WorldWideScience

Sample records for glass-fiber reinforced plastic

  1. Radiation modification of glass fiber - reinforced plastics

    Allayarov, S.R.; Smirnov, Yu.N.; Lesnichaya, V.A.; Ol'khov, Yu.A.; Belov, G.P.; Dixon, D.A.; Kispert, L.D.

    2007-01-01

    Modification of glass fiber - reinforced plastics (GFRPs) by gamma-irradiation has been researched to receipt of polymeric composite materials. They were produced by the film - technology method and the cheapest thermoplastics (polythene, polyamide were used as polymeric matrixes for their manufacture. GFRPs were irradiated with Co 60 gamma-rays from a Gammatok-100 source in air and in vacuum. The strength properties of GFRPs and initial polymeric matrixes were investigated before and after radiolysis. Molecular - topological structure of the polymeric matrixes were tested by the method of thermomechanical spectroscopy. The strength properties of GFRPs depend on a parity of speeds of structural (physical) and chemical modification of the polymeric matrixes. These two processes proceed simultaneously. The structural modification includes physical transformation of polymers at preservation of their chemical structure. Covalent bonds between various macromolecules or between macromolecules and surface of fiberglasses are formed at the chemical modification of polymeric matrixes induced by radiation. Action of ionizing radiation on the used polymeric matrix results to its structurization (polythene) or to destruction (polyamide). Increasing of durability of GFRPs containing polythene is caused by formation of the optimum molecular topological structure of the polymeric matrix. (authors)

  2. Fracture detection in concrete by glass fiber cloth reinforced plastics

    Shin, Soon-Gi; Lee, Sung-Riong

    2006-04-01

    Two types of carbon (carbon fiber and carbon powder) and a glass cloth were used as conductive phases and a reinforcing fiber, respectively, in polymer rods. The carbon powder was used for fabricating electrically conductive carbon powder-glass fiber reinforced plastic (CP-GFRP) rods. The carbon fiber tows and the CP-GFRP rods were adhered to mortar specimens using epoxy resin and glass fiber cloth. On bending, the electrical resistance of the carbon fiber tow attached to the mortar specimen increased greatly after crack generation, and that of the CP-GFRP rod increased after the early stages of deflection in the mortar. Therefore, the CP-GFRP rod is superior to the carbon fiber tow in detecting fractures. Also, by reinforcing with a glass fiber cloth reinforced plastic, the strength of the mortar specimens became more than twice as strong as that of the unreinforced mortar.

  3. Radiographic testing of glass fiber reinforced plastic materials

    Babylas, E.

    1976-01-01

    The microradiography of glass fiber reinforced polymers allowed to obtain informations on the growth of defects during molding. A relation was established between microstructure and routine radiography. The conditions needed for obtaining good quality radiograms are analyzed [fr

  4. Impact properties of aluminium - glass fiber reinforced plastics sandwich panels

    Mathivanan Periasamy

    2012-06-01

    Full Text Available Aluminium - glass fiber reinforced plastics (GFRP sandwich panels are hybrid laminates consisting of GFRP bonded with thin aluminum sheets on either side. Such sandwich materials are increasingly used in airplane and automobile structures. Laminates with varying aluminium thickness fractions, fiber volume fractions and orientation in the layers of GFRP were fabricated by hand lay up method and evaluated for their impact performance by conducting drop weight tests under low velocity impacts. The impact energy required for initiating a crack in the outer aluminium layer as well as the energy required for perforation was recorded. The impact load-time history was also recorded to understand the failure behavior. The damage depth and the damage area were measured to evaluate the impact resistance. Optical photography and scanning electron micrographs were taken to visualize the crack and the damage zone. The bidirectional cross-ply hybrid laminate (CPHL has been found to exhibit better impact performance and damage resistance than the unidirectional hybrid laminate (UDHL. Increase in aluminium thickness fraction (Al tf and fiber volume fraction (Vf resulted in an increase in the impact energy required for cracking and perforation. On an overall basis, the sandwich panels exhibited better impact performance than the monolithic aluminium.

  5. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide.

    Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il

    2013-05-10

    Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents.

  6. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide

    Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il

    2013-01-01

    Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this stud...

  7. Methods for evaluating tensile and compressive properties of plastic laminates reinforced with unwoven glass fibers

    Karl Romstad

    1964-01-01

    Methods of obtaining strength and elastic properties of plastic laminates reinforced with unwoven glass fibers were evaluated using the criteria of the strength values obtained and the failure characteristics observed. Variables investigated were specimen configuration and the manner of supporting and loading the specimens. Results of this investigation indicate that...

  8. LABORATORY EVALUATION ON PERFORMANCE OF GLASS FIBER REINFORCED PLASTIC MORTAR PIPE CULVERTS

    Huawang Shi; Lianyu Wei

    2018-01-01

    This paper investigated the performance and behaviour of glass fiber reinforced plastic mortar (FRPM) pipes under different loading conditions. FRPM pipes with inner diameter of 1500 mm were prefabricated in factory. Mechanics performance testing (ring and axial compressive strength and elastic modulus), stiffness and fatigue test were carried out in laboratory. Ring stiffness test provided pipe stiffness (PS) which is a function of geometry and material type of pipe through parallel plate lo...

  9. Determination of mechanical properties of some glass fiber reinforced plastics suitable to Wind Turbine Blade construction

    Steigmann, R.; Savin, A.; Goanta, V.; Barsanescu, P. D.; Leitoiu, B.; Iftimie, N.; Stanciu, M. D.; Curtu, I.

    2016-08-01

    The control of wind turbine's components is very rigorous, while the tower and gearbox have more possibility for revision and repairing, the rotor blades, once they are deteriorated, the defects can rapidly propagate, producing failure, and the damages can affect large regions around the wind turbine. This paper presents the test results, performed on glass fiber reinforced plastics (GFRP) suitable to construction of wind turbine blades (WTB). The Young modulus, shear modulus, Poisson's ratio, ultimate stress have been determined using tensile and shear tests. Using Dynamical Mechanical Analysis (DMA), the activation energy for transitions that appear in polyester matrix as well as the complex elastic modulus can be determined, function of temperature.

  10. Glass fiber -reinforced plastic tapered poles for transmission and distribution lines: development and experimental study

    Ibrahim, S.; Burachysnsky, V.; Polyzois, D.

    1999-01-01

    A research project to develop lightweight poles for use in power transmission and distribution lines and involving the use of glass fiber-reinforced plastic using the filament winding process is described. Twelve full scale specimen poles were designed, fabricated and subjected to cantilever bending to test failure modes. The test parameters included fiber orientation, ratio of longitudinal-to-circumferential fiber, and the number of layers. Results showed that local buckling was the most dominant failure mode, attributable to the high radius-to-thickness ratio of the specimen poles. Overall, however, these fiber-reinforced plastic poles compared favourably to wooden poles in carrying capacity with significant weight reduction. Lateral displacement at ultimate loads did not exceed the acceptable limit of 10 per cent of the specimen free length. 7 refs., 3 tabs., 2 figs

  11. Quantification of defects depth in glass fiber reinforced plastic plate by infrared lock-in thermography

    Ranjit, Shrestha; Kim, Won Tae [Kongju National University, Cheonan (Korea, Republic of); Choi, Man Yong [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-03-15

    The increasing use of composite materials in various industries has evidenced the need for development of more effective nondestructive evaluation methodologies in order to reduce rejected parts and to optimize production cost. Infrared thermography is a noncontact, fast and reliable non-destructive evaluation technique that has received vast and growing attention for diagnostic and monitoring in the recent years. This paper describes the quantitative analysis of artificial defects in Glass fiber reinforced plastic plate by using Lockin infrared thermography. The experimental analysis was performed at several excitation frequencies to investigate the sample ranging from 2.946 Hz down to 0.019 Hz and the effects of each excitation frequency on defect detachability. The four point method was used in post processing of every pixel of thermal images using the MATLAB programming language. The relationship between the phase contrast with defects depth and area was examined. Finally, phase contrast method was used to calculate the defects depth considering the thermal diffusivity of the material being inspected and the excitation frequency for which the defect becomes visible. The obtained results demonstrated the effectiveness of Lock-in infrared thermography as a powerful measurement technique for the inspection of Glass fiber reinforced plastic structures.

  12. LABORATORY EVALUATION ON PERFORMANCE OF GLASS FIBER REINFORCED PLASTIC MORTAR PIPE CULVERTS

    Huawang Shi

    2018-04-01

    Full Text Available This paper investigated the performance and behaviour of glass fiber reinforced plastic mortar (FRPM pipes under different loading conditions. FRPM pipes with inner diameter of 1500 mm were prefabricated in factory. Mechanics performance testing (ring and axial compressive strength and elastic modulus, stiffness and fatigue test were carried out in laboratory. Ring stiffness test provided pipe stiffness (PS which is a function of geometry and material type of pipe through parallel plate loading test (PPLT. The fatigue test and micro-structure measure method were used to evaluate the durability effects of FRPM under repeated compression load. Results indicated that FRPM pipes had better mechanic performances as the road culverts under soils. It may be helpful for the design and construction of FRPM culverts.

  13. Degradation of glass-fiber reinforced plastics by low temperature irradiation

    Nishijima, S.; Nishiura, T.; Ueno, S.; Tsukazaki, Y.; Okada, T.; Okada, T.M.; Miyata, K.; Kodaka, H.

    1998-01-01

    Low-temperature irradiation effects of glass-fiber reinforced plastics (GFRP) have been investigated in terms of mechanical properties such as interlaminar shear strength and creep, in order to obtain the selection standard of insulating materials of superconducting magnets used for fusion reactor. It was revealed that the degradation of interlaminar shear strength was strongly dependent of characteristics of matrix and/or glass/epoxy interface. Especially, the research has been carried out towards the creep behaviour of epoxy which is the matrix of GFRP, by both experimental and simulation method. It was suggested that the synergistic effects was observed in creep test. From the molecular dynamics simulation it was found that the cage effects was the one of the main reason of the stress effects of creep behavior under irradiation. (author)

  14. 2.45 GHz Microwave Processing and Its Influence on Glass Fiber Reinforced Plastics

    Zaremba, Swen

    2018-01-01

    During the production of fiber-reinforced composite materials, liquid resin is introduced into the fiber material and cured, i.e., hardened. An elevated temperature is needed for this curing. Microwave curing of composites has been investigated for some time, but it has mostly been done using small domestic or laboratory equipment. However, no investigation has been carried out using an industrial-sized chamber-microwave for glass fiber-reinforced plastic (GFRP). Here, we show that microwave curing produces laminates of the same quality as oven-cured ones. The study shows that, if the process is done right, GFRP samples can be produced with an industrial scale microwave. Even if not fully cured, microwave samples show a glass transition temperature measured with DMA (Tg-DMA) that is comparable to the Tg-DMA according to the proposed cure cycle on the data sheet. Specific microwave-cured configurations show better inter-laminar shear strength than oven specimens. The results show that microwave-based heat introduction can be a beneficial curing method for GFRP laminates. A microwave-optimized process is faster and leads to better mechanical properties. PMID:29783684

  15. Retrofit of hollow concrete masonry infilled steel frames using glass fiber reinforced plastic laminates

    Hakam, Zeyad Hamed-Ramzy

    2000-11-01

    This study focuses on the retrofit of hollow concrete masonry infilled steel frames subjected to in-plane lateral loads using glass fiber reinforced plastic (GFRP) laminates that are epoxy-bonded to the exterior faces of the infill walls. An extensive experimental investigation using one-third scale modeling was conducted and consisted of two phases. In the first phase, 64 assemblages, half of which were retrofitted, were tested under various combined in-plane loading conditions similar to those which different regions of a typical infill wall are subjected to. In the second phase, one bare and four masonry-infilled steel frames representative of a typical single-story, single-bay panel were tested under diagonal loading to study the overall behavior and the infill-frame interaction. The relative infill-to-frame stiffness was varied as a test parameter by using two different steel frame sections. The laminates altered the failure modes of the masonry assemblages and reduced the variability and anisotropic nature of the masonry. For the prisms which failed due to shear and/or mortar joint slip, significant strength increases were observed. For those exhibiting compression failure modes, a marginal increase in strength resulted. Retrofitting the infilled frames resulted in an average increase in initial stiffness of two-fold compared to the unretrofitted infilled frames, and seemed independent of the relative infill-to-frame stiffness. However, the increase in the load-carrying capacity of the retrofitted frames compared to the unretrofitted counterparts was higher for those with the larger relative infill-to-frame stiffness parameter. Unlike the unretrofitted infill walls, the retrofitted panels demonstrated almost identical failure modes that were characterized as "strictly comer crushing" in the vicinity of the loaded comers whereas no signs of distress were evident throughout the remainder of the infill. The laminates also maintained the structural integrity of

  16. Modelling of the glass fiber length and the glass fiber length distribution in the compounding of short glass fiber-reinforced thermoplastics

    Kloke, P.; Herken, T.; Schöppner, V.; Rudloff, J.; Kretschmer, K.; Heidemeyer, P.; Bastian, M.; Walther, Dridger, A.

    2014-05-01

    The use of short glass fiber-reinforced thermoplastics for the production of highly stressed parts in the plastics processing industry has experienced an enormous boom in the last few years. The reasons for this are primarily the improvements to the stiffness and strength properties brought about by fiber reinforcement. These positive characteristics of glass fiber-reinforced polymers are governed predominantly by the mean glass fiber length and the glass fiber length distribution. It is not enough to describe the properties of a plastics component solely as a function of the mean glass fiber length [1]. For this reason, a mathematical-physical model has been developed for describing the glass fiber length distribution in compounding. With this model, it is possible on the one hand to optimize processes for the production of short glass fiber-reinforced thermoplastics, and, on the other, to obtain information on the final distribution, on the basis of which much more detailed statements can be made about the subsequent properties of the molded part. Based on experimental tests, it was shown that this model is able to accurately describe the change in glass fiber length distribution in compounding.

  17. EFFECT OF GAMMA RAY IRRADIATION ON INTERLAMINAR SHEAR STRENGTH OF GLASS FIBER REINFORCED PLASTICS AT 77 K

    Nishimura, A.; Nishijima, S.; Izumi, Y.

    2008-01-01

    It is known that an organic material is damaged by gamma ray irradiation, and the strength after irradiation has dependence on the gamma ray dose. These issues are important not only to make global understanding of electric insulating performance of glass fiber reinforced plastics (GFRP) under irradiation condition but also to develop new insulation materials. This paper presents the dependence of fracture mode and interlaminar shear strength (ILSS) on the material and the gamma ray irradiation effect on the fracture mode and the ILSS. 6 mm radius loading nose and supports were used to prompt ILS fracture for a short beam test. A 2.5 mm thick small specimen machined out of a 13 mm thick G-10CR GFRP plate (sliced specimen) showed lower ILSS and translaminar shear (TLS) fracture, although the same size specimen prepared from a 2.5 mm G-10CR GFRP plate (non-sliced specimen) showed ILS fracture and the higher ILSS. Both type of specimens showed the degradation of ILSS after gamma ray irradiation. The fracture mode of the non-sliced specimen changed from ILS to TLS fracture and no bending fracture was observed. The resistance to shear deformation of glass cloth/epoxy laminate structure would be damaged by the irradiation

  18. Development of high radiation-resistant glass fiber reinforced plastics with cyanate-based resin for superconducting magnet systems

    Idesaki, Akira, E-mail: idesaki.akira@qst.go.jp [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Watanuki 1233, Takasaki, Gunma 370-1292 (Japan); Nakamoto, Tatsushi [Cryogenic Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yoshida, Makoto [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Shimada, Akihiko [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Watanuki 1233, Takasaki, Gunma 370-1292 (Japan); Iio, Masami; Sasaki, Kenichi; Sugano, Michinaka [Cryogenic Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Makida, Yasuhiro [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Ogitsu, Toru [Cryogenic Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2016-11-15

    Highlights: • GFRPs for superconducting magnet systems were developed. • Cyanate-based resins were used for GFRPs as matrices. • Radiation resistance was evaluated based on gas evolution and mechanical properties. • GFRP with bismaleimide-triazine resin exhibited excellent radiation resistance. - Abstract: Glass fiber reinforced plastics (GFRPs) with cyanate ester resin/epoxy resin, bismaleimide resin/epoxy resin, and bismaleimide-triazine resin as matrices were developed for the superconducting magnet systems used in high intensity accelerators. The radiation resistance of these GFRPs was evaluated based on their gas evolution and changes in their mechanical properties after gamma-ray irradiation with dose of 100 MGy in vacuum at ambient temperature. After irradiation, a small amount of gas was evolved from all of the GFRPs, and a slight decrease in mechanical properties was observed compared with the conventional epoxy resin-GFRP, G10. Among the GFRPs, the smallest amount of gas (6 × 10{sup −5} mol/g) was evolved from the GFRP with the bismaleimide-triazine resin, which also retained more than 88% of its flexural strength after 100 MGy irradiation; this GFRP is thus considered the most promising material for superconducting magnet systems.

  19. Effects of glass fibers on the properties of micro molded plastic parts

    Islam, Aminul; Hansen, Hans Nørgaard; Gasparin, Stefania

    2011-01-01

    Glass fibers are used to reinforce plastics and to improve their mechanical properties. But plastic filled with glass fibers is a concern for molding of micro scale plastic parts. The aim of this paper is to investigate the effects of glass fiber on the replication quality and mechanical properties...... of polymeric thin ribs. It investigates the effect of feature size and gate location on distribution of glass fibers inside the molded parts. The results from this work indicate that glass filled plastic materials have poor replication quality and nonhomogeneous mechanical properties due to the nonuniform...

  20. Machining of glass fiber reinforced polyamide

    2007-12-01

    Full Text Available The machinability of a 30 wt% glass fiber reinforced polyamide (PA was investigated by means of drilling tests. A disk was cut from an extruded rod and drilled on the flat surface: thrust was acquired during drilling at different drilling speed, feed rate and drill diameter. Differential scanning calorimetry (DSC and indentation were used to characterize PA so as to evaluate the intrinsic lack of homogeneity of the extruded material. In conclusion, it was observed that the chip formation mechanism affects the thrust dependence on the machining parameters. A traditional modeling approach is able to predict thrust only in presence of a continuous chip. In some conditions, thrust increases as drilling speed increases and feed rate decreases; this evidence suggests not to consider the general scientific approach which deals the machining of plastics in analogy with metals. Moreover, the thrust can be significantly affected by the workpiece fabrication effect, as well as by the machining parameters; therefore, the fabrication effect is not negligible in the definition of an optimum for the machining process.

  1. Methods for an investigation of the effect of material components on the mechanical characteristics of glass-fiber-reinforced plastics

    Willax, H. O.

    1980-01-01

    The materials used in the production of glass reinforced plastics are discussed. Specific emphasis is given to matrix polyester materials, the reinforcing glass materials, and aspects of specimen preparation. Various methods of investigation are described, giving attention to optical impregnation and wetting measurements and the gravimetric determination of the angle of contact. Deformation measurements and approaches utilizing a piezoelectric device are also considered.

  2. Thermomechanical analyses of phenolic foam reinforced with glass fiber mat

    Zhou, Jintang; Yao, Zhengjun; Chen, Yongxin; Wei, Dongbo; Wu, Yibing

    2013-01-01

    Highlights: • Over 10% glass fiber was used to reinforce phenolic foam in the shape of glass fiber mat. • Nucleating agents were used together with glass fiber mat and improved tensile strength of phenolic foam by 215.6%. • Nucleating agents lead to a smaller bubble size of phenolic foam. • The glass transition temperature of phenolic foam remained unchanged during the reinforcement. - Abstract: In this paper, thermomechanical analysis (TMA) and dynamic mechanical analysis were employed to study the properties of phenolic foam reinforced with glass fiber mat. Unreinforced phenolic foam was taken as the control sample. Mechanical tests and scanning electron microscopy were performed to confirm the results of TMA. The results show that glass fiber mat reinforcement improves the mechanical performance of phenolic foam, and nucleating agents improve it further. Phenolic foam reinforced with glass fiber mat has a smaller thermal expansion coefficient compared with unreinforced foam. The storage modulus of the reinforced phenolic foam is also higher than that in unreinforced foam, whereas the loss modulus of the former is lower than that of the latter. The glass transition temperature of the phenolic foam matrix remains unchanged during the reinforcement

  3. Improvement of the mode II interface fracture toughness of glass fiber reinforced plastics/aluminum laminates through vapor grown carbon fiber interleaves.

    Ning, Huiming; Li, Yuan; Hu, Ning; Cao, Yanping; Yan, Cheng; Azuma, Takesi; Peng, Xianghe; Wu, Liangke; Li, Jinhua; Li, Leilei

    2014-06-01

    The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m -2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%-73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.

  4. Glass fiber reinforced concrete for terrestrial photovoltaic arrays

    Maxwell, H.

    1979-01-01

    The use of glass-fiber-reinforced concrete (GRC) as a low-cost structural substrate for terrestrial solar cell arrays is discussed. The properties and fabrication of glass-reinforced concrete structures are considered, and a preliminary design for a laminated solar cell assembly built on a GRC substrate is presented. A total cost for such a photovoltaic module, composed of a Korad acrylic plastic film front cover, an aluminum foil back cover, an ethylene/vinyl acetate pottant/adhesive and a cotton fabric electrical isolator in addition to the GRC substrate, of $9.42/sq m is projected, which is less than the $11.00/sq m cost goal set by the Department of Energy. Preliminary evaluations are concluded to have shown the design capabilities and cost effectiveness of GRC; however, its potential for automated mass production has yet to be evaluated.

  5. Effects of sea water environment on glass fiber reinforced plastic materials used for marine civil engineering constructions

    Garcia-Espinel, J.D.; Castro-Fresno, D.; Parbole Gayo, P.; Ballester-Muñoz, F.

    2015-01-01

    Highlights: • Seawater environment over composite material that are suitable for civil applications. • Seawater intake is linked to tensile and flexural strength degradation in GFC. • Fatigue performance of glass composites is similar in seawater environment than in air. - Abstract: Glass fiber composites (GFRP) are common in civil engineering projects, but not in marine structures. One reason is that seawater effects degrade GFRP composites mechanical properties and interlaminar shear strength (ILSS). Here, influence of seawater environment is studied to determine the best composite materials for marine civil engineer applications, studying the influence of several factors in their mechanical properties. This is to determine safety factors to use in the design of structural calculations for marine applications. Glass/epoxy composites are the safest materials to use in marine civil structures as mechanical properties degradation becomes stabilized after moisture saturation level. UV and water cyclic analysis must be done to determine affection to transversal strength. Only vinylester GFRP has problems with biodegradation. GFRP fatigue performance is not influenced by seawater environment

  6. Mechanical characterization of glass fiber (woven roving/chopped strand mat E-glass fiber) reinforced polyester composites

    Bhaskar, V. Vijaya; Srinivas, Kolla

    2017-07-01

    Polymer reinforced composites have been replacing most of the engineering material and their applications become more and more day by day. Polymer composites have been analyzing from past thirty five years for their betterment for adapting more applications. This paper aims at the mechanical properties of polyester reinforced with glass fiber composites. The glass fiber is reinforced with polyester in two forms viz Woven Rovings (WRG) and Chopped Strand Mat (CSMG) E-glass fibers. The composites are fabricated by hand lay-up technique and the composites are cut as per ASTM Standard sizes for corresponding tests like flexural, compression and impact tests, so that flexural strength, compression strength, impact strength and inter laminar shear stress(ILSS) of polymer matrix composites are analyzed. From the tests and further calculations, the polyester composites reinforced with Chopped Strand Mat glass fiber have shown better performance against flexural load, compression load and impact load than that of Woven Roving glass fiber.

  7. Effects of moisture on glass fiber-reinforced polymer composites

    Alzamora Guzman, Vladimir Joel; Brøndsted, Povl

    2015-01-01

    performance of wind turbine blades over their lifetime. Here, environmental moisture conditions were simulated by immersing glass fiber-reinforced polymer specimens in salt water for a period of up to 8 years. The mechanical properties of specimens were analyzed before and after immersion to evaluate...

  8. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  9. [A maxillary premolar reconstruction with a glass fiber reinforced post].

    Viţalariu, Anca Mihaela; Antohe, Magda; Bahrim, Delia; Tatarciuc, Monica

    2006-01-01

    This paper presents the case of a 37 years old female patient who needed a reconstruction of an endodontic treated' second maxillary premolar. The patient presented large areas of occlusal abrasion caused by bruxism, therefore the solution consisted of a reconstruction with a non-metallic post reinforced with glass fibers. In such cases, the excessive occlusal forces developed by bruxism can produce a radicular fracture if the tooth would be reconstructed with a rigid metallic post. The glass-fiber reinforced post has some important qualities, which render it more suitable in most clinical cases: it is easy to use; has the ability to bond with restorative resins; decreases the risk of tooth fracture and provides better esthetics.

  10. Improvement of the piezoelectric properties of glass fiber-reinforced epoxy composites by poling treatment

    Oh, S M; Hwang, H Y

    2013-01-01

    Recently, a new non-destructive method has been proposed for damage monitoring of glass fiber-reinforced polymer composite materials using the piezoelectric characteristics of a polymeric matrix. Several studies of the piezoelectric properties of unidirectional glass fiber epoxy composites and damage monitoring of double-cantilever beams have supported the claim that the piezoelectric method is feasible and powerful enough to monitor the damage of glass fiber epoxy composites. Generally, conventional piezoelectric materials have higher piezoelectric characteristics through poling treatment. In this work, we investigated the change of the piezoelectric properties of glass fiber-reinforced epoxy composites before and after poling treatment. The piezoelectric constants (d 33 ) of glass fiber-reinforced epoxy composites increased by more than 400%. Also, x-ray diffraction tests revealed that poling treatment changed the degree of crystallinity of the epoxy matrix, and this led to the improvement of the piezoelectric characteristics of glass fiber-reinforced epoxy composites. (paper)

  11. Preparation, mechanical, and in vitro properties of glass fiber-reinforced polycarbonate composites for orthodontic application.

    Tanimoto, Yasuhiro; Inami, Toshihiro; Yamaguchi, Masaru; Nishiyama, Norihiro; Kasai, Kazutaka

    2015-05-01

    Generally, orthodontic treatment uses metallic wires made from stainless steel, cobalt-chromium-nickel alloy, β-titanium alloy, and nickel-titanium (Ni-Ti) alloy. However, these wires are not esthetically pleasing and may induce allergic or toxic reactions. To correct these issues, in the present study we developed glass-fiber-reinforced plastic (GFRP) orthodontic wires made from polycarbonate and E-glass fiber by using pultrusion. After fabricating these GFRP round wires with a diameter of 0.45 mm (0.018 inch), we examined their mechanical and in vitro properties. To investigate how the glass-fiber diameter affected their physical properties, we prepared GFRP wires of varying diameters (7 and 13 µm). Both the GFRP with 13-µm fibers (GFRP-13) and GFRP with 7 µm fibers (GFRP-7) were more transparent than the metallic orthodontic wires. Flexural strengths of GFRP-13 and GFRP-7 were 690.3 ± 99.2 and 938.1 ± 95.0 MPa, respectively; flexural moduli of GFRP-13 and GFRP-7 were 25.4 ± 4.9 and 34.7 ± 7.7 GPa, respectively. These flexural properties of the GFRP wires were nearly equivalent to those of available Ni-Ti wires. GFRP-7 had better flexural properties than GFRP-13, indicating that the flexural properties of GFRP increase with decreasing fiber diameter. Using thermocycling, we found no significant change in the flexural properties of the GFRPs after 600 or 1,200 cycles. Using a cytotoxicity detection kit, we found that the glass fiber and polycarbonate components comprising the GFRP were not cytotoxic within the limitations of this study. We expect this metal-free GFRP wire composed of polycarbonate and glass fiber to be useful as an esthetically pleasing alternative to current metallic orthodontic wire. © 2014 Wiley Periodicals, Inc.

  12. MICROWAVE INDUCED DEGRADATION OF GLASS FIBER REINFORCED POLYESTER FOR FIBER AND RESIN RECOVERY

    Ucar, Hülya; Nielsen, Rudi Pankratz; Søgaard, Erik Gydesen

    A solvolysis process to depolymerize the resin in glass fiber reinforced composites and recover the glass fibers has been investigated using microwave induced irradiation. The depolymerization was carried out in HNO3 with concentrations in the range of 1M-7M and in KOH with concentrations ranging...

  13. Monotonic and cyclic responses of impact polypropylene and continuous glass fiber-reinforced impact polypropylene composites at different strain rates

    Yudhanto, Arief; Lubineau, Gilles; Wafai, Husam; Mulle, Matthieu; Pulungan, Ditho Ardiansyah; Yaldiz, R.; Verghese, N.

    2016-01-01

    Impact copolymer polypropylene (IPP), a blend of isotactic polypropylene and ethylene-propylene rubber, and its continuous glass fiber composite form (glass fiber-reinforced impact polypropylene, GFIPP) are promising materials for impact

  14. Recycled Glass Fiber Reinforced Polymer Composites Incorporated in Mortar for Improved Mechanical Performance

    2017-12-11

    Glass fiber reinforced polymer (GFRP) recycled from retired wind turbines was implemented in mortar as a volumetric replacement of sand during the two phases of this study. In Phase I, the mechanically refined GFRP particle sizes were sieved for four...

  15. Energy absorption at high strain rate of glass fiber reinforced mortars

    Fenu Luigi

    2015-01-01

    Full Text Available In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF was finally evaluated.

  16. Studies on fabrication of glass fiber reinforced composites using polymer blends

    Patel, R. H.; Kachhia, P. H.; Patel, S. N.; Rathod, S. T.; Valand, J. K.

    2018-05-01

    Glass fiber reinforced PVC/NBR composites have been fabricated via hot compression moulding process. PVC is brittle in nature and thus lower thermal stability. Therefore, to improve the toughness of PVC, NBR was incorporated in certain proportions. As both are polar and thus they are compatible. To improve the strength property further, these blends were used to fabricate glass fiber reinforced composites. SEM micrograph shows good wettability of the blend with glass fibers resulting in proper bonding which increase the strength of the composites.

  17. Alkali-resistant glass fiber reinforced high strength concrete in simulated aggressive environment

    Kwan, W.H.; Cheah, C.B.; Ramli, M.; Chang, K.Y.

    2018-01-01

    The durability of the alkali-resistant (AR) glass fiber reinforced concrete (GFRC) in three simulated aggresive environments, namely tropical climate, cyclic air and seawater and seawater immersion was investigated. Durability examinations include chloride diffusion, gas permeability, X-ray diffraction (XRD) and scanning electron microscopy examination (SEM). The fiber content is in the range of 0.6 % to 2.4 %. Results reveal that the specimen containing highest AR glass fiber content suffered severe strength loss in seawater environment and relatively milder strength loss under cyclic conditions. The permeability property was found to be more inferior with the increase in the fiber content of the concrete. This suggests that the AR glass fiber is not suitable for use as the fiber reinforcement in concrete is exposed to seawater. However, in both the tropical climate and cyclic wetting and drying, the incorporation of AR glass fiber prevents a drastic increase in permeability. [es

  18. Mechanical and abrasive wear characterization of bidirectional and chopped E-glass fiber reinforced composite materials

    Siddhartha,; Gupta, Kuldeep

    2012-01-01

    Highlights: ► Bi-directional and chopped E-glass fiber reinforced epoxy composites are fabricated. ► Three body abrasive wear behavior of fabricated composites has been assessed. ► Results are validated against existing microscopic models of Lancaster and Wang. ► Tensile strength of bi-directional E-glass fiber reinforced composites increases. ► Chopped glass fiber composites are found better in abrasive wear situations. -- Abstract: Bi-directional and chopped E-glass fiber reinforced epoxy composites are fabricated in five different (15, 20, 25, 30 and 35) wt% in an epoxy resin matrix. The mechanical characterization of these composites is performed. The three body abrasive wear behavior of fabricated composites has been assessed under different operating conditions. Abrasive wear characteristics of these composites are successfully analysed using Taguchi’s experimental design scheme and analysis of variance (ANOVA). The results obtained from these experiments are also validated against existing microscopic models of Ratner-Lancaster and Wang. It is observed that quite good linear relationships is held between specific wear rate and reciprocal of ultimate strength and strain at tensile fracture of these composites which is an indicative that the experimental results are in fair agreement with these existing models. Out of all composites fabricated it is found that tensile strength of bi-directional E-glass fiber reinforced composites increases because of interface strength enhancement. Chopped glass fiber reinforced composites are observed to perform better than bi-directional glass fiber reinforced composites under abrasive wear situations. The morphology of worn composite specimens has been examined by scanning electron microscopy (SEM) to understand about dominant wear mechanisms.

  19. Physicochemical properties of discontinuous S2-glass fiber reinforced resin composite.

    Huang, Qiting; Qin, Wei; Garoushi, Sufyan; He, Jingwei; Lin, Zhengmei; Liu, Fang; Vallittu, Pekka K; Lassila, Lippo V J

    2018-01-30

    The objective of this study was to investigate several physicochemical properties of an experimental discontinuous S2-glass fiber-reinforced resin composite. The experimental composite was prepared by mixing 10 wt% of discontinuous S2-glass fibers with 27.5 wt% of resin matrix and 62.5 wt% of particulate fillers. Flexural strength (FS) and modulus (FM), fracture toughness (FT), work of fracture (WOF), double bond conversion (DC), Vickers hardness, volume shrinkage (VS) and fiber length distribution were determined. These were compared with two commercial resin composites. The experimental composite showed the highest FS, WOF and FT compared with two control composites. The DC of the experimental composite was comparable with controls. No significant difference was observed in VS between the three tested composites. The use of discontinuous glass fiber fillers with polymer matrix and particulate fillers yielded improved physical properties and substantial improvement was associated with the use of S2-glass fiber.

  20. Study on vibration alleviating properties of glass fiber reinforced polymer concrete through orthogonal tests

    Bai Wenfeng; Zhang Jianhua; Yan Peng; Wang Xinli

    2009-01-01

    Polymer concrete (PC), because of its good vibration alleviating properties, is a proper material for elementary machine parts in high-precision machine tools. Glass fiber was applied in PC to improve its mechanical properties, and the material obtained is called glass fiber reinforced polymer concrete (GFRPC). The best parameter to estimate the vibration alleviating property is damping ratio. Orthogonal tests were carried out to prepare GFRPC specimens with different component proportions. Damping ratio of the GFRPC specimens was measured. The effect of the factors considered in the experiments on damping ratio of GFRPC was studied. Results of the tests show that granite proportion plays the most important role in determining damping ratio of GFRPC, then flexibilizer dosage and glass fiber length, while epoxy resin dosage and glass fiber dosage play a comparatively less important part. Detailed descriptions were made about how the considered factors affect damping ratio of GFRPC in this paper

  1. Flexural strengthening of Reinforced Concrete (RC) Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP) Laminates

    Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.

    2015-01-01

    Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  2. Fabrication and physical properties of glass-fiber-reinforced thermoplastics for non-metal-clasp dentures.

    Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro

    2017-11-01

    Recently, non-metal-clasp dentures (NMCDs) made from thermoplastic resins such as polyamide, polyester, polycarbonate, and polypropylene have been used as removable partial dentures (RPDs). However, the use of such RPDs can seriously affect various tissues because of their low rigidity. In this study, we fabricated high-rigidity glass-fiber-reinforced thermoplastics (GFRTPs) for use in RPDs, and examined their physical properties such as apparent density, dynamic hardness, and flexural properties. GFRTPs made from E-glass fibers and polypropylene were fabricated using an injection-molding. The effects of the fiber content on the GFRTP properties were examined using glass-fiber contents of 0, 5, 10, 20, 30, 40, and 50 mass%. Commercially available denture base materials and NMCD materials were used as controls. The experimental densities of GFRTPs with various fiber contents agreed with the theoretical densities. Dynamic micro-indentation tests confirmed that the fiber content does not affect the GFRTP surface properties such as dynamic hardness and elastic modulus, because most of the reinforcing glass fibers are embedded in the polypropylene. The flexural strength increased from 55.8 to 217.6 MPa with increasing glass-fiber content from 0 to 50 mass%. The flexural modulus increased from 1.75 to 7.42 GPa with increasing glass-fiber content from 0 to 50 mass%, that is, the flexural strength and modulus of GFRTP with a fiber content of 50 mass% were 3.9 and 4.2 times, respectively, those of unreinforced polypropylene. These results suggest that fiber reinforcement has beneficial effects, and GFRTPs can be used in NMCDs because their physical properties are better than those of controls. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2254-2260, 2017. © 2016 Wiley Periodicals, Inc.

  3. Ultrasound enhanced 50 Hz plasma treatment of glass-fiber-reinforced polyester at atmospheric pressure

    Kusano, Yukihiro; Norrman, Kion; Singh, Shailendra Vikram

    2013-01-01

    Glass-fiber-reinforced polyester (GFRP) plates are treated using a 50Hz dielectric barrier discharge at a peak-to-peak voltage of 30 kV in helium at atmospheric pressure with and without ultrasonic irradiation to study adhesion improvement. The ultrasonic waves at the fundamental frequency...

  4. Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation

    Kusano, Yukihiro; Norrman, Kion; Drews, Joanna Maria

    2011-01-01

    . The efficiency of such a plasma treatment at atmospheric pressure can be further improved by ultrasonic irradiation onto the surface during the treatment. In the present work glass fiber reinforced polyester (GFRP) plates are treated using an atmospheric pressure gliding arc with and without ultrasonic...

  5. Abrasion Resistance and Mechanical Properties of Waste-Glass-Fiber-Reinforced Roller-compacted Concrete

    Yildizel, S. A.; Timur, O.; Ozturk, A. U.

    2018-05-01

    The potential use of waste glass fibers in roller-compacted concrete (RCC) was investigated with the aim to improve its performance and reduce environmental effects. The research was focused on the abrasion resistance and compressive and flexural strengths of the reinforced concrete relative to those of reference mixes without fibers. The freeze-thaw resistance of RCC mixes was also examined. It was found that the use of waste glass fibers at a rate of 2 % increased the abrasion resistance of the RCC mixes considerably.

  6. Investigation of mechanical properties of hemp/glass fiber reinforced nano clay hybrid composites

    Unki, Hanamantappa Ningappa; Shivanand, H. K.; Vidyasagar, H. N.

    2018-04-01

    Over the last twenty to thirty years composite materials have been used in engineering field. Composite materials possess high strength, high strength to weight ratio due to these facts composite materials are becoming popular among researchers and scientists. The major proportion of engineering materials consists of composite materials. Composite materials are used in vast applications ranging from day-to-day household articles to highly sophisticated applications. In this paper an attempt is made to prepare three different composite materials using e-glass and Hemp. In this present investigation hybrid composite of Hemp, Glass fiber and Nano clay will be prepared by Hand-layup technique. The glass fiber used in this present investigation is E-glass fiber bi-directional: 90˚ orientation. The composite samples will be made in the form of a Laminates. The wt% of nanoclay added in the preparation of sample is 20 gm constant. The fabricated composite Laminate will be cut into corresponding profiles as per ASTM standards for Mechanical Testing. The effect of addition of Nano clay and variation of Hemp/glass fibers will be studied. In the present work, a new Hybrid composite is developed in which Hemp, E glass fibers is reinforced with epoxy resin and with Nano clay.

  7. The usage of carbon fiber reinforcement polymer and glass fiber reinforcement polymer for retrofit technology building

    Tarigan, Johannes; Meka, Randi; Nursyamsi

    2018-03-01

    Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.

  8. Micromechanical modeling of short glass-fiber reinforced thermoplastics-Isotropic damage of pseudograins

    Kammoun, S.; Brassart, L.; Doghri, I.; Delannay, L.; Robert, G.

    2011-01-01

    A micromechanical damage modeling approach is presented to predict the overall elasto-plastic behavior and damage evolution in short fiber reinforced composite materials. The practical use of the approach is for injection molded thermoplastic parts reinforced with short glass fibers. The modeling is proceeded as follows. The representative volume element is decomposed into a set of pseudograins, the damage of which affects progressively the overall stiffness and strength up to total failure. Each pseudograin is a two-phase composite with aligned inclusions having same aspect ratio. A two-step mean-field homogenization procedure is adopted. In the first step, the pseudograins are homogenized individually according to the Mori-Tanaka scheme. The second step consists in a self-consistent homogenization of homogenized pseudograins. An isotropic damage model is applied at the pseudograin level. The model is implemented as a UMAT in the finite element code ABAQUS. Model is shown to reproduce the strength and the anisotropy (Lankford coefficient) during uniaxial tensile tests on samples cut under different directions relative to the injection flow direction.

  9. The use of maleic anhydride-modified polypropylene for performance enhancement in continuous glass fiber-reinforced polypropylene composites

    Rijsdijk, H.A.; Contant, M.; Peijs, A.A.J.M.; Miravete, A.

