WorldWideScience

Sample records for glassy samples decreases

  1. Formation of glassy carbon structure and its change under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kurolenkin, E.I.; Lopato, Yu.S.; Virgil' ev, Yu.S.; Khakimova, D.K.; Aksenov, S.I.

    1981-01-01

    The changes of glassy carbon structure, which is prepared of phenol-formaldehyde and furfurol-phenol-formaldehyde resins in the process of irradiation with 5.3x10/sup 20/ cm/sup -2/ neutron fluence with the energy E>0.18 MeV in the temperature range of 90-540 deg C are studied. It is established the irradiation results in the shrinkage of the samples. The compression of the samples increases with the irradiation temperature and neutron fluence. The thermal annealing does not result in the restoration of the volume of samples. The sample shrinkage, caused by more compact package of globular structures and the destruction of film structures, decrease gas permeability of glassy carbon.

  2. Electrochemically modified sulfisoxazole nanofilm on glassy carbon for determination of cadmium(II) in water samples

    International Nuclear Information System (INIS)

    Gupta, Vinod Kumar; Yola, Mehmet Lütfi; Atar, Necip; Solak, Ali Osman; Uzun, Lokman; Üstündağ, Zafer

    2013-01-01

    Highlights: • Sulfisoxazole was grafted onto glassy carbon electrode. • The electrode was characterized by spectroscopic and electrochemical methods. • It has been used for the determination of Cd(II) ions in real samples in very low concentrations. -- Abstract: Sulfisoxazole (SO) was grafted to glassy carbon electrode (GCE) via the electrochemical oxidation of SO in acetonitrile solution containing 0.1 M tetrabutylammoniumtetra-fluoroborate (TBATFB). The prepared electrode was characterized by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), reflection–absorption infrared spectroscopy (RAIRS) and X-ray photoelectron spectroscopy (XPS). The ellipsometric thickness of SO nanofilm at the glassy carbon surface was obtained as 14.48 ± 0.11 nm. The stability of the SO modified GCE was studied. The SO modified GCE was also utilized for the determination of Cd(II) ions in water samples in the presence of Pb(II) and Fe(II) by adsorptive stripping voltammetry. The linearity range and the detection limit of Cd(II) ions were 1.0 × 10 −10 to 5.0 × 10 −8 M and 3.3 × 10 −11 M (S/N = 3), respectively

  3. Boron ion irradiation induced structural and surface modification of glassy carbon

    International Nuclear Information System (INIS)

    Kalijadis, Ana; Jovanović, Zoran; Cvijović-Alagić, Ivana; Laušević, Zoran

    2013-01-01

    The incorporation of boron into glassy carbon was achieved by irradiating two different types of targets: glassy carbon polymer precursor and carbonized glassy carbon. Targets were irradiated with a 45 keV B 3+ ion beam in the fluence range of 5 × 10 15 –5 × 10 16 ions cm −2 . For both types of targets, the implanted boron was located in a narrow region under the surface. Following irradiation, the polymer was carbonized under the same condition as the glassy carbon samples (at 1273 K) and examined by Raman spectroscopy, temperature programmed desorption, hardness and cyclic voltammetry measurements. Structural analysis showed that during the carbonization process of the irradiated polymers, boron is substitutionally incorporated into the glassy carbon structure, while for irradiated carbonized glassy carbon samples, boron irradiation caused an increase of the sp 3 carbon fraction, which is most pronounced for the highest fluence irradiation. Further analyses showed that different nature of boron incorporation, and thus changed structural parameters, are crucial for obtaining glassy carbon samples with modified mechanical, chemical and electrochemical properties over a wide range

  4. Dielectric relaxation and AC conductivity studies of Se90Cd10−xInx glassy alloys

    Directory of Open Access Journals (Sweden)

    Nitesh Shukla

    2016-06-01

    Full Text Available Chalcogenide glassy alloys of Se90Cd10−xInx (x = 2, 4, 6, 8 are synthesized by melt quench technique. The prepared glassy alloys have been characterized by techniques such as differential scanning calorimetry (DSC, scanning electron microscopy (SEM and energy dispersive X-ray (EDAX. Dielectric properties of Se90Cd10−xInx (x = 2, 4, 6, 8 chalcogenide glassy system have been studied using impedance spectroscopic technique in the frequency range 42 Hz to 5 MHz at room temperature. It is found that the dielectric constants ɛ′, dielectric loss factor ɛ″ and loss angle Tan δ depend on frequency. ɛ′, ɛ″ and loss angle Tan δ are found to be decreasing with the In content in Se90Cd10−xInx glassy system. AC conductivity of the prepared sample has also been studied. It is found that AC conductivity increases with frequency where as it has decreasing trend with increasing In content in Se–Cd matrix. The semicircles observed in the Cole–Cole plots indicate a single relaxation process.

  5. Diffusion coefficients of tracers in glassy polymer systems prepared by gamma radiolysis

    International Nuclear Information System (INIS)

    Tonge, M.P.; Gilbert, R.G.

    1996-01-01

    Diffusion-controlled reactions are common in free radical polymerisation reactions, especially in glassy polymer matrices. Such reactions commonly have an important influence on the polymerisation process and final polymer properties. For example, the dominant growth-stopping event (bimolecular termination) is generally diffusion-controlled. In glassy polymer systems, where molecular mobility is very low, the chain growth mechanism (propagation) may become diffusion-controlled. At present, the mechanism for propagation in glassy polymers is poorly understood, but it is expected by the Smoluchowski expression applied to propagation to depend strongly on the diffusion coefficient of monomer. The objective of this study is to measure reliable diffusion coefficients of small tracer molecules in glassy polymers, and compare these with propagation rate coefficients in similar systems, by the prediction above. Samples were initially prepared in a sealed sampled cell containing monomer, inert diluent, and tracer dye. After irradiation for several days, complete conversion of monomer to polymer can be obtained. The diffusion coefficients for two tracer dyes have been measured as a function of weight fraction polymer glassy poly(methyl methacrylate) samples

  6. Glassy Dynamics

    DEFF Research Database (Denmark)

    Jensen, Henrik J.; Sibani, Paolo

    2007-01-01

    The term glassy dynamics is often used to refer to the extremely slow relaxation observed in several types of many component systems. The time span needed to reach a steady, time independent, state will typically be far beyond experimentally accessible time scales. When melted alloys are cooled...... down they typically do not enter a crystalline ordered state. Instead the atoms retain the amorphous arrangement characteristic of the liquid high temperature phase while the mobility of the molecules decreases very many orders of magnitude. This colossal change in the characteristic dynamical time...

  7. Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Mortensen, Henrik Junge; Stenum, Bjarne

    2007-01-01

    density increased with the plasma treatments. Adhesion test of the treated glassy carbon covered with cured epoxy showed cohesive failure, indicating strong bonding after the treatments. This is in contrast to the adhesion tests of untreated samples where the epoxy readily peeled off the glassy carbon....

  8. Glassy carbon coated graphite for nuclear applications

    International Nuclear Information System (INIS)

    Delpeux S; Cacciaguerra T; Duclaux L

    2005-01-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF 2 , ThF 4 , and UF 4 ) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin or polyvinyl chloride precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm 3 and closed pores with nano-metric size (∼ 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons, in good agreement with the proposed texture model for glassy carbon. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry of the graphite substrate. The deposit regions where

  9. Glassy carbon coated graphite for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Delpeux, S.; Cacciaguerra, T.; Duclaux, L. [Orleans Univ., CRMD, CNRS, 45 (France)

    2005-07-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF{sub 2}, ThF{sub 4}, and UF{sub 4}) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin [1,2] or polyvinyl chloride [3] precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm{sup 3} and closed pores with nano-metric size ({approx} 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons (Fig 1), in good agreement with the proposed texture model for glassy carbon (Fig 2) [4]. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry

  10. Potentiometric application of boron- and phosphorus-doped glassy carbon electrodes

    Directory of Open Access Journals (Sweden)

    ZORAN V. LAUSEVIC

    2001-03-01

    Full Text Available Acomparative study was carried out of the potentiometric application of boronand phosphorus-doped and undoped glassy carbon samples prepared at the same heat treatment temperature (HTT 1000°C. The electrochemical activities of the obtained electrode materials were investigated on the example of argentometric titrations. It was found that the electrochemical behaviour of the doped glassy carbon samples are very similar to a Sigri (undoped glassy carbon sample (HTT 2400°C. The experiments showed that the potentiometric response depends on the polarization mode, the nature of the sample, the pretreatment of the electrode surface, and the nature of the supporting electrolyte. The amounts of iodide, bromide, and of chloridewere determined to be 1.27 mg, 0.80 mg and 0.54 mg, respectively, with a maximum relative standard deviation of less than 1.1%. The obtained results are in good agreement with the results of comparative potentiometric titrations using a silver indicator electrode. The titrationmethod was applied to the indirect determination of pyridoxine hydrochloride, i.e., vitamin B6.

  11. Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode

    OpenAIRE

    Amare, Meareg; Aklog, Senait

    2017-01-01

    Lignin film was deposited at the surface of glassy carbon electrode potentiostatically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6 ? 10?6 to 100 ? 10?6?mol?L?1 with determination coefficient and method detection limit (LoD = 3?s/slope) of 0....

  12. Annealing effects on the migration of ion-implanted cadmium in glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Hlatshwayo, T.T., E-mail: thulani.hlatshwayo@up.ac.za [Physics Department, University of Pretoria, Pretoria (South Africa); Sebitla, L.D. [Physics Department, University of Pretoria, Pretoria (South Africa); Physics Department, University of Botswana, Gaborone (Botswana); Njoroge, E.G.; Mlambo, M.; Malherbe, J.B. [Physics Department, University of Pretoria, Pretoria (South Africa)

    2017-03-15

    The migration behaviour of cadmium (Cd) implanted into glassy carbon and the effects of annealing on radiation damage introduced by ion implantation were investigated. The glassy carbon substrates were implanted with Cd at a dose of 2 × 10{sup 16} ions/cm{sup 2} and energy of 360 keV. The implantation was performed at room temperature (RT), 430 °C and 600 °C. The RT implanted samples were isochronally annealed in vacuum at 350, 500 and 600 °C for 1 h and isothermally annealed at 350 °C up to 4 h. The as-implanted and annealed samples were characterized by Raman spectroscopy and Rutherford backscattering spectrometry (RBS). Raman results revealed that implantation at room temperature amorphized the glassy carbon structure while high temperature implantations resulted in slightly less radiation damage. Isochronal annealing of the RT implanted samples resulted in some recrystallization as a function of increasing temperature. The original glassy carbon structure was not achieved at the highest annealing temperature of 600 °C. Diffusion of Cd in glassy carbon was already taking place during implantation at 430 °C. This diffusion of Cd was accompanied by significant loss from the surface during implantation at 600 °C. Isochronal annealing of the room temperature implanted samples at 350 °C for 1 h caused Cd to diffuse towards the bulk while isothermal annealing at 500 and 600 °C resulted in the migration of implanted Cd toward the surface accompanied by a loss of Cd from the surface. Isothermal annealing at 350 °C for 1 h caused Cd to diffuse towards the bulk while for annealing time >1 h Cd diffused towards the surface. These results were interpreted in terms of trapping and de-trapping of implanted Cd by radiation damage.

  13. Electrochemical pre anodization of glassy carbon electrode and application to determine chloramphenicol

    International Nuclear Information System (INIS)

    Truc, Nguyen Minh; Mortensen, John; Anh, Nguyen Ba Hoai

    2008-01-01

    This paper suggested a method to enhance the performance of carbon electrodes for the determination of chloramphenicol (CAP). The sensitivity and the reproducibility of the carbon electrodes could be enhanced easily by electrochemical pretreatment. Some kinds of carbon material were studied including glassy carbon, graphite carbon and pyrolytic carbon. Numerous kinds of supporting electrolyte have been tried. For glassy carbon electrode, the acidic solution, H 2 SO 4 5 mM, resulted in best performance at pretreated voltage of +2.1V (vs. Ag/ AgCl) in duration of 250 second. However, for graphite and pyrolytic carbon electrodes, the phosphate buffer solution pH 6.0 gave the best performance at +1.7V (vs. Ag/ AgCl) in duration of 20 seconds. The detection limit could be at very low concentration of CAP: 0.8 ng/ ml for glassy carbon electrode, 3.5 ng/ ml for graphite carbon electrode. The method was successful applied to aqua-agriculture water sample and milk sample with simple extraction as well as direct ointment sample analysis. (author)

  14. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Makino, Akihiro; Mizushima, Takao

    2000-01-01

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  15. Electrochemical determination of serotonin in urine samples based on metal oxide nanoparticles/MWCNT on modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Omolola E. Fayemi

    2017-04-01

    Full Text Available The electrochemical response of serotonin on the modified electrode based on multiwalled-carbon-nanotube (MWCNT doped respectively with nickel, zinc and iron oxide nanoparticles coating on glassy carbon electrode (GCE at physiological pH 7 was determined using cyclic voltammetry (CV and square wave voltammetry (SWV. The modified GCE/MWCNT-metal oxide electrodes exhibited excellent electrocatalytic activity towards the detection of serotonin at large peak current and lower oxidation potentials compared to other electrodes investigated. The dynamic range for the serotonin determination was between 5.98 × 10−3 μM to 62.8 μM with detection limits 118, 129 and 166 nM for GCE/MWCNT-NiO, GCE/MWCNT-ZnO and GCE/MWCNT-Fe3O4 sensors respectively. GCE-MWCNT-NiO was the best electrode in terms of serotonin current response, electrode stability, resistance to fouling and limit of detection towards the analyte. The developed sensors were found to be electrochemically stable, reusable, economically effective due to their extremely low operational cost, and have demonstrated good limit of detection, sensitivity and selectivity towards serotonin determination in urine samples. Keywords: Metal oxides nanoparticles, Multiwalled carbon nanotubes, Glassy carbon electrode, Serotonin, Cyclic voltammetry, Square wave voltammetry

  16. How mechanical behavior of glassy polymers enables us to characterize melt deformation: elastic yielding in glassy state after melt stretching?

    Science.gov (United States)

    Wang, Shi-Qing; Zhao, Zhichen; Tsige, Mesfin; Zheng, Yexin

    Fast melt deformation well above the glass transition temperature Tg is known to produce elastic stress in an entangled polymer due to the chain entropy loss at the length scale of the network mesh size. Here chains of high molecular weight are assumed to form an entanglement network so that such a polymer behaves transiently like vulcanized rubber capable of affine deformation. We consider quenching a melt-deformed glassy polymer to well below Tg to preserve the elastic stress. Upon heating such a sample to Tg, the sample can return to the shape it took before melt deformation. This is the basic principle behind the design of all polymer-based shape-memory materials. This work presents intriguing evidence based on both experiment and computer simulation that the chain network, deformed well above Tg, can drive the glassy polymer to undergo elastic yielding. Our experimental systems include polystyrene, poly(methyl methacrylate) and polycarbonate; the molecular dynamics simulation is based on Kremer-Grest bead-spring model. National Science Foundation (DMR-1444859 and DMR-1609977).

  17. Time effects and glassy state behaviour in superconducting Y1Ba2Cu3O7-x

    International Nuclear Information System (INIS)

    Altinkok, A.; Yetis, H.; Olutas, M.; Kilic, K.; Kilic, A.

    2007-01-01

    The quenched disorder in the moving entity is investigated in a polycrystalline bulk sample of Y 1 Ba 2 Cu 3 O 7-x (YBCO) by slow transport relaxation measurements (V-t curves) on long time scales. The time evolution of sample voltage (V-t curve) are correlated to spatial reorganization of the driving current together with increasing or decreasing of resistive and non-resistive flow channels in a multiple connected network. In addition, it is shown that the voltage decays appearing in V-t curves are characterized by an exponential time dependence which is analogous to the glassy state relaxation

  18. Immobilization of DNA at Glassy Ccarbon Electrodes: A Critical Study of Adsorbed Layer

    Directory of Open Access Journals (Sweden)

    G. A. Rivas

    2005-11-01

    Full Text Available In this work we present a critical study of the nucleic acid layer immobilized atglassy carbon electrodes. Different studies were performed in order to assess the nature of theinteraction between DNA and the electrode surface. The adsorption and electrooxidation of DNAdemonstrated to be highly dependent on the surface and nature of the glassy carbon electrode. TheDNA layer immobilized at a freshly polished glassy carbon electrode was very stable even afterapplying highly negative potentials. The electron transfer of potassium ferricyanide, catechol anddopamine at glassy carbon surfaces modified with thin (obtained by adsorption under controlledpotential conditions and thick (obtained by casting the glassy carbon surface with highly concentratedDNA solutions DNA layers was slower than that at the bare glassy carbon electrode, although thiseffect was dependent on the thickness of the layer and was not charge selective. Raman experimentsshowed an important decrease of the vibrational modes assigned to the nucleobases residues,suggesting a strong interaction of these residues with the electrode surface. The hybridization ofoligo(dG21 and oligo(dC21 was evaluated from the guanine oxidation signal and the reduction of theredox indicator Co(phen33+ . In both cases the chronopotentiometric response indicated that thecompromise of the bases in the interaction of DNA with the electrode surface is too strong, preventingfurther hybridization. In summary, glassy carbon is a useful electrode material to detect DNA in adirect and very sensitive way, but not to be used for the preparation of biorecognition layers by directadsorption of the probe sequence on the electrode surface for detecting the hybridization event.

  19. Thermodynamic picture of the glassy state

    NARCIS (Netherlands)

    Nieuwenhuizen, T.M.

    2000-01-01

    A picture for the thermodynamics of the glassy state is introduced. It assumes that one extra parameter, the effective temperature, is needed to describe the glassy state. This explains the classical paradoxes concerning the Ehrenfest relations and the Prigogine-Defay ratio. As a second feature, the

  20. Thermodynamic Modeling of Gas Transport in Glassy Polymeric Membranes.

    Science.gov (United States)

    Minelli, Matteo; Sarti, Giulio Cesare

    2017-08-19

    Solubility and permeability of gases in glassy polymers have been considered with the aim of illustrating the applicability of thermodynamically-based models for their description and prediction. The solubility isotherms are described by using the nonequilibrium lattice fluid (NELF) (model, already known to be appropriate for nonequilibrium glassy polymers, while the permeability isotherms are described through a general transport model in which diffusivity is the product of a purely kinetic factor, the mobility coefficient, and a thermodynamic factor. The latter is calculated from the NELF model and mobility is considered concentration-dependent through an exponential relationship containing two parameters only. The models are tested explicitly considering solubility and permeability data of various penetrants in three glassy polymers, PSf, PPh and 6FDA-6FpDA, selected as the reference for different behaviors. It is shown that the models are able to calculate the different behaviors observed, and in particular the permeability dependence on upstream pressure, both when it is decreasing as well as when it is increasing, with no need to invoke the onset of additional plasticization phenomena. The correlations found between polymer and penetrant properties with the two parameters of the mobility coefficient also lead to the predictive ability of the transport model.

  1. Influence of surface morphology on methanol oxidation at a glassy carbon-supported Pt catalyst

    Directory of Open Access Journals (Sweden)

    S. STEVANOVIC

    2008-08-01

    Full Text Available Platinum supported on glassy carbon (GC was used as a model system for studying the influence of the surface morphology of a Pt catalyst on methanol oxidation in alkaline and acidic solutions. Platinum was deposited by the potential step method on GC samples from H2SO4 + H2PtCl6 solution under the same conditions with loadings from 10 to 80 mg cm-2. AFM and STM images of the GC/Pt electrodes showed that the Pt was deposited in the form of 3D agglomerates composed of spherical particles. Longer deposition times resulted in increased growth of Pt forms and a decrease in the specific area of the Pt. The real surface area of Pt increased with loading but the changes were almost negligible at higher loadings. Nevertheless, both the specific and mass activity of platinum supported on glassy carbon for methanol oxidation in acidic and in alkaline solutions exhibit a volcanic dependence with respect to the platinum loading. The increase in the activity can be explained by the increasing the particle size with the loading and thus an increase in the contiguous Pt sites available for adsorption and decomposition of methanol. However, the decrease in the activity of the catalyst with further increase of loading and particle size after reaching the maximum is related to the decrease of active sites available for methanol adsorption and their accessibility as a result of more close proximity and pronounced coalescence of the Pt particles.

  2. Electrochemical mechanism of eugenol at a Cu doped gold nanoparticles modified glassy carbon electrode and its analytical application in food samples

    International Nuclear Information System (INIS)

    Lin, Xiaoyun; Ni, Yongnian; Kokot, Serge

    2014-01-01

    Graphical abstract: A simple one-step electrodeposition method was used to fabricate a Cu doped gold nanoparticles modified glassy carbon electrode. An electrochemical reaction mechanism for o-methoxy phenols was suggested. In addition, the above Cu@AuNPs/GCE was successfully employed for the analysis of eugenol in food samples. - Highlights: • One-step construction of the Cu@AuNPs/GCE electrode. • The modified electrode showed high sensitivity for the analysis of eugenol. • Electrochemical mechanism of eugenol by use of Cu@AuNPs/GCE was inferred. • The novel method was successfully employed for analysis of eugenol in food samples. - Abstract: A simple one-step electrodeposition method was used to construct a glassy carbon electrode (GCE), which has been modified with Cu doped gold nanoparticles (GNPs), i.e. a Cu@AuNPs/GCE. This electrode was characterized with the use of scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The eugenol was electrocatalytically oxidized at the Cu@AuNPs/GCE. At this electrode, in comparison with the behavior at the GCE alone, the corresponding oxidation peak current was enhanced and the shift of the oxidation potentials to lower values was observed. Electrochemical behavior of eugenol at the Cu@AuNPs/GCE was investigated with the use of the cyclic voltammetry (CV) technique, and additionally, in order to confirm the electrochemical reaction mechanism for o-methoxy phenols, CVs for catechol, guaiacol and vanillin were investigated consecutively. Based on this work, an electrochemical reaction mechanism for o-methoxy phenols was suggested, and in addition, the above Cu@AuNPs/GCE was successfully employed for the analysis of eugenol in food samples

  3. Irradiation-induced defects in graphite and glassy carbon studied by positron annihilation

    International Nuclear Information System (INIS)

    Hasegawa, M.; Kajino, M.; Kuwahara, H.; Yamaguchi, S.; Kuramoto, E.; Takenaka, M.

    1992-01-01

    ACAR and positron lifetime measurements have been made on, HOPG, isotropic fine-grained graphites, glassy carbons and C 60 /C 70 . HOPG showed a marked bimodal ACAR distribution along the c-axis. By irradiation of 1.0 X 10 19 fast neutrons/cm 2 remarkable narrowing in the ACAR curves and disappearance of the bimodal distribution were observed. Lifetime in HOPG increased from 225 psec to 289 psec (positron-lifetime in vacancies and their small clusters) by the irradiation. The irradiation on isotropic graphites and glassy carbons, however, gave slight narrowing in ACAR curves and decrease in lifetimes (360 psec → 300psec). This suggests irradiation-induced vacancy trapping in crystallites. In C 60 /C 70 powder two lifetime components were detected: τ 1 =177psec, τ 2 =403psec (I 2 =58%). The former is less than the bulk lifetime of HOPG, while the latter being very close to lifetimes in the isotropic graphites and glassy carbons. This and recent 2D-ACAR study of HOPG surface [15] strongly suggest free and defect surface states around ''soccer ball'' cages

  4. Dielectric relaxation in glassy Se75In25−xPbx alloys

    Indian Academy of Sciences (India)

    to their atomic percentages and were sealed in quartz ampoules (length ~5 cm and internal dia. ~8 mm) in vacuum ... samples were taken out by breaking the quartz ampoules. The glassy nature of the ... measured with the help of a calibrated copper–constantan thermocouple mounted very near to the sample, which could ...

  5. Free volume and elastic properties changes in Cu-Zr-Ti-Pd bulk glassy alloy on heating

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Yavari, Alain Reza; Fukuhara, Mikio; Ota, Katsumi; Xie, Guoqiang; Vaughan, Gavin; Inoue, Akihisa

    2007-01-01

    The variation of free volume and elastic properties of the Cu 55 Zr 30 Ti 10 Pd 5 glassy alloy on heating was studied. The structure changes on heating were studied by synchrotron X-ray diffraction, differential scanning and isothermal calorimetries. The studied glassy alloy shows a rather high Poisson's ratio exceeding 0.42 which is maintained after the structure relaxation and primary devitrification. Young's and Shear modules decrease upon primary devitrification while Bulk modulus exhibits a maximum after structural relaxation

  6. A TPD-MS study of glassy carbon surfaces oxidized by CO2 and O2

    Directory of Open Access Journals (Sweden)

    MILA D. LAUSEVIC

    2002-11-01

    Full Text Available The temperature-programmed desorption (TPD method combined with mass spectrometric (MS analysis has been applied to investigate the surface properties of carbon materials. The apparatus consisting of a temperature-programmed furnace and a quadrupole mass spectrometer was constructed in order to characterize the surface of differently treated glassy carbon samples. In this work, samples of glassy carbon exposed to air, CO2 and O2 were examined. The desorption of H2O, CO and CO2, as major products, indicated the presence of different oxide groups. The amount of these groups for all samples was calculated. It is concluded that oxidation affects the nature and the amount of the surface oxide groups and contributes to their increased stability.

  7. Glassy selenium at high pressure: Le Chatelier's principle still works

    Science.gov (United States)

    Brazhkin, V. V.; Tsiok, O. B.

    2017-10-01

    Selenium is the only easily vitrified elementary substance. Numerous experimental studies of glassy Se (g -Se) at high pressures show a large spread in the data on the compressibility and electrical resistivity of g -Se. Furthermore, H. Liu et al. [Proc. Natl. Acad. Sci. USA 105, 13229 (2008), 10.1073/pnas.0806857105] have arrived at the surprising conclusion that the volume of glass increases during pressure-induced crystallization. We have performed high-precision measurements of the specific volume and electrical resistivity of glassy selenium (g -Se) at high hydrostatic pressures up to 9 GPa. The measured bulk modulus at normal pressure is B =(9.0 5 ±0.15 ) GPa and its pressure derivative is BP'=6.4 ±0.2 . In the pressure range P <3 GPa, glassy selenium has an anomalously large negative second derivative of the bulk modulus. The electrical resistivity of g -Se decreases almost exponentially with increasing pressure and reaches 20 Ω cm at a pressure of 8.75 GPa. The inelastic behavior and weak relaxation of the volume for g -Se begin at pressures above 3.5 GPa; the volume and logarithm of the electrical resistivity relax significantly (logarithmically with the time) at pressures above 8 GPa. Bulk measurements certainly indicate that the volume of g -Se glass in the crystallization pressure range is larger than the volumes of both appearing crystalline phases (by 2% and 4%). Therefore, the "volume expansion phenomenon" suggested in [H. Liu et al., Proc. Natl. Acad. Sci. USA 105, 13229 (2008), 10.1073/pnas.0806857105] is not observed, and the pressure-induced crystallization of glassy selenium is consistent with the laws of thermodynamics.

  8. Pseudobinary glassy compositions (AsSex)1-y(AsTex)y

    International Nuclear Information System (INIS)

    El Mously, M.K.; El Dem, M.B.

    1987-09-01

    The ternery glassy composition of the general formula (AsSe x ) 1-y (AsTe x ) y can be considered as a pseudobinary system at x=1, 3/2 and 5/2 and 0 ≤ y ≤ 1. The results of DTA, electrical conductivity measurements, density of such glasses as well as the X-ray diffraction of the crystallized samples have been used to confirm this point of view and to explain the presence of new phases not shown in the simple binary systems As-Se and As-Te. The possibility of transformation of the glassy network from partially polymerized state MCN (molecular cluster network) to completely polymerized state CRN (continuous random network) by mixing two structural units was also discussed. (author). 12 refs, 7 figs, 2 tabs

  9. Low temperature thermal conductivities of glassy carbons

    International Nuclear Information System (INIS)

    Anderson, A.C.

    1979-01-01

    The thermal conductivity of glassy carbon in the temperature range 0.1 to 100 0 K appears to depend only on the temperature at which the material was pyrolyzed. The thermal conductivity can be related to the microscopic structure of glassy carbon. The reticulated structure is especially useful for thermal isolation at cryogenic temperatures

  10. Square Wave Voltammetric Determination of 2-Thiouracil in Pharmaceuticals and Real Samples Using Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Naveen M. Gokavi

    2013-01-01

    Full Text Available A simple and rapid method was developed using cyclic and square wave voltammetric techniques for the determination of trace-level sulfur containing compound, 2-thiouracil, at a glassy carbon electrode. 2-thiouracil produced two anodic peaks at 0.334 V and 1.421 V and a cathodic peak at −0.534 V. The square wave voltammetry of 2-thiouracil gave a good linear response in the range of 1–20 μM with a detection limit of 0.16 μM and quantification limit of 0.53 μM (0.0679 μg/g, which is in good agreement as per IUPAC definition of trace component analysis (100 μg/g. The obtained recoveries range from 98.10% to 102.1%. The proposed method was used successfully for its quantitative determination in pharmaceutical formulations and urine as real samples.

  11. Treatment of early glassy cell carcinoma of uterine cervix

    International Nuclear Information System (INIS)

    Kim, Ok Bae; Kim, Jin Hee; Choi, Tae Jin

    2006-01-01

    The purpose of this study was to investigate the clinical findings, treatment, and outcome of patients with glassy cell carcinoma of cervix. We reviewed all cases of glassy cell carcinoma of the uterine cervix confirmed and treated at the Dongsan Medical Center, Keimyung University, between January 1993 and December 2005. There were 7 cases with histopathologically confirmed gassy cell carcinoma. A tumor was diagnosed as glassy cell carcinoma if over 50% of the tumor cell type displayed glassy cell features. Six patients with stage IB had radical hysterectomy and bilateral pelvic node dissection, and 2 of them received adjuvant external pelvic irradiation with concurrent chemotherapy. Remaining one patient with stage IIA had curative concurrent chemoradiotherapy with external pelvic irradiation and brachytherapy. There were 7 patients diagnosed as glassy cell carcinoma among the 3,745 (0.2%) patients of carcinoma of uterine cervix. The mean age of 7 patients was 44 years with range of 35 to 53 years of age. The most frequent symptom was vaginal bleeding (86%). By the punch biopsy undertaken before treatment of 7 cases, 2 only cases could diagnose as glassy cell carcinoma of uterine cervix, but remaining of them confirmed by surgical pathological examination. The mean follow up duration was 73 months with range of 13 to 150 months. All 7 patients were alive without disease after treatment. Glassy cell carcinoma of the uterine cervix is a distinct clinicopathologic entity that demonstrates an aggressive biologic behavior. However for early-stage disease, we may have more favorable clinical outcome with radical surgery followed by chemoradiotherapy

  12. EDTA modified glassy carbon electrode: Preparation and characterization

    International Nuclear Information System (INIS)

    Ustuendag, Zafer; Solak, Ali Osman

    2009-01-01

    EDTA-phenoxyamide modified glassy carbon electrode (EDTA-GC) was prepared at a glassy carbon electrode by surface synthesis. In the first step, nitrophenyl was grafted to the glassy carbon (GC) surface via the electrochemical reduction of its tetraflouroborate diazonium salt. In the second step, nitrophenyl-modified electrode (NP-GC) was subjected to the cathodic potential scan to reduce the nitro to amine group. p-Aminophenyl modified glassy carbon electrode (AP-GC) was dipped into a EDTA solution containing 1-ethyl-3(3-(dimethlyamino)propyl)-carbodiimide (EDC) as an activating agent. Thus formed ((2-anilino-2-oxoethyl){2-[bis(carboxymethyl)amino]-ethyl}amino)acetic acid modified GC electrode was denoted as EDTA-GC and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry and X-ray photoelectron spectroscopy (XPS). Complexation of the EDTA-GC surface with Pb 2+ ions was investigated if this electrode could be used as a metal sensor.

  13. On the spherical nanoindentation creep of metallic glassy thin films at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T.H.; Ye, J.H. [Institution of Micro/Nano-Mechanical Testing Technology & Application, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Feng, Y.H. [State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Ma, Y., E-mail: may@zjut.edu.cn [Institution of Micro/Nano-Mechanical Testing Technology & Application, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014 (China)

    2017-02-08

    Metallic glassy thin films with eight kind of compositions were successfully prepared on Si substrate by magnetron sputtering. The room-temperature creep tests were performed at plastic regions for each sample relying on spherical nanoindetation. The creep deformations were studied by recording the total creep displacement and strain after 2000 s holding. More pronounced creep deformation was observed in the sample with lower glass transition temperature (T{sub g}). Strain rate sensitivity (SRS) was then calculated from the steady-state creep and exhibited a negative correlation with increasing T{sub g}. It is suggested that creep mechanism of the nano-sized metallic glass was T{sub g}-dependent, according to the demarcation of SRS values. Based on the obtained SRS, shear transformation zone (STZ) size in each sample could be estimated. The results indicated that an STZ involves about 25–60 atoms for the employed eight samples and is strongly tied to T{sub g}. The characteristic of STZ size in metallic glassy thin films was discussed in terms of applied method and deformation modes.

  14. EDTA modified glassy carbon electrode: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ustuendag, Zafer [Dumlupinar University, Faculty of Arts and Sciences, Department of Chemistry, Kuetahya (Turkey); Solak, Ali Osman [Ankara University, Faculty of Science, Department of Chemistry, Degol Street, Tandogan, 06100 Ankara (Turkey)], E-mail: osolak@science.ankara.edu.tr

    2009-11-01

    EDTA-phenoxyamide modified glassy carbon electrode (EDTA-GC) was prepared at a glassy carbon electrode by surface synthesis. In the first step, nitrophenyl was grafted to the glassy carbon (GC) surface via the electrochemical reduction of its tetraflouroborate diazonium salt. In the second step, nitrophenyl-modified electrode (NP-GC) was subjected to the cathodic potential scan to reduce the nitro to amine group. p-Aminophenyl modified glassy carbon electrode (AP-GC) was dipped into a EDTA solution containing 1-ethyl-3(3-(dimethlyamino)propyl)-carbodiimide (EDC) as an activating agent. Thus formed ((2-anilino-2-oxoethyl){l_brace}2-[bis(carboxymethyl)amino]-ethyl{r_brace}amino)acetic acid modified GC electrode was denoted as EDTA-GC and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry and X-ray photoelectron spectroscopy (XPS). Complexation of the EDTA-GC surface with Pb{sup 2+} ions was investigated if this electrode could be used as a metal sensor.

  15. New model system in radiation cryochemistry:. hyperquenched glassy water

    Science.gov (United States)

    Bednarek, Janusz; Plonka, Andrzej; Hallbrucker, Andreas; Mayer, Erwin

    1999-08-01

    Radicals generated by high-energy irradiation of liquid water, short-lived at ambient temperature, can be studied at cryogenic temperatures after irradiating water and dilute aqueous solutions in their glassy states which can be obtained by so-called hyperquenching of the liquids at cooling rates of ˜10 6-10 7 K s -1. In the glassy states of hyperquenched dilute aqueous solutions there is no problem with phase separation and radiolysis of glassy water is quite distinct from radiolysis of polycrystalline ice obtained from liquid water on slow-cooling in liquid nitrogen.

  16. Time effects and glassy state behaviour in superconducting Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7-x}

    Energy Technology Data Exchange (ETDEWEB)

    Altinkok, A.; Yetis, H.; Olutas, M.; Kilic, K. [Abant Izzet Baysal University, Department of Physics, Turgut Gulez Research Laboratory, 14280 Bolu (Turkey); Kilic, A. [Abant Izzet Baysal University, Department of Physics, Turgut Gulez Research Laboratory, 14280 Bolu (Turkey)], E-mail: kilic_a@ibu.edu.tr

    2007-10-01

    The quenched disorder in the moving entity is investigated in a polycrystalline bulk sample of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) by slow transport relaxation measurements (V-t curves) on long time scales. The time evolution of sample voltage (V-t curve) are correlated to spatial reorganization of the driving current together with increasing or decreasing of resistive and non-resistive flow channels in a multiple connected network. In addition, it is shown that the voltage decays appearing in V-t curves are characterized by an exponential time dependence which is analogous to the glassy state relaxation.

  17. Glassy carbon based supercapacitor stacks

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M; Braun, A; Koetz, R; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Considerable effort is being made to develop electrochemical double layer capacitors (EDLC) that store relatively large quantities of electrical energy and possess at the same time a high power density. Our previous work has shown that glassy carbon is suitable as a material for capacitor electrodes concerning low resistance and high capacity requirements. We present the development of bipolar electrochemical glassy carbon capacitor stacks of up to 3 V. Bipolar stacks are an efficient way to meet the high voltage and high power density requirements for traction applications. Impedance and cyclic voltammogram measurements are reported here and show the frequency response of a 1, 2, and 3 V stack. (author) 3 figs., 1 ref..

  18. Detection of dopamine in non-treated urine samples using glassy carbon electrodes modified with PAMAM dendrimer-Pt composites

    International Nuclear Information System (INIS)

    Garcia, M.G.; Armendariz, G.M.E.; Godinez, Luis A.; Torres, J.; Sepulveda-Guzman, S.; Bustos, E.

    2011-01-01

    Composites of hydroxyl-terminated PAMAM dendrimers, generation 4.0 (64 peripheral OH groups) containing Pt nanoparticles were synthesized at different reaction times using a microwave reactor. The synthetic procedure resulted in dendrimer encapsulated nanoparticles of Pt (DENs-Pt) of 1.53 ± 0.17 nm diameter that was calculated from transmission electron microscopy, and the Pt nanoparticles had single crystal plane in (1 1 1) orientation determinate by selective area diffraction. Each composite was electrochemically immobilized on a pre-functionalized glassy carbon (GC) electrode that was incorporated as a flow injection amperometric (FIA) detector, for the selective detection and quantification of dopamine (DA) in untreated urine samples. Comparison of the analytical performance of the novel electrochemical detector revealed that the DENs-Pt modified GC electrode with the composite synthesized for 30 min in the microwave reactor, showed the best response for the detection of DA in samples of non-treated urine, being the detection and quantification limits smaller (19 and 9 ppb, respectively) than those corresponding to the naked a GC electrode (846 and 423 ppb, respectively) using the FIA detector. In addition, it was found that this electroanalytical approach suffers minimal matrix effects that arise in the analysis of DA in untreated samples of urine.

  19. Detection of dopamine in non-treated urine samples using glassy carbon electrodes modified with PAMAM dendrimer-Pt composites

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.G. [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico); Department of Chemistry, Universidad de Guanajuato, Cerro de la Venada S/N Col. Pueblito de Rocha, 36040 Guanajuato, Gto (Mexico); Armendariz, G.M.E.; Godinez, Luis A.; Torres, J. [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico); Sepulveda-Guzman, S. [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Universidad, San Nicolas de los Garza, Nuevo Leon, 66451 Nuevo Leon (Mexico); Bustos, E., E-mail: ebustos@cideteq.mx [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico)

    2011-09-01

    Composites of hydroxyl-terminated PAMAM dendrimers, generation 4.0 (64 peripheral OH groups) containing Pt nanoparticles were synthesized at different reaction times using a microwave reactor. The synthetic procedure resulted in dendrimer encapsulated nanoparticles of Pt (DENs-Pt) of 1.53 {+-} 0.17 nm diameter that was calculated from transmission electron microscopy, and the Pt nanoparticles had single crystal plane in (1 1 1) orientation determinate by selective area diffraction. Each composite was electrochemically immobilized on a pre-functionalized glassy carbon (GC) electrode that was incorporated as a flow injection amperometric (FIA) detector, for the selective detection and quantification of dopamine (DA) in untreated urine samples. Comparison of the analytical performance of the novel electrochemical detector revealed that the DENs-Pt modified GC electrode with the composite synthesized for 30 min in the microwave reactor, showed the best response for the detection of DA in samples of non-treated urine, being the detection and quantification limits smaller (19 and 9 ppb, respectively) than those corresponding to the naked a GC electrode (846 and 423 ppb, respectively) using the FIA detector. In addition, it was found that this electroanalytical approach suffers minimal matrix effects that arise in the analysis of DA in untreated samples of urine.

  20. Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Meareg Amare

    2017-01-01

    Full Text Available Lignin film was deposited at the surface of glassy carbon electrode potentiostatically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6×10-6 to 100×10-6 mol L−1 with determination coefficient and method detection limit (LoD = 3 s/slope of 0.99925 and 8.37×10-7 mol L−1, respectively, supplemented by recovery results of 93.79–102.17% validated the developed method. An attempt was made to determine the caffeine content of aqueous coffee extracts of Ethiopian coffees grown in four coffee cultivating localities (Wonbera, Wolega, Finoteselam, and Zegie and hence to evaluate the correlation between users preference and caffeine content. In agreement with reported works, caffeine contents (w/w% of 0.164 in Wonbera coffee; 0.134 in Wolega coffee; 0.097 in Finoteselam coffee; and 0.089 in Zegie coffee were detected confirming the applicability of the developed method for determination of caffeine in a complex matrix environment. The result indicated that users’ highest preference for Wonbera and least preference for Zegie cultivated coffees are in agreement with the caffeine content.

  1. Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode.

    Science.gov (United States)

    Amare, Meareg; Aklog, Senait

    2017-01-01

    Lignin film was deposited at the surface of glassy carbon electrode potentiostatically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6 × 10 -6 to 100 × 10 -6  mol L -1 with determination coefficient and method detection limit (LoD = 3 s/slope) of 0.99925 and 8.37 × 10 -7  mol L -1 , respectively, supplemented by recovery results of 93.79-102.17% validated the developed method. An attempt was made to determine the caffeine content of aqueous coffee extracts of Ethiopian coffees grown in four coffee cultivating localities (Wonbera, Wolega, Finoteselam, and Zegie) and hence to evaluate the correlation between users preference and caffeine content. In agreement with reported works, caffeine contents (w/w%) of 0.164 in Wonbera coffee; 0.134 in Wolega coffee; 0.097 in Finoteselam coffee; and 0.089 in Zegie coffee were detected confirming the applicability of the developed method for determination of caffeine in a complex matrix environment. The result indicated that users' highest preference for Wonbera and least preference for Zegie cultivated coffees are in agreement with the caffeine content.

  2. Formation of a glassy phase in ceramic-like coatings

    International Nuclear Information System (INIS)

    Sazonova, M.V.; Gorbatova, G.N.

    1986-01-01

    The authors investigate the synthesis directly in coatings of a borosilicate melt that could fill the role of glassy matrix, thereby avoiding fusion and processing of the glassy material. The effect of added boron on the formation of coatings based on molybdenum disilicide and tungsten disilicide in air at 900 degrees C is presented. Without an additive no coating forms; there is no adhesion to the graphite and a continuous film does not form. As a result of boron oxidation an easily fused glassy matrix forms, which bonds the molybdenum disilicide or tungsten disilicide particles together and ensures adhesion to the graphite

  3. The sorption induced glass transition in amorphous glassy polymers

    NARCIS (Netherlands)

    van der Vegt, N.F.A.; Wessling, Matthias; Strathmann, H.; Briels, Willem J.

    1999-01-01

    Sorption of CO2 in both the glassy and the rubbery state of an amorphous polyethylenelike polymer was investigated using molecular dynamics simulations. The temperature was chosen such that the system was in its glassy state at low solute concentrations and its rubbery state at large solute

  4. Effect of glassy carbon properties on the electrochemical deposition of platinum nano-catalyst and its activity for methanol oxidation

    Directory of Open Access Journals (Sweden)

    SANJA TERZIC

    2007-02-01

    Full Text Available The effects of the properties of glassy carbon on the deposition of platinum particles and the electrocatalytic activity of platinum supported on glassy carbon (GC/Pt for methanol oxidation in alkaline and acidic solutions were studied. Platinum was potentiostatically deposited on two glassy carbon samples, thermally treated at different temperatures, which were either polished or anodicaly polarised in acid (GCOX-AC/Pt and in alkali (GCOX-AL/Pt. Anodic polarisation of glassy carbon, either in alkaline or acidic solution, enhances the activity of both types of GC/Pt electrodes for methanol oxidation. The activity of the catalysts follows the change in the properties of the glassy carbon support upon anodic treatment. The specific activity of the GCOX-AL/Pt electrode for this reaction in alkali is increased only a few times in comparison with the activity of the GC/Pt one. On the other hand, the specific activity of the GCOX-AC/Pt electrode for methanol oxidation in acid is about one order of magnitude higher than that of the GC/Pt electrode. The role of the substrate on the properties of catalyst is discussed in detail.

  5. Annealing effect on thermal conductivity and microhardness of carbon nanotube containing Se80Te16Cu4 glassy composites

    Science.gov (United States)

    Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar

    2018-02-01

    This study deals with the effect of thermal annealing on structural/microstructural, thermal and mechanical behavior of pristine Se80Te16Cu4 and carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composites. Pristine Se80Te16Cu4, 3 and 5 wt%CNTs-Se80Te16Cu4 glassy composites are annealed in the vicinity of glass transition temperature to onset crystallization temperature (340-380 K). X-ray diffraction (XRD) pattern revealed formation of polycrystalline phases of hexagonal CuSe and trigonal selenium. The indexed d-values in XRD patterns are in well conformity with the d-values obtained after the indexing of the ring pattern of selected area electron diffraction pattern of TEM images. The SEM investigation exhibited that the grain size of the CNTs containing Se80Te16Cu4 glassy composites increased with increasing annealing temperature and decreased at further higher annealing temperature. Thermal conductivity, microhardness exhibited a substantial increase with increasing annealing temperature of 340-360 K and slightly decreases for 380 K. The variation of thermal conductivity and microhardness can be explained by cross-linking formation and voids reduction.

  6. Thermodynamic behavior of glassy state of structurally related compounds.

    Science.gov (United States)

    Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-08-01

    Thermodynamic properties of amorphous pharmaceutical forms are responsible for enhanced solubility as well as poor physical stability. The present study was designed to investigate the differences in thermodynamic parameters arising out of disparate molecular structures and associations for four structurally related pharmaceutical compounds--celecoxib, valdecoxib, rofecoxib, and etoricoxib. Conventional and modulated temperature differential scanning calorimetry were employed to study glass forming ability and thermodynamic behavior of the glassy state of model compounds. Glass transition temperature of four glassy compounds was in a close range of 327.6-331.8 K, however, other thermodynamic parameters varied considerably. Kauzmann temperature, strength parameter and fragility parameter showed rofecoxib glass to be most fragile of the four compounds. Glass forming ability of the compounds fared similar in the critical cooling rate experiments, suggesting that different factors were determining the glass forming ability and subsequent behavior of the compounds in glassy state. A comprehensive understanding of such thermodynamic facets of amorphous form would help in rationalizing the approaches towards development of stable glassy pharmaceuticals.

  7. Cooperative strings and glassy interfaces.

    Science.gov (United States)

    Salez, Thomas; Salez, Justin; Dalnoki-Veress, Kari; Raphaël, Elie; Forrest, James A

    2015-07-07

    We introduce a minimal theory of glass formation based on the ideas of molecular crowding and resultant string-like cooperative rearrangement, and address the effects of free interfaces. In the bulk case, we obtain a scaling expression for the number of particles taking part in cooperative strings, and we recover the Adam-Gibbs description of glassy dynamics. Then, by including thermal dilatation, the Vogel-Fulcher-Tammann relation is derived. Moreover, the random and string-like characters of the cooperative rearrangement allow us to predict a temperature-dependent expression for the cooperative length ξ of bulk relaxation. Finally, we explore the influence of sample boundaries when the system size becomes comparable to ξ. The theory is in agreement with measurements of the glass-transition temperature of thin polymer films, and allows quantification of the temperature-dependent thickness hm of the interfacial mobile layer.

  8. Effect of high-order multicomponent on formation and properties of Zr-based bulk glassy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A., E-mail: ainouebmg@yahoo.co.jp [International Institute of Green Materials, Josai International University, Togane 283-8555 (Japan); School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Department of Physics, King Abdulaziz University, Jeddah 22254 (Saudi Arabia); Wang, Z.; Louzguine-Luzgin, D.V. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Han, Y. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Kong, F.L. [International Institute of Green Materials, Josai International University, Togane 283-8555 (Japan); Shalaan, E.; Al-Marzouki, F. [Department of Physics, King Abdulaziz University, Jeddah 22254 (Saudi Arabia)

    2015-07-25

    Highlights: • A multicomponent Zr{sub 55}Al{sub 10}Fe{sub 6}Co{sub 6}Ni{sub 6}Cu{sub 6}Pd{sub 6}Ag{sub 5} bulk glassy alloy was formed. • The high-order multiplication suppression of the decrease in mechanical strength. • The BGAs show good corrosion resistance and slow growth rate of primary precipitates. - Abstract: We examined the formation, thermal stability, mechanical properties and corrosion behavior of a multicomponent Zr{sub 55}Al{sub 10}Fe{sub 6}Co{sub 6}Ni{sub 6}Cu{sub 6}Pd{sub 6}Ag{sub 5} bulk glassy alloy, with the aim of clarifying the effect of high-order multiplication of the number of components on their properties. The bulk glassy alloy rods of 2 and 6 mm in diameter were formed by suction casting even at the low total content of typical glass-forming 3-d late transition metals like Co, Ni and Cu. The Vickers hardness is different in the center region and in the outer surface region. The difference seems to reflect the relaxation level of glassy structure. The Young’s modulus and the compressive fracture strength are nearly the same for the base Zr{sub 55}Al{sub 10}Ni{sub 5}Cu{sub 30} alloy in spite of the existence of immiscible atomic pairs. Moreover, the multicomponent alloy exhibits better corrosion resistance than that for the base alloy. The glassy phase changes to a supercooled liquid state at 720 K and then starts to crystallize at 754 K with a single exothermic peak, in contrast to the appearance of a wide supercooled liquid region for the base alloy. The primary crystalline phase precipitates with very short incubation time and very low growth rate, which are different from those for the base alloy. The extremely low growth rate of the crystallites is presumably due to the reduction of diffusivity of late transition metal elements resulting from multiplication. Thus, the high-order multiplication has the features of (1) the maintenance of high glass-forming ability even at the lower Co, Ni and Cu content and in the absence of

  9. Effects of Xylem-Sap Composition on Glassy-Winged Sharpshooter (Hemiptera: Cicadellidae) Egg Maturation on High- and Low-Quality Host Plants.

    Science.gov (United States)

    Sisterson, Mark S; Wallis, Christopher M; Stenger, Drake C

    2017-04-01

    Glassy-winged sharpshooters must feed as adults to produce mature eggs. Cowpea and sunflower are both readily accepted by the glassy-winged sharpshooter for feeding, but egg production on sunflower was reported to be lower than egg production on cowpea. To better understand the role of adult diet in egg production, effects of xylem-sap chemistry on glassy-winged sharpshooter egg maturation was compared for females confined to cowpea and sunflower. Females confined to cowpea consumed more xylem-sap than females held on sunflower. In response, females held on cowpea produced more eggs, had heavier bodies, and greater lipid content than females held on sunflower. Analysis of cowpea and sunflower xylem-sap found that 17 of 19 amino acids were more concentrated in cowpea xylem-sap than in sunflower xylem-sap. Thus, decreased consumption of sunflower xylem-sap was likely owing to perceived lower quality, with decreased egg production owing to a combination of decreased feeding and lower return per unit volume of xylem-sap consumed. Examination of pairwise correlation coefficients among amino acids indicated that concentrations of several amino acids within a plant species were correlated. Principal component analyses identified latent variables describing amino acid composition of xylem-sap. For females held on cowpea, egg maturation was affected by test date, volume of excreta produced, and principal components describing amino acid composition of xylem-sap. Principal component analyses aided in identifying amino acids that were positively or negatively associated with egg production, although determining causality with respect to key nutritional requirements for glassy-winged sharpshooter egg production will require additional testing. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  10. Characterization of glassy phase at the surface of alumina ceramics substrate and its effect on laser cutting

    Energy Technology Data Exchange (ETDEWEB)

    Fu Renli [School of Mechanical-Electronic and Materials Engineering, China Univ. of Mining and Technology, Xuzhou, JS (China); Dept. of Ceramics and Glass Engineering, CICECO, Univ. of Aveiro, Aveiro (Portugal); Li Yanbo [School of Mechanical-Electronic and Materials Engineering, China Univ. of Mining and Technology, Xuzhou, JS (China); Xu Xin; Ferreira, J.M.F. [Dept. of Ceramics and Glass Engineering, CICECO, Univ. of Aveiro, Aveiro (Portugal)

    2004-07-01

    Nowadays alumina ceramic substrates are widely used for high precision applications in electronic devices, such as hybrid integrated circuits (HIC). Usually, the alumina ceramic substrates are shaped through tape casting method and sintered in continuous slab kilns. The sintering aids used to enhance densification during sintering give rise to the formation of an alumino-silicate liquid phase, which is of crucial importance in pressureless and low-temperature sintering (<1600 C) of alumina ceramics. The preferential migration of liquid phase to the surface of alumina substrates under the capillary action and its transformation into glassy phase during cooling affects the subsequent processing steps of HIC. A smoothening effect on surface with its enrichment in glassy phase is accompanied by a decrease of the surface toughness. On the other hand, the accumulated glassy phase onto the surface has a great effect on laser cutting. The high temperatures developed during laser cutting turn the superficial glassy phase into liquid again, while rapid solidification will occur after removing laser beam. The fast cooling of the liquid phase causes formation of extensive network of cracks on the surface of alumina substrate. Apparently, the presence of such faults degrades mechanical strength and thermal shock resistance of alumina substrates. Meanwhile, the recast layers and spatter deposits at the periphery of the hole has been observed. (orig.)

  11. Quasi-equilibrium in glassy dynamics: an algebraic view

    International Nuclear Information System (INIS)

    Franz, Silvio; Parisi, Giorgio

    2013-01-01

    We study a chain of identical glassy systems in a constrained equilibrium, where each bond of the chain is forced to remain at a preassigned distance to the previous one. We apply this description to mean-field glassy systems in the limit of a long chain where each bond is close to the previous one. We show that this construction defines a pseudo-dynamic process that in specific conditions can formally describe real relaxational dynamics for long times. In particular, in mean-field spin glass models we can recover in this way the equations of Langevin dynamics in the long time limit at the dynamical transition temperature and below. We interpret the formal identity as evidence that in these situations the configuration space is explored in a quasi-equilibrium fashion. Our general formalism, which relates dynamics to equilibrium, puts slow dynamics in a new perspective and opens the way to the computation of new dynamical quantities in glassy systems. (paper)

  12. Structural and surface changes in glassy carbon due to strontium implantation and heat treatment

    Science.gov (United States)

    Odutemowo, O. S.; Malherbe, J. B.; Prinsloo, L. C.; Njoroge, E. G.; Erasmus, R.; Wendler, E.; Undisz, A.; Rettenmayr, M.

    2018-01-01

    There are still questions around the microstructure of glassy carbon (GC), like the observation of the micropores. These were proposed to explain the low density of GC. This paper explains the effect of ion bombardment (200 keV Sr+, 1 × 1016 Sr+/cm2 at RT) on the microstructure of GC. TEM and AFM show that micropores in pristine GC are destroyed leading to densification of GC from 1.42 g/cm3 to 2.03 g/cm3. The amorphisation of glassy carbon was also not complete with graphitic strands embedded within the GC. These were relatively few, as Raman analysis showed that the Sr implantation resulted in a typical amorphous Raman spectrum. Annealing of the sample at 900 °C only resulted in a slight recovery of the GC structure. AFM and SEM analysis showed that the surface of the sample became rougher after Sr implantation. The roughness increased after the sample was annealed at 600 °C due to segregation of Sr towards the surface of the GC. SEM measurements of a sample with both implanted and un-implanted edges after annealing at 900 °C, showed that the high temperature heat treatment did not affect the surface topography of un-irradiated GC.

  13. FTIR and Mössbauer spectroscopic study of sodium–aluminum–iron phosphate glassy materials for high level waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, S.V., E-mail: serge.stefanovsky@yandex.ru [Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Laboratory of Radioecology and Radiation Problems, Moscow (Russian Federation); Stefanovsky, O.I. [Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Laboratory of Radioecology and Radiation Problems, Moscow (Russian Federation); Remizov, M.B.; Belanova, E.A.; Kozlov, P.V. [FSUE PA Mayak, Central Plant Laboratory, Ozersk, Chelyabinsk Reg. (Russian Federation); Glazkova, Ya.S.; Sobolev, A.V.; Presniakov, I.A. [Lomonosov Moscow State University, Department of Radiochemistry (Russian Federation); Kalmykov, S.N. [Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Laboratory of Radioecology and Radiation Problems, Moscow (Russian Federation); Lomonosov Moscow State University, Department of Radiochemistry (Russian Federation); Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Laboratory of Radiochemistry, Moscow (Russian Federation); Myasoedov, B.F. [Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Laboratory of Radioecology and Radiation Problems, Moscow (Russian Federation); Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Laboratory of Radiochemistry, Moscow (Russian Federation)

    2015-11-15

    Complex sodium-aluminum-iron phosphate glassy materials with various Al{sub 2}O{sub 3} to Fe{sub 2}O{sub 3} ratio containing high level waste (HLW) surrogate were characterized by X-ray diffraction and scanning electron microscopy and studied in details by Fourier transform infrared (FTIR) spectroscopy. The samples with high Al{sub 2}O{sub 3} content and not containing Fe{sub 2}O{sub 3} were predominantly amorphous but subjected to devitrification under annealing. Addition of B{sub 2}O{sub 3} and partial Fe{sub 2}O{sub 3} substitution for Al{sub 2}O{sub 3} in the materials increases their resistance to devitrification whereas further substitution and NiO incorporation significantly increase the tendency to devitrification. FTIR spectra demonstrate changes in the structure of glassy materials caused by both structural variations in the anionic motif and occurrence of crystalline phases in the materials. According to Mössbauer spectroscopy data, iron in the glassy samples is present as octahedrally coordinated Fe{sup 3+} ions while in the partly devitrified samples iron is partitioned among vitreous and crystalline phases entering the vitreous phase mainly as Fe{sup 3+}O{sub 6} units and crystalline phases as major Fe{sup 3+} and minor Fe{sup 2+} ions in a magnetically ordered state and participating in a “fast” electronic exchange.

  14. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors.

    Science.gov (United States)

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T; Evoy, Stephane

    2016-03-14

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  15. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    2016-03-01

    Full Text Available Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  16. Dynamics and Geometry of Icosahedral Order in Liquid and Glassy Phases of Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Masato Shimono

    2015-07-01

    Full Text Available The geometrical properties of the icosahedral ordered structure formed in liquid and glassy phases of metallic glasses are investigated by using molecular dynamics simulations. We investigate the Zr-Cu alloy system as well as a simple model for binary alloys, in which we can change the atomic size ratio between alloying components. In both cases, we found the same nature of icosahedral order in liquid and glassy phases. The icosahedral clusters are observed in liquid phases as well as in glassy phases. As the temperature approaches to the glass transition point Tg, the density of the clusters rapidly grows and the icosahedral clusters begin to connect to each other and form a medium-range network structure. By investigating the geometry of connection between clusters in the icosahedral network, we found that the dominant connecting pattern is the one sharing seven atoms which forms a pentagonal bicap with five-fold symmetry. From a geometrical point of view, we can understand the mechanism of the formation and growth of the icosahedral order by using the Regge calculus, which is originally employed to formulate a theory of gravity. The Regge calculus tells us that the distortion energy of the pentagonal bicap could be decreased by introducing an atomic size difference between alloying elements and that the icosahedral network would be stabilized by a considerably large atomic size difference.

  17. Electrical studies on silver based fast ion conducting glassy materials

    International Nuclear Information System (INIS)

    Rao, B. Appa; Kumar, E. Ramesh; Kumari, K. Rajani; Bhikshamaiah, G.

    2014-01-01

    Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag 2 O−[(1−x)B 2 O 3 −xTeO 2 ] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO 2 as well as with temperature. The conductivity of the present glass system is found to be of the order of 10 −2 S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries

  18. New Scenario of Dynamical Heterogeneity in Supercooled Liquid and Glassy States of 2D Monatomic System.

    Science.gov (United States)

    Van Hoang, Vo; Teboul, Victor; Odagaki, Takashi

    2015-12-24

    Via analysis of spatiotemporal arrangements of atoms based on their dynamics in supercooled liquid and glassy states of a 2D monatomic system with a double-well Lennard-Jones-Gauss (LJG) interaction potential, we find a new scenario of dynamical heterogeneity. Atoms with the same or very close mobility have a tendency to aggregate into clusters. The number of atoms with high mobility (and size of their clusters) increases with decreasing temperature passing over a maximum before decreasing down to zero. Position of the peak moves toward a lower temperature if mobility of atoms in clusters is lower together with an enhancement of height of the peak. In contrast, the number of atoms with very low mobility or solidlike atoms (and size of their clusters) has a tendency to increase with decreasing temperature and then it suddenly increases in the vicinity of the glass transition temperature leading to the formation of a glassy state. A sudden increase in the number of strongly correlated solidlike atoms in the vicinity of a glass transition temperature (Tg) may be an origin of a drastical increase in viscosity of the glass-forming systems approaching the glass transition. In fact, we find that the diffusion coefficient decays exponentially with a fraction of solidlike atoms exhibiting a sudden decrease in the vicinity of the glass transition region.

  19. Pressure-induced transformations in computer simulations of glassy water

    Science.gov (United States)

    Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas

    2013-11-01

    Glassy water occurs in at least two broad categories: low-density amorphous (LDA) and high-density amorphous (HDA) solid water. We perform out-of-equilibrium molecular dynamics simulations to study the transformations of glassy water using the ST2 model. Specifically, we study the known (i) compression-induced LDA-to-HDA, (ii) decompression-induced HDA-to-LDA, and (iii) compression-induced hexagonal ice-to-HDA transformations. We study each transformation for a broad range of compression/decompression temperatures, enabling us to construct a "P-T phase diagram" for glassy water. The resulting phase diagram shows the same qualitative features reported from experiments. While many simulations have probed the liquid-state phase behavior, comparatively little work has examined the transitions of glassy water. We examine how the glass transformations relate to the (first-order) liquid-liquid phase transition previously reported for this model. Specifically, our results support the hypothesis that the liquid-liquid spinodal lines, between a low-density and high-density liquid, are extensions of the LDA-HDA transformation lines in the limit of slow compression. Extending decompression runs to negative pressures, we locate the sublimation lines for both LDA and hyperquenched glassy water (HGW), and find that HGW is relatively more stable to the vapor. Additionally, we observe spontaneous crystallization of HDA at high pressure to ice VII. Experiments have also seen crystallization of HDA, but to ice XII. Finally, we contrast the structure of LDA and HDA for the ST2 model with experiments. We find that while the radial distribution functions (RDFs) of LDA are similar to those observed in experiments, considerable differences exist between the HDA RDFs of ST2 water and experiment. The differences in HDA structure, as well as the formation of ice VII (a tetrahedral crystal), are a consequence of ST2 overemphasizing the tetrahedral character of water.

  20. Electrochemical and microstructural characterization of platinum supported on glassy carbon

    Directory of Open Access Journals (Sweden)

    Terzić Sanja

    2007-01-01

    Full Text Available The effect of the electrochemical oxidation of glassy carbon on the deposition of platinum particles and the electrocatalytic activity of platinum supported on oxidized glassy carbon were studied for methanol oxidation in H2SO4 solution. Platinum was potentiostatically deposited from H2SO4 + 6mM H2PtCl6 solution. Glassy carbon was anodically polarized in 1 M NaOH at 1.41 V (SCE for 35 and 95 s and in 0.5 M H2SO4 at 2V (SCE for 35; 95 s and 2.25 V for 35 and 95 s. Electrochemical treatment of the GC support leads to a better distribution of platinum on the substrate and has remarkable effect on the activity. The activity of the Pt/GCox electrode for methanol oxidation is larger than that of polycrystalline Pt and by more than one order of magnitude larger than that of a Pt/GC electrode. This increase in activity indicates the pronounced role of the organic residues of the GC support on the properties of Pt particles deposited on glassy carbon.

  1. Solute induced relaxation in glassy polymers: Experimental measurements and nonequilibrium thermodynamic model

    International Nuclear Information System (INIS)

    Minelli, Matteo; Doghieri, Ferruccio

    2014-01-01

    Data for kinetics of mass uptake from vapor sorption experiments in thin glassy polymer samples are here interpreted in terms of relaxation times for volume dilation. To this result, both models from non-equilibrium thermodynamics and from mechanics of volume relaxation contribute. Different kind of sorption experiments have been considered in order to facilitate the direct comparison between kinetics of solute induced volume dilation and corresponding data from process driven by pressure or temperature jumps

  2. Electrical properties of carbon nanotubes modified GaSe glassy system

    Science.gov (United States)

    Khan, Hana; Khan, Zubair M. S. H.; Islam, Shama; Rahman, Raja Saifu; Husain, M.; Zulfequar, M.

    2018-05-01

    In this paper we report the investigation of the effect of Carbon Nanotubes (CNT) addition on the electrical properties of GaSe Glassy system. Dielectric constant and dielectric loss of GaSe glassy system are found to increase on CNT addition. The conductivity of GaSe glasy systems is also found to increase on CNT addition. This behavior is attributed to the excellent conduction properties of Carbon Nanotube.

  3. Grain-boundary, glassy-phase identification and possible artifacts

    International Nuclear Information System (INIS)

    Simpson, Y.K.; Carter, C.B.; Sklad, P.; Bentley, J.

    1985-01-01

    Specimen artifacts such as grain boundary grooving, surface damage of the specimen, and Si contamination are shown experimentally to arise from the ion milling used in the preparation of transmission electron microscopy specimens. These artifacts in polycrystalline, ceramic specimens can cause clean grain boundaries to appear to contain a glassy phase when the dark-field diffuse scattering technique, the Fresnel fringe technique, and analytical electron microscopy (energy dispersive spectroscopy) are used to identify glassy phases at a grain boundary. The ambiguity in interpreting each of these techniques due to the ion milling artifacts will be discussed from a theoretical view point and compared to experimental results obtained for alumina

  4. A neutron-X-ray, NMR and calorimetric study of glassy Probucol synthesized using containerless techniques

    International Nuclear Information System (INIS)

    Weber, J.K.R.; Benmore, C.J.; Tailor, A.N.; Tumber, S.K.; Neuefeind, J.; Cherry, B.; Yarger, J.L.; Mou, Q.; Weber, W.; Byrn, S.R.

    2013-01-01

    Highlights: • Acoustic levitation was used to make phase-pure glassy forms of pharmaceutical compounds. • Neutrons, X-rays and NMR were used to characterize the glasses. • The glass comprised of slightly distorted molecules packed in a random network. • Potential for new drug synthesis routes is discussed. - Abstract: Acoustic levitation was used to trap 1–3 mm diameter drops of Probucol and other pharmaceutical materials in containerless conditions. Samples were studied in situ using X-ray diffraction and ex situ using neutron diffraction, NMR and DSC techniques. The materials were brought into non-equilibrium states by supersaturating solutions or by supercooling melts. The glass transition and crystallization temperatures of glassy Probucol were 29 ± 1 and 71 ± 1 °C respectively. The glassy form was stable with a shelf life of at least 8 months. A neutron/X-ray difference function of the glass showed that while molecular sub-groups remain rigid, many of the hydrogen correlations observed in the crystal become smeared out in the disordered material. The glass is principally comprised of slightly distorted Form I Probucol molecules with disordered packing rather than large changes in the individual molecular structure. Avoiding surface contact-induced nucleation provided access to highly non-equilibrium phases and enabled synthesis of phase-pure glasses

  5. A neutron-X-ray, NMR and calorimetric study of glassy Probucol synthesized using containerless techniques

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J.K.R., E-mail: rweber@anl.gov [Materials Development, Inc., Arlington Heights, IL 60004 (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); Benmore, C.J. [Argonne National Laboratory, Argonne, IL 60439 (United States); Department of Physics, Arizona State University, AZ 85287 (United States); Tailor, A.N.; Tumber, S.K. [Materials Development, Inc., Arlington Heights, IL 60004 (United States); Neuefeind, J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Cherry, B. [Magnetic Resonance Research Center, Arizona State University, AZ 85287 (United States); Department of Chemistry and Biochemistry, Arizona State University, AZ 85287 (United States); Yarger, J.L. [Department of Physics, Arizona State University, AZ 85287 (United States); Magnetic Resonance Research Center, Arizona State University, AZ 85287 (United States); Department of Chemistry and Biochemistry, Arizona State University, AZ 85287 (United States); Mou, Q. [Magnetic Resonance Research Center, Arizona State University, AZ 85287 (United States); Department of Chemistry and Biochemistry, Arizona State University, AZ 85287 (United States); Weber, W. [Department of Physics, Arizona State University, AZ 85287 (United States); Department of Chemistry and Biochemistry, Arizona State University, AZ 85287 (United States); Byrn, S.R. [Department of Industrial and Physical Pharmacy, Purdue University, IN 47907 (United States)

    2013-10-16

    Highlights: • Acoustic levitation was used to make phase-pure glassy forms of pharmaceutical compounds. • Neutrons, X-rays and NMR were used to characterize the glasses. • The glass comprised of slightly distorted molecules packed in a random network. • Potential for new drug synthesis routes is discussed. - Abstract: Acoustic levitation was used to trap 1–3 mm diameter drops of Probucol and other pharmaceutical materials in containerless conditions. Samples were studied in situ using X-ray diffraction and ex situ using neutron diffraction, NMR and DSC techniques. The materials were brought into non-equilibrium states by supersaturating solutions or by supercooling melts. The glass transition and crystallization temperatures of glassy Probucol were 29 ± 1 and 71 ± 1 °C respectively. The glassy form was stable with a shelf life of at least 8 months. A neutron/X-ray difference function of the glass showed that while molecular sub-groups remain rigid, many of the hydrogen correlations observed in the crystal become smeared out in the disordered material. The glass is principally comprised of slightly distorted Form I Probucol molecules with disordered packing rather than large changes in the individual molecular structure. Avoiding surface contact-induced nucleation provided access to highly non-equilibrium phases and enabled synthesis of phase-pure glasses.

  6. Square Wave Voltammetric Determination of 2-Thiouracil in Pharmaceuticals and Real Samples Using Glassy Carbon Electrode

    OpenAIRE

    Naveen M. Gokavi; Vijay P. Pattar; Atmanand M. Bagoji; Sharanappa T. Nandibewoor

    2013-01-01

    A simple and rapid method was developed using cyclic and square wave voltammetric techniques for the determination of trace-level sulfur containing compound, 2-thiouracil, at a glassy carbon electrode. 2-thiouracil produced two anodic peaks at 0.334 V and 1.421 V and a cathodic peak at −0.534 V. The square wave voltammetry of 2-thiouracil gave a good linear response in the range of 1–20 μM with a detection limit of 0.16 μM and quantification limit of 0.53 μM (0.0679 μg/g), which is in good ag...

  7. Thermonuclear reactor materials composed of glassy carbons

    International Nuclear Information System (INIS)

    Kazumata, Yukio.

    1979-01-01

    Purpose: To improve the durability to plasma radiation by the use of glassy carbon as the structural materials for the first wall and the blanket in thermonuclear devices. Constitution: The glassy carbon (glass-like carbon) is obtained by forming specific organic substances into a predetermined configuration and carbonizing them by heat decomposition under special conditions. They are impermeable carbon material of 1.40 - 1.70 specific gravity, less graphitizable and being almost in isotropic crystal forms in which isotropic structure such as in graphite is scarcely observed. They have an extremely high hardness, are less likely to be damaged when exposed to radiation and have great strength and corrosion resistance. Accordingly, the service life of the reactor walls and the likes can remarkably be increased by using the materials. (Horiuchi, T.)

  8. Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures

    Directory of Open Access Journals (Sweden)

    T. W. Wilson

    2012-09-01

    Full Text Available Atmospheric secondary organic aerosol (SOA is likely to exist in a semi-solid or glassy state, particularly at low temperatures and humidities. Previously, it has been shown that glassy aqueous citric acid aerosol is able to nucleate ice heterogeneously under conditions relevant to cirrus in the tropical tropopause layer (TTL. In this study we test if glassy aerosol distributions with a range of chemical compositions heterogeneously nucleate ice under cirrus conditions. Three single component aqueous solution aerosols (raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA and levoglucosan and one multi component aqueous solution aerosol (raffinose mixed with five dicarboxylic acids and ammonium sulphate were studied in both the liquid and glassy states at a large cloud simulation chamber. The investigated organic compounds have similar functionality to oxidised organic material found in atmospheric aerosol and have estimated temperature/humidity induced glass transition thresholds that fall within the range predicted for atmospheric SOA. A small fraction of aerosol particles of all compositions were found to nucleate ice heterogeneously in the deposition mode at temperatures relevant to the TTL (<200 K. Raffinose and HMMA, which form glasses at higher temperatures, nucleated ice heterogeneously at temperatures as high as 214.6 and 218.5 K respectively. We present the calculated ice active surface site density, ns, of the aerosols tested here and also of glassy citric acid aerosol as a function of relative humidity with respect to ice (RHi. We also propose a parameterisation which can be used to estimate heterogeneous ice nucleation by glassy aerosol for use in cirrus cloud models up to ~220 K. Finally, we show that heterogeneous nucleation by glassy aerosol may compete with ice nucleation on mineral dust particles in mid-latitudes cirrus.

  9. Positron annihilation study of graphite, glassy carbon and C60/C70 fullerene

    International Nuclear Information System (INIS)

    Hasegawa, Masayuki; Kajino, Masahiro; Yamaguchi, Sadae; Iwata, Tadao; Kuramoto, Eiichi; Takenaka, Minoru.

