suggests that multiple MG populations contribute to retinal growth and regeneration, and it reveals a previously unappreciated role for Fgf8a and Notch signaling in regulating MG quiescence, activation, and proliferation.

  12. Extracellular matrix of cultured glial cells: Selective expression of chondroitin 4-sulfate by type-2 astrocytes and their progenitors

    International Nuclear Information System (INIS)

    Gallo, V.; Bertolotto, A.

    1990-01-01

    We have studied the extracellular matrix composition of cultured glial cells by immunocytochemistry with different monoclonal and polyclonal antibodies. Double immunofluorescence experiments and metabolic labeling with [3H]glucosamine performed in different types of cerebellar and cortical cultures showed that bipotential progenitors for type-2 astrocytes and for oligodendrocytes synthesize chondroitin sulfate (CS) and deposit this proteoglycan in their extracellular matrix. The distribution of the various [3H]glucosamine-labeled glycosaminoglycans between the intracellular and the extracellular space was different. CS was present both within the cells and in the culture medium, although in different amounts. Bi-potential progenitors became also O4-positive during their development in vitro. At the stage of O4-positivity they were still stained with antibodies against CS. However, when the progenitor cells were maintained in serum-free medium and differentiated into Gal-C-positive oligodendrocytes, they became CS-negative. In the presence of fetal calf serum in the culture medium, the bipotential progenitors differentiated into GFAP-positive type-2 astrocytes. These cells still expressed CS: their Golgi area and their surface were stained with anti-CS antibodies. Staining with monoclonal antibodies specific for different types of CS (4-sulfate, 6-sulfate, and unsulfated) revealed that both bipotential progenitors and type-2 astrocytes synthesized only chondroitin 4-sulfate. Type-1 astrocytes were negative for both the polyclonal and the monoclonal anti-CS antibodies. Finally, type-2 astrocytes and their progenitors were weakly stained with anti-laminin antibodies and unstained with anti-fibronectin. Type-1 astrocytes were positive for both anti-laminin and anti-fibronectin antibodies and appeared to secrete fibronectin in the extracellular space

  13. Exposure of cultured astroglial and microglial brain cells to 900 MHz microwave radiation.

    Science.gov (United States)

    Thorlin, Thorleif; Rouquette, Jean-Michel; Hamnerius, Yngve; Hansson, Elisabeth; Persson, Mikael; Björklund, Ulrika; Rosengren, Lars; Rönnbäck, Lars; Persson, Mikael

    2006-08-01

    The rapid rise in the use of mobile communications has raised concerns about health issues related to low-level microwave radiation. The head and brain are usually the most exposed targets in mobile phone users. In the brain, two types of glial cells, the astroglial and the microglial cells, are interesting in the context of biological effects from microwave exposure. These cells are widely distributed in the brain and are directly involved in the response to brain damage as well as in the development of brain cancer. The aim of the present study was to investigate whether 900 MHz radiation could affect these two different glial cell types in culture by studying markers for damage-related processes in the cells. Primary cultures enriched in astroglial cells were exposed to 900 MHz microwave radiation in a temperature-controlled exposure system at specific absorption rates (SARs) of 3 W/kg GSM modulated wave (mw) for 4, 8 and 24 h or 27 W/kg continuous wave (cw) for 24 h, and the release into the extracellular medium of the two pro-inflammatory cytokines interleukin 6 (Il6) and tumor necrosis factor-alpha (Tnfa) was analyzed. In addition, levels of the astroglial cell-specific reactive marker glial fibrillary acidic protein (Gfap), whose expression dynamics is different from that of cytokines, were measured in astroglial cultures and in astroglial cell-conditioned cell culture medium at SARs of 27 and 54 W/kg (cw) for 4 or 24 h. No significant differences could be detected for any of the parameters studied at any time and for any of the radiation characteristics. Total protein levels remained constant during the experiments. Microglial cell cultures were exposed to 900 MHz radiation at an SAR of 3 W/kg (mw) for 8 h, and I16, Tnfa, total protein and the microglial reactivity marker ED-1 (a macrophage activation antigen) were measured. No significant differences were found. The morphology of the cultured astroglial cells and microglia was studied and appeared to be

  14. Alkaloids from Prosopis juliflora leaves induce glial activation, cytotoxicity and stimulate NO production.

    Science.gov (United States)

    Silva, A M M; Silva, A R; Pinheiro, A M; Freitas, S R V B; Silva, V D A; Souza, C S; Hughes, J B; El-Bachá, R S; Costa, M F D; Velozo, E S; Tardy, M; Costa, S L

    2007-04-01

    Prosopis juliflora is used for feeding cattle and humans. Intoxication with the plant has been reported, and is characterized by neuromuscular alterations and gliosis. Total alkaloidal extract (TAE) was obtained using acid/basic-modified extraction and was fractionated. TAE and seven alkaloidal fractions, at concentrations ranging 0.03-30 microg/ml, were tested for 24h on astrocyte primary cultures derived from the cortex of newborn Wistar rats. The MTT test and the measure of LDH activity on the culture medium, revealed that TAE and fractions F29/30, F31/33, F32 and F34/35 were cytotoxic to astrocytes. The EC(50) values for the most toxic compounds, TAE, F31/33 and F32 were 2.87 2.82 and 3.01 microg/ml, respectively. Morphological changes and glial cells activation were investigated through Rosenfeld's staining, by immunocytochemistry for the protein OX-42, specific of activated microglia, by immunocytochemistry and western immunoblot for GFAP, the marker of reactive and mature astrocytes, and by the production of nitric oxide (NO). We observed that astrocytes exposed to 3 microg/ml TAE, F29/30 or F31/33 developed compact cell body with many processes overexpressing GFAP. Treatment with 30 microg/ml TAE and fractions, induced cytotoxicity characterized by a strong cell body contraction, very thin and long processes and condensed chromatin. We also observed that when compared with the control (+/-1.34%), the proportion of OX-42 positive cells was increased in cultures treated with 30 microg/ml TAE or F29/30, F31/33, F32 and F34/35, with values raging from 7.27% to 28.74%. Moreover, incubation with 3 microg/ml F32, 30 microg/ml TAE, F29/30, F31/33 or F34/35 induced accumulation of nitrite in culture medium indicating induction of NO production. Taken together these results show that TAE and fractionated alkaloids from P. juliflora act directly on glial cells, inducing activation and/or cytotoxicity, stimulating NO production, and may have an impact on neuronal

  15. Glial response in the central nervous system of cats with feline infectious peritonitis.

    Science.gov (United States)

    Mesquita, Leonardo P; Hora, Aline S; de Siqueira, Adriana; Salvagni, Fernanda A; Brandão, Paulo E; Maiorka, Paulo C

    2016-12-01

    The aim of the study was to evaluate central nervous system (CNS) lesions in non-effusive and effusive cases of feline infectious peritonitis (FIP) regarding aspects related to astrocytic and microglial reactions. Five necropsied cats that were naturally infected with FIP virus, confirmed by reverse transcriptase polymerase chain reaction and immunohistochemistry, with different intensities of CNS lesions, were studied. Brain and cerebellum were evaluated by light microscopy and immunohistochemistry for glial fibrillary acidic protein (GFAP) and vimentin to assess astrocytic morphology, and lectin histochemistry for Ricinus communis agglutinin-I (RCA-I) to detect microglia was performed to evaluate the glial response in the CNS of cats with FIP. An important astrocytic response in many areas of the CNS of all cats, including the periventricular areas of lateral ventricles and fourth ventricle, the molecular layer of the cerebellum and cerebral cortex, was visualized. This astrocytic reactivity was associated with areas of granulomatous or pyogranulomatous vasculitis/perivasculitis in most cases, and it was characterized by multifocal to coalescing astrocytosis and astrogliosis with an increase in the expression of intermediate filaments, such as GFAP. However, astrocytes exhibited strong vimentin expression in neuroparenchyma with severe inflammatory and necrotic changes, but GFAP expression was mild or absent in these cases. A microglial response was present only in severe lesions, and RCA-I expression was detected primarily in gitter cells and resting microglia. The present study indicates a strong astrocytic response, including the presence of many less differentiated vimentin-positive astrocytes and gitter cells positive for RCA-1 in severe lesions in the CNS of cats with FIP. © The Author(s) 2015.

  16. A simple and efficient method for deriving neurospheres from bone marrow stromal cells

    International Nuclear Information System (INIS)

    Yang Qin; Mu Jun; Li Qi; Li Ao; Zeng Zhilei; Yang Jun; Zhang Xiaodong; Tang Jin; Xie Peng

    2008-01-01

    Bone marrow stromal cells (MSCs) can be differentiated into neuronal and glial-like cell types under appropriate experimental conditions. However, previously reported methods are complicated and involve the use of toxic reagents. Here, we present a simplified and nontoxic method for efficient conversion of rat MSCs into neurospheres that express the neuroectodermal marker nestin. These neurospheres can proliferate and differentiate into neuron, astrocyte, and oligodendrocyte phenotypes. We thus propose that MSCs are an emerging model cell for the treatment of a variety of neurological diseases

  17. Wen-Luo-Tong Prevents Glial Activation and Nociceptive Sensitization in a Rat Model of Oxaliplatin-Induced Neuropathic Pain.

    Science.gov (United States)

    Deng, Bo; Jia, Liqun; Pan, Lin; Song, Aiping; Wang, Yuanyuan; Tan, Huangying; Xiang, Qing; Yu, Lili; Ke, Dandan

    2016-01-01

    One of the main dose-limiting complications of the chemotherapeutic agent oxaliplatin (OXL) is painful neuropathy. Glial activation and nociceptive sensitization may be responsible for the mechanism of neuropathic pain. The Traditional Chinese Medicine (TCM) Wen-luo-tong (WLT) has been widely used in China to treat chemotherapy induced neuropathic pain. However, there is no study on the effects of WLT on spinal glial activation induced by OXL. In this study, a rat model of OXL-induced chronic neuropathic pain was established and WLT was administrated. Pain behavioral tests and morphometric examination of dorsal root ganglia (DRG) were conducted. Glial fibrillary acidic protein (GFAP) immunostaining was performed, glial activation was evaluated, and the excitatory neurotransmitter substance P (SP) and glial-derived proinflammatory cytokine tumor necrosis factor-α (TNF-α) were analyzed. WLT treatment alleviated OXL-induced mechanical allodynia and mechanical hyperalgesia. Changes in the somatic, nuclear, and nucleolar areas of neurons in DRG were prevented. In the spinal dorsal horn, hypertrophy and activation of GFAP-positive astrocytes were averted, and the level of GFAP mRNA decreased significantly. Additionally, TNF-α mRNA and protein levels decreased. Collectively, these results indicate that WLT reversed both glial activation in the spinal dorsal horn and nociceptive sensitization during OXL-induced chronic neuropathic pain in rats.

  18. DHT inhibits the Aβ25-35-induced apoptosis by regulation of seladin-1, survivin, XIAP, bax, and bcl-xl expression through a rapid PI3-K/Akt signaling in C6 glial cell lines.

    Science.gov (United States)

    Bing, Lelin; Wu, Junfeng; Zhang, Jianfeng; Chen, Yinghui; Hong, Zhen; Zu, Hengbing

    2015-01-01

    Previous evidences indicate that androgen is neuroprotective in the brain. However, the underling mechanisms remain to be fully elucidated. Moreover, it is controversial whether dihydrotestosterone (DHT) modulates the expression of apoptosis-related effectors, such as survivin, XIAP, bax, and bcl-xl proteins mediated by the PI3-K/Akt pathway, which contributes to androgen neuroprotection. In this study using a C6 glial cell model, apoptotic cells were detected by flow cytometry. Akt, seladin-1, survivin, XIAP, bcl-xl, and bax protein expression is investigated by Western blot. After amyloid β-protein fragment (Aβ25-35) treatment, apoptotic cells at early (annexin V+, PI-) and late (annexin V+, PI+) stages were significantly increased. Apoptosis at early and late was obviously inhibited in the presence of DHT. The effect of DHT was markedly blocked by PI3-K inhibitor LY294002.To elicit the mechanism of DHT protection, the expression of seladin-1, survivin, XIAP, bax, and bcl-xl protein was determined in C6 cells treated with Aβ25-35, DHT, or LY294002. Aβ25-35 significantly downregulated the expression of seladin-1, survivin, XIAP, bcl-xl protein and upregulated the expression of bax protein. DHT significantly inhibited the expression of bax, seladin-1, survivin, XIAP, and bcl-xl protein induced by Aβ25-35. Further, we found the effect of DHT was significantly inhibited by LY294002. Collectively, in a C6 glial cell model, we firstly found that DHT inhibits Aβ25-35-induced apoptosis by a rapid nongenic PI-3K/Akt activation as well as regulation of seladin-1, survivin, XIAP, bcl-xl, and bax proteins.

  19. Pentavalent 99Tcm - DMSA SPECT in primary brain tumours of glial cell origin

    International Nuclear Information System (INIS)

    Chung, D.K.; Evans, S.G.; Larcos, G.; Gruenewald, S.; Kumar, V.; Barton, M.

    1999-01-01

    Full text: 99 Tc m (V)-DMSA [DMSA(V)] has shown promise in brain tumour imaging. This study aimed to assess the role of DMSA(V) brain SPET in glioma for: (1) predicting the histopathological grade of malignancy, (2) monitoring response to therapy and (3) discriminating recurrent tumour from post-radiotherapy necrosis. Twenty-three patients (pts) (14 men, 9 women) of mean age 57 years (range 20-79) were referred with a lesion on CT/MRI (14 new presentations, 5 known and 4 suspected tumour recurrence). Up to 555 MBq of 99 Tc m (V)DMSA were administered and SPET was acquired at 3 h. Tumour uptake ratio (UR) was calculated by the ratio of activity in the tumour to a region in the contralateral brain. All 19 pts with known tumour showed DMSA(V) uptake. The 14 pts with new tumours (10 grade IV, I grade III, 2 grade II and 1 necrotic tumour) had a pre-therapy mean UR of 7.7 (range 2.8-13.6). The 3 lower-grade tumours were scattered widely within this range. Four pts completed radiotherapy and returned for a post-therapy scan, where the UR was less than the pre-therapy UR in 2, unchanged in 1 and greater in 1. The 5 known recurrent tumours had a mean UR of 13.5 (range 7.3-24.9). In the 4 pts with suspected recurrence, the DMSA(V) scan result agreed with clinical course or PET in 3 but was falsely positive in 1. In summary, 99 Tc m (V)-DMSA: (1) showed uptake in all known glial cell tumours in this series, however the UR did not correlate with the histopathological grade; (2) may be useful for discriminating tumour recurrence from post-radiotherapy necrosis; and (3) may have a role in predicting post-therapy prognosis

  20. Identification of Glial Activation Markers by Comparison of Transcriptome Changes between Astrocytes and Microglia following Innate Immune Stimulation.

    Directory of Open Access Journals (Sweden)

    Silvia Madeddu

    Full Text Available The activation of astrocytes and microglia is often associated with diseases of the central nervous system (CNS. Understanding how activation alters the transcriptome of these cells may offer valuable insight regarding how activation of these cells mediate neurological damage. Furthermore, identifying common and unique pathways of gene expression during activation may provide new insight into the distinct roles these cells have in the CNS during infection and inflammation. Since recent studies indicate that TLR7 recognizes not only viral RNA but also microRNAs that are released by damaged neurons and elevated during neurological diseases, we first examined the response of glial cells to TLR7 stimulation using microarray analysis. Microglia were found to generate a much stronger response to TLR7 activation than astrocytes, both in the number of genes induced as well as fold induction. Although the primary pathways induced by both cell types were directly linked to immune responses, microglia also induced pathways associated with cellular proliferation, while astrocytes did not. Targeted analysis of a subset of the upregulated genes identified unique mRNA, including Ifi202b which was only upregulated by microglia and was found to be induced during both retroviral and bunyavirus infections in the CNS. In addition, other genes including Birc3 and Gpr84 as well as two expressed sequences AW112010 and BC023105 were found to be induced in both microglia and astrocytes and were upregulated in the CNS following virus infection. Thus, expression of these genes may a useful measurement of glial activation during insult or injury to the CNS.

  1. Quantitation of glial fibrillary acidic protein in human brain tumours

    DEFF Research Database (Denmark)

    Rasmussen, S; Bock, E; Warecka, K

    1980-01-01

    The glial fibrillary acidic protein (GFA) content of 58 human brain tumours was determined by quantitative immunoelectrophoresis, using monospecific antibody against GFA. Astrocytomas, glioblastomas, oligodendrogliomas, spongioblastomas, ependymomas and medulloblastomas contained relatively high...

  2. Brain local and regional neuroglial alterations in Alzheimer's Disease: cell types, responses and implications.

    Science.gov (United States)

    Toledano, Adolfo; Álvarez, María-Isabel; Toledano-Díaz, Adolfo; Merino, José-Joaquín; Rodríguez, José Julio

    2016-01-01

    From birth to death, neurons are dynamically accompanied by neuroglial cells in a very close morphological and functional relationship. Three families have been classically considered within the CNS: astroglia, oligodendroglia and microglia. Many types/subtypes (including NGR2+ cells), with a wide variety of physiological and pathological effects on neurons, have been described using morphological and immunocytochemical criteria. Glio-glial, glio-neuronal and neuro-glial cell signaling and gliotransmission are phenomena that are essential to support brain functions. Morphofunctional changes resulting from the plasticity of all the glial cell types parallel the plastic neuronal changes that optimize the functionality of neuronal circuits. Moreover, neuroglia possesses the ability to adopt a reactive status (gliosis) in which, generally, new functions arise to improve and restore if needed the neural functionality. All these features make neuroglial cells elements of paramount importance when attempting to explain any physiological or pathological processes in the CNS, because they are involved in both, neuroprotection/neurorepair and neurodegeneration. There exist diverse and profound, regional and local, neuroglial changes in all involutive processes (physiological and pathological aging; neurodegenerative disorders, including Alzheimer ´s disease -AD-), but today, the exact meaning of such modifications (the modifications of the different neuroglial types, in time and place), is not well understood. In this review we consider the different neuroglial cells and their responses in order to understand the possible role they fulfill in pathogenesis, diagnosis and treatment (preventive or palliative) of AD. The existence of differentiated and/or concurrent pathogenic and neuro-protective/neuro-restorative astroglial and microglial responses is highlighted.

  3. Quantitation of DNA repair in brain cell cultures: implications for autoradiographic analysis of mixed cell populations

    International Nuclear Information System (INIS)

    Dambergs, R.; Kidson, C.

    1979-01-01

    Quantitation of DNA repair in the mixed cell population of mouse embryo brain cultures has been assessed by autoradiographic analysis of unscheduled DNA synthesis following UV-irradiation. The proportion of labelled neurons and the grain density over neuronal nuclei were both less than the corresponding values for glial cells. The nuclear geometries of these two classes of cell are very different. Partial correction for the different geometries by relating grain density to nuclear area brought estimates of neuronal and glial DNA repair synthesis more closely in line. These findings have general implications for autoradiographic measurement of DNA repair in mixed cell populations and in differentiated versus dividing cells. (author)

  4. Proliferative reactive gliosis is compatible with glial metabolic support and neuronal function

    Directory of Open Access Journals (Sweden)

    Fero Matthew

    2011-10-01

    Full Text Available Abstract Background The response of mammalian glial cells to chronic degeneration and trauma is hypothesized to be incompatible with support of neuronal function in the central nervous system (CNS and retina. To test this hypothesis, we developed an inducible model of proliferative reactive gliosis in the absence of degenerative stimuli by genetically inactivating the cyclin-dependent kinase inhibitor p27Kip1 (p27 or Cdkn1b in the adult mouse and determined the outcome on retinal structure and function. Results p27-deficient Müller glia reentered the cell cycle, underwent aberrant migration, and enhanced their expression of intermediate filament proteins, all of which are characteristics of Müller glia in a reactive state. Surprisingly, neuroglial interactions, retinal electrophysiology, and visual acuity were normal. Conclusion The benign outcome of proliferative reactive Müller gliosis suggests that reactive glia display context-dependent, graded and dynamic phenotypes and that reactivity in itself is not necessarily detrimental to neuronal function.

  5. Prolonged Minocycline Treatment Impairs Motor Neuronal Survival and Glial Function in Organotypic Rat Spinal Cord Cultures

    Science.gov (United States)

    Pinkernelle, Josephine; Fansa, Hisham; Ebmeyer, Uwe; Keilhoff, Gerburg

    2013-01-01

    Background Minocycline, a second-generation tetracycline antibiotic, exhibits anti-inflammatory and neuroprotective effects in various experimental models of neurological diseases, such as stroke, Alzheimer’s disease, amyotrophic lateral sclerosis and spinal cord injury. However, conflicting results have prompted a debate regarding the beneficial effects of minocycline. Methods In this study, we analyzed minocycline treatment in organotypic spinal cord cultures of neonatal rats as a model of motor neuron survival and regeneration after injury. Minocycline was administered in 2 different concentrations (10 and 100 µM) at various time points in culture and fixed after 1 week. Results Prolonged minocycline administration decreased the survival of motor neurons in the organotypic cultures. This effect was strongly enhanced with higher concentrations of minocycline. High concentrations of minocycline reduced the number of DAPI-positive cell nuclei in organotypic cultures and simultaneously inhibited microglial activation. Astrocytes, which covered the surface of the control organotypic cultures, revealed a peripheral distribution after early minocycline treatment. Thus, we further analyzed the effects of 100 µM minocycline on the viability and migration ability of dispersed primary glial cell cultures. We found that minocycline reduced cell viability, delayed wound closure in a scratch migration assay and increased connexin 43 protein levels in these cultures. Conclusions The administration of high doses of minocycline was deleterious for motor neuron survival. In addition, it inhibited microglial activation and impaired glial viability and migration. These data suggest that especially high doses of minocycline might have undesired affects in treatment of spinal cord injury. Further experiments are required to determine the conditions for the safe clinical administration of minocycline in spinal cord injured patients. PMID:23967343

  6. Endoplasmic reticulum involvement in yeast cell death

    International Nuclear Information System (INIS)

    Nicanor Austriaco, O.