    1993-01-01

    The influence of maleic anhydride-modified polypropylene (m-PP) on static mech. properties of continuous glass fiber-reinforced polypropylene (PP) composites was studied. M-PP was added to the PP homopolymer to improve the adhesion between the matrix and the glass fiber. Three-point bending tests

  10. NUMERICAL ESTIMATION OF EFFECTIVE ELASTIC MODULI OF SYNTACTIC FOAMS REINFORCED BY SHORT GLASS FIBERS

    Wei Yu

    2016-03-01

    Full Text Available The mechanical properties of hollow glass microsphere/epoxy resin syntactic foams reinforced by short glass fibers are studied using representative volume elements. Both the glass fibers and the hollow glass microspheres exhibit random arrangement in the epoxy resin. The volume fraction and wall thickness of hollow glass microspheres and the volume fraction of glass fibers are considered as parameters. It is observed that the elastic modulus values of syntactic foams decrease with the increase of microsphere volume fraction when the microsphere relative wall thickness is lower. However, it increases with the increase of microsphere volume fraction when the relative wall thickness exceeds a critical value. The elastic modulus value goes through a maximum when the relative wall thickness is around 0.06 at 25 % volume fraction of microspheres. The addition of glass fibers reduces the critical wall thickness values of the microspheres and increases the mechanical properties of the composites. The highest stress lies on the equatorial plane perpendicular to the loading direction. Adding fibers reduces the large stress distribution areas on the microspheres, and the fibers aligned with the loading direction play an important load-bearing role.

  11. GLASS FIBERS – MODERN METHOD IN THE WOOD BEAMS REINFORCEMENT

    Cătălina IANĂŞI

    2017-05-01

    Full Text Available : One of the defining goals of this paper is getting new resistant material which combine the qualities of basic materials that get into its composition but not to borrow from them their negative properties. Specifically, the use of GFRP composite materials as reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem such as the number of the composite layers applied on the wood beams. The results obtained in this paper indicate that the behavior of reinforced beams is totally different from that of un-reinforced one. The main conclusion of the tests is that the tensioning forces allow beam taking a maximum load for a while, something that is particularly useful when we consider a real construction, The experiments have shown that the method of increasing resistance of wood constructions with composite materials is good for it and easy to implement.

  12. Dielectric studies of Graphene and Glass Fiber reinforced composites

    Praveen, D.; Shashi Kumar, M. E.; Pramod, R.

    2018-02-01

    Graphene and E-glass fibres are one of the key materials used currently due to their unique chemical and mechanical properties. Lately graphene has attracted many researchers across academic fraternity as it can yield better properties with lesser reinforcement percentages. The current research emphasizes on the development of graphene-based nanocomposites and its investigation on dielectric applications. The composites were fabricated by adding graphene reinforcements from 1%-3% by weight using conventional Hand-lay process. A thorough investigation was carried out to determine the dielectric behaviour of the nano-composites using impedance analyser according to ASTM standards. The dielectric measurements were carried out in the temperature range of 300K to 400K in a step of 20K. The current research proposes the material for application in capacitor industry as the sample of 2.5% weight fraction showed highest value of K with 14 at 26.1 Hz and 403K.

  13. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  14. Experimental Investigation of Thermal Properties in Glass Fiber Reinforced with Aluminium

    Irudaya raja, S. Joseph; Vinod Kumar, T.; Sridhar, R.; Vivek, P.

    2017-03-01

    A test method of a Guarded heat flow meter are used to measure the thermal conductivity of glass fiber and filled with a aluminum powder epoxy composites using an instrument in accordance with ASTM. This experimental study reveals that the incorporation of aluminum and glass fiber reinforced results in enhancement of thermal conductivity of epoxy resin and thereby improves its heat transfer capability. Fiber metal laminates are good candidates for advanced automobile structural applications due to their high categorical mechanical and thermal properties. The most consequential factor in manufacturing of these laminates is the adhesive bonding between aluminum and FRP layers. Here several glass-fiber reinforced aluminum were laminates with different proportion of bonding adhesion were been manufactured. It was observed that the damage size is more preponderant in laminates with poor interfacial adhesion compared to that of laminates with vigorous adhesion between aluminum and glass layers numerically calculated ones and it is found that the values obtained for various composite models using experimental testing method.

  15. Flexure and impact properties of glass fiber reinforced nylon 6-polypropylene composites

    Kusaseh, N. M.; Nuruzzaman, D. M.; Ismail, N. M.; Hamedon, Z.; Azhari, A.; Iqbal, A. K. M. A.

    2018-03-01

    In recent years, polymer composites are rapidly developing and replacing the metals or alloys in numerous engineering applications. These polymer composites are the topic of interests in industrial applications such as automotive and aerospace industries. In the present research study, glass fiber (GF) reinforced nylon 6 (PA6)-polypropylene (PP) composite specimens were prepared successfully using injection molding process. Test specimens of five different compositions such as, 70%PA6+30%PP, 65%PA6+30%PP+5%GF, 60%PA6+30%PP+10%GF, 55%PA6+30%PP+15%GF and 50%PA6+30%PP+20%GF were prepared. In the experiments, flexure and impact tests were carried out. The obtained results revealed that flexure and impact properties of the polymer composites were significantly influenced by the glass fiber content. Results showed that flexural strength is low for pure polymer blend and flexural strength of GF reinforced composite increases gradually with the increase in glass fiber content. Test results also revealed that the impact strength of 70%PA6+30%PP is the highest and 55%PA6+30%PP+15%GF composite shows moderate impact strength. On the other hand, 50%PA6+30%PP+20%GF composite shows low toughness or reduced impact strength.

  16. Dynamic compressive properties and failure mechanism of glass fiber reinforced silica hydrogel

    Yang Jie; Li Shukui; Yan Lili; Huo Dongmei; Wang Fuchi

    2010-01-01

    The dynamic compressive properties of glass fiber reinforced silica (GFRS) hydrogel were investigated using a spilt Hopkinson pressure bar. Failure mechanism of GFRS hydrogel was studied by scanning electron microscopy (SEM). Result showed that dynamic compressive stresses were much higher than the quasi-static compressive stresses at the same strain. The dynamic compressive strength was directly proportional to the strain rate with same sample dimensions. The dynamic compressive strength was directly proportional to the sample basal area at same strain rate. Dynamic compressive failure strain was small. At high strain rates, glass fibers broke down and separated from the matrix, pores shrank rapidly. Failure resulted from the increase of lateral tensile stress in hydrogel under dynamic compression.

  17. Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions.

    Huang, Qiting; Garoushi, Sufyan; Lin, Zhengmei; He, Jingwei; Qin, Wei; Liu, Fang; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2017-10-01

    To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO 2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO 2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application. Copyright © 2017. Published by Elsevier Ltd.

  18. CO2-laser-assisted processing of glass fiber-reinforced thermoplastic composites

    Brecher, Christian; Emonts, Michael; Schares, Richard Ludwig; Stimpfl, Joffrey

    2013-02-01

    To fully exploit the potential of fiber-reinforced thermoplastic composites (FRTC) and to achieve a broad industrial application, automated manufacturing systems are crucial. Investigations at Fraunhofer IPT have proven that the use of laser system technology in processing FRTC allows to achieve high throughput, quality, flexibility, reproducibility and out-of-autoclave processing simultaneously. As 90% of the FRP in Europe1 are glass fiber-reinforced a high impact can be achieved by introducing laser-assisted processing with all its benefits to glass fiber-reinforced thermoplastics (GFRTC). Fraunhofer IPT has developed the diode laser-assisted tape placement (laying and winding) to process carbon fiber-reinforced thermoplastic composites (CFRTC) for years. However, this technology cannot be transferred unchanged to process milky transparent GFRTC prepregs (preimpregnated fibers). Due to the short wavelength (approx. 980 nm) and therefore high transmission less than 20% of the diode laser energy is absorbed as heat into non-colored GFRTC prepregs. Hence, the use of a different wave length, e.g. CO2-laser (10.6 μm) with more than 90% laser absorption, is required to allow the full potential of laser-assisted processing of GFRTC. Also the absorption of CO2-laser radiation at the surface compared to volume absorption of diode laser radiation is beneficial for the interlaminar joining of GFRTC. Fraunhofer IPT is currently developing and investigating the CO2-laser-assisted tape placement including new system, beam guiding, process and monitoring technology to enable a resource and energy efficient mass production of GFRP composites, e.g. pipes, tanks, masts. The successful processing of non-colored glass fiber-reinforced Polypropylene (PP) and Polyphenylene Sulfide (PPS) has already been proven.

  19. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes

    Zhang, Xiaoyuan; Cheng, Shaoan; Liang, Peng; Huang, Xia; Logan, Bruce E.

    2011-01-01

    The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely

  20. Effect of surface treatment on mechanical properties of glass fiber/stainless steel wire mesh reinforced epoxy hybrid composites

    N, Karunagaran [S.K.P Engineering College, Tiruvannamalai (India); A, Rajadurai [Anna University, Chennai (India)

    2016-06-15

    This paper investigates the effect of surface treatment for glass fiber, stainless steel wire mesh on tensile, flexural, inter-laminar shear and impact properties of glass fiber/stainless steel wire mesh reinforced epoxy hybrid composites. The glass fiber fabric is surface treated either by 1 N solution of sulfuric acid or 1 N solution of sodium hydroxide. The stainless steel wire mesh is also surface treated by either electro dissolution or sand blasting. The hybrid composites are fabricated using epoxy resin reinforced with glass fiber and fine stainless steel wire mesh by hand lay-up technique at room temperature. The hybrid composite consisting of acid treated glass fiber and sand blasted stainless steel wire mesh exhibits a good combination of tensile, flexural, inter-laminar shear and impact behavior in comparison with the composites made without any surface treatment. The fine morphological modifications made on the surface of the glass fiber and stainless steel wire mesh enhances the bonding between the resin and reinforcement which inturn improved the tensile, flexural, inter-laminar shear and impact properties.

  1. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites.

    Braga, R A; Magalhaes, P A A

    2015-11-01

    This work describes the study to investigate and compare the mechanical and thermal properties of raw jute and glass fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with glass fiber. Epoxy resin, jute and glass fibers were laminated in three weight ratios (69/31/0, 68/25/7 and 64/18/19) respectively to form composites. The tensile, flexural, impact, density, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that the addition of jute fiber and glass fiber in epoxy, increases the density, the impact energy, the tensile strength and the flexural strength, but decreases the loss mass in function of temperature and the water absorption. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Intra-Laminar Fracture Toughness of Glass Fiber Reinforced Polymer By Using Theory, Experimentation and FEA

    Firojkhan, Pathan; Tanpure, Kshitijit; Dawale, Ajinkya; Patil, Shital

    2018-04-01

    Fiber reinforced polymer (FRP) composites are widely use in aerospace, marine, auto-mobile and civil engineering applications because of their high strength-to-weight and stiffness-to-weight ratios, corrosion resistance and potentially high durability. The purpose of this research is to experimentally investigate the mechanical and fracture properties of glass-fiber reinforced polyester composite material, 450 g/m 2 randomly distributed glass-fiber mat also known as woven strand mat with polyester resin as a matrix. The samples have been produced by the conventional hand layup process and the specimens were prepared as per the ASTM standards. The tensile test was performed on the composite specimens using Universal testing machine (UTM) which are used for the finite element simulation of composite Layered fracture model. The mechanical properties were evaluated from the stress vs. strain curve obtained from the test result. Later, fracture tests were performed on the CT specimen. In case of CT specimen the load vs. Displacement plot obtained from the experimental results was used to determine the fracture properties of the composite. The failure load of CT specimen using FEA is simulated which gives the Stress intensity factor by using FEA. Good agreement between the FEA and experimental results was observed.

  3. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites

    Braga, R.A., E-mail: roney.braga@fiat.com.br [FIAT Automóveis S.A., Teardown, CEP 32530-000 Betim, MG (Brazil); Magalhaes, P.A.A., E-mail: pamerico@pucminas.br [PUC—MINAS, Instituto Politécnico, CEP 30535-610 Belo Horizonte, MG (Brazil)

    2015-11-01

    This work describes the study to investigate and compare the mechanical and thermal properties of raw jute and glass fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with glass fiber. Epoxy resin, jute and glass fibers were laminated in three weight ratios (69/31/0, 68/25/7 and 64/18/19) respectively to form composites. The tensile, flexural, impact, density, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that the addition of jute fiber and glass fiber in epoxy, increases the density, the impact energy, the tensile strength and the flexural strength, but decreases the loss mass in function of temperature and the water absorption. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope. - Highlights: • The work is the study of the mechanical of raw jute and glass fiber with epoxy resin. • The mechanical properties increased with more proportions of glass fibers. • The density of E69-J31-V0 was the lower. • The flexural strength did not have a significant increase. • The water absorption of E69-J31-V0 was the best.

  4. Preparation and characterization of glass fibers – polymers (epoxy bars (GFRP reinforced concrete for structural applications

    Alkjk Saeed

    2016-06-01

    Full Text Available The paper presents some of the results from a large experimental program undertaken at the Department of Civil Engineering of Damascus University. The project aims to study the ability to reinforce and strengthen the concrete by bars from Epoxy polymer reinforced with glass fibers (GFRP and compared with reinforce concrete by steel bars in terms of mechanical properties. Five diameters of GFRP bars, and steel bars (4mm, 6mm, 8mm, 10mm, 12mm tested on tensile strength tests. The test shown that GFRP bars need tensile strength more than steel bars. The concrete beams measuring (15cm wide × 15cm deep × and 70cm long reinforced by GFRP with 0.5 vol.% ratio, then the concrete beams reinforced by steel with 0.89 vol.% ratio. The concrete beams tested on deflection test. The test shown that beams which reinforced by GFRP has higher deflection resistance, than beams which reinforced by steel. Which give more advantage to reinforced concrete by GFRP.

  5. Joining of aluminum sheet and glass fiber reinforced polymer using extruded pins

    Conte, Romina; Buhl, Johannes; Ambrogio, Giuseppina; Bambach, Markus

    2018-05-01

    The present contribution proposes a new approach for joining sheet metal and fiber reinforced composites. The joining process draws upon a Friction Stir Forming (FSF) process, which is performed on the metal sheet to produce slender pins. These pins are used to pierce through the composite. Joining is complete by forming a locking head out of the part if the pin sticks out of the composite. Pins of different diameters and lengths were produced from EN AW-1050 material, which were joined to glass fiber reinforced polyamide-6. The strength of the joint has been experimentally tested in order to understand the effect of the process temperature on the pins strength and therefore on the joining. The results demonstrate the feasibility of this new technique, which uses no excess material.

  6. Influence of the curing cycles on the fatigue performance of unidirectional glass fiber reinforced epoxy composites

    Hüther, Jonas; Brøndsted, Povl

    2016-01-01

    During the manufacturing process of fiber reinforced polymers the curing reaction of the resin results in shrinkage of the resin and introduces internal stresses in the composites. When curing at higher temperatures in order to shorten up the processing time, higher curing stresses and thermal...... to different levels of internal stresses. The mechanical properties, static strength and fatigue life time, are measured in three different directions of the material, i.e. the fiber direction, 0°, the 30° off axis direction, and the 90° direction transverse to the fiber direction. It is experimentally...... demonstrated that the resulting residual stresses barely influences the quasi-static mechanical properties of reinforced glass-fiber composites. It is found that the fatigue performance in the 0° direction is significantly influenced by the internal stresses, whereas the fatigue performance in the off axes...

  7. Study of the Effect of Reinforced Glass Fibers on Fatigue Properties for Composite Materials

    Mohamed G. Hamad

    2013-05-01

    Full Text Available This  research  included  the  study of  the effect  of  reinforced  glass fibers  on  fatigue  properties  for composite materials. Polyester  resin  is used  as  connective  material(matrix in two types  of  glass  fibers  for reinforced. The  first  type  is regular  glass fibers  (woven  roving with the  directional(0-90, the second  is  glass  fibers  with  the  random  direction. The first type is the panels with regular reinforced (0-90, and with number of layer (1,2.The  second  type  is  the  panels with random  reinforced  and  with  number  of  layers (1,2. The  results  and  the  laboratory  examinations  for  the samples  reinforce  with  fibers  have  manifested (0-90  that there  is  a decrease  in the number  of  cycles  to the  fatigue  limit  when  the  number  of  reinforce  layers  have  increased . And  an elasticity of this  type  of  samples  are decreased  by  increasing  the number  of  reinforced  layers  with  fiber  .We  find  the  random  reinforced  number  of  fatigue  cycles  for the samples  with  two  layers  of  random  reinforced  are  decreased  more  than the samples  with  one  layer of random  reinforced .

  8. Influence of Hybridizing Flax and Hemp-Agave Fibers with Glass Fiber as Reinforcement in a Polyurethane Composite

    Pankaj Pandey

    2016-05-01

    Full Text Available In this study, six combinations of flax, hemp, and glass fiber were investigated for a hybrid reinforcement system in a polyurethane (PU composite. The natural fibers were combined with glass fibers in a PU composite in order to achieve a better mechanical reinforcement in the composite material. The effect of fiber hybridization in PU composites was evaluated through physical and mechanical properties such as water absorption (WA, specific gravity (SG, coefficient of linear thermal expansion (CLTE, flexural and compression properties, and hardness. The mechanical properties of hybridized samples showed mixed trends compared to the unhybridized samples, but hybridization with glass fiber reduced water absorption by 37% and 43% for flax and hemp-agave PU composites respectively.

  9. Online Structural-Health Monitoring of Glass Fiber-Reinforced Thermoplastics Using Different Carbon Allotropes in the Interphase

    Michael Thomas Müller

    2018-06-01

    Full Text Available An electromechanical response behavior is realized by nanostructuring the glass fiber interphase with different highly electrically conductive carbon allotropes like carbon nanotubes (CNT, graphene nanoplatelets (GNP, or conductive carbon black (CB. The operational capability of these multifunctional glass fibers for an online structural-health monitoring is demonstrated in endless glass fiber-reinforced polypropylene. The electromechanical response behavior, during a static or dynamic three-point bending test of various carbon modifications, shows qualitative differences in the signal quality and sensitivity due to the different aspect ratios of the nanoparticles and the associated electrically conductive network densities in the interphase. Depending on the embedding position within the glass fiber-reinforced composite compression, shear and tension loadings of the fibers can be distinguished by different characteristics of the corresponding electrical signal. The occurrence of irreversible signal changes during the dynamic loading can be attributed to filler reorientation processes caused by polymer creeping or by destruction of electrically conductive paths by cracks in the glass fiber interphase.

  10. Weather ability studies of phenolic resin coated woods and glass fiber reinforced laminates

    Munir, A.; Hussain, R.; Rizvi, M.H.; Ahmed, F.

    1997-01-01

    Phenolic resins have made a major breakthrough in the field of high technology in 80's. These are now active participants of h igh tech' areas ranging from electronics, computers, communication, outer space, aerospace, advanced materials, bio materials and technology. A phenol - formaldehyde (1:1.5) resin having resin content of 70% synthesized in the laboratory has been applied for wood coating and reinforcing glass fiber. The weatherability and solvent resistance of these items have been studied and results discussed keeping in view the envisaged application for structural materials and chemical equipment. The toxic materials released during contact with solvents for chemical applications and during degradation general have been monitored. The results are discussed with reference to environmental pollution due to these resins and their composites under different conditions. (authors)

  11. Glass fiber reinforced polyester in the works of Tous and Fargas

    D. Hernández Falagán

    2017-06-01

    Full Text Available The architects Enric Tous (1925; t 1952 and Josep Maria Fargas (1926-2011, t 1952 achieved remarkable success during the 1960s and 1970s thanks to their commitment to technical experimentation and exploration of new construction systems. Among their most significant contributions is the incorporation of polyester reinforced with glass fiber as a material applied to solutions of light facades. This article tracks the origin, context, and results they obtained with this material. We propose an approach to the GRC material through the experience developed by the architects, analyzing the characteristics and specific implications of the systems proposed in their projects. Through this reading, the industrial initiative implemented by Tous and Fargas is put into value, and the key aspects that limited the progression of the construction system are detected.

  12. Measurement and analysis of thrust force in drilling sisal-glass fiber reinforced polymer composites

    Ramesh, M.; Gopinath, A.

    2017-05-01

    Drilling of composite materials is difficult when compared to the conventional materials because of its in-homogeneous nature. The force developed during drilling play a major role in the surface quality of the hole and minimizing the damages around the surface. This paper focuses the effect of drilling parameters on thrust force in drilling of sisal-glass fiber reinforced polymer composite laminates. The quadratic response models are developed by using response surface methodology (RSM) to predict the influence of cutting parameters on thrust force. The adequacy of the models is checked by using the analysis of variance (ANOVA). A scanning electron microscope (SEM) analysis is carried out to analyze the quality of the drilled surface. From the results, it is found that, the feed rate is the most influencing parameter followed by spindle speed and the drill diameter is the least influencing parameter on the thrust force.

  13. Fatigue resistance and stiffness of glass fiber-reinforced urethane dimethacrylate composite.

    Narva, Katja K; Lassila, Lippo V J; Vallittu, Pekka K

    2004-02-01

    Retentive properties of cast metal clasps decrease over time because of metal fatigue. Novel fiber-reinforced composite materials are purported to have increased fatigue resistance compared with metals and may offer a solution to the problem of metal fatigue. The aim of this study was to investigate the fatigue resistance and stiffness of E-glass fiber-reinforced composite. Twelve cylindrical fiber-reinforced composite test cylinders (2 mm in diameter and 60 mm in length) were made from light-polymerized urethane dimethacrylate monomer with unidirectional, single-stranded, polymer preimpregnated E-glass fiber reinforcement. Six cylinders were stored in dry conditions and 6 in distilled water for 30 days before testing. Fatigue resistance was measured by a constant-deflection fatigue test with 1 mm of deflection across a specimen span of 11 mm for a maximum of 150,000 loading cycles. The resistance of the cylinder against deflection was measured (N) and the mean values of the force were compared by 1-way analysis of variance (alpha = .05). The flexural modulus (GPa) was calculated for the dry and water-stored cylinders for the first loading cycle. Scanning electron microscopy was used to assess the distribution of the fibers, and the volume percent of fibers and polymer were assessed by combustion analysis. The test cylinders did not fracture due to fatigue following 150,000 loading cycles. Flexural modulus at the first loading cycle was 18.9 (+/- 2.9) GPa and 17.5 (+/- 1.7) GPa for the dry and water-stored cylinders, respectively. The mean force required to cause the first 1-mm deflection was 33.5 (+/- 5.2) N and 37.7 (+/- 3.6) N for the dry and water stored cylinders, respectively; however, the differences were not significant. After 150,000 cycles the mean force to cause 1-mm deflection was significantly reduced to 23.4 (+/- 8.5) N and 13.1 (+/- 3.5) N, respectively (P fiber- and polymer-rich areas within the specimens and indicated that individual fibers were

  14. Effect of Different Fillers on Adhesive Wear Properties of Glass Fiber Reinforced Polyester Composites

    E. Feyzullahoğlu

    2017-12-01

    Full Text Available Polymeric composites are used for different aims as substitute of traditional materials such as metals; due to their improved strength at small specific weight. The fiber reinforced polymer (FRP composite material consists of polymeric matrix and reinforcing material. Polymeric materials are commonly reinforced with synthetic fibers such as glass and carbon. The glass fiber reinforced polyester (GFRP composites are used with different filler materials. The aim of this study is to investigate the effects of different filler materials on adhesive wear behavior of GFRP. In this experimental study; polymetilmetacrilat (PMMA, Glass beads (GB and Glass sand (GS were used as filling material in GFRP composite samples. The adhesive wear behaviors of samples were carried out using ball on disc type tribometer. The friction force and coefficient of friction were measured during the test. The volume loss and wear rate values of samples were calculated according to test results. Barcol hardness values of samples were measured. The densities of samples were measured. Results show that the wear resistance of GB filled GFRP composite samples was much more than non-filled and PMMA filled GFRP composite samples.

  15. PERBAIKAN KEKUATAN DAN DAKTILITAS KOLOM BETON BERTULANG YANG MENDAPAT BEBAN GEMPA MENGGUNAKAN GLASS FIBER REINFORCED POLYMER

    Parmo Parmo

    2014-05-01

    Full Text Available Repairing the Strength and Ductility of Reinforced Concrete Column That Got Earthquake using Gla­ss Fiber Reinforced Polymer. This study aims to identify the additional strength and ductility of reinforced concrete columns af­ter being re­­­­tro­fitted using glass fiber reinforced polymer (GFRP and got the brunt of the earth­quake. This study uses two objects tested columns, which are being tested for three times. Each column size is 350 x 350 x 1100 mm with f'c = 20.34 MPa and fy = 549.94 MPa. The tes­t­ing is performed by giving a constant axial load of 748 kN and cyclic lateral load using con­trol displacement method in order to simulate the brunt of earth­quake. The results show an in­crea­se in lateral capacity of co­lumn by 43.96%. Re­tro­­fitting the column with GFRP has a duc­tile property, which is shown by the increase of the displacement ductility by 129.14% and curvature ductility by 118.27%.   Penelitian ini ber­tujuan untuk mengetahui penambahan kekuatan dan dak­ti­li­­­­tas kolom beton bertulang se­telah diretrofit menggunakan glass fiber reinforced po­ly­­­mer (GFRP dan mendapat be­ban gempa. Penelitian ini menggunakan benda ­uji dua buah kolom dengan tiga kali pengujian. Masing-masing ukuran kolom 350 x 350 x 1100 mm dengan f’c = 20,34 MPa dan fy = 549,94 MPa. Pengujian dilakukan de­ngan memberikan beban ak­sial konstan 748 kN dan beban lateral siklik yang meng­gu­nakan metode di­splacemet con­trol untuk mensimulasikan beban gempa. Hasil pe­ne­­­litian menunjukkan pe­ningkatan kapasitas lateral pada kolom sebesar 43,96%. Retrofit kolom dengan GFRP bersifat dak­tail yang ditunjukkan dengan meningkatnya daktilitas per­pindahan sebesar 129,14% dan dak­­­tilitas kurvatur se­besar 118,27%.

  16. Mechanical characterization of SiC particulate & E-glass fiber reinforced Al 3003 hybrid metal matrix composites

    Narayana, K. S. Lakshmi; Shivanand, H. K.

    2018-04-01

    Metal matrix composites constitute a class of low cost high quality materials which offer high performance for various industrial applications. The orientation of this research is towards the study of mechanical properties of as cast silicon carbide (SiC) particulates and Short E-Glass fibers reinforced Aluminum matrix composites (AMCs). The Hybrid metal matrix composite is developed by reinforcing SiC particulates of 100 microns and short E-Glass fibers of 2-3 mm length with Al 3003 in different compositions. The vortex method of stir casting was employed, in which the reinforcements were introduced into the vortex created by the molten metal by means of mechanical stirrer. The mechanical properties of the prepared metal matrix composites were analyzed. From the studies it was noticed that an improvement in mechanical properties of the reinforced alloys compared to unreinforced alloys.

  17. Influence of Coating with Some Natural Based Materials on the Erosion Wear Behavior of Glass Fiber Reinforced Epoxy Resin

    Aseel Basim Abdul Hussein; Emad Saadi AL-Hassani; Reem Alaa Mohamed

    2015-01-01

    In the present study, composites were prepared by Hand lay-up molding. The composites constituents were epoxy resin as a matrix, 6% volume fractions of glass fibers (G.F) as reinforcement and 3%, 6% volume fractions of preparation natural material (Rice Husk Ash, Carrot Powder, and Sawdust) as filler. Studied the erosion wear behavior and coating by natural wastes (Rice Husk Ash) with epoxy resin after erosion. The results showed the non – reinforced epoxy have lower resistance erosion than n...

  18. Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot recreational yachts

    Dave (Dae-Wook Kim

    2010-03-01

    Full Text Available Polymer composite materials offer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet in length. In order to construct even larger hull structures, higher quality composites with lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic (GFRP composites is presented. Fabrication techniques investigated during this study are hand lay-up (HL, vacuum infusion (VI, and hybrid (HL + VI processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented during composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results.

  19. Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot) recreational yachts

    Kim, Dave (dea-wook); Hennigan, Daniel John; Beavers, Kevin Daniel

    2010-03-01

    Polymer composite materialsoffer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet) in length. In order to construct even larger hull structures, higher quality composites with a lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic(GFRP) composites is presented. Fabrication techniques used in this study are hand lay-up (HL), vacuum infusion (VI), and hybrid (HL+VI) processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented during composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results

  20. Interface enhancement of glass fiber reinforced vinyl ester composites with flame-synthesized carbon nanotubes and its enhancing mechanism.

    Liao, Lingmin; Wang, Xiao; Fang, Pengfei; Liew, Kim Meow; Pan, Chunxu

    2011-02-01

    Interface enhancement with carbon nanotubes (CNTs) provides a promising approach for improving shock strength and toughness of glass fiber reinforced plastic (GFRP) composites. The effects of incorporating flame-synthesized CNTs (F-CNTs) into GFRP were studied, including on hand lay-up preparation, microstructural characterization, mechanical properties, fracture morphologies, and theoretical calculation. The experimental results showed that: (1) the impact strength of the GFRP modified by F-CNTs increased by more than 15% over that of the GFRP modified by CNTs from chemical vapor deposition; and (2) with the F-CNT enhancement, no interfacial debonding was observed at the interface between the fiber and resin matrix on the GFRP fracture surface, which indicated strong adhesive strength between them. The theoretical calculation revealed that the intrinsic characteristics of the F-CNTs, including lower crystallinity with a large number of defects and chemical functional groups on the surface, promoted their surface activity and dispersibility at the interface, which improved the interfacial bond strength of GFRP.

  1. Study on the influence of design parameters on the damping property of glass fiber reinforced epoxy composite

    Bhattacharjee, A.; Nanda, B. K.

    2018-04-01

    Fiber reinforced composites are widely used in industrial applications due to their high strength, light weight and ease in manufacturing. In applications such as automotive, aerospace and structural parts, the components are subjected to unwanted vibrations which reduce their service life, accuracy as well as increases noise. Therefore, it is essential to avoid the detrimental effects of vibrations by enhancing their damping characteristics. The current research deals with estimating the damping properties of Glass fiber reinforced epoxy (GFRE) composites. Processing of the GFRE composites is carried out using hand-lay technique. Various design parameters such as number of glass fiber layers, orientation of fibers and weight ratio are varied while manufacturing GFRE composites. The effects of variation of these design parameters on damping property of GFRE composites are studied extensively.

  2. Monitoring Poisson's ratio of glass fiber reinforced composites as damage index using biaxial Fiber Bragg Grating sensors

    Yılmaz, Çağatay; Yilmaz, Cagatay; Akalın, Çağdaş; Akalin, Cagdas; Kocaman, Esat Selim; Suleman, A.; Yıldız, Mehmet; Yildiz, Mehmet

    2016-01-01

    Damage accumulation in Glass Fiber Reinforced Polymer (GFRP) composites is monitored based on Poisson's ratio measurements for three different fiber stacking sequences subjected to both quasi-static and quasi-static cyclic tensile loadings. The sensor systems utilized include a dual-extensometer, a biaxial strain gage and a novel embedded-biaxial Fiber Bragg Grating (FBG) sensor. These sensors are used concurrently to measure biaxial strain whereby the evolution of Poisson's ratio as a functi...

  3. Thermo-Mechanical Properties of Unsaturated Polyester Reinforced with SiliconCarbide Powder And with Chopped Glass Fiber

    Bushra Hosnie Musa

    2018-02-01

    Full Text Available The work studied the effectoffine silicon carbide (SiC powder with (0,3,5,7wt % on the thermal conductivity and mechanical properties of unsaturated polyester composite in the presence of a fixed amount of chopped glass fiber. The hand lay-up technique was employed to preparethe required samples. Results showed that tensile, impact strength and thermal conductivity increased with increasing the weight fraction of reinforced materials.

  4. Fluid flow analysis of E-glass fiber reinforced pipe joints in oil and gas industry

    Bobba, Sujith; Leman, Z.; Zainuddin, E. S.; Sapuan, S. M.

    2018-04-01

    Glass Fiber reinforced composites have become increasingly important over the past few years and now they are the first choice materials for fabricating pipes with low weight in combination with high strength and stiffness. In Oil And Gas Industry, The Pipelines transporting heavy crude oil are subjected to variable pressure waves causing fluctuating stress levels in the pipes. Computational Fluid Dynamics (CFD) analysis was performed using solid works flow stimulation software to study the effects of these pressure waves on some specified joints in the pipes. Depending on the type of heavy crude oil being used, the flow behavior indicated a considerable degree of stress levels in certain connecting joints, causing the joints to become weak over a prolonged period of use. This research proposes a new perspective that is still required to be developed regarding the change of the pipe material, fiber winding angle in those specified joints and finally implementing cad wind technology to check the output result of the stress levels so that the life of the pipes can be optimized.

  5. Double-Sided Terahertz Imaging of Multilayered Glass Fiber-Reinforced Polymer

    Przemyslaw Lopato

    2017-06-01

    Full Text Available Polymer matrix composites (PMC play important roles in modern industry. Increasing the number of such structures in aerospace, construction, and automotive applications enforces continuous monitoring of their condition. Nondestructive inspection of layered composite materials is much more complicated process than evaluation of homogenous, (mostly metallic structures. Several nondestructive methods are utilized in this case (ultrasonics, shearography, tap testing, acoustic emission, digital radiography, infrared imaging but none of them gives full description of evaluated structures. Thus, further development of NDT techniques should be studied. A pulsed terahertz method seems to be a good candidate for layered PMC inspection. It is based on picosecond electromagnetic pulses interacting with the evaluated structure. Differences of dielectric parameters enables detection of a particular layer in a layered material. In the case of multilayered structures, only layers close to surface can be detected. The response of deeper ones is averaged because of multiple reflections. In this paper a novel inspection procedure with a data processing algorithm is introduced. It is based on a double-sided measurement, acquired signal deconvolution, and data combining. In order to verify the application of the algorithm stress-subjected glass fiber-reinforced polymer (GFRP was evaluated. The obtained results enabled detection and detailed analysis of delaminations introduced by stress treatment and proved the applicability of the proposed algorithm.

  6. Real time sensing of structural glass fiber reinforced composites by using embedded PVA - carbon nanotube fibers

    Marioli-Riga Z.

    2010-06-01

    Full Text Available Polyvinyl alcohol - carbon nanotube (PVA-CNT fibers had been embedded to glass fiber reinforced polymers (GFRP for the structural health monitoring of the composite material. The addition of the conductive PVA-CNT fiber to the nonconductive GFRP material aimed to enhance its sensing ability by means of the electrical resistance measurement method. The test specimen’s response to mechanical load and the in situ PVA-CNT fiber’s electrical resistance measurements were correlated for sensing and damage monitoring purposes. The embedded PVA-CNT fiber worked as a sensor in GFRP coupons in tensile loadings. Sensing ability of the PVA-CNT fibers was also demonstrated on an integral composite structure. PVA-CNT fiber near the fracture area of the structure recorded very high values when essential damage occurred to the structure. A finite element model of the same structure was developed to predict axial strains at locations of the integral composite structure where the fibers were embedded. The predicted FEA strains were correlated with the experimental measurements from the PVA-CNT fibers. Calculated and experimental values were in good agreement, thus enabling PVA-CNT fibers to be used as strain sensors.

  7. Experimental Investigation on the Durability of Glass Fiber-Reinforced Polymer Composites Containing Nanocomposite

    Weiwen Li

    2013-01-01

    Full Text Available Nanoclay layers incorporated into polymer/clay nanocomposites can inhibit the harmful penetration of water and chemicals into the material, and thus the durability of glass fiber-reinforced polymer (GFRP composites should be enhanced by using polymer/clay nanocomposite as the matrix material. In this study, 1.5 wt% vinyl ester (VE/organoclay and 2 wt% epoxy (EP/organoclay nanocomposites were prepared by an in situ polymerization method. The dispersion states of clay in the nanocomposites were studied by performing XRD analysis. GFRP composites were then fabricated with the prepared 1.5 wt% VE/clay and 2.0 wt% EP/clay nanocomposites to investigate the effects of a nanocomposite matrix on the durability of GFRP composites. The durability of the two kinds of GFRP composites was characterized by monitoring tensile properties following degradation of GFRP specimens aged in water and alkaline solution at 60°C, and SEM was employed to study fracture behaviors of aged GFRP composites under tension. The results show that tensile properties of the two types of GFRP composites with and without clay degrade significantly with aging time. However, the GFRP composites with nanoclay show a lower degradation rate compared with those without nanoclay, supporting the aforementioned hypothesis. And the modification of EP/GFRP enhanced the durability more effectively.

  8. Shear Strengthening of RC Beams Using Sprayed Glass Fiber Reinforced Polymer

    Sayed Mohamad Soleimani

    2012-01-01

    Full Text Available The effectiveness of externally bonded sprayed glass fiber reinforced polymer (Sprayed GFRP in shear strengthening of RC beams under quasi-static loading is investigated. Different techniques were utilized to enhance the bond between concrete and Sprayed GFRP, involving the use of through bolts and nuts paired with concrete surface preparation through sandblasting and through the use of a pneumatic chisel prior to Sprayed GFRP application. It was found that roughening the concrete surface using a pneumatic chisel and using through bolts and nuts were the most effective techniques. Also, Sprayed GFRP applied on 3 sides (U-shaped was found to be more effective than 2-sided Sprayed GFRP in shear strengthening. Sprayed GFRP increased the shear load-carrying capacity and energy absorption capacities of RC beams. It was found that the load-carrying capacity of strengthened RC beams was related to an effective strain of applied Sprayed GFRP. This strain was related to Sprayed GFRP configuration and the technique used to enhance the concrete-FRP bond. Finally, an equation was proposed to calculate the contribution of Sprayed GFRP in the shear strength of an RC beam.

  9. Terahertz and Thermal Testing of Glass-Fiber Reinforced Composites with Impact Damages

    T. Chady

    2012-01-01

    Full Text Available The studies on glass-fiber reinforced composites, due to their growing popularity and high diversity of industrial applications, are becoming an increasingly popular branch of the nondestructive testing. Mentioned composites are used, among other applications, in wind turbine blades and are exposed to various kinds of damages. The equipment reliability requirements force the development of accurate methods of their health monitoring. In this paper we present the study of composite samples with impact damages, using three methods: terahertz time domain inspection, active thermography with convective excitation, and active thermography with microwave excitation. The results of discrete Fourier transform of obtained time sequences of signals will be presented as well as some image processing of resulting amplitude and phase images. Proposed experimental methods combined with harmonic analysis are efficient tool of defects detection and allowed to detect flaws in examined specimens. Reader may find it interesting that in spite of differences in nature of applied experimental methods, one technique of signal processing (harmonic analysis gave adequate and comparable results in each case.

  10. Effect of fiber content on flexural properties of glass fiber-reinforced polyamide-6 prepared by injection molding.

    Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro

    2017-07-26

    The use of non-metal clasp denture (NMCD) materials may seriously affect the remaining tissues because of the low rigidity of NMCD materials such as polyamides. The purpose of this study was to develop a high-rigidity glass fiber-reinforced thermoplastic (GFRTP) composed of E-glass fiber and polyamide-6 for NMCDs using an injection molding. The reinforcing effects of fiber on the flexural properties of GFRTPs were investigated using glass fiber content ranging from 0 to 50 mass%. Three-point bending tests indicated that the flexural strength and elastic modulus of a GFRTP with a fiber content of 50 mass% were 5.4 and 4.7 times higher than those of unreinforced polyamide-6, respectively. The result showed that the physical characteristics of GFRTPs were greatly improved by increasing the fiber content, and the beneficial effects of fiber reinforcement were evident. The findings suggest that the injection-molded GFRTPs are adaptable to NMCDs because of their excellent mechanical properties.

  11. "Brick-and-Mortar" Nanostructured Interphase for Glass-Fiber-Reinforced Polymer Composites.

    De Luca, Francois; Sernicola, Giorgio; Shaffer, Milo S P; Bismarck, Alexander

    2018-02-28

    The fiber-matrix interface plays a critical role in determining composite mechanical properties. While a strong interface tends to provide high strength, a weak interface enables extensive debonding, leading to a high degree of energy absorption. Balancing these conflicting requirements by engineering composite interfaces to improve strength and toughness simultaneously still remains a great challenge. Here, a nanostructured fiber coating was realized to manifest the critical characteristics of natural nacre, at a reduced length scale, consistent with the surface curvature of fibers. The new interphase contains a high proportion (∼90 wt %) of well-aligned inorganic platelets embedded in a polymer; the window of suitable platelet dimensions is very narrow, with an optimized platelet width and thickness of about 130 and 13 nm, respectively. An anisotropic, nanostructured coating was uniformly and conformally deposited onto a large number of 9 μm diameter glass fibers, simultaneously, using self-limiting layer-by-layer assembly (LbL); this parallel approach demonstrates a promising strategy to exploit LbL methods at scale. The resulting nanocomposite interphase, primarily loaded in shear, provides new mechanisms for stress dissipation and plastic deformation. The energy released by fiber breakage in tension appear to spread and dissipate within the nanostructured interphase, accompanied by stable fiber slippage, while the interfacial strength was improved up to 30%.

  12. Influence of thermal cycling on flexural properties of composites reinforced with unidirectional silica-glass fibers.