    1992-01-01

    ACAR (Angular Correlation of Annihilation Radiation) and positron lifetime measurements have been made on, HOPG (Highly Oriented Pyrolytic Graphite), isotropic fine-grained graphite, glassy carbons and C 60 /C 70 powder. HOPG showed marked bimodality along the c-axis and anisotropy in ACAR momentum distribution, which stem from characteristic annihilation between 'interlayer' positrons and π-electrons in graphite. ACAR curves of the isotropic graphite and glassy carbons are even narrower than that of HOPG perpendicular to the c-axis. Positron lifetime of 420 and 390 - 480 psec, much longer than that of 221 psec in HOPG, were observed for the isotropic graphite and glassy carbons respectively, which are due to positron trapping in structural voids in them. Positron lifetime and ACAR width (FWHM) can be well correlated to void sizes (1.7 to 5.0 nm) of glassy carbons which have been determined by small angle neutron (SAN) scattering measurements. ACAR curves and positron lifetime of C 60 /C 70 powder agree well with those of glassy carbons. This shows that positron wave functions extend, as in the voids of glassy carbons, much wider than open spaces of the octahedral interstices of the face-centered cubic (FCC) structure of C 60 crystal and strongly suggests positron trapping in the 'soccer ball' vacancy. Possible positron states in the carbon materials are discussed with a simple model of void volume-trapping. Preliminary results on neutron irradiation damage in HOPG are also presented. (author)

  10. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium.

    Science.gov (United States)

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03-200μmolL(-1). The lower detection limits were found to be 0.02μmolL(-1). The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Voltammetric quantitation of nitazoxanide by glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Rajeev Jain

    2013-12-01

    Full Text Available The present study reports voltammetric reduction of nitazoxanide in Britton–Robinson (B–R buffer by cyclic and square-wave voltammetry at glassy carbon electrode. A versatile fully validated voltammetric method for quantitative determination of nitazoxanide in pharmaceutical formulation has been proposed. A squrewave peak current was linear over the nitazoxanide concentration in the range of 20–140 µg/mL. The limit of detection (LOD and limit of quantification (LOQ was calculated to be 5.23 μg/mL and 17.45 μg/mL, respectively. Keywords: Nitazoxanide, Squarewave voltammetry, Glassy carbon electrode, Pharmaceutical formulation

  12. Fabrication and nano-imprintabilities of Zr-, Pd- and Cu-based glassy alloy thin films

    International Nuclear Information System (INIS)

    Takenaka, Kana; Saidoh, Noriko; Nishiyama, Nobuyuki; Inoue, Akihisa

    2011-01-01

    With the aim of investigating nano-imprintability of glassy alloys in a film form, Zr 49 Al 11 Ni 8 Cu 32 , Pd 39 Cu 29 Ni 13 P 19 and Cu 38 Zr 47 Al 9 Ag 6 glassy alloy thin films were fabricated on Si substrate by a magnetron sputtering method. These films exhibit a very smooth surface, a distinct glass transition phenomenon and a large supercooled liquid region of about 80 K, which are suitable for imprinting materials. Moreover, thermal nano-imprintability of these obtained films is demonstrated by using a dot array mold with a dot diameter of 90 nm. Surface observations revealed that periodic nano-hole arrays with a hole diameter of 90 nm were successfully imprinted on the surface of these films. Among them, Pd-based glassy alloy thin film indicated more precise pattern imprintability, namely, flatter residual surface plane and sharper hole edge. It is said that these glassy alloy thin films, especially Pd-based glassy alloy thin film, are one of the promising materials for fabricating micro-machines and nano-devices by thermal imprinting.

  13. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-01-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03–200 μmol L −1 . The lower detection limits were found to be 0.02 μmol L −1 . The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. - Highlights: • GCE was modified with multiwalled carbon nanotube and gold nanoparticles. • AuNP/MWCNT/GCE was used for the determination of diclofenac sodium. • Modified electrode was characterized by SEM, EDS and EIS. • The proposed method showed excellent analytical figures of merit. • This sensor was used for the determination of diclofenac sodium in real samples.

  14. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium

    Energy Technology Data Exchange (ETDEWEB)

    Afkhami, Abbas, E-mail: afkhami@basu.ac.ir; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03–200 μmol L{sup −1}. The lower detection limits were found to be 0.02 μmol L{sup −1}. The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. - Highlights: • GCE was modified with multiwalled carbon nanotube and gold nanoparticles. • AuNP/MWCNT/GCE was used for the determination of diclofenac sodium. • Modified electrode was characterized by SEM, EDS and EIS. • The proposed method showed excellent analytical figures of merit. • This sensor was used for the determination of diclofenac sodium in real samples.

  15. Spatially heterogeneous ages in glassy dynamics

    International Nuclear Information System (INIS)

    Castillo, Horacio E.; Chamon, Claudio Chamon; Cugliandolo, Leticia F.; Iguain, Jose Luis; Kennett, Malcolm P.

    2003-09-01

    We construct a framework for the study of fluctuations in the nonequilibrium relaxation of glassy systems with and without quenched disorder. We study two types of two-time local correlators with the aim of characterizing the heterogeneous evolution in these systems: in one case we average the local correlators over histories of the thermal noise, in the other case we simply coarse-grain the local correlators obtained for a given noise realization. We explain why the noise-averaged correlators describe the fingerprint of quenched disorder when it exists, while the coarse-grained correlators are linked to noise-induced mesoscopic fluctuations. We predict constraints on the distribution of the fluctuations of the coarse-grained quantities. In particular, we show that locally defined correlations and responses are connected by a generalized local out-of-equilibrium fluctuation-dissipation relation. We argue that large size heterogeneities in the age of the system survive in the long-time limit. A symmetry of the underlying theory, namely invariance under reparametrizations of the time coordinates, underlies these results. We establish a connection between the probabilities of spatial distributions of local coarse-grained quantities and the theory of dynamic random manifolds. We define, and discuss the behavior of, a two-time dependent correlation length from the spatial decay of the fluctuations in the two-time local functions. We characterize the fluctuations in the system in terms of their fractal properties. For concreteness, we present numerical tests performed on disordered spin models in finite and infinite dimensions. Finally, we explain how these ideas can be applied to the analysis of the dynamics of other glassy systems that can be either spin models without disorder or atomic and molecular glassy systems. (author)

  16. Emergence of Griffiths phase and glassy mixed phase in Sm0.5Ca0.5MnO3 nanomanganites

    International Nuclear Information System (INIS)

    Giri, S.K.; Yusuf, S.M.; Mukadam, M.D.; Nath, T.K.

    2014-01-01

    Graphical abstract: A detailed investigation on the effect of grain size on formation of Griffiths phase, and glassy mixed phase in CE-type antiferromagnetic Sm 0.5 Ca 0.5 MnO 3 manganite are carried out. A rigorous measurement of linear and non-linear ac magnetic susceptibilities, time dependent relaxation and aging phenomena in Sm 0.5 Ca 0.5 MnO 3 nanomanganite confirm the existence of a glassy mixed phase in the low temperature regime. The signature of Griffiths phase in nanosized manganite has been confirmed from the detailed ac and dc magnetization studies. The existence of Griffiths phase is verified through the anomalous behavior of the low field temperature dependent an inverse ac and dc magnetic susceptibility. Based on experimental results, the glassy phase of nanomanganites has been attributed to the phase separation effect and interaction between the ferromagnetic clusters. A phenomenological core/shell model has also been proposed based on the surface disorder to explain the observed Griffiths phase in these nanosized manganites. Fig. 1: (Left) The plot of inverse of ac susceptibility χ ac -1 measured at f = 1 Hz and H ac = 2 Oe as a function of temperature for S750 sample. Inset shows the same for S550 sample. (Right) A schematic of the proposed model to describe the magnetic state of the Sm 0.5 Ca 0.5 MnO 3 system at different average sizes. Highlights: • Effect of grain size on Griffiths phase and glassy mixed phase is discussed. • GP is confirmed by dc, linear and non-linear ac magnetization in nanomanganites. • Glassy mixed phase is discussed by time dependent relaxation and aging phenomena. • The existence of GP is verified through an inverse ac and dc magnetic susceptibility. • A phenomenological core/shell model has been proposed based on surface disorder. -- Abstract: A detailed investigation on the effect of grain size on formation of Griffiths phase (GP), and glassy mixed phase in CE-type antiferromagnetic Sm 0.5 Ca 0.5 MnO 3

  17. Dielectric relaxation in glassy Se75In25− xPbx alloys

    Indian Academy of Sciences (India)

    In this paper we report the effect of Pb incorporation in the dielectric properties of a-Se75In25 glassy alloy. The temperature and frequency dependence of the dielectric constants and the dielectric losses in glassy Se75In25−Pb ( = 0, 5, 10 and 15) alloys in the frequency range (1 kHz–5 MHz) and temperature range ...

  18. Electrochemical evaluation and determination of antiretroviral drug fosamprenavir using boron-doped diamond and glassy carbon electrodes.

    Science.gov (United States)

    Gumustas, Mehmet; Ozkan, Sibel A

    2010-05-01

    Fosamprenavir is a pro-drug of the antiretroviral protease inhibitor amprenavir and is oxidizable at solid electrodes. The anodic oxidation behavior of fosamprenavir was investigated using cyclic and linear sweep voltammetry at boron-doped diamond and glassy carbon electrodes. In cyclic voltammetry, depending on pH values, fosamprenavir showed one sharp irreversible oxidation peak or wave depending on the working electrode. The mechanism of the oxidation process was discussed. The voltammetric study of some model compounds allowed elucidation of the possible oxidation mechanism of fosamprenavir. The aim of this study was to determine fosamprenavir levels in pharmaceutical formulations and biological samples by means of electrochemical methods. Using the sharp oxidation response, two voltammetric methods were described for the determination of fosamprenavir by differential pulse and square-wave voltammetry at the boron-doped diamond and glassy carbon electrodes. These two voltammetric techniques are 0.1 M H(2)SO(4) and phosphate buffer at pH 2.0 which allow quantitation over a 4 x 10(-6) to 8 x 10(-5) M range using boron-doped diamond and a 1 x 10(-5) to 1 x 10(-4) M range using glassy carbon electrodes, respectively, in supporting electrolyte. All necessary validation parameters were investigated and calculated. These methods were successfully applied for the analysis of fosamprenavir pharmaceutical dosage forms, human serum and urine samples. The standard addition method was used in biological media using boron-doped diamond electrode. No electroactive interferences from the tablet excipients or endogenous substances from biological material were found. The results were statistically compared with those obtained through an established HPLC-UV technique; no significant differences were found between the voltammetric and HPLC methods.

  19. mwnts composite film modified glassy carbon electrode

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: A poly p-aminosalicylic acid (Poly(p-ASA)) and multiwall carbon nanotubes. (MWCNTs) composite modified glassy carbon (GC) electrode was constructed by casting the MWNTs on the GC electrode surface followed by electropolymerization of the p-ASA on the MWCNTs/GCE. The electrochemical behaviours ...

  20. Voltammetric pH sensing using carbon electrodes: glassy carbon behaves similarly to EPPG.

    Science.gov (United States)

    Lu, Min; Compton, Richard G

    2014-09-21

    Developing and building on recent work based on a simple sensor for pH determination using unmodified edge plane pyrolytic graphite (EPPG) electrodes, we present a voltammetric method for pH determination using a bare unmodified glassy carbon (GC) electrode. By exploiting the pH sensitive nature of quinones present on carbon edge-plane like sites within the GC, we show how GC electrodes can be used to measure pH. The electro-reduction of surface quinone groups on the glassy carbon electrode was characterised using cyclic voltammetry (CV) and optimised with square-wave voltammetry (SWV) at 298 K and 310 K. At both temperatures, a linear correlation was observed, corresponding to a 2 electron, 2 proton Nernstian response over the aqueous pH range 1.0 to 13.1. As such, unmodified glassy carbon electrodes are seen to be pH dependent, and the Nernstian response suggests its facile use for pH sensing. Given the widespread use of glassy carbon electrodes in electroanalysis, the approach offers a method for the near-simultaneous measurement and monitoring of pH during such analyses.

  1. Relation between time-temperature transformation and continuous heating transformation diagrams of metallic glassy alloys

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2005-01-01

    The time-temperature transformation (TTT) diagrams for the onset of devitrification of the Ge-Ni-La and Cu-Hf-Ti glassy alloys were calculated from the isothermal differential calorimetry data using an Arrhenius equation. The continuous heating transformation (CHT) diagrams for the onset of devitrification of the glassy alloys were subsequently recalculated from TTT diagrams. The recalculation method used for conversion of the TTT into CHT diagrams produces reasonable results and is not sensitive to the type of the devitrification reaction (polymorphous or primary transformation). The diagrams allow to perform a comparison of the stabilities of glassy alloys on a long-term scale. The relationship between these diagrams is discussed

  2. Playback interference of glassy-winged sharp shooter communication

    Science.gov (United States)

    Animal communication is vital to reproduction, particularly for securing a mate. Insects commonly communicate by exchanging vibrational signals that are transmitted through host plants. The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is an important vector of Xylella fastidiosa, a pl...

  3. How Glassy States Affect Brown Carbon Production?

    Science.gov (United States)

    Liu, P.; Li, Y.; Wang, Y.; Bateman, A. P.; Zhang, Y.; Gong, Z.; Gilles, M. K.; Martin, S. T.

    2015-12-01

    Secondary organic material (SOM) can become light-absorbing (i.e. brown carbon) via multiphase reactions with nitrogen-containing species such as ammonia and amines. The physical states of SOM, however, potentially slow the diffusion of reactant molecules in organic matrix under conditions that semisolids or solids prevail, thus inhibiting the browning reaction pathways. In this study, the physical states and the in-particle diffusivity were investigated by measuring the evaporation kinetics of both water and organics from aromatic-derived SOMs using a quartz-crystal-microbalance (QCM). The results indicate that the SOMs derived from aromatic precursors toluene and m-xylene became solid (glassy) and the in particle diffusion was significantly impeded for sufficiently low relative humidity ( toluene-derived SOM after ammonia exposure at varied RHs. The results suggest that the production of light-absorbing nitrogen-containing compounds from multiphase reactions with ammonia was kinetically limited in the glassy organic matrix, which otherwise produce brown carbon. The results of this study have significant implications for production and optical properties of brown carbon in urban atmospheres that ultimately influence the climate and tropospheric photochemistry.

  4. Shear-transformation-zone theory of linear glassy dynamics.

    Science.gov (United States)

    Bouchbinder, Eran; Langer, J S

    2011-06-01

    We present a linearized shear-transformation-zone (STZ) theory of glassy dynamics in which the internal STZ transition rates are characterized by a broad distribution of activation barriers. For slowly aging or fully aged systems, the main features of the barrier-height distribution are determined by the effective temperature and other near-equilibrium properties of the configurational degrees of freedom. Our theory accounts for the wide range of relaxation rates observed in both metallic glasses and soft glassy materials such as colloidal suspensions. We find that the frequency-dependent loss modulus is not just a superposition of Maxwell modes. Rather, it exhibits an α peak that rises near the viscous relaxation rate and, for nearly jammed, glassy systems, extends to much higher frequencies in accord with experimental observations. We also use this theory to compute strain recovery following a period of large, persistent deformation and then abrupt unloading. We find that strain recovery is determined in part by the initial barrier-height distribution, but that true structural aging also occurs during this process and determines the system's response to subsequent perturbations. In particular, we find by comparison with experimental data that the initial deformation produces a highly disordered state with a large population of low activation barriers, and that this state relaxes quickly toward one in which the distribution is dominated by the high barriers predicted by the near-equilibrium analysis. The nonequilibrium dynamics of the barrier-height distribution is the most important of the issues raised and left unresolved in this paper.

  5. Electrochemical oxidation of niclosamide at a glassy carbon ...

    African Journals Online (AJOL)

    Cyclic voltammetry, square-wave voltammetry and controlled potential electrolysis have been used to study the electrochemical oxidation behaviour of niclosamide at a glassy carbon electrode. The number of electrons transferred, the wave characteristics, the diffusion coefficient and reversibility of the reactions have been ...

  6. Glassy carbon supercapacitor: 100,000 cycles demonstrated

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M; Braun, A; Schnyder, B; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    A 5 V glassy carbon capacitor stack was built consisting of four bipolar and two end-plate electrodes. More than 100,000 charging/discharging cycles were applied to test the stability of the double-layer capacitor. Low and high frequency resistances were measured as a function of the number of cycles. (author) 2 figs., 1 ref.

  7. Observation of glassy state relaxation during annealing of frozen sugar solutions by X-ray computed tomography.

    Science.gov (United States)

    Nakagawa, Kyuya; Tamiya, Shinri; Do, Gabsoo; Kono, Shinji; Ochiai, Takaaki

    2018-06-01

    Glassy phase formation in a frozen product determines various properties of the freeze-dried products. When an aqueous solution is subjected to freezing, a glassy phase forms as a consequence of freeze-concentration. During post-freezing annealing, the relaxation of the glassy phase and the ripening of ice crystals (i.e. Ostwald ripening) spontaneously occur, where the kinetics are controlled by the annealing and glass transition temperatures. This study was motivated to observe the progress of glassy state relaxation separate from ice coarsening during annealing. X-ray computed tomography (CT) was used to observe a frozen and post-freezing annealed solutions by using monochromatized X-ray from the synchrotron radiation. CT images were successfully obtained, and the frozen matrix were analyzed based on the gray level values that were equivalent to the linear X-ray attenuation coefficients of the observed matters. The CT images obtained from rapidly frozen sucrose and dextrin solutions with different concentrations gave clear linear relationships between the linear X-ray attenuation coefficients values and the solute concentrations. It was confirmed that the glassy state relaxation progressed as increasing annealing time, and this trend was larger in the order of the glass transition temperature of the maximally freeze-concentrated phase. The sucrose-water system required nearly 20 h of annealing time at -5 °C for the completion of the glassy phase relaxation, whereas dextrin-water systems required much longer periods because of their higher glass transition temperatures. The trends of ice coarsening, however, did not perfectly correspond to the trends of the relaxation, suggesting that the glassy phase relaxation and Ostwald ripening would jointly control the ice crystal growth/ripening kinetics, and the dominant mechanism differed by the annealing stage. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. SUPERNOVA SHOCK-WAVE-INDUCED CO-FORMATION OF GLASSY CARBON AND NANODIAMOND

    Energy Technology Data Exchange (ETDEWEB)

    Stroud, Rhonda [Naval Research Laboratory, Washington, D.C.; Chisholm, Matthew F [ORNL; Heck, Phillipp [The Field Museum, Chicago, IL; Alexander, Conel [Carnegie Institution of Washington; Nittler, Larry [Carnegie Institution of Washington

    2011-01-01

    Nanodiamond (ND) was the first extrasolar dust phase to be identified in meteorites. However, the 2 nm average size of the NDs precludes isotopic analysis of individual particles, and thus their origin(s) remains controversial. Using electron microscopy with subnanometer resolution, we show that ND separates from the Allende and Murchison meteorites are actually a two-phase mixture of ND and glassy carbon. This phase mixture is likely the product of supernova shock-wave transformation of pre-formed organics in the interstellar medium (ISM). The glassy carbon ND mixture is also a plausible contributor to the 2175 extinction feature in the diffuse ISM.

  9. Solvated electron structure in glassy matrices

    International Nuclear Information System (INIS)

    Kevan, L.

    1981-01-01

    Current knowledge of the detailed geometrical structure of solvated electrons in aqueous and organic media is summarized. The geometry of solvated electrons in glassy methanol, ethanol, and 2-methyltetrahydrofuran is discussed. Advanced electron magnetic resonance methods and development of new methods of analysis of electron spin echo modulation patterns, second moment line shapes, and forbidden photon spin-flip transitions for paramagnetic species in these disordered systems are discussed. 66 references are cited

  10. Importance of thiol-functionalized molecules for the structure and properties of compression-molded glassy wheat gluten bioplastics.

    Science.gov (United States)

    Jansens, Koen J A; Lagrain, Bert; Brijs, Kristof; Goderis, Bart; Smet, Mario; Delcour, Jan A

    2013-11-06

    High-temperature compression molding of wheat gluten at low water levels yields a rigid plastic-like material. We performed a systematic study to determine the effect of additives with multiple thiol (SH) groups on gluten network formation during processing and investigate the impact of the resulting gluten network on the mechanical properties of the glassy end product. To this end, a fraction of the hydroxyl groups of different polyols was converted into SH functionalities by esterifying with 3-mercaptopropionic acid (MPA). The monofunctional additive MPA was evaluated as well. During low-temperature mixing SH-containing additives decreased the gluten molecular weight, whereas protein cross-linking occurred during high-temperature compression molding. The extent of both processes depended on the molecular architecture of the additives and their concentration. After molding, the material strength and failure strain increased without affecting the modulus, provided the additive concentration was low. The strength decreased again at too high concentrations for polyols with low SH functionalization. Attributing these effects solely to the interplay of plasticization and the SH-facilitated introduction of cross-links is inadequate, since an improvement in both strength and failure strain was also observed in the presence of high levels of MPA. It is hypothesized that, regardless of the molecular structure of the additive, the presence of SH-containing groups induces conformational changes which contribute to the mechanical properties of glassy gluten materials.

  11. Temperature and frequency response of conductivity in Ag2S doped chalcogenide glassy semiconductor

    Science.gov (United States)

    Ojha, Swarupa; Das, Anindya Sundar; Roy, Madhab; Bhattacharya, Sanjib

    2018-06-01

    The electric conductivity of chalcogenide glassy semiconductor xAg2S-(1-x)(0.5S-0.5Te) has been presented here as a function of temperature and frequency. Formation of different nanocrystallites has been confirmed from X-ray diffraction study. It is also noteworthy that average size of nanocrystallites decreases with the increase of dislocation density. Dc conductivity data have been interpreted using Mott's model and Greaves's model in low and high temperature regions respectively. Ac conductivity above the room temperature has been analyzed using Meyer-Neldel (MN) conduction rule. It is interestingly noted that Correlated Barrier Hopping (CBH) model is the most appropriate conduction mechanism for x = 0.35, where pairs of charge carrier are considered to hop over the potential barrier between the sites via thermal activation. To interpret experimental data for x = 0.45, modified non-overlapping small polaron tunnelling (NSPT) model is supposed to be appropriate model due to tunnelling through grain boundary. The conductivity spectra at various temperatures have been analyzed using Almond-West Formalism (power law model). Scaling of conductivity spectra reveals that electrical relaxation process of charge carriers (polaron) is temperature independent but depends upon the composition of the present chalcogenide glassy system.

  12. Experimental-calculation technique for Ksub(IC) determination using the samples of decreased dimensions

    International Nuclear Information System (INIS)

    Vinokurov, V.A.; Dymshits, A.V.; Pirusskij, M.V.; Ovsyannikov, B.M.; Kononov, V.V.

    1981-01-01

    A possibility to decrease the size of samples, which is necessary for the reliable determination of fractUre toughness Ksub(1c), is established. The dependences of crack-resistance caracteristics on the sample dimensions are determined experimentally. The static bending tests are made using the 1251 model of ''Instron'' installation with a specially designed device. The samples of the 20KhNMF steel have been tested. It is shown that the Ksub(1c) value, determined for the samples with the largest netto cross section (50x100 rm), is considerably lower than Ksub(1c) values, determined for the samples with the decreased sizes. it is shown that the developed experimental-calculated method of Ksub(1c) determination can be practically used for the samples of the decreased sizes with the introduction of the corresponding amendment coefficient [ru

  13. Graphene oxide-mediated electrochemistry of glucose oxidase on glassy carbon electrodes.

    Science.gov (United States)

    Castrignanò, Silvia; Valetti, Francesca; Gilardi, Gianfranco; Sadeghi, Sheila J

    2016-01-01

    Glucose oxidase (GOD) was immobilized on glassy carbon electrodes in the presence of graphene oxide (GO) as a model system for the interaction between GO and biological molecules. Lyotropic properties of didodecyldimethylammonium bromide (DDAB) were used to stabilize the enzymatic layer on the electrode surface resulting in a markedly improved electrochemical response of the immobilized GOD. Transmission electron microscopy images of the GO with DDAB confirmed the distribution of the GO in a two-dimensional manner as a foil-like material. Although it is known that glassy carbon surfaces are not ideal for hydrogen peroxide detection, successful chronoamperometric titrations of the GOD in the presence of GO with β-d-glucose were performed on glassy carbon electrodes, whereas no current response was detected upon β-d-glucose addition in the absence of GO. The GOD-DDAB-GO system displayed a high turnover efficiency and substrate affinity as a glucose biosensor. The simplicity and ease of the electrode preparation procedure of this GO/DDAB system make it a good candidate for immobilizing other biomolecules for fabrication of amperometric biosensors. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  14. SUPERNOVA SHOCK-WAVE-INDUCED CO-FORMATION OF GLASSY CARBON AND NANODIAMOND

    International Nuclear Information System (INIS)

    Stroud, Rhonda M.; Chisholm, Matthew F.; Heck, Philipp R.; Alexander, Conel M. O'D.; Nittler, Larry R.

    2011-01-01

    Nanodiamond (ND) was the first extrasolar dust phase to be identified in meteorites. However, the 2 nm average size of the NDs precludes isotopic analysis of individual particles, and thus their origin(s) remains controversial. Using electron microscopy with subnanometer resolution, we show that ND separates from the Allende and Murchison meteorites are actually a two-phase mixture of ND and glassy carbon. This phase mixture is likely the product of supernova shock-wave transformation of pre-formed organics in the interstellar medium (ISM). The glassy carbon-ND mixture is also a plausible contributor to the 2175 A extinction feature in the diffuse ISM.

  15. Permeation of Mixed Penetrants through Glassy Polymer Membranes.

    Science.gov (United States)

    1985-03-15

    and LOPE. Also, ESCA was used in conjunction with plasma etching to determine the effects of the gas phase fluorine concentration and fluorination...at 35 3C. ARD-AISS5 65 PERMEATION OF MIXED PENETRANTS THROUGH GLASSY POLYMER 213 MENBRANES (U) NORTH CAROLINA STATE UNIV AT RALEIGH R T CHERN ET AL. 15

  16. Operation of low-energy ion implanters for Si, N, C ion implantation into silicon and glassy carbon

    International Nuclear Information System (INIS)

    Carder, D.A.; Markwitz, A.

    2009-01-01

    This report details the operation of the low-energy ion implanters at GNS Science for C, N and Si implantations. Two implanters are presented, from a description of the components through to instructions for operation. Historically the implanters have been identified with the labels 'industrial' and 'experimental'. However, the machines only differ significantly in the species of ions available for implantation and sample temperature during implantation. Both machines have been custom designed for research purposes, with a wide range of ion species available for ion implantation and the ability to implant two ions into the same sample at the same time from two different ion sources. A fast sample transfer capability and homogenous scanning profiles are featured in both cases. Samples up to 13 mm 2 can be implanted, with the ability to implant at temperatures down to liquid nitrogen temperatures. The implanters have been used to implant 28 Si + , 14 N + and 12 C + into silicon and glassy carbon substrates. Rutherford backscattering spectroscopy has been used to analyse the implanted material. From the data a Si 30 C 61 N 9 layer was measured extending from the surface to a depth of about 77 ± 2 nm for (100) silicon implanted with 12 C + and 14 N + at multiple energies. Silicon and nitrogen ion implantation into glassy carbon produced a Si (40.5 %), C (38 %), N (19.5 %) and O (2%) layer centred around a depth of 50 ± 2 nm from the surface. (author). 8 refs., 20 figs

  17. Electrochemical deposition of gold nanoparticles on carbon nanotube coated glassy carbon electrode for the improved sensing of tinidazole

    International Nuclear Information System (INIS)

    Shahrokhian, Saeed; Rastgar, Shokoufeh

    2012-01-01

    The electrochemical reduction of tinidazole (TNZ) is studied on gold-nanoparticle/carbon-nanotubes (AuNP/CNT) modified glassy carbon electrodes using the linear sweep voltammetry. An electrochemical procedure was used for the deposition of gold nanoparticles onto the carbon nanotube film pre-cast on a glassy carbon electrode surface. The resulting nanoparticles were characterized by scanning electron microscopy and cyclic voltammetry. The effect of the electrodeposition conditions, e.g., salt concentration and deposition time on the response of the electrode was studied. Also, the effect of experimental parameters, e.g., potential and time of accumulation, pH of the buffered solutions and the potential sweep rate on the response is examined. Under the optimal conditions, the modified electrode showed a wide linear response toward the concentration of TNZ in the range of 0.1–50 μM with a detection limit of 10 nM. The prepared electrode was successfully applied for the determination of TNZ in pharmaceutical and clinical samples.

  18. A 3D Microfluidic Chip for Electrochemical Detection of Hydrolysed Nucleic Bases by a Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Jana Vlachova

    2015-01-01

    Full Text Available Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH. It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.

  19. A 3D microfluidic chip for electrochemical detection of hydrolysed nucleic bases by a modified glassy carbon electrode.

    Science.gov (United States)

    Vlachova, Jana; Tmejova, Katerina; Kopel, Pavel; Korabik, Maria; Zitka, Jan; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene

    2015-01-22

    Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion) for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH). It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.

  20. Effects of nymphal diet and adult feeding on allocation of resources to glassy-winged sharpshooter egg production

    Science.gov (United States)

    The glassy-winged sharpshooter is an invasive insect capable of transmitting the bacterial pathogen Xylella fastidiosa. Pre-oviposition periods of laboratory reared glassy-winged sharpshooters are variable. Here, two questions were addressed: does nymphal diet affect pre-oviposition period and how d...

  1. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2012-09-01

    Full Text Available The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA, levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosol particles that have re

  2. Proton nuclear magnetic resonance studies of hydrogen diffusion and electron tunneling in Ni-Nb-Zr-H glassy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Niki, Haruo; Okuda, Hiroyuki; Oshiro, Morihito; Yogi, Mamoru [Department of Physics, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213 (Japan); Seki, Ichiro; Fukuhara, Mikio [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2012-06-15

    Using the Fourier transform of the echo envelope, the proton line shapes, spin-lattice relaxation time, and spin-spin relaxation time have been measured in a (Ni{sub 0.36}Nb{sub 0.24}Zr{sub 0.40}){sub 90}H{sub 10} glassy alloy at 1.83 T ({approx}78 MHz) and at temperatures between 1.8 and 300 K. First, the spectral line width decreases abruptly between 1.8 and 2.1 K. Next, it remains almost constant at 13 kHz up to {approx}150 K. Finally, the line width decreases as the temperature increases from {approx}150 to 300 K. The initial decrease in the spectral line width is ascribed to the distribution of the external field, which is caused by the penetration of vortices in the superconducting state. The subsequent leveling off in the spectral line width is ascribed to the dipole-dipole interaction between protons when hydrogen atoms are trapped into vacancies among the Zr-centered icosahedral Zr{sub 5}Ni{sub 5}Nb{sub 3} clusters. The final decrease in the spectral line width is ascribed to the motional narrowing of the width that is caused by the movement of hydrogen atoms. The temperature dependences of the spin-lattice and spin-spin relaxation time showed that at temperature above 150 K and the activation energy of 8.7 kJ/mol allowed the hydrogen atoms to migrate among the clusters. The distance between the hydrogen atoms is estimated to be 2.75 A. Hydrogen occupancies among clusters in the (Ni{sub 0.36}Nb{sub 0.24}Zr{sub 0.40}){sub 90}H{sub 10} glassy alloy play an important role in the diffusion behavior and in the electronic properties of this alloy.

  3. Electric resistivity and thermoelectricity of Ni-Nb-Zr and Ni-Nb-Zr-H glassy alloys

    Science.gov (United States)

    Fukuhara, Mikio; Inoue, Akihisa

    2010-09-01

    Electric resistivity ρ and thermoelectric power S of Ni 36Nb 24Zr 40 and (Ni 0.36Nb 0.24Zr 0.4) 90H 10 glassy alloys were investigated in temperature region between 1.5 and 300 K. After resistivity curves of both alloys increase gradually with decreasing temperature down to around 6 K, they dropped suddenly and then reached zero resistivity at 2.1 K, leading to superconductivity. Linear curve with negative TCR of ρ vs T2 and slight increase of S/ T in temperature region down to around 6 K clearly reveal Fermi-liquid phenomenon in electronic state for both alloys independent of hydrogen content.

  4. Electric resistivity and thermoelectricity of Ni-Nb-Zr and Ni-Nb-Zr-H glassy alloys

    International Nuclear Information System (INIS)

    Fukuhara, Mikio; Inoue, Akihisa

    2010-01-01

    Electric resistivity ρ and thermoelectric power S of Ni 36 Nb 24 Zr 40 and (Ni 0.36 Nb 0.24 Zr 0.4 ) 90 H 10 glassy alloys were investigated in temperature region between 1.5 and 300 K. After resistivity curves of both alloys increase gradually with decreasing temperature down to around 6 K, they dropped suddenly and then reached zero resistivity at 2.1 K, leading to superconductivity. Linear curve with negative TCR of ρ vs T 2 and slight increase of S/T in temperature region down to around 6 K clearly reveal Fermi-liquid phenomenon in electronic state for both alloys independent of hydrogen content.

  5. Electrocatalytic simultaneous determination of ascorbic acid, uric acid and L-Cysteine in real samples using quercetin silver nanoparticles-graphene nanosheets modified glassy carbon electrode

    Science.gov (United States)

    Zare, Hamid R.; Jahangiri-Dehaghani, Fahime; Shekari, Zahra; Benvidi, Ali

    2016-07-01

    By immobilizing of quercetin at the surface of a glassy carbon electrode modified with silver nanoparticles and graphene nanosheets (Q-AgNPs-GNs-GCE) a new sensor has been fabricated. The cyclic voltammogram of Q-AgNPs-GNs-GCE shows a stable redox couple with surface confined characteristics. Q-AgNPs-GNs-GCE demonstrated a high catalytic activity for L-Cysteine (L-Cys) oxidation. Results indicated that L-Cys peak potential at Q-AgNPs-GNs-GCE shifted to less positive values compared to GNs-GCE or AgNPs-GCE. Also, the kinetic parameters such as the electron transfer coefficient,, and the heterogeneous electron transfer rate constant, k‧, for the oxidation of L-Cys at the Q-AgNPs-GNs-GCE surface were estimated. In differential pulse voltammetric determination, the detection limit of L-Cys was obtained 0.28 μM, and the calibration plots were linear within two ranges of 0.9-12.4 μM and 12.4-538.5 μM of L-Cys. Also, the proposed modified electrode is used for the simultaneous determinations of ascorbic acid (AA), uric acid (UA), and L-Cys. Finally, this study has demonstrated the practical analytical utility of the sensor for determination of AA in vitamin C tablet, L-Cys in a milk sample and UA in a human urine sample.

  6. An amperometric penicillin biosensor with enhanced sensitivity based on co-immobilization of carbon nanotubes, hematein, and {beta}-lactamase on glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Chen Bi; Ma Ming [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Su Xiaoli, E-mail: xsu@hunnu.edu.cn [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China)

    2010-07-26

    An amperometric penicillin biosensor with enhanced sensitivity was successfully developed by co-immobilization of multi-walled carbon nanotubes (MWCNTs), hematein, and {beta}-lactamase on glassy carbon electrode using a layer-by-layer assembly technique. Under catalysis of the immobilized enzyme, penicillin was hydrolyzed, decreasing the local pH. The pH change was monitored amperometrically with hematein as a pH-sensitive redox probe. MWCNTs were used as an electron transfer enhancer as well as an efficient immobilization matrix for the sensitivity enhancement. The effects of immobilization procedure, working potential, enzyme quantity, buffer concentration, and sample matrix were investigated. The biosensor offered a minimum detection limit of 50 nM (19 {mu}g L{sup -1}) for penicillin V, lower than those of the conventional pH change-based biosensors by more than two orders of magnitude. The electrode-to-electrode variation of the response sensitivity was 7.0% RSD.

  7. An amperometric penicillin biosensor with enhanced sensitivity based on co-immobilization of carbon nanotubes, hematein, and β-lactamase on glassy carbon electrode

    International Nuclear Information System (INIS)

    Chen Bi; Ma Ming; Su Xiaoli

    2010-01-01

    An amperometric penicillin biosensor with enhanced sensitivity was successfully developed by co-immobilization of multi-walled carbon nanotubes (MWCNTs), hematein, and β-lactamase on glassy carbon electrode using a layer-by-layer assembly technique. Under catalysis of the immobilized enzyme, penicillin was hydrolyzed, decreasing the local pH. The pH change was monitored amperometrically with hematein as a pH-sensitive redox probe. MWCNTs were used as an electron transfer enhancer as well as an efficient immobilization matrix for the sensitivity enhancement. The effects of immobilization procedure, working potential, enzyme quantity, buffer concentration, and sample matrix were investigated. The biosensor offered a minimum detection limit of 50 nM (19 μg L -1 ) for penicillin V, lower than those of the conventional pH change-based biosensors by more than two orders of magnitude. The electrode-to-electrode variation of the response sensitivity was 7.0% RSD.

  8. Glassy slags as novel waste forms for remediating mixed wastes with high metal contents

    International Nuclear Information System (INIS)

    Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Gong, M.; Ebert, W.L.

    1994-01-01

    Argonne National Laboratory (ANL) is developing a glassy slag final waste form for the remediation of low-level radioactive and mixed wastes with high metal contents. This waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. This work indicates that glassy slag shows promise as final waste form because (1) it has similar or better chemical durability than high-level nuclear waste (HLW) glasses, (2) it can incorporate large amounts of metal wastes, (3) it can incorporate waste streams having low contents of flux components (boron and alkalis), (4) it has less stringent processing requirements (e.g., viscosity and electric conductivity) than glass waste forms, (5) its production can require little or no purchased additives, which can result in greater reduction in waste volume and overall treatment costs. By using glassy slag waste forms, minimum additive waste stabilization approach can be applied to a much wider range of waste streams than those amenable only to glass waste forms

  9. An electrochemical sensor for rizatriptan benzoate determination using Fe3O4 nanoparticle/multiwall carbon nanotube-modified glassy carbon electrode in real samples.

    Science.gov (United States)

    Madrakian, Tayyebeh; Maleki, Somayeh; Heidari, Mozhgan; Afkhami, Abbas

    2016-06-01

    In this paper a sensitive and selective electrochemical sensor for determination of rizatriptan benzoate (RZB) was proposed. A glassy carbon electrode was modified with nanocomposite of multiwalled carbon nanotubes (MWCNTs) and Fe3O4 nanoparticles (Fe3O4/MWCNTs/GCE). The results obtained clearly show that the combination of MWCNTs and Fe3O4 nanoparticles definitely improves the sensitivity of modified electrode to RZB determination. The morphology and electroanalytical performance of the fabricated sensor were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), square wave voltammetry (SWV) and cyclic voltammetry (CV). Also, the effect of experimental and instrumental parameters on the sensor response was evaluated. The square wave voltammetric response of the electrode to RZB was linear in the range 0.5-100.0 μmol L(-1) with a detection limit of 0.09 μmol L(-1) under the optimum conditions. The investigated method showed good stability, reproducibility and repeatability. The proposed sensor was successfully applied for real life samples of blood serum and RZB determination in pharmaceutical. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Voltammetric determination of sudan ii in food samples at graphene modified glassy carbon electrode based on the enhancement effect of sodium dodecyl sulfate

    International Nuclear Information System (INIS)

    Ma, X.; Chen, M.; Chao, M.

    2013-01-01

    Summary: Herein, a novel electrochemical method was de veloped for the determination of Sudan II based on the electrochemical catalytic activity of graphene modified glassy carbon electrode (GME) and the enhancement effect of sodium dodecyl sulfate (SDS). In a pH 6.0 phosphate buffer solution, Sudan II exhibited a pair of well-defined quasi reversible redox peaks at the GME in the presence of 5.0x10/sup -5/ mol L/sup 1/ SDS. The oxidation peak current of Sudan II was linearly proportional to its concentration in a range from 4.0x10/sup -8/ to 4.0x10/sup -6/ mol L/sup 1/, with a linear regression equation of ipa (A) = 3.35 c + 5.96 x 10/sup -6/, r = 0.9988 and a detection limit of 8.0x10/sup -9/ mol L/sup 1/. The recoveries from the standards fortified blank samples were in the range of 94.7% to 97.5% with RSD lower than 4.0%. The novel method has been successfully used to determine Sudan II in food products with satisfactory results. (author)

  11. A study on the positron annihilation of glassy Bi1Sr1Ca1Cu2Ox quenched from the molten liquid

    International Nuclear Information System (INIS)

    Hong Zhang; Xiao-Guang Wang; Le Luo; Shu-Hui Hu

    1989-01-01

    Some experimental results about the change of positron lifetime and Doppler broadening in glassy Bi 1 Sr 1 Ca 1 Cu 2 O x samples after post-annealing are reported. X-ray diffraction was used to examine the existing phases. Positron annihilation measurements indicate that there are two crystallization transformations from 20 0 to 830 0 C

  12. Surface oxidation in glassy arsenic trisulphide induced by high-energy γ-irradiation

    International Nuclear Information System (INIS)

    Shpotyuk, M.; Shpotyuk, O.; Serkiz, R.; Demchenko, P.; Kozhyukhin, S.

    2014-01-01

    Influence of high-energy γ-irradiation with ∼3 MGy dose on glassy g-As 2 S 3 was investigated by a complex of scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction methods. A white layer composed of separate 1–2 μm rhombohedral arsenolite As 2 O 3 crystallites was observed at the surface of γ-irradiated samples. These As 2 O 3 extractions along with crystallised S allotropes are responsible for expansion of the first sharp diffraction peaks in the XRD patterns of g-As 2 S 3 . - Highlights: • As 2 O 3 crystallites are observed at the surface of γ-irradiated As 2 S 3 samples. • Observed crystallites can be removed from the surface after washing and polishing. • γ-Irradiation broadens the FSDP due to satellite lines located on its both sides. • As 2 O 3 and S phases extracted at the surface are responsible for satellite lines

  13. Electrochemical sensing of etoposide using carbon quantum dot modified glassy carbon electrode.

    Science.gov (United States)

    Nguyen, Hoai Viet; Richtera, Lukas; Moulick, Amitava; Xhaxhiu, Kledi; Kudr, Jiri; Cernei, Natalia; Polanska, Hana; Heger, Zbynek; Masarik, Michal; Kopel, Pavel; Stiborova, Marie; Eckschlager, Tomas; Adam, Vojtech; Kizek, Rene

    2016-04-25

    In this study, enhancement of the electrochemical signals of etoposide (ETO) measured by differential pulse voltammetry (DPV) by modifying a glassy carbon electrode (GCE) with carbon quantum dots (CQDs) is demonstrated. In comparison with a bare GCE, the modified GCE exhibited a higher sensitivity towards electrochemical detection of ETO. The lowest limit of detection was observed to be 5 nM ETO. Furthermore, scanning electron microscopy (SEM), fluorescence microscopy (FM), and electrochemical impedance spectroscopy (EIS) were employed for the further study of the working electrode surface after the modification with CQDs. Finally, the GCE modified with CQDs under optimized conditions was used to analyse real samples of ETO in the prostate cancer cell line PC3. After different incubation times (1, 3, 6, 9, 12, 18 and 24 h), these samples were then prepared prior to electrochemical detection by the GCE modified with CQDs. High performance liquid chromatography with an electrochemical detection method was employed to verify the results from the GCE modified with CQDs.

  14. A wrinkling-based method for investigating glassy polymer film relaxation as a function of film thickness and temperature.

    Science.gov (United States)

    Chung, Jun Young; Douglas, Jack F; Stafford, Christopher M

    2017-10-21

    We investigate the relaxation dynamics of thin polymer films at temperatures below the bulk glass transition T g by first compressing polystyrene films supported on a polydimethylsiloxane substrate to create wrinkling patterns and then observing the slow relaxation of the wrinkled films back to their final equilibrium flat state by small angle light scattering. As with recent relaxation measurements on thin glassy films reported by Fakhraai and co-workers, we find the relaxation time of our wrinkled films to be strongly dependent on film thickness below an onset thickness on the order of 100 nm. By varying the temperature between room temperature and T g (≈100 °C), we find that the relaxation time follows an Arrhenius-type temperature dependence to a good approximation at all film thicknesses investigated, where both the activation energy and the relaxation time pre-factor depend appreciably on film thickness. The wrinkling relaxation curves tend to cross at a common temperature somewhat below T g , indicating an entropy-enthalpy compensation relation between the activation free energy parameters. This compensation effect has also been observed recently in simulated supported polymer films in the high temperature Arrhenius relaxation regime rather than the glassy state. In addition, we find that the film stress relaxation function, as well as the height of the wrinkle ridges, follows a stretched exponential time dependence and the short-time effective Young's modulus derived from our modeling decreases sigmoidally with increasing temperature-both characteristic features of glassy materials. The relatively facile nature of the wrinkling-based measurements in comparison to other film relaxation measurements makes our method attractive for practical materials development, as well as fundamental studies of glass formation.

  15. Voltammetric Determination of Flunixin on Molecularly Imprinted Polypyrrole Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Abd-Elgawad Radi

    2016-01-01

    Full Text Available A novel electrochemical sensing approach, based on electropolymerization of a molecularly imprinted polypyrrole (MIPpy film onto a glassy carbon electrode (GCE surface, was developed for the detection of flunixin (FXN. The sensing conditions and the performance of the constructed sensor were assessed by cyclic, differential pulse and (DPV square wave voltammetry (SWV. The sensor exhibited high sensitivity, with linear responses in the range of 5.0 to 50.0 µM with detection limits of 1.5 and 1.0 µM for DPV and SWV, respectively. In addition, the sensor showed high selectivity towards FXN in comparison to other interferents. The sensor was successfully utilized for the direct determination of FXN in buffalo raw milk samples.

  16. Connection between NMR and electrical conductivity in glassy chalcogenide fast ionic conductors

    International Nuclear Information System (INIS)

    Kim, K.H.

    1995-01-01

    The work documented in this thesis follows the traditional order. In this chapter a general discussion of ionic conduction and of glassy materials are followed by a brief outline of the experimental techniques for the investigation of fast ionic conduction in glassy materials, including NMR and impedance spectroscopy techniques. A summary of the previous and present studies is presented in the last section of this introductory chapter. The details of the background theory and models are found in the Chapter II, followed by the description of the experimental details in Chapter III. Chapter IV of the thesis describes the experimental results and the analysis of the experimental observations followed by the conclusions in chapter V

  17. Orbital physics in sulfur spinels: ordered, liquid and glassy ground states

    International Nuclear Information System (INIS)

    Buettgen, N; Hemberger, J; Fritsch, V; Krimmel, A; Muecksch, M; Nidda, H-A Krug von; Lunkenheimer, P; Fichtl, R; Tsurkan, V; Loidl, A

    2004-01-01

    Measurements of magnetization M(T, H), heat capacity C(T), NMR lineshift K(T) and linewidth Δ(T), neutron scattering S(Q, ω, T) and broadband dielectric spectroscopy ε(ω, T) provide experimental evidence of the different orbital ground states in the cubic sulfur spinels under investigation. In all compounds, the tetrahedrally coordinated Jahn-Teller ions Fe 2+ are characterized by a degeneracy of the orbital degrees of freedom. Particularly, we found a long-range orbital ordering in polycrystalline (PC) FeCr 2 S 4 , and a glassy freezing of the orbital degrees of freedom in FeCr 2 S 4 (single crystals) (SCs). In contrast, FeSc 2 S 4 belongs to the rare class of spin-orbital liquids, where quantum fluctuations accompanying the glassy freezing of the orbitals suppress long-range magnetic order

  18. Electrocatalytic Determination of Isoniazid by a Glassy Carbon Electrode Modified with Poly (Eriochrome Black T

    Directory of Open Access Journals (Sweden)

    Karim Asadpour-Zeynali

    2017-06-01

    Full Text Available In this work poly eriochrome black T (EBT was electrochemically synthesized on the glassy carbon electrode as electrode modifier. On the modified electrode, voltammetric behavior of isoniazid (INH was investigated. The poly (EBT-modified glassy carbon electrode has excellent electrocatalytic ability for the electrooxidation of isoniazid. This fact was appeared as a reduced overpotential of INH oxidation in a wide operational pH range from 2 to 13. It has been found that the catalytic peak current depends on the concentration of INH and solution pH. The number of electrons involved in the rate determining step was found 1. The diffusion coefficient of isoniazid was also estimated using chronoamperometry technique. The experimental results showed that the mediated oxidation peak current of isoniazid is linearly dependent on the concentration of isoniazid in the ranges of 8.0 × 10-6 – 1.18 × 10-3 M and 2.90 × 10-5 M – 1.67× 10-3 M with differential pulse voltammetry (DPV and amperometry methods, respectively. The detection limits (S/N = 3 were found to be 6.0 μM and 16.4 μM by DPV and amperometry methods, respectively. This developed method was applied to the determination of isoniazid in tablet samples with satisfactory results.

  19. Glassy behavior in the layered perovskites La2−xSrxCoO4(1.1≤x≤1.3)

    International Nuclear Information System (INIS)

    Mukherjee, S.; Mukherjee, Rajarshi; Banerjee, S.; Ranganathan, R.; Kumar, Uday

    2012-01-01

    The glassy behavior of the phase segregated state in the layered cobaltite La 2−x Sr x CoO 4 has been studied. The role of the inter-cluster interactions as well as the disordered spins at the paramagnetic–ferromagnetic interface, behind the observed glassy behavior have been investigated. The disordered spins at the interface appear to be strongly pinned, and they contribute little to the observed glassy behavior. On the other hand, the inter-cluster interactions play the key role. Both the Co 4+ and Co 3+ ions are in the intermediate spin state. - Highlights: ► Phase segregated state of cobaltite La 2−x Sr x CoO 4 for (1.1≤x≤1.3) to find the origin of the observed glassy behavior. ► Result of the frequency dependent ac susceptibility measurement excludes the possibility of any spin glass phase, hints strong inter-cluster interactions. ► Relaxation experiments confirm the system to be a collection of clusters with two preferred sizes. ► The glassy behavior originates from strong inter-cluster interactions.

  20. Glassy slag from rotary hearth vitrification

    International Nuclear Information System (INIS)

    Eschenbach, R.C.; Simpson, M.D.; Paulson, W.S.; Whitworth, C.G.

    1995-01-01

    Use of a Plasma Arc Centrifugal Treatment (PACT) system for treating mixed wastes containing significant quantities of soil results in formation of a glassy slag which melts at significantly higher temperatures than the borosilicate glasses. The slag typically contains mostly crystalline material, frequently in an amorphous matrix, thus the appellation open-quotes glassy slag.close quotes Details of the PACT process are given. The process will be used for treating buried wastes from Pit 9 at the Idaho National Engineering Laboratory and low-level mixed wastes from nuclear power plants in Switzerland. Properties of the slag after cooling to room temperature are reported, in particular the Product Consistency Test, for a number of different feedstocks. In almost all cases, the results compare favorably with conventional borosilicate glasses. In the PACT system, a transferred arc carries current from the plasma torch to a rotating molten bed of slag, which is the material being heated. Thus this transferred arc adds energy where it is needed - at and near the surface of the molten bath. Material is fed into the furnace through a sealed feeder, and falls into a rotating tub which is heated by the arc. Any organic material is quickly vaporized into the space above the slag bed and burned by the oxygen in the furnace. Metal oxides in the charge are melted into the slag. Metal in the feed tends to melt and collect as a separate phase underneath the slag, but can be oxidized if desired. When oxidized, it unites with other constituents forming a homogeneous slag

  1. Generation of fine hydromagmatic ash by growth and disintegration of glassy rinds

    Science.gov (United States)

    Mastin, L.G.

    2007-01-01

    The deposits of mafic hydromagmatic eruptions are more fine grained and variable in vesicularity than dry magmatic deposits. Blocky, equant shapes of many hydromagmatic clasts also contrast with droplet, thread, and bubble wall morphology of dry magmatic fragments. Small (disintegration of glassy rinds on pyroclast surfaces as they deform within turbulent flows. This process, termed "turbulent shedding", may occur during the expansion phase of vapor explosions or during turbulent but nonexplosive mixing of magma with water, steam, or water sprays. The occurrence of turbulent shedding and the resulting fragment sizes depend on the timescale for rind growth and the timescale between disturbances that remove or disintegrate glassy rinds. Turbulent shedding is directly observable in some small littoral jets at Kilauea. Calculations suggest that, in the presence of liquid water or water sprays, glassy rinds having a thickness of microns to millimeters should form in milliseconds to seconds. This is similar to the timescale between turbulent velocity fluctuations that can shred lava globules and remove such rinds. The fraction of a deposit consisting of fine ash should increase with the duration of this process: Large-scale Surtseyan jets generate hundreds or thousands of shedding events; bubble bursts or tephra jets at Kilauea's coast may produce only a few.

  2. Protection of nuclear graphite toward fluoride molten salt by glassy carbon deposit

    International Nuclear Information System (INIS)

    Bernardet, V.; Gomes, S.; Delpeux, S.; Dubois, M.; Guerin, K.; Avignant, D.; Renaudin, G.; Duclaux, L.

    2009-01-01

    Molten salt reactor represents one of the promising future Generation IV nuclear reactors families where the fuel, a liquid molten fluoride salt, is circulating through the graphite reactor core. The interactions between nuclear graphite and fluoride molten salt and also the graphite surface protection were investigated in this paper by powder X-ray diffraction, micro-Raman spectroscopy and scanning electron microscopy coupled with X-ray microanalysis. Nuclear graphite discs were covered by two kinds of protection deposit: a glassy carbon coating and a double coating of pyrolitic carbon/glassy carbon. Different behaviours have been highlighted according to the presence and the nature of the coated protection film. Intercalation of molten salt between the graphite layers did not occur. Nevertheless the molten salt adhered more or less to the surface of the graphite disc, filled more or less the graphite surface porosity and perturbed more or less the graphite stacking order at the disc surface. The behaviour of unprotected graphite was far to be satisfactory after two days of immersion of graphite in molten salt at 500 deg. C. The best protection of the graphite disc surface, with the maximum of inertness towards molten salt, has been obtained with the double coating of pyrolitic carbon/glassy carbon

  3. Electrocatalytic Determination of Isoniazid by a Glassy Carbon Electrode Modified with Poly (Eriochrome Black T)

    OpenAIRE

    Karim Asadpour-Zeynali; Venus Baghalabadi

    2017-01-01

    In this work poly eriochrome black T (EBT) was electrochemically synthesized on the glassy carbon electrode as electrode modifier. On the modified electrode, voltammetric behavior of isoniazid (INH) was investigated. The poly (EBT)-modified glassy carbon electrode has excellent electrocatalytic ability for the electrooxidation of isoniazid. This fact was appeared as a reduced overpotential of INH oxidation in a wide operational pH range from 2 to 13. It has been found that the catalytic peak ...

  4. Oxidation of cumene hydroperoxide on glassy carbon electrodes in aqueous solution and its interaction with ascorbic and gallic acids

    International Nuclear Information System (INIS)

    Estévez, Rafael; Mellado, José Miguel Rodríguez; Mayén, Manuel

    2015-01-01

    The cumene hydroperoxide oxidation on glassy carbon electrodes involves an irreversible one-electron transfer to peroxide and phenoxy radicals, being the main end products hydroquinone and acetone. The overall oxidation mechanism occurs in two steps: formation of acetone and a phenoxy radical, and the reaction of this phenoxy radical with water, getting stability by oxidizing into p-benzoquinone The interaction of such radicals with ascorbic and gallic acids decreases the oxidation signal of cumene hydroperoxide in differential pulse voltammetry. This decrease, due to the scavenging of the radicals formed after the electron transfer, is related to the antioxidant activities. So, it is possible to substitute the mercury as a probe for the electrochemical determination of antioxidant activity.

  5. Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Calfuman, Karla [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile); Aguirre, Maria Jesus [Facultad de Quimica y Biologia, Departamento de Quimica de los Materiales, Universidad de Santiago de Chile, Santiago (Chile); Canete-Rosales, Paulina; Bollo, Soledad [Facultad de Ciencias Quimicas y Farmaceuticas, Departamento de Quimica Farmacologica y Toxicologica, Universidad de Chile, Santiago (Chile); Llusar, Rosa [Departamento de Quimica Fisica y Analitica, Universidad de Jaume I, Castellon (Spain); Isaacs, Mauricio, E-mail: misaacs@uchile.cl [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile)

    2011-10-01

    Highlights: > Preparation and characterization of modified electrodes with M(II) Tetraruthenated porphyrins onto a Nafion film. > The electrodes were characterized by SEM, TEM, AFM and SECM techniques. > The modified electrodes are active in the electrochemical reduction of nitrite at -660 mV vs Ag/AgCl. > GC/Nf/CoTRP modified electrode is more electrochemically active than their Ni and Zn analogues. - Abstract: This paper describes the electrochemical reduction of nitrite ion in neutral aqueous solution mediated by tetraruthenated metalloporphyrins (Co(II), Ni(II) and Zn(II)) electrostatically assembled onto a Nafion film previously adsorbed on glassy carbon or ITO electrodes. Scanning electron microscope (SEM-EDX) and transmission electron microscopy (TEM) results have shown that on ITO electrodes the macrocycles forms multiple layers with a disordered stacking orientation over the Nafion film occupying hydrophobic and hydrophilic sites in the polyelectrolyte. Atomic force microscopy (AFM) results demonstrated that the Nafion film is 35 nm thick and tetraruthenated metalloporphyrins layers 190 nm thick presenting a thin but compacted morphology. Scanning electrochemical microscopy (SECM) images shows that the Co(II) tetraruthenated porphyrins/Nf/GC modified electrode is more electrochemically active than their Ni and Zn analogues. These modified electrodes are able to reduce nitrite at -660 mV showing enhanced reduction current and a decrease in the required overpotential compared to bare glassy carbon electrode. Controlled potential electrolysis experiments verify the production of ammonia, hydrazine and hydroxylamine at potentials where reduction of solvent is plausible demonstrating some selectivity toward the nitrite ion. Rotating disc electrode voltammetry shows that the factor that governs the kinetics of nitrite reduction is the charge propagation in the film.

  6. Voltammetric sensing of paracetamole, dopamine and 4-aminophenol at a glassy carbon electrode coated with gold nanoparticles and an organophillic layered double hydroxide

    International Nuclear Information System (INIS)

    Yin, H.; Shang, K.; Meng, X.; Ai, S.

    2011-01-01

    A differential pulse voltammetric method was developed for the simultaneous determination of paracetamole, 4-aminophenol and dopamine at pH 7.0 using a glassy carbon electrode (GCE) coated with gold nanoparticles (AuNPs) and a layered double hydroxide sodium modified with dodecyl sulfate (SDS-LDH). The modified electrode displays excellent redox activity towards paracetamole, and the redox current is increased (and the corresponding over-potential decreased) compared to those of the bare GCE, the AuNPs-modified GCE, and the SDS-LDH-modified GCE. The modified electrode enables the determination of paracetamole in the concentration range from 0.5 to 400 μM, with a detection limit of 0.13 μM (at an S/N of 3). The sensor was successfully applied to the simultaneous determination of paracetamole and dopamine, and of paracetamole and 4-aminophenol, respectively, in pharmaceutical tablets and in spiked human serum samples. (author)

  7. Molecular imprinted polypyrrole modified glassy carbon electrode for the determination of tobramycin

    International Nuclear Information System (INIS)

    Gupta, Vinod Kumar; Yola, Mehmet Lütfi; Özaltın, Nuran; Atar, Necip; Üstündağ, Zafer; Uzun, Lokman

    2013-01-01

    Graphical abstract: Atomic force microscopic images of (A) bare GCE and (B) TOB imprinted PPy/GCE surface. - Highlights: • Glassy carbon electrode based on molecularly imprinted polypyrrole was prepared. • The developed surfaces were characterized by AFM, FTIR, EIS and CV. • The developed nanosensor was applied to egg and milk samples. - Abstract: Over the past two decades, molecular imprinted polymers have attracted a broad interest from scientists in sensor development. In the preparation of molecular imprinted polymers the desired molecule (template) induces the creation of specific recognition sites in the polymer. In this study, the glassy carbon electrode (GCE) based on molecularly imprinted polypyrrole (PPy) was fabricated for the determination of tobramycin (TOB). The developed electrode was prepared by incorporation of a template molecule (TOB) during the electropolymerization of pyrrole on GCE in aqueous solution using cyclic voltammetry (CV) method. The performance of the imprinted and non-imprinted electrodes was evaluated by square wave voltammetry (SWV). The effect of pH, monomer and template concentrations, electropolymerization cycles on the performance of the imprinted and non-imprinted electrodes was investigated and optimized. The non-modified and TOB-imprinted surfaces were characterized by using atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and CV. The linearity range of TOB was 5.0 × 10 −10 –1.0 × 10 −8 M with the detection limit of 1.4 × 10 −10 M. The developed nanosensor was applied successfully for the determination of TOB in egg and milk

  8. Relook on fitting of viscosity with undercooling of glassy liquids

    Indian Academy of Sciences (India)

    Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur ... The present approach is on the modification of viscosity fitting of undercooled liquid as a function of ... behaviour of glassy alloys and organic and ionic compounds ...... the present method is applied to calculate the analytical solu-.

  9. Electrical resistivity in Zr48Nb8Cu12Fe8Be24 glassy and crystallized alloys

    Science.gov (United States)

    Bai, H. Y.; Tong, C. Z.; Zheng, P.

    2004-02-01

    The electrical resistivity of Zr48Nb8Cu12Fe8Be24 bulk metallic glassy and crystallized alloys in the temperature range of 4.2-293 K is investigated. It is found that the resistivity in glassy and crystallized states shows opposite temperature coefficients. For the metallic glass, the resistivity shows a negative logarithmic dependence at temperatures below 16 K, whereas it has more normal behavior for the crystallized alloy. At higher temperatures, the resistivity in both glassy and crystallized alloys shows dependence upon both T and T2, but the signs of the T and T2 terms are opposite. The results are interpreted in terms of scattering from two-level tunneling states in glasses and the generalized Ziman diffraction model.

  10. Electrochemical functionalization of glassy carbon electrode by reduction of diazonium cations in protic ionic liquid

    International Nuclear Information System (INIS)

    Shul, Galyna; Ruiz, Carlos Alberto Castro; Rochefort, Dominic; Brooksby, Paula A.; Bélanger, Daniel

    2013-01-01

    Protic ionic liquid based on 2-methoxypyridine and trifluoroacetic acid was used as electrolyte for the functionalization of a glassy carbon electrode surface by electrochemical reduction of in situ generated 4-chlorobenzene diazonium and 4-nitrobenzene diazonium cations. The diazonium cations were synthesized in an electrochemical cell by reaction of the corresponding amines with NaNO 2 dissolved in protic ionic liquid. The resulting electrografted organic layers exhibit similar properties to those layers obtained by the derivatization from isolated diazonium salts dissolved in protic ionic liquid. Functionalized glassy carbon electrode surfaces were characterized by cyclic voltammetry, Fourier transform infrared and X-ray photoelectron spectroscopies. Atomic force microscopy thickness measurements revealed that, in our experimental conditions, the use of protic ionic liquid led to the formation of film with a thickness of about 1.5 nm. It is also demonstrated that the nitrobenzene chemisorbed on glassy carbon electrode or dissolved in protic ionic liquid undergoes electrochemical conversion to hydroxyaminobenzene

  11. Some Recent Developments in Structure and Glassy Behavior of Proteins

    Science.gov (United States)

    Hu, Chin-Kun

    2012-02-01

    We have used ARVO developed by us to find that the ratio of volume and surface area of proteins in Protein Data Bank distributed in a very narrow region [1]. Such result is useful for the determination of protein 3D structures. It has been widely known that a spin glass model can be used to understand the slow relaxation behavior of a glass at low temperatures [2]. We have used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that polymer chains with neighboring monomers connected by rigid bonds can relax very slowly and show glassy behavior [3]. We have also found that native collagen fibrils show glassy behavior at room temperatures [4]. The results of [3] and [4] about the glassy behavior of polymers or proteins are useful for understanding the mechanism for a biological system to maintain in a non-equilibrium state, including the ancient seed [5], which can maintain in a non-equilibrium state for a very long time. (1) M.-C. Wu, M. S. Li, W.-J. Ma, M. Kouza, and C.-K. Hu, EPL, in press (2011); (2) C. Dasgupta, S.-K. Ma, and C.-K. Hu. Phys. Rev. B 20, 3837-3849 (1979); (3) W.-J. Ma and C.-K. Hu, J. Phys. Soc. Japan 79, 024005, 024006, 054001, and 104002 (2010), C.-K. Hu and W.-J. Ma, Prog. Theor. Phys. Supp. 184, 369 (2010); S. G. Gevorkian, A. E. Allahverdyan, D. S. Gevorgyan and C.-K. Hu, EPL 95, 23001 (2011); S. Sallon, et al. Science 320, 1464 (2008).

  12. Equation-free dynamic renormalization in a glassy compaction model

    International Nuclear Information System (INIS)

    Chen, L.; Kevrekidis, I. G.; Kevrekidis, P. G.

    2006-01-01

    Combining dynamic renormalization with equation-free computational tools, we study the apparently asymptotically self-similar evolution of void distribution dynamics in the diffusion-deposition problem proposed by Stinchcombe and Depken [Phys. Rev. Lett. 88, 125701 (2002)]. We illustrate fixed point and dynamic approaches, forward as well as backward in time; these can be used to accelerate simulators of glassy dynamic phenomena

  13. Equation-free dynamic renormalization in a glassy compaction model

    Science.gov (United States)

    Chen, L.; Kevrekidis, I. G.; Kevrekidis, P. G.

    2006-07-01

    Combining dynamic renormalization with equation-free computational tools, we study the apparently asymptotically self-similar evolution of void distribution dynamics in the diffusion-deposition problem proposed by Stinchcombe and Depken [Phys. Rev. Lett. 88, 125701 (2002)]. We illustrate fixed point and dynamic approaches, forward as well as backward in time; these can be used to accelerate simulators of glassy dynamic phenomena.

  14. Time evolution of quenched state and correlation to glassy effects

    International Nuclear Information System (INIS)

    Kilic, K.; Kilic, A.; Altinkok, A.; Yetis, H.; Cetin, O.; Durust, Y.

    2005-01-01

    In this work, dynamic changes generated by the driving current were studied in superconducting bulk polycrystalline YBCO sample via transport relaxation measurements (V-t curves). The evolution of nonlinear V-t curves was interpreted in terms of the formation of resistive and nonresistive flow channels and the spatial reorganization of the transport current in a multiply connected network of weak-link structure. The dynamic re-organization of driving current could cause an enhancement or suppression in the superconducting order parameter due to the magnitude of the driving current and coupling strength of weak-link structure along with the chemical and anisotropic states of the sample as the time proceeds. A nonzero voltage decaying with time, correlated to the quenched state, was recorded when the magnitude of initial driving current is reduced to a finite value. It was found that, after sufficiently long waiting time, the evolution of the quenched state could result in a superconducting state, depending on the magnitude of the driving current and temperature. We showed that the decays in voltage over time are consistent with an exponential time dependence which is related to the glassy state. Further, the effect of doping of organic material Bis dimethyl-glyoximato Copper (II) to YBCO could be monitored apparently via the comparison of the V-t curves corresponding to doped and undoped YBCO samples

  15. Electrochemical Comparison of the Interaction of 5-Nitrouracil with Single- or Double-Stranded DNA at mercury and glassy carbon electrodes

    OpenAIRE

    Ibrahim, Mohamed Sayed; Ibrahim, Hossieny Sameh Mohamed; Kamal, Moustafa Mohamed; Temerk, Yassin Mohamed

    2014-01-01

    The interaction of the 5-Nitrouracil (5NU), with ss-, and ds-DNA was investigated electrochemically in absence and presence of copper ions by using cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPSV) at hanging mercury drop electrode (HMDE) and glassy carbon electrode (GCE) surfaces. It was found that, in absence of copper ions, the addition of ss- or ds-DNA to a buffered solution of 5NU results in a decrease on the 5NU redox peak current with a remarkable change in th...

  16. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy

    International Nuclear Information System (INIS)

    Lee, Kee Ahn; Kim, Yong Chan; Kim, Jung Han; Lee, Chong Soo; Namkung, Jung; Kim, Moon Chul

    2007-01-01

    The mechanical properties and crystallization behavior of new Fe-Ni-Cr-Si-B-based bulk glassy alloys were investigated. The suitability of the continuous roll casting method for the production of bulk metallic glass (BMG) sheets in such alloy systems was also examined. BMG samples (Fe-Ni-Cr-Si-B, Fe-Ni-Zr-Cr-Si-B, Fe-Ni-Zr-Cr-W-Si-B) in amorphous strip, cylindrical, and sheet forms were prepared through melt spinning, copper mold casting, and twin roll strip casting, respectively. Fe-Ni-Cr-Si-B alloy exhibited compressive strength of up to 2.93 GPa and plastic strain of about 1.51%. On the other hand, the Fe-Ni-Zr-Cr-Si-B, composite-type bulk sample with diameter of 2.0 mm showed remarkable compressive plastic strain of about 4.03%. The addition of zirconium was found to enhance the homogeneous precipitation of nanocrystalline less than 7 nm and to develop a hybrid-composite microstructure with increasing sample thickness. Twin roll strip casting was successfully applied to the fabrication of sheets in Fe-Ni-Cr-Si-B-based BMGs. The combined characteristics of high mechanical properties and ease of microstructure control proved to be promising in terms of the future progress of structural bulk amorphous alloys

  17. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kee Ahn [School of Advanced Materials Engineering, Andong National University, Andong 760-749 (Korea, Republic of)]. E-mail: keeahn@andong.ac.kr; Kim, Yong Chan [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of); Kim, Jung Han [Center for Advanced Aerospace materials, POSTECH, Pohang 790-784 (Korea, Republic of); Lee, Chong Soo [Center for Advanced Aerospace materials, POSTECH, Pohang 790-784 (Korea, Republic of); Namkung, Jung [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of); Kim, Moon Chul [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of)

    2007-03-25

    The mechanical properties and crystallization behavior of new Fe-Ni-Cr-Si-B-based bulk glassy alloys were investigated. The suitability of the continuous roll casting method for the production of bulk metallic glass (BMG) sheets in such alloy systems was also examined. BMG samples (Fe-Ni-Cr-Si-B, Fe-Ni-Zr-Cr-Si-B, Fe-Ni-Zr-Cr-W-Si-B) in amorphous strip, cylindrical, and sheet forms were prepared through melt spinning, copper mold casting, and twin roll strip casting, respectively. Fe-Ni-Cr-Si-B alloy exhibited compressive strength of up to 2.93 GPa and plastic strain of about 1.51%. On the other hand, the Fe-Ni-Zr-Cr-Si-B, composite-type bulk sample with diameter of 2.0 mm showed remarkable compressive plastic strain of about 4.03%. The addition of zirconium was found to enhance the homogeneous precipitation of nanocrystalline less than 7 nm and to develop a hybrid-composite microstructure with increasing sample thickness. Twin roll strip casting was successfully applied to the fabrication of sheets in Fe-Ni-Cr-Si-B-based BMGs. The combined characteristics of high mechanical properties and ease of microstructure control proved to be promising in terms of the future progress of structural bulk amorphous alloys.

  18. Moessbauer study of the local environment of the iron implanted in glassy AgAsS2

    International Nuclear Information System (INIS)

    Bychkov, E.A.; Vlasov, Yu.G.; Dravin, V.A.; Semenov, V.G.

    1987-01-01

    Local environment of iron implanted into glassy AgAsS 2 or introduced into this glass in the course of synthesis is investigated. It is shown that chemical forms of iron stabilization are similar in both cases, however, concentrational relations of various forms differ sufficiently. The main doped glass spectrum component (85-88% of the total area) represents a quadrupole iron doublet (2) in glass in tetrahedral sulfide environment. In implanted sample spectra contributions from iron (2) in glass and from amorphous iron disulfide are comparable. Concentrational differences are probably linked with high rates of glass implanted area hardening

  19. Poly(amidosulfonic acid) modified glassy carbon electrode for determination of isoniazid in pharmaceuticals.

    Science.gov (United States)

    Yang, Gongjun; Wang, Cunxiao; Zhang, Rui; Wang, Chenying; Qu, Qishu; Hu, Xiaoya

    2008-06-01

    Amidosulfonic acid was electropolymerized by cyclic voltammetry onto the surface of glassy carbon electrode (GCE) to fabricate the chemically modified electrode, which showed high stability, good selectivity and reproducibility for determination of isoniazid. The modified electrode showed an excellent electrocatalytical effect on the oxidation of isoniazid. Under the optimum conditions, there was a good linear relationship between anodic peak current and isoniazid concentration in the range of 5.0 x 10(-8)- 1.0 x 10(-5) M, and a detection limit of 1.0 x 10(-8) M (S/N = 3) was obtained after 120 s at the accumulation potential of - 0.2 V (vs. SCE). This developed method had been applied to the direct determination of isoniazid in injection and tablet samples with satisfactory results.

  20. Biosensor based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Ren, J.; Kang, T.F.; Xue, R.; Ge, C.N.; Cheng, S.Y.

    2011-01-01

    We describe a biosensor for phenolic compounds that is based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes (MWNTs). The MWNTs possess excellent inherent electrical conductivity which enhances the electron transfer rate and results in good electrochemical catalytic activity towards the reduction of benzoquinone produced by enzymatic reaction. The biosensor was characterized by cyclic voltammetry, and the experimental conditions were optimized. The cathodic current is linearly related to the concentration of the phenols between 0.4 μM and 10 μM, and the detection limit is 0.2 μM. The method was applied to the determination of phenol in water samples (author)

  1. A study of nanostructured gold modified glassy carbon electrode for ...

    Indian Academy of Sciences (India)

    A nanostructured gold modified glassy carbon electrode (Aunano/GCE) was employed for the determination of trace chromium(VI). To prepare Aunano/GCE, the GCE was immersed into KAuCl4 solution and electrodeposition was conducted at the potential of -0.4 V (vs Ag/AgCl) for 600 s. Scanning electron microscopy ...