    2012-01-01

    Yeast cells undergo programed cell death (PCD) with characteristic markers associated with apoptosis in mammalian cells including chromatin breakage, nuclear fragmentation, reactive oxygen species generation, and metacaspase activation. Though significant research has focused on mitochondrial involvement in this phenomenon, more recent work with both Saccharomyces cerevisiae and Schizosaccharomyces pombe has also implicated the endoplasmic reticulum (ER) in yeast PCD. This minireview provides an overview of ER stress-associated cell death (ER-SAD) in yeast. It begins with a description of ER structure and function in yeast before moving to a discussion of ER-SAD in both mammalian and yeast cells. Three examples of yeast cell death associated with the ER will be highlighted here including inositol starvation, lipid toxicity, and the inhibition of N-glycosylation. It closes by suggesting ways to further examine the involvement of the ER in yeast cell death.

  7. Langerhans Cell Histiocytosis Involving Maxilla and Mandible

    Directory of Open Access Journals (Sweden)

    M. Guna Shekhar

    2009-06-01

    Full Text Available Langerhans cell histiocytosis is a relatively rare unique disease process characterized by an abnormal proliferation of immature dendritic cells usually affecting children and young adults. Jaws are involved in less than 10% of children with the disease while mandibular involvement in young children is uncommon and bilateral affection is very rare. The purpose of this report is to describe a unique and very rare case of simultaneous and bilateral occurrence of Langerhans cell histiocytosis in both the jaws of a four-year-old boy.

  8. Inhibition of CD200R1 expression by C/EBP beta in reactive microglial cells

    Directory of Open Access Journals (Sweden)

    Dentesano Guido

    2012-07-01

    Full Text Available Abstract Background In physiological conditions, it is postulated that neurons control microglial reactivity through a series of inhibitory mechanisms, involving either cell contact-dependent, soluble-factor-dependent or neurotransmitter-associated pathways. In the current study, we focus on CD200R1, a microglial receptor involved in one of these cell contact-dependent mechanisms. CD200R1 activation by its ligand, CD200 (mainly expressed by neurons in the central nervous system,is postulated to inhibit the pro-inflammatory phenotype of microglial cells, while alterations in CD200-CD200R1 signalling potentiate this phenotype. Little is known about the regulation of CD200R1 expression in microglia or possible alterations in the presence of pro-inflammatory stimuli. Methods Murine primary microglial cultures, mixed glial cultures from wild-type and CCAAT/enhancer binding protein β (C/EBPβ-deficient mice, and the BV2 murine cell line overexpressing C/EBPβ were used to study the involvement of C/EBPβ transcription factor in the regulation of CD200R1 expression in response to a proinflammatory stimulus (lipopolysaccharide (LPS. Binding of C/EBPβ to the CD200R1 promoter was determined by quantitative chromatin immunoprecipitation (qChIP. The involvement of histone deacetylase 1 in the control of CD200R1 expression by C/EBPβ was also determined by co-immunoprecipitation and qChIP. Results LPS treatment induced a decrease in CD200R1 mRNA and protein expression in microglial cells, an effect that was not observed in the absence of C/EBPβ. C/EBPβ overexpression in BV2 cells resulted in a decrease in basal CD200R1 mRNA and protein expression. In addition, C/EBPβ binding to the CD200R1 promoter was observed in LPS-treated but not in control glial cells, and also in control BV2 cells overexpressing C/EBPβ. Finally, we observed that histone deacetylase 1 co-immunoprecipitated with C/EBPβ and showed binding to a C/EBPβ consensus sequence of the CD

  9. Characterization of cortical neuronal and glial alterations during culture of organotypic whole brain slices from neonatal and mature mice.

    Science.gov (United States)

    Staal, Jerome A; Alexander, Samuel R; Liu, Yao; Dickson, Tracey D; Vickers, James C

    2011-01-01

    Organotypic brain slice culturing techniques are extensively used in a wide range of experimental procedures and are particularly useful in providing mechanistic insights into neurological disorders or injury. The cellular and morphological alterations associated with hippocampal brain slice cultures has been well established, however, the neuronal response of mouse cortical neurons to culture is not well documented. In the current study, we compared the cell viability, as well as phenotypic and protein expression changes in cortical neurons, in whole brain slice cultures from mouse neonates (P4-6), adolescent animals (P25-28) and mature adults (P50+). Cultures were prepared using the membrane interface method. Propidium iodide labeling of nuclei (due to compromised cell membrane) and AlamarBlue™ (cell respiration) analysis demonstrated that neonatal tissue was significantly less vulnerable to long-term culture in comparison to the more mature brain tissues. Cultures from P6 animals showed a significant increase in the expression of synaptic markers and a decrease in growth-associated proteins over the entire culture period. However, morphological analysis of organotypic brain slices cultured from neonatal tissue demonstrated that there were substantial changes to neuronal and glial organization within the neocortex, with a distinct loss of cytoarchitectural stratification and increased GFAP expression (pglial limitans and, after 14 DIV, displayed substantial cellular protrusions from slice edges, including cells that expressed both glial and neuronal markers. In summary, we present a substantial evaluation of the viability and morphological changes that occur in the neocortex of whole brain tissue cultures, from different ages, over an extended period of culture.

  10. Reactive glia promote development of CD103+ CD69+ CD8+ T-cells through programmed cell death-ligand 1 (PD-L1).

    Science.gov (United States)

    Prasad, Sujata; Hu, Shuxian; Sheng, Wen S; Chauhan, Priyanka; Lokensgard, James R

    2018-06-01

    Previous work from our laboratory has demonstrated in vivo persistence of CD103 + CD69 + brain resident memory CD8 + T-cells (bT RM ) following viral infection, and that the PD-1: PD-L1 pathway promotes development of these T RM cells within the brain. Although glial cells express low basal levels of PD-L1, its expression is upregulated upon IFN-γ-treatment, and they have been shown to modulate antiviral T-cell effector responses through the PD-1: PD-L1 pathway. We performed flow cytometric analysis of cells from co-cultures of mixed glia and CD8 + T-cells obtained from wild type mice to investigate the role of glial cells in the development of bT RM . In this study, we show that interactions between reactive glia and anti-CD3 Ab-stimulated CD8 + T-cells promote development of CD103 + CD69 + CD8 + T-cells through engagement of the PD-1: PD-L1 pathway. These studies used co-cultures of primary murine glial cells obtained from WT animals along with CD8 + T-cells obtained from either WT or PD-1 KO mice. We found that αCD3 Ab-stimulated CD8 + T-cells from WT animals increased expression of CD103 and CD69 when co-cultured with primary murine glial cells. In contrast, significantly reduced expression of CD103 and CD69 was observed using CD8 + T-cells from PD-1 KO mice. We also observed that reactive glia promoted high levels of CD127, a marker of memory precursor effector cells (MPEC), on CD69 + CD8 + T-cells, which promotes development of T RM cells. Interestingly, results obtained using T-cells from PD-1 KO animals showed significantly reduced expression of CD127 on CD69 + CD8 + cells. Additionally, blocking of glial PD-L1 resulted in decreased expression of CD103, along with reduced CD127 on CD69 + CD8 + T-cells. Taken together, these results demonstrate a role for activated glia in promoting development of bT RM through the PD-1: PD-L1 pathway. © 2018 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  11. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    nervous system. The present .... In the vertebrate nervous system, special types of cells called radial glia .... As men- tioned earlier, astrocytes extend a 'foot process' (Figure 3) that ... capillaries that for a long time it was thought that these cells.

  12. Cerebrospinal fluid levels of glial cell-derived neurotrophic factor correlate with spinal cord stimulation frequency in patients with neuropathic pain: a preliminary report.

    Science.gov (United States)

    McCarthy, K F; McCrory, C

    2014-08-01

    Case series. To evaluate relationships between spinal cord stimulation (SCS) parameters and levels of glial cell-derived neurotrophic factor (GDNF). Ambulatory pain clinic of St James's Hospital, Dublin, Ireland. Nine patients with an implanted SCS and Failed Back Surgery Syndrome (FBSS) were administered the Brief Pain Inventory and Short Form (36) Health Survey. Following a lumbar puncture, levels of GDNF in cerebrospinal fluid (CSF) were assayed and correlated with stimulation parameters. Controls were patients with arthritic back pain who were matched for age, gender and SF-36 score. Concentrations of GDNF in CSF are higher in patients with FBSS than controls (P=0.002) and correlate with SCS frequency (P=0.029). Concentrations of GDNF in CSF are higher in neuropathic pain and appear to be related to stimulation frequency. Further work is needed to evaluate this potential relationship, both in neuropathic pain and in other contexts such as locomotor dysfunction.

  13. Hippocampal Astrocyte Cultures from Adult and Aged Rats Reproduce Changes in Glial Functionality Observed in the Aging Brain.

    Science.gov (United States)

    Bellaver, Bruna; Souza, Débora Guerini; Souza, Diogo Onofre; Quincozes-Santos, André

    2017-05-01

    Astrocytes are dynamic cells that maintain brain homeostasis, regulate neurotransmitter systems, and process synaptic information, energy metabolism, antioxidant defenses, and inflammatory response. Aging is a biological process that is closely associated with hippocampal astrocyte dysfunction. In this sense, we demonstrated that hippocampal astrocytes from adult and aged Wistar rats reproduce the glial functionality alterations observed in aging by evaluating several senescence, glutamatergic, oxidative and inflammatory parameters commonly associated with the aging process. Here, we show that the p21 senescence-associated gene and classical astrocyte markers, such as glial fibrillary acidic protein (GFAP), vimentin, and actin, changed their expressions in adult and aged astrocytes. Age-dependent changes were also observed in glutamate transporters (glutamate aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1)) and glutamine synthetase immunolabeling and activity. Additionally, according to in vivo aging, astrocytes from adult and aged rats showed an increase in oxidative/nitrosative stress with mitochondrial dysfunction, an increase in RNA oxidation, NADPH oxidase (NOX) activity, superoxide levels, and inducible nitric oxide synthase (iNOS) expression levels. Changes in antioxidant defenses were also observed. Hippocampal astrocytes also displayed age-dependent inflammatory response with augmentation of proinflammatory cytokine levels, such as TNF-α, IL-1β, IL-6, IL-18, and messenger RNA (mRNA) levels of cyclo-oxygenase 2 (COX-2). Furthermore, these cells secrete neurotrophic factors, including glia-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), S100 calcium-binding protein B (S100B) protein, and transforming growth factor-β (TGF-β), which changed in an age-dependent manner. Classical signaling pathways associated with aging, such as nuclear factor erythroid-derived 2-like 2 (Nrf2), nuclear factor kappa B (NFκ

  14. Expanded progenitor populations, vitreo-retinal abnormalities, and Müller glial reactivity in the zebrafish leprechaun/patched2 retina

    Directory of Open Access Journals (Sweden)

    Bibliowicz Jonathan

    2009-10-01

    Full Text Available Abstract Background The roles of the Hedgehog (Hh pathway in controlling vertebrate retinal development have been studied extensively; however, species- and context-dependent findings have provided differing conclusions. Hh signaling has been shown to control both population size and cell cycle kinetics of proliferating retinal progenitors, and to modulate differentiation within the retina by regulating the timing of cell cycle exit. While cell cycle exit has in turn been shown to control cell fate decisions within the retina, a direct role for the Hh pathway in retinal cell fate decisions has yet to be established in vivo. Results To gain further insight into Hh pathway function in the retina, we have analyzed retinal development in leprechaun/patched2 mutant zebrafish. While lep/ptc2 mutants possessed more cells in their retinas, all cell types, except for Müller glia, were present at identical ratios as those observed in wild-type siblings. lep/ptc2 mutants possessed a localized upregulation of GFAP, a marker for 'reactive' glia, as well as morphological abnormalities at the vitreo-retinal interface, where Müller glial endfeet terminate. In addition, analysis of the over-proliferation phenotype at the ciliary marginal zone (CMZ revealed that the number of proliferating progenitors, but not the rate of proliferation, was increased in lep/ptc2 mutants. Conclusion Our results indicate that Patched2-dependent Hh signaling does not likely play an integral role in neuronal cell fate decisions in the zebrafish retina. ptc2 deficiency in zebrafish results in defects at the vitreo-retinal interface and Müller glial reactivity. These phenotypes are similar to the ocular abnormalities observed in human patients suffering from Basal Cell Naevus Syndrome (BCNS, a disorder that has been linked to mutations in the human PTCH gene (the orthologue of the zebrafish ptc2, and point to the utility of the lep/ptc2 mutant line as a model for the study of BCNS

  15. Protocol for the Differentiation of Human Induced Pluripotent Stem Cells into Mixed Cultures of Neurons and Glia for Neurotoxicity Testing.

    Science.gov (United States)

    Pistollato, Francesca; Canovas-Jorda, David; Zagoura, Dimitra; Price, Anna

    2017-06-09

    Human pluripotent stem cells can differentiate into various cell types that can be applied to human-based in vitro toxicity assays. One major advantage is that the reprogramming of somatic cells to produce human induced pluripotent stem cells (hiPSCs) avoids the ethical and legislative issues related to the use of human embryonic stem cells (hESCs). HiPSCs can be expanded and efficiently differentiated into different types of neuronal and glial cells, serving as test systems for toxicity testing and, in particular, for the assessment of different pathways involved in neurotoxicity. This work describes a protocol for the differentiation of hiPSCs into mixed cultures of neuronal and glial cells. The signaling pathways that are regulated and/or activated by neuronal differentiation are defined. This information is critical to the application of the cell model to the new toxicity testing paradigm, in which chemicals are assessed based on their ability to perturb biological pathways. As a proof of concept, rotenone, an inhibitor of mitochondrial respiratory complex I, was used to assess the activation of the Nrf2 signaling pathway, a key regulator of the antioxidant-response-element-(ARE)-driven cellular defense mechanism against oxidative stress.

  16. Mactosylceramide Prevents Glial Cell Overgrowth by Inhibiting Insulin and Fibroblast Growth Factor Receptor Signaling

    DEFF Research Database (Denmark)

    Gerdøe-Kristensen, Stine; Lund, Viktor K; Wandall, Hans H

    2017-01-01

    , in which the mannosyltransferase Egghead controls conversion of glucosylceramide (GlcCer) to mactosylceramide (MacCer). Lack of elongated GSL in egghead (egh) mutants causes overgrowth of subperineurial glia (SPG), largely due to aberrant activation of phosphatidylinositol 3-kinase (PI3K). However, to what...... of the Drosophila Insulin Receptor (InR) and the FGFR homolog Heartless (Htl) in wild type SPG, and is suppressed by inhibiting Htl and InR activity in egh. Knockdown of GlcCer synthase in the SPG fails to suppress glial overgrowth in egh nerves, and slightly promotes overgrowth in wild type, suggesting that RTK...... hyperactivation is caused by absence of MacCer and not by GlcCer accumulation. We conclude that an early product in GSL biosynthesis, MacCer, prevents inappropriate activation of Insulin and Fibroblast Growth Factor Receptors in Drosophila glia. This article is protected by copyright. All rights reserved....

  17. Ion Channels Involved in Cell Volume Regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay

    2011-01-01

    regulatory ion channels involved, and the mechanisms (cellular signalling pathways) that regulate these channels. Finally, I shall also briefly review current investigations in these two cell lines that focuses on how changes in cell volume can regulate cell functions such as cell migration, proliferation......This mini review outlines studies of cell volume regulation in two closely related mammalian cell lines: nonadherent Ehrlich ascites tumour cells (EATC) and adherent Ehrlich Lettre ascites (ELA) cells. Focus is on the regulatory volume decrease (RVD) that occurs after cell swelling, the volume...

  18. Mutant p53 transfection of astrocytic cells results in altered cell cycle control, radiation sensitivity, and tumorigenicity

    International Nuclear Information System (INIS)

    Kanady, Kirk E.; Mei Su; Proulx, Gary; Malkin, David M.; Pardo, Francisco S.

    1995-01-01

    Introduction: Alterations in the p53 tumor suppressor gene are one of the most frequent genetic alterations in malignant gliomas. An understanding of the molecular genetic events leading to glial tumor progression would aid in designing therapeutic vectors for controlling these challenging tumor types. We investigated whether mutations in coding exons of the p53 gene result in functional changes altering cell cycle 'checkpoint' control and the intrinsic radiation sensitivity of glial cells. Methods: An astrocytic cell line was derived from a low grade astrocytoma and characterized to be of human karyotype and GFAP positivity. Additionally, the cellular population has never formed tumors in immune-deficient mice. At early passage ( 2 as parameters. Cell kinetic analyses after 2, 5, and 10 Gy of ionizing radiation were conducted using propidium iodide FACS analyses. Results: Overall levels of p53 expression were increased 5-10 fold in the transfected cellular populations. Astrocytic cellular populations transfected with mutant p53 revealed a statistically significant increase in levels of resistance to ionizing radiation in vitro (2-tailed test, SF2, MID). Astrocytic cellular populations transfected with mutant p53, unlike the parental cells, were tumorigenic in SCID mice. Cell kinetic analyses indicated that the untransfected cell line demonstrated dose dependent G1 and G2 arrests. Following transfection, however, the resultant cellular population demonstrated a predominant G2 arrest. Conclusions: Astrocytic cellular populations derived from low grade astrocytomas, are relatively radiation sensitive, non-tumorigenic, and have intact cell cycle ''checkpoints.'' Cellular populations resulting upon transfection of parental cells with a dominant negative p53 mutation, are relatively radiation resistant, when compared to both parental and mock-transfected cells. Transfected cells demonstrate abnormalities of cell cycle control at the G1/S checkpoint, increases in levels

  19. Implications of glial nitric oxyde in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Jose Enrique eYuste

    2015-08-01

    Full Text Available Nitric oxide (NO is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream target molecules. Its double-edged sword action has been linked to neurodegenerative disorders. Excessive NO production, as the evoked by inflammatory signals, has been identified as one of the major causative reasons for the pathogenesis of several neurodegenerative diseases. Moreover, excessive NO synthesis under neuroinflammation leads to the formation of reactive nitrogen species and neuronal cell death. There is an intimate relation between microglial activation, NO and neuroinflammation in the human brain. The role of NO in neuroinflammation has been defined in animal models where this neurotransmitter can modulate the inflammatory process acting on key regulatory pathways, such as those associated with excitotoxicity processes induced by glutamate accumulation and microglial activation. Activated glia express inducible NOS and produce NO that triggers calcium mobilization from the endoplasmic reticulum, activating the release of vesicular glutamate from astroglial cells resulting in neuronal death. This change in microglia potentially contributes to the increased age-associated susceptibility and neurodegeneration. In the current review, information is provided about the role of NO, glial activation and age-related processes in the central nervous system (CNS that may be helpful in the isolation of new therapeutic targets for aging and neurodegenerative diseases.

  20. Dipeptidyl peptidase IV in two human glioma cell lines

    Directory of Open Access Journals (Sweden)

    A Sedo

    2009-12-01

    Full Text Available There is growing evidence that dipeptidyl peptidase IV [DPP-IV, EC 3.4.14.5] takes part in the metabolism of biologically active peptides participating in the regulation of growth and transformation of glial cells. However, the knowledge on the DPP-IV expression in human glial and glioma cells is still very limited. In this study, using histochemical and biochemical techniques, the DPP-IV activity was demonstrated in two commercially available human glioma cell lines of different transformation degree, as represented by U373 astrocytoma (Grade III and U87 glioblastoma multiforme (Grade IV lines. Higher total activity of the enzyme, as well as its preferential localisation in the plasma membrane, was observed in U87 cells. Compared to U373 population, U87 cells were morphologically more pleiomorphic, they were cycling at lower rate and expressing less Glial Fibrillary Acidic Protein. The data revealed positive correlation between the degree of transformation of cells and activity of DPP-IV. Great difference in expression of this enzyme, together with the phenotypic differences of cells, makes these lines a suitable standard model for further 57 studies of function of this enzyme in human glioma cells.

  1. Visual detection of glial cell line-derived neurotrophic factor based on a molecular translator and isothermal strand-displacement polymerization reaction.

    Science.gov (United States)

    Zhang, Li-Yong; Xing, Tao; Du, Li-Xin; Li, Qing-Min; Liu, Wei-Dong; Wang, Ji-Yue; Cai, Jing

    2015-01-01

    Glial cell line-derived neurotrophic factor (GDNF) is a small protein that potently promotes the survival of many types of neurons. Detection of GDNF is vital to monitoring the survival of sympathetic and sensory neurons. However, the specific method for GDNF detection is also un-discovered. The purpose of this study is to explore the method for protein detection of GDNF. A novel visual detection method based on a molecular translator and isothermal strand-displacement polymerization reaction (ISDPR) has been proposed for the detection of GDNF. In this study, a molecular translator was employed to convert the input protein to output deoxyribonucleic acid signal, which was further amplified by ISDPR. The product of ISDPR was detected by a lateral flow biosensor within 30 minutes. This novel visual detection method based on a molecular translator and ISDPR has very high sensitivity and selectivity, with a dynamic response ranging from 1 pg/mL to 10 ng/mL, and the detection limit was 1 pg/mL of GDNF. This novel visual detection method exhibits high sensitivity and selectivity, which is very simple and universal for GDNF detection to help disease therapy in clinical practice.

  2. DIAGNOSTIC VALUE OF THE DEJA VU PHENOMENON IN THE CLINICAL PICTURE OF GLIAL BRAIN TUMORS

    Directory of Open Access Journals (Sweden)

    Pavel Nikolaevich Vlasov

    2009-01-01

    This investigation was undertaken to study the implication of the DV phenomenon in the clinical picture of glial brain tumors (GBT. One hundred and sixty-one subjects (mean age 29,2±6,4 years; males 47%, including 129 healthy individuals and 32 patients with GBT, were examined. In the clinical picture of GBT with seizures, DV is a common symptom that is encountered in the involvement of predominantly the right temporal lobe and accompanied by generalized convulsive attacks and olfactory hallucinations. DV in GBT occurs more than once daily; its duration is a few (as many as 5 minutes; DV is characterized by a negative emotional tinge and attended by fear

  3. Cell proliferation in the Drosophila adult brain revealed by clonal analysis and bromodeoxyuridine labelling

    Directory of Open Access Journals (Sweden)

    Brand Andrea H

    2009-03-01

    Full Text Available Abstract Background The production of new neurons during adulthood and their subsequent integration into a mature central nervous system have been shown to occur in all vertebrate species examined to date. However, the situation in insects is less clear and, in particular, it has been reported that there is no proliferation in the Drosophila adult brain. Results We report here, using clonal analysis and 5'-bromo-2'-deoxyuridine (BrdU labelling, that cell proliferation does occur in the Drosophila adult brain. The majority of clones cluster on the ventrolateral side of the antennal lobes, as do the BrdU-positive cells. Of the BrdU-labelled cells, 86% express the glial gene reversed polarity (repo, and 14% are repo negative. Conclusion We have observed cell proliferation in the Drosophila adult brain. The dividing cells may be adult stem cells, generating glial and/or non-glial cell types.