    Meriç, Gökçe; Ruyter, I Eystein

    2008-08-01

    The purpose was to investigate the effect of water storage and thermal cycling on the flexural properties of differently sized unidirectional fiber-reinforced composites (FRCs) containing different quantities of fibers. The effect of fiber orientation on the thermal expansion of FRCs as well as how the stresses in the composites can be affected was considered. An experimental polymeric base material was reinforced with silica-glass fibers. The cleaned and silanized fibers were sized with either linear PBMA-size or crosslinked PMMA-size. For the determination of flexural properties and water uptake, specimens were processed with various quantities of differently sized unidirectional fibers. Water uptake of FRC was measured. Water immersed specimens were thermally cycled for 500 and 12,000 cycles (5 degrees C/55 degrees C). Flexural properties of "dry" and wet specimens with and without thermal cycling were determined by a three-point bending test. The linear coefficients of thermal expansion (LCTE) for FRC samples with different fiber orientations were determined using a thermomechanical analyzer. Water uptake of the FRC specimens increased with a decrease in fiber content of the FRC. Flexural properties of FRCs improved with increasing fiber content, whereas the flexural properties were not influenced significantly by water and thermal cycling. Fiber orientation had different effects on LCTE of FRCs. Unidirectional FRCs had two different LCTE in longitudinal and transverse directions whereas bidirectional FRCs had similar LCTE in two directions and a higher one in the third direction. The results of the study suggest that the surface-treated unidirectional silica-glass FRC can be used for long-term clinical applications in the oral cavity.

  13. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes

    Zhang, Xiaoyuan

    2011-01-01

    The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely-spaced electrodes, and cathode supporters were used to avoid water gaps between the separator and cathode that can reduce power production. The maximum power density with a separator and supporter and a single cathode was 75±1W/m3. Removing the separator decreased power by 8%. Adding a second cathode increased power to 154±1W/m3. Current was increased by connecting two MFCs connected in parallel. These results show that brush anodes, combined with a glass fiber separator and a plastic mesh supporter, produce a useful MFC architecture that is inherently scalable due to good insulation between the electrodes and a compact architecture. © 2010 Elsevier Ltd.

  14. Tribological properties of solid lubricants filled glass fiber reinforced polyamide 6 composites

    Li, Du-Xin; You, Yi-Lan; Deng, Xin; Li, Wen-Juan; Xie, Ying

    2013-01-01

    Highlights: ► The tribological properties of GF/PA6 improved by the incorporation of PTFE. ► PTFE and UHMWPE exhibited a synergism effect on reducing friction coefficient. ► Solid lubricants enlarged the range of applied velocity for GF/PA6 composite. - Abstract: The main purpose of this paper is to further optimize the tribological properties of the glass fiber reinforced PA6 (GF/PA6,15/85 by weight) for high performance friction materials using single or combinative solid lubricants such as Polytetrafluroethylene (PTFE), ultra-high molecular weight polyethylene (UHMWPE) and the combination of both of them. Various polymer blends, where GF/PA6 acts as the polymer matrix and solid lubricants as the dispersed phase were prepared by injection molding. The tribological properties of these materials and the synergism as a result of the incorporation of both PTFE and UHMWPE were investigated. The results showed that, at a load of 40 N and a velocity of 200 rpm, PTFE was effective in improving the tribological capabilities of matrix material. On the contrary, UHMWPE was not conductive to maintain the structure integrity of GF/PA6 composite and harmful to the friction and wear properties. The combination of PTFE and UHMWPE showed synergism on further reducing the friction coefficient of the composites filled with either PTFE or UHMWPE only. Effects of load and velocity on tribological behavior were also discussed. To further understand the wear mechanism, the worn surfaces were examined by scanning electron microscopy

  15. Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber

    Juliano Fiorelli

    2003-06-01

    Full Text Available An experimental analysis of pinewood beams (Pinus caribea var hondurensis reinforced with glass and/or carbon fibers is discussed. The theoretical model employed to calculate the beam's bending strength takes into account the timber's ultimate limit states of tensile strength and failure by compression, considering a model of fragile elastic tension and plastic elastic compression. The validity of the theoretical model is confirmed by a comparison of the theoretical and experimental results, while the efficiency of the fiber reinforcement is corroborated by the increased strength and stiffness of the reinforced timber beams.

  16. Optimization of Process Parameters During Drilling of Glass-Fiber Polyester Reinforced Composites Using DOE and ANOVA

    N.S. Mohan

    2010-09-01

    Full Text Available Polymer-based composite material possesses superior properties such as high strength-to-weight ratio, stiffness-to-weight ratio and good corrosive resistance and therefore, is attractive for high performance applications such as in aerospace, defense and sport goods industries. Drilling is one of the indispensable methods for building products with composite panels. Surface quality and dimensional accuracy play an important role in the performance of a machined component. In machining processes, however, the quality of the component is greatly influenced by the cutting conditions, tool geometry, tool material, machining process, chip formation, work piece material, tool wear and vibration during cutting. Drilling tests were conducted on glass fiber reinforced plastic composite [GFRP] laminates using an instrumented CNC milling center. A series of experiments are conducted using TRIAC VMC CNC machining center to correlate the cutting parameters and material parameters on the cutting thrust, torque and surface roughness. The measured results were collected and analyzed with the help of the commercial software packages MINITAB14 and Taly Profile. The surface roughness of the drilled holes was measured using Rank Taylor Hobson Surtronic 3+ instrument. The method could be useful in predicting thrust, torque and surface roughness parameters as a function of process variables. The main objective is to optimize the process parameters to achieve low cutting thrust, torque and good surface roughness. From the analysis it is evident that among all the significant parameters, speed and drill size have significant influence cutting thrust and drill size and specimen thickness on the torque and surface roughness. It was also found that feed rate does not have significant influence on the characteristic output of the drilling process.

  17. Reinforcing effect of glass-fiber mesh on complete dentures in a test model with a simulated oral mucosa.

    Yu, Sang-Hui; Oh, Seunghan; Cho, Hye-Won; Bae, Ji-Myung

    2017-11-01

    Studies that evaluated the strength of complete dentures reinforced with glass-fiber mesh or metal mesh on a cast with a simulated oral mucosa are lacking. The purpose of this in vitro study was to compare the mechanical properties of maxillary complete dentures reinforced with glass-fiber mesh with those of metal mesh in a new test model, using a simulated oral mucosa. Complete dentures reinforced with 2 types of glass-fiber mesh, SES mesh (SES) and glass cloth (GC) and metal mesh (metal) were fabricated. Complete dentures without any reinforcement were prepared as a control (n=10). The complete dentures were located on a cast with a simulated oral mucosa, and a load was applied on the posterior artificial teeth bilaterally. The fracture load, elastic modulus, and toughness of a complete denture were measured using a universal testing machine at a crosshead speed of 5 mm/min. The fracture load and elastic modulus were analyzed using 1-way analysis of variance, and the toughness was analyzed with the Kruskal-Wallis test (α=.05). The Tukey multiple range test was used as a post hoc test. The fracture load and toughness of the SES group was significantly higher than that of the metal and control groups (P<.05) but not significantly different from that of the GC group. The elastic modulus of the metal group was significantly higher than that of the control group (P<.05), and no significant differences were observed in the SES and GC groups. Compared with the control group, the fracture load and toughness of the SES and GC groups were higher, while those of the metal group were not significantly different. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Machinability of glass fiber reinforced plastic (GFRP) composite ...

    This paper deals with the study of machinability of GFRP composite tubes of different fiber orientation angle vary from 300 to 900. Machining studies were carried out on an all geared lathe using three different cutting tools: namely Carbide (K-20), Cubic Boron Nitride (CBN) and Poly-Crystalline Diamond (PCD). Experiments ...

  19. Interlaminar/interfiber failure of unidirectional glass fiber reinforced composites used for wind turbine blades

    Leong, Martin Klitgaard; Overgaard, Lars C. T.; M. Daniel,, Isaac

    2013-01-01

    A unidirectional glass fiber/epoxy composite was characterized under multi-axial loading by testing off-axis specimens under uniaxial tension and compression at various angles relative to the fiber direction. Iosipescu shear tests were performed with both symmetric and asymmetric specimens. Tests...

  20. Flexural strength using Steel Plate, Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) on reinforced concrete beam in building technology

    Tarigan, Johannes; Patra, Fadel Muhammad; Sitorus, Torang

    2018-03-01

    Reinforced concrete structures are very commonly used in buildings because they are cheaper than the steel structures. But in reality, many concrete structures are damaged, so there are several ways to overcome this problem, by providing reinforcement with Fiber Reinforced Polymer (FRP) and reinforcement with steel plates. Each type of reinforcements has its advantages and disadvantages. In this study, researchers discuss the comparison between flexural strength of reinforced concrete beam using steel plates and Fiber Reinforced Polymer (FRP). In this case, the researchers use Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) as external reinforcements. The dimension of the beams is 15 x 25 cm with the length of 320 cm. Based on the analytical results, the strength of the beam with CFRP is 1.991 times its initial, GFRP is 1.877 times while with the steel plate is 1.646 times. Based on test results, the strength of the beam with CFRP is 1.444 times its initial, GFRP is 1.333 times while the steel plate is 1.167 times. Based on these test results, the authors conclude that beam with CFRP is the best choice for external reinforcement in building technology than the others.

  1. Effect of Reinforcement Using Stainless Steel Mesh, Glass Fibers, and Polyethylene on the Impact Strength of Heat Cure Denture Base Resin - An In Vitro Study.

    Murthy, H B Mallikarjuna; Shaik, Sharaz; Sachdeva, Harleen; Khare, Sumit; Haralur, Satheesh B; Roopa, K T

    2015-06-01

    The impact strength of denture base resin is of great concern and many approaches have been made to strengthen acrylic resin dentures. The objective of this study was to compare the impact strength of the denture base resin with and without reinforcement and to evaluate the impact strength of denture base resin when reinforced with stainless steel mesh, glass fiber, and polyethylene fibers in the woven form. The specimens (maxillary denture bases) were fabricated using a standard polyvinylsiloxane mold with conventional heat cured polymethyl methacrylate resin. The specimens were divided into four groups (n = 10). Group I specimens or control group were not reinforced. Group II specimens were reinforced with stainless steel mesh and Group III and Group IV specimens were reinforced with three percent by weight of glass fibers and polyethylene fibers in weave form respectively. All the specimens were immersed in water for 1-week before testing. The impact strength was measured with falling weight impact testing machine. One-way analysis of variance and Tukey's post-hoc test were used for statistical analysis. Highest impact strength values were exhibited by the specimens reinforced with polyethylene fibers followed by glass fibers, stainless steel mesh, and control group. Reinforcement of maxillary complete dentures showed a significant increase in impact strength when compared to unreinforced dentures. Polyethylene fibers exhibit better impact strength followed by glass fibers and stainless steel mesh. By using pre-impregnated glass and polyethylene fibers in woven form (prepregs) the impact strength of the denture bases can be increased effectively.

  2. Monotonic and cyclic responses of impact polypropylene and continuous glass fiber-reinforced impact polypropylene composites at different strain rates

    Yudhanto, Arief

    2016-03-08

    Impact copolymer polypropylene (IPP), a blend of isotactic polypropylene and ethylene-propylene rubber, and its continuous glass fiber composite form (glass fiber-reinforced impact polypropylene, GFIPP) are promising materials for impact-prone automotive structures. However, basic mechanical properties and corresponding damage of IPP and GFIPP at different rates, which are of keen interest in the material development stage and numerical tool validation, have not been reported. Here, we applied monotonic and cyclic tensile loads to IPP and GFIPP at different strain rates (0.001/s, 0.01/s and 0.1/s) to study the mechanical properties, failure modes and the damage parameters. We used monotonic and cyclic tests to obtain mechanical properties and define damage parameters, respectively. We also used scanning electron microscopy (SEM) images to visualize the failure mode. We found that IPP generally exhibits brittle fracture (with relatively low failure strain of 2.69-3.74%) and viscoelastic-viscoplastic behavior. GFIPP [90]8 is generally insensitive to strain rate due to localized damage initiation mostly in the matrix phase leading to catastrophic transverse failure. In contrast, GFIPP [±45]s is sensitive to the strain rate as indicated by the change in shear modulus, shear strength and failure mode.

  3. Influence of the Processing Parameters on the Fiber-Matrix-Interphase in Short Glass Fiber-Reinforced Thermoplastics

    Anna Katharina Sambale

    2017-06-01

    Full Text Available The interphase in short fiber thermoplastic composites is defined as a three-dimensional, several hundred nanometers-wide boundary region at the interface of fibers and the polymer matrix, exhibiting altered mechanical properties. This region is of key importance in the context of fiber-matrix adhesion and the associated mechanical strength of the composite material. An interphase formation is caused by morphological, as well as thermomechanical processes during cooling of the plastic melt close to the glass fibers. In this study, significant injection molding processing parameters are varied in order to investigate the influence on the formation of an interphase and the resulting mechanical properties of the composite. The geometry of the interphase is determined using nano-tribological techniques. In addition, the influence of the glass fiber sizing on the geometry of the interphase is examined. Tensile tests are used in order to determine the resulting mechanical properties of the produced short fiber composites. It is shown that the interphase width depends on the processing conditions and can be linked to the mechanical properties of the short fiber composite.

  4. Optimization for Tribological Properties of Glass Fiber-Reinforced PTFE Composites with Grey Relational Analysis

    Firojkhan Pathan

    2016-01-01

    Full Text Available Most recent history shows that polytetrafluoroethylene (PTFE is widely used as antifrictional materials in industry for wide speed range. A high antifriction property of PTFE makes it suitable for dry friction bearing. Main disadvantage of using PTFE is its high wear rate, so extensive research had been carried out to improve the wear resistance with addition of filler material. This study focuses on four input parameters load, sliding speed, sliding distance, and percentage of glass fiber as a filler material. Taguchi method was used for experimentation; each parameter is having 3 levels with L27 orthogonal array. Grey relational analysis is used to convert multiple response parameters, namely, wear and coefficient of friction, into single grey relation grade. The optimal input parameters were selected based on the S/N ratio. It was observed that load 3 kg, sliding speed 5.1836 m/s (900 rpm, sliding distance 2 km, and 15% of glass fiber are optimal input parameters for PTFE without significantly affecting the wear rate and coefficient of friction.

  5. Thermal performance of glass fiber reinforced intumescent fire retardant coating for structural applications

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Ullah, Sami; Aziz, Hammad, E-mail: engr.hammad.aziz03@gmail.com; Omar, Nor Sharifah [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Tronoh 31750 Perak (Malaysia)

    2015-07-22

    The results of influence of glass fiber addition into the basic intumescent coating formulation towards the enhancement of its thermal insulation properties are presented. The intumescent coatings were formulated from expandable graphite, ammonium polyphosphate, melamine, boric acid, bisphenol A epoxy resin BE-188, polyamide amine H-2310 hardener and fiberglass (FG) of length 3.0 mm. Eight intumescent formulations were developed and the samples were tested for their fire performance by burning them at 450°C, 650°C and 850°C in the furnace for two hours. The effects of each fire test at different temperatures; low and high temperature were evaluated. Scanning Electron Microscope, X-Ray Diffraction technique and Thermo Gravimetric Analysis were conducted on the samples to study the morphology, the chemical components of char and the residual weight of the coatings. The formulation, FG08 containing 7.0 wt% glass fiber provided better results with enhanced thermal insulation properties of the coatings.

  6. Glass Fiber Reinforced Polymer (GFRP Bars for Enhancing the Flexural Performance of RC Beams Using Side-NSM Technique

    Md. Akter Hosen

    2017-05-01

    Full Text Available Reinforced concrete (RC structures require strengthening for numerous factors, such as increased load, modification of the structural systems, structural upgrade or errors in the design and construction stages. The side near-surface mounted (SNSM strengthening technique with glass fiber-reinforced polymer (GFRP bars is a relatively new emerging technique for enhancing the flexural capacities of existing RC elements. Nine RC rectangular beams were flexurally strengthened with this technique and tested under four-point bending loads until failure. The main goal of this study is to optimize the structural capacity of the RC beams by varying the amount of strengthening reinforcement and bond length. The experimental test results showed that strengthening with SNSM GFRP bars significantly enhanced the flexural responses of the specimens compared with the control specimen. The first cracking and ultimate loads, energy absorption capacities, ductility and stiffness were remarkably enhanced by the SNSM technique. It was also confirmed that the bond length of the strengthened reinforcement greatly influences the energy absorption capacities, ductility and stiffness. The effect of the bond length on these properties is more significant compared to the amount of strengthening reinforcement.

  7. Tribological Behavior of TiC/a-C : H-Coated and Uncoated Steels Sliding Against Phenol-Formaldehyde Composite Reinforced with PTFE and Glass Fibers

    Shen, J.T.; Pei, Y.T.; Hosson, J.Th.M. De

    2013-01-01

    Tribological experiments on phenol-formaldehyde composite reinforced with polytetrafluoroethylene (PTFE) and glass fibers were performed against 100Cr6 steel and TiC/a-C:H thin film-coated 100Cr6 steel. In both cases, the coefficient of friction increases with increasing sliding distance until a

  8. The restoration of a maxillary central incisor fracture with the original crown fragment using a glass fiber-reinforced post: a clinical report.

    Durkan, Rukiye Kaplan; Ozel, M Birol; Celik, Davut; Bağiş, Bora

    2008-12-01

    This report describes an esthetic, conservative, and economical alternative restoration technique for a fractured central incisor using the patient's own tooth crown piece and a bondable reinforcement glass fiber. Although the long-term durability of this adhesive post core restoration remains unknown, it remains successful after 1 year.

  9. Diagnostics of glass fiber reinforced polymers and comparative analysis of their fabrication techniques with the use of acoustic emission

    Bashkov, O. V.; Bryansky, A. A.; Panin, S. V.; Zaikov, V. I.

    2016-11-01

    Strength properties of the glass fiber reinforced polymers (GFRP) fabricated by vacuum and vacuum autoclave molding techniques were analyzed. Measurements of porosity of the GFRP parts manufactured by various molding techniques were conducted with the help of optical microscopy. On the basis of experimental data obtained by means of acoustic emission hardware/software setup, the technique for running diagnostics and forecasting the bearing capacity of polymeric composite materials based on the result of three-point bending tests has been developed. The operation principle of the technique is underlined by the evaluation of the power function index change which takes place on the dependence of the total acoustic emission counts versus the loading stress.

  10. Influence of Hygrothermal Aging on Poisson’s Ratio of Thin Injection-Molded Short Glass Fiber-Reinforced PA6

    Thomas Illing; Heinrich Gotzig; Marcus Schoßig; Christian Bierögel; Wolfgang Grellmann

    2016-01-01

    The hygrothermal aging of short glass fiber-reinforced polyamide 6 materials (PA6 GF) represents a major problem, especially in thin-walled components, such as in the automotive sector. In this study, therefore, the thickness and the glass fiber content of PA6 GF materials were varied and the materials were exposed to hygrothermal aging. The temperature and relative humidity were selected in the range from −40 °C up to 85 °C, and from 10% up to 85% relative humidity (RH). In the dry-as-molded...

  11. Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite

    Arun Prakash, V.R., E-mail: vinprakash101@gmail.com; Rajadurai, A., E-mail: rajadurai@annauniv.edu.in

    2016-10-30

    Highlights: • Particles dimension have reduced using Ball milling process. • Importance of surface modification was explored. • Surface modification has been done to improve adhesion of fiber/particles with epoxy. • Mechanical properties has been increased by adding modified fiber and particles. • Thermal properties have been increased. - Abstract: In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee’s disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved

  12. The mechanical and thermal characteristics of phenolic foam reinforced with kaolin powder and glass fiber fabric

    Xiao, Wenya; Huang, Zhixiong; Ding, Jie

    2017-12-01

    In this work, kaolin powder and glass fiber fabric were added to PF in order to improve its thermal stability and mechanical property. Micro-structures of carbonized PF with kaolin powder were inspected by scanning electron microscopy (SEM) to demonstrate the filler’s pinning effect. SEM results illustrated modified PF had well morphology after high-temperature heat treatment. The Fourier transform infrared spectrometer (FTIR) test was carried out and found that kaolin powder only physically dispersed in PF. The compression test and thermal weight loss test were done on two groups of modified PF (Group A: add powder and fabric; Group B: add powder only). Results showed that all modified PF were better than pure PF, while foams with powder and fabric showed better mechanical characteristic and thermal stability compared with foams with powder only.

  13. The effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resin: An in vitro study

    Nayana Anasane

    2013-01-01

    Full Text Available Background : Denture fracture is an unresolved problem in complete denture prosthodontics. However, the repaired denture often experiences a refracture at the repaired site due to poor transverse strength. Hence, this study was conducted to evaluate the effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resins. Materials and Methods: A total of 135 specimens of heat polymerized polymethyl methacrylate resin of dimensions 64 × 10 × 2.5 mm were fabricated. Fifteen intact specimens served as the control and 120 test specimens were divided into four groups (30 specimens each, depending upon the joint surface contour (butt, bevel, rabbet and round, with two subgroups based on type of the repair. Half of the specimens were repaired with plain repair resin and the other half with glass fibers reinforced repair resin. Transverse strength of the specimens was determined using three-point bending test. The results were analyzed using one-way ANOVA and Tukey post-hoc test (α= 0.05. Results: Transverse strength values for all repaired groups were significantly lower than those for the control group ( P < 0.001 (88.77 MPa, with exception of round surface design repaired with glass fiber reinforced repair resin (89.92 MPa which was significantly superior to the other joint surface contours ( P < 0.001. Glass fiber reinforced resin significantly improved the repaired denture base resins as compared to the plain repair resin ( P < 0.001. Conclusion: Specimens repaired with glass fiber reinforced resin and round surface design exhibited highest transverse strength; hence, it can be advocated for repair of denture base resins.

  14. High-Strength / High Alkaline Resistant Fe-Phosphate Glass Fibers as Concrete Reinforcement

    Mariano Velez

    2008-03-31

    Calcium-iron-phosphate glasses were developed whose chemical durabilities in alkaline solutions (pH 13) were comparable or superior to those of commercial alkaline-resistant (AR) silica-based glasses. However, the tensile strength of Ca-Fe-phosphate fibers, after being exposed to alkaline environments, including wet Portland cement pastes, is lower than that of current AR silicate fibers. Another series of Ca-Fe-phosphate glasses were developed with excellent chemical durability in strong acidic solutions (H2SO4, HF), indicating potential applications where silica-based fibers degrade very quickly, including E-glass. The new Ca-Fe-phosphate glasses can be melted and processed 300 to 500°C lower than silica-based glasses. This offers the possibility of manufacturing glass fibers with lower energy costs by 40-60% and the potential to reduce manufacturing waste and lower gas emissions. It was found that Ca-Fe-phosphate melts can be continuously pulled into fibers depending on the slope of the viscosity-temperature curve and with viscosity ~100 poise, using multi-hole Pt/Rh bushings.

  15. Structural Analysis of Basalt Fiber Reinforced Plastic Wind Turbine Blade

    Mengal Ali Nawaz

    2014-07-01

    Full Text Available In this study, Basalt fiber reinforced plastic (BFRP wind turbine blade was analyzed and compared with Glass fiber reinforced plastic blade (GFRP. Finite element analysis (FEA of blade was carried out using ANSYS. Data for FEA was obtained by using rule of mixture. The shell element in ANSYS was used to simulate the wind turbine blade and to conduct its strength analysis. The structural analysis and comparison of blade deformations proved that BFRP wind turbine blade has better strength compared to GFRP wind turbine blade.

  16. Behaviour of reinforced columns with E_Glass fiber and carbon fiber

    BOUCHELAGHEM Hafida; BEZAZI Abederrezak; Benzanache Naziha; SCARPA Fabrizio

    2018-01-01

    Externally bonded reinforcement using Fiber Reinforced Polymer (FRP) is a good response to the concern represented by the need for rehabilitation of concrete structures. These techniques are more and more attractive because of their fast and low labour costs, very good strength to weight ratio, good fatigue properties, and non-corrosive characteristics of FRP. The present work is an experimental study investigating the mechanical behaviour under a uni-axial loading of short concrete columns r...

  17. [Influence of retainer design on fixation strength of resin-bonded glass fiber reinforced composite fixed cantilever dentures].

    Petrikas, O A; Voroshilin, Iu G; Petrikas, I V

    2013-01-01

    Fiber-reinforced composite (FRC) fixed partial dentures (FPD) have become an accepted part of the restorative dentist's armamentarium. The aim of this study was to evaluate in vitro the influence of retainer design on the strength of two-unit cantilever resin-bonded glass FRC-FPDs. Four retainer designs were tested: a dual wing, a dual wing + horizontal groove, a dual wing + occlusal rest and a step-box. Of each design on 7 human mandibular molars, FRC-FPDs of a premolar size were produced. The FRC framework was made of resin Revolution (Kerr) impregnated glass fibers (GlasSpan, GlasSpan) and veneered with hybrid resin composite (Charisma, Kulzer). Revolution (Kerr) was used as resin luting cement. FRC-FPDs were loaded to failure in a universal testing machine. T (Student's)-test was used to evaluate the data. The four designs were analyzed with finite element analysis (FEA) to reveal the stress distribution within the tooth/restoration complex. Significantly lower fracture strengths were observed with inlay-retained FPDs (step-box: 172±11 N) compared to wing-retained FPDs (poptimal design for replacement of a single premolar by means of a two-unit cantilever FRC-FPDs.

  18. Study on mechanical properties of fly ash impregnated glass fiber reinforced polymer composites using mixture design analysis

    Satheesh Raja, R.; Manisekar, K.; Manikandan, V.

    2014-01-01

    Highlights: • FRP with and without fly ash filler were prepared. • Mechanical properties of composites were analyzed. • Mixture Design Method was used to model the system. • Experimental and mathematical model results were compared. - Abstract: This paper describes the mechanical behavior of fly ash impregnated E-glass fiber reinforced polymer composite (GFRP). Initially the proportion of fiber and resin were optimized from the analysis of the mechanical properties of the GFRP. It is observed that the 30 wt% of E-glass in the GFRP without filler material yields better results. Then, based on the optimized value of resin content, the varying percentage of E-glass and fly ash was added to fabricate the hybrid composites. Results obtained in this study were mathematically evaluated using Mixture Design Method. Predictions show that 10 wt% addition of fly ash with fiber improves the mechanical properties of the composites. The fly ash impregnated GFRP yields significant improvement in mechanical strength compared to the GFRP without filler material. The surface morphologies of the fractured specimens were characterized using Scanning Electron Microscope (SEM). The chemical composition and surface morphology of the fly ash is analyzed by using Energy Dispersive Spectroscopy (EDS) and Scanning Electron Microscope

  19. Modification of glass fibers to improve reinforcement: a plasma polymerization technique

    Çökeliler, D.; Erkut, S.; Zemek, Josef; Biederman, H.; Mutlu, M.

    2007-01-01

    Roč. 23, č. 3 (2007), s. 335-342 ISSN 0109-5641 Institutional research plan: CEZ:AV0Z10100521 Keywords : plasma polymerization * glos-discharge * E-glass fibros * ethylendiamine * 2-hydroxyethyl methacrystalate * triethyleneglycoldimethylether * fibre-reinforced composite ( FRC) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.990, year: 2007

  20. Evaluating the mechanical properties of E-Glass fiber/carbon fiber reinforced interpenetrating polymer networks

    G. Suresh

    2015-02-01

    Full Text Available A series of vinyl ester and polyurethane interpenetrating polymer networks were prepared by changing the component ratios of VER (Vinyl ester and PU (Polyurethane and the polymerization process was confirmed with Fourier Transform infrared spectroscopy. IPN (Inter Penetrating Polymer Network - VER/PU reinforced Glass and carbon fiber composite laminates were made using the Hand lay up technique. The Mechanical properties of the E-glass and carbon fiber specimens were compared from tests including Tensile, Compressive, Flexural, ILSS (Inter Laminar Shear Strength, Impact & Head Deflection Test (HDT. The IPN Reinforced Carbon fiber specimen showed better results in all the tests than E-Glass fibre reinforced IPN laminate with same thickness of the specimen, according to ASTM standards. It was found that the combination of 60%VER and 40%PU IPN exhibits better impact strength and maximum elongation at break, but at the slight expense of mechanical properties such as tensile, compressive, flexural, ILSS properties. The morphology of the unreinforced and reinforced composites was analyzed with help of scanning electron microscopy.

  1. Effect of severely thermal shocked MWCNT enhanced glass fiber reinforced polymer composite: An emphasis on tensile and thermal responses

    Mahato, K. K.; Fulmali, A. O.; Kattaguri, R.; Dutta, K.; Prusty, R. K.; Ray, B. C.

    2018-03-01

    Fiber reinforced polymeric (FRP) composite materials are exposed to diverse changing environmental temperatures during their in-service period. Current investigation is aimed to investigate the influence of thermal-shock exposure on the mechanical behavior of multiwalled carbon nanotube (MWCNT) enhanced glass fiber reinforced polymeric (GFRP) composites. The samples were exposed to +70°C for 36 hrs followed by further exposure to ‑ 60°C for the similar interval of time. Tensile tests were conducted in order to evaluate the results of thermal-shock on the mechanical behavior of the neat and conditioned samples at 1 mm/min loading rate. The polymer phase i.e. epoxy was modified with various MWCNT content. The ultimate tensile strength (UTS) was raised by 15.11 % with increase in the 0.1 % MWCNT content GFRP as related to the thermal-shocked neat GFRP conditioned samples. The possible reason may be attributed to the variation in the coefficients of thermal expansion at the time of conditioning. Also, upto some extent the pre-existing residual stresses allows uniform distribution of stress and hence the reason in enhanced mechanical properties of GFRP and MWCNT filled composites. In order to access the modifications in the glass transition temperature (Tg) due to the addition of MWCNT in GFRP composite and also due to the thermal shock temperature modulated differential scanning calorimeter (TMDSC) measurements are carried out. Scanning electron microscopy(SEM) was carried out to identify different modes of failures and strengthening morphology in the composites.

  2. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    Jukola, H.; Nikkola, L.; Tukiainen, M.; Kellomaeki, M.; Ashammakhi, N.; Gomes, M. E.; Reis, R. L.; Chiellini, F.; Chiellini, E.

    2008-01-01

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-ε-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 deg. C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 deg. C with the decomposition of starch and continued at 400 deg. C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications

  3. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    Jukola, H.; Nikkola, L.; Gomes, M. E.; Chiellini, F.; Tukiainen, M.; Kellomäki, M.; Chiellini, E.; Reis, R. L.; Ashammakhi, N.

    2008-02-01

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-ɛ-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 °C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 °C with the decomposition of starch and continued at 400 °C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.

  4. Investigation of mechanical properties of kenaf, hemp and E-glass fiber reinforced composites

    Dinesh, Veena; Shivanand, H. K.; Vidyasagar, H. N.; Chari, V. Srinivasa

    2018-04-01

    Recently the use of fiber reinforced polymer composite in the automobile, aerospace overwhelming designing sectors has increased tremendously due to the ecological issues and health hazard possessed by the synthetic fiber during disposal and manufacturing. The paper presents tensile strength, flexural strength and hardness of kenaf-E glass-kenaf, hemp-E glass-hemp and kenaf-E glass-hemp fiber reinforced polyester composites. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses of each combination. In addition to the physical and mechanical properties, processing methods and application of kenaf and hemp fiber composites is also discussed.

  5. The Effect of Temperature and Nanoclay on the Low Velocity and Ballistic Behavior of Woven Glass-Fiber Reinforced Composites

    Patrin, Lauren

    The objective of this research was to study the effect of nanoclay and temperature on the behavior of woven glass-fabric reinforced epoxy composite under low velocity and ballistic impacts. The materials used in manufacturing the composite were S2 (6181) glass-fibers, epoxy resin (EPON 828), hardener (Epikure 3230), nanoclay and Heloxy 61 modifier. The nanoclay addition was 0%, 1%, 3% and 5% by weight, with respect to the resin. All specimens were manufactured at the City College facilities using vacuum infusion. Tensile tests were conducted to characterize the material and obtain the Young's modulus, ultimate stress, failure strain, Poisson's ratio, shear modulus and shear strength and their variation with nanoclay percentage and temperature. The tests were conducted at room temperature (21°C/70°F), -54°C (-65°F), -20°C (-4°F), 49°C (120°F) and 71°C (160°F). Next composite specimens with 0%, 1%, 3% and 5% nanoclay by weight, with respect to the resin, were subjected to low velocity impact at the previously specified temperatures to determine dynamic force, displacement and energy correlations. The extent of damage was studied using the ultrasound technique. Then ballistic tests were conducted on the nanoclay infused specimens at room temperature to obtain the ballistic limit (V50) and the damage behavior of the composite. The dynamic finite element analysis (FEA) software LS-DYNA was used to model and simulate the results of low velocity impact tests. Good agreement was obtained between experimental and numerical (FEA) results. Analytical analyses were undertaken to compare the results from the tensile experiments. The finite element analysis (FEA) allowed for further analytical comparison of the results. The FEA platform used was LS-DYNA due to its proficient dynamic and damage capabilities in composite materials. The FEA was used to model and simulate the low velocity impacts and compare the results to experiments.

  6. Mechanical Properties of Abutments: Resin-Bonded Glass Fiber-Reinforced Versus Titanium.

    Bassi, Mirko Andreasi; Bedini, Rosells; Pecci, Raffaela; Ioppolo, Pietro; Laritano, Dorina; Carinci, Francesco

    2016-01-01

    The clinical success and longevity of endosseous implants, after their prosthetic finalization, mainly depends on mechanical factors. Excessive mechanical stress has been shown to cause initial bone loss around implants in the presence of a rigid implant-prosthetic connection. The implant abutments are manufactured with high elastic modulus materials such as titanium, steel, precious alloys, or esthetic ceramics. These materials do not absorb any type of shock from the chewing loads or ensure protection of the bone-implant interface, especially when the esthetic restorative material is ceramic rather than composite resin. The mechanical resistance to cyclical load was evaluated in a tooth-colored fiber-reinforced abutment prototype (TCFRA) and compared to that of a similarly shaped titanium abutment (TA). Eight TCFRAs and eight TAs were adhesively cemented on as many titanium implants. The swinging the two types of abutments showed during the application of sinusoidal load was also analyzed. In the TA group, fracture and deformation occurred in 12.5% of samples, while debonding occurred in 62.5%. In the TCFRA group, only debonding was present, in 37.5% of samples. In comparison to the TAs, the TCFRAs exhibited greater swinging during the application of sinusoidal load. In the TA group extrusion prevailed, whereas in the TCFRA group intrusion was more frequent. TCFRA demonstrated a greater elasticity than did TAs to the flexural load, absorbing part of the transversal load applied on the fixture during the chewing function and thus reducing the stress on the bone-implant interface.

  7. Mechanical properties of resin glass fiber-reinforced abutment in comparison to titanium abutment

    Andreasi Bassi, Mirko; Bedini, Rossella; Pecci, Raffella; Ioppolo, Pietro; Lauritano, Dorina; Carinci, Francesco

    2015-01-01

    Purpose: So far, definitive implant abutments have been performed with high elastic modulus materials, which prevented any type of shock absorption of the chewing loads and as a consequence, the protection of the bone-fixture interface. This is particularly the case when the esthetic restorative material chosen is ceramic rather than composite resin. The adoption of an anisotropic abutment, characterized by an elastic deformability, could allow decreasing the impulse of chewing forces transmitted to the crestal bone. Materials and Methods: According to research protocol, the mechanical resistance to cyclical load was evaluated in a tooth-colored fiber-reinforced abutment (TCFRA) prototype and compared to that of a titanium abutment (TA), thus eight TCFRAs and eight TAs were adhesively cemented on as many titanium implants. The swinging that the two types of abutments showed during the application of sinusoidal load was also analyzed. Results: In the TA group, both fracture and deformation occurred in 12.5% of samples while debonding 62.5%. In the TCFRA group, only debonding was present in 37.5% of samples. In comparison to the TAs, the TCFRAs exhibited a greater swinging during the application of sinusoidal load. In the TA group, the extrusion prevailed, whereas in the TCFRA group, the intrusion was more frequent. Conclusion: The greater elasticity of TCFRA to the flexural load allows absorbing part of the transversal load applied on the fixture during the chewing function, thus reducing the stress on the bone-implant interface. PMID:26229266

  8. Effect of Manufacturing Method to Tensile Properties of Hybrid Composite Reinforced by Natural (Agel Leaf Fiber) and Glass Fibers

    Nugroho, A.; Abdurohman, K.; Kusmono; Hestiawan, H.; Jamasri

    2018-04-01

    This paper described the effect of different type of manufacturing method to tensile properties of hybrid composite woven agel leaf fiber and glass fiber as an alternative of LSU structure material. The research was done by using 3 ply of woven agel leaf fiber (ALF) and 3 ply of glass fiber (wr200) while the matrix was using unsaturated polyester. Composite manufacturing method used hand lay-up and vacuum bagging. Tensile test conducted with Tensilon universal testing machine, specimen shape and size according to standard size ASTM D 638. Based on tensile test result showed that the tensile strength of agel leaf fiber composite with unsaturated polyester matrix is 54.5 MPa by hand lay-up and 84.6 MPa with vacuum bagging method. From result of tensile test, hybrid fiber agel composite and glass fiber with unsaturated polyester matrix have potential as LSU structure.

  9. The effect of interlaminar graphene nano-sheets reinforced e-glass fiber/ epoxy on low velocity impact response of a composite plate

    Al-Maharma, A. Y.; Sendur, P.

    2018-05-01

    In this study, we compare the inter-laminar effect of graphene nano-sheets (GNSs) and CNTs on the single and multiple dynamic impact response of E-glass fiber reinforced epoxy composite (GFEP). In the comparisons, raw GFEP composite is used as baseline for quantifying the improvement on the dynamic impact response. For that purpose, finite element based models are developed for GNSs on GFEP, graphene coating on glass fibers, inter-laminar composite of CNTs reinforced polyester at 7.5 vol%, and combinations of all these reinforcements. Comparisons are made on three metrics: (i) total deformation, (ii) the contact force, and (iii) internal energy of the composite plate. The improvement on axial modulus (E1) of GFEP reinforced with one layer of GNS (0.5 wt%) without polyester at lamination sequence of [0]8 is 29.4%, which is very close to the improvement of 31% on storage modulus for multi-layer graphene with 0.5 wt% reinforced E-glass/epoxy composite at room temperature. Using three GNSs (1.5 wt%) reinforced polyester composite as interlaminar layer results in an improvement of 57.1% on E1 of GFEP composite. The simulation results reveal that the interlaminar three GNSs/polyester composite at mid-plane of GFEP laminated composite can significantly improve the dynamic impact resistance of GFEP structure compared to the other aforementioned structural reinforcements. Reinforcing GFEP composite with three layers of GNSs/polyester composite at mid-plane results in an average of 35% improvement on the dynamic impact resistance for healthy and damaged composite plate under low velocity impacts of single and multiple steel projectiles. This model can find application in various areas including structural health monitoring, fire retardant composite, and manufacturing of high strength and lightweight mechanical parts such as gas tank, aircraft wings and wind turbine blades.

  10. Improvement of the Shock Absorption Ability of a Face Guard by Incorporating a Glass-Fiber-Reinforced Thermoplastic and Buffering Space

    Wada, Takahiro; Churei, Hiroshi; Takayanagi, Haruka; Iwasaki, Naohiko; Ueno, Toshiaki; Takahashi, Hidekazu; Uo, Motohiro

    2018-01-01

    This study aimed to evaluate the shock absorption ability of trial face guards (FGs) incorporating a glass-fiber-reinforced thermoplastic (GF) and buffering space. The mechanical properties of 3.2 mm and 1.6 mm thick commercial medical splint materials (Aquaplast, AP) and experimental GF prepared from 1.6 mm thick AP and fiberglass cloth were determined by a three-point bending test. Shock absorption tests were conducted on APs with two different thicknesses and two types of experimental mate...