  2. Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Gang; Shu, Honghui; Ji, Kai [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Oyama, Munetaka [Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan); Liu, Xiong [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); He, Yunbin, E-mail: ybhe@hubu.edu.cn [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China)

    2014-01-01

    This work describes controllable preparation of gold nanoparticles on glassy carbon electrodes by using the seed mediated growth method, which contains two steps, namely, nanoseeds attachment and nanocrystals growth. The size and the dispersion of gold nanoparticles grown on glassy carbon electrodes could be easily tuned through the growth time based on results of field-emission scanning electron microscopy. Excellent electrochemical catalytic characteristics for glucose oxidation were observed for the gold nanoparticles modified glassy carbon electrodes (AuNPs/GC), resulting from the extended active surface area provided by the dense gold nanoparticles attached. It exhibited a wide linear range from 0.1 mM to 25 mM with the sensitivity of 87.5 μA cm{sup −2} mM{sup −1} and low detection limit down to 0.05 mM for the sensing of glucose. The common interfering species such as chloride ion, ascorbic acid, uric acid and 4-acetamidophenol were verified having no interference effect on the detection of glucose. It is demonstrated that the seed mediated method is one of the facile approaches for fabricating Au nanoparticles modified substrates, which could work as one kind of promising electrode materials for the glucose nonenzymatic sensing.

  3. Occurrence of particle debris field during focused Ga ion beam milling of glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Hu Qin [Centre for Industrial Photonics, Institute for Manufacturing, Department of Engineering, University of Cambridge, Alan Reece Building, 17 Charles Babbage Road, Cambridge, CB3 0FS (United Kingdom); O' Neill, William, E-mail: wo207@eng.cam.ac.uk [Centre for Industrial Photonics, Institute for Manufacturing, Department of Engineering, University of Cambridge, Alan Reece Building, 17 Charles Babbage Road, Cambridge, CB3 0FS (United Kingdom)

    2010-08-01

    To explore the machining characteristics of glassy carbon by focused ion beam (FIB), particles induced by FIB milling on glassy carbon have been studied in the current work. Nano-sized particles in the range of tens of nanometers up to 400 nm can often be found around the area subject to FIB milling. Two ion beam scanning modes - slow single scan and fast repetitive scan - have been tested. Fewer particles are found in single patterns milled in fast repetitive scan mode. For a group of test patterns milled in a sequence, it was found that a greater number of particles were deposited around sites machined early in the sequence. In situ EDX analysis of the particles showed that they were composed of C and Ga. The formation of particles is related to the debris generated at the surrounding areas, the low melting point of gallium used as FIB ion source and the high contact angle of gallium on glassy carbon induces de-wetting of Ga and the subsequent formation of Ga particles. Ultrasonic cleaning can remove over 98% of visible particles. The surface roughness (R{sub a}) of FIB milled areas after cleaning is less than 2 nm.

  4. Occurrence of particle debris field during focused Ga ion beam milling of glassy carbon

    International Nuclear Information System (INIS)

    Hu Qin; O'Neill, William

    2010-01-01

    To explore the machining characteristics of glassy carbon by focused ion beam (FIB), particles induced by FIB milling on glassy carbon have been studied in the current work. Nano-sized particles in the range of tens of nanometers up to 400 nm can often be found around the area subject to FIB milling. Two ion beam scanning modes - slow single scan and fast repetitive scan - have been tested. Fewer particles are found in single patterns milled in fast repetitive scan mode. For a group of test patterns milled in a sequence, it was found that a greater number of particles were deposited around sites machined early in the sequence. In situ EDX analysis of the particles showed that they were composed of C and Ga. The formation of particles is related to the debris generated at the surrounding areas, the low melting point of gallium used as FIB ion source and the high contact angle of gallium on glassy carbon induces de-wetting of Ga and the subsequent formation of Ga particles. Ultrasonic cleaning can remove over 98% of visible particles. The surface roughness (R a ) of FIB milled areas after cleaning is less than 2 nm.

  5. Electrochemical investigations of Pu(IV)/Pu(III) redox reaction using graphene modified glassy carbon electrodes and a comparison to the performance of SWCNTs modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Gupta, Ruma; Gamare, Jayashree; Sharma, Manoj K.; Kamat, J.V.

    2016-01-01

    Highlights: • First report of aqueous electrochemistry of Plutonium on graphene modified electrode. • Graphene is best electrocatalytic material for Pu(IV)/Pu(III) redox couple among the reported modifiers viz. reduced graphene oxide (rGO) and SWCNT’s. • The electrochemical reversibility of Pu(IV)/Pu(III) redox couple improves significantly on graphene modified electrode compared to previously reported rGO & SWCNTs modified electrodes • Donnan interaction between plutonium species and graphene surface offers a possibility for designing a highly sensitive sensor for plutonium • Graphene modified electrode shows higher sensitivity for the determination of plutonium compared to glassy carbon and single walled carbon nanotube modified electrode - Abstract: The work reported in this paper demonstrates for the first time that graphene modified glassy carbon electrode (Gr/GC) show remarkable electrocatalysis towards Pu(IV)/Pu(III) redox reaction and the results were compared with that of single-walled carbon nanotubes modified GC (SWCNTs/GC) and glassy carbon (GC) electrodes. Graphene catalyzes the exchange of current of the Pu(IV)/Pu(III) couple by reducing both the anodic and cathodic overpotentials. The Gr/GC electrode shows higher peak currents (i p ) and smaller peak potential separation (ΔE p ) values than the SWCNTs/GC and GC electrodes. The heterogeneous electron transfer rate constants (k s ), charge transfer coefficients (α) and the diffusion coefficients (D) involved in the electrocatalytic redox reaction were determined. Our observations show that graphene is best electrocatalytic material among both the SWCNTs and GC to study Pu(IV)/Pu(III) redox reaction.

  6. Determination of Volatility and Element Fractionation in Glassy Fallout Debris by SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Todd L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tenner, Travis Jay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bonamici, Chloe Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollington, Anthony Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-10

    The purpose of this report is to characterize glassy fallout debris using the Trinity Test and then characterize the U-isotopes of U3O8 reference materials that contain weaponized debris.

  7. Physical ageing in the above-bandgap photoexposured glassy arsenic selenides

    Energy Technology Data Exchange (ETDEWEB)

    Kozdras, A [Faculty of Physics of Opole University of Technology, 75, Ozimska str., Opole, PL-45370 (Poland); Golovchak, R [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska str., Lviv, UA-79031 (Ukraine); Shpotyuk, O [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska str., Lviv, UA-79031 (Ukraine)

    2007-08-15

    Physical ageing induced by above-bandgap light illumination is studied in glassy As-Se using differential scanning calorimetry. It is shown that measurable effect like to known short-term physical ageing is observed only in Se-rich glasses. The kinetics of this effect is compared with that caused by natural storage in a dark.

  8. Physical ageing in the above-bandgap photoexposured glassy arsenic selenides

    International Nuclear Information System (INIS)

    Kozdras, A; Golovchak, R; Shpotyuk, O

    2007-01-01

    Physical ageing induced by above-bandgap light illumination is studied in glassy As-Se using differential scanning calorimetry. It is shown that measurable effect like to known short-term physical ageing is observed only in Se-rich glasses. The kinetics of this effect is compared with that caused by natural storage in a dark

  9. Co-based soft magnetic bulk glassy alloys optimized for glass ...

    Indian Academy of Sciences (India)

    diameter of 5 mm by conventional copper mould casting method. It reveals ... For example, Co43Fe20Ta5.5B31.5 glassy alloy with a ... coercive force (Hc) of 0.25 A m. −1 ..... [7] Lu Z P, Liu C T, Thompson J R and Porter W D 2004 Phys. Rev.

  10. Differential pulse voltammetric determination of nanomolar concentrations of antiviral drug acyclovir at polymer film modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dorraji, Parisa S.; Jalali, Fahimeh, E-mail: fjalali@razi.ac.ir

    2016-04-01

    An electrochemical sensor for the sensitive detection of acyclovir was developed by the electropolymerization of Eriochrome black T at a pretreated glassy carbon electrode. The surface morphology of the modified electrode was characterized by field emission scanning electron microscopy. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of acyclovir on the modified electrode surface relative to the unmodified electrode. The detection limit of 12 nM and two linear calibration ranges of 0.03–0.3 μM and 0.3–1.5 μM were obtained for acyclovir determination using a differential pulse voltammetric method in acetate buffer (0.1 M, pH 4.0). Real sample studies were carried out in human blood serum and pharmaceutical formulations, which offered good recovery (98–102%). The electrode showed excellent reproducibility, selectivity and antifouling effects. - Graphical abstract: Eriochrome black T (EBT) was electropolymerized at the surface of a pretreated glassy carbon electrode. The modified electrode enhanced the oxidation current of acyclovir, significantly. The sensor was used in the determination of acyclovir in human blood serum samples and pharmaceutical dosages. - Highlights: • Construction of a voltammetric sensor for acyclovir is described. • Eriochrome black T was electropolymerized at the electrode surface. • The sensor improved the sensitivity of the electrode for monitoring acyclovir. • The recoveries and standard deviations were acceptable in spiked human blood serum. • The proposed sensor had good lifetime to be used in biological matrices.

  11. Differential pulse voltammetric determination of nanomolar concentrations of antiviral drug acyclovir at polymer film modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Dorraji, Parisa S.; Jalali, Fahimeh

    2016-01-01

    An electrochemical sensor for the sensitive detection of acyclovir was developed by the electropolymerization of Eriochrome black T at a pretreated glassy carbon electrode. The surface morphology of the modified electrode was characterized by field emission scanning electron microscopy. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of acyclovir on the modified electrode surface relative to the unmodified electrode. The detection limit of 12 nM and two linear calibration ranges of 0.03–0.3 μM and 0.3–1.5 μM were obtained for acyclovir determination using a differential pulse voltammetric method in acetate buffer (0.1 M, pH 4.0). Real sample studies were carried out in human blood serum and pharmaceutical formulations, which offered good recovery (98–102%). The electrode showed excellent reproducibility, selectivity and antifouling effects. - Graphical abstract: Eriochrome black T (EBT) was electropolymerized at the surface of a pretreated glassy carbon electrode. The modified electrode enhanced the oxidation current of acyclovir, significantly. The sensor was used in the determination of acyclovir in human blood serum samples and pharmaceutical dosages. - Highlights: • Construction of a voltammetric sensor for acyclovir is described. • Eriochrome black T was electropolymerized at the electrode surface. • The sensor improved the sensitivity of the electrode for monitoring acyclovir. • The recoveries and standard deviations were acceptable in spiked human blood serum. • The proposed sensor had good lifetime to be used in biological matrices.

  12. A nanoscale characterisation of extended defects in glassy-like As2Se3 semiconductors with PAL technique

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Kovalskiy, A.; Filipecki, J.; Hyla, M.; Kozdras, A.

    2003-01-01

    A meaningful interpretation of positron lifetime characteristics for glassy-like g-As 2 Se 3 is developed taking into account calculations of Jensen et al. (J. Non-Cryst. Solids 170 (1994) 57) for positrons trapped by free-volume extended defects in orthorhombic As 2 Se 3 and void volume distribution for 146-atoms layer-biased model of amorphous As 2 Se 3 presented by Popescu (J. Non-Cryst. Solids 35-36 (1980) 549). The obtained results are compared for samples having different thermal pre-history. Two groups of experimental results with close lifetime characteristics are distinguished for each of the investigated samples. This feature is explained in terms of average positron lifetime by applying two-state positron trapping model for mathematical treatment of the obtained spectra

  13. Definition and preparation of glassy matrices by innovating processes to confine radioactive wastes and industrial toxic materials

    International Nuclear Information System (INIS)

    Moncouyoux, J.P.

    1995-01-01

    The confinement by vitrification of high-level radioactive wastes is studied in the CEA for fifteen years. These studies have lead to the preparation of glassy matrices by innovating processes. These processes can be applied to non-radioactive toxic materials treatment too. In this work are more particularly described the glassy matrix long-dated behaviour and the different vitrification processes used (by direct induction in cold crucible, by transferred arc plasma). (O.L.). 1 tab

  14. Dielectric relaxation studies in super-cooled liquid and glassy phases of anti-cancerous alkaloid: Brucine

    Science.gov (United States)

    Afzal, Aboothahir; Shahin Thayyil, M.; Sulaiman, M. K.; Kulkarni, A. R.

    2018-05-01

    Brucine has good anti-tumor effects, on both liver cancer and breast cancer. It has bioavailability of 40.83%. Since the bioavailability of the drug is low, an alternative method to increase its bioavailability and solubility is by changing the drug into glassy form. We used Differential Scanning Calorimetry (DSC) for studying the glass forming ability of the drug. Brucine was found to be a very good glass former glass transition temperature 365 K. Based on the DSC analysis we have used broadband dielectric spectroscopy (BDS) for studying the drug in the super cooled and glassy state. BDS is an effective tool to probe the molecular dynamics in the super cooled and glassy state. Molecular mobility is found to be present even in the glassy state of this active pharmaceutical ingredient (API) which is responsible for the instability. Our aim is to study the factors responsible for instability of this API in amorphous form. Cooling curves for dielectric permittivity and dielectric loss revealed the presence of structural (α) and secondary relaxations (β and γ). Temperature dependence of relaxation time is fitted by Vogel-Fulcher-Tammann equation and found the values of activation energy of the α relaxation, fragility and glass transition temperature. Paluch's anti correlation is also verified, that the width of the α-loss peak at or near the glass transition temperature Tg is strongly anticorrelated with the polarity of the molecule. The larger the dielectric relaxation strength Δɛ (Tg) of the system, the narrower is the α-loss peak (higher value of βKWW).

  15. Similar and dissimilar friction welding of Zr-Cu-Al bulk glassy alloys

    International Nuclear Information System (INIS)

    Shin, Hyung-Seop; Park, Jung-Soo; Jung, Yoon-Chul; Ahn, Jung-Ho; Yokoyama, Yoshihiko; Inoue, Akihisa

    2009-01-01

    The friction welding of three kinds of Zr-Cu-Al bulk glassy alloys (BGAs) which show eutectic or hypoeutectic compositions to similar and dissimilar BGAs and crystalline metals has been tried. The shape and volume of the protrusion formed at the weld interface were investigated. In order to characterize the friction welded interface, micrographic observation and X-ray diffraction analysis on the weld cross-section were carried out. A successful joining of Zr-Cu-Al bulk glassy alloys to similar and dissimilar BGAs was achieved without occurrence of crystallizations at the weld interface through the precise control of friction conditions. In addition, the joining of Zr 50 Cu 40 Al 10 BGA to crystalline alloys was tried, but it was only successful for specific material combinations. The residual strength after welding of dissimilar BGAs was evaluated by the four-point bending test.

  16. Electrocatalytic oxidation of hydrazine at overoxidized polypyrrole film modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, Mir Reza [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664 (Iran, Islamic Republic of); Jouyban, Abolghasem [Faculty of Pharmacy and Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664 (Iran, Islamic Republic of); Asadpour-Zeynali, Karim [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664 (Iran, Islamic Republic of)]. E-mail: asadpour@tabrizu.ac.ir

    2007-06-20

    Electrocatalytic oxidation of hydrazine (HZ) was studied on an overoxidized polypyrrole (OPPy) modified glassy carbon electrode using cyclic voltammetry and chronoamperometry techniques. The OPPy-modified glassy carbon electrode has very high catalytic ability for electrooxidation of HZ, which appeared as a reduced overpotential in a wide operational pH range of 5-10. The overall numbers of electrons involved in the catalytic oxidation of HZ, the number of electrons involved in the rate-determining and diffusion coefficient of HZ were estimated using cyclic voltammetry and chronoamperometry. It has been shown that using the OPPy-modified electrode, HZ can be determined by cyclic voltammetry and amperometry with limit of detection 36 and 3.7 {mu}M, respectively. The results of the analysis suggest that the proposed method promises accurate results and could be employed for the routine determination of HZ.

  17. Study of electrical properties of glassy Se100–xTex alloys

    Indian Academy of Sciences (India)

    Unknown

    can be successfully explained by correlated barrier hopping (CBH) model. ... The results show that bipolaron hopping dominates over single-polaron hopping in this glassy system. This .... where ∆E is the activation energy and σ0 is called the.

  18. Glassy slag: A complementary waste form to homogeneous glass for the implementation of MAWS in treating DOE low level/mixed wastes

    International Nuclear Information System (INIS)

    Feng, X.; Ordaz, G.; Krumrine, P.

    1994-01-01

    Glassy slag waste forms are being developed to complement glass waste forms in implementing the Minimum Additive Waste Stabilization (MAWS) Program for supporting DOE's environmental restoration efforts. These glassy slags are composed of various metal oxide crystalline phases embedded in an alumino-silicate glass phase. The slags are appropriate final waste forms for waste streams that contain large amounts of scrap metals and elements with low solubilities in glass, and that have low-flux contents. Homogeneous glass waste forms are appropriate for wastes with sufficient fluxes and low metal contents. Therefore, utilization of both glass and glassy slag waste forms will make vitrification technology applicable to the treatment of a much larger range of radioactive and mixed wastes. The MAWS approach was a plied to glassy slags by blending multiple waste streams to produce the final waste form, minimizing overall waste form volume and reducing costs. The crystalline oxide phases formed in the glassy slags can be specially formulated so that they are very durable and contain hazardous and radioactive elements in their lattice structures. The Structural Bond Strength (SBS) Model was used to predict the chemical durability of the product from the slag composition so that optimized slag compositions could be obtain with a limited number of crucible melts and testing

  19. Glassy behavior in the layered perovskites La{sub 2-x}Sr{sub x}CoO{sub 4}(1.1{<=}x{<=}1.3)

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S., E-mail: sanseb68@yahoo.co.in [Department of Physics, University of Burdwan, Burdwan 713104 (India); Mukherjee, Rajarshi [Department .of Physics, University of Burdwan, Burdwan 713104 (India); Banerjee, S.; Ranganathan, R. [Saha Institute of Nuclear Physics, Kolkata 700 064 (India); Kumar, Uday [Department of Physical Sciences, Indian Institute of Science Education and Research - Kolkata, Mohonpur 741252 (India)

    2012-03-15

    The glassy behavior of the phase segregated state in the layered cobaltite La{sub 2-x}Sr{sub x}CoO{sub 4} has been studied. The role of the inter-cluster interactions as well as the disordered spins at the paramagnetic-ferromagnetic interface, behind the observed glassy behavior have been investigated. The disordered spins at the interface appear to be strongly pinned, and they contribute little to the observed glassy behavior. On the other hand, the inter-cluster interactions play the key role. Both the Co{sup 4+} and Co{sup 3+} ions are in the intermediate spin state. - Highlights: Black-Right-Pointing-Pointer Phase segregated state of cobaltite La{sub 2-x}Sr{sub x}CoO{sub 4} for (1.1{<=}x{<=}1.3) to find the origin of the observed glassy behavior. Black-Right-Pointing-Pointer Result of the frequency dependent ac susceptibility measurement excludes the possibility of any spin glass phase, hints strong inter-cluster interactions. Black-Right-Pointing-Pointer Relaxation experiments confirm the system to be a collection of clusters with two preferred sizes. Black-Right-Pointing-Pointer The glassy behavior originates from strong inter-cluster interactions.

  20. Deformation and structure evolution of glassy poly(lactic acid) below the glass transition temperature

    DEFF Research Database (Denmark)

    Zhou, Chengbo; Li, Hongfei; Zhang, Yao

    2015-01-01

    , the onset of the mesocrystal formation is delayed to a higher strain value, whereas corresponding to the same critical orientation degree of amorphous chains (f(am) approximate to 0.45). The DSC results indicated that the post-T-g endothermic peak corresponding to the melting of mesocrystal appears...... and shifts to a higher temperature with increasing stretching temperature, followed by the down-shifts (to a lower temperature) of the exothermic peak of cold crystallization of PLA. The appearance of a small exothermic peak just before the melting peak related to the transition of the alpha' to alpha...... crystal implies the formation of an alpha' crystal during cold crystallization in the drawn PLA samples. The structure evolution of glassy PLA stretched below T-g was discussed in details....

  1. Partially and fully de-alloyed glassy ribbons based on Au: Application in methanol electro-oxidation studies

    Energy Technology Data Exchange (ETDEWEB)

    Paschalidou, Eirini Maria, E-mail: epaschal@unito.it [Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Surfaces and Interfaces), Università di Torino, Via Pietro Giuria 7, 10125, Torino (Italy); Scaglione, Federico [Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Surfaces and Interfaces), Università di Torino, Via Pietro Giuria 7, 10125, Torino (Italy); Gebert, Annett; Oswald, Steffen [Leibniz Institut für Festkörper- und Werkstoffforschung IFW, Helmholtzstraße 20, 01069, Dresden (Germany); Rizzi, Paola; Battezzati, Livio [Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Surfaces and Interfaces), Università di Torino, Via Pietro Giuria 7, 10125, Torino (Italy)

    2016-05-15

    In this work, electrochemical de-alloying of an amorphous alloy, Au{sub 40}Cu{sub 28}Ag{sub 7}Pd{sub 5}Si{sub 20}, cast in ribbon form by melt spinning, has been performed, obtaining self standing nanoporous materials suitable for use as electrodes for electrocatalytic applications. The de-alloying encompasses removal of less noble elements and the crystallization of Au, resulting in interconnected ligaments whose size and morphology are described as a function of time. Depending on de-alloying time, the crystals may contain residual amounts of Cu, Ag and Pd, as shown by Auger Electron Spectroscopy (AES), Energy Dispersive Spectroscopy (EDS) and Cyclic Voltammetry (CV) in a basic solution. Current density peaks in the 0.16–0.28 V range (vs Ag/AgCl) indicate that the porous ribbons are active for the electro-oxidation of methanol. The partially de-alloyed samples, which still partially contain the amorphous phase because of the shorter etching times, have finer ligaments and display peaks at lower potential. However, the current density decreases rapidly during repeated potential scans. This is attributed to the obstruction of Au sites, mainly by the Cu oxides formed during the scans. The fully de-alloyed ribbons display current peaks at about 0.20 V and remain active for hundreds of scans at more than 60% of the initial current density. They can be fully re-activated to achieve the same performance levels after a brief immersion in nitric acid. The good activity is due to trapped Ag and Pd atoms in combination with ligament morphology. - Graphical abstract: Fine ligaments and pores made by de-alloying a glassy ribbon of a Au-based alloy, homogeneously produced across the thickness (25 μm) for studying methanol's electro-oxidation behavior. - Highlights: • Size and composition of nanoporous layers tailored in de-alloying Au-based glassy ribbons. • From amorphous precursor fine crystals occur in ligaments with residual Pd and Ag. • Fully de

  2. Modification of glassy carbon surfaces by atmospheric pressure cold plasma torch

    DEFF Research Database (Denmark)

    Mortensen, Henrik Junge; Kusano, Yukihiro; Leipold, Frank

    2006-01-01

    The effect of plasma treatment on glassy carbon (GC) surfaces was studied with adhesion improvement in mind. A newly constructed remote plasma source was used to treat GC plates. Pure He and a dilute NH3/He mixture were used as feed gases. Optical emission spectroscopy was performed for plasma to...

  3. Molecular dynamics study of dynamic and structural properties of supercooled liquid and glassy iron in the rapid-cooling processes

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qi-Long; Huang, Duo-Hui; Yang, Jun-Sheng; Wan, Min-Jie; Wang, Fan-Hou, E-mail: eatonch@gmail.com

    2014-10-01

    Molecular dynamics simulations were applied to study the dynamic and structural properties of supercooled liquid and glassy iron in the rapid-cooling processes. The mean-square displacement and the non-Gaussian parameter were used to describe the dynamic properties. The evolution of structural properties was investigated using the pair distribution functions and bond-angle distribution functions. Results for dynamic and structural relaxations indicate that the dynamic features are consistently correlated with the structure evolution, and there are three temperature regions as the temperature decreases: (1) at higher temperatures (1500 K, 1300 K, and 1100 K), the system remains in the liquid characteristics during the overall relaxation process. (2) At medial temperatures (1050 K, 900 K, and 700 K), a fast β-relaxation is followed by a much slower α-relaxation. There is a little change in the structural properties in the β-relaxation region, while major configuration rearrangements occurred in the α-relaxation range and the crystallization process was completed at the end of α-relaxation region. (3) At lower temperature (500 K), the system shows glassy characteristics during the overall relaxation process. In addition, the melting temperature, glass transition temperature and diffusion coefficients of supercooled liquid iron are also computed.

  4. Direct electron transfer from glucose oxidase immobilized on a nano-porous glassy carbon electrode

    International Nuclear Information System (INIS)

    Haghighi, Behzad; Tabrizi, Mahmoud Amouzadeh

    2011-01-01

    Highlights: → A direct electron transfer reaction of glucose oxidase was observed on the surface of a nano-porous glassy carbon electrode. → A pair of well-defined and reversible redox peaks was observed at the formal potential of approximately -0.439 V. → The apparent electron transfer rate constant was measured to be 5.27 s -1 . → A mechanism for the observed direct electron transfer reaction was proposed, which consists of a two-electron and a two-proton transfer. - Abstract: A pair of well-defined and reversible redox peaks was observed for the direct electron transfer (DET) reaction of an immobilized glucose oxidase (GOx) on the surface of a nano-porous glassy carbon electrode at the formal potential (E o ') of -0.439 V versus Ag/AgCl/saturated KCl. The electron transfer rate constant (k s ) was calculated to be 5.27 s -1 . The dependence of E o ' on pH indicated that the direct electron transfer of the GOx was a two-electron transfer process, coupled with two-proton transfer. The results clearly demonstrate that the nano-porous glassy carbon electrode is a cost-effective and ready-to-use scaffold for the fabrication of a glucose biosensor.

  5. Direct electron transfer from glucose oxidase immobilized on a nano-porous glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, Behzad, E-mail: haghighi@iasbs.ac.ir [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan (Iran, Islamic Republic of); Tabrizi, Mahmoud Amouzadeh [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan (Iran, Islamic Republic of)

    2011-11-30

    Highlights: > A direct electron transfer reaction of glucose oxidase was observed on the surface of a nano-porous glassy carbon electrode. > A pair of well-defined and reversible redox peaks was observed at the formal potential of approximately -0.439 V. > The apparent electron transfer rate constant was measured to be 5.27 s{sup -1}. > A mechanism for the observed direct electron transfer reaction was proposed, which consists of a two-electron and a two-proton transfer. - Abstract: A pair of well-defined and reversible redox peaks was observed for the direct electron transfer (DET) reaction of an immobilized glucose oxidase (GOx) on the surface of a nano-porous glassy carbon electrode at the formal potential (E{sup o}') of -0.439 V versus Ag/AgCl/saturated KCl. The electron transfer rate constant (k{sub s}) was calculated to be 5.27 s{sup -1}. The dependence of E{sup o}' on pH indicated that the direct electron transfer of the GOx was a two-electron transfer process, coupled with two-proton transfer. The results clearly demonstrate that the nano-porous glassy carbon electrode is a cost-effective and ready-to-use scaffold for the fabrication of a glucose biosensor.

  6. Voltammetric behavior of sedative drug midazolam at glassy carbon electrode in solubilized systems

    Directory of Open Access Journals (Sweden)

    Rajeev Jain

    2012-04-01

    Full Text Available Redox behavior of midazolam was studied at a glassy carbon electrode in various buffer systems, supporting electrolytes and pH using differential pulse, square-wave and cyclic voltammetry. Based on its reduction behavior, a direct differential pulse voltammetric method has been developed and validated for the determination of midazolam in parenteral dosage. Three well-defined peaks were observed in 0.1% SLS, Britton–Robinson (BR buffer of pH 2.5. The effect of surfactants like sodium lauryl sulfate (SLS, cetyl trimethyl ammonium bromide (CTAB and Tween 20 was studied. Among these surfactants SLS showed significant enhancement in reduction peak. The cathodic peak currents were directly proportional to the concentration of midazolam with correlation coefficient of 0.99. Keywords: Midazolam, Voltammetry, Surfactant, Glassy carbon electrode, Parenteral dosage form

  7. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2014-12-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  8. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2015-07-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  9. Electrochemical Glucose Oxidation Using Glassy Carbon Electrodes Modified with Au-Ag Nanoparticles: Influence of Ag Content

    Directory of Open Access Journals (Sweden)

    Nancy Gabriela García-Morales

    2015-01-01

    Full Text Available This paper describes the application of glassy carbon modified electrodes bearing Aux-Agy nanoparticles to catalyze the electrochemical oxidation of glucose. In particular, the paper shows the influence of the Ag content on this oxidation process. A simple method was applied to prepare the nanoparticles, which were characterized by transmission electron microscopy, Ultraviolet-Visible spectroscopy, X-ray diffraction spectroscopy, and cyclic voltammetry. These nanoparticles were used to modify glassy carbon electrodes. The effectiveness of these electrodes for electrochemical glucose oxidation was evaluated. The modified glassy carbon electrodes are highly sensitive to glucose oxidation in alkaline media, which could be attributed to the presence of Aux-Agy nanoparticles on the electrode surface. The voltammetric results suggest that the glucose oxidation speed is controlled by the glucose diffusion to the electrode surface. These results also show that the catalytic activity of the electrodes depends on the Ag content of the nanoparticles. Best results were obtained for the Au80-Ag20 nanoparticles modified electrode. This electrode could be used for Gluconic acid (GA production.

  10. Elastic properties of aspirin in its crystalline and glassy phases studied by micro-Brillouin scattering

    Science.gov (United States)

    Ko, Jae-Hyeon; Lee, Kwang-Sei; Ike, Yuji; Kojima, Seiji

    2008-11-01

    The acoustic waves propagating along the direction perpendicular to the (1 0 0) cleavage plane of aspirin crystal were investigated using micro-Brillouin spectroscopy from which C11, C55 and C66 were obtained. The temperature dependence of the longitudinal acoustic waves could be explained by normal anharmonic lattice models, while the transverse acoustic waves showed an abnormal increase in the hypersonic attenuation at low temperatures indicating their coupling to local remnant dynamics. The sound velocity as well as the attenuation of the longitudinal acoustic waves of glassy aspirin showed a substantial change at ˜235 K confirming a transition from glassy to supercooled liquid state in vitreous aspirin.

  11. Adsorptive Stripping Voltammetric Determination of Hydroquinone using an Electrochemically Pretreated Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Abdul Niaz1,

    2008-12-01

    Full Text Available A simple and efficient adsorptive stripping voltammetric (AdSV method was developed for the determination of hydroquinone at an electrochemically pretreated glassy carbon (GC electrode in waste water. Various parameters such as solvent system, accumulation potential, accumulation time and scan rate were optimized. The electrochemically pretreated GC electrode showed good response towards hydroquinone determination by using AdSV. Under the optimized conditions the peak current showed good linear relationship with the hydroquinone concentration in the range of 0.5-4.0mg L-1 and 5-30mg L-1. The 60/40 methanol/water composition was found to be the best solvent system and 0.05mol L-1 H2SO4 was found as useful supporting electrolyte concentration. The accumulation time was 60 s and the detection limit was 50µg L-1. The developed method was successfully applied for the determination of hydroquinone in polymeric industrial discharge samples waste photographic developer solution and cream sample without any significant effect of surface fouling.

  12. Highly efficient electrocatalytic vapor generation of methylmercury based on the gold particles deposited glassy carbon electrode: A typical application for sensitive mercury speciation analysis in fish samples.

    Science.gov (United States)

    Shi, Meng-Ting; Yang, Xin-An; Qin, Li-Ming; Zhang, Wang-Bing

    2018-09-26

    A gold particle deposited glassy carbon electrode (Au/GCE) was first used in electrochemical vapor generation (ECVG) technology and demonstrated to have excellent catalytic property for the electrochemical conversion process of aqueous mercury, especially for methylmercury (CH 3 Hg + ), to gaseous mercury. Systematical research has shown that the highly consistent or distinct difference between the atomic fluorescence spectroscopy signals of CH 3 Hg + and Hg 2+ can be achieved by controlling the electrolytic parameters of ECVG. Hereby, a new green and accurate method for mercury speciation analysis based on the distinguishing electrochemical reaction behavior of Hg 2+ and CH 3 Hg +  on the modified electrode was firstly established. Furthermore, electrochemical impedance spectra and the square wave voltammetry displayed that the ECVG reaction of CH 3 Hg +  may belong to the electrocatalytic mechanism. Under the selected conditions, the limits of detection of Hg 2+ and CH 3 Hg +  are 5.3 ng L -1 and 4.4 ng L -1 for liquid samples and 0.53 pg mg -1 and 0.44 pg mg -1 for solid samples, respectively. The precision of the 5 measurements is less than 6% within the concentration of Hg 2+ and CH 3 Hg +  ranging from 0.2 to 15.0 μg L -1 . The accuracy and practicability of the proposed method was verified by analyzing the mercury content in the certified reference material and several fish as well as water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Glassy carbon electrodes modified with multiwalled carbon nanotubes for the determination of ascorbic acid by square-wave voltammetry

    Directory of Open Access Journals (Sweden)

    Sushil Kumar

    2012-05-01

    Full Text Available Multiwalled carbon nanotubes were used to modify the surface of a glassy carbon electrode to enhance its electroactivity. Nafion served to immobilise the carbon nanotubes on the electrode surface. The modified electrode was used to develop an analytical method for the analysis of ascorbic acid (AA by square-wave voltammetry (SWV. The oxidation of ascorbic acid at the modified glassy carbon electrode showed a peak potential at 315 mV, about 80 mV lower than that observed at the bare (unmodified electrode. The peak current was about threefold higher than the response at the bare electrode. Replicate measurements of peak currents showed good precision (3% rsd. Peak currents increased with increasing ascorbic acid concentration (dynamic range = 0.0047–5.0 mmol/L and displayed good linearity (R2 = 0.994. The limit of detection was 1.4 μmol/L AA, while the limit of quantitation was 4.7 μmol/L AA. The modified electrode was applied to the determination of the amount of ascorbic acid in four brands of commercial orange-juice products. The measured content agreed well (96–104% with the product label claim for all brands tested. Recovery tests on spiked samples of orange juice showed good recovery (99–104%. The reliability of the SWV method was validated by conducting parallel experiments based on high-performance liquid chromatography (HPLC with absorbance detection. The observed mean AA contents of the commercial orange juice samples obtained by the two methods were compared statistically and were found to have no significant difference (P = 0.05.

  14. Voltammetric Determination of Codeine on Glassy Carbon Electrode Modified with Nafion/MWCNTs

    Directory of Open Access Journals (Sweden)

    Robert Piech

    2015-01-01

    Full Text Available A glassy carbon electrode modified with a Nafion/MWCNTs composite is shown to enable the determination of codeine using differential pulse voltammetry in phosphate buffer of pH 3.0. At a preconcentration time of 15 s, the calibration graph is linear in the 0.5 µM (0.15 mg·L−1 to 15 µM (4.5 mg·L−1 concentration range with a correlation coefficient of 0.998. The detection limit at a preconcentration time of 120 s is as low as 4.5 μg·L−1. The repeatability of the method at a 0.6 μg·L−1 concentration level, expressed as the RSD, is 3.7% (for n=5. The method was successfully applied and validated by analyzing codeine in drug, human plasma, and urine samples.

  15. Diazonium Chemistry for the Bio-Functionalization of Glassy Nanostring Resonator Arrays

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    2015-07-01

    Full Text Available Resonant glassy nanostrings have been employed for the detection of biomolecules. These devices offer high sensitivity and amenability to large array integration and multiplexed assays. Such a concept has however been impaired by the lack of stable and biocompatible linker chemistries. Diazonium salt reduction-induced aryl grafting is an aqueous-based process providing strong chemical adhesion. In this work, diazonium-based linker chemistry was performed for the first time on glassy nanostrings, which enabled the bio-functionalization of such devices. Large arrays of nanostrings with ultra-narrow widths down to 10 nm were fabricated employing electron beam lithography. Diazonium modification was first developed on SiCN surfaces and validated by X-ray photoelectron spectroscopy. Similarly modified nanostrings were then covalently functionalized with anti-rabbit IgG as a molecular probe. Specific enumeration of rabbit IgG was successfully performed through observation of downshifts of resonant frequencies. The specificity of this enumeration was confirmed through proper negative control experiments. Helium ion microscopy further verified the successful functionalization of nanostrings.

  16. Diazonium Chemistry for the Bio-Functionalization of Glassy Nanostring Resonator Arrays.

    Science.gov (United States)

    Zheng, Wei; Du, Rongbing; Cao, Yong; Mohammad, Mohammad A; Dew, Steven K; McDermott, Mark T; Evoy, Stephane

    2015-07-30

    Resonant glassy nanostrings have been employed for the detection of biomolecules. These devices offer high sensitivity and amenability to large array integration and multiplexed assays. Such a concept has however been impaired by the lack of stable and biocompatible linker chemistries. Diazonium salt reduction-induced aryl grafting is an aqueous-based process providing strong chemical adhesion. In this work, diazonium-based linker chemistry was performed for the first time on glassy nanostrings, which enabled the bio-functionalization of such devices. Large arrays of nanostrings with ultra-narrow widths down to 10 nm were fabricated employing electron beam lithography. Diazonium modification was first developed on SiCN surfaces and validated by X-ray photoelectron spectroscopy. Similarly modified nanostrings were then covalently functionalized with anti-rabbit IgG as a molecular probe. Specific enumeration of rabbit IgG was successfully performed through observation of downshifts of resonant frequencies. The specificity of this enumeration was confirmed through proper negative control experiments. Helium ion microscopy further verified the successful functionalization of nanostrings.

  17. Formation, thermal stability and mechanical properties of bulk glassy alloys with a diameter of 20 mm in Zr-(Ti,Nb)-Al-Ni-Cu system

    International Nuclear Information System (INIS)

    Inoue, A.; Zhang, Q.S.; Zhang, W.; Yubuta, K.; Son, K.S.; Wang, X.M.

    2009-01-01

    Bulk glassy alloy rods with a diameter of 20 mm were produced for Zr 61 Ti 2 Nb 2 Al 7.5 Ni 10 Cu 17.5 and Zr 60 Ti 2 Nb 2 Al 7.5 Ni 10 Cu 18.5 by a tilt casting method. The replacement of Zr by a small amount of Ti and Nb caused a distinct increase in the maximum diameter from 16 mm for Zr 65 Al 7.5 Ni 10 Cu 17.5 to 20 mm, accompanying the decrease in liquidus temperature and the increase in reduced glass transition temperature. The primary precipitation phase from supercooled liquid also shows a distinct change, i.e., from coexistent Zr 2 Cu, Zr 2 Ni and Zr 6 NiAl 2 phases for the 65%Zr alloy to an icosahedral phase for the 61%Zr and 60%Zr alloys. These results allow us to presume that the enhancement of the glass-forming ability is due to an increase in the stability of supercooled liquid against crystallization caused by the development of icosahedral short-range ordered atomic configurations. The 60%Zr specimens taken from the central and near-surface regions in the transverse cross section at the site which is 15 mm away from the bottom surface of the cast glassy rod with a diameter of 20 mm exhibit good mechanical properties under a compressive deformation mode, i.e., Young's modulus of 81 GPa, large elastic strain of 0.02, high yield strength of 1610 MPa and distinct plastic strain of 0.012. Besides, a number of shear bands are observed along the maximum shear stress plane on the peripheral surface near the final fracture site. The finding of producing the large scale Zr-based bulk glassy alloys exhibiting reliable mechanical properties is encouraging for future advancement of bulk glassy alloys as a new type of functional material. (author)

  18. Comparison of glassy slag waste forms produced in laboratory crucibles and in a bench-scale plasma furnace

    International Nuclear Information System (INIS)

    Feng, X.; Wronkiewicz, D.J.; Brown, N.R.; Gong, M.; Whitworth, C.; Filius, K.; Battleson, D.

    1994-01-01

    Vitrification is currently the best demonstrated available technology for the disposal of high-level radioactive wastes. An innovative vitrification approach known as minimum additive waste stabilization (MAWS) is being developed. Both homogeneous glass and glassy slags have been used in implementing MAWS. Glassy slags (vitro-ceramics) are glass-crystal composites, and they are composed of various metal oxide crystalline phases embedded in an aluminosilicate glass matrix. Glassy slags with compositions developed in crucible melts at Argonne National Laboratory (ANL) were successfully produced in a bench-scale Retech plasma centrifugal furnace (PCF) by MSE, Inc. Detailed examinations of these materials showed that the crucible melts and the PCF produced similar glass and crystalline phases. The two sets of glassy slags exhibited similar chemical durability in terms of normalized releases of their major components. The slags produced in the PCF furnace using metals were usually less oxidized, although this had no effect on the corrosion behavior of the major components of the slags. However, the normalized release rate of cerium was initially lower for the PCF slags. This difference diminished with time as the redox sates of the metal oxides in slags began to be controlled by exposure to air in the tests. Thus, the deference in cerium release due to the differences in slag redox state may be transitory. The cerium solubility is a complex function of redox state and solution pH and Eh

  19. Corrosion fatigue studies on a bulk glassy Zr-based alloy under three-point bending

    Science.gov (United States)

    Grell, Daniel; Wilkin, Yannic; Gostin, Petre F.; Gebert, Annett; Kerscher, Eberhard

    2016-12-01

    Corrosion fatigue (CF) tests were carried out on bulk glassy Zr52.5Cu17.9Al10Ni14.6Ti5 (Vitreloy 105) samples under load-controlled three-point bending conditions with a load ratio of R = 0.1 in 0.01 M Na2SO4 + 0.01 M NaCl electrolyte. During cyclic testing, the bar-shaped specimens were polarized in situ at constant potentials and the current was monitored. Three different anodic potentials within the interval between the pitting potential EP and the repassivation potential ER, and three different load amplitudes were applied. In some cases, in situ microscopic observations revealed the formation of black corrosion products in the vicinity of the crack tip during anodic polarization. Fractographic analysis revealed a clear distinction between two modes of crack growth characterized by smooth dissolution induced regions on the one hand and slim fast fracture areas on the other hand. Both alternating features contributed to a broad striated corrosion fatigue fracture surface. Moreover, further fatigue tests were carried out under free corrosion conditions yielding additional information on crack initiation and crack propagation period by means of the open circuit potential (OCP) changes. Thereby, a slight increase in OCP was detected after rupture of the passive layer due to bare metal exposed to the electrolyte. The electrochemical response increased continuously according to stable crack propagation until fracture occurred. Finally, the fracture surfaces of the corrosion fatigue samples were investigated by energy dispersive X-ray with the objective of analyzing the elemental distribution after anodic dissolution. Interestingly, anodic polarization at a near repassivation potential of -50 mV vs. SCE (Saturated Calomel Electrode, E = 0.241 V vs. SHE, Standard Hydrogen Electrode) led to favorable effects on the fatigue lifetime. In conclusion, all results are conflated to a corrosion fatigue model for bulk glassy Vitreloy 105 under anodic polarization in chloride

  20. Determination of nitrite ion at schiff's base derivative of chitosan modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Xu Zhongliang; Zhang Jianmei; Liu Shujuan; Peng Daofeng

    2007-01-01

    Chitosan react with salicyclaldehyde by schiff's base reaction in water, a polymer product S-CTS can be prepared. Glassy carbon electrode was modified with S-CTS by drop-coating method. Then, its electrocatalysis effect on the reduction of nitrite by the films of S-CTS was investigated. Experimental results showed that S-CTS modified electrode could reduce the oxidation overpotential of nitrite in pH4.5 B-R buffer solution, the peak current of reduction was proportional to the concentration of nitrite and a good linear relation from 0.20 to 81 mg/kg (r=0.9899) with a detection limit of 2.8 x 10 -7 mol/L was obtained. The methods have been applied to determining nitrite in some samples, satisfactory results were obtained. (authors)

  1. "Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.

    Science.gov (United States)

    Nagarajan, Ramanathan

    2015-07-01

    Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to

  2. Violation of the fluctuation-dissipation theorem in glassy systems: basic notions and the numerical evidence

    International Nuclear Information System (INIS)

    Crisanti, A; Ritort, F

    2003-01-01

    This review reports on the research done during past years on violations of the fluctuation-dissipation theorem (FDT) in glassy systems. It is focused on the existence of a quasi-fluctuation-dissipation theorem (QFDT) in glassy systems and the current supporting knowledge gained from numerical simulation studies. It covers a broad range of non-stationary aging and stationary driven systems such as structural glasses, spin glasses, coarsening systems, ferromagnetic models at criticality, trap models, models with entropy barriers, kinetically constrained models, sheared systems and granular media. The review is divided into four main parts: (1) an introductory section explaining basic notions related to the existence of the FDT in equilibrium and its possible extension to the glassy regime (QFDT), (2) a description of the basic analytical tools and results derived in the framework of some exactly solvable models, (3) a detailed report of the current evidence in favour of the QFDT and (4) a brief digression on the experimental evidence in its favour. This review is intended for inexpert readers who want to learn about the basic notions and concepts related to the existence of the QFDT as well as for the more expert readers who may be interested in more specific results. (topical review)

  3. Topological structure and mechanics of glassy polymer networks.

    Science.gov (United States)

    Elder, Robert M; Sirk, Timothy W

    2017-11-22

    The influence of chain-level network architecture (i.e., topology) on mechanics was explored for unentangled polymer networks using a blend of coarse-grained molecular simulations and graph-theoretic concepts. A simple extension of the Watts-Strogatz model is proposed to control the graph properties of the network such that the corresponding physical properties can be studied with simulations. The architecture of polymer networks assembled with a dynamic curing approach were compared with the extended Watts-Strogatz model, and found to agree surprisingly well. The final cured structures of the dynamically-assembled networks were nearly an intermediate between lattice and random connections due to restrictions imposed by the finite length of the chains. Further, the uni-axial stress response, character of the bond breaking, and non-affine displacements of fully-cured glassy networks were analyzed as a function of the degree of disorder in the network architecture. It is shown that the architecture strongly affects the network stability, flow stress, onset of bond breaking, and ultimate stress while leaving the modulus and yield point nearly unchanged. The results show that internal restrictions imposed by the network architecture alter the chain-level response through changes to the crosslink dynamics in the flow regime and through the degree of coordinated chain failure at the ultimate stress. The properties considered here are shown to be sensitive to even incremental changes to the architecture and, therefore, the overall network architecture, beyond simple defects, is predicted to be a meaningful physical parameter in the mechanics of glassy polymer networks.

  4. Read/write characteristics of a new type of bit-patterned-media using nano-patterned glassy alloy

    International Nuclear Information System (INIS)

    Takenaka, Kana; Saidoh, Noriko; Nishiyama, Nobuyuki; Ishimaru, Manabu; Futamoto, Masaaki; Inoue, Akihisa

    2012-01-01

    The paper reports a feasibility study of new type bit-patterned-media using a nano-patterned glassy alloy template for ultra-high density hard disk applications. The prototype bit-patterned-media was prepared using a nano-hole array pattern fabricated on a Pd-based glassy alloy thin film and a Co/Pd multilayered film filled in the nano-holes. The prepared prototype bit-patterned-media had a smooth surface and isolated Co/Pd multilayer magnetic dots, where the average dot diameter, the average dot pitch and the average dot height were 30, 60 and 19 nm, respectively. MFM (magnetic force microscope) observation revealed that each dot was magnetized in a perpendicular direction and the magnetization could reverse when an opposite magnetic field was applied. Static read/write tester measurements showed that repeated writing and reading on isolated magnetic dots were possible in combination with conventional magnetic heads and high-accuracy positioning technologies. The present study indicates that the new type of bit-patterned-media composed of nano-hole arrays fabricated on glassy alloy film template and Co/Pd multilayer magnetic dots are promising for applications to next generation ultra-high density hard disk drives. - Highlights: ► Prototype BPM using a nano-hole array pattern of imprinted Pd-based glassy alloy thin film and Co/Pd multilayered film was set. ► The prototype BPM has smooth surface and isolated Co/Pd multilayer magnetic dots with an average dot diameter of 30 nm. ► Dots acted as perpendicular magnetic dot and were able to read, erase and write in a row by a usual perpendicular magnetic head.

  5. Cap casting and enveloped casting techniques for Zr55Cu30Ni5Al10 glassy alloy rod with 32 mm in diameter

    International Nuclear Information System (INIS)

    Yokoyama, Yoshihiko; Inoue, Akihisa; Mund, Enrico; Schultz, Ludwig

    2009-01-01

    In order to produce centimetre-sized bulk glassy alloys (BMGs), various cast techniques have been developed. We succeed in the development of cap casting and enveloped casting technique to accomplish the fabrication of centimetre sized BMGs. The former has an advantage to increase cooling rate and the later has an advantage to joint another materials instead of welding. This paper presents the production of a glassy Zr 55 Cu 30 Ni 5 Al 10 alloy rod with a diameter of 32 mm and joined glassy Zr 55 Cu 30 Ni 5 Al 10 alloy parts with another materials for industrial applications.

  6. Different glassy states, as indicated by a violation of the generalized Cauchy relation

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, J K [Laboratoire Europeen de Recherche Universitaire Saarland-Lorraine (LERUSL), Universitaet des Saarlandes, Fakultaet fuer Physik und Elektrotechnik 7.2, Gebaeude 38, D-66041 Saarbruecken (Germany); Britz, T [Laboratoire Europeen de Recherche Universitaire Saarland-Lorraine (LERUSL), Universitaet des Saarlandes, Fakultaet fuer Physik und Elektrotechnik 7.2, Gebaeude 38, D-66041 Saarbruecken (Germany); Coutre, A le [Laboratoire Europeen de Recherche Universitaire Saarland-Lorraine (LERUSL), Universitaet des Saarlandes, Fakultaet fuer Physik und Elektrotechnik 7.2, Gebaeude 38, D-66041 Saarbruecken (Germany); Baller, J [Laboratoire Europeen de Recherche Universitaire Saarland-Lorraine (LERUSL), Universitaet des Saarlandes, Fakultaet fuer Physik und Elektrotechnik 7.2, Gebaeude 38, D-66041 Saarbruecken (Germany); Possart, W [Universitaet des Saarlandes, Fakultaet fuer Chemie, Pharmazie und Werkstoffwissenschaften 8.15, Gebaeude 22, D-66041 Saarbruecken (Germany); Alnot, P [Laboratoire Europeen de Recherche Universitaire Saarland-Lorraine (LERUSL), Universitaet des Saarlandes, Fakultaet fuer Physik und Elektrotechnik 7.2, Gebaeude 38, D-66041 Saarbruecken (Germany); Sanctuary, R [Centre Universitaire de Luxembourg, Departement des Sciences, Laboratoire 1.19, 162a Avenue de la Faiencerie, L-1511, Luxembourg (Luxembourg)

    2003-07-01

    Using Brillouin spectroscopy as a probe for high-frequency clamped acoustic properties, a shear modulus c{sub 44}{sup {infinity}} can be measured in addition to the longitudinal modulus c{sub 11}{sup {infinity}} already well above the thermal glass transition. On slow cooling of the liquid through the thermal glass transition temperature T{sub g}, both moduli show a kink-like behaviour and the function c{sub 11}{sup {infinity}} = c{sub 11}{sup {infinity}}(c{sub 44}{sup {infinity}}) follows a generalized Cauchy relation (gCR) defined by the linear relation c{sub 11}{sup {infinity}} = 3c{sub 44}{sup {infinity}} + constant, which completely hides the glass transition. In this work we show experimentally that on fast cooling this linear transformation becomes violated within the glassy state, but that thermal ageing drives the elastic coefficients towards the gCR, i.e. towards a unique glassy state.

  7. Electrocatalytic simultaneous determination of ascorbic acid, uric acid and L–Cysteine in real samples using quercetin silver nanoparticles–graphene nanosheets modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Hamid R., E-mail: hrzare@yazd.ac.ir; Jahangiri-Dehaghani, Fahime; Shekari, Zahra; Benvidi, Ali

    2016-07-01

    Highlights: • Quercetin AgNPs graphene nanosheets modified GCE (Q–AgNPs–GNs–GCE) was prepared as a new sensor. • Q–AgNPs–GNs–GCE shows a high catalytic activity for L–Cysteine (L–Cys) oxidation. • In DPV, the calibration plots were linear within two ranges of 0.9–12.4 μM and 12.4–538.5 μM of L–Cys. • The proposed modified electrode is used for the simultaneous determinations of AA, UA and L–Cys. • Q–AgNPs–GNs–GCE was satisfactorily used for the determination of AA, UA and L–Cys in real samples. - Abstract: By immobilizing of quercetin at the surface of a glassy carbon electrode modified with silver nanoparticles and graphene nanosheets (Q–AgNPs–GNs–GCE) a new sensor has been fabricated. The cyclic voltammogram of Q–AgNPs–GNs–GCE shows a stable redox couple with surface confined characteristics. Q–AgNPs–GNs–GCE demonstrated a high catalytic activity for L–Cysteine (L–Cys) oxidation. Results indicated that L–Cys peak potential at Q–AgNPs–GNs–GCE shifted to less positive values compared to GNs–GCE or AgNPs–GCE. Also, the kinetic parameters such as the electron transfer coefficient,, and the heterogeneous electron transfer rate constant, k′, for the oxidation of L–Cys at the Q–AgNPs–GNs–GCE surface were estimated. In differential pulse voltammetric determination, the detection limit of L–Cys was obtained 0.28 μM, and the calibration plots were linear within two ranges of 0.9–12.4 μM and 12.4–538.5 μM of L–Cys. Also, the proposed modified electrode is used for the simultaneous determinations of ascorbic acid (AA), uric acid (UA), and L–Cys. Finally, this study has demonstrated the practical analytical utility of the sensor for determination of AA in vitamin C tablet, L–Cys in a milk sample and UA in a human urine sample.

  8. Electrocatalytic simultaneous determination of ascorbic acid, uric acid and L–Cysteine in real samples using quercetin silver nanoparticles–graphene nanosheets modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Zare, Hamid R.; Jahangiri-Dehaghani, Fahime; Shekari, Zahra; Benvidi, Ali

    2016-01-01

    Highlights: • Quercetin AgNPs graphene nanosheets modified GCE (Q–AgNPs–GNs–GCE) was prepared as a new sensor. • Q–AgNPs–GNs–GCE shows a high catalytic activity for L–Cysteine (L–Cys) oxidation. • In DPV, the calibration plots were linear within two ranges of 0.9–12.4 μM and 12.4–538.5 μM of L–Cys. • The proposed modified electrode is used for the simultaneous determinations of AA, UA and L–Cys. • Q–AgNPs–GNs–GCE was satisfactorily used for the determination of AA, UA and L–Cys in real samples. - Abstract: By immobilizing of quercetin at the surface of a glassy carbon electrode modified with silver nanoparticles and graphene nanosheets (Q–AgNPs–GNs–GCE) a new sensor has been fabricated. The cyclic voltammogram of Q–AgNPs–GNs–GCE shows a stable redox couple with surface confined characteristics. Q–AgNPs–GNs–GCE demonstrated a high catalytic activity for L–Cysteine (L–Cys) oxidation. Results indicated that L–Cys peak potential at Q–AgNPs–GNs–GCE shifted to less positive values compared to GNs–GCE or AgNPs–GCE. Also, the kinetic parameters such as the electron transfer coefficient,, and the heterogeneous electron transfer rate constant, k′, for the oxidation of L–Cys at the Q–AgNPs–GNs–GCE surface were estimated. In differential pulse voltammetric determination, the detection limit of L–Cys was obtained 0.28 μM, and the calibration plots were linear within two ranges of 0.9–12.4 μM and 12.4–538.5 μM of L–Cys. Also, the proposed modified electrode is used for the simultaneous determinations of ascorbic acid (AA), uric acid (UA), and L–Cys. Finally, this study has demonstrated the practical analytical utility of the sensor for determination of AA in vitamin C tablet, L–Cys in a milk sample and UA in a human urine sample.

  9. Dynamical singularities of glassy systems in a quantum quench.

    Science.gov (United States)

    Obuchi, Tomoyuki; Takahashi, Kazutaka

    2012-11-01

    We present a prototype of behavior of glassy systems driven by quantum dynamics in a quenching protocol by analyzing the random energy model in a transverse field. We calculate several types of dynamical quantum amplitude and find a freezing transition at some critical time. The behavior is understood by the partition-function zeros in the complex temperature plane. We discuss the properties of the freezing phase as a dynamical chaotic phase, which are contrasted to those of the spin-glass phase in the static system.

  10. Gas Permeation Related to the Moisture Sorption in Films of Glassy Hydrophilic Polymers

    NARCIS (Netherlands)

    Laksmana, F. L.; Kok, P. J. A. Hartman; Frijlink, H. W.; Vromans, H.; Maarschalk, K. Van Der Voort

    2010-01-01

    The purpose of this article is to elucidate the effect of integral sorption of moisture on gas permeation in glassy hydrophilic polymers. The oxygen and the simultaneous moisture sorption into various hydroxypropyl methylcellulose (HPMC) films were measured under a wide range of relative humidities

  11. New anode material for lithium-ion cells produced by catalytic graphitization of glassy carbon at 1000 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Skowronski, J.M. [Poznan Univ. of Technology, Poznan (Poland). Inst. of Chemistry and Technical Electrochemistry; Central Lab. of Batteries and Cells, Poznan (Poland); Knofczynski, K. [Central Lab. of Batteries and Cells, Poznan (Poland)

    2006-10-15

    This study investigated the conversion of glassy carbon into graphite at relatively low temperature of 1000 degrees C under ambient pressure using iron powder as the catalyst. The composite product of reaction was a graphite and turbostratic carbon whose use was then examined in terms of application in lithium-ion cells. Glassy, hard carbon spheres of 10 to 15 {iota}m were prepared from phenolic resin in a nitrogen atmosphere and then subjected to heat treatment with an iron powder mixture. After cooling down to ambient temperature, the carbon/iron mixture was treated with diluted HCl solution to remove metallic additives. The modified carbon was then washed with distilled water until chloride ions disappeared in a filtrate. All samples were characterized using XRD analysis. Working electrodes for electrochemical measurements were made by mixing carbons with PVDF. Cyclic voltammograms recorded for unmodified and modified carbons were consistent with XRD measurements. SEM analysis revealed that the process of graphitization begins at the external regions of glassy carbon spheres where erosion occurs when the carbon reacts with iron particles. The surface destruction of carbon spheres progresses into the interior of the spheres, resulting in their collapse followed by the transformation into pallets resembling a stack of graphite sheets. It was noted that not all unorganized carbon was conversed to graphite. Rather, only 50 per cent of turbostratic carbon existed in the product of heat treatment. The product of graphitization appeared to be a promising material for the preparation of anodes for lithium-ion cells. The discharge capacity for carbon produced by catalytic treatment was found to be approximately 5 times higher, while the discharge/charge reversibility was 23 per cent higher than values obtained for untreated carbon. The study showed that the uptake of lithium ions by the original carbon depends on the insertion/deinsertion mechanism of hard carbon as well

  12. Novel electroanalysis of hydroxyurea at glassy carbon and gold electrode surfaces

    Directory of Open Access Journals (Sweden)

    Keerti M. Naik

    2014-09-01

    Full Text Available A simple and a novel electroanalysis of hydroxyurea (HU drug at glassy carbon and gold electrode was investigated for the first time using cyclic, linear sweep and differential pulse voltammetric techniques. The oxidation of HU was irreversible and exhibited a diffusion controlled process on both electrodes. The oxidation mechanism was proposed. The dependence of the current on pH, the concentration, nature of buffer, and scan rate was investigated to optimize the experimental conditions for the determination of HU. It was found that the optimum buffer pH was 7.0, a physiological pH. In the range of 0.01 to 1.0 mM, the current measured by differential pulse voltammetry showed a linear relationship with HU concentration with limit of detection of 0.46 µM for glassy carbon electrode and 0.92 µM for gold electrode. In addition, reproducibility, precision and accuracy of the method were checked as well. The developed method was successfully applied to HU determination in pharmaceutical formulation and human biological fluids. The method finds its applications in quality control laboratories and pharmacokinetics.

  13. MIP-graphene-modified glassy carbon electrode for the determination of trimethoprim.

    Science.gov (United States)

    da Silva, Hélder; Pacheco, João G; Magalhães, Júlia M C S; Viswanathan, Subramanian; Delerue-Matos, Cristina

    2014-02-15

    A novel sensitive electrochemical sensor was developed by electropolymerization of pyrrole (PY) and molecularly imprinted polymer (MIP) which was synthesized onto a glassy carbon electrode (GCE) in aqueous solution using cyclic voltammetry in the presence of Trimethoprim (TMP) as template molecules. Furthermore, a previous electrode modification was performed by deposition of a suspension of graphene on the electrode's surface. The performance of the imprinted and non-imprinted (NIP) films was evaluated by impedance spectroscopy (EIS) and cyclic voltammetry (CV) of a ferric solution. The molecularly imprinted film exhibited a high selectivity and sensitivity toward TMP. The sensor presented a linear range, between peak current intensity and logarithm of TMP concentration between 1.0 × 10(-6) and 1.0 × 10(-4)M. The results were accurate (with recoveries higher than 94%), precise (with standard deviations less than 5%) and the detection limit was 1.3 × 10(-7)M. The new sensor is selective, simple to construct and easy to operate. The MIP sensor was successfully applied to quantify TMP in urine samples. © 2013 Elsevier B.V. All rights reserved.

  14. An electrochemical sensor for rizatriptan benzoate determination using Fe{sub 3}O{sub 4} nanoparticle/multiwall carbon nanotube-modified glassy carbon electrode in real samples

    Energy Technology Data Exchange (ETDEWEB)

    Madrakian, Tayyebeh, E-mail: madrakian@basu.ac.ir; Maleki, Somayeh; Heidari, Mozhgan; Afkhami, Abbas

    2016-06-01

    In this paper a sensitive and selective electrochemical sensor for determination of rizatriptan benzoate (RZB) was proposed. A glassy carbon electrode was modified with nanocomposite of multiwalled carbon nanotubes (MWCNTs) and Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4}/MWCNTs/GCE). The results obtained clearly show that the combination of MWCNTs and Fe{sub 3}O{sub 4} nanoparticles definitely improves the sensitivity of modified electrode to RZB determination. The morphology and electroanalytical performance of the fabricated sensor were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), square wave voltammetry (SWV) and cyclic voltammetry (CV). Also, the effect of experimental and instrumental parameters on the sensor response was evaluated. The square wave voltammetric response of the electrode to RZB was linear in the range 0.5–100.0 μmol L{sup −1} with a detection limit of 0.09 μmol L{sup −1} under the optimum conditions. The investigated method showed good stability, reproducibility and repeatability. The proposed sensor was successfully applied for real life samples of blood serum and RZB determination in pharmaceutical. - Highlights: • Simple and sensitive Fe{sub 3}O{sub 4}/MWCNTs/GCE for rizatriptan benzoate determination • The surface morphology of nanocomposite was characterized by SEM and EDS. • Rizatriptan benzoate was measured at 0.09 μmol L{sup −1} with good sensitivity and selectivity. • The electrode has been successfully applied in serum and pharmaceutical samples. • The nanocomposite had excellent electrocatalytic activity and biocompatibility.

  15. New model system in radiation cryochemistry. Hyperquenched glassy water

    International Nuclear Information System (INIS)

    Plonka, A.

    1998-01-01

    Complete text of publication follows. Since the radical generated by high-energy irradiation of liquid water are short-lived at ambient temperature, they are often studied at cryogenic temperatures after irradiating either crystalline ice or highly concentrated aqueous electrolyte solution glasses. While these studies provided a wealth of information, they also bear disadvantages in that further reactions of these radicals may not be those occurring in liquid water because of formation of other radicals from the solute in the case of the electrolyte solution glass and/or perturbation of the water structure by the solute. Furthermore, in slow-cooled aqueous solutions where ice is formed and phase separation of the solute occurs, the radicals trapped in the ice compartments are unable to interact with solutes because these are dissolved in the 'freeze-concentration' regions. These problems can in principle be overcome by investigating water and dilute aqueous solutions in their glassy states which can be obtained by rapid quenching of the liquids. Glassy water can now routinely be made in gram-quantities by so-called 'hyperquenching' of micrometer-sized water droplets on a solid cryoplate. The cooling rates are of the order of 10 6 - 10 7 K s -1 . Our results show that indeed in the hyperquenched dilute aqueous solutions there is no problem with phase separation and radiolysis of hyperquenched water is quite distinct from radiolysis of polycrystalline ice obtained from liquid water quenched in the liquid nitrogen

  16. Studies on Photodarkening Effect in Glassy As2S3 Using High Field NMR

    Science.gov (United States)

    Hari, Parameswar; Su, Tining; Taylor, Craig; Reyes, Arneil; Kuhns, Phil; Moulton, William; Sullivan, N. S.

    2001-03-01

    Photodarkening, or the shift of the optical absorption edge to smaller energies after excitation with light whose energy is near that of the optical band edge, has been studied in many chalcogenide glasses for many years. Recently we have conducted nuclear magnetic resonance (NMR) studies of 75As in glassy As2S3 at 17T . We compared the 75As NMR lineshape in glassy As2S3 before and after irradiation at 77K. After irradiation at 514.5 nm for 230 hours with 170 mW/cm2 there is a subtle change in the NMR lineshape. This change is reversible on annealing at 200 C for 1.75 hours. We will discuss the implications of this result based on NMR lineshape analysis using an exact solution of the spin 3/2 Hamiltonian

  17. Novel glucose biosensor based on a glassy carbon electrode modified with hollow gold nanoparticles and glucose oxidase

    International Nuclear Information System (INIS)

    Wang, W.; Ying, S.; Zhang, Z.; Huang, S.

    2011-01-01

    A novel glucose biosensor is presented as that based on a glassy carbon electrode modified with hollow gold nanoparticles (HGNs) and glucose oxidase. The sensor exhibits a better differential pulse voltammetric response towards glucose than the one based on conventional gold nanoparticles of the same size. This is attributed to the good biological conductivity and biocompatibility of HGNs. Under the optimal conditions, the sensor displays a linear range from 2.0 x 10 -6 to 4.6 x 10 -5 M of glucose, with a detection limit of 1.6 x 10 -6 M (S/N = 3). Good reproducibility, stability and no interference make this biosensor applicable to the determination of glucose in samples such as sports drinks. (author)

  18. Nitric Oxide Detection with Glassy Carbon Electrodes Coated with Charge-different Polymer Films

    Directory of Open Access Journals (Sweden)

    Jianping Lei

    2005-04-01

    Full Text Available Trace amounts of nitric oxide (NO have been determined in aqueous phosphate buffersolutions (pH=7.4 by using a glassy carbon electrode coated with three charge-different polymerfilms. The glassy carbon electrode was coated first with negatively charged Nafion film containingtetrakis(pentafluorophenylporphyrin iron(III chloride (Fe(IIITPFPP as the NO oxidation catalyst,and then with positively charged poly(acrylamide-co-diallyldimethylammonium chloride (PADDAand with neutral poly(dimethylsiloxane (silicone at the outermost layer. This polymer-coatedelectrode showed an excellent selectivity towards NO against possible concomitants in blood such asnitrite, ascorbic acid, uric acid, and dopamine. All current ratios between each concomitant and NOat the cyclic voltammogram was in 10-3 ~ 10-4. This type of electrode showed a detection limit of80 nM for NO. It was speculated from the electrochemical study in methanol that high-valent oxoiron(IV of Fe(TPFPP participated in the catalytic oxidation of NO.

  19. Calix[6]arene mono-diazonium salt synthesis and covalent immobilization onto glassy carbon electrodes

    International Nuclear Information System (INIS)

    Cannizzo, Caroline; Jasmin, Jean-Philippe; Vautrin-Ul, Christine; Chausse, Annie; Wagner, Mathieu; Doizi, Denis; Lamouroux, Christine

    2014-01-01

    This Letter describes the fast synthesis of a mono-aminated calix[6]arene. The immobilization of this macrocycle onto glassy carbon electrodes via diazonium salt chemistry and the electrochemical characterization of the grafted organic layer are also reported. (authors)

  20. A nanoscale characterisation of extended defects in glassy-like As{sub 2}Se{sub 3} semiconductors with PAL technique

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O.; Kovalskiy, A.; Filipecki, J.; Hyla, M.; Kozdras, A

    2003-12-31

    A meaningful interpretation of positron lifetime characteristics for glassy-like g-As{sub 2}Se{sub 3} is developed taking into account calculations of Jensen et al. (J. Non-Cryst. Solids 170 (1994) 57) for positrons trapped by free-volume extended defects in orthorhombic As{sub 2}Se{sub 3} and void volume distribution for 146-atoms layer-biased model of amorphous As{sub 2}Se{sub 3} presented by Popescu (J. Non-Cryst. Solids 35-36 (1980) 549). The obtained results are compared for samples having different thermal pre-history. Two groups of experimental results with close lifetime characteristics are distinguished for each of the investigated samples. This feature is explained in terms of average positron lifetime by applying two-state positron trapping model for mathematical treatment of the obtained spectra.

  1. Positronics of radiation-induced effects in chalcogenide glassy semiconductors

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Kozyukhin, S. A.; Shpotyuk, M.; Ingram, A.; Szatanik, R.

    2015-01-01

    Using As 2 S 3 and AsS 2 glasses as an example, the principal possibility of using positron annihilation spectroscopy methods for studying the evolution of the free volume of hollow nanoobjects in chalcogenide glassy semiconductors exposed to radiation is shown. The results obtained by measurements of the positron annihilation lifetime and Doppler broadening of the annihilation line in reverse chronological order are in full agreement with the optical spectroscopy data in the region of the fundamental absorption edge, being adequately described within coordination defect-formation and physical-aging models

  2. Positronics of radiation-induced effects in chalcogenide glassy semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Scientific Research Company “Carat” (Ukraine); Kozyukhin, S. A., E-mail: sergkoz@igic.ras.ru [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation); Shpotyuk, M. [Scientific Research Company “Carat” (Ukraine); Ingram, A. [Opole Technical University (Poland); Szatanik, R. [Opole University (Poland)

    2015-03-15

    Using As{sub 2}S{sub 3} and AsS{sub 2} glasses as an example, the principal possibility of using positron annihilation spectroscopy methods for studying the evolution of the free volume of hollow nanoobjects in chalcogenide glassy semiconductors exposed to radiation is shown. The results obtained by measurements of the positron annihilation lifetime and Doppler broadening of the annihilation line in reverse chronological order are in full agreement with the optical spectroscopy data in the region of the fundamental absorption edge, being adequately described within coordination defect-formation and physical-aging models.

  3. Li ion transport in sputter deposited LiCoO{sub 2} thin films and glassy borate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Stockhoff, Tobias; Gallasch, Tobias; Schmitz, Guido [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Materialphysik, Muenster (Germany)

    2010-07-01

    LiCoO{sub 2} membranes are key components of current battery technology. We investigate sputter-deposited thin films of these materials aiming at the application in all-solid-state thin film batteries. For this, LiCoO{sub 2} films (10-200 nm) were deposited onto ITO-coated glass substrates by ion beam sputtering. In addition, a part of these films are coated by an ion-conductive membrane of Li{sub 2}O-B{sub 2}O{sub 3} glasses in the thickness range of 50 to 300 nm. Structural, chemical and electrical properties of the layers are studied by means of TEM(EELS) and various electrical methods (cyclic voltammetry, chrono-amperometry/-potentiometry). Since the color of the LiCoO{sub 2} films changes from red-brown to grey during de-intercalation of Li and the substrate as well as the glassy membrane deposited on top are optical transparent, reversible Li de- and intercalation can be directly demonstrated and quantified by a measurement of light transmission through the layered system. Samples coated with an ion-conductive membrane reveal a characteristic delay in switching optical transparency which is due to the slower transport across the membrane. Varying the thickness of the glassy membrane, the d.c. ion-conductivity and permeation through the membrane is determined quantitatively. Using thin membranes in the range of a few tens of nanometers the critical current densities are way sufficient for battery applications.

  4. Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma

    Directory of Open Access Journals (Sweden)

    Nastaran Hashemzadeh

    2016-08-01

    Full Text Available Low toxic graphene quantum dot (GQD was synthesized by pyrolyzing citric acid in alkaline solution and characterized by ultraviolet--visible (UV–vis spectroscopy, X-ray diffraction (XRD, atomic force microscopy (AFM, spectrofluorimetery and dynamic light scattering (DLS techniques. GQD was used for electrode modification and electro-oxidation of doxorubicin (DOX at low potential. A substantial decrease in the overvoltage (−0.56 V of the DOX oxidation reaction (compared to ordinary electrodes was observed using GQD as coating of glassy carbon electrode (GCE. Differential pulse voltammetry was used to evaluate the analytical performance of DOX in the presence of phosphate buffer solution (pH 4.0 and good limit of detection was obtained by the proposed sensor. Such ability of GQD to promote the DOX electron-transfer reaction suggests great promise for its application as an electrochemical sensor.

  5. Egg maturation by the glassy-winged sharpshooter (Hemiptera: Cicadellidae); a vector of Xylella fastidiosa

    Science.gov (United States)

    Rates of spread of insect-transmitted plant pathogens are a function of vector abundance. Despite this, factors affecting population growth rates of insects that transmit plant pathogens have received limited attention. The glassy-winged sharpshooter (Homalodisca vitripennis) feeds on xylem-sap and ...