  4. Differentiation of a medulloblastoma cell line towards an astrocytic lineage using the human T lymphotropic retrovirus-1.

    Science.gov (United States)

    Giraudon, P; Dufay, N; Hardin, H; Reboul, A; Tardy, M; Belin, M F

    1993-02-01

    Constituent cells of medulloblastoma, the most common brain tumor occurring in childhood, resemble the primitive neuroepithelial cells normally found in the developing nervous system. However, mutational events prevent their further differentiation. We used the human T cell lymphotrophic virus type 1 to activate these deregulated immature cells by means of its transactivating protein Tax. Concomitant with viral infection was a decrease in cell proliferation characterized by inhibition of [3H]thymidine incorporation and in the number of cells in the G2/M phase of the cell cycle. Morphological changes suggested that medulloblastoma cells differentiated along the astrocytic lineage. The glial phenotype was confirmed by the induction of the glial fibrillary acidic protein and the glial enzyme glutamine synthetase. A direct viral effect and/or secondary effects to viral infection via paracrine/autocrine pathways could counterbalance the maturational defect in these medulloblastoma cells.

  5. Neuroinflammation induces glial aromatase expression in the uninjured songbird brain

    Directory of Open Access Journals (Sweden)

    Saldanha Colin J

    2011-07-01

    Full Text Available Abstract Background Estrogens from peripheral sources as well as central aromatization are neuroprotective in the vertebrate brain. Under normal conditions, aromatase is only expressed in neurons, however following anoxic/ischemic or mechanical brain injury; aromatase is also found in astroglia. This increased glial aromatization and the consequent estrogen synthesis is neuroprotective and may promote neuronal survival and repair. While the effects of estradiol on neuroprotection are well studied, what induces glial aromatase expression remains unknown. Methods Adult male zebra finches (Taeniopygia guttata were given a penetrating injury to the entopallium. At several timepoints later, expression of aromatase, IL-1β-like, and IL-6-like were examined using immunohisotchemistry. A second set of zebra birds were exposed to phytohemagglutinin (PHA, an inflammatory agent, directly on the dorsal surface of the telencephalon without creating a penetrating injury. Expression of aromatase, IL-1β-like, and IL-6-like were examined using both quantitative real-time polymerase chain reaction to examine mRNA expression and immunohistochemistry to determine cellular expression. Statistical significance was determined using t-test or one-way analysis of variance followed by the Tukey Kramers post hoc test. Results Following injury in the zebra finch brain, cytokine expression occurs prior to aromatase expression. This temporal pattern suggests that cytokines may induce aromatase expression in the damaged zebra finch brain. Furthermore, evoking a neuroinflammatory response characterized by an increase in cytokine expression in the uninjured brain is sufficient to induce glial aromatase expression. Conclusions These studies are among the first to examine a neuroinflammatory response in the songbird brain following mechanical brain injury and to describe a novel neuroimmune signal to initiate aromatase expression in glia.

  6. Liver involvement in Langerhans cell histiocytosis

    International Nuclear Information System (INIS)

    Wong, Adelaine; Ortiz-Neira, Clara L.; Abou Reslan, Walid; Kaura, Deepak; Sharon, Raphael; Anderson, Ronald; Pinto-Rojas, Alfredo

    2006-01-01

    Liver involvement in Langerhans cell histiocytosis (LCH) typically presents with hepatomegaly and other signs of liver dysfunction. We present an 11-month-old child having only minimally elevated liver enzymes as an indication of liver involvement. Using sonography as the initial diagnostic tool followed by MRI, LCH of the liver was revealed. A review of sonographic, CT, MRI and MR cholangiopancreatography findings in liver LCH is presented. We recommend that physicians consider sonography and MRI screening for liver involvement in patients with newly diagnosed LCH, as periportal involvement may be present with little or no liver function abnormality present, as in this patient. (orig.)

  7. Differential radiosensitivity of mouse embryonic neurons and glia in cell culture

    International Nuclear Information System (INIS)

    Dambergs, R.; Kidson, C.

    1977-01-01

    The responses of neurons and glial cells to ultraviolet and γ-radiation were studied in cell cultures of embryonic mouse brains. A decrease in the ratio of glia to neurons occurred after both forms of irradiation. [ 3 H]thymidine labelling followed by autoradiography revealed that all glia were capable of replication, whereas 70 percent of neurons were non-replicating under the conditions of the study. Ultraviolet radiation caused a decrease in the proportion of replicating neurons but did not affect the proportion of replicating glia, whereas γ-radiation caused a decrease in DNA replication in both cell types. Levels of ultraviolet radiation-induced unscheduled DNA synthesis were lower in neurons than in glia. It is concluded that sensitivity to both ionizing and ultraviolet radiation of neurons and glial cells in embryonic brain cultures is determined primarily by the capacity for and state of DNA replication. Neurons which have already reached the stage of terminal differentiation are more resistant than replicating neurons of glial cells

  8. Evaluation of C.L.I.N.D.E. as potent peripheral-type benzodiazepine receptor tracer in a rat model of micro-glial activation

    Energy Technology Data Exchange (ETDEWEB)

    Arlicot, N.; Guilloteau, D.; Chalon, S. [Institut National de la Sante et de la Recherche Medicale (INSERM), U619, 37 - Tours (France); Universite Francois Rabelais de Tours, 37 (France); Katsifis, A.; Mattner, F. [ANSTO, Sydney (Australia)

    2008-02-15

    The peripheral-type benzodiazepine receptors (P.B.R.) are localized in mitochondria of glial cells and are very low expressed in normal brain. Their expression rises after micro-glial activation consecutive to brain injury. Accordingly, P.B.R. are potential targets to evaluate neuro inflammatory changes in a variety of C.N.S. disorders. To date no effective tool is available to explore P.B.R. by SPECT. We characterized here 6-chloro-2-(4 iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine- 3-acetamide, C.L.I.N.D.E., in a rat model of excitotoxic lesion. Excitotoxicity was induced in male Wistar rats by unilateral intra striatal injection of different amounts of quinolinic acid (Q.A.: 75, 150 or 300 nmol). One week later, 2 groups of rats (n = 5-6/group) were i.v. injected with [{sup 125}I]-C.L.I.N.D.E. (0.4 MBq), one group being pre-injected with P.K.11195 (5 mg/kg). Brains were removed 30 min after tracer injection and the radioactivity of cerebral areas measured. Complementary ex vivo autoradiography and immunohistochemical studies using O.X.-42 were performed on brain sections In the control group, [{sup 125}I]-C.L.I.N.D.E. binding was significantly higher ( p < 0.001) in lesioned than that in intact side (striatum: 0.552 {+-} 0.109 vs. 0.123 {+-} 0.012% I.D./g tissue; cortex: 0.385 {+-} 0.126 vs. 0.131 {+-} 0.007% with 300 nmol Q.A.). This binding disappeared in rats pretreated with P.K.11195 ( p < 0.001), showing specific binding of C.L.I.N.D.E. to P.B.R.. Ex vivo autoradiography and immunohistochemistry were consistent with this, revealing a spatial correspondence between radioactivity signal and activated micro-glia. Regression analysis yielded a significant correlation ( p < 0.001) between the ligand binding and the dose of Q.A.. These results demonstrate that C.L.I.N.D.E. is suitable for P.B.R. in vivo SPECT imaging to explore their involvement in neuro degenerative disorders associated with micro-glial activation. (authors)

  9. Liver involvement in Langerhans' cell histiocytosis. Case report.

    Science.gov (United States)

    Dina, Ion; Copaescu, Catalin; Herlea, Vlad; Wrba, Fritz; Iacobescu, Claudia

    2006-03-01

    Langerhans'cell histiocytosis (Histiocytosis X) is a rare disease of unknown cause characterized by oligoclonal proliferation of Langerhans cells. It occurs mostly in children and young adults and involves one or more body systems such as bone, hypothalamus, posterior pituitary gland, lymph nodes, liver or various soft tissues. The diagnosis is always made by a histological approach. We report a case of Langerhans'cell histiocytosis in a young patient with clinical signs of diabetes insipidus and hepatic involvement in whom the immunohistochemical analysis of the liver tissue led to the definitive diagnosis.

  10. C-Phycocyanin protects against acute tributyltin chloride neurotoxicity by modulating glial cell activity along with its anti-oxidant and anti-inflammatory property: A comparative efficacy evaluation with N-acetyl cysteine in adult rat brain.

    Science.gov (United States)

    Mitra, Sumonto; Siddiqui, Waseem A; Khandelwal, Shashi

    2015-08-05

    Spirulina is a widely used health supplement and is a dietary source of C-Phycocyanin (CPC), a potent anti-oxidant. We have previously reported the neurotoxic potential of tributyltin chloride (TBTC), an environmental pollutant and potent biocide. In this study, we have evaluated the protective efficacy of CPC against TBTC induced neurotoxicity. To evaluate the extent of neuroprotection offered by CPC, its efficacy was compared with the degree of protection offered by N-acetylcysteine (NAC) (a well known neuroprotective drug, taken as a positive control). Male Wistar rats (28 day old) were administered with 20mg/kg TBTC (oral) and 50mg/kg CPC or 50mg/kg NAC (i.p.), alone or in combination, and various parameters were evaluated. These include blood-brain barrier (BBB) damage; redox parameters (ROS, GSH, redox pathway associated enzymes, oxidative stress markers); inflammatory, cellular, and stress markers; apoptotic proteins and in situ cell death assay (TUNEL). We observed increased CPC availability in cortical tissue following its administration. Although BBB associated proteins like claudin-5, p-glycoprotein and ZO-1 were restored, CPC/NAC failed to protect against TBTC induced overall BBB permeability (Evans blue extravasation). Both CPC and NAC remarkably reduced oxidative stress and inflammation. NAC effectively modulated redox pathway associated enzymes whereas CPC countered ROS levels efficiently. Interestingly, CPC and NAC were equivalently capable of reducing apoptotic markers, astroglial activation and cell death. This study illustrates the various pathways involved in CPC mediated neuroprotection against this environmental neurotoxicant and highlights its capability to modulate glial cell activity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Liaison of 3H 5-HT and adenyl cyclasic activation induced by the 5-HT in preparations of brain glial membranes

    International Nuclear Information System (INIS)

    Fillion, Gilles; Beaudoin, Dominique; Rousselle, J.-C.; Jacob, Joseph

    1980-01-01

    Purified glial membrane preparations have been isolated from horse brain striatum. Tritiated 5-HT bound to these membranes with a high affinity (K(D)=10 nM); the corresponding bindings is reversible and appears specific of the serotoninergic structure. In parallel, 5-HT activates an adenylate cyclase with a low affinity (K(D)=1 μM). The sites involved in this binding and in this adenylate cyclase activation appear different from the serotoninergic sites reported in the neuronal membrane preparations [fr

  12. Observations on the interactions of Schwann cells and astrocytes following x irradiation of neonatal rat spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Blakemore, W F; Patterson, R C

    1975-10-01

    Myelination was inhibited in the spinal cord of three day-old rats with 2000 rads of x irradiation. Myelination subsequently occurred as a result of caudal migration of oligodendrocytes and extensive invasion of the cord by Schwann cells. Although oligodendrocytes were present in areas containing Schwann cells, astrocytes were absent. The presence of Schwann cells in the neuropil of the spinal cord did not stimulate production of basement membrane by astrocytes, so no new glial limiting membrane was formed. Evidence is presented which suggests that if astrocytes do not form a glial limiting membrane when opposed by large numbers of Schwann cells they are destroyed by the invading cells. It is suggested that the glial limiting membrane normally inhibits entry of Schwann cells into the central nervous system; if this is destroyed and not reconstituted, Schwann cells can migrate freely into the neuropil.

  13. Characterization of glial cell K-Cl cotransport.

    Science.gov (United States)

    Gagnon, Kenneth B E; Adragna, Norma C; Fyffe, Robert E W; Lauf, Peter K

    2007-01-01

    The molecular mechanism of K-Cl cotransport (KCC) consists of at least 4 isoforms, KCC 1, 2, 3, and 4 which, in multiple combinations, exist in most cells, including erythrocytes and neuronal cells. We utilized reverse-transcriptase-polymerase chain reaction (RT-PCR) and ion flux studies to characterize KCC activity in an immortalized in vitro cell model for fibrous astrocytes, the rat C6 glioblastoma cell. Isoform-specific sets of oligonucleotide primers were synthesized for NKCC1, KCC1, KCC2, KCC3, KCC4, and also for NKCC1 and actin. K-Cl cotransport activity was determined by measuring either the furosemide-sensitive, or the Cl(-)-dependent bumetanide-insensitive Rb(+) (a K(+) congener) influx in the presence of the Na/K pump inhibitor ouabain. Rb(+) influx was measured at a fixed external Cl concentrations, [Cl(-)](e), as a function of varying external Rb concentrations, [Rb(+)](e), and at a fixed [Rb(+)](e) as a function of varying [Cl(-)](e), and with equimolar Cl replacement by anions of the chaotropic series. RT-PCR of C6 glioblastoma (C6) cells identified mRNA for three KCC isoforms (1, 3, and 4). NKCC1 mRNA was also detected. The apparent K(m) for KCC-mediated Rb(+) influx was 15 mM [Rb(+)](e), and V(max) 12.5 nmol Rb(+) * mg protein(-1) * minute(-1). The calculated apparent K(m) for external Cl(-) was 13 mM and V(max) 14.4 nmol Rb(+) * mg protein(-1) * minute(-1). The anion selectivity sequence of the furosemide-sensitive Rb(+) influx was Cl(-)>Br-=NO(3)(-)>I(-)=SCN(-)>Sfm(-) (sulfamate). Established activators of K-Cl cotransport, hyposmotic shock and N-ethylmaleimide (NEM) pretreatment, stimulated furosemide-sensitive Rb(+) influx. A ñ50% NEM-induced loss of intracellular K(+) was prevented by furosemide. We have identified by RT-PCR the presence of three distinct KCC isoforms (1, 3, and 4) in rat C6 glioblastoma cells, and functionally characterized the anion selectivity and kinetics of their collective sodium-independent cation-chloride cotransport

  14. Pyramid-like basket cells in the granular layer of the dentate gyrus in the rat.

    Science.gov (United States)

    Seress, L

    1978-01-01

    Basket cells of the dentate gyrus were identified using Nissl (cresyl violet) staining. It has been found that the ratio between basket and granule cells is 1:150--210. Only a few glial cells, mainly astroglia, were found in the granular layer of the dentate gyrus. In accordance with earlier data it was found that the granule cells and glial cells originate mainly postnatally, but the basket cells, like the pyramidal cells of the hippocampus, originate prenatally. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:701192

  15. Involvement of multiple cell lineages in atherogenesis | Ogeng'o ...

    African Journals Online (AJOL)

    Involvement of multiple cell lineages in atherogenesis. ... mast cells, dendritic cells, macrophages and immigrant cells usually found in blood, namely ... which influence inflammation, migration, proliferation and secretory activity of each other in ...

  16. Effects of neurotrophin-3 on the differentiation of neural stem cells into neurons and oligodendrocytes

    Science.gov (United States)

    Zhu, Guowei; Sun, Chongran; Liu, Weiguo

    2012-01-01

    In this study, cells from the cerebral cortex of fetal rats at pregnant 16 days were harvested and cultured with 20 μg/L neurotrophin-3. After 7 days of culture, immunocytochemical staining showed that, 22.4% of cells were positive for nestin, 10.5% were positive for β-III tubulin (neuronal marker), and 60.6% were positive for glial fibrillary acidic protein, but no cells were positive for O4 (oligodendrocytic marker). At 14 days, there were 5.6% nestin-, 9.6% β-III tubulin-, 81.1% glial fibrillary acidic protein-, and 2.2% O4-positive cells. In cells not treated with neurotrophin-3, some were nestin-positive, while the majority showed positive staining for glial fibrillary acidic protein. Our experimental findings indicate that neurotrophin-3 is a crucial factor for inducing neural stem cells differentiation into neurons and oligodendrocytes. PMID:25657683

  17. Double labeling autoradiography. Cell kinetic studies with 3H- and 14C-thymidine

    International Nuclear Information System (INIS)

    Schultze, B.

    1981-01-01

    Examples of the multiple applicability of the double labeling method with 3 H- and 14 C-TdR are demonstrated. Double labeling with 3 H- and 14 C-TdR makes it possible to determine the cycle and its phases with high precision by modifying the usual percent labeled mitoses method with a single injection of 3 H-TdR. In addition, data is provided on the variances of the transit times through the cycle phases. For example, in the case of the jejunal crypt cells of the mouse, the transit times through successive cycle phases are uncorrelated. In the case of glial cells the double labeling method provides cell kinetic parameters despite the paucity of proliferating glial cells. In the adult untreated animal, glial cell mitoses are so rare that the percent labeled mitoses method can not be utilized. However, the S-phase duration can be measured by double labeling and the cycle time can be determined by the so-called method of labeled S phases. With the latter method the passage through the S phase of the 3 H-TdR-labeled S phase cells can be registered by injecting 14 C-TdR at different time intervals following 3 H-TdR application. In this way an S-phase duration of about 10 hr and a cycle time of about 20 hr was found for glial cells in the adult untreated mouse. An exchange of glial cells between the growth fraction and the nongrowth fraction has also been shown by double labeling. A quite different application of the double labeling method with 3H- and 14 C-TdR is the in vivo study of the cell cycle phase-specific effect of drugs used in chemotherapy of tumors. The effect of vincristine on these cells has been studied. Vincristine affects cells in S and G2 in such a manner that they are arrested during the next metaphase and subsequently become necrotic. It has no effect on G1 cells

  18. Injury-activated glial cells promote wound healing of the adult skin in mice.

    Science.gov (United States)

    Parfejevs, Vadims; Debbache, Julien; Shakhova, Olga; Schaefer, Simon M; Glausch, Mareen; Wegner, Michael; Suter, Ueli; Riekstina, Una; Werner, Sabine; Sommer, Lukas

    2018-01-16

    Cutaneous wound healing is a complex process that aims to re-establish the original structure of the skin and its functions. Among other disorders, peripheral neuropathies are known to severely impair wound healing capabilities of the skin, revealing the importance of skin innervation for proper repair. Here, we report that peripheral glia are crucially involved in this process. Using a mouse model of wound healing, combined with in vivo fate mapping, we show that injury activates peripheral glia by promoting de-differentiation, cell-cycle re-entry and dissemination of the cells into the wound bed. Moreover, injury-activated glia upregulate the expression of many secreted factors previously associated with wound healing and promote myofibroblast differentiation by paracrine modulation of TGF-β signalling. Accordingly, depletion of these cells impairs epithelial proliferation and wound closure through contraction, while their expansion promotes myofibroblast formation. Thus, injury-activated glia and/or their secretome might have therapeutic potential in human wound healing disorders.

  19. Cell therapy for pediatric disorders of glia

    DEFF Research Database (Denmark)

    Albuquerque Osório, Maria Joana; Goldman, Steven A.

    2016-01-01

    The childhood disorders of glia comprise a group of diseases that include the pediatric leukodystrophies and lysosomal storage disorders, cerebral palsies and perinatal hypoxic ischemic encephalopathies, and selected neurodevelopmental disorders of glial origin. Essentially, all of these disorders...... (GPCs) and their derivatives, the glial disorders may be uniquely attractive targets for cell-based therapeutic strategies, and the pediatric disorders especially so. As a result, GPCs, which can distribute throughout the neuraxis and give rise to new astrocytes and myelinogenic oligodendrocytes, have...... become of great interest as candidates for the therapeutic restoration of normal glial architecture and function, as well as new myelin, to the pediatric brain....

  20. Epigenetic regulation of neural stem cell property from embryo to adult

    Directory of Open Access Journals (Sweden)

    Naoya Murao

    2016-03-01

    Full Text Available Neural stem cells (NSCs have the ability to self-renew and give rise to neurons and glial cells (astrocytes and oligodendrocytes in the mammalian central nervous system. This multipotency is acquired by NSCs during development and is maintained throughout life. Proliferation, fate specification, and maturation of NSCs are regulated by both cell intrinsic and extrinsic factors. Epigenetic modification is a representative intrinsic factor, being involved in many biological aspects of central nervous system development and adult neurogenesis through the regulation of NSC dynamics. In this review, we summarize recent progress in the epigenetic regulation of NSC behavior in the embryonic and adult brain, with particular reference to DNA methylation, histone modification, and noncoding RNAs.

  1. Adenosine: an activity-dependent axonal signal regulating MAP kinase and proliferation in developing Schwann cells

    OpenAIRE

    Stevens, Beth; Ishibashi, Tomoko; Chen, Jiang-Fan; Fields, R. Douglas

    2004-01-01

    Nonsynaptic release of ATP from electrically stimulated dorsal root gangion (DRG) axons inhibits Schwann cell (SC) proliferation and arrests SC development at the premyelinating stage, but the specific types of purinergic receptor(s) and intracellular signaling pathways involved in this form of neuron–glia communication are not known. Recent research shows that adenosine is a neuron–glial transmitter between axons and myelinating glia of the CNS. The present study investigates the possibility...