  11. Weathering effects on tensile and stress rupture strength of glass fiber reinforced vinylester and epoxy thermoset pipes

    Nizamuddin, Syed

    Glass fiber reinforced vinylester (GFRE) and epoxy (GFRE) pipes have been used for more than three decades to mitigate corrosion problems in oil fields, chemical and industrial plants. In these services, both GFRV and GFRE pipes are exposed to various environmental conditions. Long-term mechanical durability of these pipes after exposure to environmental conditions, which include natural weathering exposure to seasonal temperature variation, sea water, humidity and other corrosive fluids like crude oil, should be well known. Although extensive research has been undertaken, several major issues pertaining to the performance of these pipes under a number of environmental conditions still remain unresolved. The main objective of this study is to investigate the effects of natural weathering, combined natural weathering with seawater and crude oil exposure, for time periods ranging from 3 to 36 months respectively, on the tensile and stress rupture behavior of GFRV and GFRE pipes. Ring specimens are machined from GFRV and GFRE pipes and tested before and after exposure to different weathering conditions prevalent in the eastern region (Dhahran) of Saudi Arabia and present under service conditions. The natural weathering and combined natural weathering with crude oil exposure of GFRV specimens revealed increased tensile strength even after 36 months of exposure when compared with that of the as received samples. However, the combined natural weathering with seawater exposure of GFRV samples revealed better tensile behavior till 24 months of exposure, and after 36 months their tensile strength was seen to be below that of the as received GFRV samples. The stress rupture behavior of natural weather exposed GFRV samples showed an improvement after 12 months of exposure and it decreased after 24 and 36 months of exposure when compared with the as received GFRV samples. The combined natural weathering with crude oil and seawater exposure of GFRV sample revealed improved

  12. The effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resin: An in vitro study.

    Anasane, Nayana; Ahirrao, Yogesh; Chitnis, Deepa; Meshram, Suresh

    2013-03-01

    Denture fracture is an unresolved problem in complete denture prosthodontics. However, the repaired denture often experiences a refracture at the repaired site due to poor transverse strength. Hence, this study was conducted to evaluate the effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resins. A total of 135 specimens of heat polymerized polymethyl methacrylate resin of dimensions 64 × 10 × 2.5 mm were fabricated. Fifteen intact specimens served as the control and 120 test specimens were divided into four groups (30 specimens each), depending upon the joint surface contour (butt, bevel, rabbet and round), with two subgroups based on type of the repair. Half of the specimens were repaired with plain repair resin and the other half with glass fibers reinforced repair resin. Transverse strength of the specimens was determined using three-point bending test. The results were analyzed using one-way ANOVA and Tukey post-hoc test (α= 0.05). Transverse strength values for all repaired groups were significantly lower than those for the control group (P transverse strength; hence, it can be advocated for repair of denture base resins.

  13. Glass fiber-reinforced thermoplastics for use in metal-free removable partial dentures: combined effects of fiber loading and pigmentation on color differences and flexural properties.

    Tanimoto, Yasuhiro; Nagakura, Manamu; Nishiyama, Norihiro

    2018-02-21

    The purpose of this study was to investigate the combined effects of fiber loading and pigmentation on the color differences and flexural properties of glass fiber-reinforced thermoplastics (GFRTPs), for use in non-metal clasp dentures (NMCDs). The GFRTPs consisted mainly of E-glass fibers, a polypropylene matrix, and a coloring pigment: the GFRTPs with various fiber loadings (0, 10, and 20mass%) and pigmentations (0, 1, 2, and 4mass%) were fabricated by using an injection molding. The color differences of GFRTPs were measured based on the Commission Internationale de l'Eclairage (CIE) Lab color system, by comparing with a commercially available NMCD. The flexural properties of GFRTPs were evaluated by using a three-point bending test, according to International Standards Organization (ISO) specification number 20795-1. The visible colors of GFRTPs with pigment contents of 2mass% were acceptable for gingival color, and the glass fibers harmonized well with the resins. The ΔE* values of the GFRTPs with pigment contents of 2mass% obtained by using the CIE Lab system were lowest at all fiber loadings. For GFRTPs with fiber contents of 10 and 20mass% at 2mass% pigment content, these GFRTPs surpassed the ISO 20795-1 specification regarding flexural strength (> 60MPa) and modulus (> 1.5GPa). A combination of the results of color difference evaluation and mechanical examination indicates that the GFRTPs with fiber contents of 10 or 20mass%, and with pigment contents of 2mass% have acceptable esthetic appearance and sufficient rigidity for NMCDs. Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  14. Field survey and laboratory tests on composite materials case of GRP (Glass Fiber Reinforced Polyester tubes for water suply

    Radu Hariga

    2013-09-01

    Full Text Available In the Moldova land, were made two lines of water adduction, having 6000 m length and 40 m slope, or 1/150 slope. The water supply component tubes were disposed under the plant: The tubes are made of glass – reinforced thermosetting plastics (GRP. After about 180 days of operation, one of the lines showed severe deterioration of the quality pipe components. This paper deals with some laboratory tests in order to detect the failure cases of the pipelines components.

  15. Desenvolvimento de PVC reforçado com fibras de vidro longas para fabricação de produtos moldados Long glass fiber reinforcement of PVC molding compounds

    Leandro H. Grizzo

    2011-01-01

    Full Text Available Neste trabalho foi desenvolvido um método para reforçar PVC rígido com fibras de vidro longas através da incorporação pelo processo de recobrimento da fibra contínua com um composto de PVC plastificado. Posteriormente o filamento foi picotado para a formação de grânulos, com fibras de vidro já incorporadas, que foram misturados mecanicamente ao PVC rígido granulado para alimentação direta por moldagem. A moldagem por injeção direta foi realizada com sucesso não sendo necessário a compostagem prévia, o que foi considerado conveniente, pois reduziu as etapas de processamento da resina de PVC e que proporcionou, possivelmente, redução de custos, redução da degradação do comprimento médio das fibras de vidro e diminuição da possibilidade de degradação da resina de PVC. O reforçamento do PVC rígido com 20% em massa de fibras de vidro longas de comprimento inicial entre 13 e 14 mm resultou em adequadas propriedades mecânicas, bem superiores ao PVC rígido não reforçado. Os módulos (tração e flexão e a resistência ao impacto Charpy praticamente dobraram, mesmo com os compósitos apresentando grande quantidade de plastificante em sua formulação, que possibilita ao PVC ser utilizado em outras aplicações não antes possíveis como em peças técnicas de engenharia.In this paper, a method to reinforce rigid PVC with long glass fibers (LGF was developed through the incorporation of continuous glass fibers, as rovings, with plasticized vinyl matrix prepared by the wire coating technique. The plasticized vinyl rovings were pelletized. The pellets (13-14 mm were then blended to a granulated rigid PVC formulation and directly injection molded as testing specimens. The direct injection molding, eliminating the preliminary melt-compounding process, was achieved successfully, which was considered convenient because it reduced the number of processing steps, which allowed cutting expenses, reduced the deterioration of the

  16. Influence of retainer design on two-unit cantilever resin-bonded glass fiber reinforced composite fixed dental prostheses: an in vitro and finite element analysis study.

    Keulemans, Filip; De Jager, Niek; Kleverlaan, Cornelis J; Feilzer, Albert J

    2008-10-01

    The aim of this study was to evaluate in vitro the influence of retainer design on the strength of two-unit cantilever resin-bonded glass fiber-reinforced composite (FRC) fixed dental prostheses (FDP). Four retainer designs were tested: a proximal box, a step-box, a dual wing, and a step-box-wing. Of each design on 8 human mandibular molars, FRC-FDPs of a premolar size were produced. The FRC framework was made of resin impregnated unidirectional glass fibers (Estenia C&B EG Fiber, Kuraray) and veneered with hybrid resin composite (Estenia C&B, Kuraray). Panavia F 2.0 (Kuraray) was used as resin luting cement. FRC-FDPs were loaded to failure in a universal testing machine. One-way ANOVA and Tukey's post-hoc test were used to evaluate the data. The four designs were analyzed with finite element analysis (FEA) to reveal the stress distribution within the tooth/restoration complex. Significantly lower fracture strengths were observed with inlay-retained FDPs (proximal box: 300 +/- 65 N; step-box: 309 +/- 37 N) compared to wing-retained FDPs (p optimal design for replacement of a single premolar by means of a two-unit cantilever FRC-FDPs.

  17. Effect of rare earth hypophosphite and melamine cyanurate on fire performance of glass-fiber reinforced poly(1,4-butylene terephthalate) composites

    Yang, Wei; Tang, Gang; Song, Lei; Hu, Yuan; Yuen, Richard K.K.

    2011-01-01

    Highlights: ► We synthesize and characterize two types of rare earth hypophosphite (REHP). ► REHP and melamine cyanurate are used as flame retardants. ► We prepare fire retarded glass-fiber/poly(1,4-butylene terephthalate) composites. ► The flammability of these composites is significantly reduced. - Abstract: This work mainly deals with a novel flame retardant system for glass-fiber reinforced poly(1,4-butylene terephthalate) (GRPBT) composites using trivalent rare earth hypophosphite (REHP) and melamine cyanurate (MC) through melt blending method. Firstly, two types of REHP, lanthanum hypophosphite and cerium hypophosphite, were synthesized and characterized. Thermal gravimetric analysis (TGA) was employed to investigate the thermal decomposition behavior of REHP and flame retardant treated GRPBT composites. Thermal combustion properties were measured using microscale combustion calorimeter. Fire performance was evaluated by limiting oxygen index, Underwriters Laboratories 94 and cone calorimeter. The results showed that the flammability of GRPBT is significantly reduced by the incorporation of the flame retardant mixture. Mechanism analysis revealed that the addition of MC reduces the condensed phase effect of REHP, but improves the flame inhibition in gas phase.

  18. Influence of fiber upon the radiation degradation of fiber-reinforced plastics

    Udagawa, Akira

    1992-01-01

    Influences of fiber upon the radiation degradation of fiber-reinforced plastics were investigated by using 2 MeV electrons. Radiation resistances were evaluated from the three-point bending strength of the fiber laminates which used bisphenol A-type epoxy resin as a matrix. Carbon fiber laminates had higher radiation resistance values than the laminates made of glass fiber. Model laminates using polyethylene as a matrix were prepared in order to examine the differences between carbon fiber and glass fiber filler, the relation between gel fraction and absorbed dose was established. When the polyethylene was filled in the carbon fiber, forming the gel was strikingly delayed. This result suggests that radiation protective action existing in carbon fiber to matrix resin is the main cause of the higher radiation resistance of carbon fiber reinforced plastics. (author)

  19. Effects of endodontic post surface treatment, dentin conditioning, and artificial aging on the retention of glass fiber-reinforced composite resin posts.

    Albashaireh, Zakereyya S; Ghazal, Muhamad; Kern, Matthias

    2010-01-01

    Several post surface treatments with or without the application of a bonding agent have been recommended to improve the bond strength of resin cements to posts. A regimen that produces the maximum bond strength of glass fiber-reinforced composite resin posts has not been verified. The purpose of this study was to evaluate the influence of post surface conditioning methods and artificial aging on the retention and microleakage of adhesively luted glass fiber-reinforced composite resin posts. Seventy-two endodontically treated single-rooted teeth were prepared for glass fiber-reinforced composite resin posts. The posts were submitted to 3 different surface treatments (n=24), including no treatment, etching with phosphoric acid, and airborne-particle abrasion. Subgroups of the posts (n=8) were then allocated for 3 different experimental conditions: no artificial aging, no bonding agent; no artificial aging, bonding agent; or artificial aging, bonding agent. The posts were luted with resin cement (Calibra). Post retention was measured in tension at a crosshead speed of 2 mm/min. The posts assigned for microleakage investigation were placed in fuchsin dye for 72 hours. The dislodged posts and the post spaces were examined microscopically to evaluate the mode of failure and explore the microleakage. Data were analyzed by 2-way ANOVA followed by Tukey HSD test (alpha=.05). The mean (SD) retention values for test groups ranged from 269 (63.8) to 349 (52.2) N. The retention values of the airborne-particle-abrasion group were significantly higher than those of the acidic-treatment and no-treatment groups. The application of bonding agent on the post surface produced no significant influence on retention. The mean retention values after artificial aging were significantly higher than without artificial aging. Microscopic evaluation demonstrated that the failure mode was primarily mixed. Treating the surface of the posts with phosphoric acid for 15 seconds before cementation

  20. Recycling of Reinforced Plastics

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  1. Effect of fiber content on the properties of glass fiber-phenolic matrix composite

    Zaki, M.Y.; Shahid, M.R.; Subhani, T.; Sharif, M.N.

    2003-01-01

    Glass fiber-Phenolic matrix composite is used for the manufacturing of parts /components related to electronic and aerospace industry due to its high strength, dimensional stability and excellent electrical insulation properties. The evaluation of this composite material is necessary prior to make parts/components of new designs. In the present research, thermosetting phenolic plastic was reinforced with E-glass fiber in different fiber-to-resin ratios to produce composites of different compositions. Mechanical and electrical properties of these composite materials were evaluated with reference to the effect of fiber content variation in phenolic resin. (author)

  2. Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars.

    Zeng, Xiaodong; Bao, Xiaoyi; Chhoa, Chia Yee; Bremner, Theodore W; Brown, Anthony W; DeMerchant, Michael D; Ferrier, Graham; Kalamkarov, Alexander L; Georgiades, Anastasis V

    2002-08-20

    The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is +/-15 microepsilon (microm/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and +/-5 microepsilon with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are +/-7 and +/-15 microepsilon for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is +/-20 microepsilon for the two-point loading case.

  3. A glass fiber-reinforced composite - bioactive glass cranioplasty implant: A case study of an early development stage implant removed due to a late infection.

    Posti, Jussi P; Piitulainen, Jaakko M; Hupa, Leena; Fagerlund, Susanne; Frantzén, Janek; Aitasalo, Kalle M J; Vuorinen, Ville; Serlo, Willy; Syrjänen, Stina; Vallittu, Pekka K

    2015-03-01

    This case study describes the properties of an early development stage bioactive glass containing fiber-reinforced composite calvarial implant with histology that has been in function for two years and three months. The patient is a 33-year old woman with a history of substance abuse, who sustained a severe traumatic brain injury later unsuccessfully treated with an autologous bone flap and a custom-made porous polyethylene implant. She was thereafter treated with developmental stage glass fiber-reinforced composite - bioactive glass implant. After two years and three months, the implant was removed due to an implant site infection. The implant was analyzed histologically, mechanically, and in terms of chemistry and dissolution of bioactive glass. Mechanical integrity of the load bearing fiber-reinforced composite part of the implant was not affected by the in vivo period. Bioactive glass particles demonstrated surface layers of hydroxyapatite like mineral and dissolution, and related increase of pH was considerably less after two and three months period than that for fresh bioactive glass. There was a difference in the histology of the tissues inside the implant areas near to the margin of the implant that absorbed blood during implant installation surgery, showed fibrous tissue with blood vessels, osteoblasts, collagenous fibers with osteoid formation, and tiny clusters of more mature hard tissue. In the center of the implant, where there was less absorbed blood, only fibrous tissue was observed. This finding is in line with the combined positron emission tomography - computed tomography examination with (18F)-fluoride marker, which demonstrated activity of the mineralizing bone by osteoblasts especially at the area near to the margin of the implant 10 months after implantation. Based on these promising reactions found in the bioactive glass containing fiber-reinforced composite implant that has been implanted for two years and three months, calvarial

  4. Degradation behaviour of fiber reinforced plastic under electron beam irradiation

    Sonoda, Katsumi; Yamamoto, Yasushi; Hashimoto, Osamu

    1989-01-01

    Various mechanical properties of four kinds of glass fiber-reinforced plastics irradiated with electron beams were examined at three temperatures; room temperature, 123 K and 77 K. Dynamic viscoelastic properties were measured, and fractography by means of scanning electron microscopy was observed in order to clarify degradation behaviour. A considerable decrease in interlaminar shear strength (ILSS) at room temperature was observed above 60 MGy. On the other hand, the three-point bending strength at 77 K and the ILSS at 123 K decreased with increasing irradiation. Fractography reveals that the degradation of the interface layer between matrix resin and fiber plays an important role in the strength reduction at 123 K and 77 K. These findings suggest that the interface between matrix resin and fiber loses its bondability at 123 K arid 77 K after electron beam irradiation. (author)

  5. [Three-point bending moment of two types of resin for temporary bridges after reinforcement with glass fibers].

    Didia, E E; Akon, A B; Thiam, A; Djeredou, K B

    2010-03-01

    One of the concerns of the dental surgeon in the realization of any operational act is the durability of this one. The mechanical resistance of the provisional prostheses contributes in a large part to the durability of those. The resins in general, have weak mechanical properties. The purpose of this study is to evaluate the resistance in inflection of temporary bridges reinforced with glass fibre. To remedy the weak mechanical properties of resins, we thought in this study, to reinforce them with glass fibres. For this purpose, we realized with two different resins, four groups of temporary bridges of 3 elements, including two groups reinforced fibreglass and the others not. Tests of inflection 3 points have been made on these bridges and resistance to fracture was analysed. The statistical tests showed a significant difference in four groups with better resistance for the reinforced bridges.

  6. Modification of a Phenolic Resin with Epoxy- and Methacrylate-Functionalized Silica Sols to Improve the Ablation Resistance of Their Glass Fiber-Reinforced Composites

    Yu Hu

    2014-01-01

    Full Text Available Functionalized silica sols were obtained by the hydrolytic condensation of (γ-methacryloxypropyltrimethoxysilane (MPMS, (γ-glycidyloxypropyltrimethoxysilane (GPMS and tetraethoxysilane (TEOS. Three different sols were obtained: MPS (derived from MPMS and TEOS, GPS-MPS (derived from GPMS, MPMS and TEOS, and GPSD (derived from GPMS, TEOS and diglycidyl ether of bisphenol A, DGEBA. These silica sols were mixed with a phenolic resin (PR. Ethylenediamine was used as a hardener for epoxy-functionalized sols and benzoyl peroxide was used as an initiator of the free-radical polymerization of methacrylate-functionalized silica sols. Glass fiber-reinforced composites were obtained from the neat PR and MPS-PR, GPS-MPS-PR and GPSD-PR. The resulting composites were evaluated as ablation resistant materials in an acetylene-oxygen flame. A large increase in the ablation resistance was observed when the PR was modified by the functionalized silica sols. The ablation resistance of the composites decreased as follows: GPSD-PR > MPS-PR > GPS-MPS-PR > PR.

  7. Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying

    Zhou, Ting; Cheng, Xudong; Pan, Yuelei; Li, Congcong; Gong, Lunlun; Zhang, Heping

    2018-04-01

    In order to maintain the integrity, glass fiber (GF) reinforced silica aerogel composites were synthesized using methltrimethoxysilane (MTMS) and water glass co-precursor by freeze drying method. The composites were characterized by scanning electron microscopy, Brunauer-Emmett-Teller analysis, uniaxial compressive test, three-point bending test, thermal conductivity analysis, contact angle test, TG-DSC analysis. It was found that the molar ratio of MTMS/water glass could significantly affect the properties of composites. The bulk density and thermal conductivity first decreased and then increased with the increasing molar ratio. The composites showed remarkable mechanical strength and flexibility compared with pure silica aerogel. Moreover, when the molar ratio is 1.8, the composites showed high specific surface area (870.9 m2/g), high contact angle (150°), great thermal stability (560 °C) and low thermal conductivity (0.0248 W/m·K). These outstanding properties indicate that GF/aerogels have broad prospects in the field of thermal insulation.

  8. Characterization and morphological properties of glass fiber ...

    Characterization and morphological properties of glass fiber reinforced epoxy composites fabricated under varying degrees of hand lay-up techniques. ... Hence, these composites are projected to possess better dimensional stability adaptable for high performance structural applications. Keywords: composite, interfacial ...

  9. Simulation of Glass Fiber Forming Processes

    Von der Ohe, Renate

    Two glass fiber forming processes have been simulated using FEM, which are the drawing of continuous glass fibers for reinforcement purposes and the spinning of discontinuous glass fibers - stone wool for insulation. The aim of this work was to set up a numerical model for each process, and to use...... this model in finding relationships between the production conditions and the resulting fiber properties. For both processes, a free surface with large deformation and radiative and convective heat transfer must be taken into account. The continuous fiber drawing has been simulated successfully......, and parametric studies have been made. Several properties that characterize the process have been calculated, and the relationship between the fictive temperature and the cooling rate of the fibers has been found. The model for the discontinuous fiber spinning was brought to the limits of the commercial code...

  10. CHARACTERIZATION OF COMMERCIALLY AVAILABLE ALKALI RESISTANT GLASS FIBER FOR CONCRETE REINFORCEMENT AND CHEMICAL DURABILITY COMPARISON WITH SrO-Mn2O3-Fe2O3-MgO-ZrO2-SiO2 (SMFMZS SYSTEM GLASSES

    Göktuğ GÜNKAYA

    2012-12-01

    Full Text Available According to the relevant literature, the utilization of different kind of glass fibers in concrete introduces positive effect on the mechanical behavior, especially toughness. There are many glassfibers available to reinforce concretes. Glass fiber composition is so important because it may change the properties such as strength, elastic modulus and alkali resistance. Its most important property to be used in concrete is the alkali resistance. Some glasses of SrO–MgO–ZrO2–SiO2 (SMZS quaternary system, such as 26SrO, 20MgO, 14ZrO2, 40SiO2 (Zrn glass, have been found to be highly alkali resistant thanks to their high ZrO2 and MgO contents. Previous researches on these glasses with MnO and/or Fe2O3 partially replacing SrO have been made with the aim of improving the chemical resistance and decreasing the production cost.The main target of the present study, first of all, was to characterize commercially available alkali resistant glass fiber for concrete reinforcement and then to compare its alkali durability with those of the SrO-Mn2O3-Fe2O3-MgO-ZrO2-SiO2 (SMFMZS system glasses. For such purposes, XRF, Tg-DTA, alkali resistance tests and SEM analysis conducted with EDX were employed. According tothe alkali endurance test results it was revealed that some of the SMFMZS system glass powders are 10 times resistant to alkali environments than the commercial glass fibers used in this study.Therefore, they can be considered as alternative filling materials on the evolution of chemically resistant concrete structures.

  11. The LHC Cryomagnet Supports in Glass-Fiber Reinforced Epoxy A Large Scale Industrial Production with High Reproducibility in Performance

    Poncet, A; Trigo, J; Parma, V

    2008-01-01

    The about 1700 LHC main ring super-conducting magnets are supported within their cryostats on 4700 low heat in leak column-type supports. The supports were designed to ensure a precise and stable positioning of the heavy dipole and quadrupole magnets while keeping thermal conduction heat loads within budget. A trade-off between mechanical and thermal properties, as well as cost considerations, led to the choice of glass fibre reinforced epoxy (GFRE). Resin Transfer Moulding (RTM), featuring a high level of automation and control, was the manufacturing process retained to ensure the reproducibility of the performance of the supports throughout the large production. The Spanish aerospace company EADS-CASA Espacio developed the specific RTM process, and produced the total quantity of supports between 2001 and 2004. This paper describes the development and the production of the supports, and presents the production experience and the achieved performance.

  12. THE LHC CRYOMAGNET SUPPORTS IN GLASS-FIBER REINFORCED EPOXY: A LARGE SCALE INDUSTRIAL PRODUCTION WITH HIGH REPRODUCIBILITY IN PERFORMANCE

    Poncet, A.; Struik, M.; Parma, V.; Trigo, J.

    2008-01-01

    The about 1700 LHC main ring super-conducting magnets are supported within their cryostats on 4700 low heat in leak column-type supports. The supports were designed to ensure a precise and stable positioning of the heavy dipole and quadrupole magnets while keeping thermal conduction heat loads within budget. A trade-off between mechanical and thermal properties, as well as cost considerations, led to the choice of glass fibre reinforced epoxy (GFRE). Resin Transfer Moulding (RTM), featuring a high level of automation and control, was the manufacturing process retained to ensure the reproducibility of the performance of the supports throughout the large production.The Spanish aerospace company EADS-CASA Espacio developed the specific RTM process, and produced the total quantity of supports between 2001 and 2004.This paper describes the development and the production of the supports, and presents the production experience and the achieved performance

  13. Influence of screw holes and gamma sterilization on properties of phosphate glass fiber-reinforced composite bone plates.

    Han, Na; Ahmed, Ifty; Parsons, Andrew J; Harper, Lee; Scotchford, Colin A; Scammell, Brigitte E; Rudd, Chris D

    2013-05-01

    Polymers prepared from polylactic acid (PLA) have found a multitude of uses as medical devices. For a material that degrades, the main advantage is that an implant would not necessitate a second surgical event for removal. In this study, fibers produced from a quaternary phosphate-based glass (PBG) in the system 50P2O5-40CaO-5Na2O-5Fe2O3 were used to reinforce PLA polymer. The purpose of this study was to assess the effect of screw holes in a range of PBG-reinforced PLA composites with varying fiber layup and volume fraction. The flexural properties obtained showed that the strength and modulus values increased with increasing fiber volume fraction; from 96 MPa to 320 MPa for strength and between 4 GPa and 24 GPa for modulus. Furthermore, utilizing a larger number of thinner unidirectional (UD) fiber prepreg layers provided a significant increase in mechanical properties, which was attributed to enhanced wet out and thus better fiber dispersion during production. The effect of gamma sterilization via flexural tests showed no statistically significant difference between the sterilized and nonsterilized samples, with the exception of the modulus values for samples with screw holes. Degradation profiles revealed that samples with screw holes degraded faster than those without screw holes due to an increased surface area for the plates with screw holes in PBS up to 30 days. Scanning electron microscope (SEM) analysis revealed fiber pullout before and after degradation. Compared with various fiber impregnation samples, with 25% volume fraction, 8 thinner unidirectional prepreg stacked samples had the shortest fiber pull-out lengths in comparison to the other samples investigated.

  14. Characterization of cure kinetics and physical properties of a high performance, glass fiber-reinforced epoxy prepreg and a novel fluorine-modified, amine-cured commercial epoxy

    Bilyeu, Bryan

    Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) and by high speed DSC when the reaction rate is high. The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC, temperature-modulated DSC (TMDSC), step scan DSC and high speed DSC, thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram and a continuous heating transformation (CHT) diagram for rapid determination of processing parameters in the processing of prepregs. Shrinkage due to both resin consolidation and fiber rearrangement is measured as the linear expansion of the piston on a quartz dilatometry cell using TMA. The shrinkage of prepregs was determined to depend on the curing temperature, pressure applied and the fiber orientation. Chemical modification of an epoxy was done by mixing a fluorinated aromatic amine (aniline) with a standard aliphatic amine as a curing agent for a commercial Diglycidylether of Bisphenol-A (DGEBA) epoxy. The resulting cured network

  15. Improvement of the Shock Absorption Ability of a Face Guard by Incorporating a Glass-Fiber-Reinforced Thermoplastic and Buffering Space

    Takahiro Wada

    2018-01-01

    Full Text Available This study aimed to evaluate the shock absorption ability of trial face guards (FGs incorporating a glass-fiber-reinforced thermoplastic (GF and buffering space. The mechanical properties of 3.2 mm and 1.6 mm thick commercial medical splint materials (Aquaplast, AP and experimental GF prepared from 1.6 mm thick AP and fiberglass cloth were determined by a three-point bending test. Shock absorption tests were conducted on APs with two different thicknesses and two types of experimental materials, both with a bottom material of 1.6 mm thick AP and a buffering space of 30 mm in diameter (APS and with either (i 1.6 mm thick AP (AP-APS or (ii  1.6 mm thick GF (GF-APS covering the APS. The GF exhibited significantly higher flexural strength (64.4 MPa and flexural modulus (7.53 GPa than the commercial specimens. The maximum load of GF-APS was 75% that of 3.2 mm AP, which is widely used clinically. The maximum stress of the GF-APS only could not be determined as its maximum stress is below the limits of the analysis materials used (<0.5 MPa. Incorporating a GF and buffering space would enhance the shock absorption ability; thus, the shock absorption ability increased while the total thickness and weight decreased.

  16. The effect of silanated and impregnated fiber on the tensile strength of E-glass fiber reinforced composite retainer

    Niswati Fathmah Rosyida

    2015-12-01

    Full Text Available Background: Fiber reinforced composite (FRC is can be used in dentistry as an orthodontic retainer. FRC  still has a limitations because of to  a weak bonding between fibers and matrix. Purpose: This research was aimed to evaluate the effect of silane as coupling agent and fiber impregnation on the tensile strength of E-glass FRC. Methods: The samples of this research were classified into two groups each of which consisted of three subgroups, namely the impregnated fiber group (original, 1x addition of silane, 2x addition of silane and the non-impregnated fiber group (original, 1x addition of silane, 2x addition of silane. The tensile strength was measured by a universal testing machine. The averages of the tensile strength in all groups then were compared by using Kruskal Wallis and Mann Whitney post hoc tests. Results: The averages of the tensile strength (MPa in the impregnated fiber group can be known as follow; original impregnated fiber (26.60±0.51, 1x addition of silane (43.38±4.42, and 2x addition of silane (36.22±7.23. The averages of tensile strength (MPa in the non-impregnated fiber group can also be known as follow; original non-impregnated fiber (29.38±1.08, 1x addition of silane (29.38±1.08, 2x addition of silane (12.48±2.37. Kruskal Wallis test showed that there was a significant difference between the impregnated fiber group and the non-impregnated fiber group (p<0.05. Based on the results of post hoc test, it is also known that the addition of silane in the impregnated fiber group had a significant effect on the increasing of the tensile strength of E-glass FRC (p<0.05, while the addition of silane in the non-impregnated fiber group had a significant effect on the decreasing of the tensile strength of E-glass FRC. Conclusion: It can be concluded that the addition of silane in the non-silanated fiber group can increase the tensile strength of E-glass FRC, but the addition of silane in the silanated fiber group can

  17. Bending and Shear Behavior of Pultruded Glass Fiber Reinforced Polymer Composite Beams With Closed and Open Sections

    Estep, Daniel Douglas

    Several advantages, such as high strength-to-weight ratio, high stiffness, superior corrosion resistance, and high fatigue and impact resistance, among others, make FRPs an attractive alternative to conventional construction materials for use in developing new structures as well as rehabilitating in-service infrastructure. As the number of infrastructure applications using FRPs grows, the need for the development of a uniform Load and Resistance Factor Design (LRFD) approach, including design procedures and examples, has become paramount. Step-by-step design procedures and easy-to-use design formulas are necessary to assure the quality and safety of FRP structural systems by reducing the possibility of design and construction errors. Since 2008, the American Society of Civil Engineers (ASCE), in coordination with the American Composites Manufacturers Association (ACMA), has overseen the development of the Pre-Standard for Load and Resistance Factor Design (LRFD) of Pultruded Fiber Reinforced Polymer (FRP) Structures using probability-based limit states design. The fifth chapter of the pre-standard focuses on the design of members in flexure and shear under different failure modes, where the current failure load prediction models proposed within have been shown to be highly inaccurate based on experimental data and evaluation performed by researchers at the West Virginia University Constructed Facilities Center. A new prediction model for determining the critical flexural load capacity of pultruded GFRP square and rectangular box beams is presented within. This model shows that the type of failure can be related to threshold values of the beam span-to-depth ratio (L/h) and total flange width-to-thickness ratio (bf /t), resulting in three governing modes of failure: local buckling failure in the compression flange (4 ≤ L/h < 6), combined strain failure at the web-flange junction (6 ≤ L/h ≤ 10), and bending failure in the tension flange (10 < L/h ≤ 42

  18. Contribution to the improved ultrasonic testing of glass fiber-reinforced polymers based on analytic modeling; Beitrag zur Verbesserung der Ultraschallpruefung glasfaserverstaerkter Polymere auf der Grundlage analytischer Modellierung

    Gripp, S.

    2001-04-01

    The non-destructive testing of acoustic anisotropic materials like fiber composites has been evaluated. Modelling enabled predictions about wave deflection, direction of wave propagation, and refractive angle of ultrasonic waves in these media. Thus, measurements could be carried out using unidirectional glass-fiber composites.

  19. Fluoride glass fiber optics

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  20. Alkali-resistant glass fiber reinforced high strength concrete in simulated aggressive environment; Hormigón de altas resistencia reforzado con fibras de vidrio resistentes a alcalis en ambientes agresivos simulados.

    Kwan, W.H.; Cheah, C.B.; Ramli, M.; Chang, K.Y.

    2018-04-01

    The durability of the alkali-resistant (AR) glass fiber reinforced concrete (GFRC) in three simulated aggresive environments, namely tropical climate, cyclic air and seawater and seawater immersion was investigated. Durability examinations include chloride diffusion, gas permeability, X-ray diffraction (XRD) and scanning electron microscopy examination (SEM). The fiber content is in the range of 0.6 % to 2.4 %. Results reveal that the specimen containing highest AR glass fiber content suffered severe strength loss in seawater environment and relatively milder strength loss under cyclic conditions. The permeability property was found to be more inferior with the increase in the fiber content of the concrete. This suggests that the AR glass fiber is not suitable for use as the fiber reinforcement in concrete is exposed to seawater. However, in both the tropical climate and cyclic wetting and drying, the incorporation of AR glass fiber prevents a drastic increase in permeability. [Spanish] Este trabajo se centra en el estudio de la durabilidad de hormigón reforzado con fibra de vidrio resistente a álcalis (CRFVRA) en tres ambientes agresivos simulados como son, condiciones de clima tropical, ciclos de aire y agua de mar e inmersión marina. Los tests de durabilidad incluyeron la difusión de cloruros, permeabilidad de gas, difracción de rayos X (XRD) y evaluacion por microscopía electrónica de barrido (SEM). Los contenidos de fibra evaluados estuvieron en el rango desde 0.6% hasta 2.4%. Los resultados revelan que la muestra que contiene el mayor porcentaje de fibra sufre una severa pérdida de resistencia en condiciones de agua de mar, y una menor disminución de resistencia bajo condiciones cíclicas. Su permeabilidad disminuyó al incrementar el contenido de fibras en el hormigón. Lo anterior sugiere que el refuerzo con fibra resistente a alcalinos no es adecuado para su uso en hormigón en ambiente de agua de mar. Sin embargo, bajo condiciones de clima

  1. Durability-Based Design Criteria for a Chopped-Glass-Fiber Automotive Structural Composite; TOPICAL

    Battiste, R.L.; Corum, J.M.; Ren, W.; Ruggles, M.B.

    1999-01-01

    This report provides recommended durability-based design criteria for a chopped-glass-fiber reinforced polymeric composite for automotive structural applications. The criteria closely follow the framework of an earlier criteria document for a continuous-strand-mat (CSM) glass-fiber reference composite. Together these design criteria demonstrate a framework that can be adapted for future random-glass-fiber composites for automotive structural applications

  2. Effect of surface treatments on the flexural properties and adhesion of glass fiber-reinforced composite post to self-adhesive luting agent and radicular dentin.

    Elnaghy, Amr M; Elsaka, Shaymaa E

    2016-01-01

    This study evaluated the effect of different surface treatments on the flexural properties and adhesion of glass fiber post to self-adhesive luting agent and radicular dentin. Seventy-five single-rooted human teeth were prepared to receive a glass fiber post (Reblida). The posts were divided into five groups according to the surface treatment: Gr C (control; no treatment), Gr S (silanization for 60 s), Gr AP (airborne-particle abrasion), Gr HF (etching with 9 % hydrofluoric acid for 1 min), and Gr M10 (etching with CH2Cl2 for 10 min). Dual-cure self-adhesive luting agent (Rely X Unicem) was applied to each group for testing the adhesion using micropush-out test. Failure types were examined with stereomicroscope and surface morphology of the posts was characterized using a scanning electron microscopy (SEM). Flexural properties of posts were assessed using a three-point bending test. Data were analyzed using ANOVA and Tukey's HSD test. Statistical significance was set at the 0.05 probability level. Groups treated with M10 showed significantly higher bond strength than those obtained with other surface treatments (P C > S > AP > HF. Most failure modes were adhesive type of failures between dentin and luting agent (48.2%). SEM analysis revealed that the fiber post surfaces were modified after surface treatments. The surface treatments did not compromise the flexural properties of fiber posts. Application of M10 to the fiber post surfaces enhanced the adhesion to self-adhesive luting agent and radicular dentin.

  3. Erratum: Retraction Note to: Evolution of the Health of Concrete Structures by Electrically Conductive GFRP (Glass Fiber Reinforced Plastic) Composites

    Shin, Soon-Gi

    2018-03-01

    This article [1] has been retracted at the request of the Editor-in-Chief. Concerns were raised regarding substantial duplications with previous articles published in other journals in which for some S.-G. Shin is one of the co-authors. After a thorough analysis we conclude that the concerns are valid. The article contains sections that substantially overlap with the following published article [2] (amongst others). S.-G. Shin has not responded to correspondence from the Editor about this retraction.

  4. Tensile and shear fracture behavior of fiber reinforced plastics at 77K irradiated by various radiation sources

    Humer, K.; Weber, H.W.; Tschegg, E.K.; Gerstenberg, H.

    1993-08-01

    Influence of radiation damage (gamma, electron, neutron) on mechanical properties of fiber reinforced plastics (FRPs) has been investigated. Different types of FRPs (two or three dimensional E-, S- or T-glass fiber reinforcement, epoxy or bismaleimide resin) have been irradiated at room temperature with 2 MeV electrons and 6O Co γ-rays up to 1.8 x 1 0 8 Gy as well as with different reactor spectra up to a fast neutron fluence of 5 x lO 22 m -2 (E > 0.1 MeV). Tensile and intralaminar shear tests were carried out on the irradiated samples at 77 K. Some samples were irradiated at 5 K and tested at 77 K with and without an annealing cycle to room temperature. Results on the influence of these radiation conditions and of warm-up cycles on the mechanical properties of FRPs are compared and discussed

  5. Tensile and shear fracture behavior of fiber reinforced plastics at 77K irradiated by various radiation sources

    Humer, K.; Weber, H.W. [Atominstitut der Oesterreichischen Hochschulen, Vienna (Austria); Tschegg, E.K. [Technische Univ., Vienna (Austria). Inst. fuer Angewandte und Technische Physik; Egusa, Shigenori [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Birtcher, R.C. [Argonne National Lab., IL (United States); Gerstenberg, H. [Technische Univ. Muenchen, Garching (Germany). Fakultaet fuer Physik

    1993-08-01

    Influence of radiation damage (gamma, electron, neutron) on mechanical properties of fiber reinforced plastics (FRPs) has been investigated. Different types of FRPs (two or three dimensional E-, S- or T-glass fiber reinforcement, epoxy or bismaleimide resin) have been irradiated at room temperature with 2 MeV electrons and {sup 6O}Co {gamma}-rays up to 1.8 {times} 1 0{sup 8} Gy as well as with different reactor spectra up to a fast neutron fluence of 5 {times} lO{sup 22} m{sup {minus}2} (E > 0.1 MeV). Tensile and intralaminar shear tests were carried out on the irradiated samples at 77 K. Some samples were irradiated at 5 K and tested at 77 K with and without an annealing cycle to room temperature. Results on the influence of these radiation conditions and of warm-up cycles on the mechanical properties of FRPs are compared and discussed.

  6. Machining of Fibre Reinforced Plastic Composite Materials

    2018-01-01

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented. PMID:29562635

  7. Machining of Fibre Reinforced Plastic Composite Materials

    Alessandra Caggiano

    2018-03-01

    Full Text Available Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented.

  8. Investigating the Properties of Asphalt Concrete Containing Glass Fibers and Nanoclay

    Hasan Taherkhani

    2016-06-01

    Full Text Available The performance of asphaltic pavements during their service life is highly dependent on the mechanical properties of the asphaltic layers. Therefore, in order to extend their service life, scientists and engineers are constantly trying to improve the mechanical properties of the asphaltic mixtures. One common method of improving the performance of asphaltic mixtures is using different types of additives. This research investigated the effects of reinforcement by randomly distributed glass fibers and the simultaneous addition of nanoclayon some engineering properties of asphalt concrete have been investigated. The properties of a typical asphalt concrete reinforced by different percentages of glass fibers were compared with those containing both the fibers and nanoclay. Engineering properties, including Marshall stability, flow, Marshall quotient, volumetric properties and indirect tensile strength were studied. Glass fibers were used in different percentages of 0.2, 0.4 and 0.6% (by weight of total mixture, and nanoclay was used in 2, 4 and 6% (by the weight of bitumen. It was found that the addition of fibers proved to be more effective than the nanoclay in increasing the indirect tensile strength. However, nanoclay improved the resistance of the mixture against permanent deformation better than the glass fibers. The results also showed that the mixture reinforced by 0.2% of glass fiber and containing 6% nanoclay possessed the highest Marshall quotient, and the mixture containing 0.6% glass fibers and 2% nanoclay possessedthe highest indirect tensile strength.

  9. [The behavior of fiber-reinforced plastics during laser cutting].

    Emmrich, M; Levsen, K; Trasser, F J

    1992-06-01

    The pattern of the organic emissions, which are produced by processing of fibre reinforced plastics (epoxy resins reinforced by aramid and glass fibres and phenol resins reinforced by aramid fibre) with laser beam was studied and the concentrations of the main components determined. Despite the application of plastic materials with different chemical structures, the observed patterns are very similar. Mainly aromatic hydrocarbons are emitted, especially benzene and toluene, as well as some heteroatom-containing aromatic hydrocarbons (e.g. phenol). By use of oxygen as process gas the emissions during cutting of glass fibre reinforced plastics can be reduced, while they will be constantly high with aramid fibre reinforced plastics.