  6. Asphaltene-laden interfaces form soft glassy layers in contraction experiments: a mechanism for coalescence blocking.

    Science.gov (United States)

    Pauchard, Vincent; Rane, Jayant P; Banerjee, Sanjoy

    2014-11-04

    In previous studies, the adsorption kinetics of asphaltenes at the water-oil interface were interpreted utilizing a Langmuir equation of state (EOS) based on droplet expansion experiments.1-3 Long-term adsorption kinetics followed random sequential adsorption (RSA) theory predictions, asymptotically reaching ∼85% limiting surface coverage, which is similar to limiting random 2D close packing of disks. To extend this work beyond this slow adsorption process, we performed rapid contractions and contraction-expansions of asphaltene-laden interfaces using the pendant drop experiment to emulate a Langmuir trough. This simulates the rapid increase in interfacial asphaltene concentration that occurs during coalescence events. For the contraction of droplets aged in asphaltene solutions, deviation from the EOS consistently occurs at a surface pressure value ∼21 mN/m corresponding to a surface coverage ∼80%. At this point droplets lose the shape required for validity of the Laplace-Young equation, indicating solidlike surface behavior. On further contraction wrinkles appear, which disappear when the droplet is held at constant volume. Surface pressure also decreases down to an equilibrium value near that measured for slow adsorption experiments. This behavior appears to be due to a transition to a glassy interface on contraction past the packing limit, followed by relaxation toward equilibrium by desorption at constant volume. This hypothesis is supported by cycling experiments around the close-packed limit where the transition to and from a solidlike state appears to be both fast and reversible, with little hysteresis. Also, the soft glass rheology model of Sollich is shown to capture previously reported shear behavior during adsorption. The results suggest that the mechanism by which asphaltenes stabilize water-in-oil emulsions is by blocking coalescence due to rapid formation of a glassy interface, in turn caused by interfacial asphaltenes rapidly increasing in

  7. Effect of cooling rate on microstructure and deformation behavior of Ti-based metallic glassy/crystalline powders

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.J. [State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Mechanical and Mining Engineering, University of Queensland, Brisbane, QLD 4072 (Australia); Huang, Y.J. [State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001 (China); Shen, J., E-mail: junshen@hit.edu.cn [State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001 (China); Wu, Y.Q.; Huang, H. [School of Mechanical and Mining Engineering, University of Queensland, Brisbane, QLD 4072 (Australia); Zou, J., E-mail: j.zou@uq.edu.au [School of Mechanical and Mining Engineering, University of Queensland, Brisbane, QLD 4072 (Australia); Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072 (Australia)

    2010-08-20

    The microstructures and deformation behavior of Ti-based metallic powders were comprehensively investigated. It has been found that, with increasing the powder size, the phase constituent alters from pure glassy to glassy with crystalline phases (face centered cubic structured NiSnZr and hexagonal structured Ti{sub 3}Sn phases). Our results suggest that the synergetic effect of the thermodynamics and kinetics determines the subsequent characteristics of the crystalline precipitations. Through comparative nanoindentation tests, it was found that the small powders exhibit more pop-in events and a larger pile-up ratio, suggesting that the plastic deformation of the metallic powders is governed by the combined effects of the free volume and the crystallization, which are determined by the cooling rate.

  8. Structural characterization and aging of glassy pharmaceuticals made using acoustic levitation.

    Science.gov (United States)

    Benmore, Chris J; Weber, J K R; Tailor, Amit N; Cherry, Brian R; Yarger, Jeffery L; Mou, Qiushi; Weber, Warner; Neuefeind, Joerg; Byrn, Stephen R

    2013-04-01

    Here, we report the structural characterization of several amorphous drugs made using the method of quenching molten droplets suspended in an acoustic levitator. (13) C NMR, X-ray, and neutron diffraction results are discussed for glassy cinnarizine, carbamazepine, miconazole nitrate, probucol, and clotrimazole. The (13) C NMR results did not find any change in chemical bonding induced by the amorphization process. High-energy X-ray diffraction results were used to characterize the ratio of crystalline to amorphous material present in the glasses over a period of 8 months. All the glasses were stable for at least 6 months except carbamazepine, which has a strong tendency to crystallize within a few months. Neutron and X-ray pair distribution function analyses were applied to the glassy materials, and the results were compared with their crystalline counterparts. The two diffraction techniques yielded similar results in most cases and identified distinct intramolecular and intermolecular correlations. The intramolecular scattering was calculated based on the crystal structure and fit to the measured X-ray structure factor. The resulting intermolecular pair distribution functions revealed broad-nearest and next-nearest neighbor molecule-molecule correlations. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1290-1300, 2013. Copyright © 2013 Wiley Periodicals, Inc.

  9. Fabrication of folic acid sensor based on the Cu doped SnO2 nanoparticles modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Lavanya, N; Radhakrishnan, S; Sudhan, N; Sekar, C; Leonardi, S G; Neri, G; Cannilla, C

    2014-01-01

    A novel folic acid biosensor has been fabricated using Cu doped SnO 2 nanoparticles (NPs) synthesized by a simple microwave irradiation method. Powder XRD and TEM studies confirmed that both the pure and Cu doped SnO 2 (Cu: 0, 10, 20wt%) crystallized in tetragonal rutile-type structure with spherical morphology. The average crystallite size of pure SnO 2 was estimated to be around 16 nm. Upon doping, the crystallite sizes decreased to 9 nm and 5 nm for 10 and 20wt% Cu doped SnO 2 respectively. XPS studies confirmed the electronic state of Sn and Cu to be 4+ and 2+ respectively. Cu (20wt%) doped SnO 2 NPs are proved to be a good sensing element for the determination of folic acid (FA). Cu-SnO 2 NPs (20wt%) modified glassy carbon electrode (GCE) exhibited the lowest detection limit of 0.024 nM over a wide folic acid concentration range of 1.0 × 10 −10 to 6.7 × 10 −5 M at physiological pH of 7.0. The fabricated sensor is highly selective towards the determination of FA even in the presence of a 100 fold excess of common interferent ascorbic acid. The sensor proved to be useful for the estimation of FA content in pharmaceutical sample with satisfactory recovery. (paper)

  10. Crystal-like nature of acoustic excitations in glassy ethanol

    International Nuclear Information System (INIS)

    Matic, A.; Engberg, D.; Boerjesson, L.; Masciovecchio, C.; Santucci, S.C.; Monaco, G.; Verbeni, R.

    2004-01-01

    We report on inelastic x-ray scattering experiments on crystalline and glassy phases of ethanol in order to directly compare the influence of disorder on high frequency acoustic excitations. We find that both the dispersion and the line-width of the longitudinal acoustic excitations in the glass are the same as in the polycrystal in the reciprocal space portion covering the 1st and 2nd Brillouin zones. The structural disorder is found to play little role apart from an intrinsic angular averaging, and the nature of these excitations must essentially be the same in both glass and poly crystal

  11. Modified positron annihilation model for glassy-like As2Se3

    International Nuclear Information System (INIS)

    Kozdras, A.; Shpotyuk, O.; Kovalskiy, A.; Filipecki, J.

    2005-01-01

    An approach to structural characterization of chalcogenide glasses based on the study of void distribution is discussed. The results of positron annihilation lifetime spectra measurements for glassy As 2 Se 3 are compared with nano-void distribution data obtained from Monte Carlo simulation. In this consideration perspectives to involve the parameters of nano-voids calculated from the first sharp diffraction peak in the frame work of known Elliott's model are analyzed. (author)

  12. Using Poly-L-Histidine Modified Glassy Carbon Electrode to Trace Hydroquinone in the Sewage Water

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2014-01-01

    Full Text Available A sensitive voltammetric method for trace measurements of hydroquinone in the sewage water is described. The poly-L-histidine is prepared to modify the glassy carbon electrode in order to improve the electrochemical catalysis of interesting substances such as hydroquinone. The influence of the base solution, pH value, and scanning speed on the tracing of hydroquinone is discussed, and the experimental procedures and conditions are optimized. The laboratory results show that it is possible to construct a linear calibration curve between the peak current of hydroquinone on modified electrode and its concentration at the level of 0.00001 mol/L. The potential limitation of the method is suggested by a linear peaking shift model as well. The method was successfully applied to the determination of hydroquinone in the actual sample of industrial waste water.

  13. Impedimetric PSA aptasensor based on the use of a glassy carbon electrode modified with titanium oxide nanoparticles and silk fibroin nanofibers.

    Science.gov (United States)

    Benvidi, Ali; Banaei, Maryam; Tezerjani, Marzieh Dehghan; Molahosseini, Hosein; Jahanbani, Shahriar

    2017-12-14

    This article describes an impedimetric aptasensor for the prostate specific antigen (PSA), a widely accepted prostate cancer biomarker. A glassy carbon electrode (GCE) was modified with titanium oxide nanoparticles (TiO 2 ) and silk fibroin nanofiber (SF) composite. The aptasensor was obtained by immobilizing a PSA-binding aptamer on the AuNP-modified with 6-mercapto-1-hexanol. The single fabrication steps were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The assay has two linear response ranges (from 2.5 fg.mL -1 to 25 pg.mL -1 , and from 25 pg.mL -1 to 25 ng.mL -1 ) and a 0.8 fg.mL -1 detection limit. After optimization of experimental conditions, the sensor is highly selective for PSA over bovine serum albumin and lysozyme. It was successfully applied to the detection of PSA in spiked serum samples. Graphical abstract Schematic of the fabrication of an aptasensor for the prostate specific antigen (PSA). It is based on the use of a glassy carbon electrode modified with gold nanoparticles and titanium oxide-silk fibroin. The immobilization process of aptamer and interaction with PSA were followed by electrochemical impedance spectroscopy technique.

  14. The electrocatalytical reduction of m-nitrophenol on palladium nanoparticles modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Shi Qiaofang; Diao Guowang

    2011-01-01

    Highlights: ► The deposition of palladium on a GC electrode was performed by cyclic voltammetry. ► SEM images showed palladium nanoparticles deposited on a glassy carbon (GC) electrode. ► The Pd/GC electrode can effectively catalyze m-nitrophenol in aqueous media. ► The reduction of m-nitrophenol on the Pd/GC electrode depended on potential and pH. ► XPS spectra of the Pd/GC electrodes demonstrated the presence of palladium. - Abstract: Palladium nanoparticles modified glassy carbon electrodes (Pd/GC) were prepared via the electrodeposition of palladium on a glassy carbon (GC) electrode using cyclic voltammetry in different sweeping potential ranges. The scanning electron microscope images of palladium particles on the GC electrodes indicate that palladium particles with diameters of 20–50 nm were homogeneously dispersed on the GC electrode at the optimal deposition conditions, which can effectively catalyze the reduction of m-nitrophenol in aqueous solutions, but their catalytic activities are strongly related to the deposition conditions of Pd. The X-ray photoelectron spectroscopy spectra of the Pd/GC electrode confirmed that 37.1% Pd was contained in the surface composition of the Pd/GC electrode. The cyclic voltammograms of the Pd/GC electrode in the solution of m-nitrophenol show that the reduction peak of m-nitrophenol shifts towards the more positive potentials, accompanied with an increase in the peak current compared to the bare GC electrode. The electrocatalytic activity of the Pd/GC electrode is affected by pH values of the solution. In addition, the electrolysis of m-nitrophenol under a constant potential indicates that the reduction current of m-nitrophenol on the Pd/GC electrode is approximately 20 times larger than that on the bare GC electrode.

  15. Formation and Applications of Bulk Glassy Alloys in Late Transition Metal Base System

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Shen Baolong

    2006-01-01

    This paper reviews our recent results of the formation, fundamental properties, workability and applications of late transition metal (LTM) base bulk glassy alloys (BGAs) developed since 1995. The BGAs were obtained in Fe-(Al,Ga)-(P,C,B,Si), Fe-(Cr,Mo)-(C,B), Fe-(Zr,Hf,Nb,Ta)-B, Fe-Ln-B(Ln=lanthanide metal), Fe-B-Si-Nb and Fe-Nd-Al for Fe-based alloys, Co-(Ta,Mo)-B and Co-B-Si-Nb for Co-based alloys, Ni-Nb-(Ti,Zr)-(Co,Ni) for Ni-based alloys, and Cu-Ti-(Zr,Hf), Cu-Al-(Zr,Hf), Cu-Ti-(Zr,Hf)-(Ni,Co) and Cu-Al-(Zr,Hf)-(Ag,Pd) for Cu-based alloys. These BGAs exhibit useful properties of high mechanical strength, large elastic elongation and high corrosion resistance. In addition, Fe- and Co-based glassy alloys have good soft magnetic properties which cannot be obtained for amorphous and crystalline type magnetic alloys. The Fe- and Ni-based BGAs have already been used in some application fields. These LTM base BGAs are promising as new metallic engineering materials

  16. Playback of natural vibrational signals in vineyard trellis for mating disruption of glassy-winged sharpshooter

    Science.gov (United States)

    The glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is a vector of Xylella fastidiosa, an important bacterial pathogen of several crops in the Americas and Europe. Mating communication of this and many other cicadellid pests involves the exchange of substrate-...

  17. Label-free electrochemical immunosensor for the carcinoembryonic antigen using a glassy carbon electrode modified with electrodeposited Prussian Blue, a graphene and carbon nanotube assembly and an antibody immobilized on gold nanoparticles

    International Nuclear Information System (INIS)

    Feng, Dexiang; Lu, Xiaocui; Dong, Xiao; Zhang, Yuzhong; Ling, Yunyun

    2013-01-01

    We described a sensitive, label-free electrochemical immunosensor for the detection of carcinoembryonic antigen. It is based on the use of a glassy carbon electrode (GCE) modified with a multi-layer films made from Prussian Blue (PB), graphene and carbon nanotubes by electrodeposition and assembling techniques. Gold nanoparticles were electrostatically absorbed on the surface of the film and used for the immobilization of antibody, while PB acts as signaling molecule. The stepwise assembly process was investigated by differential pulse voltammetry and scanning electron microscopy. It is found that the formation of antibody-antigen complexes partially inhibits the electron transfer of PB and decreased its peak current. Under the optimal conditions, the decrease of intensity of the peak current of PB is linearly related to the concentration of carcinoembryonic antigen in two ranges (0.2–1.0, and 1.0–40.0 ng·mL −1 ), with a detection limit of 60 pg·mL −1 (S/N = 3). The immunosensor was applied to analyze five clinical samples, and the results obtained were in agreement with clinical data. In addition, the immunosensor exhibited good precision, acceptable stability and reproducibility. (author)

  18. Formulation of thermodynamics for the glassy state : Configurational energy as a modest source of energy

    NARCIS (Netherlands)

    Nieuwenhuizen, T.M.

    2001-01-01

    Glass is an under-cooled liquid that very slowly relaxes towards the equilibrium crystalline state. Its energy balance is ill understood, since it is widely believed that the glassy state cannot be described thermodynamically. However, the classical paradoxes involving the Ehrenfest relations and

  19. Evidence for a glassy state in strongly driven carbon

    International Nuclear Information System (INIS)

    Brown, C.R.D.; Gericke, D.O.; Wunsch, K.; Cammarata, M.; Fritz, D.; Glenzer, S.H.; Heimann, P.; Lee, H.J.; Lemke, H.; Nagler, B.; Zhu, D.; Galtier, E.; Moinard, A.; Rosmej, F.B.

    2014-01-01

    Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid. (authors)

  20. Detection and typing of Xylella fastidiosa from glassy-winged sharpshooter for Pierce’s disease epidemiology

    Science.gov (United States)

    Epidemiology of Pierce’s disease of grape, caused by the bacterial pathogen Xylella fastidiosa (Xf), is largely dependent on populations of insect vectors such as the invasive glassy-winged sharpshooter (GWSS) (Homalodisca vitripennis). In the grape-growing regions of the southern San Joaquin Valley...

  1. EIS study of the redox reaction of Fe(CN)63-/4- at glassy carbon electrode via diazonium reduction in aqueous and acetonitrile solutions

    Energy Technology Data Exchange (ETDEWEB)

    Khoshroo, M.; Rostami, A. [Mazandaran Univ., Babolsar (Iran, Islamic Republic of). Dept. of Physical Chemistry

    2008-07-01

    This paper reported on a study that characterized soluble electroactive species by cyclic voltammetry to investigate the presence of grafted films and their blocking properties. In particular, the authority of the glassy carbon electrode modification conditions on the cyclic voltammetric response of Fe(CN)63-/4- oxido-reduction was examined for 2 layers grafted by electrochemical reduction of diazonium salts in acetonitrile and aqueous solutions. PAA and Fast Black K modified glassy carbon electrodes exhibited a significant blocking behaviour for oxidation and reduction reactions of the Fe(CN)63-/4- redox system in aqueous and acetonitrile solutions. The study showed that the blocking effect increased which changes in time and concentration of diazonium salts in acetonitrile solution. Electrochemical impedance spectroscopy (EIS) measurements showed that the physical barrier of grafted layers prevent the access of Fe(CN)63-/4- to the underlying glassy carbon electrode. Therefore the RCT resistance increases during the modification treatment. The substituted phenyl layers are much more compact and less permeable in a nonaqueous solvent than with an aqueous solvent. Electrochemical impedance measurements indicate that the kinetics of electron transfer slow down when the time and the concentration used to modify the glassy carbon electrode increase. 4 refs., 1 fig.

  2. Statistics of energy levels and zero temperature dynamics for deterministic spin models with glassy behaviour

    NARCIS (Netherlands)

    Degli Esposti, M.; Giardinà, C.; Graffi, S.; Isola, S.

    2001-01-01

    We consider the zero-temperature dynamics for the infinite-range, non translation invariant one-dimensional spin model introduced by Marinari, Parisi and Ritort to generate glassy behaviour out of a deterministic interaction. It is argued that there can be a large number of metastable (i.e.,

  3. Glass-forming ability and crystallization behavior of some binary and ternary Ni-based glassy alloys

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Louzguina-Luzgina, Larissa V.; Xie Guoqiang; Li Song; Zhang Wei; Inoue, Akihisa

    2008-01-01

    The purpose of the current paper is to study the influence of Ti, V, Nb, Al, Sn and Pd additions on the glass-forming ability, formation of a supercooled liquid region and a devitrification process of some Ni-Zr glassy alloys as well as to compare the results with those obtained for similar Cu-based alloys studied earlier. The Ni-based glassy alloys were investigated by using X-ray diffraction, differential scanning and isothermal calorimetries. Although the studied Ni-based alloys showed high values of the reduced glass-transition temperature of about 0.6, their glass-forming ability is quite low. This fact may be explained by low stability of the supercooled liquid against crystallization and formation of the equilibrium intermetallic compounds with a high growth rate compared to those observed in similar Cu-based alloys studied earlier. Relatively low thermal conductivity of Ni-based alloys is also found to be another factor limiting their glass-forming ability

  4. Destruction-polymerization transformations as a source of radiation-induced extended defects in chalcogenide glassy semiconductors

    International Nuclear Information System (INIS)

    Shpotyuk, Oleh; Filipecki, Jacek; Shpotyuk, Mykhaylo

    2013-01-01

    Long-wave shift of the optical transmission spectrum in the region of fundamental optical absorption edge is registered for As 2 S 3 chalcogenide glassy semiconductors after γ-irradiation. This effect is explained in the frameworks of the destruction-polymerization transformations concept by accepting the switching of the heteropolar As-S covalent bonds into homopolar As-As ones. It is assumed that (As 4 + ; S 1 - ) defect pairs are created under such switching. Formula to calculate content of the induced defects in chalcogenide glassy semiconductors is proposed. It is assumed that defects concentration depends on energy of broken covalent bond, bond-switching energy balance, correlation energy, optical band-gap and energy of excitation light. It is shown that theoretically calculated maximally possible content of radiation-induced defects in As 2 S 3 is about 1.6% while concentration of native defects is negligible. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Electrochemical Oxidation of Sulfamethazine on Multi-Walled Nanotube Film Coated Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    L. Fotouhi

    2014-04-01

    Full Text Available The electrochemical oxidation of sulfamethazine (SMZ has been studied at a multi-walled carbon nanotubes modified glassy carbon electrode (MWCNT-GCE by cyclic voltammetry. This modified electrode (MWCNT-GCE exhibited excellent electrocatalytic behavior toward the oxidation of SMZ as evidenced by the enhancement of the oxidation peak current and the shift in the anodic potential to less positive values (170 mV in comparison with the bare GCE. The formal potential, E0', of SMZ is pH dependent with a slope of 54 mV per unit of pH, close to the anticipated Nerstian value of 59 mV for a 2-electron and 2-proton oxidation process. A detailed analysis of cyclic voltammograms gave fundamental electrochemical parameters including the electroactive surface coverage (Г, the transfer coefficient (a, the heterogeneous rate constant (ks. Under the selected conditions, the peak current shows two dynamic linear ranges of 10-200 mM and 300-3000 mM with the detection limit of 6.1 mM. The method was successfully applied to analyze SMZ in serum sample

  6. Electrochemical behavior of ruthenium-hexacyanoferrate modified glassy carbon electrode and catalytic activity towards ethanol electro oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Wendell M.; Marques, Aldalea L.B., E-mail: aldalea.ufma@hotmail.com [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Quimica Tecnologica; Cardoso, William S.; Marques, Edmar P.; Bezerra, Cicero W.B. [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Qumica; Ferreira, Antonio Ap. P. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica; Song, Chaojie; Zhang, Jiujun [Energy, Mining and Environment Portfolio, National Research Council of Canada, Vancouver, BC (Canada)

    2013-04-15

    Ruthenium-based hexacyanoferrate (RuHCF) thin film modified glassy carbon electrode was prepared by drop evaporation method. The RuHCF modified electrode exhibited four redox couples in strong acidic solution (pH 1.5) attributed to Fe(CN){sub 6}{sup 3-} ion and three ruthenium forms (Ru(II), Ru(III) and Ru(IV)), characteristic of ruthenium oxide compounds. The modified electrode displayed excellent electrocatalytic activity towards ethanol oxidation in the potential region where electrochemical processes Ru(III)-O-Ru(IV) and Ru(IV)-O-Ru(VI) occur. Impedance spectroscopy data indicated that the charge transfer resistance decreased with the increase of the applied potential and ethanol concentration, indicating the use of the RuHCF modified electrode as an ethanol sensor. Under optimized conditions, the sensor responded linearly and rapidly to ethanol concentration between 0.03 and 0.4 mol L{sup -1} with a limit of detection of 0.76 mmol L{sup -1}, suggesting an adequate sensitivity in ethanol analyses. (author)

  7. Norepinephrine-modified glassy carbon electrode for the simultaneous determination of ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Zare, H.R.; Memarzadeh, F.; Ardakani, M. Mazloum; Namazian, M.; Golabi, S.M.

    2005-01-01

    The oxidation of norepinephrine (NE) on a preactivated glassy carbon electrode leads to the formation of a deposited layer of about 4.2 x 10 -10 mol cm -2 at the surface of the electrode. The electron transfer rate constant, k s , and charge transfer coefficient, α, for electron transfer between the electrode and immobilized NE film were calculated as 44 s -1 and 0.46, respectively. The NE-modified glassy carbon electrode exhibited good electrocatalytic properties towards ascorbic acid (AA) oxidation in phosphate buffer (pH 7.0) with an overpotential of about 475 mV lower than that of the bare electrode. The electrocatalytic response was evaluated by cyclic voltammetry, chronoamperometry, amperometry and rotating disk voltammetry. The overall number of electrons involved in the catalytic oxidation of AA and the number of electrons involved in the rate-determining step are 2 and 1, respectively. The rate constant for the catalytic oxidation of AA was evaluated by RDE voltammetry and an average value of k h was found to be 8.42 x 10 3 M -1 s -1 . Amperometric determination of AA in stirred solution exhibits a linear range of 2.0-1300.0 μM (correlation coefficient 0.9999) and a detection limit of 0.076 μM. The precision of amperometry was found to be 1.9% for replicate determination of a 49.0 μM solution of AA (n = 6). In differential pulse voltammetric measurements, the NE-modified glassy carbon electrode can separate the AA and uric acid (UA) signals. Ascorbic acid oxidizes at more negative potential than UA. Also, the simultaneous determination of UA and AA is achieved at the NE-modified electrode

  8. Design of a candidate vibrational signal for mating disruption against the glassy-winged sharpshooter, Homalodisca Vitripennis

    Science.gov (United States)

    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is an important pest of grapevines due to its ability to transmit Xylella fastidiosa, the causal agent of Pierce’s disease. GWSS mating communication is based on vibrational signals; therefore, vibrational mating disruption could be an ...

  9. In situ nanocalorimetry of thin glassy organic films

    Science.gov (United States)

    León-Gutierrez, E.; Garcia, G.; Lopeandía, A. F.; Fraxedas, J.; Clavaguera-Mora, M. T.; Rodríguez-Viejo, J.

    2008-11-01

    In this work, we describe the design and first experimental results of a new setup that combines evaporation of liquids in ultrahigh vacuum conditions with in situ high sensitivity thermal characterization of thin films. Organic compounds are deposited from the vapor directly onto a liquid nitrogen cooled substrate, permitting the preparation and characterization of glassy films. The substrate consists of a microfabricated, membrane-based nanocalorimeter that permits in situ measurements of heat capacity under ultrafast heating rates (up to 105 K/s) in the temperature range of 100-300 K. Three glass forming liquids—toluene, methanol, and acetic acid—are characterized. The spikes in heat capacity related to the glass-transition temperature, the fictive temperature and, in some cases, the onset temperature of crystallization are determined for several heating rates.

  10. A glassy lava flow from Toconce volcano and its relation with the Altiplano-Puna Magma Body in Central Andes

    Science.gov (United States)

    Godoy, B.; Rodriguez, I.; Aguilera, F.

    2012-12-01

    Toconce is a composite stratovolcano located at the San Pedro - Linzor volcanic chain (SPLVC). This volcanic chain distributes within the Altiplano-Puna region (Central Andes) which is characterized by extensive rhyodacitic-to-rhyolitic ignimbritic fields, and voluminous domes of dacitic-to-rhyolitic composition (de Silva, 1989). The felsic melts that gave origin to ignimbrites and domes at this area were generated by mixing of mantle-derived magmas and anatectic melts assimilated during their ascent through the thick crust. Thus, partially molten layers exist in the upper crust below the APVC (de Silva et al., 2006). Evidence of large volumes of such melts has been also proposed by geophysical methods (i.e. the Altiplano-Puna Magma Body; Chmielowsky et al., 1999) In this work, petrography and whole rock, mineralogical and melt inclusions geochemistry of a glassy lava flow of Toconce volcano are presented. Petrographically, this lava flow shows a porphyric texture, with euhdral to subhedral plagioclase, ortho- and clino-pyroxene phenocrysts immersed in a glassy groundmass. Geochemically, the lava flow has 64.7% wt. SiO2. The glassy groundmass (~70% wt. SiO2) is more felsic than all the lavas in the volcanic chain (47-68% wt., Godoy et al., 2011). Analyzed orthopyroxene-hosted melt inclusions show an even higher SiO2 content (72-75% wt.), and a decreasing on Al2O3, Na2O, and CaO content with differentiation. Crystallization pressures of this lava flow, obtained using Putirka's two-pyroxene and clinopyroxene-liquid models (Putirka, 2008), range between 6 and 9 kbar. According to crystallization pressures, and major element composition, a felsic source located at shallow crustal pressures - where plagioclase is a stable mineralogical phase - originated the inclusions. This could be related to the presence of the Altiplano-Puna Magma Body (APMB) located below SPLVC. On the other hand, glassy groundmass, and disequilibrium textures in minerals of this lava flow could

  11. Comparing the mechanism of water condensation and evaporation in glassy aerosol.

    Science.gov (United States)

    Bones, David L; Reid, Jonathan P; Lienhard, Daniel M; Krieger, Ulrich K

    2012-07-17

    Atmospheric models generally assume that aerosol particles are in equilibrium with the surrounding gas phase. However, recent observations that secondary organic aerosols can exist in a glassy state have highlighted the need to more fully understand the kinetic limitations that may control water partitioning in ambient particles. Here, we explore the influence of slow water diffusion in the condensed aerosol phase on the rates of both condensation and evaporation, demonstrating that significant inhibition in mass transfer occurs for ultraviscous aerosol, not just for glassy aerosol. Using coarse mode (3-4 um radius) ternary sucrose/sodium chloride/aqueous droplets as a proxy for multicomponent ambient aerosol, we demonstrate that the timescale for particle equilibration correlates with bulk viscosity and can be ≫10(3) s. Extrapolation of these timescales to particle sizes in the accumulation mode (e.g., approximately 100 nm) by applying the Stokes-Einstein equation suggests that the kinetic limitations imposed on mass transfer of water by slow bulk phase diffusion must be more fully investigated for atmospheric aerosol. Measurements have been made on particles covering a range in dynamic viscosity from  10(13) Pa s. We also retrieve the radial inhomogeneities apparent in particle composition during condensation and evaporation and contrast the dynamics of slow dissolution of a viscous core into a labile shell during condensation with the slow percolation of water during evaporation through a more homogeneous viscous particle bulk.

  12. Decreasing of the detection limit for gamma-ray Spectrometry with the influence of sample treatment

    International Nuclear Information System (INIS)

    Karami, M.; Sadighzadeh, A.; Asgharizadeh, F.; Sardari, D.; Tavassoli, A.; Arbabi, A.; Hochaghani, O.

    2009-01-01

    Full text: In this study the ash method has been applied for environmental sample treatment in order to decrease of the detection limit in gamma-ray spectrometry for low level radioactivity measurements. Detection limit in gamma ray spectrometry is the smallest expectation value of the net counting rate that can be detected on given probabilities. The environmental test samples have been changed into ash using a suitable oven. The heating were made under controlled temperature to avoid the escape of some radionuclides such as radiocaesium. The ash samples were measured by high resolution gamma-ray spectrometry system. (author)

  13. Fine kinetics of natural physical ageing in glassy As10Se90

    International Nuclear Information System (INIS)

    Balitska, V.; Golovchak, R.; Kozdras, A.; Shpotyuk, O.

    2014-01-01

    Sigmoid behavior of natural physical ageing in glassy As 10 Se 90 reveals multi-step-wise growing kinetics of enthalpy losses. Phenomenological description of this kinetics can be adequately developed in terms of first-order relaxation processes, tending atomic structure from initial towards more thermodynamically equilibrium state. This kinetics is shown to obey characteristic stretched exponential behavior originated from a number of growing steps, attributed to the interconnected processes of chalcogen chain alignment and cooperative shrinkage of glass network

  14. Encoding Gaussian Curvature in Glassy and Elastomeric Liquid Crystal Solids (Postprint)

    Science.gov (United States)

    2016-05-04

    attention to director fields of the form n = cosψ(x2) ê1 + sinψ(x2) ê2, whose alignment angle field varies only with respect to one of the...λ−2 − λ2ν)/L2 < 0. (Online version in colour .) For a fixed two-dimensional metric, the problem of identifying equilibrium configurations that...length of 10 mm. (b) Positive (left) and negative (right) Gaussian curvature in 15µm thick glassy LC solid film at 175◦C. (Online version in colour .) (b

  15. Highly selective determination of dopamine in the presence of ascorbic acid and serotonin at glassy carbon electrodes modified with carbon nanotubes dispersed in polyethylenimine.

    Science.gov (United States)

    Rodríguez, Marcela C; Rubianes, María D; Rivas, Gustavo A

    2008-11-01

    We report the highly selective and sensitive voltammetric dopamine quantification in the presence of ascorbic acid and serotonin by using glassy carbon electrodes modified with a dispersion of multi-wall carbon nanotubes (MWCNT) in polyethylenimine, PEI (GCE/MWCNT-PEI). The electrocatalytic activity of the MWCNT deposited on the glassy carbon electrode has allowed an important decrease in the overvoltages for the oxidation of ascorbic acid and dopamine, making possible a clear definition of dopamine, serotonin and ascorbic acid oxidation processes. The sensitivities for dopamine in the presence and absence of 1.0 mM ascorbic acid and serotonin were (2.18 +/- 0.03) x 10(5) microAM(-1) (r = 0.9998); and (2.10 +/- 0.07) x 10(5) miroAM(-1) (r=0.9985), respectively, demonstrating the excellent performance of the GCE/MWCNT-PEI. The detection limit for dopamine in the mixture was 9.2 x 10(-7) M. The R. S. D. for the determination of 50 microM dopamine using four different electrodes was 3.9% when modified with the same MWCNT/PEI dispersion, and 4.6% when using four different dispersions. The modified electrode has been successfully applied for recovery assays of dopamine in human blood serum. Therefore, the new sensor represents an interesting and promising alternative for the electrochemical quantification of neurotransmitters and other analytes of clinical interest.

  16. Cytochrome C Dynamics at Gold and Glassy Carbon Surfaces Monitored by in Situ Scanning Tunnel Microscopy

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Møller, Per; Pedersen, Marianne Vind

    1995-01-01

    We have investigated the absorption of cytochrome c on gold and glassy carbon substrates by in situ scanning tunnel microscopy under potentiostatic control of both substrate and tip. Low ionic strength and potential ranges where no Faradaic current flows were used. Cyt c aggregates into flat...

  17. Resistivity and Passivity Characterization of Ni-Base Glassy Alloys in NaOH Media

    Directory of Open Access Journals (Sweden)

    Khadijah M. Emran

    2018-01-01

    Full Text Available Resistivity and passivation behavior of two Ni-base bulk metallic glasses, with the nominal composition of Ni70Cr21Si0.5B0.5P8C ≤ 0.1Co ≤ 1Fe ≤ 1 (VZ1 and Ni72.65Cr7.3-Si6.7B2.15C ≤ 0.06Fe8.2Mo3 (VZ2, in various concentrations of NaOH solutions were studied. The investigations involved cyclic polarization (CP, electrochemical impedance spectroscopy (EIS, and electrochemical frequency modulation (EFM methods. Cyclic polarization measurements showed spontaneous passivation for both Ni-base glassy alloys at all alkaline concentrations, due to the presence of chromium as an alloying element that formed an oxide film on the alloy surface. The EIS analysis showed that the passive layers grown on the two Ni-base glassy alloy surfaces are formed by a double oxide layer structure. Scanning electron microscope (SEM examinations of the electrode surface showed Cr, Ni, Fe, and O rich corrosion products that reduced the extent of corrosion damage. Atomic force microscopy (AFM imaging technique was used to evaluate the topographic and morphologic features of surface layers formed on the surface of the alloys.

  18. Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Dong Yongping; Pei Lizhai; Chu Xiangfeng; Zhang Wangbing; Zhang Qianfeng

    2010-01-01

    A CuGeO 3 nanowire modified glassy carbon electrode was fabricated and characterized by scanning electron microscopy. The results of electrochemical impedance spectroscopy reveal that electron transfer through nanowire film is facile compared with that of bare glassy carbon electrode. The modified electrode exhibited a novel electrocatalytic behavior to the electrochemical reactions of L-cysteine in neutral solution, which was not reported previously. Two pairs of semi-reversible electrochemical peaks were observed and assigned to the processes of oxidation/reduction and adsorption/desorption of cysteine at the modified electrode, respectively. The electrochemical response of cysteine is poor in alkaline condition and is enhanced greatly in acidic solution, suggesting that hydrogen ions participate in the electrochemical oxidation process of cysteine. The intensities of two anodic peaks varied linearly with the concentration of cysteine in the range of 1 x 10 -6 to 1 x 10 -3 mol L -1 , which make it possible to sensitive detection of cysteine with the CuGeO 3 nanowire modified electrode. Furthermore, the modified electrode exhibited good reproducibility and stability.

  19. Determination of Mercury (II Ion on Aryl Amide-Type Podand-Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Sevgi Güney

    2011-01-01

    Full Text Available A new voltammetric sensor based on an aryl amide type podand, 1,8-bis(o-amidophenoxy-3,6-dioxaoctane, (AAP modified glassy carbon electrode, was described for the determination of trace level of mercury (II ion by cyclic voltammetry (CV and differential pulse voltammetry (DPV. A well-defined anodic peak corresponding to the oxidation of mercury on proposed electrode was obtained at 0.2 V versus Ag/AgCl reference electrode. The effect of experimental parameters on differential voltammetric peak currents was investigated in acetate buffer solution of pH 7.0 containing 1 × 10−1 mol L−1 NaCl. Mercury (II ion was preconcentrated at the modified electrode by forming complex with AAP under proper conditions and then reduced on the surface of the electrode. Interferences of Cu2+, Pb2+, Fe3+, Cd2+, and Zn2+ ions were also studied at two different concentration ratios with respect to mercury (II ions. The modified electrode was applied to the determination of mercury (II ions in seawater sample.

  20. Sensitive Electrochemical Detection of Dopamine With a Nitrogen-doped Graphene Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Wencheng Wang

    2016-09-01

    Full Text Available In this paper nitrogen-doped graphene (NG nanosheets were used as the modifier on the surface of glassy carbon electrode (GCE. The modified electrode (NG/GCE was further applied to the sensitive detection of dopamine (DA by voltammetric method. Due to the unique properties of NG such as large surface area and excellent electrocatalytic activity, electrochemical response of DA was greatly enhanced on NG/GCE with a pair of well-defined redox peaks appeared on cyclic voltammogram. Electrochemical behaviors of DA on NG/GCE were carefully investigated with the electrochemical parameters calculated. Under the selected conditions the oxidation peak currents of DA had a good linear relationship with its concentration in the range from 8.0×10–7 mol L–1 to 8.0×10–4 mol L–1 with a detection limit of 2.55×10–7 mol L–1 (3σ. The proposed method was further applied to the DA injection samples determination with satisfactory results. This work is licensed under a Creative Commons Attribution 4.0 International License.

  1. Glassy and Metastable Crystalline BaTi2O5 by Containerless Processing

    Science.gov (United States)

    Yoda, Shinichi; Kentei Yu, Yu; Kumar, Vijaya; Kameko, Masashi

    Many efforts have been devoted to forming bulk glass from the melt of ferroelectric crystalline materials without adding any network-forming oxides such as SiO2 due to the potential for producing transparent glass ceramics with high dielectric constant and enhanced piezoelectric, pyroelectric and electro-optic use. The containerless processing is an attractive synthesis tech-nique as it can prevent melt contamination, minimize heterogeneous nucleation, and allow melt to achieve deep undercooling for forming metastable and glassy materials. We have fabricated a new ferroelectric materiel BaTi2 O5 [1] as bulk glass from melt by us-ing containerless processing and studied the phase relationship between microstructure and ferroelectric properties of BaTi2 O5 [2]. The structures of glassy and metastable crystalline BaTi2 O5 fabricated by the containerless pro-cessing were comprehensively investigated by combined X-ray and neutron diffractions, XANES analyses and computer simulations [3]. The 3-dimensional atomic structure of glassy BaTi2 O5 (g-BaTi2 O5 ), simulated by Reverse Monte Carlo (RMC) modelling on diffraction data, shows that extremely distorted TiO5 polyhedra interconnected with both corner-and edge-shared oxy-gen, formed a higher packing density structure than that of conventional silicate glass linked with only corner-sharing of SiO4 polyhedra. In addition, XANES measurement reveales that five-coordinated TiO5 polyhedra were formable in the crystallized metastable a-and b-BaTi2 O5 phases. The structure of metastable b-BaTi2 O5 was solved by ab initio calculation, and refined by Rietveld refinement as group Pnma with unit lattices a = 10.23784 ˚, b = 3.92715 ˚, c A A = 10.92757 A ˚. Our results show that the glass-forming ability enhanced by containerless pro-cessing, not by `strong glass former', fabricated new bulk oxide glasses with peculiar structures and properties. The intermediate-range structure of g-BaTi2 O5 and the crystalline structure of

  2. Glassy-state stabilization of a dominant negative inhibitor anthrax vaccine containing aluminum hydroxide and glycopyranoside lipid A adjuvants.

    Science.gov (United States)

    Hassett, Kimberly J; Vance, David J; Jain, Nishant K; Sahni, Neha; Rabia, Lilia A; Cousins, Megan C; Joshi, Sangeeta; Volkin, David B; Middaugh, C Russell; Mantis, Nicholas J; Carpenter, John F; Randolph, Theodore W

    2015-02-01

    During transport and storage, vaccines may be exposed to temperatures outside of the range recommended for storage, potentially causing efficacy losses. To better understand and prevent such losses, dominant negative inhibitor (DNI), a recombinant protein antigen for a candidate vaccine against anthrax, was formulated as a liquid and as a glassy lyophilized powder with the adjuvants aluminum hydroxide and glycopyranoside lipid A (GLA). Freeze-thawing of the liquid vaccine caused the adjuvants to aggregate and decreased its immunogenicity in mice. Immunogenicity of liquid vaccines also decreased when stored at 40°C for 8 weeks, as measured by decreases in neutralizing antibody titers in vaccinated mice. Concomitant with efficacy losses at elevated temperatures, changes in DNI structure were detected by fluorescence spectroscopy and increased deamidation was observed by capillary isoelectric focusing (cIEF) after only 1 week of storage of the liquid formulation at 40°C. In contrast, upon lyophilization, no additional deamidation after 4 weeks at 40°C and no detectable changes in DNI structure or reduction in immunogenicity after 16 weeks at 40°C were observed. Vaccines containing aluminum hydroxide and GLA elicited higher immune responses than vaccines adjuvanted with only aluminum hydroxide, with more mice responding to a single dose. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Onset of shear thinning in glassy liquids: Shear-induced small reduction of effective density.

    Science.gov (United States)

    Furukawa, Akira

    2017-01-01

    We propose a simple mechanism for describing the onset of shear thinning in a high-density glassy liquid. In a shear flow, along the compression axis, the overlap between neighboring particles is more enhanced than that at equilibrium, meaning that the "effective" size is reduced along this axis. On the other hand, along the extension axis perpendicular to the compression axis, the average structural configurations are stretched, but it does not indicate the expansion of the "effective" size itself. This asymmetric shear flow effect for particles results in a small reduction of the "effective" density. Because, in glass-forming liquids, the structural relaxation time τ_{α} strongly depends on the density ρ, even a very small reduction of the effective density should lead to a significant decrease of the relaxation time under shear flow. We predict that the crossover shear rate from Newtonian to non-Newtonian flow behaviors is given by γ[over ̇]_{c}=[ρ(∂τ_{α}/∂ρ)]^{-1}, which can be much smaller than 1/τ_{α} near the glass transition point. It is shown that this prediction is consistent with the results of molecular dynamics simulations.

  4. Non-Gaussian nature of glassy dynamics by cage to cage motion

    International Nuclear Information System (INIS)

    Vorselaars, Bart; Lyulin, Alexey V.; Michels, M. A. J.; Karatasos, K.

    2007-01-01

    A model based on a single Brownian particle moving in a periodic effective field is used to understand the non-Gaussian dynamics in glassy systems of cage escape and subsequent recaging, often thought to be caused by a heterogeneous glass structure. The results are compared to molecular-dynamics simulations of systems with varying complexity: quasi-two-dimensional colloidlike particles, atactic polystyrene, and a dendritic glass. The model nicely describes generic features of all three topologically different systems, in particular around the maximum of the non-Gaussian parameter. This maximum is a measure for the average distance between cages

  5. Development and Validation of Chronopotentiometric Method for Imidacloprid Determination in Pesticide Formulations and River Water Samples

    Directory of Open Access Journals (Sweden)

    Ana Đurović

    2016-01-01

    Full Text Available A new electrochemical method for determination of imidacloprid using chronopotentiometry on thin film mercury and glassy carbon electrode was presented. The most important experimental parameters of chronopotentiometry were examined and optimized with respect to imidacloprid analytical signal. Imidacloprid provided well-defined reduction peak in Britton-Robinson buffer on thin film mercury electrode at −1.0 V (versus Ag/AgCl (KCl, 3.5 mol/L and on glassy carbon electrode at −1.2 V (versus Ag/AgCl (KCl, 3.5 mol/L. The reduction time was linearly proportional to concentrations from 0.8 to 30.0 mg/L on thin film mercury electrode and from 7.0 to 70.0 mg/L on glassy carbon electrode. The detection limits were 0.17 mg/L and 0.93 mg/L for thin film mercury and glassy carbon electrode, respectively. The estimation of method precision as a function of repeatability and reproducibility showed relative standard deviations values lower than 3.73%. Recovery values from 97.3 to 98.1% confirmed the accuracy of the proposed method, while the constancy of the transition time with deliberated small changes in the experimental parameters indicated a very good robustness. A minor influence of possible interfering compounds proved good selectivity of the method. Developed method was applied for imidacloprid determination in commercial pesticide formulations and river water samples.

  6. Amperometric detection of carbohydrates based on the glassy carbon electrode modified with gold nano-flake layer

    Directory of Open Access Journals (Sweden)

    Huy Du Nguyen

    2015-09-01

    Full Text Available An electro-deposition approach was established to incorporate the gold nano-flakes onto the glassy carbon electrode in electrochemical cells (nano-Au/GC/ECCs. Using pulsed amperometric detection (PAD without any gold oxidation for cleaning (non-oxidative PAD, the nano-Au/GC/ECCs were able to maintain their activity for oxidizing of carbohydrates in a normal alkaline medium. The reproducibility of peak area was about 2 relative standard deviation (RSD,% for 6 consecutive injections. A dynamic range of carbohydrates was obtained over a concentration range of 5–80 mg L−1 and the limits of detection (LOD were of 2 mg L−1 for fructose and lactose and 1 mg L−1 for glucose and galactose. Moreover, the nano-Au/GC/ECC using the non-oxidative PAD was able to combine with the internal standard method for determination of lactose in fresh cow milk sample.

  7. Electrochemistry of raloxifene on glassy carbon electrode and its determination in pharmaceutical formulations and human plasma.

    Science.gov (United States)

    Bagheri, Akbar; Hosseini, Hadi

    2012-12-01

    The electrochemical behavior of raloxifene (RLX) on the surface of a glassy carbon electrode (GCE) has been studied by cyclic voltammetry (CV). The CV studies were performed in various supporting electrolytes, wide range of potential scan rates, and pHs. The results showed an adsorption-controlled and quasi-reversible process for the electrochemical reaction of RLX, and a probable redox mechanism was suggested. Under the optimum conditions, differential pulse voltammetry (DPV) was applied for quantitative determination of the RLX in pharmaceutical formulations. The DPV measurements showed that the anodic peak current of the RLX was linear to its concentration in the range of 0.2-50.0μM with a detection limit of 0.0750μM, relative standard deviation (RSD %) below 3.0%, and a good sensitivity. The proposed method was successfully applied for determination of the RLX in pharmaceutical and human plasma samples with a good selectivity and suitable recovery. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. In-Vivo Characterization of Glassy Carbon Micro-Electrode Arrays for Neural Applications and Histological Analysis of the Brain Tissue

    Science.gov (United States)

    Vomero, Maria

    The aim of this work is to fabricate and characterize glassy carbon Microelectrode Arrays (MEAs) for sensing and stimulating neural activity, and conduct histological analysis of the brain tissue after the implant to determine long-term performance. Neural applications often require robust electrical and electrochemical response over a long period of time, and for those applications we propose to replace the commonly used noble metals like platinum, gold and iridium with glassy carbon. We submit that such material has the potential to improve the performances of traditional neural prostheses, thanks to better charge transfer capabilities and higher electrochemical stability. Great interest and attention is given in this work, in particular, to the investigation of tissue response after several weeks of implants in rodents' brain motor cortex and the associated materials degradation. As part of this work, a new set of devices for Electrocorticography (ECoG) has been designed and fabricated to improve durability and quality of the previous generation of devices, designed and manufactured by the same research group in 2014. In-vivo long-term impedance measurements and brain activity recordings were performed to test the functionality of the neural devices. In-vitro electrical characterization of the carbon electrodes, as well as the study of the adhesion mechanisms between glassy carbon and different substrates is also part of the research described in this book.

  9. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Science.gov (United States)

    Luhana, Charles; Bo, Xiang-Jie; Ju, Jian; Guo, Li-Ping

    2012-10-01

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H2O2 at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H2O2. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 μA mM-1), low detection limit (1.8 μM), fast response time tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  10. Voltammetric behavior of sedative drug midazolam at glassy carbon electrode in solubilized systems

    OpenAIRE

    Jain, Rajeev; Yadav, Rajeev Kumar

    2012-01-01

    Redox behavior of midazolam was studied at a glassy carbon electrode in various buffer systems, supporting electrolytes and pH using differential pulse, square-wave and cyclic voltammetry. Based on its reduction behavior, a direct differential pulse voltammetric method has been developed and validated for the determination of midazolam in parenteral dosage. Three well-defined peaks were observed in 0.1% SLS, BrittonâRobinson (BR) buffer of pH 2.5. The effect of surfactants like sodium lauryl ...

  11. Voltammetric behavior of sedative drug midazolam at glassy carbon electrode in solubilized systems

    OpenAIRE

    Jain, Rajeev; Yadav, Rajeev Kumar

    2011-01-01

    Redox behavior of midazolam was studied at a glassy carbon electrode in various buffer systems, supporting electrolytes and pH using differential pulse, square-wave and cyclic voltammetry. Based on its reduction behavior, a direct differential pulse voltammetric method has been developed and validated for the determination of midazolam in parenteral dosage. Three well-defined peaks were observed in 0.1% SLS, Britton–Robinson (BR) buffer of pH 2.5. The effect of surfactants like sodium lauryl ...

  12. Methionine – Au Nanoparticle Modified Glassy Carbon Electrode: a Novel Platform for Electrochemical Detection of Hydroquinone

    Directory of Open Access Journals (Sweden)

    Jiahong HE

    2014-12-01

    Full Text Available A high sensitive electrochemical sensor based on methionine/gold nanoparticles (MET/AuNPs modified glassy carbon electrode (GCE was fabricated for the quantitative detection of hydroquinone (HQ. The as-modified electrode was characterized by scanning electron microscopy (SEM and X-ray diffraction (XRD techniques. The electrochemical performance of the sensor to HQ was investigated by using cyclic and differential pulse voltammetry, which revealed its excellent electrocatalytic activity and reversibility towards HQ. The separation of anodic and cathodic peak (∆Ep was decreased from 471 mV to 75 mV. The anodic peak current achieved under the optimum conditions was linear with the HQ concentration ranging from 8 μM to 400 μM with the detection limit 0.12 μM (3σ. The as-fabricated sensor also showed a good selectivity towards HQ without demonstrating interference from other coexisting species. Furthermore, the sensor showed a good performance for HQ detection in environmental water, which suggests its potential practical application. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6477

  13. Analysis of diffuse scattering in neutron powder diagrams. Application to glassy carbon

    International Nuclear Information System (INIS)

    Boysen, H.

    1985-01-01

    From the quantitative analysis of the diffuse scattered intensity in powder diagrams valuable information about the disorder in crystals may be obtained. According to the dimensionality of this disorder (0D, 1D, 2D or 3D corresponding to diffuse peaks, streaks, planes or volume in reciprocal space) a characteristic modulation of the background is observed, which is described by specific functions. These are derived by averaging the appropriate cross sections over all crystallite orientations in the powder and folding with the resolution function of the instrument. If proper account is taken of all proportionality factors different components of the background can be put on one relative scale. The results are applied to two samples of glassy carbon differing in their degree of disorder. The neutron powder patterns contain contributions from 0D (00l peaks due to the stacking of graphitic layers), 1D (hkzeta streaks caused by the random orientation of these layers) and 3D (incoherent scattering, averaged thermal diffuse scattering, multiple scattering). From the fit to the observed data various parameters of the disorder like domain sizes, strains, interlayer distances, amount of incorporated hydrogen, pore sizes etc. are determined. It is shown that the omission of resolution corrections leads to false parameters. (orig.)

  14. EXPERIMENTAL ANALYSIS OF BIOLOGICAL PARAMETERS AND VECTOR ABILITY OF GLASSY-WINGED SHARPSHOOTERS FROM ALLOPATRIC POPULATIONS IN CALIFORNIA

    Science.gov (United States)

    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar), is native to the southeastern United States and northeastern Mexico. It was detected in southern California in the late 1980s and in the San Joaquin Valley in 1999, where it transmits the bacterium Xylella fastidiosa to grapev...

  15. Raman, photoluminescence and EPR spectroscopic characterization of europium(III) oxide–lead dioxide–tellurite glassy network

    Energy Technology Data Exchange (ETDEWEB)

    Dehelean, A. [National Research and Development Institute for Isotopic and Molecular Technologies, Cluj-Napoca (Romania); Rada, S. [Technical University of Cluj-Napoca (Romania); Popa, A.; Suciu, R.C. [National Research and Development Institute for Isotopic and Molecular Technologies, Cluj-Napoca (Romania); Culea, E., E-mail: eugen.culea@phys.utcluj.ro [Technical University of Cluj-Napoca (Romania)

    2016-09-15

    Raman, photoluminescence and EPR spectroscopies were used to characterize some xEu{sub 2}O{sub 3}·(100−x)[4TeO{sub 2}·PbO{sub 2}] glasses with x=0–50 mol% obtained by melt quenching technique. Raman spectra of these glasses were interpreted in terms of vibration modes of deformed Te–O–Te linkages due to the intercalation of [PbO{sub n}] and [EuO{sub n}] entities produced by addition of Eu{sub 2}O{sub 3} to the host lead–tellurite glass. Photoluminescence spectra of xEu{sub 2}O{sub 3}·(100−x)[4TeO{sub 2}·PbO{sub 2}] glasses reveal the presence of Pb{sup 2+}, Eu{sup 2+} and Eu{sup 3+} ions. EPR data confirm the presence of Eu{sup 2+} ions in the europium–lead–tellurite glassy network and offer information about the compositional evolution of the Eu{sup 2+} ions local environment and Eu{sup 3+}↔Eu{sup 2+} redox process. PL and EPR data show that the decrease of the Eu{sup 2+} ions luminescence intensity for the x≥40 mol% Eu{sub 2}O{sub 3} region is not due to the clusterization of europium ions but is due the decrease of the amount of Eu{sup 2+} ions as result of changes in the Eu{sup 3+}→Eu{sup 2+} redox equilibrium.

  16. Electrodeposition as a sample preparation technique for TXRF analysis

    International Nuclear Information System (INIS)

    Griesel, S.; Reus, U.; Prange, A.

    2000-01-01

    TXRF analysis of trace elements at concentrations in the μg/L range and below in high salt matrices normally requires a number of sample preparation steps that include separation of the salt matrix and preconcentration of the trace elements. A neat approach which allows samples to be prepared straightforwardly in a single step involves the application of electrochemical deposition using the TXRF sample support itself as an electrode. For this work a common three-electrode arrangement (radiometer analytical) with a rotating disc electrode as the working electrode, as is frequently employed in voltametric analysis, has been used. A special electrode tip has been constructed as a holder for the sample carrier which consists of polished glassy carbon. This material has been proven to be suitable for both its electrical and chemical properties. Measurements of the trace elements were performed using the ATOMIKA 8030C TXRF spectrometer, with the option of variable incident angles. In first experiments an artificial sea water matrix containing various trace elements in the μg/L range has been used. Elements such as Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag, Cd, Hg, and Pb deposited on glassy carbon carriers. The deposition can be optimized by controlling the potential of the working electrode with respect to the reference electrode. Metal ions with a suitable standard potential are reduced to the metallic state and plated onto the electrode surface. When deposition is finished the sample carrier is demounted, rinsed with ultra-pure water and measured directly. Deposition yields for the elements under investigation are quite similar, and with an appropriate choice of the reference element, quantification can be achieved directly by internal standardization. The influence of parameters such as time, pH value, and trace element concentration on the deposition yield has been examined, and the results will be presented along with reproducibility studies. (author)

  17. Study and Electrochemical Determination of Tyrosine at Graphene Nanosheets Composite Film Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    M. Behpour

    2013-06-01

    Full Text Available A graphene nanosheets (GNS film coated glassy carbon electrode (GCE was fabricated for sensitive determination of tyrosine (Tyr. The GNS-based sensor was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The voltammetric techniques were employed to study electro-oxidation of Tyr. The results revealed that the modified electrode showed an electrocatalytic activity toward the anodic oxidation of Tyr by a marked enhancement in the current intensity and the shift in the oxidation potential to lower values (50 mV in comparison with the bare GCE. Some kinetic parameters such as the electron transfer coefficient (α were also determined for the Tyr oxidation. The detection limit  for Tyr was found to be 2.0×10-8 M (n=9, and the peak current increases linearly with the Tyr concentration within the molar concentration ranges of 5.0 ×10-6 to 1.2 ×10-4 M. The modified electrode shows good sensitivity, selectivity and stability. The prepared electrode was applied for the determination of Tyr in real sample.

  18. Effect of compositional dependence on physical and optical parameters of Te{sub 17}Se{sub 83−x}Bi{sub x} glassy system

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Pankaj, E-mail: pks_phy@yahoo.co.in [Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, HP 173234 (India); El-Bana, M.S.; Fouad, S.S. [Nano-Science and Semiconductor Laboratories, Department of Physics, Faculty of Education, Ain Shams University, Cairo (Egypt); Sharma, Vineet [Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, HP 173234 (India)

    2016-05-15

    In the present paper we have studied the effect of Bi addition on the physical and optical properties of thermally evaporated Te{sub 17}Se{sub 83−x}Bi{sub x} thin films. With Bi addition the density, mean coordination number, mechanical constraints, glass transition temperature increases. The other parameters theoretical energy gap, lone pair electron, deviation from stoichiometry decreases. Transmission spectra have been taken in the spectral range 400 nm–2500 nm using ultraviolet–visible–near infrared spectrophotometer. The fundamental absorption edge shifts towards longer wavelength with Bi incorporation. Optical energy gap and linear refractive index have been determined using transmission spectra. A good correlation has been drawn between the optical and theoretical parameters. Using linear optical parameters, the nonlinear optical susceptibility and nonlinear refractive index have been estimated. - Highlights: • Physical and optical parameters have been analyzed for Te{sub 17}Se{sub 83−x}Bi{sub x} glassy alloys. • The addition of Bi leads to decrease of average heat of atomization and cohesive energy. • The optical band gap decreases with increasing Bi content. • The third order susceptibility and nonlinear refractive index show an increase with increase in the Bi content.

  19. Sensitive electrochemical sensor of tryptophan based on Ag-C core–shell nanocomposite modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Mao Shuxian; Li Weifeng; Long Yumei; Tu Yifeng; Deng, Anping

    2012-01-01

    Graphical abstract: Ag-C and Colloidal carbon sphere modified glassy carbon electrodes were prepared. It was clear that the Ag-C/GCE exhibited enhanced electrocatalytic activity towards Trp, which could result from the synergistic effect between Ag core and carbon shell. The Ag-C/GCE showed excellent analytical properties in the determination of Trp. Highlights: ► The electrochemical behavior of Ag-C core–shell nanocomposite was firstly proposed. ► Ag-C/GC electrode exhibited favorable electrocatalytic properties towards Trp. ► The good electrocatalysis was due to the synergistic effect of Ag-core and C-shell. ► The Ag-C/GC electrode displayed excellent analytical properties in determining Trp. - Abstract: We here reported a simple electrochemical method for the detection of tryptophan (Trp) based on the Ag-C modified glassy carbon (Ag-C/GC) electrode. The Ag-C core–shell structured nanoparticles were synthesized using one-pot hydrothermal method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform-infrared spectroscopy (FTIR). The electrochemical behaviors of Trp on Ag-C/GC electrode were investigated and exhibited a direct electrochemical process. The favorable electrochemical properties of Ag-C/GC electrode were attributed to the synergistic effect of the Ag core and carbon shell. The carbon shell cannot only protect Ag core but also contribute to the enhanced substrate accessibility and Trp-substrate interactions, while nano-Ag core can display good electrocatalytic activity to Trp at the same time. Under the optimum experimental conditions the oxidation peak current was linearly dependent on the Trp concentration in the range of 1.0 × 10 −7 to 1.0 × 10 −4 M with a detection limit of 4.0 × 10 −8 M (S/N = 3). In addition, the proposed electrode was applied for the determination of Trp concentration in real samples and satisfactory results were obtained. The technique offers

  20. Determination of fenitrothion in water using a voltammetric sensor based on a polymer-modified glassy carbon electrode.

    Science.gov (United States)

    Amare, Meareg; Abicho, Samuel; Admassie, Shimelis

    2014-01-01

    A glassy carbon electrode (GCE) modified with poly(4-amino-3-hydroxynaphthalene sulfonic acid) (poly-AHNSA) was used for the selective and sensitive determination of fenitrothion (FT) organophosphorus pesticide in water. The electrochemical behavior of FT at the bare GCE and the poly-AHNSA/GCE were compared using cyclic voltammetry. Enhanced peak current response and shift to a lower potential at the polymer-modified electrode indicated the electrocatalytic activity of the polymer film towards FT. Under optimized solution and method parameters, the adsorptive stripping square wave voltammetric reductive peak current of FT was linear to FT concentration in the range of 0.001 to 6.6 x 10(-6) M, and the LOD obtained (3delta/m) was 7.95 x 10(-10) M. Recoveries in the range 96-98% of spiked FT in tap water and reproducible results with RSD of 2.6% (n = 5) were obtained, indicating the potential applicability of the method for the determination of trace levels of FT in environmental samples.

  1. A consequence of local equilibration and heterogeneity in glassy materials

    International Nuclear Information System (INIS)

    Berthier, Ludovic

    2003-01-01

    The existence of a generalized fluctuation-dissipation theorem observed in simulations and experiments performed in various glassy materials is related to the concepts of local equilibration and heterogeneity in space. Assuming the existence of a dynamic coherence length scale up to which the system is locally equilibrated, we extend previous generalizations of the FDT relating static to dynamic quantities to the physically relevant domain where asymptotic limits of large times and sizes are not reached. The formulation relies on a simple scaling argument and thus does not have the character of a theorem. Extensive numerical simulations support this proposition. Our results quite generally apply to systems with slow dynamics, independently of the space dimensionality, the chosen dynamics or the presence of disorder

  2. Voltammetric Determination of Acetaminophen in the Presence of Codeine and Ascorbic Acid at Layer-by-Layer MWCNT/Hydroquinone Sulfonic Acid-Overoxidized Polypyrrole Modified Glassy Carbon Electrode

    OpenAIRE

    Shahrokhian, Saeed; Saberi, Reyhaneh-Sadat

    2011-01-01

    A very sensitive electrochemical sensor constructed of a glassy carbon electrode modified with a layer-by-layer MWCNT/doped-overoxidized polypyrrole (oppy/MWCNT /GCE) was used for the determination of acetaminophen (AC) in the presence of codeine and ascorbic acid (AA). In comparison to the bare glassy carbon electrode, a considerable shift in the peak potential together with an increase in the peak current was observed for AC on the surface of oppy/MWCNT/GCE, which can be related to the enla...

  3. A study of the electro-catalytic oxidation of methanol on a cobalt hydroxide modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Jafarian, M.; Mahjani, M.G.; Heli, H.; Gobal, F.; Khajehsharifi, H.; Hamedi, M.H.

    2003-01-01

    Cobalt hydroxide modified glassy carbon electrodes (CHM/GC) prepared by the anodic deposition in presence of tartrate ions have been used for the electro-catalytic oxidation of methanol in alkaline solutions where the methods of cyclic voltammetery (CV), chronoamperometry (CA) and impedance spectroscopy (IS) have been employed. In CV studies, in the presence of methanol the peak current of the oxidation of cobalt hydroxide increase is followed by a decrease in the corresponding cathodic current. This suggests that the oxidation of methanol is being catalysed through the mediated electron transfer across the cobalt hydroxide layer comprising of cobalt ions of various valence states. A mechanism based on the electro-chemical generation of Co(IV) active sites and their subsequent consumptions by methanol have been discussed and the corresponding rate law under the control of charge transfer has been developed and kinetic parameters have been derived. In this context the charge transfer resistance accessible both theoretically and through the IS studies have been used as a criteria. Under the CA regimes the reaction followed a Cottrellian behaviour

  4. pH sensing in aqueous solutions using a MnO2 thin film electrodeposited on a glassy carbon electrode

    International Nuclear Information System (INIS)

    Cherchour, N.; Deslouis, C.; Messaoudi, B.; Pailleret, A.

    2011-01-01

    An electrolysis technique at a constant potential was used to develop a highly reproducible and fast elaboration method of adherent manganese dioxide thin films on a glassy carbon electrode from aqueous solutions containing sulfuric acid and manganese sulfate. The resulting films were found to have a nanostructured character presumably due rather to birnessite (δ-MnO 2 ) than to γ-MnO 2 , as suggested by their Raman and XRD signatures. They lead to modified electrodes that present an obvious although complex pH dependent potentiometric response. This sensor indeed showed a single slope non-Nernstian linear behaviour over the 1.5-12 pH range for increasing pH direction ('trace'), whereas a Nernstian two slopes linear behaviour was observed for decreasing pH direction ('re-trace'). Preliminary EIS experiments carried out at a pH value of 1.8 seem to reveal a sensitivity mechanism based on proton insertion process at least at highly acidic pH values.

  5. Impedance aspect of charge storage at graphite and glassy carbon electrodes in potassium hexacyanoferrate (II redox active electrolyte

    Directory of Open Access Journals (Sweden)

    Katja Magdić

    2016-04-01

    Full Text Available Different types of charge storage mechanisms at unmodified graphite vs. glassy carbon electrodes in acid sulphate supporting solution containing potassium hexacyanoferrate (II redox active electrolyte, have been revealed by electrochemical impedance spectroscopy and supported by cyclic voltammetry experiments. Reversible charge transfer of Fe(CN63-/4- redox reaction detected by assessment of CVs of glassy carbon electrode, is in impedance spectra indicated by presence of bulk diffusion impedance and constant double-layer/pseudocapacitive electrode impedance compared to that measured in the pure supporting electrolyte. Some surface retention of redox species detected by assessment of CVs of graphite electrode is in impedance spectra indicated by diffusion impedance coupled in this case by diminishing of double-layer/pseudo­capacitive impedance compared to that measured in the pure supporting electrolyte. This phenomenon is ascribed to contribution of additional pseudocapacitive impedance generated by redox reaction of species confined at the electrode surface.

  6. Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene–ionic liquid–chitosan composite film modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Niu Xiuli; Yang Wu; Ren Jie; Guo Hao; Long Shijia; Chen Jiaojiao; Gao Jinzhang

    2012-01-01

    Highlights: ► This work developed a novel electrochemical biosensors for guanine and adenine detection simultaneously. ► A disposable electrode based on graphene sheets, ionic liquid and chitosan was proposed. ► The presented method was also applied to simultaneous determination of guanine and adenine in denatured DNA samples with satisfying results. ► Easy fabrication, high sensitivity, excellent reproducibility and long-term stability. - Abstract: A graphene sheets (GS), ionic liquid (IL) and chitosan (CS) modified electrode was fabricated and the modified electrode displayed excellent electrochemical catalytic activities toward guanine and adenine. The transfer electron number (n) and the charge transfer coefficient (α) were calculated with the result as n = 2, α = 0.58 for guanine, and n = 2, α = 0.51 for adenine, which indicated the electrochemical oxidation of guanine and adenine on GS/IL/CS modified electrode was a two-electron and two-proton process. The oxidation overpotentials of guanine and adenine were decreased significantly compared with those obtained at the bare glassy carbon electrode and multi-walled carbon nanotubes modified electrode. The modified electrode exhibited good analytical performance and was successfully applied for individual and simultaneous determination of guanine and adenine. Low detection limits of 0.75 μM for guanine and 0.45 μM for adenine were obtained, with the linear calibration curves over the concentration range 2.5–150 μM and 1.5–350 μM, respectively. At the same time, the proposed method was successfully applied for the determination of guanine and adenine in denatured DNA samples with satisfying results. Moreover, the GS/IL/CS modified electrode exhibited good sensitivity, long-term stability and reproducibility for the determination of guanine and adenine.

  7. A novel lable-free electrochemical immunosensor for carcinoembryonic antigen based on gold nanoparticles-thionine-reduced graphene oxide nanocomposite film modified glassy carbon electrode.

    Science.gov (United States)

    Kong, Fen-Ying; Xu, Mao-Tian; Xu, Jing-Juan; Chen, Hong-Yuan

    2011-10-15

    In this paper, gold nanoparticle-thionine-reduced graphene oxide (GNP-THi-GR) nanocomposites were prepared to design a label-free immunosensor for the sensitive detection of carcinoembryonic antigen (CEA). The nanocomposites with good biocompatibility, excellent redox electrochemical activity and large surface area were coated onto the glassy carbon electrode (GCE) surface and then CEA antibody (anti-CEA) was immobilized on the electrode to construct the immunosensor. The morphologies and electrochemistry of the formed nanocomposites were investigated by using scanning electron microscopy (SEM), ultraviolet-visible (UV-vis) spectrometry, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). CV and differential pulse voltammetry (DPV) studies demonstrated that the formation of antibody-antigen complexes decreased the peak current of THi in the GNP-THi-GR nanocomposites. The decreased currents were proportional to the CEA concentration in the range of 10-500 pg/mL with a detection limit of 4 pg/mL. The proposed method was simple, fast and inexpensive for the determination of CEA at very low levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Simultaneous determination of cysteine, uric acid and tyrosine using Au-nanoparticles/poly(E)-4-(p-tolyldiazenyl)benzene-1,2,3-triol film modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Taei, M., E-mail: m.taei@ch.iut.ac.ir; Hasanpour, F.; Salavati, H.; Banitaba, S.H.; Kazemi, F.

    2016-02-01

    A novel Au nanoparticles/poly(E)-4-(p-tolyldiazenyl)benzene-1,2,3-triol (AuNPs/PTAT) film modified glassy carbon electrode (AuNPs/PTAT/GCE) was fabricated for the simultaneous determination of three antioxidants named, cysteine (Cys), uric acid (UA) and tyrosine (Tyr). The bare glassy carbon electrode (GCE) fails to separate the oxidation peak potentials of these molecules, while PTAT film modified electrode can resolve them. Electrochemical impedance spectroscopy (EIS) study indicates that the charge transfer resistance of bare electrode increased as (E)-4-(p-tolyldiazenyl)benzene-1,2,3-triol was electropolymerized at the bare electrode. Furthermore, EIS exhibits enhancement of electron transfer kinetics between analytes and electrode after electrodeposition of Au nanoparticles. Differential pulse voltammetry results show that the electrocatalytic current increases linearly in the ranges of 2–540 μmol L{sup −1} for Cys, 5–820 μmol L{sup −1} for UA and 10–560 μmol L{sup −1} for Tyr with detection limits (S/N = 3) of 0.04 μmol L{sup −1}, 0.1 μmol L{sup −1} and 2 μmol L{sup −1} for Cys, UA and Tyr, respectively. The proposed method was successfully applied for simultaneous determination of Cys, UA and Tyr in human urine samples. - Highlights: • AuNPs/PTAT/GCE was fabricated by electrodeposition and electropolymerization. • The sensor reduced the overpotential for oxidation of Cys. • This electrode was successfully used for simultaneous sensing of Cys, UA and Tyr. • This sensor was effectively used for detection Cys, UA and Tyr in real samples.

  9. Photogeneration of singlet oxygen by the phenothiazine derivatives covalently bound to the surface-modified glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Blacha-Grzechnik, Agata, E-mail: agata.blacha@polsl.pl [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Piwowar, Katarzyna; Krukiewicz, Katarzyna [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Koscielniak, Piotr; Szuber, Jacek [Institute of Electronics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice (Poland); Zak, Jerzy K. [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland)

    2016-05-15

    Highlights: • The selected group of four NH{sub 2}-derivatives of phenothiazine was grafted to Glassy Carbon (GC) surface. • The grafted phenothiazines are able to generate {sup 1}O{sub 2} when activated by the radiation. • Such modified solid surfaces may find their application in the wastewater treatment. - Abstract: The selected group of four amine-derivatives of phenothiazine was covalently grafted to the glassy carbon surface in the four-step procedure consisting of the electrochemical reduction of the diazonium salt followed by the electrochemical and chemical post-modification steps. The proposed strategy involves the bonding of linker molecule to which the photosensitizer is attached. The synthesized organic layers were characterized by means of cyclic voltammetry, XPS and Raman Spectroscopy. It was shown that the phenothiazines immobilized via proposed strategy retain their photochemical properties and are able to generate {sup 1}O{sub 2} when activated by the laser radiation. The effectiveness of in situ singlet oxygen generation by those new solid photoactive materials was determined by means of UVVis spectroscopy. The reported, covalently modified solid surfaces may find their application as the singlet oxygen photogenerators in the fine chemicals’ synthesis or in the wastewater treatment.

  10. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Luhana, Charles; Bo Xiangjie; Ju Jian; Guo Liping

    2012-01-01

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H 2 O 2 at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H 2 O 2 . The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 μA mM −1 ), low detection limit (1.8 μM), fast response time m ) and the maximum current density (i max ) values for the biosensor were 10.94 mM and 887 μA cm −2 respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  11. Age and petrogenetic constraints on the Lower Glassy Ignimbrite of the Mount Somers Volcanic Group, New Zealand

    DEFF Research Database (Denmark)

    van der Meer, Quinten; Waight, Tod Earle; Whitehouse, Martin

    2017-01-01

    The Mount Somers Volcanic Group (MSVG) forms a large (~18000 km2) calc-alkaline volcanic complex on New Zealand’s Eastern Province. U-Pb SIMS spot ages on zircon from the lower glassy ignimbrite in Rakaia Gorge reveal a bimodal distribution of 99.0 ± 0.5 and 96.3 ± 0.5 Ma (2σ). These ages...