  2. Primary Culture of Choroid Plexuses from Neonate Rats Containing Progenitor Cells Capable of Differentiation

    Directory of Open Access Journals (Sweden)

    Sheng-Li Huang

    2013-12-01

    Full Text Available Background: The choroid plexuses, which could secrete a number of neurotrophins, have recently been used in transplantation in central nervous system diseases. Aims: To study the mechanism of nerve regeneration in the central nervous system by grafting choroid plexus tissues. Study Design: Animal experimentation. Methods: The choroid plexuses from the lateral ventricles of neonatal rats were cultured in adherent culture, and immunocytochemical methods were used to analyse the progenitor cells on days 2, 6, and 10 after seeding. Results: Expression of both nestin and glial fibrillary acidic protein was observed in small cell aggregates on day 2 in primary culture. Most of the nestin-positive cells on day 6 were immunoreactive to glial fibrillary acidic protein antibody. No cells expressing nestin or glial fibrillary acidic protein were seen on day 10. Conclusion: These experimental results indicate that the choroid plexus contains a specific cell population – progenitor cells. Under in vitro experimental conditions, the progenitor cells differentiated into choroid plexus epithelial cells but did not form neurons or astrocytes.

  3. Association analysis of schizophrenia on 18 genes involved in neuronal migration

    DEFF Research Database (Denmark)

    Kähler, Anna K; Djurovic, Srdjan; Kulle, Bettina

    2008-01-01

    neuronal function, morphology, and formation of synaptic connections. We have investigated the putative association between SZ and gene variants engaged in the neuronal migration process, by performing an association study on 839 cases and 1,473 controls of Scandinavian origin. Using a gene-wide approach......Several lines of evidence support the theory of schizophrenia (SZ) being a neurodevelopmental disorder. The structural, cytoarchitectural and functional brain abnormalities reported in patients with SZ, might be due to aberrant neuronal migration, since the final position of neurons affects......, tagSNPs in 18 candidate genes have been genotyped, with gene products involved in the neuron-to-glial cell adhesion, interactions with the DISC1 protein and/or rearrangements of the cytoskeleton. Of the 289 markers tested, 19 markers located in genes MDGA1, RELN, ITGA3, DLX1, SPARCL1, and ASTN1...

  4. In Vivo Imaging of Glial Activation after Unilateral Labyrinthectomy in the Rat: A [18F]GE180-PET Study

    Directory of Open Access Journals (Sweden)

    Andreas Zwergal

    2017-12-01

    Full Text Available The functional relevance of reactive gliosis for recovery from acute unilateral vestibulopathy is unknown. In the present study, glial activation was visualized in vivo by [18F]GE180-PET in a rat model of unilateral labyrinthectomy (UL and compared to behavioral vestibular compensation (VC overtime. 14 Sprague-Dawley rats underwent a UL by transtympanic injection of bupivacaine/arsenilate, 14 rats a SHAM UL (injection of normal saline. Glial activation was depicted with [18F]GE180-PET and ex vivo autoradiography at baseline and 7, 15, 30 days after UL/SHAM UL. Postural asymmetry and nystagmus were registered at 1, 2, 3, 7, 15, 30 days after UL/SHAM UL. Signs of vestibular imbalance were found only after UL, which significantly decreased until days 15 and 30. In parallel, [18F]GE180-PET and ex vivo autoradiography depicted glial activation in the ipsilesional vestibular nerve and nucleus on days 7 and 15 after UL. Correlation analysis revealed a strong negative association of [18F]GE180 uptake in the ipsilesional vestibular nucleus on day 7 with the rate of postural recovery (R = −0.90, p < 0.001, suggesting that glial activation accelerates VC. In conclusion, glial activation takes place in the ipsilesional vestibular nerve and nucleus within the first 30 days after UL in the rat and can be visualized in vivo by [18F]GE180-PET.

  5. Immunological Demyelination Triggers Macrophage/Microglial Cells Activation without Inducing Astrogliosis

    Directory of Open Access Journals (Sweden)

    Frank Cloutier

    2013-01-01

    Full Text Available The glial scar formed by reactive astrocytes and axon growth inhibitors associated with myelin play important roles in the failure of axonal regeneration following central nervous system (CNS injury. Our laboratory has previously demonstrated that immunological demyelination of the CNS facilitates regeneration of severed axons following spinal cord injury. In the present study, we evaluate whether immunological demyelination is accompanied with astrogliosis. We compared the astrogliosis and macrophage/microglial cell responses 7 days after either immunological demyelination or a stab injury to the dorsal funiculus. Both lesions induced a strong activated macrophage/microglial cells response which was significantly higher within regions of immunological demyelination. However, immunological demyelination regions were not accompanied by astrogliosis compared to stab injury that induced astrogliosis which extended several millimeters above and below the lesions, evidenced by astroglial hypertrophy, formation of a glial scar, and upregulation of intermediate filaments glial fibrillary acidic protein (GFAP. Moreover, a stab or a hemisection lesion directly within immunological demyelination regions did not induced astrogliosis within the immunological demyelination region. These results suggest that immunological demyelination creates a unique environment in which astrocytes do not form a glial scar and provides a unique model to understand the putative interaction between astrocytes and activated macrophage/microglial cells.

  6. Tissue sparing, behavioral recovery, supraspinal axonal sparing/regeneration following sub-acute glial transplantation in a model of spinal cord contusion.

    Science.gov (United States)

    Barbour, Helen R; Plant, Christine D; Harvey, Alan R; Plant, Giles W

    2013-09-27

    It has been shown that olfactory ensheathing glia (OEG) and Schwann cell (SCs) transplantation are beneficial as cellular treatments for spinal cord injury (SCI), especially acute and sub-acute time points. In this study, we transplanted DsRED transduced adult OEG and SCs sub-acutely (14 days) following a T10 moderate spinal cord contusion injury in the rat. Behaviour was measured by open field (BBB) and horizontal ladder walking tests to ascertain improvements in locomotor function. Fluorogold staining was injected into the distal spinal cord to determine the extent of supraspinal and propriospinal axonal sparing/regeneration at 4 months post injection time point. The purpose of this study was to investigate if OEG and SCs cells injected sub acutely (14 days after injury) could: (i) improve behavioral outcomes, (ii) induce sparing/regeneration of propriospinal and supraspinal projections, and (iii) reduce tissue loss. OEG and SCs transplanted rats showed significant increased locomotion when compared to control injury only in the open field tests (BBB). However, the ladder walk test did not show statistically significant differences between treatment and control groups. Fluorogold retrograde tracing showed a statistically significant increase in the number of supraspinal nuclei projecting into the distal spinal cord in both OEG and SCs transplanted rats. These included the raphe, reticular and vestibular systems. Further pairwise multiple comparison tests also showed a statistically significant increase in raphe projecting neurons in OEG transplanted rats when compared to SCs transplanted animals. Immunohistochemistry of spinal cord sections short term (2 weeks) and long term (4 months) showed differences in host glial activity, migration and proteoglycan deposits between the two cell types. Histochemical staining revealed that the volume of tissue remaining at the lesion site had increased in all OEG and SCs treated groups. Significant tissue sparing was

  7. Sleep disturbances and severe stress as glial activators: key targets for treating central sensitization in chronic pain patients?

    Science.gov (United States)

    Nijs, Jo; Loggia, Marco L; Polli, Andrea; Moens, Maarten; Huysmans, Eva; Goudman, Lisa; Meeus, Mira; Vanderweeën, Luc; Ickmans, Kelly; Clauw, Daniel

    2017-08-01

    The mechanism of sensitization of the central nervous system partly explains the chronic pain experience in many patients, but the etiological mechanisms of this central nervous system dysfunction are poorly understood. Recently, an increasing number of studies suggest that aberrant glial activation takes part in the establishment and/or maintenance of central sensitization. Areas covered: This review focused on preclinical work and mostly on the neurobiochemistry studied in animals, with limited human studies available. Glial overactivation results in a low-grade neuroinflammatory state, characterized by high levels of BDNF, IL-1β, TNF-α, which in turn increases the excitability of the central nervous system neurons through mechanisms like long-term potentiation and increased synaptic efficiency. Aberrant glial activity in chronic pain might have been triggered by severe stress exposure, and/or sleeping disturbances, each of which are established initiating factors for chronic pain development. Expert opinion: Potential treatment avenues include several pharmacological options for diminishing glial activity, as well as conservative interventions like sleep management, stress management and exercise therapy. Pharmacological options include propentofylline, minocycline, β -adrenergic receptor antagonists, and cannabidiol. Before translating these findings from basic science to clinical settings, more human studies exploring the outlined mechanisms in chronic pain patients are needed.

  8. Regulatory Mechanisms Involved in the Expression of Brain-Derived Neurotrophic Factor and Glial Cell Line-Derived Neurotrophic Factor

    Science.gov (United States)

    1996-03-01

    neurotoxic dopamine analog that is taken up by nigral dopaminergic cells where it is metabolized to highly reactive oxygen free radicals that cause ...brain regions is elevated after other types of brain insults, including ischemia and hypoglycemia (see Lindvall et al. 1994 for review). Lindvall et a1...with kainic acid were also reported. These investigators also reported significant increases in BDNF mRNA levels in cultures of neonatal astrocytes

  9. Evaluation of the rotenone-induced activation of the Nrf2 pathway in a neuronal model derived from human induced pluripotent stem cells.

    Science.gov (United States)

    Zagoura, Dimitra; Canovas-Jorda, David; Pistollato, Francesca; Bremer-Hoffmann, Susanne; Bal-Price, Anna

    2017-06-01

    Human induced pluripotent stem cells (hiPSCs) are considered as a powerful tool for drug and chemical screening and development of new in vitro testing strategies in the field of toxicology, including neurotoxicity evaluation. These cells are able to expand and efficiently differentiate into different types of neuronal and glial cells as well as peripheral neurons. These human cells-based neuronal models serve as test systems for mechanistic studies on different pathways involved in neurotoxicity. One of the well-known mechanisms that are activated by chemically-induced oxidative stress is the Nrf2 signaling pathway. Therefore, in the current study, we evaluated whether Nrf2 signaling machinery is expressed in human induced pluripotent stem cells (hiPSCs)-derived mixed neuronal/glial culture and if so whether it becomes activated by rotenone-induced oxidative stress mediated by complex I inhibition of mitochondrial respiration. Rotenone was found to induce the activation of Nrf2 signaling particularly at the highest tested concentration (100 nM), as shown by Nrf2 nuclear translocation and the up-regulation of the Nrf2-downstream antioxidant enzymes, NQO1 and SRXN1. Interestingly, exposure to rotenone also increased the number of astroglial cells in which Nrf2 activation may play an important role in neuroprotection. Moreover, rotenone caused cell death of dopaminergic neurons since a decreased percentage of tyrosine hydroxylase (TH + ) cells was observed. The obtained results suggest that hiPSC-derived mixed neuronal/glial culture could be a valuable in vitro human model for the establishment of neuronal specific assays in order to link Nrf2 pathway activation (biomarker of oxidative stress) with additional neuronal specific readouts that could be applied to in vitro neurotoxicity evaluation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Glial GABA Transporters as Modulators of Inhibitory Signalling in Epilepsy and Stroke

    DEFF Research Database (Denmark)

    Lie, Maria E K; Al-Khawaja, Anas; Damgaard, Maria

    2017-01-01

    is to provide an overview of glial GATs in regulating tonic inhibition, especially in epilepsy and stroke. This entails a comprehensive summary of changes known to occur in GAT expression levels and signalling following epileptic and ischemic insults. Further, we discuss the accumulating pharmacological...

  11. Characteristics of Glial Reaction in the Perinatal Rat Cortex: Effect of Lesion Size in the ‘Critical Period’

    Directory of Open Access Journals (Sweden)

    Mihály Kálmán

    2000-01-01

    tissue defect plus reactive gliosis; and (iii healing always with reactive gliosis. The age limits between them were at P0 and P5. The glial reactivity seemingly appears after the end of the neuronal migration and just precedes the massive transformation of the radial glia into astrocytes. Estimating the position of the appearance of glial reactivity among the events of cortical maturation can help to adapt the experimental results to humans.

  12. Extraosseous Gaucher cell deposition without adjacent bone involvement.

    Science.gov (United States)

    Meyer, Brendan J; Mills, Anne M; Gaskin, Cree M

    2014-10-01

    Extraosseous Gaucher cell deposits are a rare complication of Gaucher disease that can mimic malignancy. We describe a case of Gaucher cell deposition in the subcutaneous soft tissues overlying the lower thoracic spine in an 18-year-old woman with known type III Gaucher disease. This case is unique in the literature because this subcutaneous Gaucher mass was not associated with extension from underlying bone involvement or clear lymph node origin. It demonstrated no discernible continuity with the adjacent thoracic spinous processes, the cortices of which appeared intact. Although patients with Gaucher disease are at increased risk of malignancy, Gaucher cell deposition should remain a differential consideration for soft tissue masses with or without adjacent bone involvement in patients with known Gaucher disease.

  13. Neuron-glia crosstalk in the autonomic nervous system and its possible role in the progression of metabolic syndrome: A new hypothesis

    Directory of Open Access Journals (Sweden)

    RODRIGO eDEL RIO

    2015-12-01

    Full Text Available Metabolic syndrome (MS is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process.

  14. Exploiting fruit byproducts for eco-friendly nanosynthesis: Citrus × clementina peel extract mediated fabrication of silver nanoparticles with high efficacy against microbial pathogens and rat glial tumor C6 cells.

    Science.gov (United States)

    Saratale, Rijuta Ganesh; Shin, Han-Seung; Kumar, Gopalakrishnan; Benelli, Giovanni; Ghodake, Gajanan S; Jiang, Yuan Yuan; Kim, Dong Su; Saratale, Ganesh Dattatraya

    2018-04-01

    Process byproducts from the fruit industry may represent a cheap and reliable source of green reducing agents to be used in current bio-nanosynthesis. This study reports the use of orange (Citrus × clementina) peel aqueous extract (OPE) for one-pot green synthesis of silver nanoparticles (AgNPs) with high effectiveness against various microbial pathogens as well as rat glial tumor C6 cells. The effects of various operational parameters on the synthesis of AgNPs were systematically investigated. The morphology, particle size, and properties of synthesized AgNPs were characterized using UV-visible spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, and Fourier transform infrared spectroscopy. High-resolution transmission electron microscopy shows that the nanoparticles are mostly spherical in shape and monodispersed, with an average particle size of 15-20 nm. Notably, the OPE-synthesized AgNPs were stable up to 6 months without change in their properties. Low doses of OPE-AgNPs inhibited the growth of human pathogens Escherichia coli, Bacillus cereus, and Staphylococcus aureus. The minimum inhibitory concentration and minimum bactericidal concentration of AgNPs against selected pathogenic bacteria were determined. OPE-AgNPs exhibited strong antioxidant activity in terms of ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) radical scavenging (IC 50 49.6 μg/mL) and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging (IC 50 63.4 μg/mL). OPE-AgNPs showed dose-dependent response against rat glial tumor C6 cells (LD 50 60 μg/mL) showing a promising potential as anticancer agents. Overall, the current investigation highlighted a cheap green technology route to synthesize AgNPs using OPE byproducts and could potentially be utilized in biomedical, cosmetic, and pharmaceutical industry.

  15. EphA4 Regulates the Balance between Self-Renewal and Differentiation of Radial Glial Cells and Intermediate Neuronal Precursors in Cooperation with FGF Signaling.

    Directory of Open Access Journals (Sweden)

    Qingfa Chen

    Full Text Available In mouse cerebral corticogenesis, neurons are generated from radial glial cells (RGCs or from their immediate progeny, intermediate neuronal precursors (INPs. The balance between self-renewal of these neuronal precursors and specification of cell fate is critical for proper cortical development, but the signaling mechanisms that regulate this progression are poorly understood. EphA4, a member of the receptor tyrosine kinase superfamily, is expressed in RGCs during embryogenesis. To illuminate the function of EphA4 in RGC cell fate determination during early corticogenesis, we deleted Epha4 in cortical cells at E11.5 or E13.5. Loss of EphA4 at both stages led to precocious in vivo RGC differentiation toward neurogenesis. Cortical cells isolated at E14.5 and E15.5 from both deletion mutants showed reduced capacity for neurosphere formation with greater differentiation toward neurons. They also exhibited lower phosphorylation of ERK and FRS2α in the presence of FGF. The size of the cerebral cortex at P0 was smaller than that of controls when Epha4 was deleted at E11.5 but not when it was deleted at E13.5, although the cortical layers were formed normally in both mutants. The number of PAX6-positive RGCs decreased at later developmental stages only in the E11.5 Epha4 deletion mutant. These results suggest that EphA4, in cooperation with an FGF signal, contributes to the maintenance of RGC self-renewal and repression of RGC differentiation through the neuronal lineage. This function of EphA4 is especially critical and uncompensated in early stages of corticogenesis, and thus deletion at E11.5 reduces the size of the neonatal cortex.

  16. Electrophoresis of cell membrane heparan sulfate regulates galvanotaxis in glial cells.

    Science.gov (United States)

    Huang, Yu-Ja; Schiapparelli, Paula; Kozielski, Kristen; Green, Jordan; Lavell, Emily; Guerrero-Cazares, Hugo; Quinones-Hinojosa, Alfredo; Searson, Peter

    2017-08-01

    Endogenous electric fields modulate many physiological processes by promoting directional migration, a process known as galvanotaxis. Despite the importance of galvanotaxis in development and disease, the mechanism by which cells sense and migrate directionally in an electric field remains unknown. Here, we show that electrophoresis of cell surface heparan sulfate (HS) critically regulates this process. HS was found to be localized at the anode-facing side in fetal neural progenitor cells (fNPCs), fNPC-derived astrocytes and brain tumor-initiating cells (BTICs), regardless of their direction of galvanotaxis. Enzymatic removal of HS and other sulfated glycosaminoglycans significantly abolished or reversed the cathodic response seen in fNPCs and BTICs. Furthermore, Slit2, a chemorepulsive ligand, was identified to be colocalized with HS in forming a ligand gradient across cellular membranes. Using both imaging and genetic modification, we propose a novel mechanism for galvanotaxis in which electrophoretic localization of HS establishes cell polarity by functioning as a co-receptor and provides repulsive guidance through Slit-Robo signaling. © 2017. Published by The Company of Biologists Ltd.

  17. Transport of Glial Cell Line-Derived Neurotrophic Factor into Liposomes across the Blood-Brain Barrier: In Vitro and in Vivo Studies

    Directory of Open Access Journals (Sweden)

    Shaoling Wu

    2014-02-01

    Full Text Available Glial cell line-derived neurotrophic factor (GDNF was encapsulated into liposomes in order to protect it from enzyme degradation in vivo and promote its permeability across the blood-brain barrier (BBB. In this study, GDNF conventional liposomes (GDNF-L and GDNF target sterically stabilized liposomes (GDNF-SSL-T were prepared. The average size of liposomes was below 90 nm. A primary model of BBB was established and evaluated by transendothelial electrical resistance (TEER and permeability. This BBB model was employed to study the permeability of GDNF liposomes in vitro. The results indicated that the liposomes could enhance transport of GDNF across the BBB and GDNF-SSL-T had achieved the best transport efficacy. The distribution of GDNF liposomes was studied in vivo. Free GDNF and GDNF-L were eliminated rapidly in the circulation. GDNF-SSL-T has a prolonged circulation time in the blood and favorable brain delivery. The values of the area under the curve (AUC(0–1 h in the brain of GDNF-SSL-T was 8.1 times and 6.8 times more than that of free GDNF and GDNF-L, respectively. These results showed that GDNF-SSL-T realized the aim of targeted delivery of therapeutic proteins to central nervous system.

  18. Astrocytes from adult Wistar rats aged in vitro show changes in glial functions.

    Science.gov (United States)

    Souza, Débora Guerini; Bellaver, Bruna; Raupp, Gustavo Santos; Souza, Diogo Onofre; Quincozes-Santos, André

    2015-11-01

    Astrocytes, the most versatile cells of the central nervous system, play an important role in the regulation of neurotransmitter homeostasis, energy metabolism, antioxidant defenses and the anti-inflammatory response. Recently, our group characterized cortical astrocyte cultures from adult Wistar rats. In line with that work, we studied glial function using an experimental in vitro model of aging astrocytes (30 days in vitro after reaching confluence) from newborn (NB), adult (AD) and aged (AG) Wistar rats. We evaluated metabolic parameters, such as the glucose uptake, glutamine synthetase (GS) activity, and glutathione (GSH) content, as well as the GFAP, GLUT-1 and xCT expression. AD and AG astrocytes take up less glucose than NB astrocytes and had decreased GLUT1 expression levels. Furthermore, AD and AG astrocytes exhibited decreased GS activity compared to NB cells. Simultaneously, AD and AG astrocytes showed an increase in GSH levels, along with an increase in xCT expression. NB, AD and AG astrocytes presented similar morphology; however, differences in GFAP levels were observed. Taken together, these results improve the knowledge of cerebral senescence and represent an innovative tool for brain studies of aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice

    International Nuclear Information System (INIS)

    Fujimura, Juri; Ogawa, Rei; Mizuno, Hiroshi; Fukunaga, Yoshitaka; Suzuki, Hidenori

    2005-01-01

    Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have recently reported that adipose-derived stromal cells (ASCs) could differentiate into mesenchymal lineages in vitro. In this study, we performed neural induction using ASCs from GFP transgenic mice and were able to induce these ASCs into neuronal and glial cell lineages. Most of the neurally induced cells showed bipolar or multipolar appearance morphologically and expressed neuronal markers. Electron microscopy revealed their neuronal morphology. Some cells also showed glial phenotypes, as shown immunocytochemically. The present study clearly shows that ASCs derived from GFP transgenic mice differentiate into neural lineages in vitro, suggesting that these cells might provide an ideal source for further neural stem cell research with possible therapeutic application for neurological disorders

  20. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    Theodor Schwann, the German physiologist who first pro- pounded the cell theory with M Schleiden, had diverse interests. He was not only the first to isolate the enzyme pepsin, but also investigated muscle contraction and nerve structure. In the mid nineteenth century Schwann discovered that a sheath made up of myelin ...

  1. Curcumin-loaded nanoparticles ameliorate glial activation and improve myelin repair in lyolecithin-induced focal demyelination model of rat corpus callosum.