  10. Moisture Absorption/Desorption Effects on Flexural Property of Glass-Fiber-Reinforced Polyester Laminates: Three-Point Bending Test and Coupled Hygro-Mechanical Finite Element Analysis

    Xu Jiang

    2016-08-01

    Full Text Available Influence of moisture absorption/desorption on the flexural properties of Glass-fibre-reinforced polymer (GFRP laminates was experimentally investigated under hot/wet aging environments. To characterize mechanical degradation, three-point bending tests were performed following the ASTM test standard (ASTM D790-10A. The flexural properties of dry (0% Mt/M∞, moisture unsaturated (30% Mt/M∞ and 50% Mt/M∞ and moisture saturated (100% Mt/M∞ specimens at both 20 and 40 °C test temperatures were compared. One cycle of moisture absorption-desorption process was considered in this study to investigate the mechanical degradation scale and the permanent damage of GFRP laminates induced by moisture diffusion. Experimental results confirm that the combination of moisture and temperature effects sincerely deteriorates the flexural properties of GFRP laminates, on both strength and stiffness. Furthermore, the reducing percentage of flexural strength is found much larger than that of E-modulus. Unrecoverable losses of E-modulus (15.0% and flexural strength (16.4% for the GFRP laminates experiencing one cycle of moisture absorption/desorption process are evident at the test temperature of 40 °C, but not for the case of 20 °C test temperature. Moreover, a coupled hygro-mechanical Finite Element (FE model was developed to characterize the mechanical behaviors of GFRP laminates at different moisture absorption/desorption stages, and the modeling method was subsequently validated with flexural test results.

  11. Full scale test of a SSP 34m box girder 1. Data report; Reinforced glass fiber/expoxy used in wind turbine blades

    Jensen, Find M.; Branner, K.; Nielsen, Per H. (and others)

    2008-03-15

    This report presents the setup and result of a full-scale test of a reinforced glass fibre/epoxy box girder used in 34m wind turbine blade. The tests were performed at the Blaest test facility in August 2006. The test is an important part of a research project established in cooperation between Risoe DTU, the National Laboratory for Sustainable Energy at the Technical University of Denmark -, SSP-Technology A/S and Blaest (Blade test centre A/S) and it has been performed as a part of Find Moelholt Jensen's PhD study. This report contains the complete test data for the final test, in which the box girder was loaded until failure. A comprehensive description of the test setup is given. This report deals only with tests and results. There are no conclusions on the data in this report, but references are given to publications, where the data are used and compared with FEM etc. Various kinds of measuring equipment have been used during these tests: acoustic emission, 330 strain gauges, 24 mechanical displacement devices and two optical deformation measuring systems. The mechanical displacement devices measured both global (absolute) and local (relative) deflection and the optical systems measured surface deformation. A prediction was made on the location of the failure of the girder. At this location the majority of the measuring equipment was concentrated. The prediction was proved to be correct and valuable information of the behaviour of the box girder prior to failure was obtained. The experimental investigation consisted of the following load configurations: -Flapwise bending -Torsion Ultrasonic scanning of the box girder was performed before, during and after the test the box girder. This was done to investigate whether the girder was damaged by the load or imperfection (productions defects) growth. (au)

  12. Development of new radiopaque glass fiber posts

    Furtos, Gabriel; Baldea, Bogdan; Silaghi-Dumitrescu, Laura

    2016-01-01

    The aim of this study was to analyze the radiopacity and filler content of three experimental glass fiber posts (EGFP) in comparison with other glass/carbon fibers and metal posts from the dental market. Three EGFP were obtained by pultrusion of glass fibers in a polymer matrix based on 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)-phenyl]propane (bis-GMA) and triethyleneglycol dimethacrylate (TEGDMA) monomers. Using intraoral sensor disks 27 posts, as well as mesiodistal sections of human molar and aluminum step wedges were radiographed for evaluation of radiopacity. The percentage compositions of fillers by weight and volume were investigated by combustion analysis. Two EGFP showed radiopacity higher than enamel. The commercial endodontic posts showed radiopacity as follows: higher than enamel, between enamel and dentin, and lower than dentin. The results showed statistically significant differences (p < 0.05) when evaluated with one-way ANOVA statistical analysis. According to combustion analyses, the filler content of the tested posts ranges between 58.84 wt.% and 86.02 wt.%. The filler content of the tested EGFP ranged between 68.91 wt.% and 79.04 wt.%. EGFP could be an alternative to commercial glass fiber posts. Future glass fiber posts are recommended to present higher radiopacity than dentin and perhaps ideally similar to or higher than that of enamel, for improved clinical detection. The posts with a lower radiopacity than dentin should be considered insufficiently radiopaque. The radiopacity of some glass fiber posts is not greatly influenced by the amount of filler. - Highlights: • AR glass fibers for dental applications • AR glass fibers have a great potential for obtaining radiopaque glass fiber posts. • Experimental AR glass fiber posts could be an alternative to commercial glass fiber posts for clinical application.

  13. Development of new radiopaque glass fiber posts

    Furtos, Gabriel, E-mail: gfurtos@yahoo.co.uk [Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, Cluj-Napoca (Romania); Baldea, Bogdan [Dep. of Prosthodontics, Faculty of Dental Medicine, Timisoara (Romania); Silaghi-Dumitrescu, Laura [Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, Cluj-Napoca (Romania)

    2016-02-01

    The aim of this study was to analyze the radiopacity and filler content of three experimental glass fiber posts (EGFP) in comparison with other glass/carbon fibers and metal posts from the dental market. Three EGFP were obtained by pultrusion of glass fibers in a polymer matrix based on 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)-phenyl]propane (bis-GMA) and triethyleneglycol dimethacrylate (TEGDMA) monomers. Using intraoral sensor disks 27 posts, as well as mesiodistal sections of human molar and aluminum step wedges were radiographed for evaluation of radiopacity. The percentage compositions of fillers by weight and volume were investigated by combustion analysis. Two EGFP showed radiopacity higher than enamel. The commercial endodontic posts showed radiopacity as follows: higher than enamel, between enamel and dentin, and lower than dentin. The results showed statistically significant differences (p < 0.05) when evaluated with one-way ANOVA statistical analysis. According to combustion analyses, the filler content of the tested posts ranges between 58.84 wt.% and 86.02 wt.%. The filler content of the tested EGFP ranged between 68.91 wt.% and 79.04 wt.%. EGFP could be an alternative to commercial glass fiber posts. Future glass fiber posts are recommended to present higher radiopacity than dentin and perhaps ideally similar to or higher than that of enamel, for improved clinical detection. The posts with a lower radiopacity than dentin should be considered insufficiently radiopaque. The radiopacity of some glass fiber posts is not greatly influenced by the amount of filler. - Highlights: • AR glass fibers for dental applications • AR glass fibers have a great potential for obtaining radiopaque glass fiber posts. • Experimental AR glass fiber posts could be an alternative to commercial glass fiber posts for clinical application.

  14. The effect of pressure changes during simulated diving on the pull out strength of glass fiber posts

    Meenal Nitin Gulve

    2013-01-01

    Conclusion: Dentist should consider using resin reinforced glass ionomer or resin cement, for the cementation of glass fiber post, for the patients such as divers, who are likely to be exposed to pressure cycling.

  15. Nondestructive evaluation of reinforced plastics by a radiometric measurement technique

    Entine, Gerald; Afshari, Sia; Verlinden, Matt

    1990-01-01

    The demand for new high-performance plastics has greatly increased with advances in the performance characteristics of sophisticated reinforced engineering resins. However, conventional methods for the evaluation of the glass and filler contents of reinforced plastics are destructive, labor intensive, and time consuming. We have developed a new instrument, to address this problem, which provides for the rapid, accurate, and nondestructive measurement of glass or filler content in reinforced plastics. This instrument utilizes radiation transmission and scattering techniques for analytical measurement of glass, graphite and other fillers used in reinforced plastics. (author)

  16. Preliminary characterization of glass fiber sizing

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2013-01-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus...... the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were merely burned for analysis of glass fiber and sizing. The results showed that the analyzed fibers had...

  17. Reinforced plastics and aerogels by nanocrystalline cellulose

    Leung, Alfred C. W.; Lam, Edmond; Chong, Jonathan; Hrapovic, Sabahudin; Luong, John H. T., E-mail: john.luong@cnrc-nrc.gc.ca [National Research Council Canada (Canada)

    2013-05-15

    Nanocrystalline cellulose (NCC), a rigid rod-like nanoscale material, can be produced from cellulosic biomass in powder, liquid, or gel forms by acid and chemical hydrolysis. Owing to its unique and exceptional physicochemical properties, the incorporation of a small amount of NCC into plastic enhances the mechanical strength of the latter by several orders of magnitudes. Carbohydrate-based NCC poses no serious environmental concerns, providing further impetus for the development and applications of this green and renewable biomaterial to fabricate lightweight and biodegradable composites and aerogels. Surface functionalization of NCC remains the main focus of NCC research to tailor its properties for dispersion in hydrophilic or hydrophobic media. It is of uttermost importance to develop tools and protocols for imaging of NCC in a complex matrix and quantify its reinforcement effect.

  18. [Fusion implants of carbon fiber reinforced plastic].

    Früh, H J; Liebetrau, A; Bertagnoli, R

    2002-05-01

    Carbon fiber reinforced plastics (CFRP) are used in the medical field when high mechanical strength, innovative design, and radiolucency (see spinal fusion implants) are needed. During the manufacturing process of the material CFRP carbon fibers are embedded into a resin matrix. This resin material could be thermoset (e.g., epoxy resin EPN/DDS) or thermoplastic (e.g., PEAK). CFRP is biocompatible, radiolucent, and has higher mechanical capabilities compared to other implant materials. This publication demonstrates the manufacturing process of fusion implants made of a thermoset matrix system using a fiber winding process. The material has been used clinically since 1994 for fusion implants of the cervical and lumbar spine. The results of the fusion systems CORNERSTONE-SR C (cervical) and UNION (lumbar) showed no implant-related complications. New implant systems made of this CFRP material are under investigation and are presented.

  19. Strength and thermal stability of fiber reinforced plastic composites ...

    Therefore, the strength properties and thermal stability of plastic composites reinforced with rattan fibers were investigated in this work. Particles of rattan species (Eremospatha macrocarpa (EM) and Laccosperma secundiflorum (LS)) were blended with High-Density Polyethylene (HDPE) to produce fiber reinforced plastic ...

  20. The extrinsic influence of carbon fibre reinforced plastic laminates to ...

    The extrinsic influence of carbon fibre reinforced plastic laminates to strengthen steel structures ... The intrinsic advantages of strengthening the steel-based structures by the use of fibre reinforced plastic (FRP) material have ... Sadhana | News.

  1. The applicability of alkaline-resistant glass fiber in cement mortar of road pavement: Corrosion mechanism and performance analysis

    Qin Xiaochun

    2017-11-01

    Full Text Available The main technical requirements of road pavement concrete are high flexural strength and fatigue durability. Adding glass fiber into concrete could greatly increase flexural strength and wearing resistance of concrete. However, glass fiber has the great potential of corrosion during the cement hydration, which will directly affect the long-term performance and strength stability. In this paper, accelerated corrosion experiments have been done to find out the corrosion mechanism and property of alkali-resistant glass fiber in cement mortar. The applicability and practicability of alkaline-resistant glass fiber in road concrete have been illustrated in the analysis of flexural strength changing trend of cement mortar mixed with different proportions of activated additives to protect the corrosion of glass fiber by cement mortar. The results have shown that a 30% addition of fly ash or 10% addition of silica fume to cement matrix could effectively improve the corrosion resistance of alkali-resistant glass fiber. The optimal mixing amount of alkali-resistant glass fiber should be about 1.0 kg/m3 in consideration of ensuring the compressive strength of reinforced concrete in road pavement. The closest-packing method has been adopted in the mixture ratio design of alkali-resistant glass fiber reinforced concrete, not only to reduce the alkalinity of the cement matrix through large amount addition of activated additives but also to greatly enhance the flexural performance of concrete with the split pressure ratio improvement of 12.5–16.7%. The results suggested a prosperous application prospect for alkaline-resistant glass fiber reinforced concrete in road pavement.

  2. Effect of discrete glass fibers on the behavior of R.C. Beams exposed to fire

    Magdy Riad

    2017-08-01

    Full Text Available The main objective of this paper is to investigate the effect of adding discrete glass fibers on the behavior of reinforced concrete (RC beams under different fire and cooling conditions. Eighteen beams with different concrete compressive strengths were tested to study the behavior of reinforced concrete (RC beams containing discrete glass fibers when exposed to different fire and cooling conditions. Nine beams were prepared from normal strength concrete (NSC with compressive strength equal to 35 MPa while the other beams were prepared from high strength concrete (HSC with compressive strength equal to 60 MPa. The beams contained different contents of discrete glass fibers. The modes of failure of tested specimens show that the crack patterns change according to fire condition and fiber content. Analysis of test results show that adding discrete glass fibers to NSC increased the residual stiffness of the tested specimens after firing and decreased the rate of the deflection gain during firing. Also adding fibers to concrete has a limited positive effect on the ultimate strength of the specimens compared to the control specimens. Its effect on deflection due to fire is more pronounced. Finally, the recommended optimum ratio of discrete glass fibers is not more than 0.5% of the total concrete weight.

  3. Effect of reinforcement on plastic limit loads of branch junctions

    Kim, Yun-Jae; Myeong, Man-Sik; Yoon, Kee-Bong

    2009-01-01

    This paper provides effects of reinforcement shape and area on plastic limit loads of branch junctions under internal pressure and in-plane/out-of-plane bending, via detailed three-dimensional finite element limit analysis assuming elastic-perfectly plastic material behaviour. It is found that reinforcement is most effective when (in-plane/out-of-plane) bending is applied to the branch pipe. When bending is applied to the run pipe, reinforcement is less effective when bending is applied to the branch pipe. The reinforcement effect is the least effective for internal pressure.

  4. Mechanical Characterization and Fractography of Glass Fiber/Polyamide (PA6) Composites

    Raghavalu Thirumalai, Durai Prabhakaran; Pillai, Saju; Charca, Samuel

    2015-01-01

    The mechanical properties of the glass fiber reinforced Polyamide (PA6) composites made by prepreg tapes and commingled yarns were studied by in-plane compression, short-beam shear, and flexural tests. The composites were fabricated with different fiber volume contents (prepregs—47%, 55%, 60%, an...

  5. Crash worthy capacity of a hybridized epoxy-glass fiber aluminum columnar tube using repeated axial resistive force

    Paruka, Perowansa [Jalan Politeknik, Kota Kinabalu (Malaysia); Siswanto, Waluyo Adi [Universiti Tun Hussein Onn Malaysia, Parit Raja (Malaysia); Maleque, Md Abdul [Universiti Islam Antarabangsa Malaysia, Kuala Lumpur (Malaysia); Shah, Mohd Kamal Mohd [Universiti Malaysia Sabah, Kota Kinabalu (Malaysia)

    2015-05-15

    A combination of aluminum columnar member with composite laminate to form a hybrid structure can be used as collapsible energy absorbers especially in automotive vehicular structures to protect occupants and cargo. A key advantage of aluminum member in composite is that it provides ductile and stable plastic collapse mechanisms with progressive deformation in a stable manner by increasing energy absorption during collision. This paper presents an experimental investigation on the influence of the number of hybrid epoxy glass layers in overwrap composite columnar tubes. Three columnar tube specimens were used and fabricated by hand lay-up method. Aluminum square hollow shape was combined with externally wrapped by using an isophthalic epoxy resin reinforced with glass fiber skin with an orientation angle of 0 .deg. /90 .deg. The aluminum columnar tube was used as reference material. Crushed hybrid-composite columnar tubes were prepared using one, two, and three layers to determine the crash worthy capacity. Quasi-static crush test was conducted using INSTRON machine with an axial loading. Results showed that crush force and the number of layers were related to the enhancement of energy absorption before the collapse of columnar tubes. The energy absorption properties of the crushed hybrid-composite columnar tubes improved significantly with the addition of layers in the overwrap. Microscopic analysis on the modes of epoxy-glass fiber laminate failure was conducted by using scanning electron microscopy.

  6. Crash worthy capacity of a hybridized epoxy-glass fiber aluminum columnar tube using repeated axial resistive force

    Paruka, Perowansa; Siswanto, Waluyo Adi; Maleque, Md Abdul; Shah, Mohd Kamal Mohd

    2015-01-01

    A combination of aluminum columnar member with composite laminate to form a hybrid structure can be used as collapsible energy absorbers especially in automotive vehicular structures to protect occupants and cargo. A key advantage of aluminum member in composite is that it provides ductile and stable plastic collapse mechanisms with progressive deformation in a stable manner by increasing energy absorption during collision. This paper presents an experimental investigation on the influence of the number of hybrid epoxy glass layers in overwrap composite columnar tubes. Three columnar tube specimens were used and fabricated by hand lay-up method. Aluminum square hollow shape was combined with externally wrapped by using an isophthalic epoxy resin reinforced with glass fiber skin with an orientation angle of 0 .deg. /90 .deg. The aluminum columnar tube was used as reference material. Crushed hybrid-composite columnar tubes were prepared using one, two, and three layers to determine the crash worthy capacity. Quasi-static crush test was conducted using INSTRON machine with an axial loading. Results showed that crush force and the number of layers were related to the enhancement of energy absorption before the collapse of columnar tubes. The energy absorption properties of the crushed hybrid-composite columnar tubes improved significantly with the addition of layers in the overwrap. Microscopic analysis on the modes of epoxy-glass fiber laminate failure was conducted by using scanning electron microscopy.

  7. Preliminary characterization of glass fiber sizing

    Noergaard Petersen, H.; Almdal, K. [Technical Univ. of Denmark. DTU Nanotech, Kgs. Lyngby (Denmark); Kusano, Y.; Broendsted, P. [Technical Univ. of Denmark. DTU Wind Energy, Risoe Campus, Roskilde (Denmark)

    2013-09-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were merely burned for analysis of glass fiber and sizing. The results showed that the analyzed fibers had amounts of bonded and physisorbed sizing similar to what has been presented in literature. An estimated sizing thickness was found to be approximately 100 nm. It is indicated that an epoxy-resin containing film former and a polyethylene oxide lubricant are present, yet no silanes or other sizing components were identified in the extractant. (Author)

  8. Structural considerations in design of lightweight glass-fiber composite pressure vessels

    Faddoul, J. R.

    1973-01-01

    The design concepts used for metal-lined glass-fiber composite pressure vessels are described, comparing the structural characteristics of the composite designs with each other and with homogeneous metal pressure vessels. Specific design techniques and available design data are identified. The discussion centers around two distinctly different design concepts, which provide the basis for defining metal lined composite vessels as either (1) thin-metal lined, or (2) glass fiber reinforced (GFR). Both concepts are described and associated development problems are identified and discussed. Relevant fabrication and testing experience from a series of NASA-Lewis Research Center development efforts is presented.

  9. Influence of Glass Fiber on Fresh and Hardened Properties of Self Compacting Concrete

    Bharathi Murugan, R.; Haridharan, M. K.; Natarajan, C.; Jayasankar, R.

    2017-07-01

    The practical need of self-compacting concrete (SCC) is increasing due to increase in the infrastructure competence all over the world. The effective way of increasing the strength of concrete and enhance the behaviour under extreme loading (fire) is the keen interest. Glass fibers were added for five different of volume fractions (0%, 0.1%, 0.3%, 0.5% and 0.6%) to determine the optimum percentage of glass fiber without compensating the fresh properties and enhanced hardened properties of SCC concrete. The fresh state of concrete is characterized by slump flow, T-50cm slump flow, and V-funnel and L- box tests. The results obtained in fresh state are compared with the acceptance criteria of EFNARC specification. Concrete specimens were casted to evaluate the hardened properties such as compressive strength, split tensile strength, flexural strength and modulus of elasticity. Incorporation the glass fiber into SCC reduces the workability but within the standard specification. The hardened properties of SCC glass fiber reinforced concrete were enhanced, due to bridging the pre-existing micro cracks in concrete by glass fiber addition.

  10. Dynamic Mechanical and Thermal Properties of Bagasse/Glass Fiber/Polypropylene Hybrid Composites

    Mehdi Roohani

    2016-06-01

    Full Text Available This work aims to evaluate the thermal and dynamic mechanical properties of bagasse/glass fiber/polypropylene hybrid composites. Composites were prepared by the melt compounding method and their properties were characterized by differential scanning calorimetry (DSC and dynamic mechanical analysis (DMA. DSC results found that with incorporation of bagasse and glass fiber the melting temperature (Tm and the crystallisation temperature (Tc shift to higher temperatures and the degree of crystallinity (Xc increase. These findings suggest that the fibers played the role of a nucleating agent in composites. Dynamic mechanical analysis indicated that by the incorporation of bagasse and glass fiber into polypropylene, the storage modulus ( and the loss modulus ( increase whereas the mechanical loss factor (tanδ decrease. To assess the effect of reinforcement with increasing temperature, the effectiveness coefficient C was calculated at different temperature ranges and revealed that, at the elevated temperatures, improvement of mechanical properties due to the presence of fibers was more noticeable. The fiber-matrix adhesion efficiency determined by calculating of adhesion factor A in terms of the relative damping of the composite (tan δc and the polymer (tan δpand volume fraction of the fibers (Фf. Calculated adhesion factor A values indicated that by adding glass fiber to bagasse/polypropylene system, the fiber-matrix adhesion improve. Hybrid composite containing 25% bagasse and 15% glass fiber showed better fiber-matrix adhesion.

  11. Strain gradient plasticity effects in whisker-reinforced metals

    Niordson, Christian Frithiof

    2002-01-01

    A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (2001). Cell-model analyzes are used to study the influence of the material length parameters numerically. Different higher order boundary conditions are considered...... at the fiber-matrix interface. The results are presented as overall stress-strain curves for the whisker-reinforced metal, and also contour plots of effective plastic strain are shown. The strain gradient plasticity theory predicts a significant stiffening effect when compared to conventional models...

  12. Thermoset composite recycling: Properties of recovered glass fiber

    Beauson, Justine; Fraisse, Anthony; Toncelli, C.

    2015-01-01

    Recycling of glass fiber thermoset polymer composite is a challenging topic and a process able to recover the glass fibers original properties in a limited cost is still under investigation. This paper focuses on the recycling technique separating the glass fiber from the matrix material. Four...

  13. Application of Glass Fiber Waste Polypropylene Aggregate in Lightweight Concrete – thermal properties

    Citek, D.; Rehacek, S.; Pavlik, Z.; Kolisko, J.; Dobias, D.; Pavlikova, M.

    2018-03-01

    Actual paper focus on thermal properties of a sustainable lightweight concrete incorporating high volume of waste polypropylene aggregate as partial substitution of natural aggregate. In presented experiments a glass fiber reinforced polypropylene (GFPP) which is a by-product of PP tubes production, partially substituted fine natural silica aggregate in 10, 20, 30, 40 and 50 mass %. Results were compared with a reference concrete mix without plastic waste in order to quantify the effect of GFPP use on concrete properties. Main material physical parameters were studied (bulk density, matrix density without air content, and particle size distribution). Especially a thermal transport and storage properties of GFPP were examined in dependence on compaction time. For the developed lightweight concrete, thermal properties were accessed using transient impulse technique, where the measurement was done in dependence on moisture content (from the fully water saturated state to dry state). It was found that the tested lightweight concrete should be prospective construction material possessing improved thermal insulation function and the reuse of waste plastics in concrete composition was beneficial both from the environmental and financial point of view.

  14. [Carbon fiber-reinforced plastics as implant materials].

    Bader, R; Steinhauser, E; Rechl, H; Siebels, W; Mittelmeier, W; Gradinger, R

    2003-01-01

    Carbon fiber-reinforced plastics have been used clinically as an implant material for different applications for over 20 years.A review of technical basics of the composite materials (carbon fibers and matrix systems), fields of application,advantages (e.g., postoperative visualization without distortion in computed and magnetic resonance tomography), and disadvantages with use as an implant material is given. The question of the biocompatibility of carbon fiber-reinforced plastics is discussed on the basis of experimental and clinical studies. Selected implant systems made of carbon composite materials for treatments in orthopedic surgery such as joint replacement, tumor surgery, and spinal operations are presented and assessed. Present applications for carbon fiber reinforced plastics are seen in the field of spinal surgery, both as cages for interbody fusion and vertebral body replacement.

  15. Analytical, Numerical and Experimental Examination of Reinforced Composites Beams Covered with Carbon Fiber Reinforced Plastic

    Kasimzade, A. A.; Tuhta, S.

    2012-03-01

    In the article, analytical, numerical (Finite Element Method) and experimental investigation results of beam that was strengthened with fiber reinforced plastic-FRP composite has been given as comparative, the effect of FRP wrapping number to the maximum load and moment capacity has been evaluated depending on this results. Carbon FRP qualitative dependences have been occurred between wrapping number and beam load and moment capacity for repair-strengthen the reinforced concrete beams with carbon fiber. Shown possibilities of application traditional known analysis programs, for the analysis of Carbon Fiber Reinforced Plastic (CFRP) strengthened structures.

  16. Fatigue crack growth in fiber reinforced plastics

    Mandell, J. F.

    1979-01-01

    Fatigue crack growth in fiber composites occurs by such complex modes as to frustrate efforts at developing comprehensive theories and models. Under certain loading conditions and with certain types of reinforcement, simpler modes of fatigue crack growth are observed. These modes are more amenable to modeling efforts, and the fatigue crack growth rate can be predicted in some cases. Thus, a formula for prediction of ligamented mode fatigue crack growth rate is available.

  17. Strain gradient plasticity effects in whisker-reinforced metals

    Niordson, Christian Frithiof

    2003-01-01

    A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (J. Mech. Phys. Solids 49 (2001) 2245). Cell-model analyses are used to study the influence of the material length parameters numerically, for both a single parameter...

  18. Rigid-plastic seismic design of reinforced concrete structures

    Costa, Joao Domingues; Bento, R.; Levtchitch, V.

    2007-01-01

    structural strength with respect to a pre-defined performance parameter using a rigid-plastic response spectrum, which is characteristic of the ground motion alone. The maximum strength demand at any point is solely dependent on the intensity of the ground motion, which facilitates the task of distributing......In this paper a new seismic design procedure for Reinforced Concrete (R/C) structures is proposed-the Rigid-Plastic Seismic Design (RPSD) method. This is a design procedure based on Non-Linear Time-History Analysis (NLTHA) for systems expected to perform in the non-linear range during a lifetime...... earthquake event. The theoretical background is the Theory of Plasticity (Rigid-Plastic Structures). Firstly, a collapse mechanism is chosen and the corresponding stress field is made safe outside the regions where plastic behaviour takes place. It is shown that this allows the determination of the required...

  19. Carbon fiber reinforced materials - glass fiber reinforced materials

    Krautwald, R

    1980-10-01

    Wind power plants are promising alternative energy systems. The rotor blades are subject to high demands: Long life, light weight, and high stiffness. A GFRP/CFRP combination was chosen for a 316 kW plant, the composite construction is by far superior to the metal construction. Design, fabrication, and testing are described. The plant has a power of 316 kW for a wind velocity of 8.5 m/sec, a rotational speed of 37 min/sup -1/, a rotor diameter of 52 m with a blade length of 25.2 m and a blade mass of 1 t. An experimental component 10.2 m long was constructed and tested with satisfactory results.

  20. Electromagnetic configurable architectures for assessment of Carbon Fiber Reinforced Plastics

    Steigmann Rozina

    2017-01-01

    Full Text Available Carbon Fiber Reinforced Plastics are used in most wide domains due their low density, lack of mechanical fatigue phenomena and high strength–to weight ratio. From electromagnetic point of view, Carbon Fiber Reinforced Plastics structure represents an inhomogeneous structure of electric conductive fibers embedded into a dielectric material, thus an electromagnetic configurable architecture can be used to evaluate above mentioned defects. The paper proposes a special sensor, send receiver type and the obtaining of electromagnetic image by post-processing each coil signals in each point of scanning, using a sub-encoding image reconstruction algorithm and super-resolution procedures. The layout of fibers can be detected interrogating only diagonal reception coils.

  1. Synthesis of biodegradable polymer/glass fiber composite by EB irradiation and its biodegradability

    Yoshii, Fumio; Doam Thi The

    2006-01-01

    A composite was synthesized by irradiation of poly (butylene succinate), PBS and glass fiber (GF) in the presence of a polyfunctional monomer, trimethallyl isocyanurate (TMAIC), which accelerates gel formation of the matrix (PBS). The highest gel fraction was achieved at 1% concentration of TMAIC at the dose level of 200 kGy. Mechanical properties of the composites were highly dependent on the gel fraction of the polymer and volume fraction of glass fiber reinforcement in the composite. Optimal conditions to synthesize a PBS/GF composite reaching maximum value of bending strength were 1% TMAIC, 67% fiber volume fraction, and radiation dose of 200 kGy. These synthesized PBS/GF composites can be degraded by enzymes produced by the microorganism population in soil. (author)

  2. Fiber breakage phenomena in long fiber reinforced plastic preparation

    Huang, Chao-Tsai; Tseng, Huan-Chang; Chang, Rong-Yeu; Vlcek, Jiri

    2015-01-01

    Due to the high demand of smart green, the lightweight technologies have become the driving force for the development of automotives and other industries in recent years. Among those technologies, using short and long fiber-reinforced plastics (FRP) to replace some metal components can reduce the weight of an automotive significantly. However, the microstructures of fibers inside plastic matrix are too complicated to manage and control during the injection molding through the screw, the runner, the gate, and then into the cavity. This study focuses on the fiber breakage phenomena during the screw plastification. Results show that fiber breakage is strongly dependent on screw design and operation. When the screw geometry changes, the fiber breakage could be larger even with lower compression ratio. (paper)

  3. Benefits of glass fibers in solar fiber optic lighting systems.

    Volotinen, Tarja T; Lingfors, David H S

    2013-09-20

    The transmission properties and coupling of solar light have been studied for glass core multimode fibers in order to verify their benefits for a solar fiber optic lighting system. The light transportation distance can be extended from 20 m with plastic fibers to over 100 m with the kind of glass fibers studied here. A high luminous flux, full visible spectrum, as well as an outstanding color rendering index (98) and correlated color temperature similar to the direct sun light outside have been obtained. Thus the outstanding quality of solar light transmitted through these fibers would improve the visibility of all kinds of objects compared to fluorescent and other artificial lighting. Annual relative lighting energy savings of 36% in Uppsala, Sweden, and 76% in Dubai were estimated in an office environment. The absolute savings can be doubled by using glass optical fibers, and are estimated to be in the order of 550 kWh/year in Sweden and 1160 kWh/year in Dubai for one system of only 0.159 m(2) total light collecting area. The savings are dependent on the fiber length, the daily usage time of the interior, the type of artificial lighting substituted, the system light output flux, and the available time of sunny weather at the geographic location.

  4. [Osseontegration of trial implants of carbon fiber reinforced plastics].

    Schreiner, U; Schwarz, M; Scheller, G; Schroeder-Boersch, H; Jani, L

    2000-01-01

    To what extent are carbon fibre-reinforced plastics (CFRP) suitable as an osseous integration surface for implants? CFRP test implants having a plexus-structured, rhombus-structured, and plexus-structured, hydroxyapatite surface were implanted in the femura of mini-plgs. Exposure time lasted 12 weeks. The implants were subjected to a macroradiological, a histological-histomorphometrical, and a fluorescence-microscopical evaluation. One half of the uncoated, plexus-structured implants were not osteointegrated, the other half displayed an osteointegration rate of 11.8% in the spongy area and 29.8% in the cortex layer. The HA-coated test implants showed an osteointegration of 29.5% in the spongiosa and 56.8% in the cortex layer. The rhombus-structured test implants had an osteointegration of 29.2% (spongiosa) and 46.2% (cortex layer). Compared to the osteointegration of metallic, especially titanium surfaces the CFRP surfaces tested by us fared worse, especially the uncoated, plexus-structured surfaces. For this reason we view very critically the use of carbon-fibre reinforced plastics together with the surfaces tested by us as osteointegrating surfaces.

  5. Reinforced Plastic Composites Production: National Emission Standards for Hazardous Air Pollutants

    National emissions standards for hazardous air pollutants for reinforced plastic composites production facilities. Regulates production and ancillary processes used to manufacture products with thermoset resins and gel coats.

  6. Electrochemical corrosion of carbon-fiber-reinforced plastic-metal electrode couples in corrosion media

    Chukalovskaya, T.V.; Shcherbakov, A.I.; Chigirinskaya, L.A.; Bandurkin, V.V.; Medova, I.L.; Chukalovskij, P.A.

    1995-01-01

    Polarization diagrams, obtained for carbon-fiber-reinforced plastic(cathode)-metallic material(anode) contact couples are analyzed to predict the corrosion behaviour of some technical metals and alloys (carbon steel, stainless steels, brass, aluminium, titanium) in contact with carbon-fiber-reinforced plastic in differen agressive media (H 2 SO 4 , HCl, H 3 PO 4 , NaOH solutions in wide temperature and concentration range, synthetic seawater at 30 and 50 deg C). The predicted behaviour was supported by direct investigation into carbon-fiber-reinforced plastic-titanium and carbon-fiber-reinforced plastic-aluminium contact couples at different square ratios. 6 refs.; 4 figs

  7. Multifunctionality in epoxy/glass fibers composites with graphene interphase

    Mahmood, Haroon

    2017-01-01

    In this project, the synergetic effect of a graphene interphase in epoxy/glass fibers composites was investigated by coating glass fibers (GF) with graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets by an electrophoretic deposition (EPD) technique. Graphite oxide was prepared using modified Hummers method in which raw graphite powder was oxidized using potassium permanganate (KMnO4) in acidic solution. Using ultrasonic technique, the graphite oxide was dispersed homogenously in w...

  8. Interactions between the glass fiber coating and oxidized carbon nanotubes

    Ku-Herrera, J.J., E-mail: jesuskuh@live.com.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Nistal, A. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Cauich-Rodríguez, J.V. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Rubio, F.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Bartolo-Pérez, P. [Departamento de Física Aplicada, Cinvestav, Unidad Mérida, C.P., 97310 Mérida, Yucatán (Mexico)

    2015-03-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible.

  9. Interactions between the glass fiber coating and oxidized carbon nanotubes

    Ku-Herrera, J.J.; Avilés, F.; Nistal, A.; Cauich-Rodríguez, J.V.; Rubio, F.; Rubio, J.; Bartolo-Pérez, P.

    2015-01-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible

  10. Mechanical Characterization of Basalt and Glass Fiber Epoxy Composite Tube

    Lapena, Mauro Henrique; Marinucci, Gerson

    2017-01-01

    The application of basalt fibers are possible in many areas thanks to its multiple and good properties. It exhibits excellent resistance to alkalis, similar to glass fiber, at a much lower cost than carbon and aramid fibers. In the present paper, a comparative study on mechanical properties of basalt and E-glass fiber composites was performed. Results of apparent hoop tensile strength test of ring specimens cut from tubes and the interlaminar shear stress (ILSS) test are presented. Tensile te...

  11. Characterization and Morphological Properties of Glass Fiber ...

    PROF HORSFALL

    used as the matrix for the glass fibre-epoxy resin formation. E- Glass fibre ... reinforcement of composites, coatings of materials, and other ..... composite for the manufacture of glass-ceramic materials ... reinforced epoxy composites with carbon.

  12. Effects of glass fiber mesh with different fiber content and structures on the compressive properties of complete dentures.

    Yu, Sang-Hui; Cho, Hye-Won; Oh, Seunghan; Bae, Ji-Myung

    2015-06-01

    No study has yet evaluated the strength of complete dentures reinforced with glass fiber meshes with different content and structures. The purpose of this study was to compare the reinforcing effects of glass fiber mesh with different content and structures with that of metal mesh in complete dentures. Two types of glass fiber mesh were used: SES mesh (SES) and glass cloth (GC2, GC3, and GC4). A metal mesh was used for comparison. The complete dentures were made by placing the reinforcement 1 mm away from the tissue surface. A control group was prepared without any reinforcement (n=10). The compressive properties were measured by a universal testing machine at a crosshead speed of 5 mm/min. The results were analyzed with the Kruskal-Wallis test and the Duncan multiple range test (α=.05). The fracture resistance of the SES group was significantly higher than that of the control, GC4, and metal groups (asymptotic P=.004), but not significantly different from the GC2 and GC3 groups. The toughness of the SES and GC3 groups was significantly higher than that of the others (asymptotic Pglass fiber mesh seemed more important than the structures. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Fracture morphology of carbon fiber reinforced plastic composite laminates

    Vinod Srinivasa

    2010-09-01

    Full Text Available Carbon fiber reinforced plastic (CFRP composites have been extensively used in fabrication of primary structures for aerospace, automobile and other engineering applications. With continuous and widespread use of these composites in several advanced technology, the frequency of failures is likely to increase. Therefore, to establish the reasons for failures, the fracture modes should be understood thoroughly and unambiguously. In this paper, CFRP composite have been tested in tension, compression and flexural loadings; and microscopic study with the aid of Scanning Electron Microscope (SEM has been performed on failed (fractured composite surfaces to identify the principle features of failure. Efforts have been made in correlating the fracture surface characteristics to the failure mode. The micro-mechanics analysis of failure serves as a useful guide in selecting constituent materials and designing composites from the failure behavior point of view. Also, the local failure initiation results obtained here has been reliably extended to global failure prediction.

  14. Health monitoring technology for alumina-fiber-reinforced plastic

    Aoyama, Hiroshi; Watanabe, Hiroyuki; Terai, Motoaki

    1998-01-01

    Formally, we developed new load-support systems that consists of a biconical, alumina-fiber-reinforced plastic (ERP) structure for the superconducting magnet. Safe operation of the superconducting magnet will be jeopardized if the mechanical condition of the load-support system begins to degrade. One of the factors that evaluate the soundness of the superconducting magnet is the stiffness of the load-support system. Here, it is important to know the relation between the degradation of the stiffness and the growth of defects. For this purpose, firstly, a fatigue test of the load-support system was carried out, and the various defects (matrix cracking and delamination of FRP laminates) were observed during this fatigue testing. Finally, we proposed the application of two non-destructive-evaluation (NDE) methods for the health monitoring of alumina/epoxy load-support systems. (author)

  15. Acoustic emission from fiber reinforced plastic damaged hoop wrapped cylinders

    Akhtar, A.; Kung, D.; Westbrook, D.R.

    2000-03-01

    Metal lined continuous fiber reinforced plastic (FRP) hoop wrapped cylinders with axial cuts to the FRP were modeled mathematically and tested experimentally. Steel lined and aluminum alloy lined glass FRP vessels were subjected to acoustic emission tests (AE) and hydraulic burst tests. The burst pressure decreased monotonically with the length of the axial cut. Acoustic emission increased initially with a decrease in burst pressure, and attained a maximum at an intermediate level of damage to the FRP. However, acoustic emission decreased when the level of damage was higher and the burst pressure was lower. Implications of the findings are discussed in the context of the search for an acoustic emission test method to inspect periodically the vessels used for the storage of compressed gaseous fuels on natural gas vehicles (NGV) and hydrogen vehicles.

  16. Flexural Behavior of RC Members Using Externally Bonded Aluminum-Glass Fiber Composite Beams

    Ki-Nam Hong

    2014-03-01

    Full Text Available This study concerns improvement of flexural stiffness/strength of concrete members reinforced with externally bonded, aluminum-glass fiber composite (AGC beams. An experimental program, consisting of seven reinforced concrete slabs and seven reinforced concrete beams strengthened in flexure with AGC beams, was initiated under four-point bending in order to evaluate three parameters: the cross-sectional shape of the AGC beam, the glass fiber fabric array, and the installation of fasteners. The load-deflection response, strain distribution along the longitudinal axis of the beam, and associated failure modes of the tested specimens were recorded. It was observed that the AGC beam led to an increase of the initial cracking load, yielding load of the tension steels and peak load. On the other hand, the ductility of some specimens strengthened was reduced by more than 50%. The A-type AGC beam was more efficient in slab specimens than in beam specimens and the B-type was more suitable for beam specimens than for slabs.

  17. Time-Dependent Deformation Modelling for a Chopped-Glass Fiber Composite for Automotive Durability Design Criteria; FINAL

    Ren, W

    2001-01-01

    Time-dependent deformation behavior of a polymeric composite with chopped-glass-fiber reinforcement was investigated for automotive applications, The material under stress was exposed to representative automobile service environments. Results show that environment has substantial effects on time-dependent deformation behavior of the material. The data were analyzed and experimentally-based models developed for the time-dependent deformation behavior as a basis for automotive structural durability design criteria

  18. Time-Dependent Deformation Modelling for a Chopped-Glass Fiber Composite for Automotive Durability Design Criteria

    Ren, W

    2001-08-24

    Time-dependent deformation behavior of a polymeric composite with chopped-glass-fiber reinforcement was investigated for automotive applications, The material under stress was exposed to representative automobile service environments. Results show that environment has substantial effects on time-dependent deformation behavior of the material. The data were analyzed and experimentally-based models developed for the time-dependent deformation behavior as a basis for automotive structural durability design criteria.

  19. Investigation on Stress-Rupture Behavior of a Chopped-Glass-Fiber Composite for Automotive Durability Design Criteria

    Ren, W

    2001-08-24

    Practical and inexpensive testing methods were developed to investigate stress-rupture properties of a polymeric composite with chopped glass fiber reinforcement for automotive applications. The material was tested in representative automotive environments to generate experimental data. The results indicate that environments have substantial effects on the stress-rupture behavior. The data were analyzed and developed into stress-rupture design criteria to address one of the durability aspects of the material for automotive structural applications.