  12. Glassy carbon electrode modified with multi-walled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems

    Directory of Open Access Journals (Sweden)

    Rajeev Jain

    2012-02-01

    Full Text Available A sensitive electroanalytical method for quantification of pheniramine in pharmaceutical formulation has been investigated on the basis of the enhanced electrochemical response at glassy carbon electrode modified with multi-walled carbon nanotubes in the presence of sodium lauryl sulfate. The experimental results suggest that the pheniramine in anionic surfactant solution exhibits electrocatalytic effect resulting in a marked enhancement of the peak current response. Peak current response is linearly dependent on the concentration of pheniramine in the range 200–1500 μg/mL with correlation coefficient 0.9987. The limit of detection is 58.31 μg/mL. The modified electrode shows good sensitivity and repeatability. Keywords: Pheniramine, Sodium lauryl sulfate (SLS, Glassy carbon electrode modified with multi-walled carbon nanotubes (GCE-MWCNTs, Solubilized systems, Voltammetric quantification

  13. Fine kinetics of natural physical ageing in glassy As{sub 10}Se{sub 90}

    Energy Technology Data Exchange (ETDEWEB)

    Balitska, V. [Institute of Materials, Scientific Research Company “Carat”, 202 Stryjska Str., 79031 Lviv (Ukraine); Lviv State University of Vital Activity Safety, 35, Kleparivska Str., Lviv 79007 (Ukraine); Golovchak, R. [Department of Physics and Astronomy, Austin Peay State University, Clarksville, TN 37044 (United States); Kozdras, A. [Faculty of Physics of Opole Technical University, 75, Ozimska Str., Opole 45370 (Poland); Shpotyuk, O., E-mail: shpotyuk@novas.lviv.ua [Institute of Materials, Scientific Research Company “Carat”, 202 Stryjska Str., 79031 Lviv (Ukraine); Institute of Physics, Jan Dlugosz University, Al. Armii Krajowej 13/15, Czestochowa 42201 (Poland)

    2014-02-01

    Sigmoid behavior of natural physical ageing in glassy As{sub 10}Se{sub 90} reveals multi-step-wise growing kinetics of enthalpy losses. Phenomenological description of this kinetics can be adequately developed in terms of first-order relaxation processes, tending atomic structure from initial towards more thermodynamically equilibrium state. This kinetics is shown to obey characteristic stretched exponential behavior originated from a number of growing steps, attributed to the interconnected processes of chalcogen chain alignment and cooperative shrinkage of glass network.

  14. Modified electrode voltammetric sensors for trace metals in environmental samples

    Directory of Open Access Journals (Sweden)

    Brett Christopher M.A.

    2000-01-01

    Full Text Available Nafion-modified mercury thin film electrodes have been investigated for the analysis of trace metals in environmental samples of waters and effluent by batch injection analysis with square wave anodic stripping voltammetry. The method, involving injection over the detector electrode of untreated samples of volume of the order of 50 microlitres has fast response, blocking and fouling of the electrode is minimum as shown by studies with surface-active components. Comparison is made between glassy carbon substrate electrodes and carbon fibre microelectrode array substrates, the latter leading to a small sensitivity enhancement. Application to analysis of river water and industrial effluent for labile zinc, cadmium, lead and copper ions is demonstrated in collected samples and after acid digestion.

  15. Assembling gold nanorods on a poly-cysteine modified glassy carbon electrode strongly enhance the electrochemical response to tetrabromobisphenol A

    International Nuclear Information System (INIS)

    Wang, Yanying; Liu, Guishen; Hou, Xiaodong; Huang, Yina; Li, Chunya; Wu, Kangbing

    2016-01-01

    Cysteine (Cys) was electrochemically deposited on a glassy carbon electrode (GCE) by cyclic voltammetry. The poly-Cys modified electrode was placed in a solution of gold nanorods (GNRs) to induced self-assembly of the GNRs. The GNRs/poly-Cys/GCEs were characterized by scanning electron microscopy and electrochemical impedance spectroscopy. A voltammetric study on tetrabromobisphenol A (TBBPA) with this GCE showed the current response to be enhanced by a factor of 11 compared to a non-modified GCE. Based on these findings, a square wave voltammetric assay was worked out. Under optimized conditions, a linear relationship between the oxidation peak current and TBBPA is found for the 10 nM to 10 μM concentration range. The detection limit is 3.2 nM (at an S/N ratio of 3). The electrode was successfully applied to the determination of TBBPA in spiked tap water and lake water samples. (author)

  16. Changes in the thermoelectric response of vitreous carbon due to the irradiation by γ-rays

    Science.gov (United States)

    Culebras, M.; Madroñero, A.; Mota, C.; Gómez, C. M.; Amo, Jose M.; Cantarero, A.

    2014-07-01

    In order to study variations in the thermoelectric properties, some commercial glassy carbon samples were subjected to a sequence of steps consisting of a combination of irradiation with γ-rays produced by radioisotopes 60Co, and hydrogen adsorption when the samples were put in an over pressured atmosphere of this gas. With this procedure it was possible to observe that the irradiation decreases the electrical conductivity of glassy carbon samples and the hydrogenation changes the sign of Seebeck coefficient. The material initially is an n-type semiconductor, but with hydrogenation changes to p-type semiconductor. X-ray diffraction analysis showed that the hydrogenated vitreous carbon is more amorphous than the pristine material and the γ-rays irradiation produces changes in the crystallite size and shape.

  17. Raman spectra of zinc phthalocyanine monolayers absorbed on glassy carbon and gold electrodes by application of a confocal Raman microspectrometer

    NARCIS (Netherlands)

    Palys-Staron, B.J.; Palys, B.J.; Puppels, G.J.; Puppels, G.J.; van den Ham, D.M.W.; van den Ham, D.M.W.; Feil, D.; Feil, D.

    1992-01-01

    Raman spectra of zinc phthalocyanine monolayers, adsorbed on gold and on glassy carbon surfaces (electrodes), are presented. These spectra have been recorded with the electrodes inside and outside an electrochemical cell filled with an aqueous electrolyte. A confocal Raman microspectrometer was

  18. pH sensing in aqueous solutions using a MnO{sub 2} thin film electrodeposited on a glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cherchour, N. [Laboratoire de Technologie des Materiaux et Genie des Procedes (LTMGP), Departement de Genie des Procedes, Universite A. Mira, Route de Targa Ouzemmour, 06000 Bejaia (Algeria); CNRS, UPR 15, Laboratoire Interfaces et Systemes Electrochimiques (LISE, case courrier 133), 4 Place Jussieu, F-75005 Paris (France); UPMC Univ. Paris VI, UPR 15, Laboratoire Interfaces et Systemes Electrochimiques (LISE, case courrier 133), 4 Place Jussieu, F-75005 Paris (France); Deslouis, C. [CNRS, UPR 15, Laboratoire Interfaces et Systemes Electrochimiques (LISE, case courrier 133), 4 Place Jussieu, F-75005 Paris (France); UPMC Univ. Paris VI, UPR 15, Laboratoire Interfaces et Systemes Electrochimiques (LISE, case courrier 133), 4 Place Jussieu, F-75005 Paris (France); Messaoudi, B. [Laboratoire de Technologie des Materiaux et Genie des Procedes (LTMGP), Departement de Genie des Procedes, Universite A. Mira, Route de Targa Ouzemmour, 06000 Bejaia (Algeria); Pailleret, A., E-mail: alain.pailleret@upmc.fr [CNRS, UPR 15, Laboratoire Interfaces et Systemes Electrochimiques (LISE, case courrier 133), 4 Place Jussieu, F-75005 Paris (France); UPMC Univ. Paris VI, UPR 15, Laboratoire Interfaces et Systemes Electrochimiques (LISE, case courrier 133), 4 Place Jussieu, F-75005 Paris (France)

    2011-11-30

    An electrolysis technique at a constant potential was used to develop a highly reproducible and fast elaboration method of adherent manganese dioxide thin films on a glassy carbon electrode from aqueous solutions containing sulfuric acid and manganese sulfate. The resulting films were found to have a nanostructured character presumably due rather to birnessite ({delta}-MnO{sub 2}) than to {gamma}-MnO{sub 2}, as suggested by their Raman and XRD signatures. They lead to modified electrodes that present an obvious although complex pH dependent potentiometric response. This sensor indeed showed a single slope non-Nernstian linear behaviour over the 1.5-12 pH range for increasing pH direction ('trace'), whereas a Nernstian two slopes linear behaviour was observed for decreasing pH direction ('re-trace'). Preliminary EIS experiments carried out at a pH value of 1.8 seem to reveal a sensitivity mechanism based on proton insertion process at least at highly acidic pH values.

  19. Activation of glassy carbon electrodes by photocatalytic pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Dumanli, Onur [Department of Chemistry, Faculty of Science and Art, Ondokuz Mayis University, Kurupelit, 55139 Samsun (Turkey); Onar, A. Nur [Department of Chemistry, Faculty of Science and Art, Ondokuz Mayis University, Kurupelit, 55139 Samsun (Turkey)], E-mail: nonar@omu.edu.tr

    2009-11-01

    This paper describes a simple and rapid photocatalytic pretreatment procedure that removes contaminants from glassy carbon (GC) surfaces. The effectiveness of TiO{sub 2} mediated photocatalytic pretreatment procedure was compared to commonly used alumina polishing procedure. Cyclic voltammetric and chronocoulometric measurements were carried out to assess the changes in electrode reactivity by using four redox systems. Electrochemical measurements obtained on photocatalytically treated GC electrodes showed a more active surface relative to polished GC. In cyclic voltammograms of epinephrine, Fe(CN){sub 6}{sup 3-/4-} and ferrocene redox systems, higher oxidation and reduction currents were observed. The heterogeneous electron transfer rate constants (k{sup o}) were calculated for Fe(CN){sub 6}{sup 3-/4-} and ferrocene which were greater for photocatalytic pretreatment. Chronocoulometry was performed in order to find the amount of adsorbed methylene blue onto the electrode and was calculated as 0.34 pmol cm{sup -2} for photocatalytically pretreated GC. The proposed photocatalytic GC electrode cleansing and activating pretreatment procedure was more effective than classical alumina polishing.

  20. Simulations of tensile failure in glassy polymers: effect of cross-link density

    International Nuclear Information System (INIS)

    Panico, M; Narayanan, S; Brinson, L C

    2010-01-01

    Molecular dynamics simulations are adopted to investigate the failure mechanisms of glassy polymers, particularly with respect to increasing density of cross-links. In our simulations thermosetting polymers, which are cross-linked, exhibit an embrittlement compared with uncross-linked thermoplastics in a similar fashion to several experimental investigations (Levita et al 1991 J. Mater. Sci. 26 2348; Sambasivam et al 1997 J. Appl. Polym. Sci. 65 1001; Iijima et al 1992 Eur. Polym. J. 28 573). We perform a detailed analysis of this phenomenon and propose an interpretation based on the predominance of chain scission process over disentanglement in thermosetting polymers. We also elucidate the brittle fracture response of the thermosetting polymers

  1. Generation and extinction of crystal nuclei in an extremely non-equilibrium glassy state of salol

    CERN Document Server

    Paladi, F

    2003-01-01

    Strange generation and subsequent extinction of crystal nuclei were observed in the glassy state of salol (phenyl salicylate) during the course of ageing at very low constant-temperatures. The presence/absence of crystal nuclei within the glass were judged, by using a differential scanning calorimeter (DSC), from whether the crystal growth and fusion phenomena were observed in the following heating process or not. The liquid sample was cooled rapidly at 200 K min sup - sup 1 from 333 K above the fusion temperature down to a desired ageing temperature (T sub a) below the glass transition temperature (T sub g = 220 K), aged there for different periods (t sub a), and then heated up to 213 K at 200 K min sup - sup 1. The DSC measurement was carried out at 10 K min sup - sup 1 from 213 to 333 K. The ageing periods were taken in a range between 30 s and 316 min. At T sub a = 213 K, crystal nucleation was found to proceed for ageing longer than 100 min. No crystal nucleation was found at T sub a in between 123 and 1...

  2. Electrocatalytic behaviour of hybrid cobalt–manganese hexacyanoferrate film on glassy carbon electrode

    International Nuclear Information System (INIS)

    Vinu Mohan, A.M.; Rambabu, Gutru; Aswini, K.K.; Biju, V.M.

    2014-01-01

    A thin film of hybrid cobalt–manganese hexacyanoferrate (CoMnHCF), a redox mediator was electrodeposited on a glassy carbon (GC) electrode and was employed as an amperometric sensor towards L-Tryptophan (L-Trp). The hybrid film was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction technique (XRD), scanning electron microscope–energy dispersive X-ray spectroscopy (SEM–EDAX), and electrochemical techniques. The atomic absorption spectroscopic analysis provided the stoichiometry of the hybrid film to be K 1.74-y Co y Mn 0.78 [Fe(CN) 6 ], y ≤ 0.68. The electrochemical impedance study revealed the excellent charge transfer properties of GC/CoMnHCF electrode. The voltammetric investigations demonstrated exceptional electrocatalytic properties of the hybrid film modified electrode when compared to that of bare GC, GC/CoHCF and GC/MnHCF electrodes, towards the L-Trp oxidation. The kinetic parameters such as electron transfer coefficient, the electron transfer rate constant, the diffusion coefficient and the catalytic rate constant for the electrooxidation process of L-Trp were investigated. The amperometric detection of L-Trp employing GC/CoMnHCF electrode possessed a good sensitivity of 10 × 10 −2 A M −1 cm −2 in a wide range of detection (2–200 μM) at a reduced overpotential of 680 mV. In addition, the proposed amperometric method was applied to the detection of L-Trp in commercial milk samples with reproducible results. - Highlights: • A hybrid cobalt–manganese hexacyanoferrate film was prepared. • The hybrid film possesses excellent charge transfer properties. • The hybrid film exhibits excellent electrocatalytic properties towards Tryptophan. • Tryptophan detection is possible from commercial milk samples

  3. A novel highly selective and sensitive detection of serotonin based on Ag/polypyrrole/Cu2O nanocomposite modified glassy carbon electrode.

    Science.gov (United States)

    Selvarajan, S; Suganthi, A; Rajarajan, M

    2018-06-01

    A silver/polypyrrole/copper oxide (Ag/PPy/Cu 2 O) ternary nanocomposite was prepared by sonochemical and oxidative polymerization simple way, in which Cu 2 O was decorated with Ag nanoparticles, and covered by polyprrole (PPy) layer. The as prepared materials was characterized by UV-vis-spectroscopy (UV-vis), FT-IR, X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM) with EDX, high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Sensing of serotonin (5HT) was evaluated electrocatalyst using polypyrrole/glassy carbon electrode (PPy/GCE), polypyrrole/copper oxide/glassy carbon electrode (PPy/Cu 2 O/GCE) and silver/polypyrrole/copper oxide/glassy carbon electrode (Ag/PPy/Cu 2 O/GCE). The Ag/PPy/Cu 2 O/GCE was electrochemically treated in 0.1MPBS solution through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The peak current response increases linearly with 5-HT concentration from 0.01 to 250 µmol L -1 and the detection limit was found to be 0.0124 μmol L -1 . It exhibits high electrocatalytic activity, satisfactory repeatability, stability, fast response and good selectivity against potentially interfering species, which suggests its potential in the development of sensitive, selective, easy-operation and low-cost serotonin sensor for practical routine analyses. The proposed method is potential to expand the possible applied range of the nanocomposite material for detection of various concerned electro active substances. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Local atomic and electronic structure in glassy metallic alloys. Final report, March 1, 1979-May 31, 1982

    International Nuclear Information System (INIS)

    Messmer, R.P.; Wong, J.

    1982-01-01

    The research results reported, represent the first coordinated experimental-theoretical effort to arrive at important local atomic and electronic structure information in glassy alloys. During the three years covered by the contract, significant experimental and theoretical developments have taken place both in the general technical community and at General Electric which have had an important impact on the approach to this problem. This is particularly true in the theoretical area where two important advances, the development of a general Xα-LCAO approach, and the development of a general and accurate effective potential approach for density functional methods, have allowed us to construct a new computational capability which combines these two advances. Two subsections briefly review the experimental and theoretical technical developments, respectively. These developments have changed initial perspectives regarding research on local atomic and electronic structure in glassy metallic alloys. Section II presents a synopsis of our accomplishments during the contract period and Section III contains a more detailed discussion of some of these accomplishments, namely those portions of the work which have been published or submitted for publication at the time of writing this final report

  5. Investigations into crazing in glassy amorphous polymers through molecular dynamics simulations

    Science.gov (United States)

    Venkatesan, Sudarkodi; Basu, Sumit

    2015-04-01

    In many glassy amorphous polymers, localisation of deformation during loading leads to crazes. Crazes are crack like features whose faces are bridged either by fibrils or a cellular network of voids and fibrils. While formation of crazes is aided by the presence of surface imperfections and embedded dust particles, in this work, we focus on intrinsic crazes that form spontaneously in the volume of the material. We perform carefully designed molecular dynamics simulations on well equilibrated samples of a model polymer with a view to gaining insights into certain incompletely understood aspects of the crazing process. These include genesis of the early nanovoids leading to craze nucleation, mechanisms of stabilising the cellular or fibrillar structure and the competition between chain scission and chain disentanglement in causing the final breakdown of the craze. Additionally, we identify and enumerate clusters of entanglement points with high functionality as effective topological constraints on macromolecular chains. We show that regions with low density of entanglement clusters serve as sites for nanovoid nucleation under high mean stress. Growth occurs by the repeated triggering of cavitation instabilities above a growing void. The growth of the void is aided by disentanglement in and flow of entanglements away from the cavitating region. Finally, for the chain lengths chosen, scission serves to supply short chains to the growing craze but breakdown occurs by complete disentanglement of the chains. In fact, most of the energy supplied to the material seems to be used in causing disentanglements and very little energy is required to create a stable fibril.

  6. Sensitive electrochemical sensor of tryptophan based on Ag-C core-shell nanocomposite modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mao Shuxian [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Li Weifeng, E-mail: liweifeng@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Long Yumei, E-mail: yumeilong@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Tu Yifeng; Deng, Anping [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China)

    2012-08-13

    Graphical abstract: Ag-C and Colloidal carbon sphere modified glassy carbon electrodes were prepared. It was clear that the Ag-C/GCE exhibited enhanced electrocatalytic activity towards Trp, which could result from the synergistic effect between Ag core and carbon shell. The Ag-C/GCE showed excellent analytical properties in the determination of Trp. Highlights: Black-Right-Pointing-Pointer The electrochemical behavior of Ag-C core-shell nanocomposite was firstly proposed. Black-Right-Pointing-Pointer Ag-C/GC electrode exhibited favorable electrocatalytic properties towards Trp. Black-Right-Pointing-Pointer The good electrocatalysis was due to the synergistic effect of Ag-core and C-shell. Black-Right-Pointing-Pointer The Ag-C/GC electrode displayed excellent analytical properties in determining Trp. - Abstract: We here reported a simple electrochemical method for the detection of tryptophan (Trp) based on the Ag-C modified glassy carbon (Ag-C/GC) electrode. The Ag-C core-shell structured nanoparticles were synthesized using one-pot hydrothermal method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform-infrared spectroscopy (FTIR). The electrochemical behaviors of Trp on Ag-C/GC electrode were investigated and exhibited a direct electrochemical process. The favorable electrochemical properties of Ag-C/GC electrode were attributed to the synergistic effect of the Ag core and carbon shell. The carbon shell cannot only protect Ag core but also contribute to the enhanced substrate accessibility and Trp-substrate interactions, while nano-Ag core can display good electrocatalytic activity to Trp at the same time. Under the optimum experimental conditions the oxidation peak current was linearly dependent on the Trp concentration in the range of 1.0 Multiplication-Sign 10{sup -7} to 1.0 Multiplication-Sign 10{sup -4} M with a detection limit of 4.0 Multiplication-Sign 10{sup -8} M (S/N = 3). In addition

  7. Ultrasensitive Determination of Piroxicam at Diflunisal-Derived Gold Nanoparticle-Modified Glassy Carbon Electrode

    Science.gov (United States)

    Shaikh, Tayyaba; uddin, SiraJ; Talpur, Farah N.; Khaskeli, Abdul R.; Agheem, Muhammad H.; Shah, Muhammad R.; Sherazi, Tufail H.; Siddiqui, Samia

    2017-10-01

    We present a simple and green approach for synthesis of gold nanoparticles (AuNps) using analgesic drug diflunisal (DF) as capping and stabilizing agent in aqueous solution. Characterization of the synthesized diflunisal-derived gold nanoparticles (DF-AuNps) was performed by ultraviolet-visible (UV-Vis) spectroscopy, revealing the surface plasmon absorption band at 520 nm under optimized experimental conditions. Fourier-transform infrared (FTIR) spectroscopy established the effective interaction of the capping agent with the AuNps. Topographical features of the synthesized DF-AuNps were assessed by atomic force microscopy (AFM), revealing average particle height of 29 nm to 32 nm. X-ray diffractometry was used to study the crystalline nature, revealing that the synthesized DF-AuNps possessed excellent crystalline properties. The synthesized DF-AuNps were employed to modify the surface of glassy carbon electrode (GCE) for selective determination of piroxicam (PX) using differential pulse voltammetry technique. The fabricated Nafion/DF-AuNps/GCE sensor exhibited high sensitivity compared with bare GCE. The current response of the fabricated sensor was found to be linear in the PX concentration range of 0.5 μM to 50 μM, with limit of detection (LOD) and limit of quantification (LOQ) of 50 nM and 150 nM, respectively. The proposed sensor was successfully utilized for sensitive and rapid determination of PX in human serum, urine, and pharmaceutical samples.

  8. Photoswitchable molecular dipole antennas with tailored coherent coupling in glassy composite

    DEFF Research Database (Denmark)

    Elbahri, Mady; Zillohu, Ahnaf Usman; Gothe, Bastian

    2015-01-01

    . We also introduce the concept of 'tailored molecular photonic coupling' while highlighting the role of interferences for the design of optically active media by adjusting the photonic response of the medium with the real and imaginary refractive index of photoswitchable molecules in the 'ON' state...... alteration of photochromic molecular dipole antennas. We successfully demonstrate the concept of Brewster wavelength, which is based on the dipolar interaction between radiating dipoles and the surrounding matrix possessing a net dipole moment, as a key tool for highly localized sensing of matrix polarity....... Our results enhance our fundamental understanding of coherent dipole radiation and open a new vein of research based on glassy disordered dipolar composites that act as macroscopic antenna with cooperative action; furthermore, these results have important implications for new design rules of tailored...

  9. Electrochemical Determination of Chlorpyrifos on a Nano-TiO₂Cellulose Acetate Composite Modified Glassy Carbon Electrode.

    Science.gov (United States)

    Kumaravel, Ammasai; Chandrasekaran, Maruthai

    2015-07-15

    A rapid and simple method of determination of chlorpyrifos is important in environmental monitoring and quality control. Electrochemical methods for the determination of pesticides are fast, sensitive, reproducible, and cost-effective. The key factor in electrochemical methods is the choice of suitable electrode materials. The electrode materials should have good stability, reproducibility, more sensitivity, and easy method of preparation. Mercury-based electrodes have been widely used for the determination of chlorpyrifos. From an environmental point of view mercury cannot be used. In this study a biocompatible nano-TiO2/cellulose acetate modified glassy carbon electrode was prepared by a simple method and used for the electrochemical sensing of chlorpyrifos in aqueous methanolic solution. Electroanalytical techniques such as cyclic voltammetry, differential pulse voltammetry, and amperometry were used in this work. This electrode showed very good stability, reproducibility, and sensitivity. A well-defined peak was obtained for the reduction of chlorpyrifos in cyclic voltammetry and differential pulse voltammetry. A smooth noise-free current response was obtained in amperometric analysis. The peak current obtained was proportional to the concentration of chlorpyrifos and was used to determine the unknown concentration of chlorpyrifos in the samples. Analytical parameters such as LOD, LOQ, and linear range were estimated. Analysis of real samples was also carried out. The results were validated through HPLC. This composite electrode can be used as an alternative to mercury electrodes reported in the literature.

  10. Electrochemical parameters of ethamsylate at multi-walled carbon nanotube modified glassy carbon electrodes.

    Science.gov (United States)

    Wang, Sheng-Fu; Xu, Qiao

    2007-05-01

    In this paper, some electrochemical parameters of ethamsylate at a multi-walled carbon nanotube modified glassy carbon electrode, such as the charge number, exchange current density, standard heterogeneous rate constant and diffusion coefficient, were measured by cyclic voltammetry, chronoamperometry and chronocoulometry. The modified electrode exhibits good promotion of the electrochemical reaction of ethamsylate and increases the standard heterogeneous rate constant of ethamsylate greatly. The differential pulse voltammetry responses of ethamsylate were linearly dependent on its concentrations in a range from 2.0 x 10(-6) to 6.0 x 10(-5) mol L(-1), with a detection limit of 4.0 x 10(-7) mol L(-1).

  11. Electronic Transport Behaviors due to Charge Density Waves in Ni-Nb-Zr-H Glassy Alloys

    Science.gov (United States)

    Fukuhara, Mikio; Umemori, Yoshimasa

    2013-11-01

    The amorphous Ni-Nb-Zr-H glassy alloy containing subnanometer-sized icosahedral Zr5 Nb5Ni3 clusters exhibited four types of electronic phenomena: a metal/insulator transition, an electric current-induced voltage oscillation (Coulomb oscillation), giant capacitor behavior and an electron avalanche with superior resistivity. These findings could be excluded by charge density waves that the low-dimensional component of clusters, in which the atoms are lined up in chains along the [130] direction, plays important roles in various electron transport phenomena.

  12. Electrocatalytic performance of Pu(IV)/Pu(III) redox reaction at graphene modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Gupta, Ruma; Gamare, J.S.; Kamat, J.V.; Aggarwal, S.K.

    2014-01-01

    In this paper we explore the analytical perspectives of graphene modified electrode utilising commercially available graphene, which is well characterised, completely free from surfactants and has not been purposely oxidised or treated. We compare and critically contrast the electro-analytical performance of graphene modified glassy carbon electrodes (Gr/GC) with that of unmodified GC electrode towards Pu(IV)/Pu(III) redox reaction, monitoring of which has considerable importance in a plethora of areas where electrochemistry is conveniently and beneficially utilised for determination of nuclear fuels

  13. Enzymatic biosensor based on entrapment of d-amino acid oxidase on gold nanofilm/MWCNTs nanocomposite modified glassy carbon electrode by sol-gel network: Analytical applications for d-alanine in human serum.

    Science.gov (United States)

    Shoja, Yalda; Rafati, Amir Abbas; Ghodsi, Javad

    2017-05-01

    Sensing and determination of d-alanine is studied by using an enzymatic biosensor which was constructed on the basis of d-amino acid oxidase (DAAO) immobilization by sol-gel film onto glassy carbon electrode surface modified with nanocomposite of gold nanofilm (Au-NF) and multiwalled carbon nanotubes (MWCNTs). The Au-NF/MWCNT nanocomposite was prepared by applying the potentiostatic technique for electrodeposition of Au-NF on the MWCNT immobilized on glassy carbon electrode surface. The modified electrode is investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), linear sweep voltammetry (LSV) and cyclic voltammetry(CV) techniques. The linear sweep voltammetry was used for determination of d-alanine and the results showed an excellent linear relationship between biosensor response and d-alanine concentration ranging from 0.25μM to 4.5μM with correction coefficient of 0.999 (n=20). Detection limit for the fabricated sensor was calculated about 20nM (for S/N=3) and sensitivity was about 56.1μAμM -1 cm -2 . The developed biosensor exhibited rapid and accurate response to d-alanine, a good stability (4 weeks) and an average recovery of 98.9% in human serum samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Voltammetric Determination of Salbutamol Based on Electrochemical Oxidation at Platinum and Glassy Carbon Electrodes

    OpenAIRE

    YILMAZ, Niyazi; ÖZKAN, Sibel A.; USLU, Bengi

    2014-01-01

    The oxidative behavior of salbutamol was studied as a function of pH at platinum and activated glassy carbon electrodes. Between pH 1.9 and 12.0, the drug was characterized by a single oxidation step at both electrodes. The process was found to be dependent on the nature and the pH of the supporting elctrolyte. The procedure yielded a linear concentration range of 1 \\times 10-4 to 1 \\times 10-3 M and 2 \\times 10-5 to 1 \\times 10-3 M in 0.2 M sulphuric acid and a phosphate buffer of pH 6, at p...

  15. Polymorphic ethyl alcohol as a model system for the quantitative study of glassy behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H E; Schober, H; Gonzalez, M A [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Bermejo, F J; Fayos, R; Dawidowski, J [Consejo Superior de Investigaciones Cientificas, Madrid (Spain); Ramos, M A; Vieira, S [Universidad Autonoma de Madrid (Spain)

    1997-04-01

    The nearly universal transport and dynamical properties of amorphous materials or glasses are investigated. Reasonably successful phenomenological models have been developed to account for these properties as well as the behaviour near the glass-transition, but quantitative microscopic models have had limited success. One hindrance to these investigations has been the lack of a material which exhibits glass-like properties in more than one phase at a given temperature. This report presents results of neutron-scattering experiments for one such material ordinary ethyl alcohol, which promises to be a model system for future investigations of glassy behaviour. (author). 8 refs.

  16. Effects of composition and microstructure of Pd-Cu-Si metallic glassy alloy thin films on hydrogen absorbing properties

    International Nuclear Information System (INIS)

    Kajita, Susumu; Kohara, Shinji; Onodera, Yohei; Fukunaga, Toshiharu; Matsubara, Eiichiro

    2011-01-01

    Thin films of Pd-Cu-Si metallic glassy alloys for a hydrogen sensor were fabricated by a sputtering method. In order to find out the effect of the composition and the microstructure of them on the hydrogen absorbing property (the H 2 response), the structural parameters based on the short-range order (SRO) were measured. Additionally, the change of the structural parameters with hydrogen absorption was measured, and the correlations of the change with the H 2 response and the hydrogen induced linear expansion coefficient (LEC) were examined. The H 2 response decreased with increases in Si content and the structural parameters. These results can be explained by the positive effects of Si content and the structural parameters on the formation of a trigonal prism which is a structural unit of Pd-based amorphous alloys, and by the negative effect of the trigonal prism on absorbing hydrogen. From the observation of the elongation of the Pd-Pd atomic distance with absorbing hydrogen, H atoms are supposed to occupy the space between Pd atoms. The amount of the change in the Pd-Pd atomic distance showed the positive correlations with the H 2 response and the LEC. (author)

  17. Simple flow injection for determination of sulfite by amperometric detection using glassy carbon electrode modified with carbon nanotubes-PDDA-gold nanoparticles.

    Science.gov (United States)

    Amatatongchai, Maliwan; Sroysee, Wongduan; Chairam, Sanoe; Nacapricha, Duangjai

    2015-02-01

    A new approach is presented for sensitive and selective measurement of sulfite (SO3(2-)) in beverages based on a simple flow injection system with amperometric detection. In this work, the sulfite sensor was a glassy carbon electrode modified with multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-gold nanoparticles composites (CNTs-PDDA-AuNPs/GC). Electrochemical oxidation of sulfite with this electrode was first studied in 0.1M phosphate buffer (pH 7.0) using cyclic voltammetry. The results indicated that the CNTs-PDDA-AuNPs/GC electrode possesses electrocatalytic activity for the oxidation of sulfite with high sensitivity and selectivity. Sulfite was quantified using amperometric measurement with the new sensor at +0.4V vs Ag/AgCl in conjunction with flow injection. The linear working range for the quantitation of sulfite was 2-200 mg L(-1) (r(2)=0.998) with a detection limit of 0.03 mg L(-1) (3σ of blank) and an estimated precision of 1.5%.The proposed method was successfully applied to the determination of sulfite in fruit juices and wines with a sample throughput of 23 samples per hour. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Phonon activity and intermediate glassy phase of YVO3

    International Nuclear Information System (INIS)

    Massa, Nestor E.; Piamonteze, Cinthia; Tolentino, Helio C.N.; Alonso, Jose Antonio; Martinez-Lope, Maria Jesus; Casais, Maria Teresa

    2004-01-01

    We show that in YVO 3 additional hard phonons gradually become zone center infrared active below ∼210 K, verifying that a lattice phase transition takes place at about that temperature. Their gradual increment in intensity between ∼210 and ∼77 K is associated with a 'glassy' behavior found in the temperature-dependent V K edge pseudoradial distribution. This translates into an increase in the Debye-Waller factors ascribed to the appearance of V local structural disorder below ∼150 K. Conflicts between various ordering mechanisms in YVO 3 bring up similarities of the intermediate phase to known results in dielectric incommensurate systems, suggesting the formation of commensurate domains below 116 K, the onset temperature of G-type antiferromagnetism. We propose that ∼210 and ∼77 K be understood as the temperatures where the commensurate-incommensurate and incommensurate-commensurate 'lock-in' phase transitions take place. We found support for this interpretation in the inverted λ shapes of the measured heat capacity and in the overall temperature dependence of the hard phonons

  19. Sensitive determination of buformin using poly-aminobenzoic acid modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Gui-Ying Jin

    2012-12-01

    Full Text Available Glassy carbon electrode, which is used to electrochemically determine the content of buformin, is modified with an electropolymerized film of p-aminobenzoic acid in pH 7.0 acetate buffer solution (ABS. The polymer showed an excellent electrocatalytic activity for the reduction of buformin. In pH 7.0 ABS, the cathodic peak current increased linearly over three concentration intervals of buformin, and the detection limit (S/N=3 was 2.0×10−9 g/mL. The method was successfully applied to directly determine buformin in tablets with standard addition recoveries of 95.8–102.5%. The proposed method is simple, cheap and highly efficient. Keywords: Chemically modified electrode, Aminobenzoic acid, Buformin

  20. Fabrication of an electrochemical nanoaptasensor based on AuNPs for ultrasensitive determination of cocaine in serum sample

    International Nuclear Information System (INIS)

    Roushani, Mahmoud; Shahdost-fard, Faezeh

    2016-01-01

    Herein we describe an ultrasensitive electrochemical nanoaptasensor for the detection of one of the most dangerous narcotic drugs available, cocaine. The nanoaptasensor was constructed by the covalent attachment of a 5′-NH 2 -3′-gold nanoparticles terminated aptamer on the surface of a glassy carbon electrode which was deposited with gold nanoparticles (AuNPs/GCE). It is worth noting that the interaction of the cysteamine stable self-assembled monolayer on the AuNPs/GCE surface and the covalent attachment of terephthalaldehyde via amide coupling with the amine groups in the cysteamine and aptamer, respectively, resulted in the covalent attachment of the aptamer to AuNPs/GCE. The presence of gold nanoparticles both on surface of the glassy carbon electrode and in the end of the aptamer, can provide advantages such as increase of active surface area, high acceleration of the electron transfer and improved electrochemical signal, respectively. The decrease in the peak current of [Fe(CN) 6 ] 3−/4− as the probe redox with increase of cocaine concentration, in differential pulse voltammetry as the measuring technique, from 5 pM up to 5 nM was linear and an unprecedented detection limit of 0.5 pM was yielded. Furthermore, the effect of some common analgesic drugs as the potential interferents were investigated and also, to evaluate practical application of the proposed nanoaptasensor human blood serum sample as a real sample was used. Simple preparation, low operation cost, speed and validity are the decisive factors of this method motivating its application to biosensing investigation. - Highlights: • An electrochemical nanoaptasensor for the detection of cocaine is presented. • An AuNPs terminated aptamer was covalent bonded on the surface of the AuNPs/GCE. • The presence of AuNPs has many advantages and improved electrochemical signal. • Two linear ranges from 5 pM up to 5 nM and an unprecedented LOD of 0.5 pM were yielded. • It will shed light on new

  1. Fabrication of an electrochemical nanoaptasensor based on AuNPs for ultrasensitive determination of cocaine in serum sample

    Energy Technology Data Exchange (ETDEWEB)

    Roushani, Mahmoud, E-mail: mahmoudroushani@yahoo.com; Shahdost-fard, Faezeh

    2016-04-01

    Herein we describe an ultrasensitive electrochemical nanoaptasensor for the detection of one of the most dangerous narcotic drugs available, cocaine. The nanoaptasensor was constructed by the covalent attachment of a 5′-NH{sub 2}-3′-gold nanoparticles terminated aptamer on the surface of a glassy carbon electrode which was deposited with gold nanoparticles (AuNPs/GCE). It is worth noting that the interaction of the cysteamine stable self-assembled monolayer on the AuNPs/GCE surface and the covalent attachment of terephthalaldehyde via amide coupling with the amine groups in the cysteamine and aptamer, respectively, resulted in the covalent attachment of the aptamer to AuNPs/GCE. The presence of gold nanoparticles both on surface of the glassy carbon electrode and in the end of the aptamer, can provide advantages such as increase of active surface area, high acceleration of the electron transfer and improved electrochemical signal, respectively. The decrease in the peak current of [Fe(CN){sub 6}]{sup 3−/4−} as the probe redox with increase of cocaine concentration, in differential pulse voltammetry as the measuring technique, from 5 pM up to 5 nM was linear and an unprecedented detection limit of 0.5 pM was yielded. Furthermore, the effect of some common analgesic drugs as the potential interferents were investigated and also, to evaluate practical application of the proposed nanoaptasensor human blood serum sample as a real sample was used. Simple preparation, low operation cost, speed and validity are the decisive factors of this method motivating its application to biosensing investigation. - Highlights: • An electrochemical nanoaptasensor for the detection of cocaine is presented. • An AuNPs terminated aptamer was covalent bonded on the surface of the AuNPs/GCE. • The presence of AuNPs has many advantages and improved electrochemical signal. • Two linear ranges from 5 pM up to 5 nM and an unprecedented LOD of 0.5 pM were yielded. • It will shed

  2. Electrochemical determination of mesotrione at organoclay modified glassy carbon electrodes.

    Science.gov (United States)

    Kamga Wagheu, Josephine; Forano, Claude; Besse-Hoggan, Pascale; Tonle, Ignas K; Ngameni, Emmanuel; Mousty, Christine

    2013-01-15

    A natural Cameroonian smectite-type clay (SaNa) was exchanged with cationic surfactants, namely cetyltrimethylammonium (CTA) and didodecyldimethyl ammonium (DDA) modifying its physico-chemical properties. The resulting organoclays that have higher adsorption capacity for mesotrione than the pristine SaNa clay, have been used as modifiers of glassy carbon electrode for the electrochemical detection of this herbicide by square wave voltammetry. The stripping performances of SaNa, SaCTA and SaDDA modified electrodes were therefore evaluated and the experimental parameters were optimized. SaDDA gives the best results in deoxygenated acetate buffer solution (pH 6.0) after 2 min accumulation under open circuit conditions. Under optimal conditions, the reduction current is proportional to mesotrione concentration in the range from 0.25 to 2.5 μM with a detection limit of 0.26 μM. The fabricated electrode was also applied for the commercial formulation CALLISTO, used in European maize market. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Mechanical Properties for Reliability Analysis of Structures in Glassy Carbon

    CERN Document Server

    Garion, Cédric

    2014-01-01

    Despite its good physical properties, the glassy carbon material is not widely used, especially for structural applications. Nevertheless, its transparency to particles and temperature resistance are interesting properties for the applications to vacuum chambers and components in high energy physics. For example, it has been proposed for fast shutter valve in particle accelerator [1] [2]. The mechanical properties have to be carefully determined to assess the reliability of structures in such a material. In this paper, mechanical tests have been carried out to determine the elastic parameters, the strength and toughness on commercial grades. A statistical approach, based on the Weibull’s distribution, is used to characterize the material both in tension and compression. The results are compared to the literature and the difference of properties for these two loading cases is shown. Based on a Finite Element analysis, a statistical approach is applied to define the reliability of a structural component in gl...

  4. Sensitive methanol sensor based on PMMA-G-CNTs nanocomposites deposited onto glassy carbon electrodes.

    Science.gov (United States)

    Rahman, Mohammed M; Hussein, Mahmoud A; Alamry, Khalid A; Al Shehry, Faten M; Asiri, Abdullah M

    2016-04-01

    A new series of polymethyl methacrylate-graphene-carbon nanotubes crossbred nanocomposites in the form of PMMA-G-CNTs has been synthesized using simple dissolution procedure in organic media. The desired nanocomposites have been prepared using different loading (2 ∼ 30%) from consequently mixed GNPs/CNTs ratio and confirmed by various characterization techniques utilized to corroborate the assembly of these new hybrid series including X-ray diffraction analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. The PMMA-G-CNTs nanocomposites were deposited on flat glassy carbon electrodes (GCE) to result in a sensor that has a fast response toward methanol in the phosphate buffer phase. Features including high sensitivity, low-sample volume, reliability, reproducibility, ease of integration, long-term stability, and enhanced electrochemical responses are investigated. The calibration plot is linear (r(2)=0.9895) over the 1.0 nmol L(-1) to 10.0 mmol L(-1) methanol concentration ranges. The sensitivity and detection limit is 13.491 µA cm(-2) mmol L(-2) and 0.39 ± 0.1 nmol L(-1) (at a signal-to-noise-ratio, SNR of 3), respectively. With such excellent features of analytical parameters, the developed sensor provides a new strategy for determination of methanol in biomedical and environmental analytes with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A novel electrochemical sensor for the analysis of β-agonists: The poly(acid chrome blue K)/graphene oxide-nafion/glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xiaoyun [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Ni, Yongnian, E-mail: ynni@ncu.edu.cn [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Department of Chemistry, Nanchang University, Nanchang 330031 (China); Kokot, Serge, E-mail: s.kokot@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane 4001 (Australia)

    2013-09-15

    Graphical abstract: A new modified electrode was constructed by the electro-polymerization of acid chrome blue K (ACBK) at a graphene-nafion modified glassy carbon electrode (GCE). The novel electrode was successfully employed for the analysis of eight β-agonist analytes with high sensitivity. -- Highlights: • Construction of the poly-ACBK/graphene-nafion/GCE. •The modified electrode showed high sensitivity for the analysis of the β-agonists. • A novel method was successfully developed for the analysis of clenbuterol in pork. • Research provided a new method of constructing electrodes for biological analysis. -- Abstract: A novel modified electrode was constructed by the electro-polymerization of 4,5-dihydroxy-3-[(2-hydroxy-5-sulfophenyl)azo]-2,7-naphthalenedisulfonic acid trisodium salt (acid chrome blue K (ACBK)) at a graphene oxide (GO)-nafion modified glassy carbon electrode (GCE). The characterization of an electrochemically synthesized poly-ACBK/GO-nafion film was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), atomic force microscopy (AFM) and scanning electron microscopy (SEM) techniques, and the results were interpreted and compared at each stage of the electrode construction. Electrochemical oxidation of eight β-agonists – clenbuterol, salbutamol, terbutaline, ractopamine, dopamine, dobutamine, adrenaline, and isoprenaline, was investigated by CV at the different electrodes. At the poly-ACBK/GO-nafion/GCE, the linear sweep voltammetry peak currents of the eight β-agonists increased linearly with their concentrations in the range of 1.0–36.0 ng mL{sup −1}, respectively, and their corresponding limits of detection (LODs) were within the 0.58–1.46 ng mL{sup −1} range. This electrode showed satisfactory reproducibility and stability, and was used successfully for the quantitative analysis of clenbuterol in pork samples.

  6. A glassy carbon electrode modified with a polyaniline doped with silicotungstic acid and carbon nanotubes for the sensitive amperometric determination of ascorbic acid

    International Nuclear Information System (INIS)

    Zhang, X.; Lai, G.; Zhang, H.; Yu, A.

    2013-01-01

    We report on an electrochemical sensor for the sensitive amperometric determination of ascorbic acid (AA). Aniline containing suspended silicotungstic acid and carbon nanotubes was electropolymerized on the surface of a glassy carbon electrode in a single step which provides a simple and controllable method and greatly improves the electrocatalytic oxidation of AA. The effects of scan rate, solution pH and working potential were studied. A linear relationship exists between the current measured and the concentration of AA in the range from 1 μM to 10 μM and 0.01 mM to 9 mM, with a limit of detection as low as 0.51 μM (S/N = 3). The sensor is selective, stable and satisfyingly reliable in real sample experiments. In our eyes, it has a large potential for practical applications. (author)

  7. Study of crystallization kinetics and structural relaxation behavior in phase separated Ag{sub 33}Ge{sub 17}Se{sub 50} glassy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen, E-mail: prafiziks@gmail.com [Semiconductors Laboratory, Department of Physics, GND University, Amritsar 143005 (India); Nanotechnology Research Centre, DAV Institute of Engineering and Technology, Kabir Nagar, Jalandhar 144008 (India); Yannopoulos, S.N. [Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT), P.O. Box 1414, GR-26 504, Rio-Patras (Greece); Sathiaraj, T.S. [Department of Physics, University of Botswana, Gaborone (Botswana); Thangaraj, R., E-mail: rthangaraj@rediffmail.com [Semiconductors Laboratory, Department of Physics, GND University, Amritsar 143005 (India)

    2012-07-16

    We report on the crystallization processes and structure (crystal phases) of Ag{sub 33}Ge{sub 17}Se{sub 50} glassy alloy using differential scanning calorimetry and x-ray diffraction techniques, respectively. The devitrification that gives rise to the first exothermic peak results in the crystallization of Ag{sub 2}Se and Ag{sub 8}GeSe{sub 6} phases, while the growth of GeSe{sub 2} accompanied by the transformation of Ag{sub 8}GeSe{sub 6} to Ag{sub 2}Se phase occurs during the second crystallization process. Different theoretical models are used to elucidate various kinetic parameters for the crystallization transformation process in this phase separated system. With annealing below the glass transition temperature, an inverse behavior between the variation of the optical gap and the band tailing parameter is observed for the thermally evaporated films. These results are explained as the mixing of different clusters/species in the amorphous state and/or changes caused by structural relaxation of the glassy network for the thermally evaporated films. - Highlights: Black-Right-Pointing-Pointer Phase separation in Ag{sub 33}Ge{sub 17}Se{sub 50} glassy alloy bordering two glass forming regions. Black-Right-Pointing-Pointer Transformation of Ag{sub 8}GeSe{sub 6} {yields} Ag{sub 2}Se along with crystallization GeSe{sub 2} phase. Black-Right-Pointing-Pointer Elucidation of various kinetic parameters for the crystalline transformation. Black-Right-Pointing-Pointer Structural relaxation in thermally evaporated films by optical spectroscopy.

  8. Fabrication of calix[4]pyrrole nanofilms at the glassy carbon surface and their characterization by spectroscopic, optic and electrochemical methods

    International Nuclear Information System (INIS)

    Taner, Bilge; Ozcan, Emine; Ustuendag, Zafer; Keskin, Selda; Solak, Ali Osman; Eksi, Haslet

    2010-01-01

    meso-Octamethylcalix[4]pyrrole (CP) and meso-heptaethylcalix[4]pyrrole-meso-4-aminophenyl (4APCP) modified glassy carbon (GC) electrodes were prepared by the electrochemical oxidation in acetonitrile solution. Binding of the calix[4]pyrroles with the glassy carbon surface was investigated that it is through the etheric linkage revealed from the reflection-absorption infrared spectroscopy (RAIRS). Surface films of CP and 4APCP were investigated by cyclic voltammetry (CV), ellipsometry, X-ray photoelectron spectroscopy, RAIRS and the contact angle measurements. The thicknesses of the films were determined by ellipsometry which confirmed that the film was multilayer and homogeneous over the surface. Ellipsometric measurements also provided that the CP and 4APCP film thicknesses were 2.49 nm and 4.58 nm for 6 CV cycle modification, corresponding to 66 μF/cm 2 and 106 μF/cm 2 capacitances obtained by CV. The wetting behavior was examined by contact angle measurements and found that the hydrophobicity of the GC-4APCP surface was higher than that of GC-CP, probably due to the aromatic meso substituent present in the former.

  9. Voltammetric behavior of sedative drug midazolam at glassy carbon electrode in solubilized systems.

    Science.gov (United States)

    Jain, Rajeev; Yadav, Rajeev Kumar

    2012-04-01

    Redox behavior of midazolam was studied at a glassy carbon electrode in various buffer systems, supporting electrolytes and pH using differential pulse, square-wave and cyclic voltammetry. Based on its reduction behavior, a direct differential pulse voltammetric method has been developed and validated for the determination of midazolam in parenteral dosage. Three well-defined peaks were observed in 0.1% SLS, Britton-Robinson (BR) buffer of pH 2.5. The effect of surfactants like sodium lauryl sulfate (SLS), cetyl trimethyl ammonium bromide (CTAB) and Tween 20 was studied. Among these surfactants SLS showed significant enhancement in reduction peak. The cathodic peak currents were directly proportional to the concentration of midazolam with correlation coefficient of 0.99.

  10. Polyaniline Langmuir-Blodgett film modified glassy carbon electrode as a voltammetric sensor for determination of Ag+ ions

    International Nuclear Information System (INIS)

    Liu Qiongyan; Wang Fei; Qiao Yonghui; Zhang Shusheng; Ye Baoxian

    2010-01-01

    A highly sensitive electrochemical sensor made of a glassy carbon electrode (GCE) coated with a Langmuir-Blodgett film (LB) containing polyaniline (PAn) doped with p-toluenesulfonic acid (PTSA) (LB/PAn-PTSA/GCE) has been used for the detection of trace concentrations of Ag + . UV-vis absorption spectra indicated that the PAn was doped by PTSA. The surface morphology of the PAn LB film was characterized by atomic force microscopy (AFM). The electrochemical properties of this LB/PAn-PTSA/GCE were studied using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The LB/PAn-PTSA/GCE was used as a voltammetric sensor for determination of trace Ag + at pH 5.0 using linear scanning stripping voltammetry. Under the optimal experimental conditions, the stripping current was proportional to the Ag + concentration over the range from 6.0 x 10 -10 mol L -1 to 1.0 x 10 -6 mol L -1 , with a detection limit of 4.0 x 10 -10 mol L -1 . The high sensitivity, selectivity, and stability of this LB/PAn-PTSA/GCE also demonstrated its practical utility for simple, rapid and economical determination of Ag + in water samples.

  11. Layer by layer assembly of glucose oxidase and thiourea onto glassy carbon electrode: Fabrication of glucose biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, Abdollah, E-mail: absalimi@yahoo.com [Department of Chemistry, University of Kurdistsn, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Noorbakhsh, Abdollah [Department of Chemistry, University of Kurdistsn, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Department of Nanotechnology Engenering, Faculty of Advanced Science and Technology, University of Isfahan, 81746-73441 (Iran, Islamic Republic of)

    2011-07-01

    Highlights: > Although various enzymes immobilization have been approve for the construction of glucose biosensor, a layer by layer (LBL) technique has attracted more attention due to simplicity of the procedure, wide choice of materials that can be used, controllability of film thickness and unique mechanical properties. > In this paper, we described a novel and simple strategy for developing an amperometric glucose biosensor based on layer-by-layer self assembly of glucose oxidase on the glassy carbon electrode modified by thiourea. > Thiourea has two amino groups that the one can be immobilized on the activated glassy carbon electrode and the other can be used for the coupling of glucose oxidase enzyme. > The biosensor exhibited good performance for electrocatalytic oxidation of glucose, such as high sensitivity, low detection limit, short response time and wide concentration range. > Finally, the new method is strongly recommended for immobilization of many other enzymes or proteins containing carbaldehyde or carboxylic groups for fabricating third generation biosensors and bioelectronics devices. - Abstract: For the first time a novel, simple and facile approach is described to construct highly stable glucose oxidase (GOx) multilayer onto glassy carbon (GC) electrode using thiourea (TU) as a covalent attachment cross-linker. The layer by layer (LBL) attachment process was confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and Fourier transform infrared reflection spectroscopy (FT-IR-RS) techniques. Immobilized GOx shows excellent electrocatalytic activity toward glucose oxidation using ferrocenemethanol as artificial electron transfer mediator and biosensor response was directly correlated to the number of bilayers. The surface coverage of active GOx per bilayer, heterogeneous electron transfer rate constant (k{sub s}) and Michaelis-Menten constant (K{sub M}), of immobilized GOx were 1.50 x 10{sup -12} mol cm{sup -2}, 9.2 {+-} 0.5 s{sup -1

  12. Layer by layer assembly of glucose oxidase and thiourea onto glassy carbon electrode: Fabrication of glucose biosensor

    International Nuclear Information System (INIS)

    Salimi, Abdollah; Noorbakhsh, Abdollah

    2011-01-01

    Highlights: → Although various enzymes immobilization have been approve for the construction of glucose biosensor, a layer by layer (LBL) technique has attracted more attention due to simplicity of the procedure, wide choice of materials that can be used, controllability of film thickness and unique mechanical properties. → In this paper, we described a novel and simple strategy for developing an amperometric glucose biosensor based on layer-by-layer self assembly of glucose oxidase on the glassy carbon electrode modified by thiourea. → Thiourea has two amino groups that the one can be immobilized on the activated glassy carbon electrode and the other can be used for the coupling of glucose oxidase enzyme. → The biosensor exhibited good performance for electrocatalytic oxidation of glucose, such as high sensitivity, low detection limit, short response time and wide concentration range. → Finally, the new method is strongly recommended for immobilization of many other enzymes or proteins containing carbaldehyde or carboxylic groups for fabricating third generation biosensors and bioelectronics devices. - Abstract: For the first time a novel, simple and facile approach is described to construct highly stable glucose oxidase (GOx) multilayer onto glassy carbon (GC) electrode using thiourea (TU) as a covalent attachment cross-linker. The layer by layer (LBL) attachment process was confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and Fourier transform infrared reflection spectroscopy (FT-IR-RS) techniques. Immobilized GOx shows excellent electrocatalytic activity toward glucose oxidation using ferrocenemethanol as artificial electron transfer mediator and biosensor response was directly correlated to the number of bilayers. The surface coverage of active GOx per bilayer, heterogeneous electron transfer rate constant (k s ) and Michaelis-Menten constant (K M ), of immobilized GOx were 1.50 x 10 -12 mol cm -2 , 9.2 ± 0.5 s -1 and 3.42(±0

  13. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Luhana, Charles; Bo Xiangjie; Ju Jian; Guo Liping, E-mail: guolp078@nenu.edu.cn [Northeast Normal University, Faculty of Chemistry (China)

    2012-10-15

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H{sub 2}O{sub 2} at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H{sub 2}O{sub 2}. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 {mu}A mM{sup -1}), low detection limit (1.8 {mu}M), fast response time <3 s, and wide linear range (0.04-8.62 mM). The apparent Michaelis-Menten constant (K{sub m}) and the maximum current density (i{sub max}) values for the biosensor were 10.94 mM and 887 {mu}A cm{sup -2} respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  14. Probing Properties of Glassy Water and Other Liquids with Site Selective Spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Nhan Chuong [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The standard non-photochemical hole burning (NPHB) mechanism, which involves phonon-assisted tunneling in the electronically excited state, was originally proposed to explain the light-induced frequency change of chemically stable molecules in glassy solids at liquid helium temperatures by this research group more than two decades ago. The NPHB mechanism was then further elucidated and the concept of intrinsic to glass configurational relaxation processes as pre-mediating step to the hole burning process was introduced. The latter provided the theoretical basis for NPHB to evolve into a powerful tool probing the dynamics and nature of amorphous media, which aside from ''simple'' inorganic glasses may include also ''complex'' biological systems such as living cells and cancerous/normal tissues. Presented in this dissertation are the experimental and theoretical results of hole burning properties of aluminum phthalocyanine tetrasulphonate (APT) in several different matrices: (1) hyperquenched glassy water (HGW); (2) cubic ice (Ic); and (3) water confined into poly(2-hydroxyethylmethacrylate) (poly-HEMA). In addition, results of photochemical hole burning (PHB) studies obtained for phthalocyanine tetrasulphonate (PcT) in HGW and free base phthalocyanine (Pc) in ortho-dichlorobenzene (DCB) glass are reported. The goal of this dissertation was to provide further evidence supporting the NPHB mechanism and to provide more insight that leads to a better understanding of the kinetic events (dynamics) in glasses, and various dynamical processes of different fluorescent chromorphores in various amorphous solids and the liquid that exist above the glass transition temperature (Tg). The following issues are addressed in detail: (1) time evolution of hole being burned under different conditions and in different hole burning systems; (2) temperature dependent hole profile; and (3) the structure

  15. Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.

    Science.gov (United States)

    Feng, Mengkai; Hou, Zhonghuai

    2017-06-28

    We present a mode coupling theory study for the relaxation and glassy dynamics of a system of strongly interacting self-propelled particles, wherein the self-propulsion force is described by Ornstein-Uhlenbeck colored noise and thermal noises are included. Our starting point is an effective Smoluchowski equation governing the distribution function of particle positions, from which we derive a memory function equation for the time dependence of density fluctuations in nonequilibrium steady states. With the basic assumption of the absence of macroscopic currents and standard mode coupling approximation, we can obtain expressions for the irreducible memory function and other relevant dynamic terms, wherein the nonequilibrium character of the active system is manifested through an averaged diffusion coefficient D[combining macron] and a nontrivial structural function S 2 (q) with q being the magnitude of wave vector q. D[combining macron] and S 2 (q) enter the frequency term and the vertex term for the memory function, and thus influence both the short time and the long time dynamics of the system. With these equations obtained, we study the glassy dynamics of this thermal self-propelled particle system by investigating the Debye-Waller factor f q and relaxation time τ α as functions of the persistence time τ p of self-propulsion, the single particle effective temperature T eff as well as the number density ρ. Consequently, we find the critical density ρ c for given τ p shifts to larger values with increasing magnitude of propulsion force or effective temperature, in good accordance with previously reported simulation work. In addition, the theory facilitates us to study the critical effective temperature T for fixed ρ as well as its dependence on τ p . We find that T increases with τ p and in the limit τ p → 0, it approaches the value for a simple passive Brownian system as expected. Our theory also well recovers the results for passive systems and can be

  16. Understanding the processes involved in weathering and experimental alteration of glassy materials. The case of some volcanic glasses from eastern Sicily (Italy)

    International Nuclear Information System (INIS)

    Liotta, Angelo

    2014-01-01

    The objective of this thesis is to study the effects of weathering and experimental alteration in order to understand the geochemical processes involved and the variation of mineral phases in altered natural glasses. For the first time, five samples of natural volcanic glasses having different composition were collected in eastern Sicily (Italy) in order to be artificially altered and analyzed. The study of naturally altered samples has allowed to observe the effects of weathering after a period of time corresponding to the age of the sample. Moreover, the use of samples of natural glass of volcanic origin has allowed to obtain some powder or thin plates of fresh silicate glass that have been subjected to artificial alteration in the laboratory, in order to model the geochemical processes that have occurred. Alteration experiments were conducted in pure water at 90 C; samples have been altered from 1 to 1000 days of experiment. The characterization of the samples was obtained by Raman spectroscopy, which showed the effects of the devitrification and the presence of some secondary minerals such as carbonates and anatase on the obsidian thin plates, but also phillipsite and chabazite, two varieties of zeolite usually found in the cavities of oldest basalts. Solid modifications were observed by SEM. The analysis showed the formation of several secondary minerals having a composition compatible with smectites, determined by EDS spectroscopy. All these results allow to test the geochemical modeling in the long term. Further analysis will be needed to reach a full understanding of the weathering of glassy materials. (author)

  17. Study of short range order in alloy of glassy metals and effect of neutron irradiation on them

    International Nuclear Information System (INIS)

    Habibi, S.; Banaee, N.; Salman, M.; Gupta, A.; Principi, G.

    2000-04-01

    In this paper, we have studied a series of glassy metals with composition Fe 78-x Ni x Si 8 B 14 with x=0, 15, 25,38,53, 58. We have used Moessbauer spectroscopy to get information about short range order and local structure in these alloys. The specimens are exposed to neutron irradiation to perturb local structure and their short range order. The hyperfine parameters obtained from spectra before and after n-irradiation and are compared

  18. Leaching behaviour of a glassy slag and derived glass-ceramics from arc-plasma vitrification of hospital wastes

    OpenAIRE

    Romero, Maximina; Hernández, M. S.; Rincón López, Jesús María

    2009-01-01

    The arc-plasma vitrification of a hospital wastes containing metals and inorganic oxides yields to a leach-resistant glassy or vitreous slag, which can be environmentally safe for landfill disposal or could be transformed in glass-ceramic tiles with physical and mechanical properties similar to those showed by marketable products for building applications. Standard methods have been used for testing the leachability of elements from this new type of tiles. The water resistance was evaluated b...

  19. 40Ar/39Ar and K-Ar dating of altered glassy volcanic rocks: the Dabi Volcanics, P.N.G

    International Nuclear Information System (INIS)

    Walker, D.A.; McDougall, I.

    1982-01-01

    K-Ar and 40 Ar/ 39 Ar ages have been determined for altered submarine tholeiitic and boninite (high-Mg andesite) lavas from the Dabi Volcanics, Cape Vogel Peninsula, Papua New Guinea. 40 Ar/ 39 Ar whole rock total fusion and plateau ages identify a Late Paleocene age for the tholeiitic lavas (58.9 +- 1.1 Ma), and also for the boninitic lavas (58.8 +- 0.8 Ma). Apparent K-Ar ages for the same samples range from 27.2 +- 0.7 to 63.9 +- 4.5 Ma, and young K-Ar ages for glassy boninites are probably due to variable radiogenic 40 Ar( 40 Ar*) loss. These new ages effectively reconcile previously ambiguous age data for the Dabi Volcanics, and indicate contemporaneous tholeiitic and boninitic volcanism occurring in southeast PNG during the Late Paleocene. Smectites, developed as alteration products after glass in oceanic lavas commonly do not retain 39 Ar during or subsequent to irradiation, but in some cases may contain 40 Ar*. The results are discussed. (author)

  20. Electrochemical Determination of Glycoalkaloids Using a Carbon Nanotubes-Phenylboronic Acid Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Huiying Wang

    2013-11-01

    Full Text Available A versatile strategy for electrochemical determination of glycoalkaloids (GAs was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors.

  1. Physical properties of Zr50Cu40-xAl10Pdx bulk glassy alloys

    International Nuclear Information System (INIS)

    Wencka, M.; Jagodic, M.; Gradisek, A.; Kocjan, A.; Jaglicic, Z.; McGuiness, P.J.; Apih, T.; Yokoyama, Y.; Dolinsek, J.

    2010-01-01

    It was shown recently (Yokoyama et al. ) that the addition of a small amount of Pd to the Zr 50 Cu 40 Al 10 bulk glassy alloy (BGA) has a beneficial effect on fatigue-strength enhancement, where the composition Zr 50 Cu 37 Al 10 Pd 3 behaved in a resonant-like way by showing the highest fatigue limit of 1050 MPa and the minimum Vickers hardness. We performed a study of the magnetic properties, the specific heat, the electrical resistivity and the hydrogen-diffusion constant for a series of compositions Zr 50 Cu 40-x Al 10 Pd x (x = 0-7 at.%), in order to determine their physical properties and to check for the influence of the Pd content on these properties. The Zr 50 Cu 40-x Al 10 Pd x BGAs are nonmagnetic, conducting alloys, where the Pauli spin susceptibility of the conduction electrons is the only source of paramagnetism. The low-temperature specific heat indicates an enhancement of the conduction-electron effective mass m* below 5 K, suggesting that the Zr 50 Cu 40-x Al 10 Pd x BGAs are not free-electron-like compounds. The electrical resistivities of the Zr 50 Cu 40-x Al 10 Pd x BGAs amount to about 200 μΩ cm and show a small, negative temperature coefficient (NTC) with an increase from 300 to 2 K of 4%. The hydrogen self-diffusion constant D in hydrogen-loaded samples shows classical over-barrier-hopping temperature dependence and is of comparable magnitude to the related icosahedral and amorphous Zr 69.5 Cu 12 Ni 11 Al 7.5 hydrogen-storage alloys. No correlation between the investigated physical parameters and the Pd content of the samples could be observed.

  2. Poly(alizarin red)/Graphene modified glassy carbon electrode for simultaneous determination of purine and pyrimidine

    International Nuclear Information System (INIS)

    Ba Xi; Luo Liqiang; Ding Yaping; Zhang Zhen; Chu Yuliang; Wang Bijun; Ouyang Xiaoqian

    2012-01-01

    Graphical abstract: DPVs of PAR/Graphene/GCE (a) and the bare GCE (c) in 0.1 M PBS containing 50.0 μM G, 50.0 μM A, 100.0 μM T and 100.0 μM C, (b) PAR/Graphene/GCE in 0.1 M PBS. Highlights: ► The sensor exhibited well-separated peaks and low detection limit. ► The sensor possesses high sensitivity and wide linear range. ► The sensor was used for simultaneous detection of G, A, T and C successfully. ► The sensor was applied in a fish sperm DNA sample with satisfactory results. ► The proposed sensor has good stability and reproducibility. - Abstract: In this work, a poly(alizarin red)/Graphene composite film modified glassy carbon electrode (PAR/Graphene/GCE) was prepared for simultaneous determination of four DNA bases (guanine, adenine, thymine and cytosine) without any pretreatment. The morphology and interface property of PAR/Graphene films were examined by scanning electron microscopy and electrochemical impedance spectroscopy. The PAR/Graphene/GCE exhibited excellent electrocatalytic activity toward purine (guanine and adenine) and pyrimidine (thymine and cytosine) in 0.1 M phosphate buffer solution (pH 7.4). Under optimum conditions, differential pulse voltammetry was used to detect the oxidation of purine and pyrimidine. The results showed that PAR/Graphene/GCE exhibited well-separated peaks, low detection limit, high sensitivity and wide linear range for simultaneous detection of purine and pyrimidine. The proposed sensor also has good stability and reproducibility. Furthermore, the modified electrode was applied for the detection of DNA bases in a fish sperm DNA sample with satisfactory results.

  3. Electrocatalytic Oxidation of Hydroxylamine at a Quinizarine Modified Glassy Carbon Electrode: Application to Differential Pulse Voltammetry Detection of Hydroxylamine

    OpenAIRE

    MAZLOUMARDAKANI, Mohammad; KARAMI, Payam EBRAHIMI

    2014-01-01

    The electrocatalytic behavior of hydroxylamine was studied on a glassy carbon electrode modified by electrodeposition of quinizarine, using cyclic voltammetry, chronoamperometry, and rotating disk voltammetry as diagnostic techniques. Cyclic voltammetry showed that the catalytic current of the system depends on the concentration of hydroxylamine. The magnitude of the peak current for quinizarine increased sharply in the presence of hydroxylamine and proportional to hydroxylamine conc...

  4. Electrocatalytic Study of Paracetamol at a Single-Walled Carbon Nanotube/Nickel Nanocomposite Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Koh Sing Ngai

    2015-01-01

    Full Text Available A rapid, simple, and sensitive method for the electrochemical determination of paracetamol was developed. A single-walled carbon nanotube/nickel (SWCNT/Ni nanocomposite was prepared and immobilized on a glassy carbon electrode (GCE surface via mechanical attachment. This paper reports the voltammetry study on the effect of paracetamol concentration, scan rate, pH, and temperature at a SWCNT/Ni-modified electrode in the determination of paracetamol. The characterization of the SWCNT/Ni/GCE was performed by cyclic voltammetry. Variable pressure scanning electron microscopy (VPSEM and energy dispersive X-ray (EDX spectrometer were used to examine the surface morphology and elemental profile of the modified electrode, respectively. Cyclic voltammetry showed significant enhancement in peak current for the determination of paracetamol at the SWCNT/Ni-modified electrode. A linear calibration curve was obtained for the paracetamol concentration between 0.05 and 0.50 mM. The SWCNT/Ni/GCE displayed a sensitivity of 64 mA M−1 and a detection limit of 1.17 × 10−7 M in paracetamol detection. The proposed electrode can be applied for the determination of paracetamol in real pharmaceutical samples with satisfactory performance. Results indicate that electrodes modified with SWCNT and nickel nanoparticles exhibit better electrocatalytic activity towards paracetamol.

  5. Glassy behavior of the Nd sublattice induced by Fe doping in NdFexGa1-xO3

    International Nuclear Information System (INIS)

    Bartolome, F.; Parra-Borderias, M.; Blasco, J.; Bartolome, J.

    2007-01-01

    The evolution of the magnetic ordering of Nd with the Fe content in NdFe x Ga 1-x O 3 is studied by low-temperature specific-heat measurements for x= =0.2. Fe doping creates a distribution of internal fields on Nd, originating a Schottky contribution to the specific heat which is present for x>0. The power law followed by the low-temperature specific heat suggests a glassy behavior for x>=0.1

  6. Mineralogy, petrology and whole-rock chemistry data compilation for selected samples of Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Connolly, J.R.

    1991-12-01

    Petrologic, bulk chemical, and mineralogic data are presented for 49 samples of tuffaceous rocks from core holes USW G-1 and UE-25a number-sign 1 at Yucca Mountain, Nevada. Included, in descending stratigraphic order, are 11 samples from the Topopah Spring Member of the Paintbrush Tuff, 12 samples from the Tuffaceous Beds of Calico Hills, 3 samples from the Prow Pass Member of the Crater Flat Tuff, 20 samples from the Bullfrog Member of the Crater Flat Tuff and 3 samples from the Tram Member of the Crater Flat Tuff. The suite of samples contains a wide variety of petrologic types, including zeolitized, glassy, and devitrified tuffs. Data vary considerably between groups of samples, and include thin section descriptions (some with modal analyses for which uncertainties are estimated), electron microprobe analyses of mineral phases and matrix, mineral identifications by X-ray diffraction, and major element analyses with uncertainty estimates

  7. Flower-Like Nanoparticles of Pt-BiIII Assembled on Agmatine Sulfate Modified Glassy Carbon Electrode and Their Electrocatalysis of H2O2

    Science.gov (United States)

    Xiao, Mingshu; Yan, Yuhua; Feng, Kai; Tian, Yanping; Miao, Yuqing

    2015-04-01

    A new electrochemical technique to detect hydrogen peroxide (H2O2) was developed. The Pt nanoparticles and BiIII were subsequently assembled on agmatine sulfate (AS) modified glassy carbon electrode (GCE) and the prepared GCE-AS-Pt-BiIII was characterized by scanning electron microscopy (SEM) with result showing that the flower-like nanostructure of Pt-BiIII was yielded. Compared with Pt nanoparticles, the flower-like nanostructure of Pt-BiIII greatly enhanced the electrocatalysis of GCE-AS-Pt-BiIII towards H2O2, which is ascribed to more Pt-OH obtained on GCE-AS-Pt-BiIII surface for the presence of BiIII. Based on its high electrocatalysis, GCE-AS-Pt-BiIII was used to determine the content of H2O2 in the sample of sheet bean curd with standard addition method. Meantime, its electrocatalytic activity also was studied.

  8. Pressure-induced positive electrical resistivity coefficient in Ni-Nb-Zr-H glassy alloy

    Science.gov (United States)

    Fukuhara, M.; Gangli, C.; Matsubayashi, K.; Uwatoko, Y.

    2012-06-01

    Measurements under hydrostatic pressure of the electrical resistivity of (Ni0.36Nb0.24Zr0.40)100-xHx (x = 9.8, 11.5, and 14) glassy alloys have been made in the range of 0-8 GPa and 0.5-300 K. The resistivity of the (Ni0.36Nb0.24Zr0.40)86H14 alloy changed its sign from negative to positive under application of 2-8 GPa in the temperature range of 300-22 K, coming from electron-phonon interaction in the cluster structure under pressure, accompanied by deformation of the clusters. In temperature region below 22 K, the resistivity showed negative thermal coefficient resistance by Debye-Waller factor contribution, and superconductivity was observed at 1.5 K.

  9. MIPs-graphene nanoplatelets-MWCNTs modified glassy carbon electrode for the determination of cardiac troponin I.

    Science.gov (United States)

    Ma, Ya; Shen, Xiao-Lei; Wang, Hai-Shui; Tao, Jia; Huang, Jian-Zhi; Zeng, Qiang; Wang, Li-Shi

    2017-03-01

    An electrochemical sensor with high selectivity in addition to sensitivity was developed for the determination of cardiac troponin I (cTnI), based on the modification of cTnI imprinted polymer film on a glassy carbon electrode (GCE). The sensor was fabricated by layer-by-layer assembled graphene nanoplatelets (GS), multiwalled carbon nanotubes (MWCNTs), chitosan (CS), glutaraldehyde (GA) composites, which can increase the electronic transfer rate and the active surface area to capture a larger number of antigenic proteins. MWCNTs/GS based imprinted polymers (MIPs/MWCNTs/GS) were synthesized by means of methacrylic acid (MAA) as the monomer, ethylene glycol dimethacrylate (EGDMA) as the cross linker α,α'-azobisisobutyronitrile (AIBN) as the initiator and cTnI as the template. In comparison with conventional methods, the proposed electrochemical sensor is highly sensitive for cTnI, providing a better linear response range from 0.005 to 60 ng cm -3 and a lower limit of detection (LOD) of 0.0008 ng cm -3 under optimal experimental conditions. In addition, the electrochemical sensor exhibited good specificity, acceptable reproducibility and stability. Moreover, satisfactory results were obtained in real human serum samples, indicating that the developed method has the potential to find application in clinical detection of cTnI as an alternative approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Structural analysis of quaternary Se{sub 85−x}Sb{sub 10}In{sub 5}Ag{sub x} bulk glassy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rita, E-mail: reetasharma2012@gmail.com; Sharma, Shaveta; Kumar, Praveen; Chander, Ravi; Thangaraj, R.; Mian, M. [Semiconductors Laboratory, Department of Physics, GND University, Amritsar (India)

    2015-08-28

    The physical properties of chalcogenide semiconductor have attracted much attention recently due to their applications in optical recording media and inorganic resist due to photo induced structural transformations observed in these materials. The bulk samples of Se{sub 85-x}Sb{sub 10}In{sub 5}Ag{sub x} system are prepared by melt-quenching technique. X-ray diffraction technique and RAMAN spectroscopy have been used to study the role of Ag additive on the amorphous/crystalline nature and molecular structure of Se{sub 85}Sb{sub 10}In{sub 5} glassy alloys. The phases Sb{sub 2}Se{sub 3}, In-Sb and In{sub 2}Se{sub 3} has been observed by X-ray diffraction. The formation of AgInSe{sub 2} phase along with the enhancement in intensity has been observed with the Ag addition.Three bands observed by raman spectroscopy for Se85Sb10In5 are at 70 cm-1, 212cm-1 and 252cm-1. The formation of small bands up to wavenumber 188cm{sup -1} and shifting in second band along with the increase in intensity up to sample x=5 has been observed with the Ag addition. The enhancement in intensity in third band with Ag content has been observed.