    Science.gov (United States)

    Naeimi, Reza; Safarpour, Fatemeh; Hashemian, Mona; Tashakorian, Hamed; Ahmadian, Seyed Raheleh; Ashrafpour, Manouchehr; Ghasemi-Kasman, Maryam

    2018-05-01

    Curcumin has been introduced as effective anti-inflammatory agent in treatment of several inflammatory disorders. Despite the wide range pharmacological activities, clinical application of curcumin is restricted mainly due to the low water solubility of this substance. More recently, we could remarkably improve the aqueous solubility of curcumin by its encapsulation in chitosan-alginate-sodium tripolyphosphate nanoparticles (CS-ALG-STPP NPs). In this study, the anti-inflammatory and myelin protective effects of curcumin-loaded NPs were evaluated in lysolecithin (LPC)-induced focal demyelination model. Pharmacokinetic of curcumin was assessed using high performance liquid chromatography (HPLC). Local demyelination was induced by injection of LPC into corpus callosum of rats. Animals were pre-treated with intraperitoneal (i.p.) injections of curcumin or curcumin-loaded NPs at dose of 12.5 mg/kg, 10 days prior to LPC injection and the injections were continued for 7 or 14 days post lesion. Hematoxylin and eosin (H&E) staining and immunostaining against activated glial cells including astrocytes and microglia were carried out for assessment of inflammation level in lesion site. Myelin specific staining was performed to evaluate the effect of curcumin-loaded NPs on myelination of LPC receiving animals. HPLC results showed the higher plasma concentration of curcumin after administration of NPs. Histological evaluation demonstrated that, the extent of demyelination areas was reduced in animals under treatment of curcumin-loaded NPs. Furthermore, treatment with curcumin-loaded NPs effectively attenuated glial activation and inflammation in LPC-induced demyelination model compared to curcumin receiving animals. Overall; these findings indicate that treatment with curcumin-loaded NPs preserve myelinated axons through amelioration of glial activation and inflammation in demyelination context. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Lentiviral-mediated targeted NF-kappaB blockade in dorsal spinal cord glia attenuates sciatic nerve injury-induced neuropathic pain in the rat.

    Science.gov (United States)

    Meunier, Alice; Latrémolière, Alban; Dominguez, Elisa; Mauborgne, Annie; Philippe, Stéphanie; Hamon, Michel; Mallet, Jacques; Benoliel, Jean-Jacques; Pohl, Michel

    2007-04-01

    Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor kappaB (NF-kappaB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor. NF-kappaB is a pleiotropic factor also involved in central nervous system homeostasy. To study its role in chronic pain, it is thus essential to inhibit the NF-kappaB pathway selectively in activated spinal glial cells. Here, we show that when restricted to spinal cord and targeted to glial cells, lentiviral vector-mediated delivery of NF-kappaB super- repressor IkappaBalpha resulted in an inhibition of the NF-kappaB pathway activated in the rat spinal cord after sciatic nerve injury (chronic constriction injury, CCI). Concomitantly, IkappaBalpha overproduction prevented the enhanced expression of interleukin-6 and of inducible nitric oxide synthase associated with chronic constriction injury and resulted in prolonged antihyperalgesic and antiallodynic effects. These data show that targeted blockade of NF-kappaB activity in spinal glia efficiently alleviates pain behavior in CCI rats, demonstrating the active participation of the glial NF-kappaB pathway in the development of neuropathic pain after peripheral nerve injury.

  3. Nasopharyngeal glial heterotopia with delayed postoperative meningitis.

    Science.gov (United States)

    Maeda, Kenichi; Furuno, Kenji; Chong, Pin Fee; Morioka, Takato

    2017-06-22

    A male infant, who underwent radical resection of a large glial heterotopia at the nasopharynx at 8 days, developed delayed postoperative bacterial meningitis at 9 months. Neuroradiological examination clearly demonstrated that meningitis had occurred because of the intracranial and extracranial connections, which were scarcely seen in the perioperative period. A transsphenoidal extension of hypothalamic hamartoma is possible because the connection started from the right optic nerve, running through the transsphenoidal canal in the sphenoid bone and terminating at the recurrent mass in the nasopharyngeal region. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Limited energy supply in Müller cells alters glutamate uptake

    DEFF Research Database (Denmark)

    Toft-Kehler, Anne Katrine; Skytt, Dorte Marie; Poulsen, Kristian Arild

    2014-01-01

    The viability of retinal ganglion cells (RGC) is essential for the maintenance of visual function. RGC homeostasis is maintained by the surrounding retinal glial cells, the Müller cells, which buffer the extracellular concentration of neurotransmitters and provide the RGCs with energy. This study...... evaluates if glucose-deprivation of Müller cells interferes with their ability to remove glutamate from the extracellular space. The human Müller glial cell line, Moorfields/Institute of Ophthalmology-Müller 1, was used to study changes in glutamate uptake. Excitatory amino acid transporter (EAAT) proteins...... were up-regulated in glucose-deprived Müller cells and glutamate uptake was significantly increased in the absence of glucose. The present findings revealed an up-regulation of EAAT1 and EAAT2 in glucose-deprived Müller cells as well as an increased ability to take up glutamate. Hence, glucose...

  5. Expression of Zonulin, c-kit, and Glial Fibrillary Acidic Protein in Human Gliomas.

    Science.gov (United States)

    Skardelly, Marco; Armbruster, Franz Paul; Meixensberger, Jürgen; Hilbig, Heidegard

    2009-08-18

    The hallmarks of human malignant gliomas are their marked invasiveness and vascularity. Because angiogenesis and tumor invasion have been associated with extracellular matrix degradation and intercellular tight junctions, the involvement of zonulin in glioma biology is in the focus. We selected for histological examination five cases of glioblastoma WHO IV (nomenclature of the World Health Organization) and one case each from astrocytoma WHO III, meningioma WHO III, and meningioma WHO I as control samples. The meningioma WHO I is regarded as benign, whereas the meningioma WHO III is recognized as the transition form of malignant tumors in humans. The visualization of a newly designed antibody against human zonulin was studied in triple-labeling studies using fluorescence immunocytochemistry and compared with the expression of c-kit and glial fibrillary acidic protein in differently developed human gliomas. We found that increasing the expression of c-kit is accompanied by an increase of zonulin expression. Both are correlated to the degree of malignancy of human brain tumors. The expression of zonulin is correlated to the degradation of the blood-brain barrier as revealed by Griffonia simplicifolia lectin. In differently graded tumors, we found differently graded involvement of blood vessels in the tumor development, explaining patients' survival.

  6. A novel and efficient gene transfer strategy reduces glial reactivity and improves neuronal survival and axonal growth in vitro

    OpenAIRE

    Desclaux, Mathieu; Teigell, Marisa; Amar, Lahouari; Vogel, Roland; Giménez y Ribotta, Minerva; Privát, Alain M.; Mallet, Jacques

    2009-01-01

    Background: The lack of axonal regeneration in the central nervous system is attributed among other factors to the formation of a glial scar. This cellular structure is mainly composed of reactive astrocytes that overexpress two intermediate filament proteins, the glial fibrillary acidic protein (GFAP) and vimentin. Indeed, in vitro, astrocytes lacking GFAP or both GFAP and vimentin were shown to be the substrate for increased neuronal plasticity. Moreover, double knockout mice lacking both G...

  7. Adult Mouse DRG Explant and Dissociated Cell Models to Investigate Neuroplasticity and Responses to Environmental Insults Including Viral Infection.

    Science.gov (United States)

    Fornaro, Michele; Sharthiya, Harsh; Tiwari, Vaibhav

    2018-03-09

    This protocol describes an ex vivo model of mouse-derived dorsal root ganglia (DRG) explant and in vitro DRG-derived co-culture of dissociated sensory neurons and glial satellite cells. These are useful and versatile models to investigate a variety of biological responses associated with physiological and pathological conditions of the peripheral nervous system (PNS) ranging from neuron-glial interaction, neuroplasticity, neuroinflammation, and viral infection. The usage of DRG explant is scientifically advantageous compared to simplistic single cells models for multiple reasons. For instance, as an organotypic culture, the DRG explant allows ex vivo transfer of an entire neuronal network including the extracellular microenvironment that play a significant role in all the neuronal and glial functions. Further, DRG explants can also be maintained ex vivo for several days and the culture conditions can be perturbed as desired. In addition, the harvested DRG can be further dissociated into an in vitro co-culture of primary sensory neurons and satellite glial cells to investigate neuronal-glial interaction, neuritogenesis, axonal cone interaction with the extracellular microenvironment, and more general, any aspect associated with the neuronal metabolism. Therefore, the DRG-explant system offers a great deal of flexibility to study a wide array of events related to biological, physiological, and pathological conditions in a cost-effective manner.

  8. Extracellular Molecules Involved in Cancer Cell Invasion

    International Nuclear Information System (INIS)

    Stivarou, Theodora; Patsavoudi, Evangelia

    2015-01-01

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion

  9. Targeting Glial Mitochondrial Function for Protection from Cerebral Ischemia: Relevance, Mechanisms, and the Role of MicroRNAs

    Directory of Open Access Journals (Sweden)

    Le Li

    2016-01-01

    Full Text Available Astrocytes and microglia play crucial roles in the response to cerebral ischemia and are effective targets for stroke therapy in animal models. MicroRNAs (miRs are important posttranscriptional regulators of gene expression that function by inhibiting the translation of select target genes. In astrocytes, miR expression patterns regulate mitochondrial function in response to oxidative stress via targeting of Bcl2 and heat shock protein 70 family members. Mitochondria play an active role in microglial activation, and miRs regulate the microglial neuroinflammatory response. As endogenous miR expression patterns can be altered with exogenous mimics and inhibitors, miR-targeted therapies represent a viable intervention to optimize glial mitochondrial function and improve clinical outcome following cerebral ischemia. In the present article, we review the role that astrocytes and microglia play in neuronal function and fate following ischemic stress, discuss the relevance of mitochondria in the glial response to injury, and present current evidence implicating miRs as critical regulators in the glial mitochondrial response to cerebral ischemia.

  10. Evidence of female-specific glial deficits in the hippocampus in a mouse model of prenatal stress.

    LENUS (Irish Health Repository)

    Behan, Aine T

    2011-01-01

    Prenatal stress (PS) has been associated with an increased incidence of numerous neuropsychiatric disorders, including depression, anxiety, schizophrenia, and autism. To determine the effects of PS on hippocampal-dependent behaviour hippocampal morphology, we examined behavioural responses and hippocampal cytoarchitecture of a maternal restraint stress paradigm of PS in C57BL6 mice. Female offspring only showed a reduction in hippocampal glial count in the pyramidal layer following PS. Additionally, only PS females showed increased depressive-like behaviour with cognitive deficits predominantly in female offspring when compared to males. This data provides evidence for functional female-specific glial deficits within the hippocampus as a consequence of PS.

  11. Evidence of female-specific glial deficits in the hippocampus in a mouse model of prenatal stress.

    LENUS (Irish Health Repository)

    Behan, Aine T

    2012-02-01

    Prenatal stress (PS) has been associated with an increased incidence of numerous neuropsychiatric disorders, including depression, anxiety, schizophrenia, and autism. To determine the effects of PS on hippocampal-dependent behaviour hippocampal morphology, we examined behavioural responses and hippocampal cytoarchitecture of a maternal restraint stress paradigm of PS in C57BL6 mice. Female offspring only showed a reduction in hippocampal glial count in the pyramidal layer following PS. Additionally, only PS females showed increased depressive-like behaviour with cognitive deficits predominantly in female offspring when compared to males. This data provides evidence for functional female-specific glial deficits within the hippocampus as a consequence of PS.

  12. Measuring Glial Metabolism in Repetitive Brain Trauma and Alzheimers Disease

    Science.gov (United States)

    2017-09-01

    4: Correlate the glial and glutamate metabolic rates with additional measures obtained in the parent studies including of a) serum, CSF, and genetic...resonances as a linear combination model. Note the high SNR of glutamate and its separation from other metabolites that would overlap at 3 Tesla. 3.3... separate protocol offered to participants in the study but will not be mandatory and thus will not impact this study in any way. 3.4. Results

  13. Morphological characterization of a human glioma cell l ine.

    Science.gov (United States)

    Machado, Camila Ml; Schenka, André; Vassallo, José; Tamashiro, Wirla Msc; Gonçalves, Estela M; Genari, Selma C; Verinaud, Liana

    2005-05-10

    A human malignant continuous cell line, named NG97, was recently established in our laboratory. This cell line has been serially subcultured over 100 times in standard culture media presenting no sign of cell senescence. The NG97 cell line has a doubling time of about 24 h. Immunocytochemical analysis of glial markers demonstrated that cells are positive for glial fibrillary acidic protein (GFAP) and S-100 protein, and negative for vimentin. Under phase-contrast microscope, cultures of NG97 showed cells with variable morphological features, such as small rounded cells, fusiform cells (fibroblastic-like cells), and dendritic-like cells. However, at confluence just small rounded and fusiform cells can be observed. At scanning electron microscopy (SEM) small rounded cells showed heterogeneous microextentions, including blebs and filopodia. Dendritic-like cells were flat and presented extensive prolongations, making several contacts with small rounded cells, while fusiform cells presented their surfaces dominated by microvilli.We believe that the knowledge about NG97 cell line may be useful for a deeper understanding of biological and immunological characteristics of gliomas.

  14. Imaging and radiological-pathological correlation in histologically proven cases of focal cortical dysplasia and other glial and neuronoglial malformative lesions in adults

    International Nuclear Information System (INIS)

    Gomez-Anson, B.; Thom, M.; Moran, N.; Stevens, J.; Scaravilli, F.

    2000-01-01

    Focal cortical dysplasia (FCD) is a pathological entity first described in 1971. Other more subtle cortical malformations found in patients with epilepsy include microdysgenesis (MD), and glioneuronal hamartias. Although these glial and neuronoglial malformations have distinct histological features, there is terminological confusion in the radiological literature. Few cases have been reported in adults with both imaging and histology. We address these issues, giving a radiological-pathological correlation of histologically proven cortical malformations in adults. We describe clinical, radiological and histological features of 12 cases (five FCD, five MD with glioneuronal hamartias, and two hamartomas), unassociated with other conditions, and discuss them in the light of the literature. FCD is usually seen on MRI as cortical thickening, with or without signal change, which may extend into the adjacent white matter. On histology, abnormal neurons and/or glial cells, blurring of the grey-white matter interface, myelin pallor, demyelination, and gliosis may be found. Glioneuronal hamartias and hamartomas usually appear as complex masses on MRI. FCD and hamartias may be associated, and a combination of imaging findings may be seen on MRI. Atrophy of the ipsilateral hippocampus may be present on MRI in patients with hamartias, and minor cell loss on histology, but not definitive hippocampal sclerosis. Although the imaging findings of cortical malformations are protean, some characteristic MRI features, with histological correlates, may be found. The relevance of most of these observations remains unclear. (orig.)

  15. Spatiotemporal distribution and function of N-cadherin in postnatal Schwann cells: A matter of adhesion?

    DEFF Research Database (Denmark)

    Corell, Mikael; Wicher, Grzegorz; Limbach, Christoph

    2010-01-01

    During embryonic development of the peripheral nervous system (PNS), the adhesion molecule neuronal cadherin (N-cadherin) is expressed by Schwann cell precursors and associated with axonal growth cones. N-cadherin expression levels decrease as precursors differentiate into Schwann cells. In this ......During embryonic development of the peripheral nervous system (PNS), the adhesion molecule neuronal cadherin (N-cadherin) is expressed by Schwann cell precursors and associated with axonal growth cones. N-cadherin expression levels decrease as precursors differentiate into Schwann cells....... In this study, we investigated the distribution of N-cadherin in the developing postnatal and adult rat peripheral nervous system. N-cadherin was found primarily in ensheathing glia throughout development, concentrated at neuron-glial or glial-glial contacts of the sciatic nerve, dorsal root ganglia (DRG......), and myenteric plexi. In the sciatic nerve, N-cadherin decreases with age and progress of myelination. In adult animals, N-cadherin was found exclusively in nonmyelinating Schwann cells. The distribution of N-cadherin in developing E17 DRG primary cultures is similar to what was observed in vivo. Functional...

  16. A novel and efficient gene transfer strategy reduces glial reactivity and improves neuronal survival and axonal growth in vitro.

    Directory of Open Access Journals (Sweden)

    Mathieu Desclaux

    Full Text Available BACKGROUND: The lack of axonal regeneration in the central nervous system is attributed among other factors to the formation of a glial scar. This cellular structure is mainly composed of reactive astrocytes that overexpress two intermediate filament proteins, the glial fibrillary acidic protein (GFAP and vimentin. Indeed, in vitro, astrocytes lacking GFAP or both GFAP and vimentin were shown to be the substrate for increased neuronal plasticity. Moreover, double knockout mice lacking both GFAP and vimentin presented lower levels of glial reactivity in vivo, significant axonal regrowth and improved functional recovery in comparison with wild-type mice after spinal cord hemisection. From these results, our objective was to develop a novel therapeutic strategy for axonal regeneration, based on the targeted suppression of astroglial reactivity and scarring by lentiviral-mediated RNA-interference (RNAi. METHODS AND FINDINGS: In this study, we constructed two lentiviral vectors, Lv-shGFAP and Lv-shVIM, which allow efficient and stable RNAi-mediated silencing of endogenous GFAP or vimentin in vitro. In cultured cortical and spinal reactive astrocytes, the use of these vectors resulted in a specific, stable and highly significant decrease in the corresponding protein levels. In a second model -- scratched primary cultured astrocytes -- Lv-shGFAP, alone or associated with Lv-shVIM, decreased astrocytic reactivity and glial scarring. Finally, in a heterotopic coculture model, cortical neurons displayed higher survival rates and increased neurite growth when cultured with astrocytes in which GFAP and vimentin had been invalidated by lentiviral-mediated RNAi. CONCLUSIONS: Lentiviral-mediated knockdown of GFAP and vimentin in astrocytes show that GFAP is a key target for modulating reactive gliosis and monitoring neuron/glia interactions. Thus, manipulation of reactive astrocytes with the Lv-shGFAP vector constitutes a promising therapeutic strategy for

  17. A novel and efficient gene transfer strategy reduces glial reactivity and improves neuronal survival and axonal growth in vitro.

    Science.gov (United States)

    Desclaux, Mathieu; Teigell, Marisa; Amar, Lahouari; Vogel, Roland; Gimenez Y Ribotta, Minerva; Privat, Alain; Mallet, Jacques

    2009-07-14

    The lack of axonal regeneration in the central nervous system is attributed among other factors to the formation of a glial scar. This cellular structure is mainly composed of reactive astrocytes that overexpress two intermediate filament proteins, the glial fibrillary acidic protein (GFAP) and vimentin. Indeed, in vitro, astrocytes lacking GFAP or both GFAP and vimentin were shown to be the substrate for increased neuronal plasticity. Moreover, double knockout mice lacking both GFAP and vimentin presented lower levels of glial reactivity in vivo, significant axonal regrowth and improved functional recovery in comparison with wild-type mice after spinal cord hemisection. From these results, our objective was to develop a novel therapeutic strategy for axonal regeneration, based on the targeted suppression of astroglial reactivity and scarring by lentiviral-mediated RNA-interference (RNAi). In this study, we constructed two lentiviral vectors, Lv-shGFAP and Lv-shVIM, which allow efficient and stable RNAi-mediated silencing of endogenous GFAP or vimentin in vitro. In cultured cortical and spinal reactive astrocytes, the use of these vectors resulted in a specific, stable and highly significant decrease in the corresponding protein levels. In a second model -- scratched primary cultured astrocytes -- Lv-shGFAP, alone or associated with Lv-shVIM, decreased astrocytic reactivity and glial scarring. Finally, in a heterotopic coculture model, cortical neurons displayed higher survival rates and increased neurite growth when cultured with astrocytes in which GFAP and vimentin had been invalidated by lentiviral-mediated RNAi. Lentiviral-mediated knockdown of GFAP and vimentin in astrocytes show that GFAP is a key target for modulating reactive gliosis and monitoring neuron/glia interactions. Thus, manipulation of reactive astrocytes with the Lv-shGFAP vector constitutes a promising therapeutic strategy for increasing glial permissiveness and permitting axonal regeneration

  18. New protein involved in the replacement of cell molecules

    DEFF Research Database (Denmark)

    Poulsen, Jesper Buchhave

    2011-01-01

    In collaboration with colleagues from La Trobe University, Australia, scientists at Aarhus University have discovered and defined a novel enzyme involved in the replacement and renewal of cell molecules. The enzyme exerts its function within the so-called mitochondria - small “enclosed” compartme......In collaboration with colleagues from La Trobe University, Australia, scientists at Aarhus University have discovered and defined a novel enzyme involved in the replacement and renewal of cell molecules. The enzyme exerts its function within the so-called mitochondria - small “enclosed...

  19. Expression and deposition of basement membrane proteins by brain capillary endothelial cells in a primary murine model of the blood-brain barrier

    DEFF Research Database (Denmark)

    Thomsen, Maj Schneider; Birkelund, Svend; Larsen, Annette Burkhart

    2016-01-01

    The blood-brain barrier (BBB) represents the interface between the blood and the brain parenchyma and consists of endothelial cells which are tightly sealed together by tight junction proteins. The endothelial cells are in addition supported by pericytes, which are embedded in the vascular basement...... of the present study was to create four different in vitro constructs of the murine BBB to characterise if the expression and secretion of basement membrane proteins by the murine brain capillary endothelial cells (mBCECs) was affected by co-culturing with pericytes, mixed glial cells, or both. Primary m......BCECs and pericytes were isolated from brains of adult mice. Mixed glial cells were prepared from cerebral cortices of newborn mice. The mBCECs were grown as mono-culture, or co-cultured with pericytes, mixed glial cells, or both. To study the expression of basement membrane proteins RT-qPCR, mass spectrometry...