  20. Investigation on Stress-Rupture Behavior of a Chopped-Glass-Fiber Composite for Automotive Durability Design Criteria; FINAL

    Ren, W

    2001-01-01

    Practical and inexpensive testing methods were developed to investigate stress-rupture properties of a polymeric composite with chopped glass fiber reinforcement for automotive applications. The material was tested in representative automotive environments to generate experimental data. The results indicate that environments have substantial effects on the stress-rupture behavior. The data were analyzed and developed into stress-rupture design criteria to address one of the durability aspects of the material for automotive structural applications

  1. Long-term performance of GFRP reinforcement : technical report.

    2009-12-01

    Significant research has been performed on glass fiber-reinforced polymer (GFRP) concrete reinforcement. : This research has shown that GFRP reinforcement exhibits high strengths, is lightweight, can decrease time of : construction, and is corrosion ...

  2. Influence of Reinforcement Anisotropy on the Stress Distribution in Tension and Shear of a Fusion Magnet Insulation System

    Humer, K.; Raff, S.; Prokopec, R.; Weber, H. W.

    2008-03-01

    A glass fiber reinforced plastic laminate, which consists of half-overlapped wrapped Kapton/R-glass-fiber reinforcing tapes vacuum-pressure impregnated in a cyanate ester/epoxy blend, is proposed as the insulation system for the ITER Toroidal Field coils. In order to assess its mechanical performance under the actual operating conditions, cryogenic (77 K) tensile and interlaminar shear tests were done after irradiation to the ITER design fluence of 1×1022 m-2 (E>0.1 MeV). The data were then used for a Finite Element Method (FEM) stress analysis. We find that the mechanical strength and the fracture behavior as well as the stress distribution and the failure criteria are strongly influenced by the winding direction and the wrapping technique of the reinforcing tapes.

  3. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    Bouaricha Leyla

    2017-12-01

    Full Text Available A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°, and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%.

  4. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    Bouaricha, Leyla; Henni, Ahmed Djafar; Lancelot, Laurent

    2017-12-01

    A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand) with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°), and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%).

  5. Mechanical interaction between concrete and structural reinforcement in the tension stiffening process

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2011-01-01

    as Engineered Cementitious Composite (ECC), have been combined with steel and glass fiber reinforced polymer (GFRP) reinforcement to contrast the effects of brittle and ductile cement matrices as well as elastic/plastic and elastic reinforcement on the tension stiffening process. Particular focus...... investigated using an image-based deformation measurement and analysis system. This allowed for detailed view of surface deformations and the implications on the resulting response of the member in tension. In this study, conventional concrete and a ductile, strain hardening cement composite, known...

  6. Numerical modelling of reinforced concrete beams with fracture-plastic material

    O. Sucharda

    2014-10-01

    Full Text Available This paper describes the use of models of fracture-plastic materials for reinforced concrete in numerical modelling of beams made from reinforced concrete. The purpose of the paper is to use of a model of concrete for modelling of a behaviour of reinforced concrete beams which have been tested at the University of Toronto within re-examination of classic concrete beam tests. The original tests were performed by Bresler- Scordelis. A stochastic modelling based on LHS (Latin Hypercube Sampling has been performed for the reinforced concrete beam. An objective of the modelling is to evaluate the total bearing capacity of the reinforced concrete beams depending on distribution of input data. The beams from the studied set have longitudinal reinforcement only. The beams do not have any shear reinforcement. The software used for the fracture-plastic model of the reinforced concrete is the ATENA.

  7. Application of Glass Fiber Reinforced Cement in Exhibition Decoration Project

    Wang, Yao

    2018-02-01

    Through the study of GRC material and its application field, the aesthetic characteristics and functional characteristics of GRC materials are demonstrated. The decorative application and technology of GRC material in an art exhibition center are highlighted. The design, application and construction technology of GRC curtain wall and ceiling board in the interior and exterior decoration of art exhibition hall are discussed in detail. The unique advantages of GRC materials in exhibition engineering decoration are fully reflected. In practical design application, the application principle and method are summarized, and an application procedure is formed. The research proves that GRC materials in the art of building decoration engineering has an underrated advantage.

  8. INFLUENCE OF PIEZOELECTRIC TRANSDUCER TO GLASS FIBER REINFORCED COMPOSITE STIFFNESS

    Witold Rządkowski

    2015-08-01

    Full Text Available The main goal was to determine if transducers based on piezoelectric materials are suitable for strain calculations in thin GFRP specimens. Numerous experimental studies, both physical and numerical, performed by the authors, have shown that there is a huge influence of bonded piezoelectric transducer on the overall stiffness of the measured object. The paper presents tensile test performed on strength machine with Digital Image Correlation strain and deflection observations. Test were compared with FEM models for detailed investigation. The main conclusion is piezoelectric transducers has huge influence on local stiffness of measured object. That is critical especially when they are used as strain sensors, when presence of sensor is influencing to measured results.

  9. 40 CFR Table 2 to Subpart Wwww of... - Compliance Dates for New and Existing Reinforced Plastic Composites Facilities

    2010-07-01

    ... Reinforced Plastic Composites Facilities 2 Table 2 to Subpart WWWW of Part 63 Protection of Environment...: Reinforced Plastic Composites Production Pt. 63, Subpt. WWWW, Table 2 Table 2 to Subpart WWWW of Part 63—Compliance Dates for New and Existing Reinforced Plastic Composites Facilities As required in §§ 63.5800 and...

  10. An experiment on the use of disposable plastics as a reinforcement in concrete beams

    Chowdhury, Mostafiz R.

    1992-01-01

    Illustrated here is the concept of reinforced concrete structures by the use of computer simulation and an inexpensive hands-on design experiment. The students in our construction management program use disposable plastic as a reinforcement to demonstrate their understanding of reinforced concrete and prestressed concrete beams. The plastics used for such an experiment vary from plastic bottles to steel reinforced auto tires. This experiment will show the extent to which plastic reinforcement increases the strength of a concrete beam. The procedure of using such throw-away plastics in an experiment to explain the interaction between the reinforcement material and concrete, and a comparison of the test results for using different types of waste plastics are discussed. A computer analysis to simulate the structural response is used to compare the test results and to understand the analytical background of reinforced concrete design. This interaction of using computers to analyze structures and to relate the output results with real experimentation is found to be a very useful method for teaching a math-based analytical subject to our non-engineering students.

  11. Y-Si-Al-O-N Glass Fibers.

    The excellent mechanical properties and outstanding water corrosion resistance of Y -Si-Al-O- N glasses indicate that they are attractive candidate...materials for forming into high performance glass fibers. Fibers of glasses containing, respectively,3.2 and 6.6 wt% N were drawn freehand in air, and

  12. Investigations on the Broadband Shielding Effectiveness of Metallized Glass Fiber

    Coburn, William

    1998-01-01

    ...) is an E-glass fiber metallized with Al and processed into a nonwoven mat. When formed into a mat, the MGFs lead to an effective sample conductivity, sigma eff, which is the parameter of interest for electromagnetic shielding in the RF region...

  13. Production of continuous glass fiber using lunar simulant

    Tucker, Dennis S.; Ethridge, Edwin C.; Curreri, Peter A.

    1991-01-01

    The processing parameters and mechanical properties of glass fibers pulled from simulated lunar basalt are tested. The simulant was prepared using a plasma technique. The composition is representative of a low titanium mare basalt (Apollo sample 10084). Lunar gravity experiments are to be performed utilizing parabolic aircraft free-fall maneuvers which yield 30 seconds of 1/6-g per maneuver.

  14. Application of fibre reinforced plastic sandwich structures for automotive crashworthiness applications

    Lukaszewicz, D.; Blok, L.G.; Kratz, J.; Ward, C.; Kassapoglou, C.; Elmarakbi, A.; Araújo, A.L.

    2016-01-01

    In this work the application of fibre reinforced plastic (FRP) sandwich
    structures, with particular focus on aramid fibre tufted sandwiches is being studied for
    automotive crashworthiness applications using impact testing and numerical simulation.

  15. Operational factors influence on service life characteristics of structural carbon fiber-reinforced plastic

    Борозенець, Григорій; Павлов, Віктор; Семак, Інна

    2013-01-01

    The nature of strength changing of aircraft structural carbon fiber-reinforced plastic under influence of water saturation after static preloading and mode changing of structural elements forming process pressure is considered.

  16. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  17. Tribological analysis of nano clay/epoxy/glass fiber by using Taguchi’s technique

    Senthil Kumar, M.S.; Mohana Sundara Raju, N.; Sampath, P.S.; Vivek, U.

    2015-01-01

    Highlights: • To study the tribological property of modified epoxy with and without E glass fiber. • To analyze the tribological property of specimens by Taguchi’s technique and ANOVA. • To investigate the surface morphology of test specimens with SEM. - Abstract: In this work, a detailed analysis was performed to profoundly study the tribological property of various nano clay (Cloisite 25A) loaded epoxy, with and without inclusion of E-glass fiber using Taguchi’s technique. For this purpose, the test samples were prepared according to the ASTM standard, and the test was carried out with the assistance of pin-on-disk machine. To proceed further, L 25 orthogonal array was constructed to evaluate the tribological property with four control variables such as filler content, normal load, sliding velocity and sliding distance at each level. The results indicated that the combination of factors greatly influenced the process to achieve the minimum wear and coefficient of friction. Overall, the experiment results depicted least wear and friction coefficient for fiber reinforced laminates. In the same way, appreciable wear and friction coefficient was noted for without fiber laminates. Additionally, the SN ratio results too exhibited the similar trend. Moreover, ANOVA analysis revealed that the fiber inclusion on laminates has lesser contribution on coefficient of friction and wear when compared to without fiber laminates. At last, the microstructure behavior of the test samples was investigated with an assistance of Scanning Electron Microscope (SEM) to analyze the surface morphology

  18. Continuous drawing of Bi-Ca-Sr-Cu-O glass fibers from a preform

    Zheng, H.; Hu, Y.; Mackenzie, J.D.

    1991-01-01

    Several issues related to drawing Bi-Ca-Sr-Cu-O glass fibers from a preform are discussed. Continuous drawing of Bi-Ca-Sr-Cu-O glass fibers was successfully accomplished. Bi-Ca-Sr-Cu-O glass fibers are drawn above the crystallization temperature. Minimizing crystallization of the glass preforms is a key for successful drawing of the glass fibers. Two effective means, high glass melting temperature and V 2 O 5 doping, have been used to minimize the crystallization of the preforms, thus assuring the continuous drawing of Bi-Ca-Sr-Cu-O glass fibers

  19. A bio-based fibre-reinforced plastic pedestrian bridge for Schiphol

    Smits, J.E.P.; Gkaidatzis, R.

    2015-01-01

    The present paper investigates Bio-based fibre-reinforced plastics, used as a load-bearing element of a bridge. We aim to increase the renewable content and decreasing the embodied energy of FRP. To achieve that, the consisting raw materials of these plastics which are based on non-renewable

  20. Use of glass-reinforced plastic vessels in petrochemical production plants

    Makarov, V.G.; Baikin, V.G.; Perlin, S.M.

    1984-01-01

    At present, petrochemical plant production equipment is made of scarce high-alloy steels and alloys or carbon steel with subsequent chemical protection. Traditional methods of protection frequently do not provide reliable and safe service of equipment for the length of the normal operating life. One of the effective methods of combatting corrosion is the use of glass-reinforced plastic equipment. Glass-reinforced equipment is not subject to electrochemical corrosion and has a high chemical resistance. Weight is approximately a third of similar vessels. The paper provides recommendations and precautions for the production, installation, use and maintenance of glass-reinforced plastic vessels

  1. Glass fiber effect on mechanical properties of Eco-SCC

    Prasad M. L., V.; Loksesh, G.; Ramanjaneyulu, B.; Venkatesh, S.; Mousumi, K.

    2017-07-01

    Sustainable Construction encouraging the use of recycled materials and implies adoption of fewer natural resources in buildings and other infrastructure. In this paper Quarry Dust (QD) is used as partial replacement for River Sand (RS) to make Self Compacting Concrete (SCC) of grade M40. Glass fiber is used as strengthening material to the developed concrete. The present study mainly focused to develop Eco-SCC using QD. In this study it was found that, for developing Eco-SCC, what is the optimum dosage of replacement of QD in RS. Fresh properties of SCC are satisfying the EFNARC specifications and also target strength is achieved. Further it is concluded that, with the glass fiber addition there is an improvement in the split and flexural strength values.

  2. Optical and mechanical anisotropy of oxide glass fibers

    Deubener, J.; Yue, Yuanzheng

    2012-01-01

    products [1], whereas stretching (frozen-in strain) results in optical and mechanical anisotropy of glass fibers, which is quantified inter alia by the specific birefringence [2]. The paper will stress the later effects by combining previous results on the structural origins of birefringence...... and anisotropic shrinkage in silica and phosphate fibers with recent studies on relaxation of optical anisotropy in E-glass fibers [3,4].......Upon fiber drawing, glass forming oxide melts are thermally quenched and mechanically stretched. High cooling rates (up to 106 K/min) of quenched glass fibres lead to higher enthalpy state of liquids, thereby, to higher fictive temperature than regular quenching (e.g. 20 K/min) of bulk glass...

  3. Environmental resistance and mechanical performance of basalt and glass fibers

    Wei Bin; Cao Hailin; Song Shenhua

    2010-01-01

    The treated basalt and glass fibers with sodium hydroxide and hydrochloric acid solutions for different times were analyzed, respectively. This paper summarized the mass loss ratio and the strength maintenance ratios of the fibers after treatment. The fibers' surface corrosion morphologies were characterized using scanning electron microscopy and their compositions were detected using energy dispersive X-ray spectroscopy. The acid resistance was much better than the alkali resistance for the basalt fibers. Nevertheless, for the glass fibers the situation is different: the acid resistance was almost the same as the alkali resistance. Among the two types of aqueous environments evaluated, the alkali solution is the most aggressive to the fibers' surface. The possible corrosion mechanisms are revealed.

  4. Improving the interfacial and mechanical properties of short glass fiber/epoxy composites by coating the glass fibers with cellulose nanocrystals

    A. Asadi; M. Miller; Robert Moon; K. Kalaitzidou

    2016-01-01

    In this study, the interfacial and mechanical properties of cellulose nanocrystals (CNC) coated glass fiber/epoxy composites were investigated as a function of the CNC content on the surface of glass fibers (GF). Chopped GF rovings were coated with CNC by immersing the GF in CNC (0–5 wt%) aqueous suspensions. Single fiber fragmentation (SFF) tests showed that the...

  5. Tensile Properties of Unsaturated Polyester and Epoxy Resin Reinforced with Recycled Carbon-Fiber-Reinforced Plastic

    Okayasu, Mitsuhiro; Kondo, Yuta

    2018-06-01

    To better understand the mechanical properties of recycled carbon-fiber-reinforced plastic (rCFRP), CFRP crushed into small pieces was mixed randomly in different proportions (0-30 wt%) with two different resins: unsaturated polyester and epoxy resin. Two different sizes of crushed CFRP were used: 0.1 mm × 0.007 mm (milled CFRP) and 30 mm × 2 mm (chopped CFRP). The tensile strength of rCFRP was found to depend on both the proportion and the size of the CFRP pieces. It increased with increasing proportion of chopped CFRP, but decreased with increasing proportion of milled CFRP. There was no clear dependence of the tensile strength on the resin that was used. A low fracture strain was found for rCFRP samples made with chopped CFRP, in contrast to those made with milled CFRP. The fracture strain was found to increase with increasing content of milled CFRP up to 20 wt%, at which point, coalescence of existing microvoids occurred. However, there was a reduction in fracture strain for rCFRP with 30 wt% of milled CFRP, owing to the formation of defects (blow holes). Overall, the fracture strain was higher for rCFRPs based on epoxy resin than for those based on unsaturated polyester with the same CFRP content, because of the high ductility of the epoxy resin. The different tensile properties reflected different failure characteristics, with the use of chopped CFRP leading to a complicated rough fracture surface and with milled CFRP causing ductile failure through the presence of tiny dimple-like fractures. However, for a high content of milled CFRP (30 wt%), large blow holes were observed, leading to low ductility.

  6. Frequency and deflection analysis of cenosphere/glass fiber interply hybrid composite cantilever beam

    Bharath, J.; Joladarashi, Sharnappa; Biradar, Srikumar; Kumar, P. Naveen

    2018-04-01

    Interply hybrid laminates contain plies made of two or more different composite systems. Hybrid composites have unique features that can be used to meet specified design requirements in a more cost-effective way than nonhybrid composites. They offer many advantages over conventional composites including balanced strength and stiffness, enhanced bending and membrane mechanical properties, balanced thermal distortion stability, improved fatigue/impact resistance, improved fracture toughness and crack arresting properties, reduced weight and cost. In this paper an interply hybrid laminate composite containing Cenosphere reinforced polymer composite core and glass fiber reinforced polymer composite skin is analysied and effect of volume fraction of filler on frequency and load v/s deflection of hybrid composite are studied. Cenosphere reinforced polymer composite has increased specific strength, specific stiffness, specific density, savings in cost and weight. Glass fiber reinforced polymer composite has higher torsional rigidity when compared to metals. These laminate composites are fabricated to meet several structural applications and hence there is a need to study their vibration and deflection properties. Experimental investigation starts with fabrication of interply hybrid composite with cores of cenosphere reinforced epoxy composite volume fractions of CE 15, CE 25, CE15_UC as per ASTM E756-05C, and glasss fiber reinforced epoxy skin, cast product of required dimension by selecting glass fibre of proper thickness which is currently 0.25mm E-glass bidirectional woven glass fabric having density 2500kg/m3, in standard from cast parts of size 230mmX230mmX5mm in an Aluminum mould. Modal analysis of cantilever beam is performed to study the variation of natural frequency with strain gauge and the commercially available Lab-VIEW software and deflection in each of the cases by optical Laser Displacement Measurement Sensor to perform Load versus Deflection Analysis

  7. Assessment of effect of reinforcement on plastic limit load of branch junction

    Myung, Man Sik; Kim, Yun Jae; Yoon, Ki Bong

    2009-01-01

    The present work provides effects of reinforcement shape and area on plastic limit loads of branch junctions, based on detailed three-dimensional finite element limit analysis and small strain FE limit analyses assuming elastic-perfectly plastic material behavior. Three types of loading are considered; internal pressure, in-plane bending on the branch pipe and in-plane bending on the run pipe. It is found that reinforcement is the most effective in the case when (in-plane/out-of-plane) bending is applied to the branch pipe. When bending is applied to the run pipe, reinforcement is less effective, compared to the case when bending is applied to the branch pipe. The reinforcement effect is the least effective for internal pressure.

  8. The influence of glass fibers on elongational viscosity studied by means of optical coherence tomography and X-ray computed tomography

    Aigner, M.; Köpplmayr, T.; Lang, C.; Burzic, I.; Miethlinger, J.; Salaberger, D.; Buchsbaum, A.; Leitner, M.; Heise, B.; Schausberger, S. E.; Stifter, D.

    2014-01-01

    We report on the flow characteristics of glass-fiber-reinforced polymers in elongational rheometry. Unlike polymers with geometrically isotropic fillers, glass-fiber-reinforced polymers exhibit flow behavior and rheology that depend heavily on the orientation, the length distribution and the content of the fibers. One of the primary objectives of this study was to determine the effect of fiber orientation, concentration and distribution on the entrance pressure drop by means of optical coherence tomography (OCT), full-field optical coherence microscopy (FF-OCM), and X-ray computed tomography (X-CT). Both pressure drop and melt flow were analyzed using a special elongation die (Thermo Scientific X-Die [3]) for inline measurements. Samples with a variety of fiber volume fractions, fiber lengths and processing temperatures were measured

  9. The influence of glass fibers on elongational viscosity studied by means of optical coherence tomography and X-ray computed tomography

    Aigner, M.; Salaberger, D.; Buchsbaum, A.; Heise, B.; Schausberger, S. E.; Köpplmayr, T.; Lang, C.; Leitner, M.; Stifter, D.; Burzic, I.; Miethlinger, J.

    2014-05-01

    We report on the flow characteristics of glass-fiber-reinforced polymers in elongational rheometry. Unlike polymers with geometrically isotropic fillers, glass-fiber-reinforced polymers exhibit flow behavior and rheology that depend heavily on the orientation, the length distribution and the content of the fibers. One of the primary objectives of this study was to determine the effect of fiber orientation, concentration and distribution on the entrance pressure drop by means of optical coherence tomography (OCT), full-field optical coherence microscopy (FF-OCM), and X-ray computed tomography (X-CT). Both pressure drop and melt flow were analyzed using a special elongation die (Thermo Scientific X-Die [3]) for inline measurements. Samples with a variety of fiber volume fractions, fiber lengths and processing temperatures were measured.

  10. Effect of moisture on natural fibre reinforced plastics | Ogakwu | West ...

    In this research, the rate of moisture absorption of the composites reinforced with natural fibres – Ukam plant fibres (chochlostermum placoni) were studied and determined.Composite cubes and plates of different sizes were prepared, then immersed in water for 24 hours at room temperature in order to determine the extent ...

  11. Characterization and reactivity of sodium aluminoborosilicate glass fiber surfaces

    Ortiz Rivera, Lymaris, E-mail: luo105@psu.edu [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Bakaev, Victor A.; Banerjee, Joy [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Mueller, Karl T. [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States); Pantano, Carlo G. [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2016-05-01

    Highlights: • XPS revealed that these fiber surfaces contain sodium carbonate weathering products. • IGC–MS data confirms the products of acetic acid reaction with sodium carbonate. • NMR data shows two closely spaced, but distinct sodium carboxylate peaks. • Acetic acid reacts with both sodium in the glass and sodium in the sodium carbonate. - Abstract: Multicomponent complex oxides, such as sodium aluminoborosilicate glass fibers, are important materials used for thermal insulation in buildings and homes. Although the surface properties of single oxides, such as silica, have been extensively studied, less is known about the distribution of reactive sites at the surface of multicomponent oxides. Here, we investigated the reactivity of sodium aluminoborosilicate glass fiber surfaces for better understanding of their interface chemistry and bonding with acrylic polymers. Acetic acid (with and without a {sup 13}C enrichment) was used as a probe representative of the carboxylic functional groups in many acrylic polymers and adhesives. Inverse gas chromatography coupled to a mass spectrometer (IGC–MS), and solid state nuclear magnetic resonance (NMR), were used to characterize the fiber surface reactions and surface chemical structure. In this way, we discovered that both sodium ions in the glass surface, as well as sodium carbonate salts that formed on the surface due to the intrinsic reactivity of this glass in humid air, are primary sites of interaction with the carboxylic acid. Surface analysis by X-ray photoelectron spectroscopy (XPS) confirmed the presence of sodium carbonates on these surfaces. Computer simulations of the interactions between the reactive sites on the glass fiber surface with acetic acid were performed to evaluate energetically favorable reactions. The adsorption reactions with sodium in the glass structure provide adhesive bonding sites, whereas the reaction with the sodium carbonate consumes the acid to form sodium-carboxylate, H

  12. Magnetically sensitive nanodiamond-doped tellurite glass fibers.

    Ruan, Yinlan; Simpson, David A; Jeske, Jan; Ebendorff-Heidepriem, Heike; Lau, Desmond W M; Ji, Hong; Johnson, Brett C; Ohshima, Takeshi; Afshar V, Shahraam; Hollenberg, Lloyd; Greentree, Andrew D; Monro, Tanya M; Gibson, Brant C

    2018-01-19

    Traditional optical fibers are insensitive to magnetic fields, however many applications would benefit from fiber-based magnetometry devices. In this work, we demonstrate a magnetically sensitive optical fiber by doping nanodiamonds containing nitrogen vacancy centers into tellurite glass fibers. The fabrication process provides a robust and isolated sensing platform as the magnetic sensors are fixed in the tellurite glass matrix. Using optically detected magnetic resonance from the doped nanodiamonds, we demonstrate detection of local magnetic fields via side excitation and longitudinal collection. This is a first step towards intrinsically magneto-sensitive fiber devices with future applications in medical magneto-endoscopy and remote mineral exploration sensing.

  13. Flexural Performance of Transparent Plastic Bar Reinforced Concrete

    Byoungil Kim

    2018-02-01

    Full Text Available In this study, experiments were conducted to derive a mix design for improving the flexural performance of light transparent concrete, which is attracting much attention and interest as an interior and exterior material for buildings, so that it could be easily applied in the field as a non-structural element by securing a lightweight, workability, and economic efficiency through the improvement of the concrete mix design and the use of economical materials for promoting its practical use. It was found that the mixing of polyvinyl alcohol (PVA fiber was effective in improving the consistency by preventing the aggregate from floating due to the mixing of lightweight aggregate with a low specific gravity. The flexural performance test results showed that the load transfer factor (LTF from the concrete matrix to the fiber was highest in the test specimens without plastic bars, followed by those with 5 and 10 mm plastic bars, respectively.

  14. Crack Growth Monitoring by Embedded Optical Fibre Bragg Grating Sensors: Fibre Reinforced Plastic Crack Growing Detection

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    This article presents a novel method to asses a crack growing/damage event in fibre reinforced plastic, or adhesive using Fibre Bragg Grating (FBG) sensors embedded in a host material. Different features of the crack mechanism that induce a change in the FBG response were identified. Double Canti...

  15. A New Generation of Sub Mm Telescopes, Made of Carbon Fiber Reinforced Plastic

    Mezger, P.; Baars, J. W. M.; Ulich, B. L.

    1984-01-01

    Carbon fiber reinforced plastic (CFRP) appears to be the material most suited for the construction of submillimeter telescopes (SMT) not only for ground-based use but also for space applications. The accuracy of the CFRP reflectors needs to be improved beyond value of the 17 micron rms envisaged for the 10 m SMT.

  16. Nondestructive testing of fiber reinforced plastics with the acoustic-flaw-detector (AFD)

    Altmann, O.; Winter, L.

    1984-01-01

    This report is explaining a nondestructive impedance test method for fiber reinforced plastics. The limits for void detection with this test method can be found with theoretical formulas and practical tests. This report shows, that voids with diameters bigger than 10 mm can be found exactly. (orig.) [de

  17. Decay resistance of wood-plastic composites reinforced with extracted or delignified wood flour

    Rebecca E. Ibach; Yao Chen; Nicole M. Stark; Mandla A. Tshabalala; Yongming Fan; Jianmin Gao

    2014-01-01

    The moisture and decay resistance of wood-plastic composites (WPCs) reinforced with extracted or delignified wood flour (WF) was investigated. Three different extractions were preformed: toluene/ethanol (TE), acetone/water (AW), and hot water (HW). Delignification (DL) was performed using a sodium chlorite/acetic acid solution. All WPCs specimens were made with 50% by...

  18. Dual energy CT inspection of a carbon fibre reinforced plastic composite combined with metal components

    Vavřík, Daniel; Jakůbek, J.; Kumpová, Ivana; Pichotka, M.

    6, Part B, November (2016), s. 47-55 ISSN 2214-6571 R&D Projects: GA MŠk(CZ) LO1219; GA ČR(CZ) GA15-07210S Keywords : dual energy computed tomography * carbon fibre reinforced plastic composite * metal artefact suppression Subject RIV: JI - Composite Material s http://www.sciencedirect.com/science/article/pii/S2214657116300107

  19. Research on carbon fiber–reinforced plastic bumper beam subjected to low-velocity frontal impact

    Yefa Hu

    2015-06-01

    Full Text Available Lightweight and safety performance of automobiles are two important factors for automobile designs. In this article, a research on lightweight and crashworthiness of automotive bumper has been conducted. The carbon fiber–reinforced plastic bumper beam is considered to replace the traditional high-strength steel one. The low-velocity impact finite element simulations for the above two bumper beams are performed via LS-DYNA. Furthermore, the energy absorption capabilities and dynamic response characteristics of the carbon fiber–reinforced plastic bumper beam are investigated and compared with the steel one. The results show that the carbon fiber–reinforced plastic bumper beam is of the better energy absorption capabilities and dynamic response characteristics than those of the steel one; the weight has decreased remarkably close to 50%. Meanwhile, the effect of lay-up and wall thickness on the crashworthiness of the carbon fiber–reinforced plastic bumper beam under low-velocity impact is also studied in this article to select appropriate design schemes.

  20. Styrene Exposure and Risk of Lymphohematopoietic Malignancies in 73,036 Reinforced Plastics Workers

    Christensen, Mette Skovgaard; Vestergaard, Jesper Medom; d'Amore, Francesco

    2018-01-01

    BACKGROUND: Styrene is an important industrial chemical that the general population is exposed to at low levels. Previous research has suggested increased occurrence of leukemia and lymphoma among reinforced plastics workers exposed at high levels of styrene. METHODS: We followed 73,036 workers o...

  1. Bond slip and crack development in FRC and regular concrete specimens longitudinally reinforced with FRP or steel under tension loading

    Lárusson, Lárus Helgi; Fischer, Gregor

    2012-01-01

    tensile loading using high definition image analysis in two unique test setups. Two different types of cementitious materials, conventional concrete and highly ductile Engineered Cementitious Composite (ECC), and two types of reinforcement bars, regular steel and Glass Fiber Reinforcement Polymer (GFRP......The governing mechanism in the structural response of reinforced concrete members in tension is the interaction between structural reinforcement and the surrounding concrete matrix. The composite response and the mechanical integrations of reinforced cementitious members were investigated during......), were tested. It was found that the ductile ECC in contrast to regular brittle concrete decreases crack widths significantly which effectively results in decreased bond slip between the reinforcement and surrounding matrix. Furthermore the use of elastic GFRP in comparison to elastic/plastic steel...

  2. Preparation and Characterization of UPR/ LNR/ Glass Fiber Composite by using Unsaturated Polyester Resin (PET) from PET Wastes

    Siti Farhana Hisham; Ishak Ahmad; Rusli Daik

    2011-01-01

    UPR/ LNR/ glass fibre composite had been prepared by using unsaturated polyester resin (UPR) based from recycled PET product. PET waste was recycled by glycolysis process and the glycides product was then reacted with maleic anhydride to produce unsaturated polyester resin. The preparation of UPR/ LNR blends were conducted by varying the amount of LNR addition to the resin ranging from 0-7.5 % (wt). The composition of UPR/LNR blend with good mechanical properties had been selected as a matrix of the glass fiber reinforced composite. Glass fibre was also treated by (3-Amino propil)triethoxysilane as a coupling agent. From the result, the addition of 2.5 % LNR in UPR had showed the optimum mechanical and morphological properties where the elastomer particle's were well dispersed in the matrix with smaller size. The silane treatment on the glass fiber increased the tensile and impact strength values of the UPR/ LNR/ GF composite compared to untreated fiber reinforcement. (author)

  3. Design aid for shear strengthening of reinforced concrete T-joints using carbon fiber reinforced plastic composites

    Gergely, Ioan

    The research presented in the present work focuses on the shear strengthening of beam column joints using carbon fiber composites, a material considered in seismic retrofit in recent years more than any other new material. These composites, or fiber reinforced polymers, offer huge advantages over structural steel reinforced concrete or timber. A few of these advantages are the superior resistance to corrosion, high stiffness to weight and strength to weight ratios, and the ability to control the material's behavior by selecting the orientation of the fibers. The design and field application research on reinforced concrete cap beam-column joints includes analytical investigations using pushover analysis; design of carbon fiber layout, experimental tests and field applications. Several beam column joints have been tested recently with design variables as the type of composite system, fiber orientation and the width of carbon fiber sheets. The surface preparation has been found to be critical for the bond between concrete and composite material, which is the most important factor in joint shear strengthening. The final goal of this thesis is to develop design aids for retrofitting reinforced concrete beam column joints. Two bridge bents were tested on the Interstate-15 corridor. One bent was tested in the as-is condition. Carbon fiber reinforced plastic composite sheets were used to externally reinforce the second bridge bent. By applying the composite, the displacement ductility has been doubled, and the bent overall lateral load capacity has been increased as well. The finite element model (using DRAIN-2DX) was calibrated to model the actual stiffness of the supports. The results were similar to the experimental findings.

  4. Recyclability assessment of nano-reinforced plastic packaging

    Sánchez, C.; Hortal, M.; Aliaga, C.; Devis, A.; Cloquell-Ballester, V.A.

    2014-01-01

    Highlights: • The study compares the recyclability of polymers with and without nanoparticles. • Visual appearance, material quality and mechanical properties are evaluated. • Minor variations in mechanical properties in R-PE and R-PP with nanoparticles. • Slight degradation of R-PET which affect mechanical properties. • Colour deviations in recycled PE, PP and PET in ranges higher that 0.3 units. - Abstract: Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market, there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO 3 ), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE–Nanoclay1, PE–CaCO 3 , PP–Ag, PET–ZnO, PET–Ag, PET–Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET–Ag) could influence important properties of the recycled material, due to a slight

  5. Recyclability assessment of nano-reinforced plastic packaging.

    Sánchez, C; Hortal, M; Aliaga, C; Devis, A; Cloquell-Ballester, V A

    2014-12-01

    Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market, there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO3), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE-Nanoclay1, PE-CaCO3, PP-Ag, PET-ZnO, PET-Ag, PET-Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET-Ag) could influence important properties of the recycled material, due to a slight degradation of the polymer, such as increasing pinholes, degradation fumes and elongation at break. Moreover, it should be noted that colour deviations were visible in most of the samples (PE, PP and PET) in levels higher than 0.3 units (limit perceivable by the human eye). The acceptance of these changes in the properties of recycled PE, PP and PET will depend on the specific applications considered (e.g. packaging applications are more

  6. Recyclability assessment of nano-reinforced plastic packaging

    Sánchez, C., E-mail: csanchez@itene.com [Sustainability Divison, Packaging, Transport and Logistics Research Institute, Albert Einstein 1, 46980 Paterna, Valencia (Spain); Hortal, M., E-mail: mhortal@itene.com [Sustainability Divison, Packaging, Transport and Logistics Research Institute, Albert Einstein 1, 46980 Paterna, Valencia (Spain); Aliaga, C., E-mail: caliaga@itene.com [Sustainability Divison, Packaging, Transport and Logistics Research Institute, Albert Einstein 1, 46980 Paterna, Valencia (Spain); Devis, A., E-mail: adevis@itene.com [Sustainability Divison, Packaging, Transport and Logistics Research Institute, Albert Einstein 1, 46980 Paterna, Valencia (Spain); Cloquell-Ballester, V.A., E-mail: cloquell@dpi.upv.es [Dpto. Proyectos de Ingeniería, Universitat Politècnica de València, Camino de Vera, 46022 Valencia (Spain)

    2014-12-15

    Highlights: • The study compares the recyclability of polymers with and without nanoparticles. • Visual appearance, material quality and mechanical properties are evaluated. • Minor variations in mechanical properties in R-PE and R-PP with nanoparticles. • Slight degradation of R-PET which affect mechanical properties. • Colour deviations in recycled PE, PP and PET in ranges higher that 0.3 units. - Abstract: Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market, there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO{sub 3}), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE–Nanoclay1, PE–CaCO{sub 3}, PP–Ag, PET–ZnO, PET–Ag, PET–Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET–Ag) could influence important properties of the recycled material, due to a

  7. Fracture strength of fiber-reinforced surface-retained anterior cantilever restorations

    Oezcan, Mutlu; Kumbuloglu, Ovul; User, Atilla

    2008-01-01

    Purpose: This study compared the fracture strength of direct anterior cantilever fiber-reinforced composite (FRC) fixed partial dentures (FPD) reinforced with 3 types of E-glass fibers preimpregnated with either urethane tetramethacrylate, bisphenol glycidylmethacrylate/polymethyl methacrylate, or

  8. 40 CFR 63.5795 - How do I know if my reinforced plastic composites production facility is a new affected source or...

    2010-07-01

    ... for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers § 63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or an existing affected source? (a) A reinforced plastic composites production facility is a new...

  9. Comparison between three glass fiber post cementation techniques.

    Migliau, Guido; Piccoli, Luca; Di Carlo, Stefano; Pompa, Giorgio; Besharat, Laith Konstantinos; Dolci, Marco

    2017-01-01

    The aim of this experimental study was to compare the traditional cement systems with those of the latest generation, to assess if indeed these could represent of viable substitutes in the cementation of indirect restorations, and in the specific case of endodontic posts. The assessment of the validity of the cementing methods was performed according to the test of the push-out, conducted on sections obtained from the roots of treated teeth. The samples were divided into three groups. Group A (10 samples): etching for 30 seconds with 37% orthophosphoric acid (Superlux-Thixo-etch-DMG) combined with a dual-curing adhesive system (LuxaBond-Total Etch-DMG), dual-cured resin-composite cement (LuxaCore-DMG) and glass fiber posts (LuxaPost-DMG). Group B (10 samples): self-adhesive resin cement (Breeze-Pentron Clinical) and glass fiber posts (LuxaPost-DMG). Group C (10 samples): 3 steps light-curing, self-etching, self-conditioning bonding agent (Contax-Total-etch-DMG), dual-cured resin-composite cement (LuxaCore-DMG) and glass fiber posts (LuxaPost-DMG). The survey was conducted by examining the breaking resistance of the post-cement-tooth complex, subjected to a mechanical force. Statistical analysis was performed using SPSS Inc. ver. 13.0, Chicago, IL, USA. Group A values of bond strenth ranged from a minimum of 10.14 Mpa to a maximum value of 14.73 Mpa with a mean value of 12.58 Mpa. In Group B the highest value of bond strength was 6.54 Mpa and the minimum 5.55 Mpa. The mean value of the bond strength for the entire group was 6.58 Mpa. In Group C the highest bond strength was 6.59 Mpa whereas the lowest bond strength was 4.84 Mpa. Mean value of the bond strength of Group C was calculated at 5.7 Mpa. Etching with orthophosphoric acid combined with a dual-curing adhesive system and a dual-cured resin-composite cement was the technique that guaranteed the highest bond strength. Lowest bond strength values were obtained when dual self-adhesive cement was used.

  10. Theoretical and practical aspects of improving the durability of steel reinforcement in transport designs, using passivation and plasticizing chemical additives

    Velichko, Evgenij; Talipov, Linar

    2017-10-01

    The article deals with the problem of steel reinforcement corrosion in reinforced concrete structures exposed to aggressive media, in particular in reinforced concrete construction of transport infrastructure, in snowy areas, and subject to the influence of chlorides contained in applied deicing agents. Basic schemes for preventing the reinforcement corrosion in reinforced-concrete structures have been considered and analyzed. Prospects of primary protection against corrosion of reinforcement by introducing chemical additives with plasticizing/passivating action in a concrete mixture with mixing water have been considered in detail. The physical/chemical mechanism of the protective action of a superplasticizer together with a passivator has been highlighted.

  11. In vitro bioactivity and cytotoxicity of chemically treated glass fibers

    Ângela Leão Andrade

    2004-12-01

    Full Text Available Samples of a commercial glass fiber FM® (Fiber Max were used to test the efficacy of a chemical sol-gel surface treatment to enhance their bioactivity. After treatment with tetraethoxysilane (TEOS, individual fiber samples were soaked into a simulated body fluid (SBF solution, from which they were removed at intervals of 5 and 10 days. Micrographs obtained by scanning electron microscopy (SEM analysis of samples chemically treated with TEOS revealed the formation of a hydroxyapatite (HA coating layer after 5 days into SBF solution. Fourier transform infrared spectroscopic (FTIR analyses confirmed that the coating layer has P-O vibration bands characteristic of HA. The in vitro cytotoxicity was evaluated using a direct contact test, minimum essential medium elution test (ISO 10993-5 and MTT assay. Fibers immersed in SBF and their extracts exhibited lower cytotoxicity than the controls not subjected to immersion, suggesting that SBF treatment improves the biocompatibility of the fiber.

  12. Characterization of Glass Fiber Separator Material for Lithium Batteries

    Subbarao, S.; Frank, H.

    1984-01-01

    Characterization studies were carried out on a glass fiber paper that is currently employed as a separator material for some LiSOCl2 primary cells. The material is of the non-woven type made from microfilaments of E-type glass and contains an ethyl acrylate binder. Results from extraction studies and tensile testing revealed that the binder content and tensile strength of the paper were significantly less than values specified by the manufacturer. Scanning electron micrographs revealed the presence of clusters of impurities many of which were high in iron content. Results of emission spectroscopy revealed high overall levels of iron and leaching, followed by atomic absorption measurements, revealed that essentially all of this iron is soluble in SOCl2.