  11. Rotating speed effect on electronic transport behaviors of Ni–Nb–Zr–H glassy alloys

    International Nuclear Information System (INIS)

    Fukuhara, Mikio

    2012-01-01

    Highlights: ► The electronic transport behaviors of (Ni 0.39 Nb 0.25 Zr 0.35 ) 100−y H y (0 ≤ y ≤ 15) glassy alloys, which produced by rotating (or quenching) speeds of 3000 and 10,000 rpm, have been studied as a function of hydrogen content. ► The resistivity for (Ni 0.39 Nb 0.25 Zr 0.35 ) 97.8 H 2.2 alloy, produced by rotating speed of 10,000 rpm, displayed 0.1 nΩ cm, which is 0.01% of silver (1.62 μΩ cm) at room temperature, between 40 and 252 K. ► Supercooling of the molten alloy induces a superior ballistic conductor and a room-temperature Coulomb oscillation. - Abstract: The electronic transport behaviors of (Ni 0.39 Nb 0.25 Zr 0.35 ) 100−y H y (0 ≤ y ≤ 15) glassy alloys, produced by rotating (or quenching) speeds of 3000 and 10,000 rpm, have been studied as a function of hydrogen content. These alloys show semiconducting, superior ballistic transport, superconducting and electric current-induced Coulomb oscillation, as hydrogen content increases. The resistivity for (Ni 0.39 Nb 0.25 Zr 0.35 ) 97.8 H 2.2 alloy, produced by rotating speed of 10,000 rpm, displayed 0.1 nΩ cm, which is 0.01% of silver (1.62 μΩ cm) at room temperature, between 40 and 252 K. The Coulomb oscillation of the 10,000 rpm-(Ni 0.39 Nb 0.25 Zr 0.35 ) 95.2 H 4.8 alloy is about 4-fold larger than that of the 3000 rpm-(Ni 0.39 Nb 0.25 Zr 0.35 ) 91.1 H 8.9 alloy. Supercooling of the molten alloy induces a superior ballistic conductor and a room-temperature Coulomb oscillation at lower and higher hydrogen contents, respectively.

  12. Dissociative electron attachment to methylhalides in 3-methylhexane glassy matrix

    International Nuclear Information System (INIS)

    Harada, K.; Irie, M.; Yoshida, H.

    1976-01-01

    Dissociative electron attachment reaction to CH 3 I, CH 3 Cl and CH 3 F in a 3-methylhexane glassy matrix was studied by determining the yield of trapped electrons and that of methyl radicals immediately after γ irradiation at 77 K as a function of the scavenger concentration. The efficiency of conversion from the trapped electrons to the methyl radicals was also studied by photobleaching the trapped electrons. The results obtained are (1) the dissociative electron attachment occurs to CH 3 F, for which the gas phase data indicate that the reaction is endothermic by 1.2 eV, during either the γ irradiation or the photobleaching, and (2) CH 3 F is relatively less efficient in scavenging photo-liberated electrons than in scavenging the electrons during the γ irradiation, whereas CH 3 I and CH 3 Cl are efficient scavengers for both the electrons. The dependence of the yields of the trapped electrons and the methyl radicals is discussed in terms of the electron-tunnelling mechanism and the epithermal electron-scavenging mechanism. (author)

  13. Fabrication of calix[4]pyrrole nanofilms at the glassy carbon surface and their characterization by spectroscopic, optic and electrochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Taner, Bilge; Ozcan, Emine [Selcuk University, Faculty of Science, Dept. of Chemistry, Konya (Turkey); Ustuendag, Zafer [Dumlupinar University, Faculty of Arts and Sciences, Dept. of Chemistry, Kuetahya (Turkey); Keskin, Selda [Middle East Technical University, Central Research Laboratory, Ankara (Turkey); Solak, Ali Osman, E-mail: osolak@science.ankara.edu.t [Ankara University, Faculty of Science, Department of Chemistry, Ankara (Turkey); Eksi, Haslet [Ankara University, Faculty of Science, Department of Chemistry, Ankara (Turkey)

    2010-10-29

    meso-Octamethylcalix[4]pyrrole (CP) and meso-heptaethylcalix[4]pyrrole-meso-4-aminophenyl (4APCP) modified glassy carbon (GC) electrodes were prepared by the electrochemical oxidation in acetonitrile solution. Binding of the calix[4]pyrroles with the glassy carbon surface was investigated that it is through the etheric linkage revealed from the reflection-absorption infrared spectroscopy (RAIRS). Surface films of CP and 4APCP were investigated by cyclic voltammetry (CV), ellipsometry, X-ray photoelectron spectroscopy, RAIRS and the contact angle measurements. The thicknesses of the films were determined by ellipsometry which confirmed that the film was multilayer and homogeneous over the surface. Ellipsometric measurements also provided that the CP and 4APCP film thicknesses were 2.49 nm and 4.58 nm for 6 CV cycle modification, corresponding to 66 {mu}F/cm{sup 2} and 106 {mu}F/cm{sup 2} capacitances obtained by CV. The wetting behavior was examined by contact angle measurements and found that the hydrophobicity of the GC-4APCP surface was higher than that of GC-CP, probably due to the aromatic meso substituent present in the former.

  14. Gold nanoparticles embedded electropolymerized thin film of pyrimidine derivative on glassy carbon electrode for highly sensitive detection of l-cysteine.

    Science.gov (United States)

    Kannan, Ayyadurai; Sevvel, Ranganathan

    2017-09-01

    This paper demonstrates the fabrication of novel gold nanoparticles incorporated poly (4-amino-6-hydroxy-2-mercaptopyrimidine) (Nano-Au/Poly-AHMP) film modified glassy carbon electrode and it is employed for highly sensitive detection of l-cysteine (CYS). The modified electrode was characterized by scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). SEM images of modified electrode revealed the homogeneous distribution of gold nanoparticles on poly (4-amino-6-hydroxy-2-mercaptopyrimidine) thin film modified glassy carbon electrode. The modified electrode was successfully utilized for highly selective and sensitive determination of l-cysteine at physiological pH7.0. The present electrochemical sensor successfully resolved the voltammetric signals of ascorbic acid (AA) and l-cysteine with peak separation of 0.510V. To the best of our knowledge, this is the first report of larger peak separation between AA and CYS. Wide linear concentration ranges (2μM-500μM), low detection limit (0.020μM), an excellent reproducibility and stability are achieved for cysteine sensing with this Nano-Au/Poly-AHMP/GCE. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. An Easily Fabricated Electrochemical Sensor Based on a Graphene-Modified Glassy Carbon Electrode for Determination of Octopamine and Tyramine

    Science.gov (United States)

    Zhang, Yang; Zhang, Meiqin; Wei, Qianhui; Gao, Yongjie; Guo, Lijuan; Al-Ghanim, Khalid A.; Mahboob, Shahid; Zhang, Xueji

    2016-01-01

    A simple electrochemical sensor has been developed for highly sensitive detection of octopamine and tyramine by electrodepositing reduced graphene oxide (ERGO) nanosheets onto the surface of a glassy carbon electrode (GCE). The electrocatalytic oxidation of octopamine and tyramine is individually investigated at the surface of the ERGO modified glassy carbon electrode (ERGO/GCE) by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several essential factors including the deposition cycle of reduced graphene oxide nanosheets and the pH of the running buffer were investigated in order to determine the optimum conditions. Furthermore, the sensor was applied to the quantification of octopamine and tyramine by DPV in the concentration ranges from 0.5 to 40 μM and 0.1 to 25 μM, respectively. In addition, the limits of detection of octopamine and tyramine were calculated to be 0.1 μM and 0.03 μM (S/N = 3), respectively. The sensor showed good reproducibility, selectivity and stability. Finally, the sensor successfully detected octopamine and tyramine in commercially available beer with satisfactory recovery ranges which were 98.5%–104.7% and 102.2%–103.1%, respectively. These results indicate the ERGO/GCE based sensor is suitable for the detection of octopamine and tyramine. PMID:27089341

  16. Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene–chitosan composite

    International Nuclear Information System (INIS)

    Zheng, Meixia; Gao, Feng; Wang, Qingxiang; Cai, Xili; Jiang, Shulian; Huang, Lizhang; Gao, Fei

    2013-01-01

    The electrochemical behaviors of acetaminophen (ACOP) on a graphene–chitosan (GR–CS) nanocomposite modified glassy carbon electrode (GCE) were investigated by cyclic voltammetry (CV), chronocoulometry (CC) and differential pulse voltammetry (DPV). Electrochemical characterization showed that the GR–CS nanocomposite had excellent electrocatalytic activity and surface area effect. As compared with bare GCE, the redox signal of ACOP on GR–CS/GCE was greatly enhanced. The values of electron transfer rate constant (k s ), diffusion coefficient (D) and the surface adsorption amount (Γ ⁎ ) of ACOP on GR–CS/GCE were determined to be 0.25 s −1 , 3.61 × 10 −5 cm 2 s −1 and 1.09 × 10 −9 mol cm −2 , respectively. Additionally, a 2e − /2H + electrochemical reaction mechanism of ACOP was deduced based on the acidity experiment. Under the optimized conditions, the ACOP could be quantified in the range from 1.0 × 10 −6 to 1.0 × 10 −4 M with a low detection limit of 3.0 × 10 −7 M based on 3S/N. The interference and recovery experiments further showed that the proposed method is acceptable for the determination of ACOP in real pharmaceutical preparations. Highlights: ► A chitosan–graphene nanocomposite modified glassy carbon electrode was prepared. ► The modified electrode was electrochemically characterized by CV and EIS. ► Electro-oxidation of acetaminophen was examined on the modified electrode. ► Sensing analysis of the modified electrode toward acetaminophen was studied

  17. Glass formation ability, structure and magnetocaloric effect of a heavy rare-earth bulk metallic glassy Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jo, C.-L. [Shanghai University, School of Materials Science and Engineering, Yanchang Road 149, Zhabei District, 200072 Shanghai (China)], E-mail: jochollong@163.com; Xia Lei; Ding Ding; Dong Yuanda; Gracien, Ekoko [Shanghai University, School of Materials Science and Engineering, Yanchang Road 149, Zhabei District, 200072 Shanghai (China)

    2008-06-30

    The glass formation ability, the structure and the magnetocaloric effect of the bulk metallic glassy Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy were investigated. Bulk metallic glassy (BMGs) alloys were prepared by a copper-mold casting method. The glass forming ability and their structure were studied by using X-ray diffraction (XRD) and differential scanning calorimeter (DSC). The XRD analysis revealed that the as-cast cylinder of Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy showed fully amorphous structure in 2 mm diameter. The DSC revealed that the bulk cylinder of the Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy showed a distinct glass transition temperature and a relatively wide supercooled liquid region before crystallization. SQUID investigated the magnetic properties and the entropy changes. The Curie temperature of Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} BMGs alloy was about 130 K, but the maximum magnetic entropy changes(-{delta}S{sub M}) showed at about 125 K, a little lower than the Curie temperature 130 K. The reason could probably be due to the presence of a little amount of nanocrystalline particles between amorphous phases. The BMG alloy has the characteristic of second-order transition (SOT) on Arrott plots. The results showed that the amorphous sample had a relatively improved magnetocaloric effect, indicating that the amorphous alloy could be considered as a candidate for magnetic refrigeration applications in the temperature interval range of 100-200 K.

  18. Very sensitive electrochemical determination of diuron on glassy carbon electrode modified with reduced graphene oxide-gold nanoparticle-Nafion composite film.

    Science.gov (United States)

    Zarei, K; Khodadadi, A

    2017-10-01

    In this work, a very sensitive electrochemical sensor based on glassy carbon electrode (GCE) modified with reduced graphene oxide-gold nanoparticles/Nafion (rGO-AuNPs/Nafion) composite film was applied to determine diuron. Synthesized GO was characterized using X-ray diffraction (XRD) and UV-visible spectroscopy. The surface morphology of the rGO-AuNPs/Nafion film was also characterized using scanning electron microscopy and electrochemical impedance spectroscopy. Cyclic voltammetry (CV) and adsorptive differential pulse voltammetry (AdDPV) were applied to investigate the electrochemical response of the diuron on the modified electrode. The electrode showed a linear response at 1.0×10 -9 -1.0×10 -7 M and a detection limit of 0.3nM under the optimized conditions. The effect of some other species on the determination of diuron was investigated and the sensor showed good selectivity for determination of diuron. The constructed sensor was applied to determine diuron in enriched samples of orange juice, mineral and tap water which statistical t-test showed accuracy of method. Also the sensor was applied to obtain diuron content in the tea sample. The reliability of the proposed sensor was confirmed after comparing the results with those obtained using high performance liquid chromatography (HPLC) as a comparative method. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Poly(alizarin red)/Graphene modified glassy carbon electrode for simultaneous determination of purine and pyrimidine

    Energy Technology Data Exchange (ETDEWEB)

    Ba Xi; Luo Liqiang [Department of Chemistry, Shanghai University, Shanghai 200444 (China); Ding Yaping, E-mail: wdingyp@sina.com [Department of Chemistry, Shanghai University, Shanghai 200444 (China); Zhang Zhen [Department of Chemistry, Shanghai University, Shanghai 200444 (China); Chu Yuliang [Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444 (China); Wang Bijun; Ouyang Xiaoqian [Department of Chemistry, Shanghai University, Shanghai 200444 (China)

    2012-11-08

    Graphical abstract: DPVs of PAR/Graphene/GCE (a) and the bare GCE (c) in 0.1 M PBS containing 50.0 {mu}M G, 50.0 {mu}M A, 100.0 {mu}M T and 100.0 {mu}M C, (b) PAR/Graphene/GCE in 0.1 M PBS. Highlights: Black-Right-Pointing-Pointer The sensor exhibited well-separated peaks and low detection limit. Black-Right-Pointing-Pointer The sensor possesses high sensitivity and wide linear range. Black-Right-Pointing-Pointer The sensor was used for simultaneous detection of G, A, T and C successfully. Black-Right-Pointing-Pointer The sensor was applied in a fish sperm DNA sample with satisfactory results. Black-Right-Pointing-Pointer The proposed sensor has good stability and reproducibility. - Abstract: In this work, a poly(alizarin red)/Graphene composite film modified glassy carbon electrode (PAR/Graphene/GCE) was prepared for simultaneous determination of four DNA bases (guanine, adenine, thymine and cytosine) without any pretreatment. The morphology and interface property of PAR/Graphene films were examined by scanning electron microscopy and electrochemical impedance spectroscopy. The PAR/Graphene/GCE exhibited excellent electrocatalytic activity toward purine (guanine and adenine) and pyrimidine (thymine and cytosine) in 0.1 M phosphate buffer solution (pH 7.4). Under optimum conditions, differential pulse voltammetry was used to detect the oxidation of purine and pyrimidine. The results showed that PAR/Graphene/GCE exhibited well-separated peaks, low detection limit, high sensitivity and wide linear range for simultaneous detection of purine and pyrimidine. The proposed sensor also has good stability and reproducibility. Furthermore, the modified electrode was applied for the detection of DNA bases in a fish sperm DNA sample with satisfactory results.

  20. Electro-catalytic oxidation of ethanol on platinum-iridium mixtures supported on glassy carbon

    International Nuclear Information System (INIS)

    Rodriguez, Henry; Hoyos Bibian

    2004-01-01

    Electro-catalytic oxidation of ethanol on platinum-iridium mixtures supported on glassy carbon was studied, in acid media at different temperatures and concentrations. During the maturation time of deposited iridium, the surface is covered by an irreversible oxide formation, which affects the behavior of the catalytic mixture. The Pt 7 0 Ir 3 0 and Pt 9 0 Ir 1 0 mixtures seem to be a little more active than the Pt/C electrode at potentials below 800 mV (vs. HRE). In all electrodes appears two reactions: partial ethanol oxidation to produce acetaldehyde (main path of reaction at low temperatures and high electrode coverage with ethanol adsorption residues) and the total oxidation to carbon dioxide which is considerable at potential above 800 mV and it is increased with increasing temperature

  1. Glucose biosensing using glassy carbon electrode modified with polyhydroxy-C60, glucose oxidase and ionic-liquid.

    Science.gov (United States)

    Yang, Tian; Yang, Xiao-Lu; Zhang, Yu-Shuai; Xiao, BaoLin; Hong, Jun

    2014-01-01

    Direct electrochemistry of glucose oxidase (GOD) was achieved when an ionic liquid/GOD-Polyhydroxy-C60 functional membrane was confined on a glassy carbon electrode (GCE). The cyclic voltammograms (CVs) of the modified GCE showed a pair of redox peaks with a formal potential (E°') of - 329 ± 2 mV. The heterogeneous electron transfer constant (k(s)) was 1.43 s-1. The modified GCE response to glucose was linear in the range from 0.02 to 2.0 mM. The detection limit was 1 μM. The apparent Michaelis-Menten constant (K(m)(app)) was 1.45 mM.

  2. Cyclic voltammetric investigations of microstructured and platinum-covered glassy carbon electrodes in contact with a polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, G G; Veziridis, Z; Staub, M [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Freimuth, H [Inst. fuer Mikrotechnik Mainz IMM, Mainz (Germany)

    1997-06-01

    Model gas diffusion electrodes were prepared by microstructuring glassy carbon surfaces with high aspect ratios and subsequent deposition of platinum. These electrodes were characterized by hydrogen under-potential deposition (H-upd) in contact with a polymer electrolyte membrane employing cyclic voltametry. H-upd was found on platinum areas not in direct contact to the solid electrolyte, as long as a continuous platinum-path existed. A carbon surface between platinum acts as barrier for H-upd. (author) 4 figs., 5 refs.

  3. Environmental monitoring of carbaryl applied in urban areas to control the glassy-winged sharpshooter in California.

    Science.gov (United States)

    Walters, Johanna; Goh, Kean S; Li, Linying; Feng, Hsiao; Hernandez, Jorge; White, Jane

    2003-03-01

    Carbaryl insecticide was applied by ground spray to plants in urban areas to control a serious insect pest the glassy-winged sharpshooter, Homalodisca coagulata (Say), newly introduced in California. To assure there are no adverse impacts to human health and the environment from the carbaryl applications, carbaryl was monitored in tank mixtures, air, surface water, foliage and backyard fruits and vegetables. Results from the five urban areas - Porterville, Fresno, Rancho Cordova, Brentwood and Chico - showed there were no significant human exposures or impacts on the environment. Spray tank concentrations ranged from 0.1-0.32%. Carbaryl concentrations in air ranged from none detected to 1.12 microg m(-3), well below the interim health screening level in air of 51.7 microg m(-3). There were three detections of carbaryl in surface water near application sites: 0.125 ppb (parts per billion) from a water treatment basin; 6.94 ppb from a gold fish pond; and 1737 ppb in a rain runoff sample collected from a drain adjacent to a sprayed site. The foliar dislodgeable residues ranged from 1.54-7.12 microg cm(-2), comparable to levels reported for safe reentry of 2.4 to 5.6 microg cm(-2) for citrus. Carbaryl concentrations in fruits and vegetables ranged from no detectable amounts to 7.56 ppm, which were below the U.S. EPA tolerance, allowable residue of 10 ppm.

  4. Effects of the sintering temperature on the diffused phase transition and the spin-glassy behavior in Pb0.95La0.05(Fe2/3W1/3)0.65Ti0.35O3 ceramics

    International Nuclear Information System (INIS)

    Hong, Cheng-Shong; Chu, Sheng-Yuan; Hsu, Chi-Cheng

    2010-01-01

    In this paper, the effect of the sintering temperature on the low-field dielectric behavior of nonstoichiometric Pb 0.95 La 0.05 (Fe 2/3 W 1/3 ) 0.65 Ti 0.35 O 3 relaxor ferroelectrics is investigated. The x-ray patterns and the scanning electron microscope images are used to detect the pyrochlore phase and the perovskite structure. The electric properties of the resistivity, the space charge polarization, the temperature-dependent dielectric constant and dielectric loss are discussed. The diffused phase transition and the ordering state are fitted and discussed by using the empirical law and two ordering models. Furthermore, the glassy behavior is determined by using the Curie-Weiss law and the spin-glass model. According to the experimental data and fitting results, the dielectric picture is changed from the short range order relaxorlike behavior to the long range order normal ferroelectric state as increasing the sintering temperature and the glassy behavior is weakened at the lowest and highest sintering temperature at which the pyrochlore phase PWO 4 is induced. Therefore, it is suggested that the 1:1 ordered domain is enhanced by increasing the sintering temperature and the glassy behavior is related to not only the ordering degree also the polar defect pairs. For more ordering degree and polar defect pairs, the glassy is weakened and the correlation of neighboring polar microregions is enhanced.

  5. Immunoassay for serum amyloid A using a glassy carbon electrode modified with carboxy-polypyrrole, multiwalled carbon nanotubes, ionic liquid and chitosan

    International Nuclear Information System (INIS)

    Xia, Chunyong; Li, Yuan; Yuan, Guolin; Guo, Yanlei; Yu, Chao

    2015-01-01

    We report on a highly sensitive electrochemical immunoassay for the serum inflammation marker amyloid A (SAA). It is making use of a glassy carbon electrode that was modified with carboxy-endcapped polypyrrole (PPy-α-COOH), multiwalled carbon nanotubes (MWCNTs), ionic liquid and chitosan acting as the support platform. The nanocomposite increases the sensitivity and stability of the assay. Antibody against SAA was immobilized on a monolayer surface consisting of PPy-α-COOH. The electrode material was characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry. The calibration plot for this assay, when operated at 0.16 V (vs. SCE) and applied to spiked serum samples, is linear in the 0.001 to 900 ng mL −1 SAA concentration range, and the detection limit is as low as 0.3 pg mL −1 (at an S/N ratio of 3). The electrode is stable and highly sensitive. The detection scheme is likely to be applicable to numerous other kinds of immunoassays. (author)

  6. /sup 40/Ar//sup 39/Ar and K-Ar dating of altered glassy volcanic rocks: the Dabi Volcanics, P. N. G

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.A. (Australian National Univ., Canberra. Dept. of Geology); McDougall, I. (Australian National Univ., Canberra. Research School of Earth Sciences)

    1982-11-01

    K-Ar and /sup 40/Ar//sup 39/Ar ages have been determined for altered submarine tholeiitic and boninite (high-Mg andesite) lavas from the Dabi Volcanics, Cape Vogel Peninsula, Papua New Guinea. /sup 40/Ar//sup 39/Ar whole rock total fusion and plateau ages identify a Late Paleocene age for the tholeiitic lavas (58.9 +- 1.1 Ma), and also for the boninitic lavas (58.8 +- 0.8 Ma). Apparent K-Ar ages for the same samples range from 27.2 +- 0.7 to 63.9 +- 4.5 Ma, and young K-Ar ages for glassy boninites are probably due to variable radiogenic /sup 40/Ar(/sup 40/Ar*) loss. These new ages effectively reconcile previously ambiguous age data for the Dabi Volcanics, and indicate contemporaneous tholeiitic and boninitic volcanism occurring in southeast PNG during the Late Paleocene. Smectites, developed as alteration products after glass in oceanic lavas commonly do not retain /sup 39/Ar during or subsequent to irradiation, but in some cases may contain /sup 40/Ar*. The results are discussed.

  7. Modification of glassy carbon electrode with a polymer/mediator composite and its application for the electrochemical detection of iodate

    International Nuclear Information System (INIS)

    Li, Ta-Jen; Lin, Chia-Yu; Balamurugan, A.; Kung, Chung-Wei; Wang, Jen-Yuan; Hu, Chih-Wei; Wang, Chun-Chieh; Chen, Po-Yen; Vittal, R.; Ho, Kuo-Chuan

    2012-01-01

    Highlights: ► FAD and PEDOT are combined to modify the glassy carbon electrode for IO 3 − sensing. ► The doping of FAD into PEDOT matrix can almost be viewed as an irreversible process. ► The optimal cycle number for preparing the GCE/PEDOT/FAD electrode is found to be 9. ► The detection limit of the GCE/PEDOT/FAD electrode for IO 3 − is found to be 0.16 μM. ► The GCE/PEDOT/FAD electrode possesses enough selectivity toward IO 3 − . - Abstract: A modified glassy carbon electrode was prepared by depositing a composite of polymer and mediator on a glassy carbon electrode (GCE). The mediator, flavin adenine dinucleotide (FAD) and the polymer, poly(3,4-ethylenedioxythiophene) (PEDOT) were electrochemically deposited as a composite on the GCE by applying cyclic voltammetry (CV). This modified electrode is hereafter designated as GCE/PEDOT/FAD. FAD was found to significantly enhance the growth of PEDOT. Electrochemical quartz crystal microbalance (EQCM) analysis was performed to study the mass changes in the electrode during the electrodeposition of PEDOT, with and without the addition of FAD. The optimal cycle number for preparing the modified electrode was determined to be 9, and the corresponding surface coverage of FAD (Γ FAD ) was ca. 5.11 × 10 −10 mol cm −2 . The amperometric detection of iodate was performed in a 100 mM buffer solution (pH 1.5). The GCE/PEDOT/FAD showed a sensitivity of 0.78 μA μM −1 cm −2 , a linear range of 4–140 μM, and a limit of detection of 0.16 μM for iodate. The interference effects of 250-fold Na + , Mg 2+ , Ca 2+ , Zn 2+ , Fe 2+ , Cl − , NO 3 − , I − , SO 4 2− and SO 3 2− , with reference to the concentration of iodate were negligible. The long-term stability of GCE/PEDOT/FAD was also investigated. The GCE/PEDOT/FAD electrode retained 82% of its initial amperometric response to iodate after 7 days. The GCE/PEDOT/FAD was also applied to determine iodate in a commercial salt.

  8. Effect of the Copper on Thermo - Mechanical and Optical Properties of S-Se-Cu Chalcogenide Glasses

    Science.gov (United States)

    Samudrala, Kavitha; Babu Devarasetty, Suresh

    2018-03-01

    The S15Se85-xCux (x = 0, 2, 4, 6, 8) chalcogenide glasses are synthesized using melt quenching technique and the effect of Copper on thermal, mechanical and optical properties of chalcogenide glasses are investigated. The glassy natures of the prepared samples were verified by X-ray diffraction and DSC studies. The optical band gap of the samples is estimated and it is observed that optical band gap is decreased with increasing of the copper content and is discussed in terms of cohesive energy and coordination number. The basic thermo-mechanical parameters such as micro-hardness, Volume (Vh) and formation energy (Eh) of micro voids in the glassy network and the modulus of Elasticity (E) are calculated in present glasses. The composition dependence of micro hardness is discussed in terms of heat of atomization energy.

  9. Seasonal population dynamics of Homalodisca vitripennis (Hemiptera: Cicadellidae) in sweet orange trees maintained under continuous deficit irrigation.

    Science.gov (United States)

    Krugner, Rodrigo; Groves, Russell L; Johnson, Marshall W; Flores, Arnel P; Hagler, James R; Morse, Joseph G

    2009-06-01

    A 2-yr study was conducted in a citrus orchard (Citrus sinensis L. Osbeck cultivar Valencia) to determine the influence of plant water stress on the population dynamics of glassy-winged sharpshooter, Homalodisca vitripennis (Germar). Experimental treatments included irrigation at 100% of the crop evapotranspiration rate (ET(c)) and continuous deficit-irrigation regimens at 80 and 60% ET(c). Microclimate and plant conditions monitored included temperature and humidity in the tree canopy, leaf surface temperature, water potential, and fruit quality and yield. Glassy-winged sharpshooter population densities and activity were monitored weekly by a combination of visual inspections, beat net sampling, and trapping. Glassy-winged sharpshooter populations were negatively affected by severe plant water stress; however, population densities were not linearly related to decreasing water availability in plants. Citrus trees irrigated at 60% ET(c) had significantly warmer leaves, lower xylem water potential, and consequently hosted fewer glassy-winged sharpshooter eggs, nymphs, and adults than trees irrigated at 80% ET(c). Citrus trees irrigated at 100% ET(c) hosted similar numbers of glassy-winged sharpshooter stages as trees irrigated at 60% ET(c) and a lower number of glassy-winged sharpshooter nymphs than the 80% ET(c) treatment, specifically during the nymphal density peak in mid-April to early July. Irrigation treatments did not affect populations of monitored natural enemies. Although the adult glassy-winged sharpshooter population was reduced, on average, by 50% in trees under severe water stress, the total number of fruit and number of fruit across several fruit grade categories were significantly lower in the 60% ET(c) than in the 80 and 100% ET(c) irrigation treatments.

  10. On the solubility advantage of a pharmaceutical’s glassy state over the crystal state, and of its crystal polymorphs

    International Nuclear Information System (INIS)

    Johari, G.P.; Shanker, Ravi M.

    2014-01-01

    Highlights: • Heat capacity data do not yield the solubility advantage of amorphous and metastable crystal pharmaceuticals. • There is no reversible equilibrium of an amorphous solid with its saturated solution. • Solubility advantage of an amorphous solid depends upon the solvent and other interactions. - Abstract: At equilibrium, the saturation solubility and vapor pressure of a material in a state of high free energy are greater than in its state of low free energy. This knowledge from classical thermodynamics is currently used for increasing the solubility of crystalline pharmaceuticals by producing them in their glassy state, or in other solid states of high free energy. The ratio of the apparent saturation solubility of these solids to that of a crystal, calculated from the thermodynamic data of the pure solute, ϕ cal , is called the solubility advantage, and it is used as a guide for increasing the solubility of a pharmaceutical. We argue that the ϕ cal differs from the measured solubility ratio, ϕ meas , because, (i) ϕ cal is independent of the solvent, but ϕ meas is not so, (ii) ϕ cal would increase with the dissolution time monotonically to a constant value, but ϕ meas would first reach a maximum and then decrease, and (iii) approximations are made in estimating ϕ cal and the effect of thermal history on high free energy solids is ignored. On the other hand, ϕ meas is affected by, (a) another chemical equilibrium in the solution, e.g., hydrogen-bond formation and ionic dissociation, (b) the production method and thermal history of a glass or an amorphous samples, and (c) mutarotation in the solution, isomerization or tautomeric conversion in the solid. We also discuss the effects of structural relaxation and crystallization on ϕ meas . The ϕ meas value of a (crystal) polymorph would be affected by all the three, and further if the polymorph is orientationally disordered. We provide evidence for these effects from analysis of the known

  11. Nano-structured Ni(II)-curcumin modified glassy carbon electrode for electrocatalytic oxidation of fructose

    International Nuclear Information System (INIS)

    Elahi, M. Yousef; Mousavi, M.F.; Ghasemi, S.

    2008-01-01

    A nano-structured Ni(II)-curcumin (curcumin: 1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione) film is electrodeposited on a glassy carbon electrode in alkaline solution. The morphology of polyNi(II)-curcumin (NC) was investigated by scanning electron microscopy (SEM). The SEM results show NC has a nano-globular structure in the range 20-50 nm. Using cyclic voltammetry, linear sweep voltammetry, chronoamperometry, steady-state polarization measurements and electrochemical impedance spectroscopy (EIS) showed that the nano-structure NC film acts as an efficient material for the electrocatalytic oxidation of fructose. According to the voltammetric studies, the increase in the anodic peak current and subsequent decrease in the corresponding cathodic current, fructose was oxidized on the electrode surface via an electrocatalytic mechanism. The EIS results show that the charge-transfer resistance has as a function of fructose concentration, time interval and applied potential. The increase in the fructose concentration and time interval in fructose solution results in enhanced charge transfer resistance in Nyquist plots. The EIS results indicate that fructose electrooxidation at various potentials shows different impedance behaviors. At lower potentials, a semicircle is observed in the first quadrant of impedance plot. With further increase of the potential, a transition of the semicircle from the first to the second quadrant occurs. Also, the results obtained show that the rate of fructose electrooxidation depends on concentration of OH - . Electron transfer coefficient, diffusion coefficient and rate constant of the electrocatalytic oxidation reaction are obtained. The modified electrode was used as a sensor for determination of fructose with a good dynamic range and a low detection limit

  12. Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Vikkisk, Merilin; Kruusenberg, Ivar; Joost, Urmas; Shulga, Eugene; Tammeveski, Kaido

    2013-01-01

    Highlights: ► Pyrolysis in the presence of urea was used for nitrogen doping of carbon nanotubes. ► N-doped carbon nanotubes were used as catalysts for the oxygen reduction reaction. ► N-doped carbon material showed a high catalytic activity for ORR in alkaline media. ► N-containing CNT material is an attractive cathode catalyst for alkaline membrane fuel cells. - Abstract: The electrochemical reduction of oxygen was studied on nitrogen-doped multi-walled carbon nanotube (NCNT) modified glassy carbon (GC) electrodes employing the rotating disk electrode (RDE) method. Nitrogen doping was achieved by simple pyrolysis of the carbon nanotube material in the presence of urea. The surface morphology and composition of the NCNT samples were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed a rather uniform distribution of NCNTs on the GC electrode substrate. The XPS analysis showed a successful doping of carbon nanotubes with nitrogen species. The RDE results revealed that in alkaline solution the N-doped nanotube materials showed a remarkable electrocatalytic activity towards oxygen reduction. At low overpotentials the reduction of oxygen followed a two-electron pathway on undoped carbon nanotube modified GC electrodes, whereas on NCNT/GC electrodes a four-electron pathway of O 2 reduction predominated. The results obtained are significant for the development of nitrogen-doped carbon-based cathodes for alkaline membrane fuel cells.

  13. Two Glass Transitions Associated to Different Dynamic Disorders in the Nematic Glassy State of a Non-Symmetric Liquid Crystal Dimer Dopped with γ-Alumina Nanoparticles

    Science.gov (United States)

    Diez-Berart, Sergio; López, David O.; Salud, Josep; Diego, José Antonio; Sellarès, Jordi; Robles-Hernández, Beatriz; de la Fuente, María Rosario; Ros, María Blanca

    2015-01-01

    In the present work, the nematic glassy state of the non-symmetric LC dimer α-(4-cyanobiphenyl-4′-yloxy)-ω-(1-pyrenimine-benzylidene-4′-oxy) undecane is studied by means of calorimetric and dielectric measurements. The most striking result of the work is the presence of two different glass transition temperatures: one due to the freezing of the flip-flop motions of the bulkier unit of the dimer and the other, at a lower temperature, related to the freezing of the flip-flop and precessional motions of the cyanobiphenyl unit. This result shows the fact that glass transition is the consequence of the freezing of one or more coupled dynamic disorders and not of the disordered phase itself. In order to avoid crystallization when the bulk sample is cooled down, the LC dimer has been confined via the dispersion of γ-alumina nanoparticles, in several concentrations.

  14. Interpretation of the Raman spectra of the glassy states of SixS1−x and SixSe1−x

    International Nuclear Information System (INIS)

    Devi, V. Radhika; Zabidi, Noriza Ahmad; Shrivastava, Keshav N.

    2013-01-01

    We use the density-functional theory to make models of Si x S y and Si x Se y for the values of x,y = 1–6. The vibrational frequencies are calculated for each model. The stable clusters are selected on the basis of positive vibrational frequencies. In the case of Si x S 1−x , the values of the vibrational frequencies calculated from the first principles for Si 2 S(triangular)cluster of atoms, 364.1 cm −1 and 380.8 cm −1 , agree with the experimentally measured values of 367 cm −1 and 381 cm −1 , indicating that Si 2 S clusters occur in the glassy state of SiS. The calculated values of the vibrational frequencies of SiSe 4 (pyramidal) which agree with the experimental Raman frequencies of glassy Si x Se 1−x are 114, 166 and 361 cm −1 . The calculated values for Si 2 Se 4 (bipyramidal) which agree with the experimental data of Si x Se 1−x are 166 and 464 cm −1 . In Si 4 Se (pyramidal) the values 246 and 304 cm −1 agree with the measured values. In Si 4 Se 2 (bipyramidal), the calculated values 162, 196 and 304 cm −1 agree with the measured values. The calculated values of 473 cm −1 for Si 6 Se 2 (bipyramidal) also agree with the experimentally measured values. We thus find that pyramidal structures are present in the amorphous Si x Se 1−x glassy state. - Highlights: • A first principles calculation is performed to calculate the vibrational frequencies. • The calculated frequencies of clusters agree with measured Raman values. • The structures, bond lengths and symmetries are determined. • The importance of Jahn–Teller effect in SiS and in SiSe is clearly seen. • The clusters of SiS and SiSe are found to stabilize in different symmetries

  15. Electrocatalytic oxidation of hydrazine and hydroxylamine by graphene oxide-Pd nanoparticle-modified glassy carbon electrode.

    Science.gov (United States)

    Lee, Eunhee; Kim, Daekun; You, Jung-Min; Kim, Seul Ki; Yun, Mira; Jeon, Seungwon

    2012-12-01

    Pd nanoparticle catalysts supported by thiolated graphene oxide (tGO) on a glassy carbon electrode (GCE), and denoted as tGO-Pd/GCE, are used in this study for the electrochemical determination of hydroxylamine and hydrazine. The physicochemical properties of tGO-Pd were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). They showed strong catalytic activity toward the oxidation of hydroxylamine and hydrazine. Cyclic voltammetry (CV) and amperometry were used to characterize the sensors' performances. The detection limits of hydroxylamine and hydrazine by tGO-Pd/GCE were 0.31 and 0.25 microM (s/n = 3), respectively. The sensors' sensitivity, selectivity, and stability were also investigated.

  16. Effects of kaolin particle film and imidacloprid on glassy-winged sharpshooter (Homalodisca vitripennis) (Hemiptera: Cicadellidae)populations and the prevention of spread of Xylella fastidiosa in grape

    Science.gov (United States)

    The glassy-winged sharpshooter (GWSS), Homalodisca coagulata (Say), was introduced into California and soon became a major pest of important agronomic, horticultural, landscape, ornamental crops and native trees in California. This pest feeds readily on grape and, in doing so, transmits X. fastidio...

  17. Biomedical Applications of Modified Carbon Glassy Electrode Sensor with Nanoparticles and Dendrimers

    Directory of Open Access Journals (Sweden)

    Solomon W. LEUNG

    2011-04-01

    Full Text Available We previously reported the development of a biosensor platform that is capable of measuring biometabolites and environmental sensitive species, such as peroxide and nitrate/nitrate, to concentrations in the order of ppb (parts per billion or lower. In this investigation, we modified our platform with dendrimers to enhance its performance. Zero and second generation of dendrimers were coated on the surface of a carbon glassy electrode which was then modified with l-glutamate dehydrogenase (GDH and α-keto glutarate. The resulting electrode was tested with ammonium solutions, concentrations ranged from 2 to 300 nM at pH 7.4; the results were satisfactory. Measurements at lower concentrations had better resolution than at higher concentrations and it is believed that the measurement limit can be lower than 2 nM. This biosensor platform was proven to be versatile and can be employed as a platform for ultrasensitive detecting devices in many biomedical and environmental applications.

  18. Voltammetric sensor for caffeine based on a glassy carbon electrode modified with Nafion and graphene oxide

    International Nuclear Information System (INIS)

    Zhao, F.; Wang, F.; Zhao, W.; Zhou, J.; Liu, Y.; Zou, L.; Ye, B.

    2011-01-01

    We report on a voltammetric sensor for caffeine that is based on a glassy carbon electrode modified with Nafion and graphene oxide (GO). It exhibits a good affinity for caffeine (resulting from the presence of Nafion), and excellent electrochemical response (resulting from the pressence of GO) for the oxidation of caffeine. The electrode enables the determination of caffeine in the range from 4.0 x 10 -7 to 8.0 x 10 -5 mol L -1 , with a detection limit of 2.0 x 10 -7 mol L -1 . The sensor displays good stability, reproducibility, and high sensitivity. It was successfully applied to the quantitative determination of caffeine in beverages. (author)

  19. Determining the structural relaxation times deep in the glassy state of the pharmaceutical Telmisartan

    Energy Technology Data Exchange (ETDEWEB)

    Adrjanowicz, K; Paluch, M [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Ngai, K L [Naval Research Laboratory, Washington, DC 20375-5320 (United States)

    2010-03-31

    By using the dielectric relaxation method proposed recently by Casalini and Roland (2009 Phys. Rev. Lett. 102 035701), we were able to determine the structural alpha-relaxation times deep in the glassy state of the pharmaceutical, Telmisartan. Normally, deep in the glassy state tau{sub a}lpha is so long that it cannot be measured but tau{sub b}eta, which is usually much shorter, can be directly determined. The method basically takes advantage of the connection between the alpha-relaxation and the secondary beta-relaxation of the Johari-Goldstein kind, including a relation between their relaxation times tau{sub a}lpha and tau{sub b}eta, respectively. Thus, tau{sub a}lpha of Telmisartan were determined by monitoring the change of the dielectric beta-loss, epsilon'', with physical aging time at temperatures well below the vitrification temperature. The values of tau{sub a}lpha were compared with those expected by the coupling model (CM). Unequivocal comparison cannot be made in the case of Telmisartan because its beta-loss peak is extremely broad, and the CM predicts only an order of magnitude agreement between the primitive relaxation frequency and the beta-peak frequency. We also made an attempt to analyze all isothermal and aging susceptibility data after transformation into the electric modulus representation. The tau{sub a}lpha found in the glass state by using the method of Casalini and Roland in the modulus representation are similar to those obtained in the susceptibility representation. However, it is remarkable that the stretching parameter beta{sub KWWM} = 0.51 in the electric modulus representation gives more precise fits to the aging data than in the susceptibility representation with beta{sub KWW} = 0.61. Our results suggest that the electric modulus representation may be useful as an alternative to analyze aging data, especially in the case of highly polar glassformers having a large ratio of low frequency and high frequency dielectric

  20. Electrocatalytic behaviour and application of manganese porphyrin/gold nanoparticle- surface modified glassy carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sebarchievici, I., E-mail: incemc@incemc.ro [National Institute of Research for Electrochemistry and Condensed Matter, Aurel Paunescu Podeanu Street 144, 300569 Timisoara (Romania); Tăranu, B.O. [National Institute of Research for Electrochemistry and Condensed Matter, Aurel Paunescu Podeanu Street 144, 300569 Timisoara (Romania); Birdeanu, M. [National Institute of Research for Electrochemistry and Condensed Matter, Aurel Paunescu Podeanu Street 144, 300569 Timisoara (Romania); Institute of Chemistry Timisoara of Romanian Academy, M. Viteazul Ave. 24, 300223 Timisoara (Romania); Rus, S.F. [National Institute of Research for Electrochemistry and Condensed Matter, Aurel Paunescu Podeanu Street 144, 300569 Timisoara (Romania); Fagadar-Cosma, E., E-mail: efagadar@yahoo.com [Institute of Chemistry Timisoara of Romanian Academy, M. Viteazul Ave. 24, 300223 Timisoara (Romania)

    2016-12-30

    Highlights: • Mn-porphyrin/gold nanoparticle-modified glassy carbon electrodes were obtained. • AFM investigations of thin films display multilayer of triangular type architecture. • Oxidation and reduction processes of H{sub 2}O{sub 2} are diffusion controled. • There is a linear dependence between H{sub 2}O{sub 2} concentration and the currents intensity. • The modified electrodes show better electrochemical detection ability to H{sub 2}O{sub 2}. - Abstract: The main purpose of this research was to obtain manganese porphyrin/gold nanoparticle-modified glassy carbon electrodes and to use them for the detection of H{sub 2}O{sub 2}. Two sets of modified electrodes were prepared by drop-cast deposition of 5,10,15,20-tetra(4-methyl-phenyl)porphyrinato manganese(III) chloride alone and of the same Mn-porphyrin and gold-colloid solution and comparatively characterized by Raman, UV–vis, ellipsometry, AFM and TEM microscopy, XPS and cyclic voltammetry. XPS spectrum recorded for GC-MnP-nAu modified electrode displayed the characteristic signals of gold nanoparticles. The optical parameters have greater values for GC-MnP-nAu in comparison with GC-MnP, due to increasing charge transfer efficiency. The MnP-nAu film mediates the electron transfer between H{sub 2}O{sub 2} and GC, evidenced by an increase in the current intensity of the anodic peak, and facilitates the electrochemical regeneration of oxidized H{sub 2}O{sub 2} at cathodic potentials. From the cyclic voltammetry experiments a linear relationship between H{sub 2}O{sub 2} concentration vs oxidation and reduction currents was observed. The linear dependence between density of current and the square root of the scan rate indicates that the oxidation and reduction processes of H{sub 2}O{sub 2} are diffusion controlled. The GC-MnP-nAu modified electrode shows great potential as electrochemical sensor for determination of hydrogen peroxide.

  1. Effect of chain rigidity on network architecture and deformation behavior of glassy polymer networks

    Science.gov (United States)

    Knowles, Kyler Reser

    Processing carbon fiber composite laminates creates molecular-level strains in the thermoset matrix upon curing and cooling which can lead to failures such as geometry deformations, micro-cracking, and other issues. It is known strain creation is attributed to the significant volume and physical state changes undergone by the polymer matrix throughout the curing process, though storage and relaxation of cure-induced strains remain poorly understood. This dissertation establishes two approaches to address the issue. The first establishes testing methods to simultaneously measure key volumetric properties of a carbon fiber composite laminate and its polymer matrix. The second approach considers the rigidity of the polymer matrix in regards to strain storage and relaxation mechanisms which ultimately control composite performance throughout manufacturing and use. Through the use of a non-contact, full-field strain measurement technique known as digital image correlation (DIC), we describe and implement useful experiments which quantify matrix and composite parameters necessary for simulation efforts and failure models. The methods are compared to more traditional techniques and show excellent correlation. Further, we established relationships which represent matrix-fiber compatibility in regards to critical processing constraints. The second approach involves a systematic study of epoxy-amine networks which are chemically-similar but differ in chain segment rigidity. Prior research has investigated the isomer effect of glassy polymers, showing sizeable differences in thermal, volumetric, physical, and mechanical properties. This work builds on these themes and shows the apparent isomer effect is rather an effect of chain rigidity. Indeed, it was found that structurally-dissimilar polymer networks exhibit very similar properties as a consequence of their shared average network rigidity. Differences in chain packing, as a consequence of chain rigidity, were shown to

  2. Thermodynamics of Supercooled and Glassy Water

    Science.gov (United States)

    Debenedetti, Pablo G.

    1998-03-01

    The behavior of metastable water at low temperatures is unusual. The isothermal compressibility, the isobaric heat capacity, and the magnitude of the thermal expansion coefficient increase sharply upon supercooling, and structural relaxation becomes extremely sluggish at temperatures far above the glass transition(Angell, C.A., Annu. Rev. Phys. Chem., 34, 593, 1983)(Debenedetti, P.G., Metastable Liquids. Concepts and Principles, Princeton University Press, 1996). Water has two distinct glassy phases, low- and high-density amorphous ice (LDA, HDA). The transition between LDA and HDA is accompanied by sharp volume and enthalpy changes, and appears to be first-order(Mishima, O., L.D.Calvert, and E. Whalley, Nature, 314, 76, 1985)(Mishima, O., J. Chem. Phys., 100, 5910, 1994). The understanding of these observations in terms of an underlying global phase behavior remains incomplete(Speedy, R.J., J. Phys. Chem., 86, 982, 1982)(Poole, P.H., F. Sciortino, U. Essman, and H.E. Stanley, Nature, 360, 324, 1992)(Sastry, S., P.G. Debenedetti, F. Sciortino, and H.E. Stanley, Phys. Rev. E, 53, 6144, 1996)(Tanaka, H., Nature, 380, 328, 1996)(Xie, Y., K.F. Ludwig, G. Morales, D.E. Hare, and C.M. Sorensen, Phys. Rev. Lett., 71, 2050, 1993). Microscopic theories and computer simulations suggest several scenarios that can reproduce some experimental observations. Interesting and novel ideas have resulted from this body of theoretical work, such as the possibility of liquid-liquid immiscibility in a pure substance(Poole, P.H., F.Sciortino, T.Grande, H.E. Stanley, and C.A. Angell, Phys. Rev. Lett., 73, 1632, 1994)(Roberts, C.J., and P.G. Debenedetti, J. Chem. Phys., 105, 658, 1996)(Roberts, C.J., P.G. Debenedetti, and A.Z. Panagiotopoulos, Phys. Rev. Lett., 77, 4386, 1996)(Harrington, S., R. Zhang, P.H. Poole, F. Sciortino, and H.E. Stanley, Phys. Rev. Lett., 78, 2409, 1997). In this talk I will review the experimental facts, discuss their theoretical interpretation, and identify key

  3. Determination of Silver(I by Differential Pulse Voltammetry Using a Glassy Carbon Electrode Modified with Synthesized N-(2-Aminoethyl-4,4'-Bipyridine

    Directory of Open Access Journals (Sweden)

    Gabriel Lucian Radu

    2010-12-01

    Full Text Available A new modified glassy carbon electrode (GCE based on a synthesized N-(2-aminoethyl-4,4'-bipyridine (ABP was developed for the determination of Ag(I by differential pulse voltammetry (DPV. ABP was covalently immobilized on GC electrodes surface using 4-nitrobenzendiazonium (4-NBD and glutaraldehyde (GA. The Ag(I ions were preconcentrated by chemical interaction with bipyridine under a negative potential (−0.6 V; then the reduced ions were oxidized by differential pulse voltammetry and a peak was observed at 0.34 V. The calibration curve was linear in the concentration range from 0.05 μM to 1 μM Ag(I with a detection limit of 0.025 μM and RSD = 3.6%, for 0.4 μM Ag(I. The presence of several common ions in more than 125-fold excess had no effect on the determination of Ag(I. The developed sensor was applied to the determination of Ag(I in water samples using a standard addition method.

  4. Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode.

    Science.gov (United States)

    Tefera, Molla; Geto, Alemnew; Tessema, Merid; Admassie, Shimelis

    2016-11-01

    Poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode (poly(AHNSA)/GCE) was prepared for simultaneous determination of caffeine and paracetamol using square-wave voltammetry. The method was used to study the effects of pH and scan rate on the voltammetric response of caffeine and paracetamol. Linear calibration curves in the range of 10-125μM were obtained for both caffeine and paracetamol in acetate buffer solution of pH 4.5 with a correlation coefficient of 0.9989 and 0.9986, respectively. The calculated detection limits (S/N=3) were 0.79μM for caffeine and 0.45μM for paracetamol. The effects of some interfering substances in the determination of caffeine and paracetamol were also studied and their interferences were found to be negligible which proved the selectivity of the modified electrode. The method was successfully applied for the quantitative determination of caffeine and paracetamol in Coca-Cola, Pepsi-Cola and tea samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Muusikamaailm : Ozawa festival Matsumotos. Pidustused Utrechtis ülehomseni. Philip Glassi uusteos Salzburgis. Alexandre Lagoya surnud. Frangiz Ali-Zade asutamine Luzernis. Wolfgang Wagner 80 / Priit Kuusk

    Index Scriptorium Estoniae

    Kuusk, Priit, 1938-

    1999-01-01

    H.Saito mälestusfestivalist "Saito Kinen" 29.08-12.09 Jaapanis. Utrechti varajase muusika pidustustest 27.08-5.09. P.Glassi teose "Requiem, Bardo and Nimanakaya" maailmaesiettekandest Salzburgi suvefestivalil 28.08. A. Lagoya elust ja tegevusest. Luzerni festivali resideerivaks heliloojaks oli F.Ali-Zade. W. Wagneri tegevusest impressaariona

  6. On melting dynamics and the glass transition. II. Glassy dynamics as a melting process.

    Science.gov (United States)

    Krzakala, Florent; Zdeborová, Lenka

    2011-01-21

    There are deep analogies between the melting dynamics in systems with a first-order phase transition and the dynamics from equilibrium in super-cooled liquids. For a class of Ising spin models undergoing a first-order transition--namely p-spin models on the so-called Nishimori line--it can be shown that the melting dynamics can be exactly mapped to the equilibrium dynamics. In this mapping the dynamical--or mode-coupling--glass transition corresponds to the spinodal point, while the Kauzmann transition corresponds to the first-order phase transition itself. Both in mean field and finite dimensional models this mapping provides an exact realization of the random first-order theory scenario for the glass transition. The corresponding glassy phenomenology can then be understood in the framework of a standard first-order phase transition.

  7. Glassy carbon electrodes modified with a film of nanodiamond-graphite/chitosan: Application to the highly sensitive electrochemical determination of Azathioprine

    International Nuclear Information System (INIS)

    Shahrokhian, Saeed; Ghalkhani, Masoumeh

    2010-01-01

    A novel modified glassy carbon electrode with a film of nanodiamond-graphite/chitosan is constructed and used for the sensitive voltammetric determination of azathioprine (Aza). The surface morphology and thickness of the film modifier are characterized using atomic force microscopy. The electrochemical response characteristics of the electrode toward Aza are investigated by means of cyclic voltammetry. The modified electrode showed an efficient catalytic role for the electrochemical reduction of Aza, leading to a remarkable decrease in reduction overpotential and enhancement of the kinetics of the electrode reaction with a significant increase of peak current. The effects of experimental variables, such as the deposited amount of modifier suspension, the pH of the supporting electrolyte, the accumulation potential and time were investigated. Under optimal conditions, the modified electrode showed a wide linear response to the concentration of Aza in the range of 0.2-100 μM with a detection limit of 65 nM. The prepared modified electrode showed several advantages: simple preparation method, high stability and uniformity in the composite film, high sensitivity, excellent catalytic activity in physiological conditions and good reproducibility. The modified electrode can be successfully applied to the accurate determination of trace amounts of Aza in pharmaceutical and clinical preparations.

  8. Glassy carbon electrodes modified with a film of nanodiamond-graphite/chitosan: Application to the highly sensitive electrochemical determination of Azathioprine

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhian, Saeed, E-mail: shahrokhian@sharif.ed [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Ghalkhani, Masoumeh [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of)

    2010-04-15

    A novel modified glassy carbon electrode with a film of nanodiamond-graphite/chitosan is constructed and used for the sensitive voltammetric determination of azathioprine (Aza). The surface morphology and thickness of the film modifier are characterized using atomic force microscopy. The electrochemical response characteristics of the electrode toward Aza are investigated by means of cyclic voltammetry. The modified electrode showed an efficient catalytic role for the electrochemical reduction of Aza, leading to a remarkable decrease in reduction overpotential and enhancement of the kinetics of the electrode reaction with a significant increase of peak current. The effects of experimental variables, such as the deposited amount of modifier suspension, the pH of the supporting electrolyte, the accumulation potential and time were investigated. Under optimal conditions, the modified electrode showed a wide linear response to the concentration of Aza in the range of 0.2-100 muM with a detection limit of 65 nM. The prepared modified electrode showed several advantages: simple preparation method, high stability and uniformity in the composite film, high sensitivity, excellent catalytic activity in physiological conditions and good reproducibility. The modified electrode can be successfully applied to the accurate determination of trace amounts of Aza in pharmaceutical and clinical preparations.

  9. Ubiquinol-cytochrome c reductase (Complex III) electrochemistry at multi-walled carbon nanotubes/Nafion modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Pelster, Lindsey N.; Minteer, Shelley D.

    2012-01-01

    Highlights: ► The electron transport chain is important to the understanding of metabolism in the living cell. ► Ubiquinol-cytochrome c reductase is a membrane bound complex of the electron transport chain (Complex III). ► The paper details the first bioelectrochemical characterization of ubiquinol-cytochrome c reductase at an electrode. - Abstract: Electron transport chain complexes are critical to metabolism in living cells. Ubiquinol-cytochrome c reductase (Complex III) is responsible for carrying electrons from ubiquinol to cytochrome c, but the complex has not been evaluated electrochemically. This work details the bioelectrochemistry of ubiquinol-cytochrome c reductase of the electron transport chain of tuber mitochondria. The characterization of the electrochemistry of this enzyme is investigated in carboxylated multi-walled carbon nanotube/tetrabutyl ammonium bromide-modified Nafion ® modified glassy carbon electrodes by cyclic voltammetry. Increasing concentrations of cytochrome c result in a catalytic response from the active enzyme in the nanotube sandwich. The experiments show that the enzyme followed Michaelis–Menten kinetics with a K m for the immobilized enzyme of 2.97 (±0.11) × 10 −6 M and a V max of 6.31 (±0.82) × 10 −3 μmol min −1 at the electrode, but the K m and V max values decreased compared to the free enzyme in solution, which is expected for immobilized redox proteins. This is the first evidence of ubiquinol-cytochrome c reductase bioelectrocatalysis.

  10. Electrochemically synthesized amorphous and crystalline nanowires: dissimilar nanomechanical behavior in comparison with homologous flat films

    Science.gov (United States)

    Zeeshan, M. A.; Esqué-de Los Ojos, D.; Castro-Hartmann, P.; Guerrero, M.; Nogués, J.; Suriñach, S.; Baró, M. D.; Nelson, B. J.; Pané, S.; Pellicer, E.; Sort, J.

    2016-01-01

    The effects of constrained sample dimensions on the mechanical behavior of crystalline materials have been extensively investigated. However, there is no clear understanding of these effects in nano-sized amorphous samples. Herein, nanoindentation together with finite element simulations are used to compare the properties of crystalline and glassy CoNi(Re)P electrodeposited nanowires (φ ~ 100 nm) with films (3 μm thick) of analogous composition and structure. The results reveal that amorphous nanowires exhibit a larger hardness, lower Young's modulus and higher plasticity index than glassy films. Conversely, the very large hardness and higher Young's modulus of crystalline nanowires are accompanied by a decrease in plasticity with respect to the homologous crystalline films. Remarkably, proper interpretation of the mechanical properties of the nanowires requires taking the curved geometry of the indented surface and sink-in effects into account. These findings are of high relevance for optimizing the performance of new, mechanically-robust, nanoscale materials for increasingly complex miniaturized devices.The effects of constrained sample dimensions on the mechanical behavior of crystalline materials have been extensively investigated. However, there is no clear understanding of these effects in nano-sized amorphous samples. Herein, nanoindentation together with finite element simulations are used to compare the properties of crystalline and glassy CoNi(Re)P electrodeposited nanowires (φ ~ 100 nm) with films (3 μm thick) of analogous composition and structure. The results reveal that amorphous nanowires exhibit a larger hardness, lower Young's modulus and higher plasticity index than glassy films. Conversely, the very large hardness and higher Young's modulus of crystalline nanowires are accompanied by a decrease in plasticity with respect to the homologous crystalline films. Remarkably, proper interpretation of the mechanical properties of the nanowires

  11. Multiscale simulations of PS-SiO2 nanocomposites: from melt to glassy state.

    Science.gov (United States)

    Mathioudakis, I G; Vogiatzis, G G; Tzoumanekas, C; Theodorou, D N

    2016-09-28

    The interaction energetics, molecular packing, entanglement network properties, segmental dynamics, and elastic constants of atactic polystyrene-amorphous silica nanocomposites in the molten and the glassy state are studied via molecular simulations using two interconnected levels of representation: (a) a coarse-grained one, wherein each polystyrene repeat unit is mapped onto a single "superatom" and the silica nanoparticle is viewed as a solid sphere. Equilibration at all length scales at this level is achieved via connectivity-altering Monte Carlo simulations. (b) A united-atom (UA) level, wherein the polymer chains are represented in terms of a united-atom forcefield and the silica nanoparticle is represented in terms of a simplified, fully atomistic model. Initial configurations for UA molecular dynamics (MD) simulations are obtained by reverse mapping well-equilibrated coarse-grained configurations. By analysing microcanonical UA MD trajectories, the polymer density profile is studied and the polymer is found to exhibit layering in the vicinity of the nanoparticle surface. An estimate of the enthalpy of mixing between polymer and nanoparticles, derived from the UA simulations, compares favourably against available experimental values. The dynamical behaviour of polystyrene (in neat and filled melt systems) is characterized in terms of bond orientation and dihedral angle time autocorrelation functions. At low concentration in the molten polymer matrix, silica nanoparticles are found to cause a slight deceleration of the segmental dynamics close to their surface compared to the bulk polymer. Well-equilibrated coarse-grained long-chain configurations are reduced to entanglement networks via topological analysis with the CReTA algorithm, yielding a slightly lower density of entanglements in the filled than in the neat systems. UA melt configurations are glassified by MD cooling. The elastic moduli of the resulting glassy nanocomposites are computed through an

  12. Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land

    Science.gov (United States)

    Handle, Philip H.; Loerting, Thomas; Sciortino, Francesco

    2017-12-01

    We review the recent research on supercooled and glassy water, focusing on the possible origins of its complex behavior. We stress the central role played by the strong directionality of the water-water interaction and by the competition between local energy, local entropy, and local density. In this context we discuss the phenomenon of polyamorphism (i.e., the existence of more than one disordered solid state), emphasizing both the role of the preparation protocols and the transformation between the different disordered ices. Finally, we present the ongoing debate on the possibility of linking polyamorphism with a liquid-liquid transition that could take place in the no-man's land, the temperature-pressure window in which homogeneous nucleation prevents the investigation of water in its metastable liquid form.

  13. The electrochemical behavior of some podands at a benzo[c]cinnoline modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Isbir, Aybueke A.; Solak, Ali Osman; Uestuendag, Zafer; Bilge, Selen; Natsagdorj, Amgalan; Kilic, Emine; Kilic, Zeynel

    2005-01-01

    This paper describes the grafting of benzo[c]cinnoline (BCC) molecules on glassy carbon (GC) electrode surface. The attachment of BCC molecules to carbon substrate is induced by the electrochemical reduction of the corresponding diazonium salt. The modification of GC with BCC diazonium salt was done in aprotic solution and proved by blocking of dopamine electron transfer. The presence of BCC at the GC surface was characterized by cyclic voltammetry and X-ray photoelectron spectroscopy (XPS). On modified surface, the electrochemical behavior of two different types of podands and the catalytic effects of the GC-BCC surface were studied. The XPS was used to monitor element characteristics of the adsorbates on the GC surface and confirm the attachment of BCC molecules to the GC surface

  14. Electrochemical sensor for nitrite using a glassy carbon electrode modified with gold-copper nanochain networks

    International Nuclear Information System (INIS)

    Huang, Su-Su; Mei, Li-Ping; Zhou, Jia-Ying; Guo, Fei-Ying; Wang, Ai-Jun; Feng, Jiu-Ju; Liu, Li

    2016-01-01

    Bimetallic gold-copper nanochain networks (AuCu NCNs) were prepared by a single-step wet-chemical approach using metformin as a growth-directing agent. The formation mechanism was investigated in detail, and the AuCu NCNs were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The nanocrystals were deposited on glassy carbon electrode and this resulted in a highly sensitive sensor for nitrite. Features include a low working potential (best at 0.684 V vs. SCE), fair sensitivity (17.55 μA mM −1 ), a wide linear range (0.01 to 4.0 mM), a low detection limit (0.2 μM, S/N = 3), and superior selectivity as compared to other sensors. (author)

  15. Structural and mechanical properties of glassy water in nanoscale confinement.

    Science.gov (United States)

    Lombardo, Thomas G; Giovambattista, Nicolás; Debenedetti, Pablo G

    2009-01-01

    We investigate the structure and mechanical properties of glassy water confined between silica-based surfaces with continuously tunable hydrophobicity and hydrophilicity by computing and analyzing minimum energy, mechanically stable configurations (inherent structures). The structured silica substrate imposes long-range order on the first layer of water molecules under hydrophobic confinement at high density (p > or = 1.0 g cm(-3)). This proximal layer is also structured in hydrophilic confinement at very low density (p approximately 0.4 g cm(-3)). The ordering of water next to the hydrophobic surface greatly enhances the mechanical strength of thin films (0.8 nm). This leads to a substantial stress anisotropy; the transverse strength of the film exceeds the normal strength by 500 MPa. The large transverse strength results in a minimum in the equation of state of the energy landscape that does not correspond to a mechanical instability, but represents disruption of the ordered layer of water next to the wall. In addition, we find that the mode of mechanical failure is dependent on the type of confinement. Under large lateral strain, water confined by hydrophilic surfaces preferentially forms voids in the middle of the film and fails cohesively. In contrast, water under hydrophobic confinement tends to form voids near the walls and fails by loss of adhesion.

  16. Dielectric studies of molecular motions in glassy and liquid nicotine

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, K [Institute of Physics, Silesian University, ulica Uniwersytecka 4, 40-007 Katowice (Poland); Paluch, M [Institute of Physics, Silesian University, ulica Uniwersytecka 4, 40-007 Katowice (Poland); Ziolo, J [Institute of Physics, Silesian University, ulica Uniwersytecka 4, 40-007 Katowice (Poland); Ngai, K L [Naval Research Laboratory, Washington DC 20375-5320 (United States)

    2006-06-21

    The dielectric permittivity and loss spectra of glassy and liquid states of nicotine have been measured over the frequency range 10{sup -2}-10{sup 9} Hz. The relaxation spectra are similar to common small molecular glass-forming substances, showing the structural {alpha}-relaxation and its precursor, the Johari-Goldstein {beta}-relaxation. The {alpha}-relaxation is well described by the Fourier transform of the Kohlrausch-Williams-Watts stretched exponential function with an approximately constant stretch exponent that is equal to 0.70 as the glass transition temperature is approached. The dielectric {alpha}-relaxation time measured over 11 orders of magnitude cannot be described by a single Vogel-Fulcher-Tamman-Hesse equation. The most probable Johari-Goldstein {beta}-relaxation time determined from the dielectric spectra is in good agreement with the primitive relaxation time of the coupling model calculated from parameters of the structural {alpha}-relaxation. The shape of the dielectric spectra of nicotine is compared with that of other glass-formers having about the same stretch exponent, and they are shown to be nearly isomorphic. The results indicate that the molecular dynamics of nicotine conform to the general pattern found in other glass-formers, and the presence of the universal Johari-Goldstein secondary relaxation, which plays a role in the crystallization of amorphous pharmaceuticals.

  17. The application of positron annihilation lifetime spectroscopy to the study of glassy and partially crystalline materials

    International Nuclear Information System (INIS)

    Zipper, M.D.; Hill, A.J.

    1994-01-01

    The use of positron annihilation lifetime spectroscopy (PALS) as a materials characterisation technique is discussed and is illustrated by examples from the authors' laboratory. A brief guide to interpretation of PALS results for metals, semiconductors, ionic solids and molecular solids is presented; however, the paper focuses on recent results for glassy and partially crystalline ionic and molecular solids. Case studies are presented in which the phenomena studied by PALS include miscibility of polymer blends, plasticization of solid polymer electrolytes, crystallinity in molecular and ionic solids, nanostructure of glass-ceramics, and refractivity of fluoride glasses. Future directions for PALS research of the electronic and defect structures of materials are discussed. 140 refs., 1 tab., 19 figs

  18. Alizarin red S functionalized mesoporous silica modified glassy carbon electrode for electrochemical determination of anthracene

    International Nuclear Information System (INIS)

    Liu, Shan; Wei, Maochao; Zheng, Xiangli; Xu, Shuai; Xia, Fangquan; Zhou, Changli

    2015-01-01

    Highlights: • Alizarin red S-SBA15 composite was prepared and characterized. • A novel sensing platform was constructed for anthracene determination. • The proposed sensor exhibited high sensitivity and low detection limit for detecting anthracene. • This method can be applied to the practical detection of anthracene in waste water. - Abstract: In the paper, a novel and sensitive electrochemical sensor based on modification of electroactive alizarin red S functionalized mesoporous silica material SBA15 onto glassy carbon electrode (ARS-SBA15/GCE) was developed. Alizarin red S, called electrochemical probe that can selectively recognize polycyclic aromatic hydrocarbons (PAHs), as tools for the detection of tricyclic aromatic hydrocarbon anthracene. The morphology and interface property of ARS modified SBA15 (ARS-SBA15) were examined by transmission electron microscopy (TEM) and fourier transform infrared spectroscopy (FTIR). Taking advantage of the π-π stacking force between alizarin red S and anthracene, the ARS-SBA15/GCE sensor could detect anthracene quantitatively in a wide range of 1.0 pM–10.0 nM and a low detection limit of 0.5 pM (S/N = 3). Other PAHs, such as naphthalene, phenanthrene, pyrene, and benzo[a]pyrene show little interference on the detection. Consequently, a simple and sensitive electrochemical method was proposed for the determination of anthracene, which can be used to determine anthracene in waste water samples. The electrochemical method provides a general tool that complements the commonly used spectroscopic methods and immune method for the detection of PAHs

  19. Behavior of nuclear waste elements during hydrothermal alteration of glassy rhyolite in an active geothermal system: Yellowstone National Park, Wyoming

    International Nuclear Information System (INIS)

    Sturchio, N.C.; Seitz, M.G.

    1984-01-01

    The behavior of a group of nuclear waste elements (U, Th, Sr, Zr, Sb, Cs, Ba, and Sm) during hydrothermal alteration of glassy rhyolite is investigated through detailed geochemical analyses of whole rocks, glass and mineral separates, and thermal waters. Significant mobility of U, Sr, Sb, Cs, and Ba is found, and the role of sorption processes in their observed behavior is identified. Th, Zr, and Sm are relatively immobile, except on a microscopic scale. 9 references, 2 figures, 2 tables

  20. A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Han, Lihao [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Huang, Zhuangqun; Ferrer, Ivonne M. [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Smets, Arno H.M.; Zeman, Miro [Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Brunschwig, Bruce S., E-mail: bsb@caltech.edu [Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Lewis, Nathan S., E-mail: nslewis@caltech.edu [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-07-01

    Atomic layer deposition (ALD) was used to deposit nanoparticles and thin films of Pt onto etched p-type Si(111) wafers and glassy carbon discs. Using precursors of MeCpPtMe{sub 3} and ozone and a temperature window of 200–300 °C, the growth rate was 80–110 pm/cycle. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to analyze the composition, structure, morphology, and thickness of the ALD-grown Pt nanoparticle films. The catalytic activity of the ALD-grown Pt for the hydrogen evolution reaction was shown to be equivalent to that of e-beam evaporated Pt on glassy carbon electrode. - Highlights: • Pure Pt films were grown by atomic layer deposition (ALD) using MeCpPtMe3 and ozone. • ALD-grown Pt thin films had high growth rates of 110 pm/cycle. • ALD-grown Pt films were electrocatalytic for hydrogen evolution from water. • Electrocatalytic activity of the ALD Pt films was equivalent to e-beam deposited Pt. • No carbon species were detected in the ALD-grown Pt films.

  1. A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces

    International Nuclear Information System (INIS)

    Liu, Rui; Han, Lihao; Huang, Zhuangqun; Ferrer, Ivonne M.; Smets, Arno H.M.; Zeman, Miro; Brunschwig, Bruce S.; Lewis, Nathan S.

    2015-01-01

    Atomic layer deposition (ALD) was used to deposit nanoparticles and thin films of Pt onto etched p-type Si(111) wafers and glassy carbon discs. Using precursors of MeCpPtMe 3 and ozone and a temperature window of 200–300 °C, the growth rate was 80–110 pm/cycle. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to analyze the composition, structure, morphology, and thickness of the ALD-grown Pt nanoparticle films. The catalytic activity of the ALD-grown Pt for the hydrogen evolution reaction was shown to be equivalent to that of e-beam evaporated Pt on glassy carbon electrode. - Highlights: • Pure Pt films were grown by atomic layer deposition (ALD) using MeCpPtMe3 and ozone. • ALD-grown Pt thin films had high growth rates of 110 pm/cycle. • ALD-grown Pt films were electrocatalytic for hydrogen evolution from water. • Electrocatalytic activity of the ALD Pt films was equivalent to e-beam deposited Pt. • No carbon species were detected in the ALD-grown Pt films

  2. Sensitive warfarin sensor based on cobalt oxide nanoparticles electrodeposited at multi-walled carbon nanotubes modified glassy carbon electrode (CoxOyNPs/MWCNTs/GCE)

    International Nuclear Information System (INIS)

    Gholivand, Mohammad Bagher; Solgi, Mohammad

    2017-01-01

    In this work, cobalt oxide nanoparticles were electrodeposited on multi-walled carbon nanotubes modified glassy carbon electrode (MWCNTs/GCE) to develop a new sensor for warfarin determination. The modified electrodes were characterized by cyclic voltammetry, scanning electron microscopy (SEM) along with energy dispersive x-ray spectroscopy (EDS), and electrochemical impedance spectroscopy (EIS). The presence of cobalt oxide nanoparticles on the electrode surface enhanced the warfarin accumulation and its result was the improvement in the electrochemical response. The effect of various parameters such as pH, scan rate, accumulation potential, accumulation time and pulse amplitude on the sensor response were investigated. Under optimal conditions, the differential pulse adsorptive anodic stripping voltammetric (DPASV) response of the modified electrode was linear in the ranges of 8 nM to 50 μM and 50 μM to 800 μM with correlation coefficients greater than 0.998. The limit of detection of the proposed method was 3.3 nM. The proposed sensor was applied to determine warfarin in urine and plasma samples.