  20. Asymmetric Distribution of GFAP in Glioma Multipotent Cells

    Science.gov (United States)

    Guichet, Pierre-Olivier; Guelfi, Sophie; Ripoll, Chantal; Teigell, Marisa; Sabourin, Jean-Charles; Bauchet, Luc; Rigau, Valérie; Rothhut, Bernard; Hugnot, Jean-Philippe

    2016-01-01

    Asymmetric division (AD) is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP), in mitotic glioma multipotent cells isolated from glioblastoma (GBM), the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate. PMID:26953813

  1. Asymmetric Distribution of GFAP in Glioma Multipotent Cells.

    Directory of Open Access Journals (Sweden)

    Pierre-Olivier Guichet

    Full Text Available Asymmetric division (AD is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP, in mitotic glioma multipotent cells isolated from glioblastoma (GBM, the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate.

  2. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  3. Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain.

    Science.gov (United States)

    Al-Mashhadi, Sufana; Simpson, Julie E; Heath, Paul R; Dickman, Mark; Forster, Gillian; Matthews, Fiona E; Brayne, Carol; Ince, Paul G; Wharton, Stephen B

    2015-09-01

    White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2'-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined. © 2014 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  4. Regenerative Potential of Ependymal Cells for Spinal Cord Injuries Over Time

    Directory of Open Access Journals (Sweden)

    Xiaofei Li

    2016-11-01

    Full Text Available Stem cells have a high therapeutic potential for the treatment of spinal cord injury (SCI. We have shown previously that endogenous stem cell potential is confined to ependymal cells in the adult spinal cord which could be targeted for non-invasive SCI therapy. However, ependymal cells are an understudied cell population. Taking advantage of transgenic lines, we characterize the appearance and potential of ependymal cells during development. We show that spinal cord stem cell potential in vitro is contained within these cells by birth. Moreover, juvenile cultures generate more neurospheres and more oligodendrocytes than adult ones. Interestingly, juvenile ependymal cells in vivo contribute to glial scar formation after severe but not mild SCI, due to a more effective sealing of the lesion by other glial cells. This study highlights the importance of the age-dependent potential of stem cells and post-SCI environment in order to utilize ependymal cell's regenerative potential.

  5. Dental Tissue — New Source for Stem Cells

    Directory of Open Access Journals (Sweden)

    Vladimir Petrovic

    2009-01-01

    Full Text Available Stem cells have been isolated from many tissues and organs, including dental tissue. Five types of dental stem cells have been established: dental pulp stem cells, stem cells from exfoliated deciduous teeth, stem cells from apical papilla, periodontal ligament stem cells, and dental follicle progenitor cells. The main characteristics of dental stem cells are their potential for multilineage differentiation and self-renewal capacity. Dental stem cells can differentiate into odontoblasts, adipocytes, neuronal-like cells, glial cells, osteoblasts, chondrocytes, melanocytes, myotubes, and endothelial cells. Possible application of these cells in various fields of medicine makes them good candidates for future research as a new, powerful tool for therapy. Although the possible use of these cells in therapeutic purposes and tooth tissue engineering is still in the beginning stages, the results are promising. The efforts made in the research of dental stem cells have clarified many mechanisms underlying the biological processes in which these cells are involved. This review will focus on the new findings in the field of dental stem cell research and on their potential use in the therapy of various disorders.

  6. Studies of axon-glial cell interactions and periaxonal K+ homeostasis--II. The effect of axonal stimulation, cholinergic agents and transport inhibitors on the resistance in series with the axon membrane.

    Science.gov (United States)

    Hassan, S; Lieberman, E M

    1988-06-01

    The small electrical resistance in series with the axon membrane is generally modeled as the intercellular pathway for current flow through the periaxonal glial (Schwann cell) sheath. The series resistance of the medial giant axon of the crayfish, Procambarus clarkii, was found to vary with conditions known to affect the electrical properties of the periaxonal glia. Series resistance was estimated from computer analysed voltage waveforms generated by axial wire-constant current and space clamp techniques. The average series resistance for all axons was 6.2 +/- 0.5 omega cm2 (n = 128). Values ranged between 1 and 30 omega cm2. The series resistance of axons with low resting membrane resistance (less than 1500 omega cm2) increased an average of 30% when stimulated for 45 s to 7 min (50 Hz) whereas the series resistance of high membrane resistance (greater than 1500 omega cm2) axons decreased an average of 10%. Carbachol (10(-7) M) caused the series resistance of low membrane resistance axons to decrease during stimulation but had no effect on high membrane resistance axons. d-Tubocurare (10(-8) M) caused the series resistance of high membrane resistance axons to increase during stimulation but had no effect on low membrane resistance axons. Bumetanide, a Na-K-Cl cotransport inhibitor and low [K+]o, prevented the stimulation-induced increase in series resistance of low membrane resistance axons but had no effect on the high membrane resistance axons. The results suggest that the series resistance of axons varies in response to the activity of the glial K+ uptake mechanisms stimulated by the appearance of K+ in the periaxonal space during action potential generation.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Abstractocyte: A Visual Tool for Exploring Nanoscale Astroglial Cells

    KAUST Repository

    Mohammed, Haneen

    2017-01-01

    This thesis presents the design and implementation of Abstractocyte, a system for the visual analysis of astrocytes, and their relation to neurons, in nanoscale volumes of brain tissue. Astrocytes are glial cells, i.e., non-neuronal cells

  8. Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology.

    Science.gov (United States)

    Skjørringe, Tina; Burkhart, Annette; Johnsen, Kasper Bendix; Moos, Torben

    2015-01-01

    Iron is required in a variety of essential processes in the body. In this review, we focus on iron transport in the brain and the role of the divalent metal transporter 1 (DMT1) vital for iron uptake in most cells. DMT1 locates to cellular membranes and endosomal membranes, where it is a key player in non-transferrin bound iron uptake and transferrin-bound iron uptake, respectively. Four isoforms of DMT1 exist, and their respective characteristics involve a complex cell-specific regulatory machinery all controlling iron transport across these membranes. This complexity reflects the fine balance required in iron homeostasis, as this metal is indispensable in many cell functions but highly toxic when appearing in excess. DMT1 expression in the brain is prominent in neurons. Of serious dispute is the expression of DMT1 in non-neuronal cells. Recent studies imply that DMT1 does exist in endosomes of brain capillary endothelial cells denoting the blood-brain barrier. This supports existing evidence that iron uptake at the BBB occurs by means of transferrin-receptor mediated endocytosis followed by detachment of iron from transferrin inside the acidic compartment of the endosome and DMT1-mediated pumping iron into the cytosol. The subsequent iron transport across the abluminal membrane into the brain likely occurs by ferroportin. The virtual absent expression of transferrin receptors and DMT1 in glial cells, i.e., astrocytes, microglia and oligodendrocytes, suggest that the steady state uptake of iron in glia is much lower than in neurons and/or other mechanisms for iron uptake in these cell types prevail.

  9. The efflux of choline from nerve cells: mediation by ionic gradients and functional exchange of choline from glia to neurons

    International Nuclear Information System (INIS)

    Hoffmann, D.; Ferret, B.; Massarelli, R.; Mykita, S.

    1986-01-01

    This paper analyzes the relationship between ions and the efflux of choline, and suggests the possibility of a balance effect for choline fluxes which is produced and maintained by ioinic gradients. It is also suggested that glial cells may actively exchange choline with neurons during nerve actively exchange choline with neurons during nerve activity, and that they may function as a choline reservoir for neuronal needs. The study shows that neurons and glial cells spontaneously discharge choline into the incubation medium. The exiting choline is essentially of free origin, as can be seen in an illustration provided. Neurons and glial cells had been prelabelled with ( 14 C) choline overnight, and labelled for 15 min with tritium-choline. The higher amount of tritium-choline exiting the cells indicates that it is the freshly labelled choline which is preferentially released. The remaining of ( 14 C) - choline exiting the cells corresponds to the free choline of phospholipid origin which amounts to about one third of the total free choline content

  10. Langerhans cell histiocytosis with involvement of the pons: case report

    International Nuclear Information System (INIS)

    Vourtsi, A.; Papadopoulos, A.; Moulopoulos, L.A.; Vlahos, L.; Xenellis, J.

    1998-01-01

    Central nervous system involvement is uncommon in Langerhans cell histiocytosis. The suprasellar region is more frequently affected. There have been few reports of involvement of the brain parenchyma shown on CT or MRI. We present a case of involvement of the pons, showing marked contrast enhancement on MRI. (orig.)

  11. Lentiviral-mediated Targeted NF-κB Blockade in Dorsal Spinal Cord Glia Attenuates Sciatic Nerve Injury-induced Neuropathic Pain in the Rat.

    Science.gov (United States)

    Meunier, Alice; Latrémolière, Alban; Dominguez, Elisa; Mauborgne, Annie; Philippe, Stéphanie; Hamon, Michel; Mallet, Jacques; Benoliel, Jean-Jacques; Pohl, Michel

    2007-04-01

    Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor κB (NF-κB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor. NF-κB is a pleiotropic factor also involved in central nervous system homeostasy. To study its role in chronic pain, it is thus essential to inhibit the NF-κB pathway selectively in activated spinal glial cells. Here, we show that when restricted to spinal cord and targeted to glial cells, lentiviral vector-mediated delivery of NF-κB super- repressor IκBα resulted in an inhibition of the NF-κB pathway activated in the rat spinal cord after sciatic nerve injury (chronic constriction injury, CCI). Concomitantly, IκBα overproduction prevented the enhanced expression of interleukin-6 and of inducible nitric oxide synthase associated with chronic constriction injury and resulted in prolonged antihyperalgesic and antiallodynic effects. These data show that targeted blockade of NF-κB activity in spinal glia efficiently alleviates pain behavior in CCI rats, demonstrating the active participation of the glial NF-κB pathway in the development of neuropathic pain after peripheral nerve injury. Copyright © 2007 The American Society of Gene Therapy. Published by Elsevier Inc. All rights reserved.

  12. Lack of CCR5 modifies glial phenotypes and population of the nigral dopaminergic neurons, but not MPTP-induced dopaminergic neurodegeneration.

    Science.gov (United States)

    Choi, Dong-Young; Lee, Myung Koo; Hong, Jin Tae

    2013-01-01

    Constitutive expression of C-C chemokine receptor (CCR) 5 has been detected in astrocytes, microglia and neurons, but its physiological roles in the central nervous system are obscure. The bidirectional interactions between neuron and glial cells through CCR5 and its ligands were thought to be crucial for maintaining normal neuronal activities. No study has described function of CCR5 in the dopaminergic neurodegeneration in Parkinson's disease. In order to examine effects of CCR5 on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration, we employed CCR5 wild type (WT) and knockout (KO) mice. Immunostainings for tyrosine hydroxylase (TH) exhibited that CCR5 KO mice had lower number of TH-positive neurons even in the absence of MPTP. Difference in MPTP (15mg/kg×4 times, 2hr interval)-mediated loss of TH-positive neurons was subtle between CCR5 WT and KO mice, but there was larger dopamine depletion, behavioral impairments and microglial activation in CCR5 deficient mice. Intriguingly, CCR5 KO brains contained higher immunoreactivity for monoamine oxidase (MAO) B which was mainly localized within astrocytes. In agreement with upregulation of MAO B, concentration of MPP+ was higher in the substantia nigra and striatum of CCR5 KO mice after MPTP injection. We found remarkable activation of p38 MAPK in CCR5 deficient mice, which positively regulates MAO B expression. These results indicate that CCR5 deficiency modifies the nigrostriatal dopaminergic neuronal system and bidirectional interaction between neurons and glial cells via CCR5 might be important for dopaminergic neuronal survival. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Non-Neuronal Cells Are Required to Mediate the Effects of Neuroinflammation: Results from a Neuron-Enriched Culture System.

    Science.gov (United States)

    Hui, Chin Wai; Zhang, Yang; Herrup, Karl

    2016-01-01

    Chronic inflammation is associated with activated microglia and reactive astrocytes and plays an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer's. Both in vivo and in vitro studies have demonstrated that inflammatory cytokine responses to immune challenges contribute to neuronal death during neurodegeneration. In order to investigate the role of glial cells in this phenomenon, we developed a modified method to remove the non-neuronal cells in primary cultures of E16.5 mouse cortex. We modified previously reported methods as we found that a brief treatment with the thymidine analog, 5-fluorodeoxyuridine (FdU), is sufficient to substantially deplete dividing non-neuronal cells in primary cultures. Cell cycle and glial markers confirm the loss of ~99% of all microglia, astrocytes and oligodendrocyte precursor cells (OPCs). More importantly, under this milder treatment, the neurons suffered neither cell loss nor any morphological defects up to 2.5 weeks later; both pre- and post-synaptic markers were retained. Further, neurons in FdU-treated cultures remained responsive to excitotoxicity induced by glutamate application. The immunobiology of the FdU culture, however, was significantly changed. Compared with mixed culture, the protein levels of NFκB p65 and the gene expression of several cytokine receptors were altered. Individual cytokines or conditioned medium from β-amyloid-stimulated THP-1 cells that were, potent neurotoxins in normal, mixed cultures, were virtually inactive in the absence of glial cells. The results highlight the importance of our glial-depleted culture system and identifies and offer unexpected insights into the complexity of -brain neuroinflammation.

  14. Differentiated cells derived from fetal neural stem cells improve motor deficits in a rat model of Parkinson’s disease

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Hao Song; Aifang Shen; Chao Chen; Yanming Liu; Yabing Dong; Fabin Han

    2015-01-01

    Objective: Parkinson’s disease(PD), which is one of the most common neuro‐degenerative disorders, is characterized by the loss of dopamine(DA) neurons in the substantia nigra in the midbrain. Experimental and clinical studies have shown that fetal neural stem cells(NSCs) have therapeutic effects in neurological disorders. The aim of this study was to examine whether cells that were differentiated from NSCs had therapeutic effects in a rat model of PD. Methods: NSCs were isolated from 14‐week‐old embryos and induced to differentiate into neurons, DA neurons, and glial cells, and these cells were characterized by their expression of the following markers: βⅢ‐tubulin and microtubule‐associated protein 2(neurons), tyrosine hydroxylase(DA neurons), and glial fibrillary acidic protein(glial cells). After a 6‐hydroxydopamine(6‐OHDA)‐lesioned rat model of PD was generated, the differentiated cells were transplanted into the striata of the 6‐OHDA‐lesioned PD rats. Results: The motor behaviors of the PD rats were assessed by the number of apomorphine‐induced rotation turns. The results showed that the NSCs differentiated in vitro into neurons and DA neurons with high efficiencies. After transplantation into the striata of the PD rats, the differentiated cells significantly improved the motor deficits of the transplanted PD rats compared to those of the control nontransplanted PD rats by decreasing the apomorphine‐induced turn cycles as early as 4 weeks after transplantation. Immunofluorescence analyses showed that the differentiated DA neurons survived more than 16 weeks. Conclusions: Our results showed that cells that were differentiated from NSCs had therapeutic effects in a rat PD model, which suggests that differentiated cells may be an effective treatment for patients with PD.

  15. Glial and Neuronal Glutamate Transporters Differ in the Na+ Requirements for Activation of the Substrate-Independent Anion Conductance

    Directory of Open Access Journals (Sweden)

    Christopher B. Divito

    2017-05-01

    Full Text Available Excitatory amino acid transporters (EAATs are secondary active transporters of L-glutamate and L- or D-aspartate. These carriers also mediate a thermodynamically uncoupled anion conductance that is gated by Na+ and substrate binding. The activation of the anion channel by binding of Na+ alone, however, has only been demonstrated for mammalian EAAC1 (EAAT3 and EAAT4. To date, no difference has been observed for the substrate dependence of anion channel gating between the glial, EAAT1 and EAAT2, and the neuronal isoforms EAAT3, EAAT4 and EAAT5. Here we describe a difference in the Na+-dependence of anion channel gating between glial and neuronal isoforms. Chloride flux through transporters without glutamate binding has previously been described as substrate-independent or “leak” channel activity. Choline or N-methyl-D-glucamine replacement of external Na+ ions significantly reduced or abolished substrate-independent EAAT channel activity in EAAT3 and EAAT4 yet has no effect on EAAT1 or EAAT2. The interaction of Na+ with the neuronal carrier isoforms was concentration dependent, consistent with previous data. The presence of substrate and Na+-independent open states in the glial EAAT isoforms is a novel finding in the field of EAAT function. Our results reveal an important divergence in anion channel function between glial and neuronal glutamate transporters and highlight new potential roles for the EAAT-associated anion channel activity based on transporter expression and localization in the central nervous system.

  16. [The effect of hyperthyroidism on the cognition processes and the state of the glial intermediate filaments in the rat brain].

    Science.gov (United States)

    Nedzvets'kyĭ, V S; Nerush, P O

    2010-01-01

    The effects of hyperthyreosis on oxidative stress, state of glial intermediate filaments and memory were investigated. We observed a significant increase in lipid peroxidation products into both hippocampus and cortex and memory worsening. The changes of GFAP polypeptides was observed in hippocampus and cortex. In group of rats with hyperthyreosis, the content of GFAP in both soluble and filamentous fractions was increased in hippocampus. This data shows, that glial cytoskeleton is reconstructed under thyroid hormone effects.

  17. Rhesus monkey neural stem cell transplantation promotes neural regeneration in rats with hippocampal lesions

    Directory of Open Access Journals (Sweden)

    Li-juan Ye

    2016-01-01

    Full Text Available Rhesus monkey neural stem cells are capable of differentiating into neurons and glial cells. Therefore, neural stem cell transplantation can be used to promote functional recovery of the nervous system. Rhesus monkey neural stem cells (1 × 105 cells/μL were injected into bilateral hippocampi of rats with hippocampal lesions. Confocal laser scanning microscopy demonstrated that green fluorescent protein-labeled transplanted cells survived and grew well. Transplanted cells were detected at the lesion site, but also in the nerve fiber-rich region of the cerebral cortex and corpus callosum. Some transplanted cells differentiated into neurons and glial cells clustering along the ventricular wall, and integrated into the recipient brain. Behavioral tests revealed that spatial learning and memory ability improved, indicating that rhesus monkey neural stem cells noticeably improve spatial learning and memory abilities in rats with hippocampal lesions.

  18. Involvement of Lgl and Mahjong/VprBP in cell competition.

    Directory of Open Access Journals (Sweden)

    Yoichiro Tamori

    2010-07-01

    Full Text Available During the initial stages of carcinogenesis, transformation events occur in a single cell within an epithelial monolayer. However, it remains unknown what happens at the interface between normal and transformed epithelial cells during this process. In Drosophila, it has been recently shown that normal and transformed cells compete with each other for survival in an epithelial tissue; however the molecular mechanisms whereby "loser cells" undergo apoptosis are not clearly understood. Lgl (lethal giant larvae is a tumor suppressor protein and plays a crucial role in oncogenesis in flies and mammals. Here we have examined the involvement of Lgl in cell competition and shown that a novel Lgl-binding protein is involved in Lgl-mediated cell competition. Using biochemical immunoprecipitation methods, we first identified Mahjong as a novel binding partner of Lgl in both flies and mammals. In Drosophila, Mahjong is an essential gene, but zygotic mahjong mutants (mahj(-/- do not have obvious patterning defects during embryonic or larval development. However, mahj(-/- cells undergo apoptosis when surrounded by wild-type cells in the wing disc epithelium. Importantly, comparable phenomena also occur in Mahjong-knockdown mammalian cells; Mahjong-knockdown Madin-Darby canine kidney epithelial cells undergo apoptosis, only when surrounded by non-transformed cells. Similarly, apoptosis of lgl(-/- cells is induced when they are surrounded by wild-type cells in Drosophila wing discs. Phosphorylation of the c-Jun N-terminal kinase (JNK is increased in mahj(-/- or lgl(-/- mutant cells, and expression of Puckered (Puc, an inhibitor of the JNK pathway, suppresses apoptosis of these mutant cells surrounded by wild-type cells, suggesting that the JNK pathway is involved in mahj- or lgl-mediated cell competition. Finally, we have shown that overexpression of Mahj in lgl(-/- cells strongly suppresses JNK activation and blocks apoptosis of lgl(-/- cells in the wild

  19. Effects of sciatic-conditioned medium on neonatal rat retinal cells in vitro

    Directory of Open Access Journals (Sweden)

    Torres P.M.M.

    1998-01-01

    Full Text Available Schwann cells produce and release trophic factors that induce the regeneration and survival of neurons following lesions in the peripheral nerves. In the present study we examined the in vitro ability of developing rat retinal cells to respond to factors released from fragments of sciatic nerve. Treatment of neonatal rat retinal cells with sciatic-conditioned medium (SCM for 48 h induced an increase of 92.5 ± 8.8% (N = 7 for each group in the amount of total protein. SCM increased cell adhesion, neuronal survival and glial cell proliferation as evaluated by morphological criteria. This effect was completely blocked by 2.5 µM chelerythrine chloride, an inhibitor of protein kinase C (PKC. These data indicate that PKC activation is involved in the effect of SCM on retinal cells and demonstrate that fragments of sciatic nerve release trophic factors having a remarkable effect on neonatal rat retinal cells in culture.

  20. Multifocal Langerhans cell sarcoma involving epidermis: a case report and review

    Directory of Open Access Journals (Sweden)

    Wang Changsong

    2012-08-01

    Full Text Available Abstract Objective To study the clinico-pathological characteristics of Langerhans cell sarcoma (LCS which involving epidermis. Methods A case of primary multifocal LCS was analyzed in histopathology and immunophenotype. Results A 41-year-old man with multifocal cutaneous LCS involving the inguina and waist was reported. Clinical and pathology data were available. Neoplastic cells with markedly malignant cytological features were observed. Tumor cells exhibited irregular shape with abundant and eosinophilic red staining cytoplasm; large, irregular-shaped, showing lobulated or dented nucleus and some cells with a longitudinal nuclear groove and prominent nucleoli. The tumor cells expressed CD1a, Langerin (CD207, S-100 protein, CD68 and vimentin, and did not express pan-T or B cell markers and epithelial markers. The patient died less than 1 year after diagnosis due to local recurrence and metastasis to the lung, despite the administration of local radiation and chemotherapy. Conclusions LCS is a tumor with markedly malignant cytological features that originates from Langerhans cells. Primary multifocal neoplasms involving epidermis is even rare. Accurate diagnosis is based on the histopathological and immunohistochemical of the tumor cells. Virtual slide The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1182345104754765.