  13. Prevention of cancer risk of workers of glass fibers manufacture

    G.F. Mukhammadieva

    2016-09-01

    Full Text Available In the process of producing of continuous glass fiber workers are exposed to complex impact of carcinogenic chemicals released into the air of the working area (including formaldehyde, epichlorohydrin, ethane acids, aerosol of mineral oil. The penetrating effect of harmful substances through the skin is enhanced by the fine glass dust, which has a traumatic and irritating effect. Aggravating factors of the impact of lubricants on the body of the operators is the increased temperature and the excess of heat radiation. A risk factor is also the unfavorable climate of the workplace. Among the professional patients (71 person of 170 examined employees most of persons aged 50–59 years. The average age of the patients at the time of detection of hyperkeratosis was 51,9 ± 0,9 years, skin cancer – 57,3 ± 1,7 years. Professional skin neoplasms were diagnosed mainly in workers who have been working for more than 10 years (average period of 12.6 ± 2.4 years. The period of transformation of limited hyperkeratosis to the skin cancer was on average 5–8 years. It was found that the molecular-genetic factors predisposing to the development of professional skin lesions are polymorphic variants of the gene suppressor of tumor growth TP53 (Ex4 + 119G>C, IVS3 16 bp Del/Ins and IVS6+62A>G. It has been shown that the development of preventive measures aimed at reducing the risk of occupational diseases is relevant and should include the interaction of administration, engineering and technical staff of the enterprise, labor protection service, Rospotrebnadzor specialists, doctors specialized in occupational diseases and the workers themselves. The complex of measures of primary and secondary prevention of health problems is suggested. The necessity of including the continuous glass fiber production to the list of carcinogen production processes, presented in national normative documents.

  14. Durability of Starch Based Biodegradable Plastics Reinforced with Manila Hemp Fibers

    Shinji Ochi

    2011-01-01

    The biodegradability of Manila hemp fiber reinforced biodegradable plastics was studied for 240 days in a natural soil and 30 days in a compost soil. After biodegradability tests, weights were measured and both tensile strength tests and microscopic observation were performed to evaluate the biodegradation behavior of the composites. The results indicate that the tensile strength of the composites displays a sharp decrease for up to five days, followed by a gradual decrease. The weight loss a...

  15. Cold surface treatments on fiber-reinforced plastics by pulsed laser

    Gebauer, Jana; Franke, Volker; Klotzbach, Udo; Beyer, Eckhard

    2017-01-01

    The importance of lightweight materials increases in all aspects of manufacturing, e.g. automotive, sports equipment and aerospace [1]. Making fiber reinforced plastics suitable for use in mass production new technologies have to be developed to overcome existing challenges e.g. shorter cycle times or more efficient resource usage. Innovative laser systems are used for a full range of treatments for all materials, like structuring, drilling, joining and cutting [2] - [4]. This paper presents ...

  16. Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics.

    Mulaveesala, Ravibabu; Venkata Ghali, Subbarao

    2011-05-01

    This paper proposes a Barker coded excitation for defect detection using infrared non-destructive testing. Capability of the proposed excitation scheme is highlighted with recently introduced correlation based post processing approach and compared with the existing phase based analysis by taking the signal to noise ratio into consideration. Applicability of the proposed scheme has been experimentally validated on a carbon fiber reinforced plastic specimen containing flat bottom holes located at different depths.

  17. Research on carbon fiber–reinforced plastic bumper beam subjected to low-velocity frontal impact

    Yefa Hu; Can Liu; Jinguang Zhang; Guoping Ding; Qiong Wu

    2015-01-01

    Lightweight and safety performance of automobiles are two important factors for automobile designs. In this article, a research on lightweight and crashworthiness of automotive bumper has been conducted. The carbon fiber–reinforced plastic bumper beam is considered to replace the traditional high-strength steel one. The low-velocity impact finite element simulations for the above two bumper beams are performed via LS-DYNA. Furthermore, the energy absorption capabilities and dynamic response c...

  18. Mechanical Properties of a Unidirectional Basalt-Fiber-Reinforced Plastic Under a Loading Simulating Operation Conditions

    Lobanov, D. S.; Slovikov, S. V.

    2017-01-01

    The results of experimental investigations of unidirectional composites based on basalt fibers and different marks of epoxy resins are presented. Uniaxial tensile tests were carried out using a specimen fixation technique simulating the operation conditions of structures. The mechanical properties of the basalt-fiber-reinforced plastics (BFRPs) were determined. The diagrams of loading and deformation of BFRP specimens were obtain. The formulations of the composites with the highest mechanical properties were revealed.

  19. Machinability Study on Milling Kenaf Fiber Reinforced Plastic Composite Materials using Design of Experiments

    Azmi, H.; Haron, C. H. C.; Ghani, J. A.; Suhaily, M.; Yuzairi, A. R.

    2018-04-01

    The surface roughness (Ra) and delamination factor (Fd) of a milled kenaf reinforced plastic composite materials are depending on the milling parameters (spindle speed, feed rate and depth of cut). Therefore, a study was carried out to investigate the relationship between the milling parameters and their effects on a kenaf reinforced plastic composite materials. The composite panels were fabricated using vacuum assisted resin transfer moulding (VARTM) method. A full factorial design of experiments was use as an initial step to screen the significance of the parameters on the defects using Analysis of Variance (ANOVA). If the curvature of the collected data shows significant, Response Surface Methodology (RSM) is then applied for obtaining a quadratic modelling equation that has more reliable in expressing the optimization. Thus, the objective of this research is obtaining an optimum setting of milling parameters and modelling equations to minimize the surface roughness (Ra) and delamination factor (Fd) of milled kenaf reinforced plastic composite materials. The spindle speed and feed rate contributed the most in affecting the surface roughness and the delamination factor of the kenaf composite materials.

  20. Processing of microencapsulated dyes for the visual inspection of fibre reinforced plastics

    Hopmann, Ch., E-mail: kerschbaum@ikv.rwth-aachen.de; Kerschbaum, M., E-mail: kerschbaum@ikv.rwth-aachen.de; Küsters, K., E-mail: kerschbaum@ikv.rwth-aachen.de [Institute of Plastics Processing at RWTH Aachen University (IKV), Pontstrasse 49, 52064 Aachen (Germany)

    2014-05-15

    The evaluation of damages caused during processing, assembly or usage of fibre reinforced plastics is still a challenge. The use of inspection technology like ultrasonic scanning enables a detailed damage analysis but requires high investments and trained staff. Therefore, the visual inspection method is widely used. A drawback of this method is the difficult identification of barely visible damages, which can already be detrimental for the structural integrity. Therefore an approach is undertaken to integrate microencapsulated dyes into the laminates of fibre reinforced plastic parts to highlight damages on the surface. In case of a damage, the microcapsules rupture which leads to a release of the dye and a visible bruise on the part surface. To enable a wide application spectrum for this technology the microcapsules must be processable without rupturing with established manufacturing processes for fibre reinforced plastics. Therefore the incorporation of microcapsules in the filament winding, prepreg autoclave and resin transfer moulding (RTM) process is investigated. The results show that the use of a carrier medium is a feasible way to incorporate the microcapsules into the laminate for all investigated manufacturing processes. Impact testing of these laminates shows a bruise formation on the specimen surface which correlates with the impact energy level. This indicates a microcapsule survival during processing and shows the potential of this technology for damage detection and characterization.

  1. Processing of microencapsulated dyes for the visual inspection of fibre reinforced plastics

    Hopmann, Ch.; Kerschbaum, M.; Küsters, K.

    2014-01-01

    The evaluation of damages caused during processing, assembly or usage of fibre reinforced plastics is still a challenge. The use of inspection technology like ultrasonic scanning enables a detailed damage analysis but requires high investments and trained staff. Therefore, the visual inspection method is widely used. A drawback of this method is the difficult identification of barely visible damages, which can already be detrimental for the structural integrity. Therefore an approach is undertaken to integrate microencapsulated dyes into the laminates of fibre reinforced plastic parts to highlight damages on the surface. In case of a damage, the microcapsules rupture which leads to a release of the dye and a visible bruise on the part surface. To enable a wide application spectrum for this technology the microcapsules must be processable without rupturing with established manufacturing processes for fibre reinforced plastics. Therefore the incorporation of microcapsules in the filament winding, prepreg autoclave and resin transfer moulding (RTM) process is investigated. The results show that the use of a carrier medium is a feasible way to incorporate the microcapsules into the laminate for all investigated manufacturing processes. Impact testing of these laminates shows a bruise formation on the specimen surface which correlates with the impact energy level. This indicates a microcapsule survival during processing and shows the potential of this technology for damage detection and characterization

  2. Processing of microencapsulated dyes for the visual inspection of fibre reinforced plastics

    Hopmann, Ch.; Kerschbaum, M.; Küsters, K.

    2014-05-01

    The evaluation of damages caused during processing, assembly or usage of fibre reinforced plastics is still a challenge. The use of inspection technology like ultrasonic scanning enables a detailed damage analysis but requires high investments and trained staff. Therefore, the visual inspection method is widely used. A drawback of this method is the difficult identification of barely visible damages, which can already be detrimental for the structural integrity. Therefore an approach is undertaken to integrate microencapsulated dyes into the laminates of fibre reinforced plastic parts to highlight damages on the surface. In case of a damage, the microcapsules rupture which leads to a release of the dye and a visible bruise on the part surface. To enable a wide application spectrum for this technology the microcapsules must be processable without rupturing with established manufacturing processes for fibre reinforced plastics. Therefore the incorporation of microcapsules in the filament winding, prepreg autoclave and resin transfer moulding (RTM) process is investigated. The results show that the use of a carrier medium is a feasible way to incorporate the microcapsules into the laminate for all investigated manufacturing processes. Impact testing of these laminates shows a bruise formation on the specimen surface which correlates with the impact energy level. This indicates a microcapsule survival during processing and shows the potential of this technology for damage detection and characterization.

  3. Energy efficient microwave heating of carbon fibre reinforced plastic; Energieeffiziente Mikrowellentemperierung von kohlenstofffaserverstaerkten Duroplasten

    Danilov, Maksim

    2013-07-01

    The polymerization of carbon fiber reinforced thermosetting composites (CFRP) is a dull process step with high energy requirements within the production chain. His improvement would affect the economic and ecological balance of the fiber reinforced materials in a positive way. One possible approach investigated here is tempering of raw materials in a microwave oven. In this work the material to be processed - a carbon fiber-reinforced plastic laminate - is being characterized in the microwave field through electromagnetic and thermal parameters. The relationship between its design parameters (fiber orientation and number of layers), the energy levels (reflection, absorption and transmittance) and the thermal process parameters (temperature gradient achievable) will be established. Afterwards, constructive options will be examined and evaluated which are suitable to install a low-loss (both by means of wave reflections and heat losses) industrial process.

  4. Nonlocal plasticity effects on fibre debonding in a whisker-reinforced metal

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2002-01-01

    Numerical cell-model analyses for the matrix-fibre debonding in a metal matrix composite are used to study the effect of a characteristic material length in the plasticity description of the matrix material deformations. Characteristic material lengths are already present in the model problem...... in the problem. The nonlocal plasticity effect tends to increase the stress level at a given overall strain, which clearly tends to promote the onset of debonding......., in the form of fibre sizes and the length associated with the debonding process, so the nonlocal plasticity model brings in an additional material length. The analyses for metal reinforced by aligned short fibres are used to obtain an understanding of the interaction of the different length scales...

  5. Tribological and mechanical behaviors of polyamide 6/glass fiber composite filled with various solid lubricants.

    Li, Duxin; Xie, Ying; Li, Wenjuan; You, Yilan; Deng, Xin

    2013-01-01

    The effects of polytetrafluoroethylene (PTFE), graphite, ultrahigh molecular weight polyethylene (UHMWPE), and their compounds on mechanical and tribological properties of glass-fiber-reinforced polyamide 6 (PA6/GF) were studied. The polymeric materials were blended using twin-screw extruder and subsequently injection molded for test samples. Mechanical properties were investigated in terms of hardness, tensile strength, and impact strength. Friction and wear experiments were run under ambient conditions at a rotating speed of 200 rpm and load of 100 N. The morphologies of the worn surfaces were also observed with scanning electron microscope. The results showed that graphite could increase the tensile strength of PA6/GF-15 composite, but the material became soft. Graphite/UHMWPE complex solid lubricants were effective in increasing the already high impact strength of PA6/GF-15 composite. 5% PTFE gave the maximum reduction in the coefficient of friction. However, PTFE/UHMWPE complex solid lubricants were the best choice for improving both friction and wear behaviors due to the lower friction coefficient and mass wear rate. Moreover, the worn surface of PA6 composites revealed that adhesive wear, abrasive wear, and fatigue wear occurred in this study.

  6. Microstructural evaluation and flexural mechanical behavior of pultruded glass fiber composites

    Chacon, Y.G.; Paciornik, S.; D'Almeida, J.R.M.

    2010-01-01

    Research highlights: → Mosaic images fully characterize the microstructure of heterogeneous materials. → Mosaic images have advantages over microscopy techniques using single fields. → UV and water immersion aging are minimized at the fibers' direction. → UV radiation produced marked changes on the composite surface. - Abstract: The microstructure of a pultruded glass fiber-reinforced composite was fully characterized using digital image analysis. A mosaic technique was used to analyze the entire thickness along specimens' cross-sections, enabling the visualization of the fiber, resin and filler spatial distribution. The advantages of this technique over the usual analysis on single fields, is presented and discussed. The fiber spatial distribution was correlated with flexural mechanical properties as a function of the specimens' position along the length and across the cross section of the composite. The influence of aging by immersion in distilled water and by UV radiation on flexural properties was also analyzed. Minor variation due to aging occurred when longitudinal specimens were tested. Transversally to the fibers, the matrix-dominated composite properties were more affected.

  7. Tribological and Mechanical Behaviors of Polyamide 6/Glass Fiber Composite Filled with Various Solid Lubricants

    Duxin Li

    2013-01-01

    Full Text Available The effects of polytetrafluoroethylene (PTFE, graphite, ultrahigh molecular weight polyethylene (UHMWPE, and their compounds on mechanical and tribological properties of glass-fiber-reinforced polyamide 6 (PA6/GF were studied. The polymeric materials were blended using twin-screw extruder and subsequently injection molded for test samples. Mechanical properties were investigated in terms of hardness, tensile strength, and impact strength. Friction and wear experiments were run under ambient conditions at a rotating speed of 200 rpm and load of 100 N. The morphologies of the worn surfaces were also observed with scanning electron microscope. The results showed that graphite could increase the tensile strength of PA6/GF-15 composite, but the material became soft. Graphite/UHMWPE complex solid lubricants were effective in increasing the already high impact strength of PA6/GF-15 composite. 5% PTFE gave the maximum reduction in the coefficient of friction. However, PTFE/UHMWPE complex solid lubricants were the best choice for improving both friction and wear behaviors due to the lower friction coefficient and mass wear rate. Moreover, the worn surface of PA6 composites revealed that adhesive wear, abrasive wear, and fatigue wear occurred in this study.

  8. Formation mechanism of a silane-PVA/PVAc complex film on a glass fiber surface.

    Repovsky, Daniel; Jane, Eduard; Palszegi, Tibor; Slobodnik, Marek; Velic, Dusan

    2013-10-21

    Mechanical properties of glass fiber reinforced composite materials are affected by fiber sizing. A complex film formation, based on a silane film and PVA/PVAc (polyvinyl alcohol/polyvinyl acetate) microspheres on a glass fiber surface is determined at 1) the nanoscale by using atomic force microscopy (AFM), and 2) the macroscale by using the zeta potential. Silane groups strongly bind through the Si-O-Si bond to the glass surface, which provides the attachment mechanism as a coupling agent. The silane groups form islands, a homogeneous film, as well as empty sites. The average roughness of the silanized surface is 6.5 nm, whereas it is only 0.6 nm for the non-silanized surface. The silane film vertically penetrates in a honeycomb fashion from the glass surface through the deposited PVA/PVAc microspheres to form a hexagonal close pack structure. The silane film not only penetrates, but also deforms the PVA/PVAc microspheres from the spherical shape in a dispersion to a ellipsoidal shape on the surface with average dimensions of 300/600 nm. The surface area value Sa represents an area of PVA/PVAc microspheres that are not affected by the silane penetration. The areas are found to be 0.2, 0.08, and 0.03 μm(2) if the ellipsoid sizes are 320/570, 300/610, and 270/620 nm for silane concentrations of 0, 3.8, and 7.2 μg mL(-1), respectively. The silane film also moves PVA/PVAc microspheres in the process of complex film formation, from the low silane concentration areas to the complex film area providing enough silane groups to stabilize the structure. The values for the residual silane honeycomb structure heights (Ha ) are 6.5, 7, and 12 nm for silane concentrations of 3.8, 7.2, and 14.3 μg mL(-1), respectively. The pH-dependent zeta-potential results suggest a specific role of the silane groups with effects on the glass fiber surface and also on the PVA/PVAc microspheres. The non-silanized glass fiber surface and the silane film have similar zeta potentials ranging

  9. Effect of the impact directions, of the fibers and of the aging on the glass fibers composite resistance

    Vina, J.; Arguelles, A.; Zenasni, R.; Ouinas, D.

    2006-01-01

    Usually, composites of epoxy matrix reinforced with glass fiber are used in the fabrication of wind turbine blades. This material has an anisotropic structure and its mechanical properties are not the same in all the directions. The impact strength was evaluated from the mechanical tests carried out in two perpendicular directions. The effect of aging was analyzed immersing the specimens into water to 70 C, during different periods of time. From the results of the tests, the dynamic fracture toughness (Kid) and the resilience (KCV) were obtained. An important difference was obtained between the specimens taken out in the blade direction and in the perpendicular direction. The aging specimens, in the two directions, have showed continuous decrements in the dynamic toughness and resilience, from the first period of immersion of 15 days until 180 days. (authors)

  10. Anisotropy and compression/tension asymmetry of PP containing soft and hard particles and short glass fibers

    A. M. Hartl

    2015-07-01

    Full Text Available Polypropylene (PP composites are used in a wide range of structural applications. Except for fiber reinforced PP, most PP particle composites are commonly considered to be isotropic or at least quasi-isotropic. In this paper, however, the anisotropy of several PP composites containing soft (rubber and hard (talc particles and glass fibers is characterized in detail in terms of the material microstructure as well as the resulting mechanical properties in monotonic tensile and compressive experiments. The microstructural investigations showed that all composites displayed a certain surface-core layer structure of distinctly different orientation patterns and with a higher degree of orientation in the surface layer. Also in mechanical testing an anisotropic behavior was observed with the degree of anisotropy being more pronounced in tension than compression. Moreover, the compression/tension asymmetry also strongly depends on filler type and orientation.

  11. Optimization of Recycled Glass Fibre-Reinforced Plastics Gear via Integration of the Taguchi Method and Grey Relational Analysis

    Mizamzul Mehat, Nik; Syuhada Zakarria, Noor; Kamaruddin, Shahrul

    2018-03-01

    The increase in demand for industrial gears has resulted in the increase in usage of plastic-matrix composites particularly glass fibre-reinforced plastics as the gear materials. The usage of these synthetic fibers is to enhance the mechanical strength and the thermal resistance of the plastic gears. Nevertheless, the production of large quantities of these synthetic fibre-reinforced composites poses a serious threat to the ecosystem. Comprehending to this fact, the present work aimed at investigating the effects of incorporating recycled glass fibre-reinforced plastics in various compositions particularly on dimensional stability and mechanical properties of gear produced with diverse injection moulding processing parameters setting. The integration of Grey relational analysis (GRA) and Taguchi method was adopted to evaluate the influence of recycled glass fibre-reinforced plastics and variation in processing parameters on gear quality. From the experimental results, the blending ratio was found as the most influential parameter of 56.0% contribution in both improving tensile properties as well as in minimizing shrinkage, followed by mould temperature of 24.1% contribution and cooling time of 10.6% contribution. The results obtained from the aforementioned work are expected to contribute to accessing the feasibility of using recycled glass fibre-reinforced plastics especially for gear application.

  12. Characterization of electrical conductivity of carbon fiber reinforced plastic using surface potential distribution

    Kikunaga, Kazuya; Terasaki, Nao

    2018-04-01

    A new method of evaluating electrical conductivity in a structural material such as carbon fiber reinforced plastic (CFRP) using surface potential is proposed. After the CFRP was charged by corona discharge, the surface potential distribution was measured by scanning a vibrating linear array sensor along the object surface with a high spatial resolution over a short duration. A correlation between the weave pattern of the CFRP and the surface potential distribution was observed. This result indicates that it is possible to evaluate the electrical conductivity of a material comprising conducting and insulating regions.

  13. Utilization of fiber reinforced plastics in rotor blades of wind turbines. WF Information

    1980-01-01

    In order to produce wind power plants of the future with high power (1-5 MW), the wind turbines are constructed with large rotor diameters (up to 145 m). The rotor blade has to be designed for a service life of at least 25 years. The fiber bonded or hybrid structure (metal + fiber composite material) is certainly attractive, especially in corrosive environment, compared to conventional metal constructions (steel or aluminum in welded, riveted, or bolted form). Light, rigid, and dynamically high-strength rotor blades can be built with fiber reinforced plastics. The present report gives a survey of the material problems arising in such plants.

  14. Radiation effects on carbon fiber-reinforced plastics for spacecraft materials

    Udagawa, Akira; Kudoh, Hisaaki; Sasuga, Tsuneo; Morino, Yoshiki; Seguchi, Tadao; Yudate, Kozo.

    1995-02-01

    The effects of space environment were studied for two kinds of carbon fiber-reinforced plastics(CFRP) which were an epoxy resin composite using construction materials of satellite and a polyimide(PMR-15) composite expecting bright future space materials for long term operation. Resistibility of these materials to the space environments were evaluated from the change of mechanical properties after exposure of electron, proton, atomic oxygen and thermal cycling. It was found that the CFRP with PMR-15 as a matrix had good performance in the space environments. No differences in the mechanical properties for the materials were observed between proton and electron irradiations. (author)

  15. Fabrication of novel fiber reinforced aluminum composites by friction stir processing

    Arab, Seyyed Mohammad; Karimi, Saeed; Jahromi, Seyyed Ahmad Jenabali, E-mail: jahromi@shirazu.ac.ir; Javadpour, Sirus; Zebarjad, Seyyed Mojtaba

    2015-04-24

    In this study, chopped and attrition milled high strength carbon, E-glass, and S-glass fibers have been used as the reinforcing agents in an aluminum alloy (Al1100) considered as the matrix. The Surface Metal Matrix Composites (SMMCs) then are produced by Friction Stir Processing (FSP). Tensile and micro-hardness examinations represent a magnificent improvement in the hardness, strength, ductility and toughness for all of the processed samples. Scanning Electron Micrographs reveal a proper distribution of the reinforcements in the matrix and a change in the fracture behavior of the FSPed specimens. The synergetic effects of reinforcing by fibers and Severe Plastic Deformation (SPD) lead to an extra ordinary improvement in the mechanical properties.

  16. Pipes of glassfiber reinforced plastics and prestressed concrete for hot-water transportation

    Schmeling, P.; Roseen, R.

    1980-06-01

    The report constitutes stage 2-3 of a project for the evaluation of pipes made from glass reinforced plastics and prestressed concrete. This stage was made possible through funds from the Swedish National Board for Energy Source Development and the participation of three industrial firms. Experimental pipes of large dimensions (O.D. 0.5 m) were tested at elevated temperatures and pressures. The glass reinforced plastic tubes showed in general an acceptable short term strength at 100-110 degree C. Further long term testing is needed in order to predict the life time; their manufacture requires a strictrly controlled process. The pipes made from prestressed concrete were tested at 95 and 110 degree C for more than a year with good results, and their resistence to thermal shocks was shown to be acceptable. Long term stress relaxation of the EPDM rubber for the joints was measured at 125 and 110 degree C. The best rubbers can be used for 3 years at 110 degree C and a compression of 35 percent, a longer life time is most probable but cannot be foreseen until results from continued testing have been collected. It was demonstrated that the relaxation rate is lowered in water with low oxygen contents. (author)

  17. [Tribological properties of carbon fiber-reinforced plastic. Experimental and clinical results].

    Früh, H J; Ascherl, R; Hipp, E

    1997-02-01

    Wear of the articulating components (especially PE-UHMW) of total hip endoprostheses is the most important technical factor limiting the functional lifetime. To minimize wear debris, ceramic heads, according to ISO 6474 (Al2O3), have been used, from 1969 paired with Al2O3 and since 1975 paired with PE-UHMW. Al2O3 balls articulating with cups made from CFRP have been in clinical use since 1988. Laboratory experiments and in-vivo testing showed minimized wear debris and mild biological response to wear products using CFRP (carbon fiber reinforced plastic) instead of PE-UHMW as the cup material. The articulating surfaces of retrieved ceramic heads (Al2O3-Biolox) and cementless CFRP cups (carbon fiber reinforced plastic, Caproman) were compared using sphericity measurement techniques, scanning electron microscopy (SEM) and roughness measurements (including advanced roughness parameters Rvk or Rpk according to ISO 4287). Altogether, the first results of the clinical study showed that the combination Al2O3-ball/CFRP-cup came up to the expected lower wear rates compared with the conventional combinations. The wear rates are comparable with the combination Al2O3/Al2O3 without the material-related problems of ceramic components in all ceramic combinations.

  18. Thermal energy harvesting for large-scale applications using MWCNT-grafted glass fibers and polycarbonate-MWCNT nanocomposites

    Tzounis, L., E-mail: ltzounis@physics.auth.gr [Leibniz-Institut für Polymerforschung Dresden e.V., IPF, Hohe Str. 6, D-01069 Dresden (Germany); Technische Universität Dresden, Helmholtzstraße 10, 01069 Dresden (Germany); Laboratory for Thin Films-Nanosystems and Nanometrolo (Greece); Liebscher, M.; Stamm, M. [Leibniz-Institut für Polymerforschung Dresden e.V., IPF, Hohe Str. 6, D-01069 Dresden, Germany and Technische Universität Dresden, Helmholtzstraße 10, 01069 Dresden (Germany); Mäder, E.; Pötschke, P. [Leibniz-Institut für Polymerforschung Dresden e.V., IPF, Hohe Str. 6, D-01069 Dresden (Germany); Logothetidis, S., E-mail: logot@auth.gr [Laboratory for Thin Films-Nanosystems and Nanometrology (LTFN), Physics Department, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)

    2015-02-17

    The thermoelectric properties of multi-wall carbon nanotube (MWCNT) -grafted glass fiber yarns (GF-CNT) and their epoxy model composites, as well as of polymer nanocomposites consisting of a polycarbonate (PC) matrix filled with differently functionalized MWCNTs have been examined. The GF-CNT hierarchical multi-scale structures were prepared by dip coating glass fiber yarns in a solution of carbonyl chloride modified MWCNTs; MWCNT-COCl (at a concentration of 0.5 mg/ml) under Ar atmosphere. The resulting GF-CNT exhibited high electrical conductivity (σ = 2.1×10{sup 3} S/m) due to the dense MWCNT deposited networks. The fiber surface morphology was investigated by scanning electron microscopy (SEM). The GF-CNT showed Seebeck coefficient (S); S = 16.8 μV/K, and power factor (P.F); P.F = 0.59 μW/mK−2. The high electrical conductivity of the GF-CNT is a key parameter for an optimum thermoelectric performance, since it can facilitate the flow of the thermally induced charge carriers upon being exposed to a temperature gradient. Polycarbonate/MWCNT nanocomposites were prepared by small-scale melt-mixing process using a microcompounder. Unfunctionalized, carboxyl (-COOH) and hydroxyl (-OH) modified MWCNTs were incorporated in PC at a constant amount of 2.5 wt.%, concentration above the electrical percolation threshold. The amount of MWCNTs was kept low to understand the fundamental aspects of their physical properties and their correlation to the composite morphology, as revealed by transmission electron microscopy (TEM). It was found that different functional groups can affect the thermoelectric performance and the conductivity of the nanocomposites. Namely, the highest Seebeck coefficient (S) was found for the composite containing carboxyl functionalized MWCNTs (11.3 μV/K), due to the highest oxygen content of MWCNTs proven by X-Ray Photoelectron spectroscopy (XPS). It is believed that MWCNT-grafted glass fibers as reinforcements in composite structural

  19. In vitro cytotoxicity of Manville Code 100 glass fibers: Effect of fiber length on human alveolar macrophages

    Jones William

    2006-03-01

    Full Text Available Abstract Background Synthetic vitreous fibers (SVFs are inorganic noncrystalline materials widely used in residential and industrial settings for insulation, filtration, and reinforcement purposes. SVFs conventionally include three major categories: fibrous glass, rock/slag/stone (mineral wool, and ceramic fibers. Previous in vitro studies from our laboratory demonstrated length-dependent cytotoxic effects of glass fibers on rat alveolar macrophages which were possibly associated with incomplete phagocytosis of fibers ≥ 17 μm in length. The purpose of this study was to examine the influence of fiber length on primary human alveolar macrophages, which are larger in diameter than rat macrophages, using length-classified Manville Code 100 glass fibers (8, 10, 16, and 20 μm. It was hypothesized that complete engulfment of fibers by human alveolar macrophages could decrease fiber cytotoxicity; i.e. shorter fibers that can be completely engulfed might not be as cytotoxic as longer fibers. Human alveolar macrophages, obtained by segmental bronchoalveolar lavage of healthy, non-smoking volunteers, were treated with three different concentrations (determined by fiber number of the sized fibers in vitro. Cytotoxicity was assessed by monitoring cytosolic lactate dehydrogenase release and loss of function as indicated by a decrease in zymosan-stimulated chemiluminescence. Results Microscopic analysis indicated that human alveolar macrophages completely engulfed glass fibers of the 20 μm length. All fiber length fractions tested exhibited equal cytotoxicity on a per fiber basis, i.e. increasing lactate dehydrogenase and decreasing chemiluminescence in the same concentration-dependent fashion. Conclusion The data suggest that due to the larger diameter of human alveolar macrophages, compared to rat alveolar macrophages, complete phagocytosis of longer fibers can occur with the human cells. Neither incomplete phagocytosis nor length-dependent toxicity was

  20. Thermal energy harvesting for large-scale applications using MWCNT-grafted glass fibers and polycarbonate-MWCNT nanocomposites

    Tzounis, L.; Liebscher, M.; Stamm, M.; Mäder, E.; Pötschke, P.; Logothetidis, S.

    2015-01-01

    The thermoelectric properties of multi-wall carbon nanotube (MWCNT) -grafted glass fiber yarns (GF-CNT) and their epoxy model composites, as well as of polymer nanocomposites consisting of a polycarbonate (PC) matrix filled with differently functionalized MWCNTs have been examined. The GF-CNT hierarchical multi-scale structures were prepared by dip coating glass fiber yarns in a solution of carbonyl chloride modified MWCNTs; MWCNT-COCl (at a concentration of 0.5 mg/ml) under Ar atmosphere. The resulting GF-CNT exhibited high electrical conductivity (σ = 2.1×10 3 S/m) due to the dense MWCNT deposited networks. The fiber surface morphology was investigated by scanning electron microscopy (SEM). The GF-CNT showed Seebeck coefficient (S); S = 16.8 μV/K, and power factor (P.F); P.F = 0.59 μW/mK−2. The high electrical conductivity of the GF-CNT is a key parameter for an optimum thermoelectric performance, since it can facilitate the flow of the thermally induced charge carriers upon being exposed to a temperature gradient. Polycarbonate/MWCNT nanocomposites were prepared by small-scale melt-mixing process using a microcompounder. Unfunctionalized, carboxyl (-COOH) and hydroxyl (-OH) modified MWCNTs were incorporated in PC at a constant amount of 2.5 wt.%, concentration above the electrical percolation threshold. The amount of MWCNTs was kept low to understand the fundamental aspects of their physical properties and their correlation to the composite morphology, as revealed by transmission electron microscopy (TEM). It was found that different functional groups can affect the thermoelectric performance and the conductivity of the nanocomposites. Namely, the highest Seebeck coefficient (S) was found for the composite containing carboxyl functionalized MWCNTs (11.3 μV/K), due to the highest oxygen content of MWCNTs proven by X-Ray Photoelectron spectroscopy (XPS). It is believed that MWCNT-grafted glass fibers as reinforcements in composite structural materials

  1. Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings

    Mulle, Matthieu; Wafai, Husam; Yudhanto, Arief; Lubineau, Gilles; Yaldiz, R.; Schijve, W.; Verghese, N.

    2015-01-01

    Hot-press molding of glass-fiber-reinforced polypropylene (GFPP) laminates was monitored using longitudinally and transversely embedded fiber Bragg gratings (FBGs) at different locations in unidirectional laminates. The optical sensors proved

  2. Parameters That Effect the Interfacial Stresses in Fibre Reinforced Plastic Laminates Strengthened Rc Beams

    Barış Sayın

    2010-01-01

    Full Text Available The use of externally bonded fiber-reinforced plastic (FRP laminates for strengthening of reinforced concrete beams has become an effective method. This method has been used because of the advantages of FRP materials such as their high strength-to-weight ratio, good corrosion resistance, and versatility in coping with different sectional shapes and corners. Many studies on this theme have been carried out since the early 1900s. In this study, interfacial stresses of reinforced concrete beams strengthened with FRP effect the parameters will be studied as experimental and numerical. Adhesives used in the beams applied to FRP's thickness, adhesive type and the state of the concrete surface, produced experimental samples are exposed to the bending effect will be studied as a comparative. Afterwards, by using the ANSYS® WB finite element program to model and analyze RC beams by externally bonding FRP will be carried out. Adhesive thickness, adhesive type, the concrete surface will be performed by entering the parameters for analysis of stress can be obtained as a result. Thus, the analytical expressions of stress and normal stress equations will establish should be modified. Finite element analysis and experimental results will be compared, compatibility investigated, the results and recommendations presented by the study be completed.

  3. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  4. MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behaviour.

    Alam, Javed; Alam, Manawwer; Raja, Mohan; Abduljaleel, Zainularifeen; Dass, Lawrence Arockiasamy

    2014-10-31

    A novel electroactive shape memory polymer nanocomposite of epoxidized linseed oil plasticized polylactic acid and multi-walled carbon nanotubes (MWCNTs) was prepared by a combination of solution blending, solvent cast technique, and hydraulic hot press moulding. In this study, polylactic acid (PLA) was first plasticized by epoxidized linseed oil (ELO) in order to overcome the major limitations of PLA, such as high brittleness, low toughness, and low tensile elongation. Then, MWCNTs were incorporated into the ELO plasticized PLA matrix at three different loadings (2, 3 and 5 wt. %), with the aim of making the resulting nanocomposites electrically conductive. The addition of ELO decreased glass transition temperature, and increased the elongation and thermal degradability of PLA, as shown in the results of differential scanning calorimetry (DSC), tensile test, and thermo gravimetric analysis (TGA). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to observe surface morphology, topography, and the dispersion of MWCNTs in the nanocomposite. Finally, the electroactive-shape memory effect (electroactive-SME) in the resulting nanocomposite was investigated by a fold-deploy "U"-shape bending test. As per the results, the addition of both ELO and MWCNTs to PLA matrix seemed to enhance its overall properties with a great deal of potential in improved shape memory. The 3 wt. % MWCNTs-reinforced nanocomposite system, which showed 95% shape recovery within 45 s at 40 DC voltage, is expected to be used as a preferential polymeric nanocomposite material in various actuators, sensors and deployable devices.

  5. MWCNTs-Reinforced Epoxidized Linseed Oil Plasticized Polylactic Acid Nanocomposite and Its Electroactive Shape Memory Behaviour

    Javed Alam

    2014-10-01

    Full Text Available A novel electroactive shape memory polymer nanocomposite of epoxidized linseed oil plasticized polylactic acid and multi-walled carbon nanotubes (MWCNTs was prepared by a combination of solution blending, solvent cast technique, and hydraulic hot press moulding. In this study, polylactic acid (PLA was first plasticized by epoxidized linseed oil (ELO in order to overcome the major limitations of PLA, such as high brittleness, low toughness, and low tensile elongation. Then, MWCNTs were incorporated into the ELO plasticized PLA matrix at three different loadings (2, 3 and 5 wt. %, with the aim of making the resulting nanocomposites electrically conductive. The addition of ELO decreased glass transition temperature, and increased the elongation and thermal degradability of PLA, as shown in the results of differential scanning calorimetry (DSC, tensile test, and thermo gravimetric analysis (TGA. Scanning electron microscopy (SEM and atomic force microscopy (AFM were used to observe surface morphology, topography, and the dispersion of MWCNTs in the nanocomposite. Finally, the electroactive-shape memory effect (electroactive-SME in the resulting nanocomposite was investigated by a fold-deploy “U”-shape bending test. As per the results, the addition of both ELO and MWCNTs to PLA matrix seemed to enhance its overall properties with a great deal of potential in improved shape memory. The 3 wt. % MWCNTs-reinforced nanocomposite system, which showed 95% shape recovery within 45 s at 40 DC voltage, is expected to be used as a preferential polymeric nanocomposite material in various actuators, sensors and deployable devices.

  6. A comparative study to check fracture strength of provisional fixed partial dentures made of autopolymerizing polymethylmethacrylate resin reinforced with different materials: An in vitro study

    Parikshit Gupt

    2017-01-01

    Conclusion: Unidirectional glass fibers showed the maximum strength, which was comparable to mean values of both stainless steel wire groups. Low cost and easy technique of using stainless steel wire make it the material of choice over the unidirectional glass fiber for reinforcement in nonesthetic areas where high strength is required.

  7. Fatigue life of fibre reinforced plastics at 295 K after thermal cycling between 295 K and 77 K

    Belisario, G.; Caproni, F.; Marchetti, E.

    Results of low cycle three-point end fatigue tests at 295 K are reported. These were obtained from fibre reinforced plastics (FRP) flat specimens made of epoxy matrix reinforced with glass rovings only or glass rovings and Kevlar cloth. It is shown that previous thermal cycles between 295 K and 77 K exert an influence on the fatigue life as well on the acoustic emission results.

  8. A Study on the Interlaminar Shear Strength of Carbon Fiber Reinforced Plastics Depending on the Lamination Methods

    Min Sang Lee; Hee Jae Shin; In Pyo Cha; Sun Ho Ko; Hyun Kyung Yoon; Hong Gun Kim; Lee Ku Kwac

    2015-01-01

    The prepreg process among the CFRP (Carbon Fiber Reinforced Plastic) forming methods is the short term of ‘Pre-impregnation’, which is widely used for aerospace composites that require a high quality property such as a fiber-reinforced woven fabric, in which an epoxy hardening resin is impregnated the reality. However, that this process requires continuous researches and developments for its commercialization because the delamination characteristically develops between th...

  9. Isothermal and hygrothermal agings of hybrid glass fiber/carbon fiber composite

    Barjasteh, Ehsan

    New applications of fiber-reinforced polymer composites (FRPCs) are arising in non-traditional sectors of industry, such as civil infrastructure, automotive, and power distribution. For example, composites are being used in place of steel to support high-voltage overhead conductors. In this application, conductive strands of aluminum are wrapped around a solid composite rod comprised of unidirectional carbon and glass fibers in an epoxy matrix, which is commercially called ACCC conductor. Composite-core conductors such as these are expected to eventually replace conventional steel-reinforced conductors because of the reduced sag at high temperatures, lower weight, higher ampacity, and reduced line losses. Despite the considerable advantages in mechanical performance, long-term durability of composite conductors is a major concern, as overhead conductors are expected to retain properties (with minimal maintenance) over a service life that spans multiple decades. These concerns stem from the uncertain effects of long-term environmental exposure, which includes temperature, moisture, radiation, and aggressive chemicals, all of which can be exacerbated by cyclic loads. In general, the mechanical and physical properties of polymer composites are adversely affected by such environmental factors. Consequently, the ability to forecast changes in material properties as a function of environmental exposure, particularly bulk mechanical properties, which are affected by the integrity of fiber-matrix interfaces, is required to design for extended service lives. Polymer composites are susceptible to oxidative degradation at high temperatures approaching but not quite reaching the glass transition temperature ( Tg). Although the fibers are stable at such temperatures, the matrix and especially the fiber-matrix interface can undergo degradation that affects the physical and mechanical properties of the structure over time. Therefore, as a first step, the thermal aging of an

  10. Consumer perception of risk associated with filters contaminated with glass fibers.

    Cummings, K M; Hastrup, J L; Swedrock, T; Hyland, A; Perla, J; Pauly, J L

    2000-09-01

    The filters in Eclipse, a new cigarette-like smoking article marketed by R. J. Reynolds Tobacco Company, are contaminated with glass fibers, fragments, and particles. Reported herein are the results of a study in which consumers were questioned about their opinions as to whether exposure to glass fibers in such a filter poses an added health risk beyond that from smoking and whether the manufacturer has an obligation to inform consumers about the glass contamination problem. The study queried 137 adults who were interviewed while waiting at a Division of Motor Vehicles office in Erie County, New York in 1997. All but one person expressed the view that the presence of glass fibers on the filters poses an added health risk beyond that associated with exposure to tobacco smoke alone. Nearly all expressed the position that the cigarette manufacturer has a duty to inform the public about the potential for glass exposure.