  3. A glassy carbon electrode modified with a film composed of cobalt oxide nanoparticles and graphene for electrochemical sensing of H2O2

    International Nuclear Information System (INIS)

    Li, Su-Juan; Du, Ji-Min; Zhang, Jia-Ping; Zhang, Meng-Jie; Chen, Jing

    2014-01-01

    We have prepared a graphene-based hybrid nanomaterial by electrochemical deposition of cobalt oxide nanoparticles (CoOxNPs) on the surface of electrochemically reduced graphene oxide deposited on a glassy carbon electrode (GCE). Scanning electron microscopy and cyclic voltammetry were used to characterize the immobilized nanoparticles. Electrochemical determination of H 2 O 2 is demonstrated with the modified GCE at pH 7. Compared to GCEs modified with CoO x NPs or graphene sheets only, the new electrode displays larger oxidative current response to H 2 O 2 , probably due to the synergistic effects between the graphene sheets and the CoO x NPs. The sensor responds to H 2 O 2 with a sensitivity of 148.6 μA mM −1 cm −2 and a linear response range from 5 μM to 1 mM. The detection limit is 0.2 μM at a signal to noise ratio (SNR) of three. The method was successfully applied to the determination of H 2 O 2 in hydrogen peroxide samples. (author)

  4. Penicillamine-modified sensor for the voltammetric determination of Cd(II) and Pb(II) ions in natural samples.

    Science.gov (United States)

    Pérez-Ràfols, Clara; Serrano, Núria; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2015-11-01

    A new penicillamine-GCE was developed based on the immobilization of d-penicillamine on aryl diazonium salt monolayers anchored to the glassy carbon electrode (GCE) surface and it was applied for the first time to the simultaneous determination of Cd(II) and Pb(II) ions by stripping voltammetric techniques. The detection and quantification limits at levels of µg L(-1) suggest that the penicillamine-GCE could be fully suitable for the determination of the considered ions in natural samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Dopamine and uric acid electrochemical sensor based on a glassy carbon electrode modified with cubic Pd and reduced graphene oxide nanocomposite.

    Science.gov (United States)

    Wang, Jin; Yang, Beibei; Zhong, Jiatai; Yan, Bo; Zhang, Ke; Zhai, Chunyang; Shiraishi, Yukihide; Du, Yukou; Yang, Ping

    2017-07-01

    A cubic Pd and reduced graphene oxide modified glassy carbon electrode (Pd/RGO/GCE) was fabricated to simultaneously detect dopamine (DA) and uric acid (UA) by cyclic voltammetry (CV) and different pulse voltammetry (DPV) methods. Compared with Pd/GCE and RGO/GCE, the Pd/RGO/GCE exhibited excellent electrochemical activity in electrocatalytic behaviors. Performing the Pd/RGO/GCE in CV measurement, the well-defined oxidation peak potentials separation between DA and UA reached to 145mV. By using the differential pulse voltammetry (DPV) technique, the calibration curves for DA and UA were found linear with the concentration range of 0.45-421μM and 6-469.5μM and the detection limit (S/N =3) were calculated to be 0.18μM and 1.6μM, respectively. Furthermore, the Pd/RGO/GCE displayed high selectivity when it was applied into the determination of DA and UA even though in presence of high concentration of interferents. Additionally, the prepared electrochemical sensor of Pd/RGO/GCE demonstrated a practical feasibility in rat urine and serum samples determination. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. In Situ Determination of Bisphenol A in Beverage Using a Molybdenum Selenide/Reduced Graphene Oxide Nanoparticle Composite Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Rongguang Shi

    2018-05-01

    Full Text Available Due to the endocrine disturbing effects of bisphenol A (BPA on organisms, rapid detection has become one of the most important techniques for monitoring its levels in the aqueous solutions associated with plastics and human beings. In this paper, a glassy carbon electrode (GCE modified with molybdenum selenide/reduced graphene oxide (MoSe2/rGO was fabricated for in situ determination of bisphenol A in several beverages. The surface area of the electrode dramatically increases due to the existence of ultra-thin nanosheets in a flower-like structure of MoSe2. Adding phosphotungstic acid in the electrolyte can significantly enhance the repeatability (RSD = 0.4% and reproducibility (RSD = 2.2% of the electrode. Under the optimized condition (pH = 6.5, the linear range of BPA was from 0.1 μM–100 μM and the detection limit was 0.015 μM (S/N = 3. When using the as-prepared electrode for analyzing BPA in beverage samples without any pretreatments, the recoveries ranged from 98–107%, and the concentrations were from below the detection limit to 1.7 μM, indicating its potential prospect for routine analysis of BPA.

  7. In Situ Determination of Bisphenol A in Beverage Using a Molybdenum Selenide/Reduced Graphene Oxide Nanoparticle Composite Modified Glassy Carbon Electrode.

    Science.gov (United States)

    Shi, Rongguang; Liang, Jing; Zhao, Zongshan; Liu, Yi; Liu, Aifeng

    2018-05-22

    Due to the endocrine disturbing effects of bisphenol A (BPA) on organisms, rapid detection has become one of the most important techniques for monitoring its levels in the aqueous solutions associated with plastics and human beings. In this paper, a glassy carbon electrode (GCE) modified with molybdenum selenide/reduced graphene oxide (MoSe₂/rGO) was fabricated for in situ determination of bisphenol A in several beverages. The surface area of the electrode dramatically increases due to the existence of ultra-thin nanosheets in a flower-like structure of MoSe₂. Adding phosphotungstic acid in the electrolyte can significantly enhance the repeatability (RSD = 0.4%) and reproducibility (RSD = 2.2%) of the electrode. Under the optimized condition (pH = 6.5), the linear range of BPA was from 0.1 μM⁻100 μM and the detection limit was 0.015 μM (S/ N = 3). When using the as-prepared electrode for analyzing BPA in beverage samples without any pretreatments, the recoveries ranged from 98⁻107%, and the concentrations were from below the detection limit to 1.7 μM, indicating its potential prospect for routine analysis of BPA.

  8. A glassy carbon electrode modified with β-cyclodextin, multiwalled carbon nanotubes and graphene oxide for sensitive determination of 1,3-dinitrobenzene

    International Nuclear Information System (INIS)

    Li, Junhua; Feng, Haibo; Liu, Jinlong; Liu, Youcai; Jiang, Jianbo; Feng, Yonglan; Qian, Dong

    2014-01-01

    We are presenting a host-guest electrochemical platform for sensing the pollutant 1,3-dinitrobenzene. The method is based on the use of a glassy carbon electrode (GCE) covered with a composite made from multiwalled carbon nanotubes and graphene oxide, and functionalized with β-cyclodextrin (β-CD). The resultant composite was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and electrochemical techniques. The modified GCE was used for the sensitive detection of 1,3-dinitrobenzene (DNB) at working voltages of −355 mV and −483 mV. Due to the specific recognition property of β-CD and the excellent electronic properties of the carbon nanomaterials, the electrode exhibits outstanding supramolecular recognition and enhanced electrochemical response to DNB compared to more conventional electrodes. Under optimum conditions, the peak currents vary linearly with the DNB concentrations in the range from 0.02 to 30.0 μM, and the detection limit is 5.0 nM (at an S/N of 3). The electrode exhibits long-term stability and has been successfully applied to the determination of DNB in spiked soil and water samples. (author)

  9. Au55, a stable glassy cluster: results of ab initio calculations

    Directory of Open Access Journals (Sweden)

    Dieter Vollath

    2017-10-01

    Full Text Available Structure and properties of small nanoparticles are still under discussion. Moreover, some thermodynamic properties and the structural behavior still remain partially unknown. One of the best investigated nanoparticles is the Au55 cluster, which has been analyzed experimentally and theoretically. However, up to now, the results of these studies are still inconsistent. Consequently, we have carried out the present ab initio study of the Au55 cluster, using up-to-date computational concepts, in order to clarify these issues. Our calculations have confirmed the experimental result that the thermodynamically most stable structure is not crystalline, but it is glassy. The non-crystalline structure of this cluster was validated by comparison of the coordination numbers with those of a crystalline cluster. It was found that, in contrast to bulk materials, glass formation is connected to an energy release that is close to the melting enthalpy of bulk gold. Additionally, the surface energy of this cluster was calculated using two different theoretical approaches resulting in values close to the surface energy for bulk gold. It shall be emphasized that it is now possible to give a confidence interval for the value of the surface energy.

  10. Modification of glassy carbon electrode with poly(hydroxynaphthol blue)/multi-walled carbon nanotubes composite and construction a new voltammetric sensor for the simultaneous determination of hydroquinone, catechol, and resorcinol

    Science.gov (United States)

    Daneshinejad, Hassan; Arab Chamjangali, Mansour; Goudarzi, Nasser; Hossain Amin, Amir

    2018-03-01

    A novel voltammetric sensor is developed based on a poly(hydroxynaphthol blue)/multi-walled carbon nanotubes-modified glassy carbon electrode for the simultaneous determination of the dihydroxybenzene isomers hydroquinone (HQ), catechol (CC), and resorcinol (RS). The preparation and basic electrochemical performance of the sensor are investigated in details. The electrochemical behavior of the dihydroxybenzene isomers at the sensor is studied by the cyclic and differential pulse voltammetric techniques. The results obtained show that this new electrochemical sensor exhibits an excellent electro-catalytic activity towards oxidation of the three isomers. The mechanism of this electro-catalytic activity is discussed. Using the optimum parameters, limit of detection obtained 0.24, 0.24, and 0.26 μmol L-1 for HQ, CC, and RS, respectively. The modified electrode is also successfully applied to the simultaneous determination of dihydroxybenzene in water samples.

  11. Temperature dependence of electron spin-lattice relaxation of radiation-produced silver atoms in polycrystalline aqueous and glassy organic matrices. Importance of relaxation by tunneling modes in disordered matrices

    International Nuclear Information System (INIS)

    Michalik, J.; Kevan, L.

    1978-01-01

    The electron spin-lattice relaxation of trapped silver atoms in polycrystalline ice matrices and in methanol, ethanol, propylene carbonate, and 2-methyltetrahydrofuran organic glasses has been directly studied as a function of temperature by the saturation-recovery method. Below 40 K the dominant electron spin-lattice relaxation mechanism involves modulation of the electron nuclear dipolar interaction with nuclei in the radical's environment by tunneling of those nuclei between two nearly equal energy configurations. This relaxation mechanism occurs with high efficiency, has a characteristic linear temperature dependence, and is typically found in highly disordered matrices. The efficiency of this relaxation mechanism seems to decrease with decreasing polarity of the matrix. Deuteration experiments show that the tunneling nuclei are protons and in methanol it is shown that the methyl protons have more tunneling modes available than the hydroxyl protons. In polycrystalline ice matrices silver atoms can be stabilized with two different orientations of surrounding water molecules; the efficiency of the tunneling relaxation reflects this difference. From these and previous results on tunneling relaxation of trapped electrons in glassy matrices it appears that tunneling relaxation may be used to distinguish models with different geometrical configurations and to determine the relative rigidity of such configurations around trapped radicals in disordered solids. (author)

  12. Vapor annealing synthesis of non-epitaxial MgB2 films on glassy carbon

    Science.gov (United States)

    Baker, A. A.; Bayu Aji, L. B.; Bae, J. H.; Stavrou, E.; Steich, D. J.; McCall, S. K.; Kucheyev, S. O.

    2018-05-01

    We describe the fabrication and characterization of 25–800 nm thick MgB2 films on glassy carbon substrates by Mg vapor annealing of sputter-deposited amorphous B films. Results demonstrate a critical role of both the initial B film thickness and the temperature–time profile on the microstructure, elemental composition, and superconducting properties of the resultant MgB2 films. Films with thicknesses of 55 nm and below exhibit a smooth surface, with a roughness of 1.1 nm, while thicker films have surface morphology consisting of elongated nano-crystallites. The suppression of the superconducting transition temperature for thin films scales linearly with the oxygen impurity concentration and also correlates with the amount of lattice disorder probed by Raman scattering. The best results are obtained by a rapid (12 min) anneal at 850 °C with large temperature ramp and cooling rates of ∼540 °C min‑1. Such fast processing suppresses the deleterious oxygen uptake.

  13. Effect of holographic grating period on its relaxation in a molecular glassy film

    International Nuclear Information System (INIS)

    Ozols, A; Augustovs, P; Kokars, V; Traskovskis, K; Saharov, D

    2013-01-01

    Holographic grating (HG) relaxation has been experimentally studied in 5,5,5-triphenylpentyl 4-((4-(bis(5,5,5-triphenylpentyl)amino) phenyl) diazenyl) benzoate molecular glassy film for HG periods (Λ) of 0.50, 2.0 and 8.6 μm. A strong effect of HG period on its relaxation is found manifesting itself differently in the volume and on the surface. The volume part of HG is fairly stable during 40 days if Λ > 0.50μm whereas the surface part of HG (most probably, surface relief grating) exhibits relaxational self-enhancement which is maximal at Λ = 8.6μm. It is proposed that thermostimulated directional mass transfer in the process of relaxation can be responsible for this relaxational self-enhancement. Weak HG recording and relatively fast HG decay takes place at Λ=0.50 μm. Therefore, effective chromophore photoorientation domain of about 0.2 μm is supposed

  14. Wetting of a Charged Surface of Glassy Carbon by Molten Alkali-Metal Chlorides

    Science.gov (United States)

    Stepanov, V. P.

    2018-03-01

    Values of the contact angle of wetting of a surface of glassy carbon by molten chlorides of lithium, sodium, potassium, and cesium are measured by the meniscus weight method to determine the common factors of wettability of solid surfaces by ionic melts upon a change in the salt phase composition and a jump in electric potential. It is found that with a potential shift in the positive direction the shape of the curve of the contact angle's dependence on the potential varies upon substitution of one salt by another: the angle of wetting shrinks monotonously in lithium chloride but remains constant in molten cesium chloride. This phenomenon is explained by the hypothesis that the nature of the halide anion adsorption on the positively charged surface of an electrode is chemical and not electrostatic. It is shown that the adsorption process is accompanied by charge transfer through the interface, with covalent bonding between the adsorbent and adsorbate.

  15. Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles

    International Nuclear Information System (INIS)

    Moghadam, Masoud Rohani; Akbarzadeh, Sanaz; Nasirizadeh, Navid

    2016-01-01

    This article reports on an electrochemical sensor for thiourea. It is based on a glassy carbon electrode (GCE) modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles. The modified GCE demonstrated highly catalytic activity in terms of thiourea oxidation. The peak potential is shifted to negative values compared to a GCE coated with silver nanoparticles only. The electrode was characterized by linear sweep voltametry, cyclic voltammetry and chronoamperometry, and thiourea was determined by differential pulse voltammetry in aqueous buffer of pH 7.0 resulting in two linear response ranges of 0.001 − 69.4 and 69.4 − 833.3 μM and the limit of detection of 0.1 nM. The method was applied to the determination of thiourea in copper refinery electrolyte, orange juice and tap water samples. The recoveries ranged from 96.9 to 108.0 %. (author)

  16. A comparison of the modulated microwave absorption spectra of ceramic and powdered YBa2Cu3O7-δ samples

    International Nuclear Information System (INIS)

    Rubins, R.S.; Hutton, S.L.; Drumheller, J.E.; Jeong, D.Y.; Black, T.D.

    1990-01-01

    Flux trapping in the 9.3 GHz modulated microwave absorption spectra observed near 4 K from ceramic and powdered ceramic specimens of two separately prepared YBa 2 Cu 3 O 7-δ samples has been used to separate the intergranular and intragranular contributions to the spectra. In the denser, glassy sample, a broad absorption with a peak near 400 Oe for forward sweeps was observed with appreciable intensity after the maximum flux was trapped. This spectrum is attributed to intergranular junctions, since its relative intensity was reduced on powdering and suspending in wax. In the less dense, more uniform sample, the latter spectrum was appreciably weaker in both ceramic and powder. Both types of junction appear to contribute to the narrow low-field absorption which was observed after zero field cooling in all the samples

  17. A glassy carbon electrode modified with cerium phosphate nanotubes for the simultaneous determination of hydroquinone, catechol and resorcinol.

    Science.gov (United States)

    Li, Zhen; Yue, Yuhua; Hao, Yanjun; Feng, Shun; Zhou, Xianli

    2018-03-12

    A nafion film containing cerium phosphate nanotubes was pasted onto a glassy carbon electrode (GCE) to obtain a sensor for hydroquinone (HQ). The morphologies and components of the coating were characterized by transmission electron microscopy, scanning electron microscopy and energy-dispersive spectroscopy. Cyclic voltammetry and differential pulse voltammetry (DPV) showed the specific surface of the electrode to be significantly increased and the electron transfer rate to be accelerated. The modified GCE was applied to the determination of hydroquinone (HQ) via DPV. The oxidation current increases linearly in the 0.23 μM to 16 mM HQ concentration range which is as wide as five orders of magnitude. The limit of detection is 0.12 μM (based on a signal-to-noise ratio of 3), and the sensitivity is 1.41 μA·μM -1  cm -2 . The method was further applied to the simultaneous determination of HQ, catechol and resorcinol. The potentials for the three species are well separated (20, 134, and 572 mV vs SCE). Average recoveries from (spiked) real water samples are between 95.2 and 107.0%, with relative standard deviations of 0.9~2.7% (for n = 3) at three spiking levels. The method was validated by independent assays using HPLC. Graphical abstract ᅟ.

  18. Differential pulse voltammetric determination of salbutamol sulfate in syrup pharmaceutical formulation using poly(4-amino-3-hydroxynaphthalene sulfonic acid modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Meareg Amare

    2017-10-01

    Full Text Available A new method for determination of salbutamol sulfate has been developed using poly(4-amino-3-hydroxynaphthalene sulfonic acid/GCE. Cyclic voltammetric investigation of the electrochemical behavior of salbutamol sulfate at the polymer modified glassy carbon unveiled electrocatalytic activity of the modifier towards irreversible oxidation of salbutamol sulfate. Dependence of peak current predominantly on scan rate than on square root of scan rate, and peak potential shift with pH demonstrated that oxidation of salbutamol sulfate at the polymer modified electrode follows adsorption reaction kinetics with proton participation.Under optimized solution and differential pulse voltammetric parameters, the oxidative peak current showed linear dependence on salbutamol sulfate concentration in the range 0.2 to 8 μM with method detection limit (3s/m and determination coefficient (R2 of 6.8 × 10−8 M and 0.99786, respectively. Low method detection limit, relatively wide linear range, and recovery results of spiked standard salbutamol sulfate in syrup samples in the range 96.7–98.9% validated the method for determination of salbutamol sulfate in pharmaceutical formulations.Differential pulse voltammetric analysis of salbutamol sulfate syrup formulation for its salbutamol sulfate content revealed 98.8 to 99.3% of the labeled value confirming the applicability of the developed method for determination of salbutamol sulfate in real samples. Keywords: Electrochemistry, Analytical chemistry

  19. Electrochemical oxidation of butein at glassy carbon electrodes.

    Science.gov (United States)

    Tesio, Alvaro Yamil; Robledo, Sebastián Noel; Fernández, Héctor; Zon, María Alicia

    2013-06-01

    The electrochemical oxidation of flavonoid butein is studied at glassy carbon electrodes in phosphate and citrate buffer solutions of different pH values, and 1M perchloric acid aqueous solutions by cyclic and square wave voltammetries. The oxidation peak corresponds to the 2e(-), 2H(+) oxidation of the 3,4-dihydroxy group in B ring of butein, given the corresponding quinone species. The overall electrode process shows a quasi-reversible behavior and an adsorption/diffusion mixed control at high butein bulk concentrations. At low butein concentrations, the electrode process shows mainly an adsorption control. Butein surface concentration values were obtained from the charge associated with the adsorbed butein oxidation peaks, which are in agreement with those values expected for the formation of a monolayer of adsorbate in the concentration range from 1 to 5μM. Square wave voltammetry was used to perform a full thermodynamic and kinetics characterization of the butein surface redox couple. Therefore, from the combination of the "quasi-reversible maximum" and the "splitting of the net square wave voltammetric peak" methods, values of (0.386±0.003) V, (0.46±0.04), and 2.7×10(2)s(-1) were calculated for the formal potential, the anodic transfer coefficient, and the formal rate constant, respectively, of the butein overall surface redox process in pH4.00 citrate buffer solutions. These results will be then used to study the interaction of butein, and other flavonoids with the deoxyribonucleic acid, in order to better understand the potential therapeutic applications of these compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. High-strain-induced deformation mechanisms in block-graft and multigraft copolymers

    KAUST Repository

    Schlegel, Ralf; Duan, Yongxin; Weidisch, Roland; Hö lzer, Stefan M.; Schneider, Konrad M.; Stamm, Manfred; Uhrig, David W.; Mays, Jimmy Wayne; Heinrich, Gert; Hadjichristidis, Nikolaos

    2011-01-01

    -Hookean region an approach of glassy domains, while at higher elongations the intensity of the primary reflection peak was significantly decreasing. The latter clearly verifies the assumption that the glassy chains are pulled out from the domains and are partly

  1. Molecular dynamics in supercooled liquid and glassy states of antibiotics: azithromycin, clarithromycin and roxithromycin studied by dielectric spectroscopy. Advantages given by the amorphous state.

    Science.gov (United States)

    Adrjanowicz, K; Zakowiecki, D; Kaminski, K; Hawelek, L; Grzybowska, K; Tarnacka, M; Paluch, M; Cal, K

    2012-06-04

    Antibiotics are chemical compounds of extremely important medical role. Their history can be traced back more than one hundred years. Despite the passing time and significant progress made in pharmacy and medicine, treatment of many bacterial infections without antibiotics would be completely impossible. This makes them particularly unique substances and explains the unflagging popularity of antibiotics within the medical community. Herein, using dielectric spectroscopy we have studied the molecular mobility in the supercooled liquid and glassy states of three well-known antibiotic agents: azithromycin, clarithromycin and roxithromycin. Dielectric studies revealed a number of relaxation processes of different molecular origin. Besides the primary α-relaxation, observed above the respective glass transition temperatures of antibiotics, two secondary relaxations in the glassy state were identified. Interestingly, the fragility index as well as activation energies of the secondary processes turned out to be practically the same for all three compounds, indicating probably much the same molecular dynamics. Long-term stability of amorphous antibiotics at room temperature was confirmed by X-ray diffraction technique, and calorimetric studies were performed to evaluate the basic thermodynamic parameters. Finally, we have also checked the experimental solubility advantages given by the amorphous form of the examined antibiotics.

  2. Uranium mobility during interaction of rhyolitic obsidian, perlite and felsite with alkaline carbonate solution: T = 120° C, P = 210 kg/cm2

    Science.gov (United States)

    Zielinski, Robert A.

    1979-01-01

    Well-characterized samples of rhyolitic obsidian, perlite and felsite from a single lava flow are leached of U by alkaline oxidizing solutions under open-system conditions. Pressure, temperature, flow rate and solution composition are held constant in order to evaluate the relative importance of differences in surface area and crystallinity. Under the experimental conditions U removal from crushed glassy samples proceeds by a mechanism of glass dissolution in which U and silica are dissolved in approximately equal weight fractions. The rate of U removal from crushed glassy samples increases with decreasing average grain size (surface area). Initial rapid loss of a small component (≈ 2.5%) of the total U from crushed felsite. followed by much slower U loss, reflects variable rates of attack of numerous uranium sites. The fractions of U removed during the experiment ranged from 3.2% (felsite) to 27% (perlite). An empirical method for evaluating the relative rate of U loss from contemporaneous volcanic rocks is presented which incorporates leaching results and rock permeability data.

  3. Amperometric sensing of anti-HIV drug zidovudine on Ag nanofilm-multiwalled carbon nanotubes modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir; Afraz, Ahmadreza

    2014-06-01

    The zidovudine (ZDV) is the first drug approved for the treatment of HIV virus infection. The detection and determination of this drug are very importance in human serum because of its undesirable effects. A new ZDV sensor was fabricated on the basis of nanocomposite of silver nanofilm (Ag-NF) and multiwalled carbon nanotubes (MWCNTs) immobilized on glassy carbon electrode (GCE). The modified electrodes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), cyclic voltammetry (CV), and linear sweep voltammetry (LSV) techniques. Results showed that the electrodeposited silver has a nanofilm structure and further electrochemical studies showed that the prepared nanocomposite has high electrocatalytic activity and is appropriate for using in sensors. The amperometric technique under optimal conditions is used for the determination of ZDV ranging from 0.1 to 400 ppm (0.37 μM–1.5 mM) with a low detection limit of 0.04 ppm (0.15 μM) (S/N = 3) and good sensitivity. The prepared sensor possessed accurate and rapid response to ZDV and shows an average recovery of 98.6% in real samples. - Highlights: • New anti-HIV drug sensor was fabricated on the basis of nanomaterials composite. • The GCE modified by prepared hydrophilic MWCNT silver nanoparticles. • Silver nanofilm electrodeposited on MWCNT/GCE and characterized by SEM, EDX, CV and LSV • Response of electrode to ZDV was thoroughly investigated by electrochemical techniques.

  4. Electrografting of diazonium-functionalized polyoxometalates: synthesis, immobilisation and electron-transfer characterisation from glassy carbon.

    Science.gov (United States)

    Rinfray, Corentin; Izzet, Guillaume; Pinson, Jean; Gam Derouich, Sarra; Ganem, Jean-Jacques; Combellas, Catherine; Kanoufi, Frédéric; Proust, Anna

    2013-10-04

    Polyoxometalates (POMs) are attractive candidates for the rational design of multi-level charge-storage materials because they display reversible multi-step reduction processes in a narrow range of potentials. The functionalization of POMs allows for their integration in hybrid complementary metal oxide semiconductor (CMOS)/molecular devices, provided that fine control of their immobilisation on various substrates can be achieved. Owing to the wide applicability of the diazonium route to surface modification, a functionalized Keggin-type POM [PW11 O39 {Ge(p-C6 H4 -CC-C6 H4 -${{\\rm N}{{+\\hfill \\atop 2\\hfill}}}$)}](3-) bearing a pending diazonium group was prepared and subsequently covalently anchored onto a glassy carbon electrode. Electron transfer with the immobilised POM was thoroughly investigated and compared to that of the free POM in solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electrochemical Determination of Uric Acid at CdTe Quantum Dot Modified Glassy Carbon Electrodes.

    Science.gov (United States)

    Pan, Deng; Rong, Shengzhong; Zhang, Guangteng; Zhang, Yannan; Zhou, Qiang; Liu, Fenghai; Li, Miaojing; Chang, Dong; Pan, Hongzhi

    2015-01-01

    Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behavior of uric acid (UA) at a CdTe quantum dot (QD) modified the glassy carbon electrode (GCE). CdTe QDs, as new semiconductor nanocrystals, can greatly improve the peak current of UA. The anodic peak current of UA was linear with its concentration between 1.0×10(-6) and 4.0×10(-4) M in 0.1 M pH 5.0 phosphate buffer solution. The LOD for UA at the CdTe electrode (1.0×10(-7) M) was superior to that of the GCE. In addition, we also determined the effects of scan rate, pH, and interferences of UA for the voltammetric behavior and detection. The results indicated that modified electrode possessed excellent reproducibility and stability. Finally, a new and efficient electrochemical sensor for detecting UA was developed.

  6. Functionalization of glassy carbon surface by means of aliphatic and aromatic amino acids. An experimental and theoretical integrated approach

    International Nuclear Information System (INIS)

    Vanossi, Davide; Benassi, Rois; Parenti, Francesca; Tassinari, Francesco; Giovanardi, Roberto; Florini, Nicola; De Renzi, Valentina; Arnaud, Gaelle; Fontanesi, Claudio

    2012-01-01

    Highlights: ► Glassy carbon is functionalized via electrochemical assisted grafting of amino acids. ► The grafting mechanism is suggested to involve the “zwitterionic” species. ► DFT calculations allowed to determine the electroactive species. ► An original grafting mechanism is proposed. - Abstract: Glassy carbon (GC) electrode surfaces are functionalized through electrochemical assisted grafting, in oxidation regime, of six amino acids (AA): β-alanine (β-Ala), L-aspartic acid (Asp), 11-aminoundecanoic acid (UA), 4-aminobenzoic acid (PABA), 4-(4-amino-phenyl)-butyric acid (PFB), 3-(4-amino-phenyl)-propionic acid (PFP). Thus, a GC/AA interface is produced featuring carboxylic groups facing the solution. Electrochemical (cyclic voltammetry and electrochemical impedance spectroscopy) and XPS techniques are used to experimentally characterize the grafting process and the surface state. The theoretical results are compared with the experimental evidence to determine, at a molecular level, the overall grafting mechanism. Ionization potentials, standard oxidation potentials, HOMO and electron spin distributions are calculated at the CCD/6-31G* level of the theory. The comparison of experimental and theoretical data suggests that the main electroactive species is the “zwitterionic” form for the three aliphatic amino acids, while the amino acids featuring the amino group bound to the phenyl aromatic moiety show a different behaviour. The comparison between experimental and theoretical results suggests that both the neutral and the zwitterionic forms are present in the acetonitrile solution in the case of 4-(4-amino-phenyl)-butyric acid (PFB) and 3-(4-amino-phenyl)-propionic acid.

  7. Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionic liquid-modified glassy carbon electrode.

    Science.gov (United States)

    Gholivand, Mohammad Bagher; Khodadadian, Mehdi

    2014-03-15

    Cholesterol oxidase (ChOx) and catalase (CAT) were co-immobilized on a graphene/ionic liquid-modified glassy carbon electrode (GR-IL/GCE) to develop a highly sensitive amperometric cholesterol biosensor. The H2O2 generated during the enzymatic reaction of ChOx with cholesterol could be reduced electrocatalytically by immobilized CAT to obtain a sensitive amperometric response to cholesterol. The direct electron transfer between enzymes and electrode surface was investigated by cyclic voltammetry. Both enzymes showed well-defined redox peaks with quasi-reversible behaviors. An excellent sensitivity of 4.163 mA mM(-1)cm(-2), a response time less than 6s, and a linear range of 0.25-215 μM (R(2)>0.99) have been observed for cholesterol determination using the proposed biosensor. The apparent Michaelis-Menten constant (KM(app)) was calculated to be 2.32 mM. The bienzymatic cholesterol biosensor showed good reproducibility (RSDsascorbic acid and uric acid. The CAT/ChOx/GR-IL/GCE showed excellent analytical performance for the determination of free cholesterol in human serum samples. © 2013 Elsevier B.V. All rights reserved.

  8. Electrochemical Study of Carbon Nanotubes/Nanohybrids for Determination of Metal Species Cu2+ and Pb2+ in Water Samples

    Directory of Open Access Journals (Sweden)

    Andréa Claudia Oliveira Silva

    2016-01-01

    Full Text Available The use of nanomaterials, such as nanoparticles and nanotubes, for electrochemical detection of metal species has been investigated as a way of modifying electrodes by electrochemical stripping analysis. The present study develops a new methodology based on a comparative study of nanoparticles and nanotubes with differential pulse anodic stripping voltammetry (DPASV and examines the simultaneous determination of copper and lead. The glassy carbon electrode modified by gold nanoparticles demonstrated increased sensitivity and decreased detection limits, among other improvements in analytical performance data. Under optimized conditions (deposition potential −0.8 V versus Ag/AgCl; deposition time, 300 s; resting time, 10 s; pulse amplitude, 50 mV; and voltage step height, 4 mV, the detection limits were 0.2279 and 0.3321 ppb, respectively, for determination of Pb2+ and Cu2+. The effects of cations and anions on the simultaneous determination of metal ions do not exhibit significant interference, thereby demonstrating the selectivity of the electrode for simultaneous determination of Pb2+ and Cu2+. The same method was also used to determine Cu2+ in water samples.

  9. Anodic stripping voltammetric determination of mercury using multi-walled carbon nanotubes film coated glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Hongchao [Department of Environmental Engineering, Hubei Agriculture College, 434103, Jingzhou (China)

    2003-10-01

    An electrochemical method for the determination of trace levels of mercury based on a multi-walled carbon nanotubes (MWNT) film coated glassy carbon electrode (GCE) is described. In 0.1 mol L{sup -1} HCl solution containing 0.02 mol L{sup -1} KI, Hg{sup 2+} was firstly preconcentrated at the MWNT film and then reduced at -0.60 V. During the anodic potential sweep, reduced mercury was oxidized, and then a sensitive and well-defined stripping peak at about -0.20 V appeared. Under identical conditions, a MWNT film coated GCE greatly enhances the stripping peak current of mercury in contrast to a bare GCE. Low concentrations of I{sup -} remarkably improve the determining sensitivity, since this increases the accumulation efficiency of Hg{sup 2+} at the MWNT film coated GCE. The stripping peak current is proportional to the concentration of Hg{sup 2+} over the range 8 x 10{sup -10}-5 x 10{sup -7} mol L{sup -1}. The lowest detectable concentration of Hg{sup 2+} is 2 x 10{sup -10} mol L{sup -1} at 5 min accumulation. The relative standard deviation (RSD) at 1 x 10{sup -8} mol L{sup -1} Hg{sup 2+} was about 6% (n=10). By using this proposed method, Hg{sup 2+} in some water samples was determined, and the results were compared with those obtained by atomic absorption spectrometry (AAS). The two results are similar, suggesting that the MWNT-film coated GCE has great potential in practical analysis. (orig.)

  10. Reaction of Rhyolitic Magma to its Interception by the IDDP-1 Well, Krafla, 2009

    Science.gov (United States)

    Saubin, É.; Kennedy, B.; Tuffen, H.; Villeneuve, M.; Watson, T.; Nichols, A. R.; Schipper, I.; Cole, J. W.; Mortensen, A. K.; Zierenberg, R. A.

    2017-12-01

    The unexpected encounter of rhyolitic magma during IDDP-1 geothermal borehole drilling at Krafla, Iceland in 2009, temporarily created the world's hottest geothermal well. This allowed new questions to be addressed. i) How does magma react to drilling? ii) Are the margins of a magma chamber suitable for long-term extraction of supercritical fluids? To investigate these questions, we aim to reconstruct the degassing and deformation behaviour of the enigmatic magma by looking for correlations between textures in rhyolitic material retrieved from the borehole and the recorded drilling data. During drilling, difficulties were encountered in two zones, at 2070 m and below 2093 m depth. Drilling parameters are consistent with the drill bit encountering a high permeability zone and the contact zone of a magma chamber, respectively. Magma was intercepted three times between 2101-2104.4 m depth, which culminated in an increase in standpipe pressure followed by a decrease in weight on bit interpreted as representing the ascent of magma within the borehole. Circulation returned one hour after the last interception, carrying cuttings of glassy particles, felsite with granophyre and contaminant clasts from drilling, which were sampled as a time-series for the following 9 hours. The nature of glassy particles in this time-series varied through time, with a decrease in the proportion of vesicular clasts and a commensurate increase in dense glassy clasts, transitioning from initially colourless to brown glass. Componentry data show a sporadic decrease in felsite (from 34 wt. %), an increase in glassy particles during the first two hours (from 63 wt. % to 94 wt. %) and an increase in contaminant clasts towards the end of the cutting retrieval period. These temporal variations are probably related to the magma body architecture and interactions with the borehole. Transition from vesicular to dense clasts suggests a change in the degassing process that could be related to an early

  11. Anomalous Capacitance Maximum of the Glassy Carbon-Ionic Liquid Interface through Dilution with Organic Solvents.

    Science.gov (United States)

    Bozym, David J; Uralcan, Betül; Limmer, David T; Pope, Michael A; Szamreta, Nicholas J; Debenedetti, Pablo G; Aksay, Ilhan A

    2015-07-02

    We use electrochemical impedance spectroscopy to measure the effect of diluting a hydrophobic room temperature ionic liquid with miscible organic solvents on the differential capacitance of the glassy carbon-electrolyte interface. We show that the minimum differential capacitance increases with dilution and reaches a maximum value at ionic liquid contents near 5-10 mol% (i.e., ∼1 M). We provide evidence that mixtures with 1,2-dichloroethane, a low-dielectric constant solvent, yield the largest gains in capacitance near the open circuit potential when compared against two traditional solvents, acetonitrile and propylene carbonate. To provide a fundamental basis for these observations, we use a coarse-grained model to relate structural variations at the double layer to the occurrence of the maximum. Our results reveal the potential for the enhancement of double-layer capacitance through dilution.

  12. Fabrication of a novel electrochemical sensor for determination of hydrogen peroxide in different fruit juice samples

    Directory of Open Access Journals (Sweden)

    Navid Nasirizadeh

    2016-01-01

    Full Text Available A new hydrogen peroxide (H2O2 sensor is fabricated based on a multiwalled carbon nanotube-modified glassy carbon electrode (MWCNT-GCE and reactive blue 19 (RB. The charge transfer coefficient, α, and the charge transfer rate constant, ks, of RB adsorbed on MWCNT-GCE were calculated and found to be 0.44 ± 0.01 Hz and 1.9 ± 0.05 Hz, respectively. The catalysis of the electroreduction of H2O2 by RB-MWCNT-GCE is described. The RB-MWCNT-GCE shows a dramatic increase in the peak current and a decrease in the overvoltage of H2O2 electroreduction in comparison with that seen at an RB modified GCE, MWCNT modified GCE, and activated GCE. The kinetic parameters such as α and the heterogeneous rate constant, k', for the reduction of H2O2 at RB-MWCNT-GCE surface were determined using cyclic voltammetry. The detection limit of 0.27μM and three linear calibration ranges were obtained for H2O2 determination at the RB-MWCNT-GCE surface using an amperometry method. In addition, using the newly developed sensor, H2O2 was determined in real samples with satisfactory results.

  13. Hysteresis, reentrance, and glassy dynamics in systems of self-propelled rods.

    Science.gov (United States)

    Kuan, Hui-Shun; Blackwell, Robert; Hough, Loren E; Glaser, Matthew A; Betterton, M D

    2015-01-01

    Nonequilibrium active matter made up of self-driven particles with short-range repulsive interactions is a useful minimal system to study active matter as the system exhibits collective motion and nonequilibrium order-disorder transitions. We studied high-aspect-ratio self-propelled rods over a wide range of packing fractions and driving to determine the nonequilibrium state diagram and dynamic properties. Flocking and nematic-laning states occupy much of the parameter space. In the flocking state, the average internal pressure is high and structural and mechanical relaxation times are long, suggesting that rods in flocks are in a translating glassy state despite overall flock motion. In contrast, the nematic-laning state shows fluidlike behavior. The flocking state occupies regions of the state diagram at both low and high packing fraction separated by nematic-laning at low driving and a history-dependent region at higher driving; the nematic-laning state transitions to the flocking state for both compression and expansion. We propose that the laning-flocking transitions are a type of glass transition that, in contrast to other glass-forming systems, can show fluidization as density increases. The fluid internal dynamics and ballistic transport of the nematic-laning state may promote collective dynamics of rod-shaped micro-organisms.

  14. Image Registration of Cone-Beam Computer Tomography and Preprocedural Computer Tomography Aids in Localization of Adrenal Veins and Decreasing Radiation Dose in Adrenal Vein Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Busser, Wendy M. H., E-mail: wendy.busser@radboudumc.nl; Arntz, Mark J.; Jenniskens, Sjoerd F. M. [Radboud University Medical Center, Department of Radiology, Section of Interventional Radiology (Netherlands); Deinum, Jaap [Radboud University Medical Center, Department of General Internal Medicine (Netherlands); Hoogeveen, Yvonne L.; Lange, Frank de; Schultze Kool, Leo J. [Radboud University Medical Center, Department of Radiology, Section of Interventional Radiology (Netherlands)

    2015-08-15

    PurposeWe assessed whether image registration of cone-beam computed tomography (CT) (CBCT) and contrast-enhanced CT (CE-CT) images indicating the locations of the adrenal veins can aid in increasing the success rate of first-attempts adrenal vein sampling (AVS) and therefore decreasing patient radiation dose.Materials and Methods CBCT scans were acquired in the interventional suite (Philips Allura Xper FD20) and rigidly registered to the vertebra in previously acquired CE-CT. Adrenal vein locations were marked on the CT image and superimposed with live fluoroscopy and digital-subtraction angiography (DSA) to guide the AVS. Seventeen first attempts at AVS were performed with image registration and retrospectively compared with 15 first attempts without image registration performed earlier by the same 2 interventional radiologists. First-attempt AVS was considered successful when both adrenal vein samples showed representative cortisol levels. Sampling time, dose-area product (DAP), number of DSA runs, fluoroscopy time, and skin dose were recorded.ResultsWithout image registration, the first attempt at sampling was successful in 8 of 15 procedures indicating a success rate of 53.3 %. This increased to 76.5 % (13 of 17) by adding CBCT and CE-CT image registration to AVS procedures (p = 0.266). DAP values (p = 0.001) and DSA runs (p = 0.026) decreased significantly by adding image registration guidance. Sampling and fluoroscopy times and skin dose showed no significant changes.ConclusionGuidance based on registration of CBCT and previously acquired diagnostic CE-CT can aid in enhancing localization of the adrenal veins thereby increasing the success rate of first-attempt AVS with a significant decrease in the number of used DSA runs and, consequently, radiation dose required.

  15. Electrochemical characterization of glassy carbon electrode modified with 1,10-phenanthroline groups by two pathways: reduction of the corresponding diazonium ions and reduction of phenanthroline

    International Nuclear Information System (INIS)

    Shul, Galyna; Weissmann, Martin; Bélanger, Daniel

    2015-01-01

    The electrochemical behaviour of 1,10-phenanthroline molecules immobilized on a glassy carbon electrode surface by electrochemical reduction of the corresponding in-situ generated diazonium ions in an aqueous solution was investigated. Firstly, the derivatization of glassy carbon electrode was confirmed by the presence of the barrier effect in the solution of a redox probe. Secondly, atomic force microscopy measurements revealed the deposition of thin (< 2 nm) uniform 1,10-phenanthroline film on the surface of pyrolyzed photoresist film electrode. Thirdly, the initially electrochemically inactive grafted organic film became electroactive after being subjected to electrochemical reduction and oxidation. Fourthly, the electrochemical behaviour of phenanthroline modified electrode by electrochemical reduction of the corresponding diazonium cations was found to be similar to that of electrode modified by electrochemical reduction of only phenanthroline dissolved in an aqueous acid solution. Finally, cyclic voltammetry experiments using various methyl substituted phenanthroline derivatives provided direct evidence that functional groups responsible for the film electroactivity are formed at 5 or/and 6 positions of grafted phenanthroline molecules. On the other hand, a phenanthroline derivative having these positions blocked by methyl groups can also display electroactivity with position 7 being most likely involved in the observed redox process

  16. Fabrication of an electrochemical sensor based on computationally designed molecularly imprinted polymer for the determination of mesalamine in real samples

    Energy Technology Data Exchange (ETDEWEB)

    Torkashvand, M. [Department of Analytical Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Gholivand, M.B., E-mail: mbgholivand@yahoo.com [Department of Analytical Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Taherkhani, F. [Department of Physical Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of)

    2015-10-01

    A novel electrochemical sensor based on mesalamine molecularly imprinted polymer (MIP) film on a glassy carbon electrode was fabricated. Density functional theory (DFT) in gas and solution phases was developed to study the intermolecular interactions in the pre-polymerization mixture and to find the suitable functional monomers in MIP preparation. On the basis of computational results, o-phenylenediamine (OP), gallic acid (GA) and p-aminobenzoic acid (ABA) were selected as functional monomers. The MIP film was cast on glassy carbon electrode by electropolymerization of solution containing ternary monomers and then followed by Ag dendrites (AgDs) with nanobranch deposition. The surface feature of the modified electrode (AgDs/MIP/GCE) was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Under the optimal experimental conditions, the peak current was proportional to the concentration of mesalamine ranging from 0.05 to 100 μM, with the detection limit of 0.015 μM. The proposed sensor was applied successfully for mesalamine determination in real samples. - Highlights: • The determination of MES using AgDs/MIP/GCE is reported for the first time. • The computer assisted design of terpolymer MIPs was used to screen monomers. • Theoretical results of DFT approach were in agreement with experimental results. • The sensor displayed a high selectivity for template in the presence of interferes. • The developed sensor has been applied to determine mesalamine in real samples.

  17. Fabrication of an electrochemical sensor based on computationally designed molecularly imprinted polymer for the determination of mesalamine in real samples

    International Nuclear Information System (INIS)

    Torkashvand, M.; Gholivand, M.B.; Taherkhani, F.

    2015-01-01

    A novel electrochemical sensor based on mesalamine molecularly imprinted polymer (MIP) film on a glassy carbon electrode was fabricated. Density functional theory (DFT) in gas and solution phases was developed to study the intermolecular interactions in the pre-polymerization mixture and to find the suitable functional monomers in MIP preparation. On the basis of computational results, o-phenylenediamine (OP), gallic acid (GA) and p-aminobenzoic acid (ABA) were selected as functional monomers. The MIP film was cast on glassy carbon electrode by electropolymerization of solution containing ternary monomers and then followed by Ag dendrites (AgDs) with nanobranch deposition. The surface feature of the modified electrode (AgDs/MIP/GCE) was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Under the optimal experimental conditions, the peak current was proportional to the concentration of mesalamine ranging from 0.05 to 100 μM, with the detection limit of 0.015 μM. The proposed sensor was applied successfully for mesalamine determination in real samples. - Highlights: • The determination of MES using AgDs/MIP/GCE is reported for the first time. • The computer assisted design of terpolymer MIPs was used to screen monomers. • Theoretical results of DFT approach were in agreement with experimental results. • The sensor displayed a high selectivity for template in the presence of interferes. • The developed sensor has been applied to determine mesalamine in real samples

  18. Theoretical study of the binding nature of glassy carbon with nickel(II) phthalocyanine complexes

    International Nuclear Information System (INIS)

    Cortez, Luis; Berrios, Cristhian; Yanez, Mauricio; Cardenas-Jiron, Gloria I.

    2009-01-01

    A theoretical study at the semiempirical RHF/PM3(tm) level (tm: transition metal) of the binding nature between a glassy carbon (GC) cluster and a nickel(II) complex (nickel(II) phthalocyanine NiPc, nickel(II) tetrasulphophthalocyanine NiTSPc) was performed. Three types of interactions for GC...NiPc (NiTSPc) were studied: (a) through an oxo (O) bridge, (b) through an hydroxo (OH) bridge, and (c) non-bridge. One layer (NiPc, NiTSPc) and two layers (NiPc...NiPc) of complex were considered. The binding energy calculated showed that in both cases NiPc and NiTSPc, the oxo structures are more stable than the hydroxo ones, and than the non-bridge systems. Charge analysis (NAO) predicted that GC gained more electrons in an oxo structure than in the analogues hydroxo. The theoretical results showed an agreement with the experimental data available, an oxo binding between GC and a nickel complex (NiPc, NiTSPc) in aqueous alkaline solutions is formed.

  19. Theoretical study of the binding nature of glassy carbon with nickel(II) phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, Luis [Laboratorio de Quimica Teorica, Facultad de Quimica y Biologia, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago (Chile); Berrios, Cristhian [Laboratorio de Electrocatalisis, Facultad de Quimica y Biologia, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago (Chile); Yanez, Mauricio [Laboratorio de Recursos Renovables, Centro de Biotecnologia, Universidad de Concepcion, Casilla-160 C, Concepcion (Chile); Cardenas-Jiron, Gloria I., E-mail: gloria.cardenas@usach.cl [Laboratorio de Quimica Teorica, Facultad de Quimica y Biologia, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago (Chile)

    2009-11-26

    A theoretical study at the semiempirical RHF/PM3(tm) level (tm: transition metal) of the binding nature between a glassy carbon (GC) cluster and a nickel(II) complex (nickel(II) phthalocyanine NiPc, nickel(II) tetrasulphophthalocyanine NiTSPc) was performed. Three types of interactions for GC...NiPc (NiTSPc) were studied: (a) through an oxo (O) bridge, (b) through an hydroxo (OH) bridge, and (c) non-bridge. One layer (NiPc, NiTSPc) and two layers (NiPc...NiPc) of complex were considered. The binding energy calculated showed that in both cases NiPc and NiTSPc, the oxo structures are more stable than the hydroxo ones, and than the non-bridge systems. Charge analysis (NAO) predicted that GC gained more electrons in an oxo structure than in the analogues hydroxo. The theoretical results showed an agreement with the experimental data available, an oxo binding between GC and a nickel complex (NiPc, NiTSPc) in aqueous alkaline solutions is formed.

  20. MWCNTs/Cu(OH)2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac

    International Nuclear Information System (INIS)

    Arvand, Majid; Gholizadeh, Tahereh M.; Zanjanchi, Mohammad Ali

    2012-01-01

    This paper describes the development and utilization of a new nanocomposite consisting of Cu(OH) 2 nanoparticles, hydrophobic ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate (EMIMPF 6 ) and multiwalled carbon nanotubes for glassy carbon electrode modification. The nanocomposite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) along with energy-dispersive X-ray spectroscopy (EDX). The modified electrode was used for electrochemical characterization of diclofenac. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity with low overpotential for the determination of diclofenac in the range from 0.18 to 119 μM, with a detection limit of 0.04 μM. Electrochemical studies suggested that the MWCNTs/Cu(OH) 2 nanoparticles/IL nanocomposite modified electrode provided a synergistic augmentation on the voltammetric behavior of electrochemical oxidation of diclofenac, which was indicated by the improvement of anodic peak current. Highlights: ► This work examines oxidation of diclofenac at a nanocomposite modified electrode. ► The salient feature of this electrode is large diffusion coefficient. ► The proposed electrode decreased overpotential of diclofenac electrooxidation. ► The modified electrode has good stability and reproducibility.

  1. A Practical Anodic and Cathodic Curve Intersection Model to Understand Multiple Corrosion Potentials of Fe-Based Glassy Alloys in OH- Contained Solutions.

    Science.gov (United States)

    Li, Y J; Wang, Y G; An, B; Xu, H; Liu, Y; Zhang, L C; Ma, H Y; Wang, W M

    2016-01-01

    A practical anodic and cathodic curve intersection model, which consisted of an apparent anodic curve and an imaginary cathodic line, was proposed to explain multiple corrosion potentials occurred in potentiodynamic polarization curves of Fe-based glassy alloys in alkaline solution. The apparent anodic curve was selected from the measured anodic curves. The imaginary cathodic line was obtained by linearly fitting the differences of anodic curves and can be moved evenly or rotated to predict the number and value of corrosion potentials.

  2. Anodic stripping voltammetric determination of traces of Pb(II) and Cd(II) using a glassy carbon electrode modified with bismuth nanoparticles

    International Nuclear Information System (INIS)

    Yang, Die; Wang, Liang; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2014-01-01

    We report on a glassy carbon electrode modified with bismuth nanoparticles (NanoBiE) for the simultaneous determination Pb 2+ and Cd 2+ by anodic stripping voltammetry. Operational parameters such as bismuth nanoparticles labelling amount, deposition potential, deposition time and stripping parameters were optimized with respect to the determination of Pb 2+ and Cd 2+ in 0.1 M acetate buffer solution (pH 4.5). The NanoBiE gives well-defined, reproducible and sharp stripping peaks. The peak current response increases linearly with the metal concentration in a range of 5.0–60.0 μg L −1 , with a detection limit of 0.8 and 0.4 μg L −1 for Pb 2+ and Cd 2+ , respectively. The morphology and composition of the modified electrode before and after voltammetric measurements were analysed by scanning electron microscopy and energy dispersive X-ray analysis. The NanoBiE was successfully applied to analysis of Pb 2+ and Cd 2+ in real water samples and the method was validated by ICP-MS technique, suggesting that the electrode can be considered as an interesting alternative to the bismuth film electrode for possible use in electrochemical studies and electro analysis. (author)

  3. Impedimetric Salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes

    International Nuclear Information System (INIS)

    Jia, Fei; Dai, Ruitong; Duan, Nuo; Wu, Shijia; Wang, Zhouping; Li, Xingmin

    2016-01-01

    We describe a Salmonella biosensor that was obtained by electrochemical immobilization of a nanocomposite consisting of reduced graphene oxide (rGO) and carboxy-modified multi-walled carbon nanotubes (MWCNTs) directly on the surface of a glassy carbon electrode (GCE). An amino-modified aptamer specific for Salmonella was covalently bound to the rGO-MWCNT composite via amide bonds. The morphology of the rGO-MWCNT nanocomposite was characterized by transmission electron microscopy and scanning electron microscopy. Cyclic voltammetry and electrochemical impedance spectroscopy were used to monitor all steps during assembly. When exposed to samples containing Salmonella, the anti-Salmonella aptamer on the electrode captures its target. Hence, electron transfer is blocked, and this results in a large increase in impedance. Salmonella can be quantified by this aptasensor, typically operated at a working voltage of 0.2 V (vs. Ag/AgCl), in the range from 75 to 7.5 × 10 5 cfu⋅mL −1 and detection limit of 25 cfu⋅mL −1 (at an S/N of 3). The method is perceived to have a wide scope in that other bacteria may be detected by analogy to this approach and with very low limits of detection by applying respective analyte-specific aptamers. (author)

  4. Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers

    International Nuclear Information System (INIS)

    Mani, Veerappan; Govindasamy, Mani; Chen, Shen-Ming; Karthik, Raj; Huang, Sheng-Tung

    2016-01-01

    We describe a hybrid material that consists of molybdenum sulfide flowers placed on graphene nanosheets and multiwalled carbon nanotubes (GNS-CNTs/MoS_2). It was deposited on a glassy carbon electrode (GCE) which then is well suited for sensitive and selective determination of dopamine. The GNS-CNTs/MoS_2 nanocomposite was prepared by a hydrothermal method and characterized by scanning electron and transmission emission microscopies, energy-dispersive X-ray spectroscopy, cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy. Electrochemical studies show the composite to possess excellent electrochemical properties such as a large electrochemically active surface, high capacitance current, a wide potential window, high conductivity and large porosity. The electrode displays excellent electrocatalytic ability to oxidize dopamine. The modified GCE, best operated at a working potential as low as 0.15 V (vs. Ag/AgCl), responds linearly to dopamine in the 100 nM to 100 μM concentration range. The detection limit is 50 nM, and the sensitivity is 10.81 (± 0.26) μA⋅μM"−"1⋅cm"−"2. The sensor has good selectivity, appreciable stability, repeatability and reproducibility. It was applied to the determination of dopamine in (spiked) biological and pharmaceutical samples. (author)

  5. Bottle-Brush Brushes: Cylindrical Molecular Brushes of Poly(2-oxazoline) on Glassy Carbon

    KAUST Repository

    Zhang, Ning; Steenackers, Marin; Luxenhofer, Robert; Jordan, Rainer

    2009-01-01

    We report on the synthesis of brushes of bottle-brushes of poly(2-oxazoline)s on polished glassy carbon (GC) substrates. First, homogeneous and stable poly(2-isopropenyl-2-oxazoline) (PIPOx) brush layers with thicknesses up to 160 nm were created directly onto GC by the self-initiated photografting and photopolymerization (SIPGP) of 2-isopropenyl-2-oxazoline (IPOx). Kinetic studies reveal a linear increase in thickness with the polymerization time. In a second reaction, the pendant 2-oxazoline ring of the PIPOx brushes were used for the living cationic ring-opening polymerization (LCROP) with different substituted 2-oxazoline monomers to form the side chains. Also for the second surface-initiatedLCROPfrom the surface-bound macroinitiator brushes, the thickness increase with the polymerization time was found to be linear and reproducible. Characterization of the resulting bottle-brush brushes by FTIR spectroscopy,contact angle, and AFM indicates a high side chain grafting density and quantitative reactions. Finally, we have demonstrated the possibility of functionalizing the bottle-brush brushes side chain end groups with sterically demanding molecules. © 2009 American Chemical Society.

  6. Bottle-Brush Brushes: Cylindrical Molecular Brushes of Poly(2-oxazoline) on Glassy Carbon

    KAUST Repository

    Zhang, Ning

    2009-07-28

    We report on the synthesis of brushes of bottle-brushes of poly(2-oxazoline)s on polished glassy carbon (GC) substrates. First, homogeneous and stable poly(2-isopropenyl-2-oxazoline) (PIPOx) brush layers with thicknesses up to 160 nm were created directly onto GC by the self-initiated photografting and photopolymerization (SIPGP) of 2-isopropenyl-2-oxazoline (IPOx). Kinetic studies reveal a linear increase in thickness with the polymerization time. In a second reaction, the pendant 2-oxazoline ring of the PIPOx brushes were used for the living cationic ring-opening polymerization (LCROP) with different substituted 2-oxazoline monomers to form the side chains. Also for the second surface-initiatedLCROPfrom the surface-bound macroinitiator brushes, the thickness increase with the polymerization time was found to be linear and reproducible. Characterization of the resulting bottle-brush brushes by FTIR spectroscopy,contact angle, and AFM indicates a high side chain grafting density and quantitative reactions. Finally, we have demonstrated the possibility of functionalizing the bottle-brush brushes side chain end groups with sterically demanding molecules. © 2009 American Chemical Society.

  7. Analysis of feed stream acid gas concentration effects on the transport properties and separation performance of polymeric membranes for natural gas sweetening: A comparison between a glassy and rubbery polymer

    KAUST Repository

    Vaughn, Justin T.; Koros, William J.

    2014-01-01

    %. These promising results suggest that glassy polymers possessing favorable intrinsic plasticization resistance, such as 6F-PAI-1, may be appropriate for the typical case of natural gas sweetening where CO2 concentration in the feed is higher than it is for H2S

  8. Adsorptive stripping differential pulse voltammetric determination of venlafaxine and desvenlafaxine employing Nafion-carbon nanotube composite glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Sanghavi, Bankim J. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400 098, Maharashtra (India); Srivastava, Ashwini K., E-mail: aksrivastava@chem.mu.ac.i [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400 098, Maharashtra (India)

    2011-04-15

    A Nafion-carbon nanotube-modified glassy carbon electrode (NAF-CNT-GCE) was developed for the determination of venlafaxine (VF) and desvenlafaxine (DVF). The electrochemical behavior of both these molecules was investigated employing cyclic voltammetry (CV), chronocoulometry (CC), electrochemical impedance spectroscopy (EIS) and adsorptive stripping differential pulse voltammetry (AdSDPV). The surface morphology of the electrodes has been studied by means of scanning electron microscopy (SEM). These studies revealed that the oxidation of VF and DVF is facilitated at NAF-CNT-GCE. After optimization of analytical conditions employing this electrode at pH 7.0 in Britton-Robinson buffer (0.05 M) for VF and pH 5.0 in acetate buffer (0.1 M) for DVF, the peak currents for both the molecules were found to vary linearly with their concentrations in the range of 3.81 x 10{sup -8}-6.22 x 10{sup -5} M for VF and 5.33 x 10{sup -8}-3.58 x 10{sup -5} M for DVF. The detection limits (S/N = 3) of 1.24 x 10{sup -8} and 2.11 x 10{sup -8} M were obtained for VF and DVF, respectively, using AdSDPV. The prepared modified electrode showed several advantages, such as simple preparation method, high sensitivity, very low detection limits and excellent reproducibility. The proposed method was employed for the determination of VF and DVF in pharmaceutical formulations, urine and blood serum samples.

  9. Amperometric xanthine biosensors using glassy carbon electrodes modified with electrografted porous silica nanomaterials loaded with xanthine oxidase

    International Nuclear Information System (INIS)

    Saadaoui, Maroua; Sánchez, Alfredo; Díez, Paula; Raouafi, Noureddine; Pingarrón, José M.; Villalonga, Reynaldo

    2016-01-01

    Glassy carbon electrodes were modified with silica materials such as silica nanoparticles, mesoporous silica nanoparticles and mesoporous silica thin films with the aim to introduce scaffolds suitable for the immobilization of enzymes. Xanthine oxidase was selected as a model enzyme, and xanthine as the target analyte. A comparison of the modified electrodes showed the biosensor prepared with mesoporous silica nanoparticles to perform best. By using the respective biosensor, xanthine can be amperometrically determined (via measurement of enzymatically formed hydrogen peroxide) at a working voltage of 0.7 V (vs. Ag/AgCl) with a 0.28 μM detection limit. The biosensor was evaluated in terms of potential interferences, reproducibility and stability, and applied to the determination of fish freshness via sensing of xanthine. (author)

  10. Electrocatalytic reduction of oxygen at glassy carbon electrode modified by polypyrrole/anthraquinones composite film in various pH media

    International Nuclear Information System (INIS)

    Valarselvan, S.; Manisankar, P.

    2011-01-01

    Graphical abstract: The electrocatalytic reduction of dioxygen by one mono and four dihydroxy derivatives of 9,10-anthraquinone (AQ) incorporated in polypyrrole (PPy) matrix on glassy carbon electrode has been investigated. AQ and PPy composite film showed excellent electrocatalytic performance for the reduction of O 2 to H 2 O 2 . Highlights: → Hydroxyl derivatives of anthraquinones as electrocatalysts for dioxygen reduction. → AQ/PPy composite film on GC electrode exhibits potent electrocatalytic activity. → Substituent groups influence electrocatalytic dioxygen reduction. → Surface coverage varies the rate of electrocatalytic dioxygen reduction. - Abstract: The electrocatalytic reduction of dioxygen by one mono and four dihydroxy derivatives of 9,10-anthraquinone (AQ) incorporated in polypyrrole (PPy) matrix on glassy carbon electrode has been investigated. The electrochemical behaviour of the modified electrodes was examined in various pH media and both the formal potential of anthraquinones and reduction potential of dioxygen exhibited pH dependence. AQ and PPy composite film showed excellent electrocatalytic performance for the reduction of O 2 to H 2 O 2 . pH 6.0 was chosen as the most suitable medium to study the electrocatalysis by comparing the peak potential of oxygen reduction and enhancement in peak current for oxygen reduction. The diffusion coefficient values of AQ at the modified electrodes and the number of electrons involved in AQ reduction were evaluated by chronoamperometric and chronocoulometric techniques, respectively. In addition, hydrodynamic voltammetric studies showed the involvement of two electrons in O 2 reduction. The mass specific activity of AQ used, the diffusion coefficient of oxygen and the heterogeneous rate constants for the oxygen reduction at the surface of modified electrodes were also determined by rotating disk voltammetry.

  11. Synthesis and Characterization of Ferrocene Derivatives and Preliminarily Electrocatalytic Oxidation of L-Cysteine at Nafion-Ferrocene Derivatives Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Jianping Yong

    2014-01-01

    Full Text Available Five new structural ferrocene derivatives (2a~2e were firstly synthesized and characterized by 1H NMR, 13C NMR, ESI-MS, and XRD. Subsequently, the preliminarily electrocatalytic oxidation of L-cysteine (L-Cys at nafion-ferrocene derivatives modified glassy carbon electrode (GCE has also been investigated by cyclic voltammetry. The results showed that 2e can dramatically electrocatalyze the oxidation of L-cysteine at its modified GCE in 0.1 mol L−1 NaNO3 aqueous solution with a quasireversible process with ΔEp≈55 mV.

  12. Selective substitution in orbital domains of a low doped manganite: an investigation from Griffiths phenomenon and modification of glassy features

    International Nuclear Information System (INIS)

    Mukherjee, K; Banerjee, A

    2009-01-01

    An effort is made to study the contrast in magnetic behavior resulting from minimal disorder introduced by substitution of 2.5% Ga or Al in Mn site of La 0.9 Sr 0.1 MnO 3 . It is considered that Ga or Al selectively create disorder within the orbital domains or on its walls, causing enhancement of Griffiths phase (GP) singularity for the former and disappearance of it in the latter case. It is shown that Ga replaces Mn 3+ , which is considered to be concentrated within the domains, whereas Al replaces Mn 4+ , which is segregated on the hole-rich walls, without causing any significant effect on structure or ferromagnetic transition temperatures. Thus, it is presumed that the effect of disorder created by Ga extends across the bulk of the domain having correlation over a similar length scale, resulting in enhancement of the GP phenomenon. In contrast, the effect of disorder created by Al remains restricted to the walls, resulting in the modification of the dynamics arising from the domain walls and suppresses the GP. Moreover, contrasting features are observed in the low temperature region of the compounds; a re-entrant spin-glass-like behavior is observed in the Ga-doped sample, while the observed characteristics for the Al-doped sample are ascribed only to modified domain wall dynamics with the absence of any glassy phase. Distinctive features in third-order susceptibility measurements reveal that the magnetic ground state of the entire series comprises of orbital domain states. These observations bring out the role of the nature of disorder on the GP phenomenon and also reconfirms the character of self-organization in low doped manganites.

  13. Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Ghorbani-Bidkorbeh, Fatemeh; Shahrokhian, Saeed; Mohammadi, Ali; Dinarvand, Rassoul

    2010-01-01

    A sensitive and selective electrochemical sensor was fabricated via the drop-casting of carbon nanoparticles (CNPs) suspension onto a glassy carbon electrode (GCE). The application of this sensor was investigated in simultaneous determination of acetaminophen (ACE) and tramadol (TRA) drugs in pharmaceutical dosage form and ACE determination in human plasma. In order to study the electrochemical behaviors of the drugs, cyclic and differential pulse voltammetric studies of ACE and TRA were carried out at the surfaces of the modified GCE (MGCE) and the bare GCE. The dependence of peak currents and potentials on pH, concentration and the potential scan rate were investigated for these compounds at the surface of MGCE. Atomic force microscopy (AFM) was used for the characterization of the film modifier and its morphology on the surface of GCE. The results of the electrochemical investigations showed that CNPs, via a thin layer model based on the diffusion within a porous layer, enhanced the electroactive surface area and caused a remarkable increase in the peak currents. The thin layer of the modifier showed a catalytic effect and accelerated the rate of the electron transfer process. Application of the MGCE resulted in a sensitivity enhancement and a considerable decrease in the anodic overpotential, leading to negative shifts in peak potentials. An optimum electrochemical response was obtained for the sensor in the buffered solution of pH 7.0 and using 2 μL CNPs suspension cast on the surface of GCE. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity for the determination of ACE and TRA in wide linear ranges of 0.1-100 and 10-1000 μM, respectively. The resulted detection limits for ACE and TRA was 0.05 and 1 μM, respectively. The CNPs modified GCE was successfully applied for ACE and TRA determinations in pharmaceutical dosage forms and also for the determination of ACE in human plasma.

  14. Network approach towards understanding the crazing in glassy amorphous polymers

    Science.gov (United States)

    Venkatesan, Sudarkodi; Vivek-Ananth, R. P.; Sreejith, R. P.; Mangalapandi, Pattulingam; Hassanali, Ali A.; Samal, Areejit

    2018-04-01

    We have used molecular dynamics to simulate an amorphous glassy polymer with long chains to study the deformation mechanism of crazing and associated void statistics. The Van der Waals interactions and the entanglements between chains constituting the polymer play a crucial role in crazing. Thus, we have reconstructed two underlying weighted networks, namely, the Van der Waals network and the entanglement network from polymer configurations extracted from the molecular dynamics simulation. Subsequently, we have performed graph-theoretic analysis of the two reconstructed networks to reveal the role played by them in the crazing of polymers. Our analysis captured various stages of crazing through specific trends in the network measures for Van der Waals networks and entanglement networks. To further corroborate the effectiveness of network analysis in unraveling the underlying physics of crazing in polymers, we have contrasted the trends in network measures for Van der Waals networks and entanglement networks in the light of stress-strain behaviour and voids statistics during deformation. We find that the Van der Waals network plays a crucial role in craze initiation and growth. Although, the entanglement network was found to maintain its structure during craze initiation stage, it was found to progressively weaken and undergo dynamic changes during the hardening and failure stages of crazing phenomena. Our work demonstrates the utility of network theory in quantifying the underlying physics of polymer crazing and widens the scope of applications of network science to characterization of deformation mechanisms in diverse polymers.

  15. An anomalous X-ray scattering study on glassy superionic conductor (As2Se3)1-x(CuI) x using a third-generation synchrotron radiation facility

    International Nuclear Information System (INIS)

    Usuki, T.; Hosokawa, S.; Berar, J.-F.

    2005-01-01

    Anomalous X-ray scattering experiments on glassy superionic conductor (As 2 Se 3 ) 0.4 (CuI) 0.6 were performed at energies close to the As, Se, and Cu K edges using a new detecting system and a third-generation synchrotron radiation facility. The detecting system was composed of a graphite-crystal energy-analyzer and a NaI(Tl) detector on a 40-cm-long arm. The overall energy resolution was about 60 eV, which can discriminate the elastic signal from the fluorescence and Compton contributions, and a sufficient number of scattered X-ray photons were acquired within a reasonable data collection time. The differential structure factors, Δ i S(Q), were obtained from the detailed analyses, indicating that Δ As S(Q) and Δ Se S(Q) are similar to those of glassy As 2 Se 3 except at the prepeak position, and Δ Cu S(Q) that in liquid CuI. From these findings, it can be concluded that a pseudo-binary mixture of the As 2 Se 3 network matrix and CuI-related conduction pathways would be a good structural model for this superionic glass

  16. Nanomolar determination of 4-nitrophenol based on a poly(methylene blue)-modified glassy carbon electrode.

    Science.gov (United States)

    Giribabu, Krishnamoorthy; Suresh, Ranganathan; Manigandan, Ramadoss; Munusamy, Settu; Kumar, Sivakumar Praveen; Muthamizh, Selvamani; Narayanan, Vengidusamy

    2013-10-07

    A poly(methylene blue)-modified glassy carbon electrode (PMB/GCE) was fabricated by electropolymerisation of methylene blue on a GCE and further utilized to investigate the electrochemical determination of 4-nitrophenol (4-NP) by cyclic voltammetry (CV), differential pulse voltammetry and chronocoulometry. The morphology of the PMB on GCE was examined using a scanning electron microscope (SEM). An oxidation peak of 4-NP at the PMB modified electrode was observed at 0.28 V, and in the case of bare GCE, no oxidation peak was observed, which indicates that PMB/GCE exhibits a remarkable effect on the electrochemical determination of 4-NP. Due to this remarkable effect of PMB/GCE, a sensitive and simple electrochemical method was proposed for the determination of 4-NP. The effect of the scan rate and pH was investigated to determine the optimum conditions at which the PMB/GCE exhibits a higher sensitivity with a lower detection limit. Moreover, kinetic parameters such as the electron transfer number, proton transfer number and standard heterogeneous rate constant were calculated. Under optimum conditions, the oxidation current of 4-NP is proportional to its concentration in the range of 15-250 nM with a correlation coefficient of 0.9963. The detection limit was found to be 90 nM (S/N = 3). The proposed method based on PMB/GCE is simple, easy and cost effective. To further confirm its possible application, the proposed method was successfully used for the determination of 4-NP in real water samples with recoveries ranging from 97% to 101.6%. The interference due to sodium, potassium, calcium, magnesium, copper, zinc, iron, sulphate, carbonate, chloride, nitrate and phosphate was found to be almost negligible.

  17. Determining the critical relative humidity at which the glassy to rubbery transition occurs in polydextrose using an automatic water vapor sorption instrument.

    Science.gov (United States)

    Yuan, Xiaoda; Carter, Brady P; Schmidt, Shelly J

    2011-01-01

    Similar to an increase in temperature at constant moisture content, water vapor sorption by an amorphous glassy material at constant temperature causes the material to transition into the rubbery state. However, comparatively little research has investigated the measurement of the critical relative humidity (RHc) at which the glass transition occurs at constant temperature. Thus, the central objective of this study was to investigate the relationship between the glass transition temperature (Tg), determined using thermal methods, and the RHc obtained using an automatic water vapor sorption instrument. Dynamic dewpoint isotherms were obtained for amorphous polydextrose from 15 to 40 °C. RHc was determined using an optimized 2nd-derivative method; however, 2 simpler RHc determination methods were also tested as a secondary objective. No statistical difference was found between the 3 RHc methods. Differential scanning calorimetry (DSC) Tg values were determined using polydextrose equilibrated from 11.3% to 57.6% RH. Both standard DSC and modulated DSC (MDSC) methods were employed, since some of the polydextrose thermograms exhibited a physical aging peak. Thus, a tertiary objective was to compare Tg values obtained using 3 different methods (DSC first scan, DSC rescan, and MDSC), to determine which method(s) yielded the most accurate Tg values. In general, onset and midpoint DSC first scan and MDSC Tg values were similar, whereas onset and midpoint DSC rescan values were different. State diagrams of RHc and experimental temperature and Tg and %RH were compared. These state diagrams, though obtained via very different methods, showed relatively good agreement, confirming our hypothesis that water vapor sorption isotherms can be used to directly detect the glassy to rubbery transition. Practical Application: The food polymer science (FPS) approach, pioneered by Slade and Levine, is being successfully applied in the food industry for understanding, improving, and

  18. A sensitive electrochemical sensor for paracetamole based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles

    International Nuclear Information System (INIS)

    Liu, Xue; Wang, Ling-Ling; Wang, Ya-Ya; Zhang, Xiao-Yan

    2014-01-01

    We describe an electrochemical sensor for paracetamole that is based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles. The functionalized nanospheres were prepared by a chemical route and characterized by scanning electron microscopy. The well-dispersed gold nanoparticles were anchored on the dopamine nanosphere via a chemical reduction of the gold precursor. The stepwise fabrication of the modified electrode and its electrochemical response to paracetamole were evaluated using electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode displayed improved electrocatalytic activity towards paracetamole, a lower oxidation potential (371 mV), and a larger peak current when compared to a bare electrode or other modified electrodes. The kinetic parameters governing the electro-oxidation of paracetamole were studied, and the analytical conditions were optimized. The peak current was linearly related to the concentration of paracetamole in 0.8–400 μM range, and the detection limit was 50 nM (at an SNR of 3). The method was successfully applied to the determination of paracetamole in spiked human urine samples and gave recoveries between 95.3 and 105.2 %. (author)

  19. A model for complex flows of soft glassy materials with application to flows through fixed fiber beds

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Arijit; Koch, Donald L., E-mail: dlk15@cornell.edu [School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853-5201 (United States)

    2015-11-15

    The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study. We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.