  1. Streptomyces sporulation - Genes and regulators involved in bacterial cell differentiation

    OpenAIRE

    Larsson, Jessica

    2010-01-01

    Streptomycetes are Gram-positive bacteria with a complex developmental life cycle. They form spores on specialized cells called aerial hyphae, and this sporulation involves alterations in growth, morphogenesis and cell cycle processes like cell division and chromosome segregation. Understanding the developmental mechanisms that streptomycetes have evolved for regulating for example cell division is of general interest in bacterial cell biology. It can also be valuable in the design of new dru...

  2. Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging

    Directory of Open Access Journals (Sweden)

    Lilach Soreq

    2017-01-01

    Full Text Available Gene expression studies suggest that aging of the human brain is determined by a complex interplay of molecular events, although both its region- and cell-type-specific consequences remain poorly understood. Here, we extensively characterized aging-altered gene expression changes across ten human brain regions from 480 individuals ranging in age from 16 to 106 years. We show that astrocyte- and oligodendrocyte-specific genes, but not neuron-specific genes, shift their regional expression patterns upon aging, particularly in the hippocampus and substantia nigra, while the expression of microglia- and endothelial-specific genes increase in all brain regions. In line with these changes, high-resolution immunohistochemistry demonstrated decreased numbers of oligodendrocytes and of neuronal subpopulations in the aging brain cortex. Finally, glial-specific genes predict age with greater precision than neuron-specific genes, thus highlighting the need for greater mechanistic understanding of neuron-glia interactions in aging and late-life diseases.

  3. Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging.

    Science.gov (United States)

    Soreq, Lilach; Rose, Jamie; Soreq, Eyal; Hardy, John; Trabzuni, Daniah; Cookson, Mark R; Smith, Colin; Ryten, Mina; Patani, Rickie; Ule, Jernej

    2017-01-10

    Gene expression studies suggest that aging of the human brain is determined by a complex interplay of molecular events, although both its region- and cell-type-specific consequences remain poorly understood. Here, we extensively characterized aging-altered gene expression changes across ten human brain regions from 480 individuals ranging in age from 16 to 106 years. We show that astrocyte- and oligodendrocyte-specific genes, but not neuron-specific genes, shift their regional expression patterns upon aging, particularly in the hippocampus and substantia nigra, while the expression of microglia- and endothelial-specific genes increase in all brain regions. In line with these changes, high-resolution immunohistochemistry demonstrated decreased numbers of oligodendrocytes and of neuronal subpopulations in the aging brain cortex. Finally, glial-specific genes predict age with greater precision than neuron-specific genes, thus highlighting the need for greater mechanistic understanding of neuron-glia interactions in aging and late-life diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Adult rat retinal ganglion cells and glia can be printed by piezoelectric inkjet printing

    International Nuclear Information System (INIS)

    Lorber, Barbara; Martin, Keith R; Hsiao, Wen-Kai; Hutchings, Ian M

    2014-01-01

    We have investigated whether inkjet printing technology can be extended to print cells of the adult rat central nervous system (CNS), retinal ganglion cells (RGC) and glia, and the effects on survival and growth of these cells in culture, which is an important step in the development of tissue grafts for regenerative medicine, and may aid in the cure of blindness. We observed that RGC and glia can be successfully printed using a piezoelectric printer. Whilst inkjet printing reduced the cell population due to sedimentation within the printing system, imaging of the printhead nozzle, which is the area where the cells experience the greatest shear stress and rate, confirmed that there was no evidence of destruction or even significant distortion of the cells during jet ejection and drop formation. Importantly, the viability of the cells was not affected by the printing process. When we cultured the same number of printed and non-printed RGC/glial cells, there was no significant difference in cell survival and RGC neurite outgrowth. In addition, use of a glial substrate significantly increased RGC neurite outgrowth, and this effect was retained when the cells had been printed. In conclusion, printing of RGC and glia using a piezoelectric printhead does not adversely affect viability and survival/growth of the cells in culture. Importantly, printed glial cells retain their growth-promoting properties when used as a substrate, opening new avenues for printed CNS grafts in regenerative medicine. (paper)

  5. Langerhans cell histiocytosis with involvement of the pons: case report

    Energy Technology Data Exchange (ETDEWEB)

    Vourtsi, A. [Xatzopoulou, Athens (Greece)]|[Department of Radiology, University of Athens Medical School, Athens (Greece); Papadopoulos, A.; Moulopoulos, L.A.; Vlahos, L. [Department of Radiology, University of Athens Medical School, Athens (Greece); Xenellis, J. [Department of Otorhinolaryngology, University of Athens Medical School, Athens (Greece)

    1998-03-01

    Central nervous system involvement is uncommon in Langerhans cell histiocytosis. The suprasellar region is more frequently affected. There have been few reports of involvement of the brain parenchyma shown on CT or MRI. We present a case of involvement of the pons, showing marked contrast enhancement on MRI. (orig.) With 2 figs., 17 refs.

  6. Syncytin is involved in breast cancer-endothelial cell fusions

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Holck, S.; Christensen, I.J.

    2006-01-01

    Cancer cells can fuse spontaneously with normal host cells, including endothelial cells, and such fusions may strongly modulate the biological behaviour of tumors. However, the underlying mechanisms are unknown. We now show that human breast cancer cell lines and 63 out of 165 (38%) breast cancer...... specimens express syncytin, an endogenous retroviral envelope protein, previously implicated in fusions between placental trophoblast cells. Additionally, endothelial and cancer cells are shown to express ASCT-2, a receptor for syncytin. Syncytin antisense treatment decreases syncytin expression...... and inhibits fusions between breast cancer cells and endothelial cells. Moreover, a syncytin inhibitory peptide also inhibits fusions between cancer and endothelial cells. These results are the first to show that syncytin is expressed by human cancer cells and is involved in cancer-endothelial cell fusions....

  7. Free-zone electrophoresis of animal cells. 1: Experiments on cell-cell interactions

    Science.gov (United States)

    Todd, P. W.; Hjerten, S.

    1985-01-01

    The electrophoretically migrating zones wasa monitored. The absence of fluid flows in the direction of migration permits direct measurement of electrophoretic velocities of any material. Sedimentation is orthogonal to electrokinetic motion and the effects of particle-particle interaction on electrophoretic mobility is studied by free zone electrophoresis. Fixed erythrocytes at high concentrations, mixtures of fixed erythrocytes from different animal species, and mixtures of cultured human cells were studied in low ionic strength buffers. The electrophoretic velocity of fixed erythrocytes was not altered by increasing cell concentration or by the mixing of erythrocytes from different species. When zones containing cultured human glial cells and neuroblastoma cells are permitted to interact during electrophoresis, altered migration patterns occur. It is found that cell-cell interactions depends upon cell type.

  8. Attention-deficit hyperactivity disorder (ADHD and glial integrity: S100B, cytokines and kynurenine metabolism - effects of medication

    Directory of Open Access Journals (Sweden)

    Schwarz Markus J

    2010-05-01

    Full Text Available Abstract Background Children with attention-deficit/hyperactivity disorder (ADHD show a marked temporal variability in their display of symptoms and neuropsychological performance. This could be explained in terms of an impaired glial supply of energy to support neuronal activity. Method We pursued one test of the idea with measures of a neurotrophin reflecting glial integrity (S100B and the influences of 8 cytokines on the metabolism of amino-acids, and of tryptophan/kynurenine to neuroprotective or potentially toxic products that could modulate glial function. Serum samples from 21 medication-naïve children with ADHD, 21 typically-developing controls, 14 medicated children with ADHD and 7 healthy siblings were analysed in this preliminary exploration of group differences and associations. Results There were no marked group differences in levels of S100B, no major imbalance in the ratios of pro- to anti-inflammatory interleukins nor in the metabolism of kynurenine to toxic metabolites in ADHD. However, four trends are described that may be worthy of closer examination in a more extensive study. First, S100B levels tended to be lower in ADHD children that did not show oppositional/conduct problems. Second, in medicated children raised interleukin levels showed a trend to normalisation. Third, while across all children the sensitivity to allergy reflected increased levels of IL-16 and IL-10, the latter showed a significant inverse relationship to measures of S100B in the ADHD group. Fourthly, against expectations healthy controls tended to show higher levels of toxic 3-hydroxykynurenine (3 HK than those with ADHD. Conclusions Thus, there were no clear signs (S100B that the glial functions were compromised in ADHD. However, other markers of glial function require examination. Nonetheless there is preliminary evidence that a minor imbalance of the immunological system was improved on medication. Finally, if lower levels of the potentially toxic 3

  9. Resveratrol prevents ammonia toxicity in astroglial cells.

    Directory of Open Access Journals (Sweden)

    Larissa Daniele Bobermin

    Full Text Available Ammonia is implicated as a neurotoxin in brain metabolic disorders associated with hyperammonemia. Acute ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and nitric oxide (NO production. Astrocytes interact with neurons, providing metabolic support and protecting against oxidative stress and excitotoxicity. Astrocytes also convert excess ammonia and glutamate into glutamine via glutamine synthetase (GS. Resveratrol, a polyphenol found in grapes and red wines, exhibits antioxidant and anti-inflammatory properties and modulates glial functions, such as glutamate metabolism. We investigated the effect of resveratrol on the production of reactive oxygen species (ROS, GS activity, S100B secretion, TNF-α, IL-1β and IL-6 levels in astroglial cells exposed to ammonia. Ammonia induced oxidative stress, decreased GS activity and increased cytokines release, probably by a mechanism dependent on protein kinase A (PKA and extracellular signal-regulated kinase (ERK pathways. Resveratrol prevented ammonia toxicity by modulating oxidative stress, glial and inflammatory responses. The ERK and nuclear factor-κB (NF-κB are involved in the protective effect of resveratrol on cytokines proinflammatory release. In contrast, other antioxidants (e.g., ascorbic acid and trolox were not effective against hyperammonemia. Thus, resveratrol could be used to protect against ammonia-induced neurotoxicity.

  10. Resveratrol Prevents Ammonia Toxicity in Astroglial Cells

    Science.gov (United States)

    Guerra, Maria Cristina; Leite, Marina Concli; Souza, Diogo Onofre; Gonçalves, Carlos-Alberto; Gottfried, Carmem

    2012-01-01

    Ammonia is implicated as a neurotoxin in brain metabolic disorders associated with hyperammonemia. Acute ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and nitric oxide (NO) production. Astrocytes interact with neurons, providing metabolic support and protecting against oxidative stress and excitotoxicity. Astrocytes also convert excess ammonia and glutamate into glutamine via glutamine synthetase (GS). Resveratrol, a polyphenol found in grapes and red wines, exhibits antioxidant and anti-inflammatory properties and modulates glial functions, such as glutamate metabolism. We investigated the effect of resveratrol on the production of reactive oxygen species (ROS), GS activity, S100B secretion, TNF-α, IL-1β and IL-6 levels in astroglial cells exposed to ammonia. Ammonia induced oxidative stress, decreased GS activity and increased cytokines release, probably by a mechanism dependent on protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways. Resveratrol prevented ammonia toxicity by modulating oxidative stress, glial and inflammatory responses. The ERK and nuclear factor-κB (NF-κB) are involved in the protective effect of resveratrol on cytokines proinflammatory release. In contrast, other antioxidants (e.g., ascorbic acid and trolox) were not effective against hyperammonemia. Thus, resveratrol could be used to protect against ammonia-induced neurotoxicity. PMID:23284918

  11. Mathematical modeling of chemotaxis and glial scarring around implanted electrodes

    International Nuclear Information System (INIS)

    Silchenko, Alexander N; Tass, Peter A

    2015-01-01

    It is well known that the implantation of electrodes for deep brain stimulation or microelectrode probes for the recording of neuronal activity is always accompanied by the response of the brain’s immune system leading to the formation of a glial scar around the implantation sites. The implantation of electrodes causes massive release of adenosine-5′-triphosphate (ATP) and different cytokines into the extracellular space and activates the microglia. The released ATP and the products of its hydrolysis, such as ADP and adenosine, become the main elements mediating chemotactic sensitivity and motility of microglial cells via subsequent activation of P2Y 2,12 as well as A3A/A2A adenosine receptors. The size and density of an insulating sheath around the electrode, formed by microglial cells, are important criteria for the optimization of the signal-to-noise ratio during microelectrode recordings or parameters of electrical current delivered to the brain tissue. Here, we study a purinergic signaling pathway underlying the chemotactic motion of microglia towards implanted electrodes as well as the possible impact of an anti-inflammatory coating consisting of the interleukin-1 receptor antagonist. We present a model describing the formation of a stable aggregate around the electrode due to the joint chemo-attractive action of ATP and ADP and the mixed influence of extracellular adenosine. The bioactive coating is modeled as a source of chemo-repellent located near the electrode surface. The obtained analytical and numerical results allowed us to reveal the dependences of size and spatial location of the insulating sheath on the amount of released ATP and estimate the impact of immune suppressive coating on the scarring process. (paper)

  12. The glial response to intracerebrally delivered therapies for neurodegenerative disorders: Is this a critical issue?

    Directory of Open Access Journals (Sweden)

    Francesca eCicchetti

    2014-07-01

    Full Text Available The role of glial cells in the pathogenesis of many neurodegenerative conditions of the central nervous system (CNS is now well established (as is discussed in other reviews in this special issue of Frontiers in Neuropharmacology. What is less clear is whether there are changes in these same cells in terms of their behaviour and function in response to invasive experimental therapeutic interventions for these diseases. This has, and will continue to, become more of an issue as we enter a new era of novel treatments which require the agent to be directly placed/infused into the CNS such as deep brain stimulation, cell transplants, gene therapies and growth factor infusions. To date, all of these treatments have produced variable outcomes and the reasons for this have been widely debated but the host astrocytic and/or microglial response induced by such invasively delivered agents has not been discussed in any detail. In this review, we have attempted to summarise the limited published data on this, in particular we discuss the small number of human post-mortem studies reported in this field. By so doing, we hope to provide a better description and understanding of the extent and nature of both the astrocytic and microglial response, which in turn could lead to modifications in the way these therapeutic interventions are delivered.

  13. HSPB1 mutations causing hereditary neuropathy in humans disrupt non-cell autonomous protection of motor neurons.

    Science.gov (United States)

    Heilman, Patrick L; Song, SungWon; Miranda, Carlos J; Meyer, Kathrin; Srivastava, Amit K; Knapp, Amy; Wier, Christopher G; Kaspar, Brian K; Kolb, Stephen J

    2017-11-01

    Heat shock protein beta-1 (HSPB1), is a ubiquitously expressed, multifunctional protein chaperone. Mutations in HSPB1 result in the development of a late-onset, distal hereditary motor neuropathy type II (dHMN) and axonal Charcot-Marie Tooth disease with sensory involvement (CMT2F). The functional consequences of HSPB1 mutations associated with hereditary neuropathy are unknown. HSPB1 also displays neuroprotective properties in many neuronal disease models, including the motor neuron disease amyotrophic lateral sclerosis (ALS). HSPB1 is upregulated in SOD1-ALS animal models during disease progression, predominately in glial cells. Glial cells are known to contribute to motor neuron loss in ALS through a non-cell autonomous mechanism. In this study, we examined the non-cell autonomous role of wild type and mutant HSPB1 in an astrocyte-motor neuron co-culture model system of ALS. Astrocyte-specific overexpression of wild type HSPB1 was sufficient to attenuate SOD1(G93A) astrocyte-mediated toxicity in motor neurons, whereas, overexpression of mutHSPB1 failed to ameliorate motor neuron toxicity. Expression of a phosphomimetic HSPB1 mutant in SOD1(G93A) astrocytes also reduced toxicity to motor neurons, suggesting that phosphorylation may contribute to HSPB1 mediated-neuroprotection. These data provide evidence that astrocytic HSPB1 expression may play a central role in motor neuron health and maintenance. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The Role of NG2 Glial Cells in ALS Pathogenesis

    Science.gov (United States)

    2014-12-01

    attached and cells migrated out from the spheres. Some had typical OPC morphology (figure 2A), bipolar and tripolar . More importantly, they...cells showed NG2 and Olig2 expression (Figure 5B) after being cultured. After being treated with T3, some cells changed their bipolar and tripolar

  15. Cellular complexity in subcortical white matter: a distributed control circuit?

    Science.gov (United States)

    Colombo, Jorge A

    2018-03-01

    The subcortical white matter (SWM) has been traditionally considered as a site for passive-neutral-information transfer through cerebral cortex association and projection fibers. Yet, the presence of subcortical neuronal and glial "interstitial" cells expressing immunolabelled neurotransmitters/neuromodulators and synaptic vesicular proteins, and recent immunohistochemical and electrophysiological observations on the rat visual cortex as well as interactive regulation of myelinating processes support the possibility that SWM nests subcortical, regionally variable, distributed neuronal-glial circuits, that could influence information transfer. Their hypothetical involvement in regulating the timing and signal transfer probability at the SWM axonal components ought to be considered and experimentally analysed. Thus, the "interstitial" neuronal cells-associated with local glial cells-traditionally considered to be vestigial and functionally inert under normal conditions, they may well turn to be critical in regulating information transfer at the SWM.

  16. DMPD: Signals and receptors involved in recruitment of inflammatory cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 7744810 Signals and receptors involved in recruitment of inflammatory cells. Ben-Ba...ow Signals and receptors involved in recruitment of inflammatory cells. PubmedID 7744810 Title Signals and receptors involved in recr...uitment of inflammatory cells. Authors Ben-Baruch A, Mic

  17. The RNA helicase DDX1 is involved in restricted HIV-1 Rev function in human astrocytes

    International Nuclear Information System (INIS)

    Fang Jianhua; Acheampong, Edward; Dave, Rajnish; Wang Fengxiang; Mukhtar, Muhammad; Pomerantz, Roger J.

    2005-01-01

    Productive infection by human immunodeficiency virus type I (HIV-1) in the central nervous system (CNS) involves mainly macrophages and microglial cells. A frequency of less than 10% of human astrocytes is estimated to be infectable with HIV-1. Nonetheless, this relatively low percentage of infected astrocytes, but associated with a large total number of astrocytic cells in the CNS, makes human astrocytes a critical part in the analyses of potential HIV-1 reservoirs in vivo. Investigations in astrocytic cell lines and primary human fetal astrocytes revealed that limited HIV-1 replication in these cells resulted from low-level viral entry, transcription, viral protein processing, and virion maturation. Of note, a low ratio of unspliced versus spliced HIV-1-specific RNA was also investigated, as Rev appeared to act aberrantly in astrocytes, via loss of nuclear and/or nucleolar localization and diminished Rev-mediated function. Host cellular machinery enabling Rev function has become critical for elucidation of diminished Rev activity, especially for those factors leading to RNA metabolism. We have recently identified a DEAD-box protein, DDX1, as a Rev cellular co-factor and now have explored its potential importance in astrocytes. Cells were infected with HIV-1 pseudotyped with envelope glycoproteins of amphotropic murine leukemia viruses (MLV). Semi-quantitative reverse transcriptase-polymerase chain reactions (RT-PCR) for unspliced, singly-spliced, and multiply-spliced RNA clearly showed a lower ratio of unspliced/singly-spliced over multiply-spliced HIV-1-specific RNA in human astrocytes as compared to Rev-permissive, non-glial control cells. As well, the cellular localization of Rev in astrocytes was cytoplasmically dominant as compared to that of Rev-permissive, non-glial controls. This endogenous level of DDX1 expression in astrocytes was demonstrated directly to lead to a shift of Rev sub-cellular distribution dominance from nuclear and/or nucleolar to

  18. Developmental distribution of CaM kinase II in the antennal lobe of the sphinx moth Manduca sexta.

    Science.gov (United States)

    Lohr, Christian; Bergstein, Sandra; Hirnet, Daniela

    2007-01-01

    The antennal lobe (primary olfactory center of insects) is completely reorganized during metamorphosis. This reorganization is accompanied by changing patterns of calcium signaling in neurons and glial cells. In the present study, we investigated the developmental distribution of a major calcium-dependent protein, viz., calcium/calmodulin-dependent protein kinase II (CaM kinase II), in the antennal lobe of the sphinx moth Manduca sexta by using a monoclonal antibody. During synaptogenesis (developmental stages 6-10), we found a redistribution of CaM kinase II immunoreactivity, from a homogeneous distribution in the immature neuropil to an accumulation in the neuropil of the glomeruli. CaM kinase II immunoreactivity was less intense in olfactory receptor axons of the antennal nerve and antennal lobe glial cells. Western blot analysis revealed a growing content of CaM kinase II in antennal lobe tissue throughout metamorphosis. Injection of the CaM kinase inhibitor KN-93 into pupae resulted in a reduced number of antennal lobe glial cells migrating into the neuropil to form borders around glomeruli. The results suggest that CaM kinase II is involved in glial cell migration.

  19. Swift Acetate Glial Assay (SAGA): an accelerated human ¹³C MRS brain exam for clinical diagnostic use.

    Science.gov (United States)

    Sailasuta, Napapon; Tran, Thao T; Harris, Kent C; Ross, B D

    2010-12-01

    We demonstrate a robust procedure for the quantitative characterization of glial metabolism in human brain. In the past, the slope of the uptake and production of enriched label at steady state were used to determine metabolic rates, requiring the patient to be in the magnet for 120-160 min. In the present method, (13)C cerebral metabolite profiles were acquired at steady state alone on a routine clinical MR scanner in 25.6 min. Results obtained from the new short method (SAGA) were comparable to those achieved in a conventional, long method and effective for determination of glial metabolic rate in posterior-parietal and frontal brain regions. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Isolated cutaneous involvement in a child with nodal anaplastic large cell lymphoma

    Directory of Open Access Journals (Sweden)

    Vibhu Mendiratta

    2016-01-01

    Full Text Available Non-Hodgkin lymphoma is a common childhood T-cell and B-cell neoplasm that originates primarily from lymphoid tissue. Cutaneous involvement can be in the form of a primary extranodal lymphoma, or secondary to metastasis from a non-cutaneous location. The latter is uncommon, and isolated cutaneous involvement is rarely reported. We report a case of isolated secondary cutaneous involvement from nodal anaplastic large cell lymphoma (CD30 + and ALK + in a 7-year-old boy who was on chemotherapy. This case is reported for its unusual clinical presentation as an acute febrile, generalized papulonodular eruption that mimicked deep fungal infection, with the absence of other foci of systemic metastasis.