  20. A model for complex flows of soft glassy materials with application to flows through fixed fiber beds

    KAUST Repository

    Sarkar, Arijit

    2015-11-01

    © 2015 The Society of Rheology. The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study. We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.

  1. A model for complex flows of soft glassy materials with application to flows through fixed fiber beds

    KAUST Repository

    Sarkar, Arijit; Koch, Donald L.

    2015-01-01

    © 2015 The Society of Rheology. The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study. We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.

  2. Synthesis and characterization of manganese diselenide nanoparticles (MnSeNPs): Determination of capsaicin by using MnSeNP-modified glassy carbon electrode.

    Science.gov (United States)

    Sukanya, Ramaraj; Sakthivel, Mani; Chen, Shen-Ming; Chen, Tse-Wei; Al-Hemaid, Fahad M A; Ajmal Ali, M; Elshikh, Mohamed Soliman

    2018-06-02

    A new type of manganese diselenide nanoparticles (MnSeNPs) was synthesized by using a hydrothermal method. Their surface morphology, crystallinity and elemental distribution were characterized by using transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy which scrutinize the formation of the NPs. The NPs were coated on a glassy carbon electrode (GCE), and electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were applied to study the electroanalytical properties towards the oxidation of the food additive capsaicin. The modified GCE displays lower charge transfer resistance (R ct  = 29.52 Ω), a larger active surface area (0.089 cm 2 /g, and more efficient electrochemical oxidation of capsaicin compared to a MnS 2 /GCE and a bare GCE. The oxidation peak potential is 0.43 V (vs. Ag/AgCl) which is lower than that of previously reported GCEs. The sensor has a detection limit as low as 0.05 μM and an electrochemical sensitivity of 2.41 μA μM -1  cm -2 . The method was applied to the determination of capsaicin in pepper samples. Graphical abstract Electrochemical determination of capsaicin in pepper extract by using MnSeNPs modified electrode.

  3. Thermodynamic parameters of bonds in glassy materials from viscosity-temperature relationships

    International Nuclear Information System (INIS)

    Ojovan, Michael I; Travis, Karl P; Hand, Russell J

    2007-01-01

    Doremus's model of viscosity assumes that viscous flow in amorphous materials is mediated by broken bonds (configurons). The resulting equation contains four coefficients, which are directly related to the entropies and enthalpies of formation and motion of the configurons. Thus by fitting this viscosity equation to experimental viscosity data these enthalpy and entropy terms can be obtained. The non-linear nature of the equation obtained means that the fitting process is non-trivial. A genetic algorithm based approach has been developed to fit the equation to experimental viscosity data for a number of glassy materials, including SiO 2 , GeO 2 , B 2 O 3 , anorthite, diopside, xNa 2 O-(1-x)SiO 2 , xPbO-(1-x)SiO 2 , soda-lime-silica glasses, salol, and α-phenyl-o-cresol. Excellent fits of the equation to the viscosity data were obtained over the entire temperature range. The fitting parameters were used to quantitatively determine the enthalpies and entropies of formation and motion of configurons in the analysed systems and the activation energies for flow at high and low temperatures as well as fragility ratios using the Doremus criterion for fragility. A direct anti-correlation between fragility ratio and configuron percolation threshold, which determines the glass transition temperature in the analysed materials, was found

  4. Understanding the Composition Dependence of the Fragility of AgI-Ag2O-MxOy Glassy Systems

    International Nuclear Information System (INIS)

    Aniya, M

    2011-01-01

    It has been reported that the fragility in the AgI-Ag 2 O-M x O y (M = B, Ge, P, Mo) system is determined by Ag 2 O-M x O y and does not depend on the amount of AgI. This is an interesting result and provides a hint to understand the nature of the glassy state of these materials. However, the origin of such behavior has not been sufficiently discussed. In the present report a model for the above behavior is presented. According to the model, the behavior arises from the solid like nature of the network formed by Ag 2 O-M x O y and the liquid like AgI which flow between the networks. The model is consistent with the structural model of superionic glasses proposed previously.

  5. ELECTROCATALYTIC ACTIVITY FOR O2 REDUCTION OF UNSUBSTITUTED AND PERCHLORINATED IRON PHTHALOCYANINES ADSORBED ON AMINO-TERMINATED MULTIWALLED CARBON NANOTUBES DEPOSITED ON GLASSY CARBON ELECTRODES

    OpenAIRE

    CAÑETE, PAULINA; SILVA, J. FRANCISCO; ZAGAL, JOSÉ H

    2014-01-01

    Amino-functionalized multiwalled carbon nanotubes (MWCNT-NH2) were modified with Fe phthalocyanine (FePc) and perchlorinated Fe phthalocyanine (16(Cl)FePc) and deposited on glassy carbon electrodes (GCE). The electrocatalytic activity of these hybrid electrodes was examined for the reduction of molecular oxygen in alkaline media (0.2 M NaOH) using stationary and rotating disk electrodes. Electrodes containing 16(Cl)FePc are more active than those containing FePc. Electrodes containing CNTs ar...

  6. A novel electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold nanoparticles composite modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Niu, Xiuli; Yang, Wu; Wang, Guoying; Ren, Jie; Guo, Hao; Gao, Jinzhang

    2013-01-01

    In this paper, a novel and convenient electrochemical sensor based on stacked graphene nanofibers (SGNF) and gold nanoparticles (AuNPs) composite modified glassy carbon electrode (GCE) was developed for the determination of bisphenol A (BPA). The AuNPs/SGNF modified electrode showed an efficient electrocatalytic role for the oxidation of BPA, and the oxidation overpotentials of BPA were decreased significantly and the peak current increased greatly compared with bare GCE and other modified electrode. The transfer electron number (n) and the charge transfer coefficient (α) were calculated with the result as n = 4, α = 0.52 for BPA, which indicated the electrochemical oxidation of BPA on AuNPs/SGNF modified electrode was a four-electron and four-proton process. The effective surface areas of AuNPs/SGNF/GCE increased for about 1.7-fold larger than that of the bare GCE. In addition, the kinetic parameters of the modified electrode were calculated and the apparent heterogeneous electron transfer rate constant (k s ) was 0.51 s −1 . Linear sweep voltammetry was applied as a sensitive analytical method for the determination of BPA and a good linear relationship between the peak current and BPA concentration was obtained in the range from 0.08 to 250 μM with a detection limit of 3.5 × 10 −8 M. The modified electrode exhibited a high sensitivity, long-term stability and remarkable reproducible analytical performance and was successfully applied for the determination of BPA in baby bottles with satisfying results

  7. Platinum nano-cluster thin film formed on glassy carbon and the application for methanol oxidation

    International Nuclear Information System (INIS)

    Chang, Gang; Oyama, Munetaka; Hirao, Kazuyuki

    2007-01-01

    As an interesting platinum nanostructured material, a Pt nano-cluster film (PtNCF) attached on glassy carbon (GC) is reported. Through the reduction of PtCl 4 2- by ascorbic acid in the presence of GC substrate, a Pt thin continuous film composed of small nano-clusters which had a further agglomerated nanostructure of small grains could be attached on the GC surface. It was found that the electrocatalytic ability of PtNCF for the methanol oxidation was apparently higher than those of the Pt nano-clusters dispersedly attached on GC or indium in oxides. In addition, the electrocatalytic performance of PtNCF per Pt amount was superior to that of Pt black on GC. These results indicate that, in spite of the continuous nanostructures, nano-grains of PtNCF worked effectively for the catalytic electrolysis. The present PtNCF can be regarded as an interesting thin film material, which can be easily prepared by one-step chemical reduction

  8. Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Wu Kangbing; Hu Shengshui; Fei Junjie; Bai Wen

    2003-01-01

    A multi-wall carbon nanotube (MWNT) modified glassy carbon electrode (GCE) was described for the simultaneous determination of trace levels of cadmium and lead by anodic stripping voltammetry (ASV). In pH 4.5 NaAc-HAc buffer containing 0.02 mol/l KI, Cd 2+ and Pb 2+ first adsorb onto the surface of a MWNT film coated GCE and then reduce at -1.20 V. During the positive potential sweep, reduced cadmium and lead were oxidized, and two well-defined stripping peaks appeared at -0.88 and -0.62 V. Compared with a bare GCE, a MWNT film coated GCE greatly improves the sensitivity of determining cadmium and lead. Low concentration of I - significantly enhances the stripping peak currents since it induces Cd 2+ and Pb 2+ to adsorb at the electrode surface. The striping peak currents change linearly with the concentration of Cd 2+ from 2.5x10 -8 to 1x10 -5 mol/l and with that of Pb 2+ from 2x10 -8 to 1x10 -5 mol/l. The lowest detectable concentrations of Cd 2+ and Pb 2+ are estimated to be 6x10 -9 and 4x10 -9 mol/l, respectively. The high sensitivity, selectivity, and stability of this MWNT film coated electrode demonstrated its practical application for a simple, rapid and economical determination of trace levels of Cd 2+ and Pb 2+ in water samples

  9. Monolayer covalent modification of 5-hydroxytryptophan on glassy carbon electrodes for simultaneous determination of uric acid and ascorbic acid

    International Nuclear Information System (INIS)

    Lin Xiangqin; Li Yongxin

    2006-01-01

    5-Hydroxytryptophan (5-HTP) was covalently grafted on the surface of glassy carbon electrodes (GCEs) using cyclic voltammetric method in a phosphate buffer solution. The prepared electrode, denoded as 5-HTP/GCE, was characterized by X-ray photoelectron spectroscopy, cyclic voltammetry and differential pulse voltammetry (DPV). Tryptophan grafted GCE (TRP/GCE) and 5-hydroxytryptamine grafted GCE (5-HTP/GCE) were also prepared by the same method for comparison. It was found that the electrocatalytic activities toward the oxidation of uric acid (UA) and ascorbic acid (AA) was in the order of 5-HT/GCE > 5-HTP/GCE > TRP/GCE for UA oxidation and 5-HT/GCE 5-HTP/GCE > TRP/GCE for AA oxidation. However, the CV current sensitivity was estimated as 4:2:1 for 5-HTP/GCE:5-HT/GCE:TRP/GCE. The DPV peaks for UA and AA oxidation appeared at 0.07 V and 0.34 V versus SCE, respectively, allowing simultaneous determination in mixtures. A linearly response in the range of: 5.0 x 10 -7 to 1.1 x 10 -5 M with the detection limit (s/n = 3) of 2.8 x 10 -7 M for UA determination, and a linear response in the range of: 5.0 x 10 -6 to 1.0 x 10 -4 M with the detection limit of 4.2 x 10 -6 M for AA determination were obtained. This electrode was used for UA and AA determinations in human urine samples satisfactorily

  10. Laser annealing effects of the Raman laser on nitrogen implanted glassy carbon

    International Nuclear Information System (INIS)

    Barbara, D.; Prawer, S.; Jamieson, D.N.

    1996-01-01

    Raman analysis is a popular method of investigating crystallite sizes, ordering and the types of bonds that exist in ion irradiated carbon materials, namely graphite, diamond and glassy carbon (G.C.). In particular Raman spectroscopy is used in determining the tetrahedral bonding required for the elusive and potentially important new material called carbon nitride. Carbon nitride, β-C 3 N 4 , is predicted to exist in several forms. Forming the tetrahedral bond between C and N has proved troublesome bain of many experimenters. A proven method for synthesizing novel materials is ion implantation. Thus G.C. was implanted with N at low temperatures so that diffusion of the implanted N would be hindered. G.C. is a relatively hard, chemically inert, graphitic material. The opaque property of G.C. means that Raman spectroscopy will only give information about the structures that exist at the surface and near surface layers. It was decided, after observing conflicting Raman spectra at different laser powers, that an investigation of the laser annealing effects of the Raman laser on the N implanted G.C. was warranted. The results of the preliminary investigation of the effects of increasing the Raman laser power and determining a power density threshold for high dose N implanted G.C. are discussed. 4 refs., 4 figs

  11. Glassy carbon electrode modified with polyanilne/ethylenediamine for detection of copper ions

    Science.gov (United States)

    Patil, Harshada K.; Deshmukh, Megha A.; Bodkhe, Gajanan A.; Shirsat, Mahendra D.

    2018-05-01

    Increasing water pollution is having high concern, since it creates the threats to all leaving organisms of existence. Industrial sewages have not only polluted the main stream lines of water, also the ground level water is having serious contaminations. Heavy metal ions are the pollutants which are not degradable and can be accumulated on living things ultimately the excess accumulation results into the serious concerns. Therefore, it is necessary to develop the sensors which can detect the heavy metal ions up to its maximum contamination limits. Conducting polymers are the materials which possess large application spectra. This investigation reports the electrochemically synthesized polyaniline (PANI) for modification of glassy carbon electrode (GCE). Ethylenediamine (EDA) - chelating ligand used for the modification of polyaniline so as to inculcate the selectivity toward copper ions Cu (II). The electrochemical cyclic voltammetry (CV) was used for the study of redox characteristics of PANI and influence of EDA modification. The result of CV has shown the reduced oxidation and reduction peak currents after modification indicating the domination of EDA. GCE modified with PANI/EDA was then employed for the detection of divalent copper ions and have shown the affinity toward Cu ions. The detection limit achieved was equal to 10mg/lit.

  12. Voltammetric determination of bisphenol A in food package by a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Liu, M.

    2011-01-01

    A highly sensitive and mercury-free method for determination of bisphenol A (BPA) was established using a glassy carbon electrode that was modified with carboxylated multi-walled carbon nanotubes. A sensitive oxidation peak is found at 550 mV in linear sweep voltammograms at pH 7. Based on this finding, trace levels of bisphenol A can be determined over a concentration range that is linear from 10 nM to 104 nM, the correlation coefficient being 0.9983, and the detection limit (S/N = 3) being 5.0 nM. The method was successfully applied to the determination of BPA in food package. (author)

  13. Glassy carbon electrode modified with multi-walled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems.

    Science.gov (United States)

    Jain, Rajeev; Sharma, Sanjay

    2012-02-01

    A sensitive electroanalytical method for quantification of pheniramine in pharmaceutical formulation has been investigated on the basis of the enhanced electrochemical response at glassy carbon electrode modified with multi-walled carbon nanotubes in the presence of sodium lauryl sulfate. The experimental results suggest that the pheniramine in anionic surfactant solution exhibits electrocatalytic effect resulting in a marked enhancement of the peak current response. Peak current response is linearly dependent on the concentration of pheniramine in the range 200-1500 μg/mL with correlation coefficient 0.9987. The limit of detection is 58.31 μg/mL. The modified electrode shows good sensitivity and repeatability.

  14. Comparative classical and 'ab initio' molecular dynamics study of molten and glassy germanium dioxide

    International Nuclear Information System (INIS)

    Hawlitzky, M; Horbach, J; Binder, K; Ispas, S; Krack, M

    2008-01-01

    A molecular dynamics (MD) study of the static and dynamic properties of molten and glassy germanium dioxide is presented. The interactions between the atoms are modeled by the classical pair potential proposed by Oeffner and Elliott (OE) (1998 Phys. Rev. B 58 14791). We compare our results to experiments and previous simulations. In addition, an 'ab initio' method, the so-called Car-Parrinello molecular dynamics (CPMD), is applied to check the accuracy of the structural properties, as obtained by the classical MD simulations with the OE potential. As in a similar study for SiO 2 , the structure predicted by CPMD is only slightly softer than that resulting from the classical MD. In contrast to earlier simulations, both the static structure and dynamic properties are in very good agreement with pertinent experimental data. MD simulations with the OE potential are also used to study the relaxation dynamics. As previously found for SiO 2 , for high temperatures the dynamics of molten GeO 2 is compatible with a description in terms of mode coupling theory

  15. Direct chronopotentiometric analysis of riboflavin using a glassy carbon vessel as the working electrode

    Directory of Open Access Journals (Sweden)

    Brezo Tanja Ž.

    2016-01-01

    Full Text Available A new method for the determination of riboflavin (vitamin B2 was developed based on chronopotentiometry with a glassy carbon process vessel macroelectrode. The method optimisation included investigation of the most important experimental parameters: type and concentration of the supporting electrolyte, initial potential, reduction current, and the working electrode surface area. The reduction signal of riboflavin appeared at about -0.12 V vs. Ag/AgCl (3.5 mol/dm3 KCl electrode in 0.025 mol/dm3 HCl as the supporting electrolyte. A linear response was obtained in the the range of 0.05-4 mg/dm3. The limit of detection and limit of quantitation were 0.018 mg/dm3 and 0.054 mg/dm3, respectively. Due to the use of specific working electrode, a significant enhancement of the method relative sensitivity of about 10 times was achieved. The accuracy of the defined method was confirmed by HPLC analyses. The developed method was successfully applied for the quantitation of riboflavin in various pharmaceutical multivitamin preparations. [Projekat Ministarstva nauke Republike Srbije, br. III 46009

  16. Characterization of cell lines developed from the glassy-winged sharpshooter, Homalodisca coagulata (Hemiptera: Cicadellidae).

    Science.gov (United States)

    Kamita, Shizuo G; Do, Zung N; Samra, Aman I; Hagler, James R; Hammock, Bruce D

    2005-01-01

    Four continuous cell lines were established from the embryos of the glassy-winged sharpshooter, Homalodisca coagulata (Say), an economically important insect vector of bacterial pathogens of grape, almond, citrus, oleander, and other agricultural and ornamental plantings. The cell lines were designated GWSS-Z10, GWSS-Z15, GWSS-G3, and GWSS-LH. The GWSS-Z10, GWSS-Z15, and GWSS-G3 lines were cultured in Ex-Cell 401 medium supplemented with 10% fetal bovine serum (FBS), whereas the GWSS-LH line was cultured in LH medium supplemented with 20% FBS. The cell lines were characterized in terms of their morphology, growth, protein composition, and polymerase chain reaction- amplification patterns of their chromosomal deoxyribonucleic acid. The population doubling times of GWSS-Z10, GWSS-Z15, GWSS-G3, and GWSS-LH were 46.2, 90.9, 100.3, and 60.2 h, respectively. These lines should be useful for the study of insect-pathogenic viruses of leafhoppers, aphids, treehoppers, and other related insects as well as plant-pathogenic viruses that are transmitted by these insects.

  17. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone.

    Science.gov (United States)

    Shahrokhian, Saeed; Naderi, Leila; Ghalkhani, Masoumeh

    2016-04-01

    The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the glassy carbon electrode modified with different carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG), graphene oxide (GO), reduced graphene oxide (RGO) and RGO-CNT hybrids (various ratios) using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable increase in the cathodic peak current of Fu at the RGO modified GCE, compared to other modified electrodes and also bare GCE. The surface morphology and nature of the RGO film was thoroughly characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode showed two linear dynamic ranges of 0.001-2.0 μM and 2.0-10.0 μM with a detection limit of 0.3 nM for the voltammetric determination of Fu. This sensor was used successfully for Fu determination in pharmaceutical and clinical preparations. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Dihydropyridine-fused and pyridine-fused coumarins: Reduction on a glassy carbon electrode in dimethylformamide

    International Nuclear Information System (INIS)

    Nuñez-Vergara, Luis J.; Pardo-Jiménez, V.; Barrientos, C.; Olea-Azar, C.A.; Navarrete-Encina, P.A.; Squella, J.A.

    2012-01-01

    In this study, two series of dihydropyridine-fused and pyridine-fused coumarins were synthesised and electrochemically characterised in aprotic medium. In both series, the most easily reducible groups were the endocyclic carbonyl groups. The electrochemical mechanism for both types of compounds is strongly dependent on the experimental time-scale. Cyclic voltammetric (CV) reduction on a glassy carbon electrode (GCE) of the endocyclic carbonyl group of dihydropyridine-fused coumarins involves an ECEC mechanism with two electron transfer steps that are coupled with chemical reactions to produce the corresponding hemiacetal derivative. In the case of pyridine-fused coumarins, CV reduction of the endocyclic carbonyl group involves an EEC mechanism. ESR studies revealed the presence of a stabilised intermediate only for the pyridine-fused derivatives. Our theoretical study showed a spin density map of radical species delocalised mainly within the coumarin ring, indicating the reduction of the endocyclic carbonyl group. In the case of the dihydropyridine-fused derivatives, the mildly acid hydrogen of the dihydropyridine ring destabilises the radical via a father–son type reaction.

  19. Characterization of the surface redox process of adsorbed morin at glassy carbon electrodes

    International Nuclear Information System (INIS)

    Tesio, Alvaro Yamil; Granero, Adrian Marcelo; Fernandez, Hector; Zon, Maria Alicia

    2011-01-01

    The thermodynamic and kinetics of the adsorption of morin (MOR) on glassy carbon (GC) electrodes in 0.2 mol dm -3 phosphate buffer solutions (PBS, pH 7.00) was studied by both cyclic (CV) and square wave (SWV) voltammetries. The Frumkin adsorption isotherm was the best to describe the specific interaction of MOR with GC electrodes. The SWV allowed to characterize the thermodynamic and kinetics of surface quasi-reversible redox couple of MOR, using the combination of the 'quasi-reversible maximum' and the 'splitting of SW net peaks' methods. Average values obtained for the formal potential and the anodic transfer coefficient were (0.27 ± 0.02) V and (0.59 ± 0.09), respectively. Moreover, a value of formal rate constant (k s ) of 87 s -1 for the overall two-electron redox process was calculated. The SWV was also employed to generate calibration curves, which were linear in the range MOR bulk concentration (c MOR *) from 1.27 x 10 -7 to 2.50 x 10 -5 mol dm -3 . The lowest concentration experimentally measured for a signal to noise ratio of 3:1 was 1.25 x 10 -8 mol dm -3 (3 ppb).

  20. A Generic Model for Prediction of Separation Performance of Olefin/Paraffin Mixture by Glassy Polymer Membranes

    Directory of Open Access Journals (Sweden)

    A.A. Ghoreyshi

    2008-02-01

    Full Text Available The separation of olefin/paraffin mixtures is an important process in petrochemical industries, which is traditionally performed by low temperature distillation with a high-energy consumption, or complex extractive distillationand adsorption techniques. Membrane separation process is emerging as an alternative for traditional separation processes with respect to low energy and simple operation. Investigations made by various researchers on polymeric membranes it is found that special glassy polymers render them as suitable materials for olefin/paraffin mixture separation. In this regard, having some knowledge on the possible transport mechanism of these processes would play a significant role in their design and applications. In this study, separation behavior of olefin/paraffin mixtures through glassy polymers was modeled by three different approaches: the so-called dual transport model, the basic adsorption-diffusion theory and the general Maxwell-Stefan formulation. The systems chosen to validate the developed transport models are separation of ethane-ethylene mixture by 6FDA-6FpDA polyimide membrane and propane-propylene mixture by 6FDA-TrMPD polyimide membrane for which the individual sorption and permeation data are available in the literature. Acritical examination of dual transport model shows that this model fails clearly to predict even the proper trend for selectivities. The adjustment of pemeabilities by accounting for the contribution of non-selective bulk flow in the transport model introduced no improvement in the predictability of the model. The modeling results based on the basic adsorption-diffusion theory revealed that in this approach only using mixed permeability data, an acceptable result is attainable which fades out the advantages of predictibility of multicomponent separation performance from pure component data. Finally, the results obtained from the model developed based on Maxwell-Stefan formulation approach show a

  1. Collective magnetic behaviors of Fe-Ag nanostructured thin films above the percolation limit

    International Nuclear Information System (INIS)

    Alonso, J.; Fdez-Gubieda, M. L.; Barandiaran, J. M.; Svalov, A.; Sarmiento, G.; Fernandez Barquin, L.; Pedro, I. de; Orue, I.

    2009-01-01

    The magnetic behavior of sputtered and pulsed laser deposited (PLD) Fe x Ag 100-x thin films with 27≤x≤55 has been studied by means of ac and dc magnetic measurements. Sputtered samples present a continuous decrease in the magnetization, down to 310 K for x=30, where a magnetic transition into a superparamagnetic state with the presence of dipolar interactions is observed. The ac susceptibility measurements indicate that this transition resembles that of three dimensional glassy systems. Sputtered samples with higher concentration of Fe present a similar but slower thermal evolution of magnetization. PLD samples with x≥50 show a Curie-Weiss-type transition above ∼200 K triggered by direct exchange interactions. As the temperature decreases, the system behaves like a ferromagnet and below ∼75 K, a transition into a cluster-glass state appears. As the composition decreases, these phenomena vanish

  2. The influence of Ge on optical and thermo- mechanical properties of S-Se chalcogenide glasses

    Science.gov (United States)

    Samudrala, Kavitha; Babu Devarasetty, Suresh

    2018-05-01

    S-Se-Ge glasses were prepared by melt quenching method to investigate the effect of Germanium on thermo-mechanical and optical properties of chalcogenide glasses. The glassy nature of the samples has been verified by x-ray diffraction and DSC studies that the samples are glassy in nature. The optical band gap of the samples was estimated by the absorption spectrum fitting method. The optical band gap increased from 1.61 ev for x = 0 sample to 1.90 ev for x = 40 sample and is explained in terms of cohesive energies. The basic thermo-mechanical parameters such as micro-hardness, Volume (Vh) and formation energy (Eh) of micro voids in the glassy network, as well as the modulus of Elasticity (E) have been calculated for prepared glasses.in present glasses. The variation in these parameters with Ge content correlated with heat of atomization of alloys.

  3. Electrochemical Reduction of Oxygen on Anthraquinone/Carbon Nanotubes Nanohybrid Modified Glassy Carbon Electrode in Neutral Medium

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2013-01-01

    Full Text Available The electrochemical behaviors of monohydroxy-anthraquinone/multiwall carbon nanotubes (MHAQ/MWCNTs nanohybrid modified glassy carbon (MHAQ/MWCNTs/GC electrodes in neutral medium were investigated; also reported was their application in the electrocatalysis of oxygen reduction reaction (ORR. The resulting MHAQ/MWCNTs nanohybrid was characterized by scanning electron microscope (SEM and transmission electron microscope (TEM. It was found that the ORR at the MHAQ/MWCNTs/GC electrode occurs irreversibly at a potential about 214 mV less negative than at a bare GC electrode in pH 7.0 buffer solution. Cyclic voltammetric and rotating disk electrode (RDE techniques indicated that the MHAQ/MWCNTs nanohybrid has high electrocatalytic activity for the two-electron reduction of oxygen in the studied potential range. The kinetic parameters of ORR at the MHAQ/MWCNTs nanohybrid modified GC electrode were also determined by RDE and EIS techniques.

  4. Voltammetric determination of paracetamole using a glassy carbon electrode modified with Prussian Blue and a molecularly imprinted polymer, and ratiometric read-out of two signals

    International Nuclear Information System (INIS)

    Dai, Yunlong; Li, Xueyan; Lu, Xiaojing; Kan, Xianwen

    2016-01-01

    The authors report on a ratiometric electrochemical sensor for paracetamole (PR) which was fabricated by successively electropolymerizing a layer of Prussian blue (PB) and a layer of molecularly imprinted polypyrrole (MIP) on the surface of a glassy carbon electrode (GCE). The binding of PR molecules to the MIP has two effects: The first is an increase of the oxidation current for PR at 0.42 V (vs. SCE), and the second is a decrease in the current for PB (at 0.18 V) due to partial blocking of the channels which results in reduced electron transmissivity. Both currents, and in particular their ratio, can serve as analytical information. Under optimized conditions, the sensor displays enhanced sensitivity for PR in the 1.0 nM to 0.1 mM concentration range and a 0.53 nM lower limit of detection. The sensor was applied to the determination of PR in tablets and urines where it gave recoveries in the range between 94.6 and 104.9 %. This dual-signal (ratiometric) detection scheme (using electro polymerized Prussian Blue and analyte-specific MIP) in our perception has a wide scope in that it may be applied to numerous other electro active species for which specific MIP can be made available. (author)

  5. Rb-Sr and Sm-Nd Isotopic Studies of Lunar Green and Orange Glasses

    Science.gov (United States)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.

    2012-01-01

    Lunar volcanic glassy beads have been considered as quenched basaltic magmas derived directly from deep lunar mantle during fire-fountaining eruptions [1]. Since these sub-mm size glassy melt droplets were cooled in a hot gaseous medium during free flight [2], they have not been subject to mineral fractionations. Thus, they represent primary magmas and are the best samples for the investigation of the lunar mantle. Previously, we presented preliminary Rb- Sr and Sm-Nd isotopic results for green and orange glassy samples from green glass clod 15426,63 and orange soil 74220,44, respectively [3]. Using these isotopic data, initial Sr-87/Sr-86 and Nd ratios for these pristine mare glass sources can be calculated from their respective crystallization ages previously determined by other age-dating techniques. These isotopic data were used to evaluate the mineralogy of the mantle sources. In this report, we analyzed additional glassy samples in order to further characterize isotopic signatures of their source regions. Also, we'll postulate a relationship between these two major mare basalt source mineralogies in the context of lunar magma ocean dynamics.

  6. Glassy formation ability, magnetic properties and magnetocaloric effect in Al27Cu18Er55 amorphous ribbon

    Science.gov (United States)

    Li, Lingwei; Xu, Chi; Yuan, Ye; Zhou, Shengqiang

    2018-05-01

    In this work, we have fabricated the Al27Cu18Er55 amorphous ribbon with good glassy formation ability by melt-spinning technology. A broad paramagnetic (PM) to ferromagnetic (FM) transition (second ordered) together with a large reversible magnetocaloric effect (MCE) in Al27Cu18Er55 amorphous ribbon was observed around the Curie temperature TC ∼ 11 K. Under the magnetic field change (ΔH of 0-7 T, the values of MCE parameter of the maximum magnetic entropy change (-ΔSMmax) and refrigerant capacity (RC) for Al27Cu18Er55 amorphous ribbon reach 21.4 J/kg K and 599 J/kg, respectively. The outstanding glass forming ability as well as the excellent magneto-caloric properties indicate that Al27Cu18Er55 amorphous could be a good candidate for low temperature magnetic refrigeration.

  7. Influence of thermal history on the photostructural changes in glassy As15S85 studied by Raman scattering and ab initio calculations

    International Nuclear Information System (INIS)

    Kolar, J.; Strizik, L.; Kohoutek, T.; Wagner, T.; Voyiatzis, G. A.; Chrissanthopoulos, A.; Yannopoulos, S. N.

    2013-01-01

    Photostructural changes—the hallmark of non-crystalline chalcogenides—are in essence the basis of a number of photoinduced effects, i.e., changes of their physical properties, which are exploited in a variety of applications, especially in photonics and optoelectronics. Despite the vast number of investigations of photostructural changes, there is currently lack of systematic studies on how the thermal history, which affects glass structure, modifies the extent of photostructural changes. In this article, we study the role of thermal history on photostructural changes in glassy As 15 S 85 . This particular sulfur-rich composition has been chosen based on the colossal photostructural response it exhibits under near-band gap light irradiation, which inherently originates from its nanoscale phase-separated nature. To control the thermal history, the glass was quenched to various temperatures and each of these quenched products was annealed under four different conditions. Off-resonant Raman scattering was used to study the equilibrium study of each product. Structural changes of interest involve changes of the sulfur atoms participating into S 8 rings and S n chains. Their ratio was found to depend on quenching/annealing conditions. Near-band gap light was used to perturb the rings-to-chain ratio and at the same time to record these changes through Raman scattering, revealing an intricate behavior of photostructural changes. Ab initio calculations were employed to determine the stability of various sulfur clusters/molecules thus aiding the correlation of the particular photo-response of glassy As 15 S 85 with its structural constituents

  8. A novel voltammetric sensor for sensitive detection of mercury(II) ions using glassy carbon electrode modified with graphene-based ion imprinted polymer

    Energy Technology Data Exchange (ETDEWEB)

    Ghanei-Motlagh, Masoud, E-mail: m.ghaneimotlagh@yahoo.com [Young Researchers and Elite Club, Kerman Branch, Islamic Azad University, Kerman (Iran, Islamic Republic of); Taher, Mohammad Ali; Heydari, Abolfazl [Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Ghanei-Motlagh, Reza [Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Gupta, Vinod K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Department of Applied Chemistry, University of Johannesburg, Johannesburg (South Africa)

    2016-06-01

    In this paper, a novel strategy was proposed to prepare ion-imprinted polymer (IIP) on the surface of reduced graphene oxide (RGO). Polymerization was performed using methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, 2,2′–((9E,10E)–1,4–dihydroxyanthracene–9,10–diylidene) bis(hydrazine–1–carbothioamide) (DDBHCT) as the chelating agent and ammonium persulfate (APS) as initiator, via surface imprinted technique. The RGO–IIP was characterized by means of Fourier transform infrared spectroscopy (FT–IR), field emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The electrochemical procedure was based on the accumulation of Hg(II) ions at the surface of a modified glassy carbon electrode (GCE) with RGO–IIP. The prepared RGO–IIP sensor has higher voltammetric response compared to the non-imprinted polymer (NIP), traditional IIP and RGO. The RGO–IIP modified electrode exhibited a linear relationship toward Hg(II) concentrations ranging from 0.07 to 80 μg L{sup −1}. The limit of detection (LOD) was found to be 0.02 μg L{sup −1} (S/N = 3), below the guideline value from the World Health Organization (WHO). The applicability of the proposed electrochemical sensor to determination of mercury(II) ions in different water samples was reported. - Highlights: • The novel Hg(II)-imprinted polymer was synthesized and characterized. • The resulting RGO–IIP was applied for electrochemical monitoring of Hg(II) ions. • The proposed sensor was successfully applied for determination of Hg(II) in real water samples.

  9. Layer-by-layer self-assembling copper tetrasulfonated phthalocyanine on carbon nanotube modified glassy carbon electrode for electro-oxidation of 2-mercaptoethanol

    International Nuclear Information System (INIS)

    Shaik, Mahabul; Rao, V.K.; Gupta, Manish; Pandey, P.

    2012-01-01

    This paper describes the electrocatalytic activity of layer-by-layer self-assembled copper tetrasulfonated phthalocyanine (CuPcTS) on carbon nanotube (CNT)-modified glassy carbon (GC) electrode. CuPcTS is immobilized on the negatively charged CNT surface by alternatively assembling a cationic poly(diallyldimethylammonium chloride) (PDDA) layer and a CuPcTS layer. UV–vis absorption spectra and electrochemical measurements suggested the successive linear depositions of the bilayers of CuPcTs and PDDA on CNT. The surface morphology was observed using scanning electron microscopy. The viability of this CuPcTS/PDDA/CNT modified GC electrode as a redox mediator for the anodic oxidation and sensitive amperometric determination of 2-mercaptoethanol (2-ME) in alkaline conditions is described. The effect of number of bilayers of CuPcTS/PDDA and pH on electrochemical oxidation of 2-ME was studied. The proposed electrochemical sensor displayed excellent characteristics towards the determination of 2-ME in 0.1 M NaOH; such as low overpotentials (− 0.15 V vs Ag/AgCl), linear concentration range of 3 × 10 −5 M to 6 × 10 −3 M, and with a detection limit of 2.5 × 10 −5 M using simple amperometry. - Highlights: ► Carbon nanotubes (CNT) were drop-dried on glassy carbon electrode (GCE). ► Copper tetrasulfonated phthalocyanine (CuPcTS) was deposited on CNT/GCE. ► Layer-by-layer self-assembling method is used for depositing CuPcTS. ► Electrocatalytic oxidation of 2-mercaptoethanol (ME) was studied at this electrode ► The detection limit of ME at modified electrode was 25 μM by amperometry.

  10. Immobilization of CotA, an extremophilic laccase from Bacillus subtilis, on glassy carbon electrodes for biofuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Beneyton, T.; El Harrak, A.; Griffiths, A.D.; Taly, V. [Institut de Science et d' Ingenierie Supramoleculaire, CNRS UMR, Strasbourg (France); Hellwig, P. [Institut de Chimie, Universite de Strasbourg, CNRS UMR, Strasbourg (France)

    2011-01-15

    Thanks to their high stability over a wide range of experimental conditions, extremophilic enzymes represent an interesting alternative to mesophilic enzymes as catalysts for biofuel cell applications. In the present work, we report for the first time the immobilization of a thermophilic laccase (CotA from Bacillus subtilis endospore coat) on glassy carbon electrodes functionalized via electrochemical reduction of in situ generated aminophenyl monodiazonium salts. We compare the performance of CotA-modified electrodes for the reduction of O{sub 2} to mutant variants and demonstrate that the measured electrical current is directly correlated to the catalytic efficiencies (k{sub cat}/K{sub m}) of the immobilized enzyme. CotA-modified electrodes showed an optimal operation temperature of 45-50 C and stable catalytic activity for at least 7 weeks. (author)

  11. Trans-membrane electron transfer in red blood cells immobilized in a chitosan film on a glassy carbon electrode

    International Nuclear Information System (INIS)

    Yu, Chunmei; Wang, Li; Zhu, Zhenkun; Bao, Ning; Gu, Haiying

    2014-01-01

    We have studied the trans-membrane electron transfer in human red blood cells (RBCs) immobilized in a chitosan film on a glassy carbon electrode (GCE). Electron transfer results from the presence of hemoglobin (Hb) in the RBCs. The electron transfer rate (k s ) of Hb in RBCs is 0.42 s −1 , and <1.13 s −1 for Hb directly immobilized in the chitosan film. Only Hb molecules in RBCs that are closest to the plasma membrane and the surface of the electrode can undergo electron transfer to the electrode. The immobilized RBCs displayed sensitive electrocatalytic response to oxygen and hydrogen peroxide. It is believed that this cellular biosensor is of potential significance in studies on the physiological status of RBCs based on observing their electron transfer on the modified electrode. (author)

  12. Trapped electron decay by the thermally-assisted tunnelling to electron acceptors in glassy matrices. A computer simulation study

    International Nuclear Information System (INIS)

    Feret, B.; Bartczak, W.M.; Kroh, J.

    1991-01-01

    The Redi-Hopefield quantum mechanical model of the thermally-assisted electron transfer has been applied to simulate the decay of trapped electrons by tunnelling to electron acceptor molecules added to the glassy matrix. It was assumed that the electron energy levels in donors and acceptors are statistically distributed and the electron excess energy after transfer is dissipated in the medium by the electron-phonon coupling. The electron decay curves were obtained by the method of computer simulation. It was found that for a given medium there exists a certain preferred value of the electronic excess energy which can be effectively converted into the matrix vibrations. If the mismatch of the electron states on the donor and acceptor coincides with the ''resonance'' energy the overall kinetics of electron transfer is accelerated. (author)

  13. Nonequilibrium steady state and induced currents of a mesoscopically glassy system: interplay of resistor-network theory and Sinai physics.

    Science.gov (United States)

    Hurowitz, Daniel; Rahav, Saar; Cohen, Doron

    2013-12-01

    We introduce an explicit solution for the nonequilibrium steady state (NESS) of a ring that is coupled to a thermal bath, and is driven by an external hot source with log-wide distribution of couplings. Having time scales that stretch over several decades is similar to glassy systems. Consequently there is a wide range of driving intensities where the NESS is like that of a random walker in a biased Brownian landscape. We investigate the resulting statistics of the induced current I. For a single ring we discuss how sign of I fluctuates as the intensity of the driving is increased, while for an ensemble of rings we highlight the fingerprints of Sinai physics on the distribution of the absolute value of I.

  14. Effect of Ge addition on mechanical properties and fracture behavior of Cu-Zr-Al bulk metallic glass

    International Nuclear Information System (INIS)

    Malekan, M.; Shabestari, S.G.; Gholamipour, R.; Seyedein, S.H.

    2009-01-01

    Effect of the addition of a small amount of Ge on mechanical properties and fracture behavior of Cu 50 Zr 43 Al 7 (at.%) bulk metallic glass were studied. The Cu 50 Zr 43 Al 7 alloy has a surprising glass-forming ability (GFA), and the glassy rods up to 4 mm in diameter can be formed. Partial addition of Ge causes the crystalline phases precipitate in the glassy matrix of (Cu 50 Zr 43 Al 7 ) 100-x Ge x (x = 0, 1, 2) rods with a diameter of 4 mm. In uniaxial compression, Cu 50 Zr 43 Al 7 bulk metallic glass exhibit high strength of 1692 MPa and very limited plasticity of 0.05%. When Ge increases from 0 to 2 at.%, the strength decreases, but plastic strain increases about 2.5%. Fracture surface and shear bands of samples were investigated by scanning electron microscopy (SEM).

  15. Electrocrystallization of Au nanoparticles on glassy carbon from HClO4 solution containing [AuCl4]-

    International Nuclear Information System (INIS)

    Komsiyska, L.; Staikov, G.

    2008-01-01

    The mechanism and kinetics of electrocrystallization of Au nanoparticles on glassy carbon (GC) were investigated in the system GC/1 mM KAuCl 4 + 0.1 M HClO 4 . Experimental results show that the gold electrodeposition follows the so-called Volmer-Weber growth mechanism involving formation and growth of 3D Au nanoparticles on an unmodified GC substrate. The analysis of current transients shows that at relatively positive electrode potentials (E ≥ 0.84 V) the deposition kinetics corresponds to the theoretical model for progressive nucleation and diffusion-controlled 3D growth of Au nanoparticles. The potential dependence of the nucleation rate extracted from the current transients is in agreement with the atomistic theory of nucleation. At sufficiently negative electrode potentials (E ≤ 0.64 V) the nucleation frequency becomes very high and the nucleation occurs instantaneously. Based on this behaviour is applied a potentiostatic double-pulse routine, which allows controlled electrodeposition of Au nanoparticles with a relatively narrow size distribution

  16. Sensitive electrochemical determination of α-fetoprotein using a glassy carbon electrode modified with in-situ grown gold nanoparticles, graphene oxide and MWCNTs acting as signal amplifiers

    International Nuclear Information System (INIS)

    Gao, Yan-Sha; Zhu, Xiao-Fei; Yang, Tao-Tao; Xu, Jing-Kun; Zhang, Kai-Xin; Lu, Li-Min

    2015-01-01

    The authors describe an electrochemical immunoassay for α-fetoprotein (α-FP) using a glassy carbon electrode (GCE) modified with a nanocomposite made from gold nanoparticles, graphene oxide and multi-walled carbon nanotubes (AuNPs/GO-MWCNTs) and acting as a signal amplification matrix. The nanocomposite was synthesized in a one-pot redox reaction between GO and HAuCl 4 without using an additional reductant. The stepwise assembly of the immunoelectrode was characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy. The interaction of antigen and antibody on the surface of the electrode creates a barrier for electrons and causes retarded electron transfer, this resulting in decreased signals in differential pulse voltammetry of hexacyanoferrate which is added as an electrochemical probe. Using this strategy and by working at a potential of 0.2 V (vs. SCE), a wide analytical range (0.01 - 100 ng∙mL -1 ) is covered. The correlation coefficient is 0.9929, and the limit of detection is as low as 3 pg∙mL -1 at a signal-to-noise ratio of 3. This electrochemical immunoassay combines the specificity of an immunological detection scheme with the sensitivity of an electrode modified with AuNPs and GO-MWCNTs. (author)

  17. MWCNTs/Cu(OH){sub 2} nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac

    Energy Technology Data Exchange (ETDEWEB)

    Arvand, Majid, E-mail: arvand@guilan.ac.ir; Gholizadeh, Tahereh M.; Zanjanchi, Mohammad Ali

    2012-08-01

    This paper describes the development and utilization of a new nanocomposite consisting of Cu(OH){sub 2} nanoparticles, hydrophobic ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate (EMIMPF{sub 6}) and multiwalled carbon nanotubes for glassy carbon electrode modification. The nanocomposite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) along with energy-dispersive X-ray spectroscopy (EDX). The modified electrode was used for electrochemical characterization of diclofenac. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity with low overpotential for the determination of diclofenac in the range from 0.18 to 119 {mu}M, with a detection limit of 0.04 {mu}M. Electrochemical studies suggested that the MWCNTs/Cu(OH){sub 2} nanoparticles/IL nanocomposite modified electrode provided a synergistic augmentation on the voltammetric behavior of electrochemical oxidation of diclofenac, which was indicated by the improvement of anodic peak current. Highlights: Black-Right-Pointing-Pointer This work examines oxidation of diclofenac at a nanocomposite modified electrode. Black-Right-Pointing-Pointer The salient feature of this electrode is large diffusion coefficient. Black-Right-Pointing-Pointer The proposed electrode decreased overpotential of diclofenac electrooxidation. Black-Right-Pointing-Pointer The modified electrode has good stability and reproducibility.

  18. Laser annealing effects of the Raman laser on nitrogen implanted glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Barbara, D.; Prawer, S.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Raman analysis is a popular method of investigating crystallite sizes, ordering and the types of bonds that exist in ion irradiated carbon materials, namely graphite, diamond and glassy carbon (G.C.). In particular Raman spectroscopy is used in determining the tetrahedral bonding required for the elusive and potentially important new material called carbon nitride. Carbon nitride, {beta}-C{sub 3}N{sub 4}, is predicted to exist in several forms. Forming the tetrahedral bond between C and N has proved troublesome bain of many experimenters. A proven method for synthesizing novel materials is ion implantation. Thus G.C. was implanted with N at low temperatures so that diffusion of the implanted N would be hindered. G.C. is a relatively hard, chemically inert, graphitic material. The opaque property of G.C. means that Raman spectroscopy will only give information about the structures that exist at the surface and near surface layers. It was decided, after observing conflicting Raman spectra at different laser powers, that an investigation of the laser annealing effects of the Raman laser on the N implanted G.C. was warranted. The results of the preliminary investigation of the effects of increasing the Raman laser power and determining a power density threshold for high dose N implanted G.C. are discussed. 4 refs., 4 figs.

  19. Comparison of glassy carbon and boron doped diamond electrodes: Resistance to biofouling

    Energy Technology Data Exchange (ETDEWEB)

    Trouillon, Raphael, E-mail: raphael.trouillon06@imperial.ac.u [Department of Bioengineering, Imperial College London, Royal School of Mines Building, London SW7 2AZ (United Kingdom); O' Hare, Danny [Department of Bioengineering, Imperial College London, Royal School of Mines Building, London SW7 2AZ (United Kingdom)

    2010-09-01

    Carbon based electrodes are widely used for in vivo and in vitro electrochemical studies. In particular, monoamine neurochemistry has been investigated using carbon microfibre electrodes. Similarly, glassy carbon (GC) is the preferred material for many biochemical applications, such as electrochemical detection in chromatography. More recently, boron doped diamond (BDD) has been utilized for biosensing, as its carbon sp{sup 3} structure is expected to provide better resistance to analyte fouling. However, the main factor limiting the use of electrochemical sensors for biological studies is the effect of the biological matrix. Indeed, in vivo or in situ measurements expose the sensor to a complex matrix of proteins, which adsorb on the sensing surface and interfere with the electrochemical measurements. Here, we compare the performance of three carbon based electrodes: GC, GC with low surface oxides and BDD. The redox species ruthenium(III) hexaammine (outer-sphere), ferrocyanide (surface sensitive) and the biologically significant dopamine have been investigated in protein and blood-mimicking matrices. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to examine the effect of spectator molecules and reaction products on electrode mechanisms. Our results show that BDD generally exhibits the best performance for most conditions and reactions and should therefore be preferred for measurements in biologically fouling environments. Furthermore, surface oxides seem also to improve resistance of the GC electrode to biofouling.

  20. Laser annealing effects of the Raman laser on nitrogen implanted glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Barbara, D; Prawer, S; Jamieson, D N [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Raman analysis is a popular method of investigating crystallite sizes, ordering and the types of bonds that exist in ion irradiated carbon materials, namely graphite, diamond and glassy carbon (G.C.). In particular Raman spectroscopy is used in determining the tetrahedral bonding required for the elusive and potentially important new material called carbon nitride. Carbon nitride, {beta}-C{sub 3}N{sub 4}, is predicted to exist in several forms. Forming the tetrahedral bond between C and N has proved troublesome bain of many experimenters. A proven method for synthesizing novel materials is ion implantation. Thus G.C. was implanted with N at low temperatures so that diffusion of the implanted N would be hindered. G.C. is a relatively hard, chemically inert, graphitic material. The opaque property of G.C. means that Raman spectroscopy will only give information about the structures that exist at the surface and near surface layers. It was decided, after observing conflicting Raman spectra at different laser powers, that an investigation of the laser annealing effects of the Raman laser on the N implanted G.C. was warranted. The results of the preliminary investigation of the effects of increasing the Raman laser power and determining a power density threshold for high dose N implanted G.C. are discussed. 4 refs., 4 figs.

  1. Comparison of glassy carbon and boron doped diamond electrodes: Resistance to biofouling

    International Nuclear Information System (INIS)

    Trouillon, Raphael; O'Hare, Danny

    2010-01-01

    Carbon based electrodes are widely used for in vivo and in vitro electrochemical studies. In particular, monoamine neurochemistry has been investigated using carbon microfibre electrodes. Similarly, glassy carbon (GC) is the preferred material for many biochemical applications, such as electrochemical detection in chromatography. More recently, boron doped diamond (BDD) has been utilized for biosensing, as its carbon sp 3 structure is expected to provide better resistance to analyte fouling. However, the main factor limiting the use of electrochemical sensors for biological studies is the effect of the biological matrix. Indeed, in vivo or in situ measurements expose the sensor to a complex matrix of proteins, which adsorb on the sensing surface and interfere with the electrochemical measurements. Here, we compare the performance of three carbon based electrodes: GC, GC with low surface oxides and BDD. The redox species ruthenium(III) hexaammine (outer-sphere), ferrocyanide (surface sensitive) and the biologically significant dopamine have been investigated in protein and blood-mimicking matrices. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to examine the effect of spectator molecules and reaction products on electrode mechanisms. Our results show that BDD generally exhibits the best performance for most conditions and reactions and should therefore be preferred for measurements in biologically fouling environments. Furthermore, surface oxides seem also to improve resistance of the GC electrode to biofouling.

  2. Comparative Study of Radiation Shielding Parameters for Bismuth Borate Glasses

    OpenAIRE

    Kaundal, Rajinder Singh

    2016-01-01

    Melt and quench technique was used for the preparation of glassy samples of the composition x Bi2O3-(1-x) B2O3 where x= .05 to .040. XCOM computer program is used for the evaluation of gamma-ray shielding parameters of the prepared glass samples. Further the values of mass attenuation coefficients, effective atomic number and half value layer for the glassy samples have been calculated in the energy range from 1KeV to 100GeV. Rigidity of the glass samples have been analyzed by molar volume of...

  3. Influences of hydrostatic pressure during casting and Pd content on as-cast phase in Zr-Al-Ni-Cu-Pd bulk alloys

    International Nuclear Information System (INIS)

    Kato, Hidemi; Inoue, Akihisa; Saida, Junji

    2004-01-01

    The influences of sample diameter (D), Pd content (x), and hydrostatic pressure (P) in a chamber during casting on the structure of as cast Zr 65 Al 7.5 Ni 10 Cu 17.5-x Pd x (x=10,17.5 at.%) bulk alloys were investigated. Zr 65 Al 7.5 Ni 10 Cu 7.5 Pd 10 and Zr 65 Al 7.5 Ni 10 Pd 17.5 alloys (D=3 mm) cast in a vacuum chamber (P∼4.0x10 -3 Pa) were mainly of the tetragonal-Zr 2 Ni equilibrium phase and nanosize icosahedral primary phase, respectively, while the same alloys cast in inert argon gas at atmospheric pressure (P∼0.1 MPa) were of the single glassy phase. Due to the higher cooling rate obtained by decreasing the sample diameter (D=2 mm) even in the vacuum chamber, the Zr 65 Al 7.5 Ni 10 Pd 17.5 alloy was still of the icosahedral phase, while the Zr 65 Al 7.5 Ni 10 Cu 7.5 Pd 10 alloy froze into a single glassy phase. These results indicate that the temperature- and time- transformation curves for the icosahedral and subsequent equilibrium phase formations in the alloy system shifts to a shorter time side with decreasing P, and the pressure sensitivity of the icosahedral phase formation increases with x

  4. Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wu Kangbing; Hu Shengshui; Fei Junjie; Bai Wen

    2003-08-18

    A multi-wall carbon nanotube (MWNT) modified glassy carbon electrode (GCE) was described for the simultaneous determination of trace levels of cadmium and lead by anodic stripping voltammetry (ASV). In pH 4.5 NaAc-HAc buffer containing 0.02 mol/l KI, Cd{sup 2+} and Pb{sup 2+} first adsorb onto the surface of a MWNT film coated GCE and then reduce at -1.20 V. During the positive potential sweep, reduced cadmium and lead were oxidized, and two well-defined stripping peaks appeared at -0.88 and -0.62 V. Compared with a bare GCE, a MWNT film coated GCE greatly improves the sensitivity of determining cadmium and lead. Low concentration of I{sup -} significantly enhances the stripping peak currents since it induces Cd{sup 2+} and Pb{sup 2+} to adsorb at the electrode surface. The striping peak currents change linearly with the concentration of Cd{sup 2+} from 2.5x10{sup -8} to 1x10{sup -5} mol/l and with that of Pb{sup 2+} from 2x10{sup -8} to 1x10{sup -5} mol/l. The lowest detectable concentrations of Cd{sup 2+} and Pb{sup 2+} are estimated to be 6x10{sup -9} and 4x10{sup -9} mol/l, respectively. The high sensitivity, selectivity, and stability of this MWNT film coated electrode demonstrated its practical application for a simple, rapid and economical determination of trace levels of Cd{sup 2+} and Pb{sup 2+} in water samples.

  5. Stochastic model prediction of the Kovacs' ``expansion gap'' effect for volume relaxation in glassy polymers

    Science.gov (United States)

    Medvedev, Grigori; Caruthers, James

    2015-03-01

    The classic series of experiments by A. Kovacs on volume relaxation following temperature jumps for poly(vinyl acetate), PVAc, in the Tg region revealed the richness and complexity of the viscoelastic behavior of glassy materials. Over the years no theoretical model has been able to predict all the features of the Kovacs data, where the so-called ``expansion gap'' effect proved to be particularly challenging. Specifically, for a series of up-jump experiments with different initial temperatures, Ti, but with the same final temperature, as the relaxation approaches equilibrium it would be expected that the effective relaxation time would be the same regardless of Ti; however, Kovacs observed that the dependence on Ti persisted seemingly all the way to equilibrium. In this communication we will show that a recently developed Stochastic Constitutive Model (SCM) that explicitly acknowledges the nano-scale dynamic heterogeneity of glasses can capture the ``expansion gap'' as well as the rest of the Kovacs data set for PVAc. It will be shown that the success of the SCM is due to its inherent thermo-rheological complexity.

  6. Electrochemical behaviour of dopamine at covalent modified glassy carbon electrode with l-cysteine: preliminary results

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Martínez-Huitle

    2009-01-01

    Full Text Available The surface of glassy carbon (GC electrode has been modified by oxidation of L-cysteine. The covalent modified GC electrode with L-Cysteine has been studied, according the supporting electrolyte used. Favourable interactions between the L-cysteine film and DA enhance the current response compared to that at the Nafion GC and bare GC electrodes, achieving better performances than those other electrodes. This behaviour was as result of the adsorption of the cysteine layer film, compact and uniform formation; depending on L-cysteine solution (phosphate buffer or chloridric acid supporting electrolyte used for modifying GC surface. In cyclic voltammetric measurements, modified electrodes can successfully separate the oxidation/reduction DA peaks in different buffer solutions, but an evident dependence in the response was obtained as function of pH and modified electrode. The modified electrode prepared with L-cysteine/HCl solution was used to obtain the calibration curve and it exhibited a stable and sensitive response to DA. The results are described and discussed in the light of the existing literature.

  7. The Enhanced Photo-Electrochemical Detection of Uric Acid on Au Nanoparticles Modified Glassy Carbon Electrode

    Science.gov (United States)

    Shi, Yuting; Wang, Jin; Li, Shumin; Yan, Bo; Xu, Hui; Zhang, Ke; Du, Yukou

    2017-07-01

    In this work, a sensitive and novel method for determining uric acid (UA) has been developed, in which the glassy carbon electrode (GCE) was modified with electrodeposition Au nanoparticles and used to monitor the concentration of UA with the assistant of visible light illumination. The morphology of the Au nanoparticles deposited on GCE surface were characterized by scanning electron microscope (SEM) and the nanoparticles were found to be well-dispersed spheres with the average diameter approaching 26.1 nm. A series of cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements have revealed that the introduction of visible light can greatly enhance both the strength and stability of response current due to the surface plasmon resonance (SPR). Specifically, the DPV showed a linear relationship between peak current and UA concentration in the range of 2.8 to 57.5 μM with the equation of I pa (μA) = 0.0121 c UA (μM) + 0.3122 ( R 2 = 0.9987). Herein, the visible light illuminated Au/GCE possesses a potential to be a sensitive electrochemical sensor in the future.

  8. Electrooxidation of antihistamine drug methdilazine and its analysis in human urine and blood samples

    Directory of Open Access Journals (Sweden)

    Nagaraj P. Shetti

    2016-12-01

    Full Text Available The electrochemical oxidation of an antihistamine drug, methdilazine, was studied in 9.2 pH with 0.2 M phosphate buffer as supporting electrolyte at 25 ± 0.2°C. Glassy carbon electrode was used to perform the experiment at cyclic voltammetry, linear sweep voltammetry and differential pulse voltammetric techniques. The dependence of the current on pH, concentration and scan rate were investigated. Differential pulse voltammetric technique was adopted to know the linear relation between peak current and methdilazine concentration. The linear response was obtained in the range of 3.0 μM–1.0 mM with a detection limit of 0.1 μM. The proposed method was also applied for the quantitative determination of methdilazine in pharmaceuticals and biological samples.

  9. Dynamic actuation of glassy polymersomes through isomerization of a single azobenzene unit at the block copolymer interface

    Science.gov (United States)

    Molla, Mijanur Rahaman; Rangadurai, Poornima; Antony, Lucas; Swaminathan, Subramani; de Pablo, Juan J.; Thayumanavan, S.

    2018-06-01

    Nature has engineered exquisitely responsive systems where molecular-scale information is transferred across an interface and propagated over long length scales. Such systems rely on multiple interacting, signalling and adaptable molecular and supramolecular networks that are built on dynamic, non-equilibrium structures. Comparable synthetic systems are still in their infancy. Here, we demonstrate that the light-induced actuation of a molecularly thin interfacial layer, assembled from a hydrophilic- azobenzene -hydrophobic diblock copolymer, can result in a reversible, long-lived perturbation of a robust glassy membrane across a range of over 500 chemical bonds. We show that the out-of-equilibrium actuation is caused by the photochemical trans-cis isomerization of the azo group, a single chemical functionality, in the middle of the interfacial layer. The principles proposed here are implemented in water-dispersed nanocapsules, and have implications for on-demand release of embedded cargo molecules.

  10. Preparation and characterization of diethylene glycol bis(2-aminophenyl) ether-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Isbir, Aybueke A. [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Solak, Ali Osman [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey)]. E-mail: osolak@science.ankara.edu.tr; Ustuendag, Zafer [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Bilge, Selen [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Kilic, Zeynel [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey)

    2006-07-28

    Diethylene glycol bis(2-aminophenyl) ether (DGAE) diazonium salt was covalently electrografted on a glassy carbon (GC) surface and behavior of this novel surface was investigated. Synthesis of DGAE diazonium salt (DGAE-DAS) and in situ modification of GC electrode were performed in aqueous media containing NaNO{sub 2}, keeping the temperature below +4 deg. C. For the characterization of the modified electrode surface by cyclic voltammetry, dopamine (DA) was used to prove the attachment of the DGAE-DAS on the GC surface. Raman spectroscopy and electrochemical impedance spectroscopy (EIS) were used to observe the molecular bound properties of the adsorbates at the DGAE-modified GC surface (GC-DGAE). The EIS results were analyzed using the Randles equivalent circuit. The charge transfer resistance on bare GC and the modified surface were calculated using the model equivalent circuit for the ferrocene redox system. Surface coverage was found as 0.4 showing the presence of high pinhole and defects in the modified electrode. The rate constant of electron transfer through the monolayer was calculated for ferrocene. Working potential range and the stability of the DGAE-modified GC electrode was also determined.

  11. Preparation and characterization of diethylene glycol bis(2-aminophenyl) ether-modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Isbir, Aybueke A.; Solak, Ali Osman; Ustuendag, Zafer; Bilge, Selen; Kilic, Zeynel

    2006-01-01

    Diethylene glycol bis(2-aminophenyl) ether (DGAE) diazonium salt was covalently electrografted on a glassy carbon (GC) surface and behavior of this novel surface was investigated. Synthesis of DGAE diazonium salt (DGAE-DAS) and in situ modification of GC electrode were performed in aqueous media containing NaNO 2 , keeping the temperature below +4 deg. C. For the characterization of the modified electrode surface by cyclic voltammetry, dopamine (DA) was used to prove the attachment of the DGAE-DAS on the GC surface. Raman spectroscopy and electrochemical impedance spectroscopy (EIS) were used to observe the molecular bound properties of the adsorbates at the DGAE-modified GC surface (GC-DGAE). The EIS results were analyzed using the Randles equivalent circuit. The charge transfer resistance on bare GC and the modified surface were calculated using the model equivalent circuit for the ferrocene redox system. Surface coverage was found as 0.4 showing the presence of high pinhole and defects in the modified electrode. The rate constant of electron transfer through the monolayer was calculated for ferrocene. Working potential range and the stability of the DGAE-modified GC electrode was also determined

  12. Electrochemical determination of ascorbic acid at p-phenylenediamine film-holes modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Olana Bikila Nagasa

    2015-01-01

    Full Text Available In this work the determination of ascorbic acid (AA at glassy carbon electrode (GCE modified with a perforated film produced by reduction of diazonium generated in situ from p-phenylenediamine (PD is reported. Holes were intentionally created in the modifier film by stripping a pre-deposited gold nanoparticles. The modified electrodes were electrochemically characterized by common redox probes: hydroquinone, ferrocyanide and hexamineruthenium(III. The cyclic voltammetric and amperometric response of AA using the modified electrodes was compared with that of bare GCE. The bare GCE showed a linear response to AA in the concentration range of 5 mM to 45 mM with detection limit of 1.656 mM and the modified GCE showed a linear response to AA in the concentration range of 5 μM to 45 μM with detection limit of 0.123 μM. The effect of potential intereferents on amperometric signal of AA at the modified GCE was examined and found to be minimal. The inter-electrode reproducibility, stability, and accuracy were determined. The modified electrode showed excellent inter-electrode reproducibility, accuracy and stability. The modified electrode reported is a promising candidate for use in electroanalysis of AA.

  13. Using low-field NMR to infer the physical properties of glassy oligosaccharide/water mixtures.

    Science.gov (United States)

    Aeberhardt, Kasia; Bui, Quang D; Normand, Valéry

    2007-03-01

    Low-field NMR (LF-NMR) is usually used as an analytical technique, for instance, to determine water and oil contents. For this application, no attempt is made to understand the physical origin of the data. Here we build a physical model to explain the five fit parameters of the conventional free induction decay (FID) for glassy oligosaccharide/water mixtures. The amplitudes of the signals from low-mobility and high-mobility protons correspond to the density of oligosaccharide protons and water protons, respectively. The relaxation time of the high-mobility protons is described using a statistical model for the probability that oligosaccharide hydroxyl groups form multiple hydrogen bonds. The variation of energy of the hydrogen bond is calculated from the average bond distance and the average angle contribution. Applying the model to experimental data shows that hydrogen atoms screen the water oxygen atoms when two water molecules solvate a single hydroxyl group. Furthermore, the relaxation time of the oligosaccharide protons is independent of its molecular weight and the water content. Finally, inversion of the FID using the inverse Laplace transform gives the continuous spectrum of relaxation times, which is a fingerprint of the oligosaccharide.

  14. Comparative study of radiation shielding parameters for bismuth borate glasses

    International Nuclear Information System (INIS)

    Kaundal, Rajinder Singh

    2016-01-01

    Melt and quench technique was used for the preparation of glassy samples of the composition x Bi 2 O 3- (1-x) B 2 O 3 where x= .05 to .040. XCOM computer program is used for the evaluation of gamma-ray shielding parameters of the prepared glass samples. Further the values of mass attenuation coefficients, effective atomic number and half value layer for the glassy samples have been calculated in the energy range from 1KeV to 100GeV. Rigidity of the glass samples have been analyzed by molar volume of the prepared glass samples. (author)

  15. Comparative study of radiation shielding parameters for bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kaundal, Rajinder Singh, E-mail: rajinder_apd@yahoo.com [Department of Physics, School of Physical Sciences, Lovely Professional University, Phagwara, Punjab (India)

    2016-07-15

    Melt and quench technique was used for the preparation of glassy samples of the composition x Bi{sub 2}O{sub 3-}(1-x) B{sub 2}O{sub 3} where x= .05 to .040. XCOM computer program is used for the evaluation of gamma-ray shielding parameters of the prepared glass samples. Further the values of mass attenuation coefficients, effective atomic number and half value layer for the glassy samples have been calculated in the energy range from 1KeV to 100GeV. Rigidity of the glass samples have been analyzed by molar volume of the prepared glass samples. (author)

  16. Fabrication of electrochemical theophylline sensor based on manganese oxide nanoparticles/ionic liquid/chitosan nanocomposite modified glassy carbon electrode

    International Nuclear Information System (INIS)

    MansouriMajd, Samira; Teymourian, Hazhir; Salimi, Abdollah; Hallaj, Rahman

    2013-01-01

    In this study, the preparation of a glassy carbon (GC) electrode modified with chitosan/NH 2 -ionic liquid/manganese oxide nanoparticles (Chit/NH 2 -IL/MnO x ) was described for electrocatalytic detection of theophylline (TP). First, chitosan hydrogel (Chit) was electrodeposited on the GC electrode surface at a constant potential (−1.5 V) in acidic solution. Then, the previously synthesized amine-terminated 1-(3-Aminopropyl)-3-methylimidazolium bromide ionic liquid (NH 2 -IL) was covalently attached to the modified electrode via glutaraldehyde (GA) as linking agent. Finally, manganese oxide (MnO x ) nanoparticles were electrodeposited onto the Chit/NH 2 -IL film by potential cycling between −1.0 and 1.7 V in Mn(CH 3 COO) 2 ·4H 2 O neutral aqueous solution. Electrochemical behavior of the modified electrode was evaluated by cyclic voltammetry (CV) technique. The charge transfer coefficient (α) and electron transfer rate constant (k s ) for MnOOH/MnO 2 redox couple were calculated to be 0.35 and 1.62 s −1 , respectively. The resulting system brings new capabilities for electrochemical sensing through combining the advantages of IL and MnO x nanoparticles. The differential pulse voltammetric (DPV) results indicated the high ability of GC/Chit/NH 2 -IL/MnO x modified electrode to catalyze the oxidation of TP. DPV determination of TP in acetate buffer solution (pH 5) gave linear responses over the concentration range up to 120 μM with the detection limit of 50 nM and sensitivity of 804 nA μM −1 . Furthermore, the applicability of the sensor for TP analysis in pharmaceutical samples has been successfully demonstrated

  17. Systematic sampling with errors in sample locations

    DEFF Research Database (Denmark)

    Ziegel, Johanna; Baddeley, Adrian; Dorph-Petersen, Karl-Anton

    2010-01-01

    analysis using point process methods. We then analyze three different models for the error process, calculate exact expressions for the variances, and derive asymptotic variances. Errors in the placement of sample points can lead to substantial inflation of the variance, dampening of zitterbewegung......Systematic sampling of points in continuous space is widely used in microscopy and spatial surveys. Classical theory provides asymptotic expressions for the variance of estimators based on systematic sampling as the grid spacing decreases. However, the classical theory assumes that the sample grid...... is exactly periodic; real physical sampling procedures may introduce errors in the placement of the sample points. This paper studies the effect of errors in sample positioning on the variance of estimators in the case of one-dimensional systematic sampling. First we sketch a general approach to variance...

  18. Immobilization of Ni–Pd/core–shell nanoparticles through thermal polymerization of acrylamide on glassy carbon electrode for highly stable and sensitive glutamate detection

    International Nuclear Information System (INIS)

    Yu, Huicheng; Ma, Zhenzhen; Wu, Zhaoyang

    2015-01-01

    The preparation of a persistently stable and sensitive biosensor is highly important for practical applications. To improve the stability and sensitivity of glutamate sensors, an electrode modified with glutamate dehydrogenase (GDH)/Ni–Pd/core–shell nanoparticles was developed using the thermal polymerization of acrylamide (AM) to immobilize the synthesized Ni–Pd/core–shell nanoparticles onto a glassy carbon electrode (GCE). The modified electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Electrochemical data showed that the prepared biosensor had remarkably enhanced electrocatalytic activity toward glutamate. Moreover, superior reproducibility and excellent stability were observed (relative average deviation was 2.96% after continuous use of the same sensor for 60 times, and current responses remained at 94.85% of the initial value after 60 d). The sensor also demonstrated highly sensitive amperometric detection of glutamate with a low limit of detection (0.052 μM, S/N = 3), high sensitivity (4.768 μA μM"−"1 cm"−"2), and a wide, useful linear range (0.1–500 μM). No interference from potential interfering species such as L-cysteine, ascorbic acid, and L-aspartate were noted. The determination of glutamate levels in actual samples achieved good recovery percentages. - Highlights: • Ni–Pd/core–shell nanoparticles were synthesized. • Nanoparticles were immobilized onto electrodes through thermal polymerization. • The modified sensor exhibited excellent stability and sensitivity for glutamate detection. • The biosensor exhibited remarkable electrocatalytic activity toward glutamate. • The sensor successfully detected glutamate in tomato soup samples.

  19. Immobilization of Ni–Pd/core–shell nanoparticles through thermal polymerization of acrylamide on glassy carbon electrode for highly stable and sensitive glutamate detection

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Huicheng, E-mail: doyhc@126.com [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530008 (China); School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530008 (China); Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530008 (China); Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Guangxi University for Nationalities, Nanning, 530008 (China); Ma, Zhenzhen [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Wu, Zhaoyang, E-mail: zywu@hnu.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China)

    2015-10-08

    The preparation of a persistently stable and sensitive biosensor is highly important for practical applications. To improve the stability and sensitivity of glutamate sensors, an electrode modified with glutamate dehydrogenase (GDH)/Ni–Pd/core–shell nanoparticles was developed using the thermal polymerization of acrylamide (AM) to immobilize the synthesized Ni–Pd/core–shell nanoparticles onto a glassy carbon electrode (GCE). The modified electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Electrochemical data showed that the prepared biosensor had remarkably enhanced electrocatalytic activity toward glutamate. Moreover, superior reproducibility and excellent stability were observed (relative average deviation was 2.96% after continuous use of the same sensor for 60 times, and current responses remained at 94.85% of the initial value after 60 d). The sensor also demonstrated highly sensitive amperometric detection of glutamate with a low limit of detection (0.052 μM, S/N = 3), high sensitivity (4.768 μA μM{sup −1} cm{sup −2}), and a wide, useful linear range (0.1–500 μM). No interference from potential interfering species such as L-cysteine, ascorbic acid, and L-aspartate were noted. The determination of glutamate levels in actual samples achieved good recovery percentages. - Highlights: • Ni–Pd/core–shell nanoparticles were synthesized. • Nanoparticles were immobilized onto electrodes through thermal polymerization. • The modified sensor exhibited excellent stability and sensitivity for glutamate detection. • The biosensor exhibited remarkable electrocatalytic activity toward glutamate. • The sensor successfully detected glutamate in tomato soup samples.

  20. Simultaneous detection of metronidazole and chloramphenicol by differential pulse stripping voltammetry using a silver nanoparticles/sulfonate functionalized graphene modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Zhai, Haiyun; Liang, Zhixian; Chen, Zuanguang; Wang, Haihang; Liu, Zhenping; Su, Zihao; Zhou, Qing

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: • A novel and reliable AgNPs/SF-GR modified glassy carbon electrode was constructed and characterized. • The AgNPs/SF-GR/GCE was successfully applied in the shrimp for simultaneous determination of MTZ and CAP. • Under optimized conditions, common substances such as UA, AA, DA and ion did not interfered in the electrode performance. • The modified electrode exhibited considerable sensitivity, stability and reproducibility. • This fabricated electrode achieved a satisfactory level compared with other electrodes toward MTZ and CAP. -- Abstract: A novel silver nanoparticles/sulfonated functionalized graphene modified glassy carbon electrode (AgNPs/SF-GR/GCE) was fabricated to determine chloramphenicol and metronidazole simultaneously. Taking advantage of sulfonic group, AgNPs were successfully electrodeposited on functionalized GR immobilized on the surface of a GCE. Scanning electron microscopy and energy spectrum analysis results confirmed that AgNPs were deposited on the functionalized GR film. Compared to the bare GCE or the pristine SF-GR modified electrode, AgNPs/SF-GR/GCE exhibited excellent electroreduction towards chloramphenicol and metronidazole. In addition, the two antibacterial drugs were separated completely in 0.10 M citric acid-sodium citrate buffer (pH 4.0) by differential pulse stripping voltammetry under optimum conditions. The cathodic current was linearly related with 0.02∼20.0 μM chloramphenicol and 0.10∼20.0 μM metronidazole, with the detection limits of 0.01 μM and 0.05 μM respectively. Furthermore, AgNPs/SF-GR/GCE was applied to the simultaneous determination of chloramphenicol and metronidazole in an aquatic product