  1. Cerebellar and basal ganglion involvement in Langerhans cell histiocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Saatci, I.; Baskan, O.; Haliloglu, M.; Aydingoz, U. [Department of Radiology, Hacettepe University Hospital, Sihhiye 06100, Ankara (Turkey)

    1999-06-01

    Langerhans cell histiocytosis (LCH) is a disease of unknown cause characterised by proliferation of histiocytic granulomas in tissues; the primary cerebral manifestation is diabetes insipidus caused by hypothalamic infiltration. We present a patient in whom, except for the absence of high signal on T 1 weighting in the posterior pituitary, consistent with central diabetes insipidus, MRI showed no evidence of hypothalamic involvement by histiocytosis, despite the long duration of the disease. However, there was bilateral, symmetrical involvement of the cerebellum and globus pallidus in addition to a calvarial lesion. High signal in the cerebellar white matter on T 2-weighted images may represent demyelination, gliosis and cell loss, as previously reported on pathologic examination. (orig.) With 5 figs., 22 refs.

  2. Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells.

    Science.gov (United States)

    McCarthy, Ryan C; Kosman, Daniel J

    2014-01-01

    We have used an in vitro model system to probe the iron transport pathway across the brain microvascular endothelial cells (BMVEC) of the blood-brain barrier (BBB). This model consists of human BMVEC (hBMVEC) and C6 glioma cells (as an astrocytic cell line) grown in a transwell, a cell culture system commonly used to quantify metabolite flux across a cell-derived barrier. We found that iron efflux from hBMVEC through the ferrous iron permease ferroportin (Fpn) was stimulated by secretion of the soluble form of the multi-copper ferroxidase, ceruloplasmin (sCp) from the co-cultured C6 cells. Reciprocally, expression of sCp mRNA in the C6 cells was increased by neighboring hBMVEC. In addition, data indicate that C6 cell-secreted hepcidin stimulates internalization of hBMVEC Fpn but only when the end-feet projections characteristic of this glia-derived cell line are proximal to the endothelial cells. This hepcidin-dependent loss of Fpn correlated with knock-down of iron efflux from the hBMVEC; this result was consistent with the mechanism by which hepcidin regulates iron efflux in mammalian cells. In summary, the data support a model of iron trafficking across the BBB in which the capillary endothelium induce the underlying astrocytes to produce the ferroxidase activity needed to support Fpn-mediated iron efflux. Reciprocally, astrocyte proximity modulates the effective concentration of hepcidin at the endothelial cell membrane and thus the surface expression of hBMVEC Fpn. These results are independent of the source of hBMVEC iron (transferrin or non-transferrin bound) indicating that the model developed here is broadly applicable to brain iron homeostasis.

  3. Fetal Alcohol Spectrum Disorders: An Overview from the Glia Perspective.

    Science.gov (United States)

    Wilhelm, Clare J; Guizzetti, Marina

    2015-01-01

    Alcohol consumption during pregnancy can produce a variety of central nervous system (CNS) abnormalities in the offspring resulting in a broad spectrum of cognitive and behavioral impairments that constitute the most severe and long-lasting effects observed in fetal alcohol spectrum disorders (FASD). Alcohol-induced abnormalities in glial cells have been suspected of contributing to the adverse effects of alcohol on the developing brain for several years, although much research still needs to be done to causally link the effects of alcohol on specific brain structures and behavior to alterations in glial cell development and function. Damage to radial glia due to prenatal alcohol exposure may underlie observations of abnormal neuronal and glial migration in humans with Fetal Alcohol Syndrome (FAS), as well as primate and rodent models of FAS. A reduction in cell number and altered development has been reported for several glial cell types in animal models of FAS. In utero alcohol exposure can cause microencephaly when alcohol exposure occurs during the brain growth spurt a period characterized by rapid astrocyte proliferation and maturation; since astrocytes are the most abundant cells in the brain, microenchephaly may be caused by reduced astrocyte proliferation or survival, as observed in in vitro and in vivo studies. Delayed oligodendrocyte development and increased oligodendrocyte precursor apoptosis has also been reported in experimental models of FASD, which may be linked to altered myelination/white matter integrity found in FASD children. Children with FAS exhibit hypoplasia of the corpus callosum and anterior commissure, two areas requiring guidance from glial cells and proper maturation of oligodendrocytes. Finally, developmental alcohol exposure disrupts microglial function and induces microglial apoptosis; given the role of microglia in synaptic pruning during brain development, the effects of alcohol on microglia may be involved in the abnormal brain

  4. Nutritional State-Dependent Ghrelin Activation of Vasopressin Neurons via Retrograde Trans-Neuronal–Glial Stimulation of Excitatory GABA Circuits

    Science.gov (United States)

    Haam, Juhee; Halmos, Katalin C.; Di, Shi

    2014-01-01

    Behavioral and physiological coupling between energy balance and fluid homeostasis is critical for survival. The orexigenic hormone ghrelin has been shown to stimulate the secretion of the osmoregulatory hormone vasopressin (VP), linking nutritional status to the control of blood osmolality, although the mechanism of this systemic crosstalk is unknown. Here, we show using electrophysiological recordings and calcium imaging in rat brain slices that ghrelin stimulates VP neurons in the hypothalamic paraventricular nucleus (PVN) in a nutritional state-dependent manner by activating an excitatory GABAergic synaptic input via a retrograde neuronal–glial circuit. In slices from fasted rats, ghrelin activation of a postsynaptic ghrelin receptor, the growth hormone secretagogue receptor type 1a (GHS-R1a), in VP neurons caused the dendritic release of VP, which stimulated astrocytes to release the gliotransmitter adenosine triphosphate (ATP). ATP activation of P2X receptors excited presynaptic GABA neurons to increase GABA release, which was excitatory to the VP neurons. This trans-neuronal–glial retrograde circuit activated by ghrelin provides an alternative means of stimulation of VP release and represents a novel mechanism of neuronal control by local neuronal–glial circuits. It also provides a potential cellular mechanism for the physiological integration of energy and fluid homeostasis. PMID:24790191

  5. Oral Uncaria rhynchophylla (UR) reduces kainic acid-induced epileptic seizures and neuronal death accompanied by attenuating glial cell proliferation and S100B proteins in rats.

    Science.gov (United States)

    Lin, Yi-Wen; Hsieh, Ching-Liang

    2011-05-17

    Epilepsy is a common clinical syndrome with recurrent neuronal discharges in cerebral cortex and hippocampus. Here we aim to determine the protective role of Uncaria rhynchophylla (UR), an herbal drug belong to Traditional Chinese Medicine (TCM), on epileptic rats. To address this issue, we tested the effect of UR on kainic acid (KA)-induced epileptic seizures and further investigate the underlying mechanisms. Oral UR successfully decreased neuronal death and discharges in hippocampal CA1 pyramidal neurons. The population spikes (PSs) were decreased from 4.1 ± 0.4 mV to 2.1 ± 0.3 mV in KA-induced epileptic seizures and UR-treated groups, respectively. Oral UR protected animals from neuronal death induced by KA treatment (from 34 ± 4.6 to 191.7 ± 48.6 neurons/field) through attenuating glial cell proliferation and S100B protein expression but not GABAA and TRPV1 receptors. The above results provide detail mechanisms underlying the neuroprotective action of UR on KA-induced epileptic seizure in hippocampal CA1 neurons. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Capacity of Human Dental Follicle Cells to Differentiate into Neural Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Shingo Kanao

    2017-01-01

    Full Text Available The dental follicle is an ectomesenchymal tissue surrounding the developing tooth germ. Human dental follicle cells (hDFCs have the capacity to commit to differentiation into multiple cell types. Here we investigated the capacity of hDFCs to differentiate into neural cells and the efficiency of a two-step strategy involving floating neurosphere-like bodies for neural differentiation. Undifferentiated hDFCs showed a spindle-like morphology and were positive for neural markers such as nestin, β-III-tubulin, and S100β. The cellular morphology of several cells was neuronal-like including branched dendrite-like processes and neurites. Next, hDFCs were used for neurosphere formation in serum-free medium containing basic fibroblast growth factor, epidermal growth factor, and B27 supplement. The number of cells with neuronal-like morphology and that were strongly positive for neural markers increased with sphere formation. Gene expression of neural markers also increased in hDFCs with sphere formation. Next, gene expression of neural markers was examined in hDFCs during neuronal differentiation after sphere formation. Expression of Musashi-1 and Musashi-2, MAP2, GFAP, MBP, and SOX10 was upregulated in hDFCs undergoing neuronal differentiation via neurospheres, whereas expression of nestin and β-III-tubulin was downregulated. In conclusion, hDFCs may be another optimal source of neural/glial cells for cell-based therapies to treat neurological diseases.

  7. Langerhans cell histiocytosis involving central nervous system: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Won Jin; Park, Dong Woo; Lee, Seung Ro; Hahm, Chang Kok; Ju, Kyung Bin [Hanyang University College of Medicine, Seoul (Korea, Republic of); Kim, Sung Tae [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    1997-01-01

    Langerhans cell histiocytosis(LCH) is a systemic disorder characterized by idiopathic proliferation of histiocytes in the reticuloendothelial system; CNS involvement outside the hypothalamus or pituitary gland is uncommon. We present a case of LCH involving the brainstem, cerebellum, and temporal lobes, and also showing hypothalamic involvement. The lesions were isointense or hypointense on T1WI and hyperintense on T2WI, and showed multifocal enhancing nodules on post-contrast CT and Gd-enhanced MRI.

  8. Discovery of a novel gene involved in autolysis of Clostridium cells.

    Science.gov (United States)

    Yang, Liejian; Bao, Guanhui; Zhu, Yan; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2013-06-01

    Cell autolysis plays important physiological roles in the life cycle of clostridial cells. Understanding the genetic basis of the autolysis phenomenon of pathogenic Clostridium or solvent producing Clostridium cells might provide new insights into this important species. Genes that might be involved in autolysis of Clostridium acetobutylicum, a model clostridial species, were investigated in this study. Twelve putative autolysin genes were predicted in C. acetobutylicum DSM 1731 genome through bioinformatics analysis. Of these 12 genes, gene SMB_G3117 was selected for testing the in tracellular autolysin activity, growth profile, viable cell numbers, and cellular morphology. We found that overexpression of SMB_G3117 gene led to earlier ceased growth, significantly increased number of dead cells, and clear electrolucent cavities, while disruption of SMB_G3117 gene exhibited remarkably reduced intracellular autolysin activity. These results indicate that SMB_G3117 is a novel gene involved in cellular autolysis of C. acetobutylicum.

  9. Progranulin deficiency causes the retinal ganglion cell loss during development.

    Science.gov (United States)

    Kuse, Yoshiki; Tsuruma, Kazuhiro; Mizoguchi, Takahiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-05-10

    Astrocytes are glial cells that support and protect neurons in the central nervous systems including the retina. Retinal ganglion cells (RGCs) are in contact with the astrocytes and our earlier findings showed the reduction of the number of cells in the ganglion cell layer in adult progranulin deficient mice. In the present study, we focused on the time of activation of the astrocytes and the alterations in the number of RGCs in the retina and optic nerve in progranulin deficient mice. Our findings showed that the number of Brn3a-positive cells was reduced and the expression of glial fibrillary acidic protein (GFAP) was increased in progranulin deficient mice. The progranulin deficient mice had a high expression of GFAP on postnatal day 9 (P9) but not on postnatal day 1. These mice also had a decrease in the number of the Brn3a-positive cells on P9. Taken together, these findings indicate that the absence of progranulin can affect the survival of RGCs subsequent the activation of astrocytes during retinal development.

  10. Activation of the Wnt/β-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    International Nuclear Information System (INIS)

    Chen, Yanchun; Guan, Yingjun; Liu, Huancai; Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei; Wang, Xin

    2012-01-01

    Highlights: ► Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. ► β-catenin translocated from the cell membrane to the nucleus in the ALS mice. ► Wnt3a, β-catenin and Cyclin D1 co-localized for astrocytes were all increased. ► BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. ► BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, β-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/β-catenin signaling pathway. We determined the expression of Wnt3a, β-catenin, and Cyclin D1 in the adult spinal cord of SOD1 G93A ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, β-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, β-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, β-catenin or Cyclin D1 in mature GFAP + astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that neurodegeneration activates the Wnt/β-catenin signaling pathway, which is associated with glial proliferation in the adult spinal cord of ALS transgenic mice. This

  11. Astrocyte-specific disruption of SynCAM1 signaling results in ADHD-like behavioral manifestations.

    Directory of Open Access Journals (Sweden)

    Ursula S Sandau

    Full Text Available SynCAM1 is an adhesion molecule involved in synaptic differentiation and organization. SynCAM1 is also expressed in astroglial cells where it mediates astrocyte-to astrocyte and glial-neuronal adhesive communication. In astrocytes, SynCAM1 is functionally linked to erbB4 receptors, which are involved in the control of both neuronal/glial development and mature neuronal and glial function. Here we report that mice carrying a dominant-negative form of SynCAM1 specifically targeted to astrocytes (termed GFAP-DNSynCAM1 mice exhibit disrupted diurnal locomotor activity with enhanced and more frequent episodes of activity than control littermates during the day (when the animals are normally sleeping accompanied by shorter periods of rest. GFAP-DNSynCAM1 mice also display high levels of basal activity in the dark period (the rodent's awake/active time that are attenuated by the psychostimulant D,L-amphetamine, and reduced anxiety levels in response to both avoidable and unavoidable provoking stimuli. These results indicate that disruption of SynCAM1-dependent astroglial function results in behavioral abnormalities similar to those described in animals model of attention-deficit hyperactive disorder (ADHD, and suggest a hitherto unappreciated contribution of glial cells to the pathophysiology of this disorder.

  12. Macrophage-independent T cell infiltration to the site of injury-induced brain inflammation

    DEFF Research Database (Denmark)

    Fux, Michaela; van Rooijen, Nico; Owens, Trevor

    2008-01-01

    We have addressed the role of macrophages in glial response and T cell entry to the CNS after axonal injury, by using intravenous injection of clodronate-loaded mannosylated liposomes, in C57BL6 mice. As expected, clodronate-liposome treatment resulted in depletion of peripheral macrophages which...... delay in the expansion of CD45(dim) CD11b(+) microglia in clodronate-liposome treated mice, but macrophage depletion had no effect on the percentage of infiltrating T cells in the lesion-reactive hippocampus. Lesion-induced TNFalpha mRNA expression was not affected by macrophage depletion, suggesting...... that activated glial cells are the primary source of this cytokine in the axonal injury-reactive brain. This identifies a potentially important distinction from inflammatory autoimmune infiltration in EAE, where macrophages are a prominent source of TNFalpha and their depletion prevents parenchymal T cell...

  13. Lipid raft involvement in yeast cell growth and death

    Energy Technology Data Exchange (ETDEWEB)

    Mollinedo, Faustino, E-mail: fmollin@usal.es [Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas - Universidad de Salamanca, Salamanca (Spain)

    2012-10-10

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na{sup +}, K{sup +}, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  14. Lipid raft involvement in yeast cell growth and death

    International Nuclear Information System (INIS)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na + , K + , and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  15. Genes involved in cell division in mycoplasmas

    Directory of Open Access Journals (Sweden)

    Frank Alarcón

    2007-01-01

    Full Text Available Bacterial cell division has been studied mainly in model systems such as Escherichia coli and Bacillus subtilis, where it is described as a complex process with the participation of a group of proteins which assemble into a multiprotein complex called the septal ring. Mycoplasmas are cell wall-less bacteria presenting a reduced genome. Thus, it was important to compare their genomes to analyze putative genes involved in cell division processes. The division and cell wall (dcw cluster, which in E. coli and B. subtilis is composed of 16 and 17 genes, respectively, is represented by only three to four genes in mycoplasmas. Even the most conserved protein, FtsZ, is not present in all mycoplasma genomes analyzed so far. A model for the FtsZ protein from Mycoplasma hyopneumoniae and Mycoplasma synoviae has been constructed. The conserved residues, essential for GTP/GDP binding, are present in FtsZ from both species. A strong conservation of hydrophobic amino acid patterns is observed, and is probably necessary for the structural stability of the protein when active. M. synoviae FtsZ presents an extended amino acid sequence at the C-terminal portion of the protein, which may participate in interactions with other still unknown proteins crucial for the cell division process.

  16. Glial origin of mesenchymal stem cells in a tooth model system

    NARCIS (Netherlands)

    Kaukua, Nina; Shahidi, Maryam Khatibi; Konstantinidou, Chrysoula; Dyachuk, Vyacheslav; Kaucka, Marketa; Furlan, Alessandro; An, Zhengwen; Wang, Longlong; Hultman, Isabell; Ahrlund-Richter, Lars; Blom, Hans; Brismar, Hjalmar; Lopes, Natalia Assaife; Pachnis, Vassilis; Suter, Ueli; Clevers, Hans; Thesleff, Irma; Sharpe, Paul; Ernfors, Patrik; Fried, Kaj; Adameyko, Igor

    2014-01-01

    Mesenchymal stem cells occupy niches in stromal tissues where they provide sources of cells for specialized mesenchymal derivatives during growth and repair. The origins of mesenchymal stem cells have been the subject of considerable discussion, and current consensus holds that perivascular cells

  17. Relevance of Wnt10b and activation of β-catenin/GCMa/syncytin-1 pathway in BeWo cell fusion.

    Science.gov (United States)

    Malhotra, Sudha Saryu; Banerjee, Priyanka; Chaudhary, Piyush; Pal, Rahul; Gupta, Satish Kumar

    2017-10-01

    To study the involvement of specific Wnt(s) ligand during trophoblastic BeWo cell differentiation. BeWo cells on treatment with forskolin/human chorionic gonadotropin (hCG) were studied for cell fusion by desmoplakin I+II staining and/or hCG secretion by ELISA. Levels of Wnt10b/β-catenin/glial cell missing a (GCMa)/syncytin-1 were studied by qPCR/Western blotting in forskolin-/hCG-treated control siRNA and Wnt10b silenced BeWo cells. BeWo cells on treatment with hCG (5 IU/mL) led to a 94-fold increase in Wnt10b transcript. Wnt10b silencing showed significant decrease in forskolin-/hCG-mediated BeWo cell fusion and/or hCG secretion. It led to down-regulation of β-catenin (nuclear and cytoplasmic), GCMa and syncytin-1 expression. Treatment of BeWo cells with H89, protein kinase A (PKA) signaling inhibitor, significantly reduced forskolin-/hCG-induced Wnt10b, β-catenin, and syncytin-1 expression, which also resulted in reduced cell fusion. Wnt10b is involved in forskolin/hCG-mediated BeWo cell fusion via β-catenin/GCMa/syncytin pathway, which may also involve activation of PKA. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Protease activation involved in resistance of human cells to x-ray cell killing

    International Nuclear Information System (INIS)

    Zhang, Hong-Chang; Takahashi, Shuji; Karata, Kiyonobu; Kita, Kazuko; Suzuki, Nobuo

    2003-01-01

    Little is known of proteases that play roles in the early steps of X-ray irradiation response. In the present study, we first searched for proteases whose activity is induced in human RSa-R cells after X-ray irradiation. The activity was identified as fibrinolytic, using 125 I-labeled fibrin as a substrate. Protease samples were prepared by lysation of cells with a buffer containing MEGA-8. RSa-R cells showed an increased level of protease activity 10 min after X-ray (up to 3 Gy) irradiation. We next examined whether this protease inducibility is causally related with the X-ray susceptibility of cells. Leupeptin, a serine-cysteine protease inhibitor, inhibited the protease activity in samples obtained from X-ray-irradiated RSa-R cells. Treatment of RSa-R cells with the inhibitor before and after X-ray irradiation resulted in an increased susceptibility of the cells to X-ray cell killing. However, the treatment of cells with other inhibitors tested did not modulate the X-ray susceptibility. These results suggest that leupeptin-sensitive proteases are involved in the resistance of human cells to X-ray cell killing. (author)

  19. Multiscale Vision Model Highlights Spontaneous Glial Calcium Waves Recorded by 2-Photon Imaging in Brain Tissue

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Mathiesen, Claus; Lauritzen, Martin

    2013-01-01

    Intercellular glial calcium waves constitute a signaling pathway which can be visualized by fluorescence imaging of cytosolic Ca2+ changes. However, there is a lack of procedures for sensitive and reliable detection of calcium waves in noisy multiphoton imaging data. Here we extend multiscale...

  20. Cytotoxicity effect of alkaloidal extract from Prosopis juliflora Sw. D.C. (Algaroba pods on glial cells

    Directory of Open Access Journals (Sweden)

    Juliana Bentes Hughes

    2006-12-01

    Full Text Available Prosopis juliflora is largely used for feeding cattle and humans. Neurological signals have been reported in cattle due to intoxication with this plant. In this study, an alkaloidal fraction (AF obtained from P. juliflora pods was tested on astrocyte primary cultures. Astrocytes display physiological functions essential to development, homeostasis and detoxification in the central nervous system (CNS. These cells are known for their role on energetic support and immune response in the CNS. Concentrations between 0.03 to 30 µg/ml AF were assayed for 24 - 72 h. The mitochondrial activity, assayed by MTT test, showed cytotoxicity at 30 µg/ml AF after 24 h. At concentrations ranging between 0.3 - 3 µg/ml, the AF induced an increase on mitochondrial activity, indicating cell reactivity. Immunocytochemistry assay for GFAP cytoskeletal protein, revealed alterations on cell morphology after treatment with 0.3 - 3 µg/ml AF for 72 h. This result corroborates with western blot analysis when cells treated with 0.3 - 3 µg/ml AF for 72 h showed GFAP upregulation. The vimentin expression was not significantly altered in all tested concentrations. These results suggest that alkaloids induce astrocyte reactivity and might be involved in the neurotoxic effects induced by P. juliflora consumption.