  11. A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface.

    Kevin N Gurney

    2015-01-01

    Full Text Available Operant learning requires that reinforcement signals interact with action representations at a suitable neural interface. Much evidence suggests that this occurs when phasic dopamine, acting as a reinforcement prediction error, gates plasticity at cortico-striatal synapses, and thereby changes the future likelihood of selecting the action(s coded by striatal neurons. But this hypothesis faces serious challenges. First, cortico-striatal plasticity is inexplicably complex, depending on spike timing, dopamine level, and dopamine receptor type. Second, there is a credit assignment problem-action selection signals occur long before the consequent dopamine reinforcement signal. Third, the two types of striatal output neuron have apparently opposite effects on action selection. Whether these factors rule out the interface hypothesis and how they interact to produce reinforcement learning is unknown. We present a computational framework that addresses these challenges. We first predict the expected activity changes over an operant task for both types of action-coding striatal neuron, and show they co-operate to promote action selection in learning and compete to promote action suppression in extinction. Separately, we derive a complete model of dopamine and spike-timing dependent cortico-striatal plasticity from in vitro data. We then show this model produces the predicted activity changes necessary for learning and extinction in an operant task, a remarkable convergence of a bottom-up data-driven plasticity model with the top-down behavioural requirements of learning theory. Moreover, we show the complex dependencies of cortico-striatal plasticity are not only sufficient but necessary for learning and extinction. Validating the model, we show it can account for behavioural data describing extinction, renewal, and reacquisition, and replicate in vitro experimental data on cortico-striatal plasticity. By bridging the levels between the single synapse and

  12. Influences of chemical aging on the surface morphology and crystallization behavior of basaltic glass fibers

    Lund, Majbritt Deichgræber; Yue, Yuanzheng

    2008-01-01

    The impact of aging in high humidity and water on the surface morphology and crystallization behavior of basaltic glass fibers has been studied using scanning electron microscopy, transmission electron microscopy, calorimetry and X-ray diffraction. The results show that interaction between...... the fibers and the surrounding media (high humidity or water at 70 C) leads to chemical changes strongly affecting the surface morphology. The crystallization peak temperature of the basaltic glass fibers are increased without changing the onset temperature, this may be caused by a chemical depletion...

  13. Durability of Starch Based Biodegradable Plastics Reinforced with Manila Hemp Fibers

    Shinji Ochi

    2011-02-01

    Full Text Available The biodegradability of Manila hemp fiber reinforced biodegradable plastics was studied for 240 days in a natural soil and 30 days in a compost soil. After biodegradability tests, weights were measured and both tensile strength tests and microscopic observation were performed to evaluate the biodegradation behavior of the composites. The results indicate that the tensile strength of the composites displays a sharp decrease for up to five days, followed by a gradual decrease. The weight loss and the reduction in tensile strength of biodegradable composite materials in the compost soil are both significantly greater than those buried in natural soil. The biodegradability of these composites is enhanced along the lower portion because this area is more easily attacked by microorganisms.

  14. Durability of Starch Based Biodegradable Plastics Reinforced with Manila Hemp Fibers.

    Ochi, Shinji

    2011-02-25

    The biodegradability of Manila hemp fiber reinforced biodegradable plastics was studied for 240 days in a natural soil and 30 days in a compost soil. After biodegradability tests, weights were measured and both tensile strength tests and microscopic observation were performed to evaluate the biodegradation behavior of the composites. The results indicate that the tensile strength of the composites displays a sharp decrease for up to five days, followed by a gradual decrease. The weight loss and the reduction in tensile strength of biodegradable composite materials in the compost soil are both significantly greater than those buried in natural soil. The biodegradability of these composites is enhanced along the lower portion because this area is more easily attacked by microorganisms.

  15. Laser Cutting of Carbon Fiber Reinforced Plastics - Investigation of Hazardous Process Emissions

    Walter, Juergen; Hustedt, Michael; Staehr, Richard; Kaierle, Stefan; Jaeschke, Peter; Suttmann, Oliver; Overmeyer, Ludger

    Carbon fiber reinforced plastics (CFRP) show high potential for use in lightweight applications not only in aircraft design, but also in the automotive or wind energy industry. However, processing of CFRP is complex and expensive due to their outstanding mechanical properties. One possibility to manufacture CFRP structures flexibly at acceptable process speeds is high-power laser cutting. Though showing various advantages such as contactless energy transfer, this process is connected to potentially hazardous emission of respirable dust and organic gases. Moreover, the emitted particles may be fibrous, thus requiring particular attention. Here, a systematic analysis of the hazardous substances emitted during laser cutting of CFRP with thermoplastic and thermosetting matrix is presented. The objective is to evaluate emission rates for the total particulate and gaseous fractions as well as for different organic key components. Furthermore, the influence of the laser process conditions shall be assessed, and first proposals to handle the emissions adequately are made.

  16. Numerical modelling in friction lap joining of aluminium alloy and carbon-fiber-reinforced-plastic sheets

    Das, A.; Bang, H. S.; Bang, H. S.

    2018-05-01

    Multi-material combinations of aluminium alloy and carbon-fiber-reinforced-plastics (CFRP) have gained attention in automotive and aerospace industries to enhance fuel efficiency and strength-to-weight ratio of components. Various limitations of laser beam welding, adhesive bonding and mechanical fasteners make these processes inefficient to join metal and CFRP sheets. Friction lap joining is an alternative choice for the same. Comprehensive studies in friction lap joining of aluminium to CFRP sheets are essential and scare in the literature. The present work reports a combined theoretical and experimental study in joining of AA5052 and CFRP sheets using friction lap joining process. A three-dimensional finite element based heat transfer model is developed to compute the temperature fields and thermal cycles. The computed results are validated extensively with the corresponding experimentally measured results.

  17. Vibration technique for non-destructive testing of carbon fiber reinforced plastic structures

    Miller, W.G.

    1982-01-01

    For nondestructive testing of structures of KFK (carbon fiber reinforced plastics) Adams and a group at the English University of Bristol, Department of Mechanical Engineering have developed a vibrational testing method. It is based on the fact that the decreasing self-oscillations of a structure can be measured in connection with a dynamical analysis at only one particular location of that structure. This way a damage can be localized and be quantized rawly. The mathematical model is simple and for every tested structure only one analysis is needed. Many kinds of damages in structures can be determined and reproduced especially in structures that represent typical cases of application of KFK in air and aerospace industry. (orig.) [de

  18. Investigation of Carbon Fiber Reinforced Plastics Machining Using 355 nm Picosecond Pulsed Laser

    Hu, Jun; Zhu, Dezhi

    2018-06-01

    Carbon fiber reinforced plastics (CFRP) has been widely used in the aircraft industry and automobile industry owing to its superior properties. In this paper, a Nd:YVO4 picosecond pulsed system emitting at 355 nm has been used for CFRP machining experiments to determine optimum milling conditions. Milling parameters including laser power, milling speed and hatch distance were optimized by using box-behnken design of response surface methodology (RSM). Material removal rate was influenced by laser beam overlap ratio which affects mechanical denudation. The results in heat affected zones (HAZ) and milling quality were discussed through the machined surface observed with scanning electron microscope. A re-focusing technique based on the experiment with different focal planes was proposed and milling mechanism was also analyzed in details.

  19. Use of pultruded reinforced plastics in energy generation and energy related applications

    Anderson, R.

    Applications of pultrusion-formed fiber-reinforced plastics (FRP) in the wind, oil, and coal derived energy industries are reviewed. FRP is noted to be a viable alternative to wood, aluminum, and steel for reasons of availability, price, and weight. Attention is given to the development of FRP wind turbine blades for the DOE 8 kW low cost, high reliability wind turbine program. The blades feature a NACA 23112 profile with a 15 in. chord on the system which was tested at Rocky Flats, CO. Fabricating the blades involved a plus and minus 45 deg roving orientation, a heavy fiber-glass nose piece to assure blade strength, and a separately manufactured foam core. Additional uses for FRP products have been found in the structural members of coal stack scrubbers using a vinyl ester resin in a fire retardant formulation, and as low cost, light weight sucker rods for deep well oil drilling.

  20. Oxygen-assisted multipass cutting of carbon fiber reinforced plastics with ultra-short laser pulses

    Kononenko, T. V.; Komlenok, M. S.; Konov, V. I. [Natural Sciences Center, General Physics Institute, Vavilov str. 38, 119991 Moscow (Russian Federation); National Research Nuclear University, “MEPhI,” Kashirskoye shosse 31, 115409 Moscow (Russian Federation); Freitag, C. [Universität Stuttgart, Institut für Strahlwerkzeuge (IFSW), Pfaffenwaldring 43, 70569 Stuttgart (Germany); GSaME Graduate School of Excellence Advanced Manufacturing Engineering, Nobelstrasse 12, 70569 Stuttgart (Germany); Onuseit, V.; Weber, R.; Graf, T. [Universität Stuttgart, Institut für Strahlwerkzeuge (IFSW), Pfaffenwaldring 43, 70569 Stuttgart (Germany)

    2014-03-14

    Deep multipass cutting of bidirectional and unidirectional carbon fiber reinforced plastics (CFRP) with picosecond laser pulses was investigated in different static atmospheres as well as with the assistance of an oxygen or nitrogen gas flow. The ablation rate was determined as a function of the kerf depth and the resulting heat affected zone was measured. An assisting oxygen gas flow is found to significantly increase the cutting productivity, but only in deep kerfs where the diminished evaporative ablation due to the reduced laser fluence reaching the bottom of the kerf does not dominate the contribution of reactive etching anymore. Oxygen-supported cutting was shown to also solve the problem that occurs when cutting the CFRP parallel to the fiber orientation where a strong deformation and widening of the kerf, which temporarily slows down the process speed, is revealed to be typical for processing in standard air atmospheres.

  1. Oxygen-assisted multipass cutting of carbon fiber reinforced plastics with ultra-short laser pulses

    Kononenko, T. V.; Komlenok, M. S.; Konov, V. I.; Freitag, C.; Onuseit, V.; Weber, R.; Graf, T.

    2014-01-01

    Deep multipass cutting of bidirectional and unidirectional carbon fiber reinforced plastics (CFRP) with picosecond laser pulses was investigated in different static atmospheres as well as with the assistance of an oxygen or nitrogen gas flow. The ablation rate was determined as a function of the kerf depth and the resulting heat affected zone was measured. An assisting oxygen gas flow is found to significantly increase the cutting productivity, but only in deep kerfs where the diminished evaporative ablation due to the reduced laser fluence reaching the bottom of the kerf does not dominate the contribution of reactive etching anymore. Oxygen-supported cutting was shown to also solve the problem that occurs when cutting the CFRP parallel to the fiber orientation where a strong deformation and widening of the kerf, which temporarily slows down the process speed, is revealed to be typical for processing in standard air atmospheres

  2. Investigation of Carbon Fiber Reinforced Plastics Machining Using 355 nm Picosecond Pulsed Laser

    Hu, Jun; Zhu, Dezhi

    2017-08-01

    Carbon fiber reinforced plastics (CFRP) has been widely used in the aircraft industry and automobile industry owing to its superior properties. In this paper, a Nd:YVO4 picosecond pulsed system emitting at 355 nm has been used for CFRP machining experiments to determine optimum milling conditions. Milling parameters including laser power, milling speed and hatch distance were optimized by using box-behnken design of response surface methodology (RSM). Material removal rate was influenced by laser beam overlap ratio which affects mechanical denudation. The results in heat affected zones (HAZ) and milling quality were discussed through the machined surface observed with scanning electron microscope. A re-focusing technique based on the experiment with different focal planes was proposed and milling mechanism was also analyzed in details.

  3. [Experimental study on carbon fiber reinforced plastic plate--analysis of stabilizing force required for plate].

    Iizuka, H

    1990-11-01

    Plates currently in use for the management of bone fracture made of metal present with various problems. We manufactured carbon fiber reinforced plastic (CFRP) plates from Pyrofil T/530 puriplegs overlaid at cross angles of +/- 10 degrees, +/- 20 degrees, and +/- 30 degrees for trial and carried out an experimental study on rabbit tibiofibular bones using 316L stainless steel plates of comparable shape and size as controls. The results indicate the influence of CFRP plate upon cortical bone was milder than that of stainless steel plate, with an adequate stabilizing force for the repair of fractured rabbit tibiofibular bones. CFRP has the advantages over metals of being virtually free from corrosion and fatigue, reasonably radiolucent and able to meet a wide range of mechanical requirements. This would make CFRP plate quite promising as a new devices of treating fracture of bones.

  4. A Study on Nondestructive Technique Using Laser Technique for Evaluation of Carbon fiber Reinforced Plastic

    Choi, Sang Woo; Lee, Joon Hyun; Seo, Kyeong Cheol; Byun, Joon Hyung

    2005-01-01

    Fiber reinforced plastic material should be inspected in fabrication process in order to enhance quality by prevent defects such as delamination and void. Generally, ultrasonic technique is widely used to evaluate FRP. In conventional ultrasonic techniques, transducer should be contacted on FRP. However, conventional contacting method could not be applied in fabrication process and novel non-contact evaluating technique was required. Laser-based ultrasonic technique was tried to evaluate CFRP plate. Laser-based ultrasonic waves propagated on CFRP were received with various transducers such as accelerometer and AE sensor in order to evaluate the properties of waves due to the variation of frequency. Velocities of laser-based ultrasonic waves were evaluated for various fiber orientation. In addition, laser interferometry was used to receive ultrasonic wave in CFRP and frequency was analysed

  5. Visualization of flowing current in braided carbon fiber reinforced plastics using SQUID gradiometer for nondestructive evaluation

    Hatsukade, Y; Yoshida, K; Kage, T; Tanaka, S; Takai, Y; Aly-Hassan, M S; Hamada, H; Nakai, A

    2013-01-01

    In this paper, visualization of flowing current in various braided carbon fiber reinforced plastics (CFRPs) was demonstrated using high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) gradiometer, in order to study electrical properties and integrity of the braided CFRP samples. Step-by-step tensile loading was also applied to the samples, in order to study their mechanical properties and destructive mechanism. Experimental results indicated that the addition of carbon nano fibers and middle-end carbon fiber bundles attributed to modify not only the mechanical properties, but also the electrical properties of the samples. Combining the results by the both methods, a scenario of the destructive mechanism of one sample was estimated.

  6. Mid-infrared pulsed laser ultrasonic testing for carbon fiber reinforced plastics.

    Kusano, Masahiro; Hatano, Hideki; Watanabe, Makoto; Takekawa, Shunji; Yamawaki, Hisashi; Oguchi, Kanae; Enoki, Manabu

    2018-03-01

    Laser ultrasonic testing (LUT) can realize contactless and instantaneous non-destructive testing, but its signal-to-noise ratio must be improved in order to measure carbon fiber reinforced plastics (CFRPs). We have developed a mid-infrared (mid-IR) laser source optimal for generating ultrasonic waves in CFRPs by using a wavelength conversion device based on an optical parametric oscillator. This paper reports a comparison of the ultrasonic generation behavior between the mid-IR laser and the Nd:YAG laser. The mid-IR laser generated a significantly larger ultrasonic amplitude in CFRP laminates than a conventional Nd:YAG laser. In addition, our study revealed that the surface epoxy matrix of CFRPs plays an important role in laser ultrasonic generation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Cutting and drilling of carbon fiber reinforced plastics (CFRP) by 70W short pulse nanosecond laser

    Jaeschke, Peter; Stolberg, Klaus; Bastick, Stefan; Ziolkowski, Ewa; Roehner, Markus; Suttmann, Oliver; Overmeyer, Ludger

    2014-02-01

    Continuous carbon fibre reinforced plastics (CFRP) are recognized as having a significant lightweight construction potential for a wide variety of industrial applications. However, a today`s barrier for a comprehensive dissemination of CFRP structures is the lack of economic, quick and reliable manufacture processes, e.g. the cutting and drilling steps. In this paper, the capability of using pulsed disk lasers in CFRP machining is discussed. In CFRP processing with NIR lasers, carbon fibers show excellent optical absorption and heat dissipation, contrary to the plastics matrix. Therefore heat dissipation away from the laser focus into the material is driven by heat conduction of the fibres. The matrix is heated indirectly by heat transfer from the fibres. To cut CFRP, it is required to reach the melting temperature for thermoplastic matrix materials or the disintegration temperature for thermoset systems as well as the sublimation temperature of the reinforcing fibers simultaneously. One solution for this problem is to use short pulse nanosecond lasers. We have investigated CFRP cutting and drilling with such a laser (max. 7 mJ @ 10 kHz, 30 ns). This laser offers the opportunity of wide range parameter tuning for systematic process optimization. By applying drilling and cutting operations based on galvanometer scanning techniques in multi-cycle mode, excellent surface and edge characteristics in terms of delamination-free and intact fiber-matrix interface were achieved. The results indicate that nanosecond disk laser machining could consequently be a suitable tool for the automotive and aircraft industry for cutting and drilling steps.

  8. Cancer mortality in an international cohort of reinforced plastics workers exposed to styrene: a reanalysis.

    Loomis, Dana; Guha, Neela; Kogevinas, Manolis; Fontana, Vincenzo; Gennaro, Valerio; Kolstad, Henrik A; McElvenny, Damien Martin; Sallmén, Markku; Saracci, Rodolfo

    2018-04-17

    To investigate the carcinogenicity of styrene by reanalysing data from a previous international cohort study of workers in the reinforced plastics industry. Mortality from cancers of prior interest was analysed with more detailed consideration of exposure-response relations and an updated classification of leukaemias and lymphomas in data from a previous international cohort study of 37 021 reinforced plastics workers exposed to airborne styrene. Increased mortality from non-Hodgkin's lymphoma (NHL) was associated with the mean level of exposure to styrene in air (relative risk (RR) 2.31, 95% CI 1.29 to 4.12 per 100 ppm), but not with cumulative styrene exposure. Similar associations with mean exposure were observed for the oesophagus (RR 2.44, 95% CI 1.11 to 5.36 per 100 ppm) and pancreas (RR 1.89, 95% CI 1.17 to 3.09). Oesophageal cancer mortality was also associated with cumulative styrene exposure lagged 20 years (RR 1.16, 95% CI 1.03 to 1.31). No other cancer, including lung cancer, was associated with any indicator of styrene exposure. This reanalysis does not substantially change the conclusions of the original study with respect to NHL or lung cancer but new evidence concerning cancers of the oesophagus and pancreas merits further investigation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Cardanol-based thermoset plastic reinforced by sponge gourd fibers (Luffa cylindrica

    André Leandro da Silva

    2016-02-01

    Full Text Available Abstract A growing global trend for maximum use of natural resources through new processes and products has enhanced studies and exploration of renewable natural materials. In this study, cardanol, a component of the cashew nut shell liquid (CNSL, was used as a building block for the development of a thermosetting matrix, which was reinforced by raw and modified sponge gourd fibers (Luffa cylindrica. DSC and TG results showed that among biocomposites, the one reinforced by sponge gourd fibers treated with NaOH 10 wt% (BF10 had the highest thermal stability, besides the best performance in the Tensile testing, showing good incorporation, dispersion, and adhesion to polymer matrix, observed by SEM. After 80 days of simulated soil experiments, it has been discovered that the presence of treated fiber allowed better biodegradability behavior to biocomposites. The biobased thermoset plastic and biocomposites showed a good potential to several applications, such as manufacturing of articles for furniture and automotive industries, especially BF10.

  10. Study of the performances of acoustic emission testing for glass fibre reinforced plastic pipes containing defects

    Villard, D.; Vidal, M.C.

    1995-08-01

    Glass fibre reinforced plastic pipes are more and more often used, in nuclear power plants, for building or replacement of water pipings classified 'nuclear safety'. Tests have been performed to evaluate the performances of acoustic emission testing for in service inspection of these components. The tests were focused on glass fibre reinforced polyester and vinyl-ester pipes, in as received conditions or containing impacts, and intentionally introduced defects. They have been carried out by CETIM, following the ASTM Standard E 1118 (code CARP), to a maximum pressure lever of 25 Bar The results show that the CARP procedure can be used for detection of defects and evaluation of their noxiousness towards internal pressure: most of the tubes containing low energy impacts could not be distinguished from tubes without defect; on the other hand the important noxiousness of lacks of impregnation of roving layer appeared clearly. Complementary tests have been performed on some tubes at a more important pressure lever, for which the damage of the tubes in enough to deteriorate there elastic properties. The results showed that CARP procedure give valuable informations on damage level. It would be interesting to evaluate acoustic emission on tubes containing realistic in-service degradations. (author). 11 refs., 15 figs., 6 tabs., 2 appends

  11. Selective Method for the Determination of Manganese in End-fitting of Spoolable Reinforced Plastic Line Pipe for Petroleum Industries

    Shao, Xiaodong; Zhang, Dongna; Li, Houbu; Cai, Xuehua

    2017-10-01

    The fact that spoolable reinforced plastic line pipe is more flexible and spoolable than steel, and is also much lighter, means that it can becarried and deployedfrom smaller vessels and managed more easily. It was well known that manganese is an important element in end-fitting of spoolable reinforced plastic line pipe. In this paper, a simple spectrophotometric method was described for the determination of manganese in end-fitting of spoolable reinforced plastic line pipe. The method was based on the oxidation-reduction reaction between ammonium persulfate and manganese(II) producing manganese(VII) in the presence of silver nitrate as a catalyst. The characteristic wavelength of maximum absorption of manganese(VII) was obtained locating at 530 nm. Under the optimum reaction conditions the absorption value was proportional to the concentration of manganese in the range of 0.50%˜1.80% (R2 = 0.9997), and the relative standard deviation was less than 3.0% (n=5). The proposed method was applied successfully to determine manganese in end-fitting of spoolable reinforced plastic line pipe samples.

  12. A novel computer-aided method to fabricate a custom one-piece glass fiber dowel-and-core based on digitized impression and crown preparation data.

    Chen, Zhiyu; Li, Ya; Deng, Xuliang; Wang, Xinzhi

    2014-06-01

    Fiber-reinforced composite dowels have been widely used for their superior biomechanical properties; however, their preformed shape cannot fit irregularly shaped root canals. This study aimed to describe a novel computer-aided method to create a custom-made one-piece dowel-and-core based on the digitization of impressions and clinical standard crown preparations. A standard maxillary die stone model containing three prepared teeth each (maxillary lateral incisor, canine, premolar) requiring dowel restorations was made. It was then mounted on an average value articulator with the mandibular stone model to simulate natural occlusion. Impressions for each tooth were obtained using vinylpolysiloxane with a sectional dual-arch tray and digitized with an optical scanner. The dowel-and-core virtual model was created by slicing 3D dowel data from impression digitization with core data selected from a standard crown preparation database of 107 records collected from clinics and digitized. The position of the chosen digital core was manually regulated to coordinate with the adjacent teeth to fulfill the crown restorative requirements. Based on virtual models, one-piece custom dowel-and-cores for three experimental teeth were milled from a glass fiber block with computer-aided manufacturing techniques. Furthermore, two patients were treated to evaluate the practicality of this new method. The one-piece glass fiber dowel-and-core made for experimental teeth fulfilled the clinical requirements for dowel restorations. Moreover, two patients were treated to validate the technique. This novel computer-aided method to create a custom one-piece glass fiber dowel-and-core proved to be practical and efficient. © 2013 by the American College of Prosthodontists.

  13. Effects of the cooling rate on the shear behavior of continuous glass fiber/impact polypropylene composites (GF-IPP)

    Wafai, Husam

    2016-09-20

    Fiber-reinforced composites with improved dissipation of energy during impact loading have recently been developed based on a polypropylene copolymer commonly called impact polypropylene (IPP). Composites made of IPP reinforced with glass fibers (GF) are particularly attractive to the automotive industry due to their low cost and good impact resistance. In such composites, the cooling rate varies depending on processing techniques and manufacturing choices. Here, we study the effects of the cooling rate of GF-IPP composites on shear behavior, which is critical in impact applications, using [±45]s monotonic and cyclic (load/unload) tensile specimens. The specimens were manufactured under a wide range of cooling rates (3 °C/min, 22 °C/min, 500–1000 °C/min). Mainly dominated by the properties of the matrix, the global shear behavior of GF-IPP composites differed considerably with respect to the cooling rate. However, the performance of the fiber-matrix interface (chemically modified) appeared to be unaffected by the range of cooling rates used in this study. We found that the cooling rate has a minor effect on the rate of damage accumulation, while it strongly modifies the shear-activated rate-dependant viscoelastic behavior. © 2016 Elsevier Ltd

  14. Design of Electrically Conductive Structural Composites by Modulating Aligned CVD-Grown Carbon Nanotube Length on Glass Fibers.

    He, Delong; Fan, Benhui; Zhao, Hang; Lu, Xiaoxin; Yang, Minhao; Liu, Yu; Bai, Jinbo

    2017-01-25

    Function-integration in glass fiber (GF) reinforced polymer composites is highly desired for developing lightweight structures and devices with improved performance and structural health monitoring. In this study, homogeneously aligned carbon nanotube (CNT) shell was in situ grafted on GF by chemical vapor deposition (CVD). It was demonstrated that the CNT shell thickness and weight fraction can be modulated by controlling the CVD conditions. The obtained hierarchical CNTs-GF/epoxy composites show highly improved electrical conductivity and thermo-mechanical and flexural properties. The composite through-plane and in-plane electrical conductivities increase from a quasi-isolator value to ∼3.5 and 100 S/m, respectively, when the weight fraction of CNTs grafted on GF fabric varies from 0% to 7%, respectively. Meanwhile, the composite storage modulus and flexural modulus and strength improve as high as 12%, 21%, and 26%, respectively, with 100% retention of the glass transition temperature. The reinforcing mechanisms are investigated by analyzing the composite microstructure and the interfacial adhesion and wetting properties of CNTs-GF hybrids. Moreover, the specific damage-related resistance variation characteristics could be employed to in situ monitor the structural health state of the composites. The outstanding electrical and structural properties of the CNTs-GF composites were due to the specific interfacial and interphase structures created by homogeneously grafting aligned CNTs on each GF of the fabric.

  15. Development study of concrete reinforcement made of aramid fiber-reinforced plastic rods with high radiation resistance. 1. Epoxy resin compounds with a handling at room temperature impregnation

    Udagawa, Akira; Seguchi, Tadao; Moriya, Toshio; Matsubara, Sumiyuki; Hongou, Yoshihiko

    1999-03-01

    Aramid fiber-reinforced plastic (ArFRP) rods were developed in order to avoid from conduction current and/or magnetization of the metallic reinforcement using concrete constructions. For the polymer matrix, new epoxy resin compounds consist of tetraglycidyl diaminodiphenylmethane (30%), diglycidyl ether of bisphenol-A (60%), styrene oxide (10%) and aromatic diamine as a hardner were found to be the best formulation, and which were easily impregnated to the aramid fiber braiding yarn at room temperature. The ArFRP rods has a high radiation resistance, and the tensile strength was maintained to 98% (1.45 GPa) after irradiation dose of 100 MGy (absorbed energy MJ/kg), which is available for the reinforcement of concrete construction for the house of fusion reactor with super conducting magnets. (author)

  16. Evidence for and implications of self-background of radon dosimeters with glass-fiber filters

    Put, L.W.; Lembrechts, J.; Graaf, E.R. van der; Stoop, P.

    2000-01-01

    The first national radon survey in the Netherlands was conducted in 1984 with passive radon dosimeters that contain glass-fiber diffusion filters. During the last few years, measurements of outdoor-radon concentrations and information in the literature suggested that these dosimeters may give falsely elevated readings. A systematic contribution would be present due to alpha particles from natural radionuclides in the glass-fiber filter producing tracks on the track-etch foil. In the framework of the quality assurance of their laboratories, the origin of this offset was systematically assessed by means of measurements of alpha and gamma radiation from the glass-fiber filters and by intercomparisons between different types of detectors at low radon concentrations. It was found that alpha particles from the decay of 214 Po in the glass-fiber filter are the main cause of the extra tracks (only 12% originates from decay of 212 Po), leading, for this type of filter, to an offset in concentration of approximately 8 Bq m -3 . The implications of this offset are discussed

  17. Evidence for and implications of self-background of radon dosimeters with glass-fiber filters

    Put, L.W.; Lembrechts, J.; van der Graaf, E.R.; Stoop, P.

    The first national radon survey in the Netherlands was conducted in 1984 with passive radon dosimeters that contain glass-fiber diffusion filters. During the last few years, measurements of outdoor-radon concentrations and information in the literature suggested to us that these dosimeters may give

  18. Structural Laminate Aluminum-Glass-Fiber Materials 1441-Sial

    Shestov, V. V.; Antipov, V. V.; Senatorova, O. G.; Sidel'nikov, V. V.

    2014-01-01

    The structure, composition and set of properties of specimens and components, and some parameters of the process of production of a promising FML class of metallic polymers based on sheets of high-modulus ( E 79 GPa) alloy 1441 with reduced density ( d 2.6 g/cm3) and an optimized glued prepreg reinforced with fibers of high-strength high-modulus VMPglass are described. Results of fire and fatigue tests of a promising 1441-SIAL structural laminate are presented.

  19. Numerical Analysis of Carbon Fiber Reinforced Plastic (CFRP Shear Walls and Steel Strips under Cyclic Loads Using Finite Element Method

    N. Askarizadeh

    2017-12-01

    Full Text Available Reinforced concrete shear walls are the main elements of resistance against lateral loads in reinforced concrete structures. These walls should not only provide sufficient resistance but also provide sufficient ductility in order to avoid brittle fracture, particularly under strong seismic loads. However, many reinforced concrete shear walls need to be stabilized and reinforced due to various reasons such as changes in requirements of seismic regulations, weaknesses in design and execution, passage of time, damaging environmental factors, patch of rebar in plastic hinges and in some cases failures and weaknesses caused by previous earthquakes or explosion loads. Recently, Fiber Reinforced Polymer (FRP components have been extensively and successfully used in seismic improvement. This study reinforces FRP reinforced concrete shear walls and steel strips. CFRP and steel strips are evaluated by different yield and ultimate strength. Numerical and experimental studies are done on walls with scale 1/2. These walls are exposed to cyclic loading. Hysteresis curves of force, drift and strain of FRP strips are reviewed in order to compare results of numerical work and laboratory results. Both numerical and laboratory results show that CFRP and steel strips increase resistance, capacity and ductility of the structure.

  20. Development of glass-fiber high-efficiency particulate air filters of high structural strength on the basis of the establishment of failure mechanisms

    Ruedinger, V.; Ricketts, C.I.; Wilhelm, J.G.; Alken, W.

    1987-01-01

    Practical experience from routine operation in nuclear installations as well as extensive bench and laboratory testing proved the structural limits of HEPA filters to be very low thus demonstrating the need for improvement of their structural strength. Detailed analysis of the courses and modes of filter failure under the challenge of dry air at high velocities and ambient temperature, together with additional measurements, allowed the establishment of the dominating mechanisms of filter failure. Based on this information, the following three options for effective and economical improvements in filter structural limits exist: (1) an increase in the tensile strength of the filter medium; (2) an increase in the stability of the pack to prevent the swelling of individual pleats; and (3) an increase in the area moment of inertia of the separators and a decrease in the sharpness of their edges. By using a reinforced glass fiber filter medium, the structural strength of standard size HEPA filters was increased to 31 kPa with dry air and beyond 10 kPa with air at high humidity. Prototype filters built with standard glass-fiber media and separators with inclined corrugations exhibited failure pressures of approximately 50 kPa under high velocity airflows. The combination of both types of improvements, together with other measures, will soon lead to even higher HEPA-filter structural strength

  1. The effect of surface modification of glass fiber on the performance of poly(lactic acid) composites: Graphene oxide vs. silane coupling agents

    Jing, Mengfan; Che, Junjin; Xu, Shuman; Liu, Zhenwei; Fu, Qiang

    2018-03-01

    In this work, a comparison study was carried out to investigate the efficacy of glass fiber (GF) in reinforcing poly(lactic acid) (PLA) by using traditional silane coupling agents (GF-S) and novel graphene oxide (GF-GO) as surface modifiers. The crystallization behavior of the PLA matrix was investigated by differential scanning calorimetry. The mechanical performances and the thermomechanical properties of the composites were evaluated by uniaxial tensile testing and dynamic mechanical analysis, respectively. For neat GF without any treatment, the poor interfacial adhesion and the sharp shortening of the GF length result in the relatively poor mechanical performances of PLA/GF composites. However, the incorporation of GF-S significantly improves the mechanical strength and keeps relatively good toughness of the composites, while GF-GO exhibits excellent nucleation ability for PLA and could moderately increase the modulus of the composites. The thermomechanical properties of the composites are improved markedly resulting from the crystallinity increase. The different surface modification of glass fiber influences the crystallinity of matrix, the interfacial interaction and the length of fiber, which altogether affect the mechanical performances of the prepared PLA/GF composites.

  2. Replacement of glass particles by multidirectional short glass fibers in experimental composites: Effects on degree of conversion, mechanical properties and polymerization shrinkage.

    Bocalon, Anne C E; Mita, Daniela; Narumyia, Isabela; Shouha, Paul; Xavier, Tathy A; Braga, Roberto Ruggiero

    2016-09-01

    To test the null hypothesis that the replacement of a small fraction of glass particles with random short glass fibers does not affect degree of conversion (DC), flexural strength (FS), fracture toughness (FT) and post-gel polymerization shrinkage (PS) of experimental composites. Four experimental photocurable composites containing 1 BisGMA:1 TEGDMA (by weight) and 60vol% of fillers were prepared. The reinforcing phase was constituted by barium glass particles (2μm) and 0%, 2.5%, 5.0% or 7.5% of silanated glass fibers (1.4mm in length, 7-13μm in diameter). DC (n=4) was obtained using near-FTIR. FS (n=10) was calculated via biaxial flexural test and FT (n=10) used the "single edge notched beam" method. PS at 5min (n=8) was determined using the strain gage method. Data were analyzed by ANOVA/Tukey test (DC, FS, PS) or Kruskal-Wallis/Dunn's test (FT, alpha: 5% for both tests). DC was similar among groups (p>0.05). Only the composite containing 5.0% of fibers presented lower FS than the control (pglass fibers significantly increased fracture toughness and reduced post-gel shrinkage of experimental composites. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Strategies to improve the mechanical properties of starch-based materials: plasticization and natural fibers reinforcement

    A. Lopez-Gil

    2014-01-01

    Full Text Available Biodegradable polymers are starting to be introduced as raw materials in the food-packaging market. Nevertheless, their price is very high. Starch, a fully biodegradable and bioderived polymer is a very interesting alternative due to its very low price. However, the use of starch as the polymer matrix for the production of rigid food packaging, such as trays, is limited due to its poor mechanical properties, high hidrophilicity and high density. This work presents two strategies to overcome the poor mechanical properties of starch. First, the plasticization of starch with several amounts of glycerol to produce thermoplastic starch (TPS and second, the production of biocomposites by reinforcing TPS with promising fibers, such as barley straw and grape waste. The mechanical properties obtained are compared with the values predicted by models used in the field of composites; law of mixtures, Kerner-Nielsen and Halpin-Tsai. To evaluate if the materials developed are suitable for the production of food-packaging trays, the TPS-based materials with better mechanical properties were compared with commercial grades of oil-based polymers, polypropylene (PP and polyethylene-terphthalate (PET, and a biodegradable polymer, polylactic acid (PLA.

  4. Standard practice for examination of fiberglass reinforced plastic fan blades using acoustic emission

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice provides guidelines for acoustic emission (AE) examinations of fiberglass reinforced plastic (FRP) fan blades of the type used in industrial cooling towers and heat exchangers. 1.2 This practice uses simulated service loading to determine structural integrity. 1.3 This practice will detect sources of acoustic emission in areas of sensor coverage that are stressed during the course of the examination. 1.4 This practice applies to examinations of new and in-service fan blades. 1.5 This practice is limited to fan blades of FRP construction, with length (hub centerline to tip) of less than 3 m [10 ft], and with fiberglass content greater than 15 % by weight. 1.6 AE measurements are used to detect emission sources. Other nondestructive examination (NDE) methods may be used to evaluate the significance of AE sources. Procedures for other NDE methods are beyond the scope of this practice. 1.7 Units—The values stated in either SI units or inch-pound units are to be regarded separately as sta...

  5. Heat accumulation between scans during multi-pass cutting of carbon fiber reinforced plastics

    Kononenko, T. V.; Freitag, C.; Komlenok, M. S.; Weber, R.; Graf, T.; Konov, V. I.

    2018-02-01

    Matrix evaporation caused by heat accumulation between scans (HAS) was studied in the case of multi-pass scanning of a laser beam over the surface of carbon fiber reinforced plastic (CFRP). The experiments were performed in two regimes, namely, in the process of CFRP cutting and in the regime of low-fluence irradiation avoiding ablation of carbon fibers. The feature of the ablation-free regime is that all absorbed energy remains in the material as heat, while in the cutting regime the fraction of residual heat is unknown. An analytical model based on two-dimensional (2D) heat flow was applied to predict the critical number of scans, after which the HAS effect causes a distinct growth of the matrix evaporation zone (MEZ). According to the model, the critical number of scans decreases exponentially with increasing laser power, while no dependence on the feed rate is expected. It was found that the model fits well to the experimental data obtained in the ablation-free regime where the heat input is well defined and known. In the cutting regime the measured significant reduction of the critical number of scans observed in deep grooves may be attributed to transformation of the heat flow geometry and to an expected increase of the residual heat fraction.

  6. Thermal effect of laser ablation on the surface of carbon fiber reinforced plastic during laser processing

    Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro

    2018-02-01

    Although laser processing is widely used for many applications, the cutting quality of carbon fiber reinforced plastic (CFRP) decreases around the heat-affected zone (HAZ) during laser processing. Carbon fibers are exposed around the HAZ, and tensile strength decreases with increasing length of the HAZ. Some theoretical studies of thermal conductions that do not consider fluid dynamics have been performed; however, theoretical considerations that include the dynamics of laser ablation are scarce. Using removed mass and depth observed from experiments, the dynamics of laser ablation of CFRP with high-temperature and high-pressure of compressive gas is simulated herein. In this calculation, the mushroom-like shape of laser ablation is qualitatively simulated compared with experiments using a high-speed camera. Considering the removal temperature of the resin and the temperature distribution at each point on the surface, the simulation results suggest that a wide area of the resin is removed when the processing depth is shallow, and a rounded kerf is generated as the processing depth increases.

  7. Influence of Tool Shape on Hole Clinching for Carbon Fiber-Reinforced Plastic and SPRC440

    Seung-Hun Lee

    2014-04-01

    Full Text Available Carbon fiber-reinforced plastic (CFRP is a lightweight material that can potentially replace structural steel components in automobiles. The hole-clinching process is a mechanical clinching technique for joining brittle or low-ductility materials, such as CFRP, with ductile materials. In this study, the influence of tool shape on the hole-clinching process for CFRP and SPRC440 was investigated using FE-analysis and experiments. The parameters of the tool shape investigated were the punch corner radius and the punch diameter. The geometrical interlocking shapes of hole-clinched joints were characterized by neck thickness and undercut. Based on the desired joint strength of 2.5 kN, hole-clinching tools were designed on the basis of the relationship between joint strength and geometrical interlocking. FE-analysis and hole-clinching experiments were performed with the designed hole-clinching tools to investigate the geometrical interlocking shape as well as joinability, including neck fracture, undercut, and hole expansion, resulting from changes in tool parameters. Joint strength was evaluated to verify the effectiveness of hole clinching by a single lap shear test.

  8. The electrostatic properties of Fiber-Reinforced-Plastics double wall underground storage gasoline tanks

    Li, Yipeng; Liu, Quanzhen; Meng, He; Sun, Lifu; Zhang, Yunpeng

    2013-01-01

    At present Fiber Reinforced Plastics (FRP) double wall underground storage gasoline tanks are wildly used. An FRP product with a resistance of more than 10 11 Ω is a static non-conductor, so it is difficult for the static electricity in the FRP product to decay into the earth. In this paper an experimental system was built to simulate an automobile gasoline filling station. Some electrostatic parameters of the gasoline, including volume charge density, were tested when gasoline was unloaded into a FRP double wall underground storage tank. Measurements were taken to make sure the volume charge density in the oil-outlet was similar to the volume charge density in the tank. In most cases the volume charge density of the gasoline was more than 22.7 μC m −3 , which is likely to cause electrostatic discharge in FRP double wall underground storage gasoline tanks. On the other hand, it would be hard to ignite the vapor by electrostatic discharge since the vapor pressure in the tanks is over the explosion limit. But when the tank is repaired or re-used, the operators must pay attention to the static electricity and some measurements should be taken to avoid electrostatic accident. Besides the relaxation time of charge in the FRP double wall gasoline storage tanks should be longer.

  9. Laser-Based Surface Modification of Microstructure for Carbon Fiber-Reinforced Plastics

    Yang, Wenfeng; Sun, Ting; Cao, Yu; Li, Shaolong; Liu, Chang; Tang, Qingru

    2018-05-01

    Bonding repair is a powerful feature of carbon fiber-reinforced plastics (CFRP). Based on the theory of interface bonding, the interface adhesion strength and reliability of the CFRP structure will be directly affected by the microscopic features of the CFRP surface, including the microstructure, physical, and chemical characteristics. In this paper, laser-based surface modification was compared to Peel-ply, grinding, and polishing to comparatively evaluate the surface microstructure of CFRP. The surface microstructure, morphology, fiber damage, height and space parameters were investigated by scanning electron microscopy (SEM) and laser confocal microscopy (LCM). Relative to the conventional grinding process, laser modification of the CFRP surface can result in more uniform resin removal and better processing control and repeatability. This decreases the adverse impact of surface fiber fractures and secondary damage. The surface properties were significantly optimized, which has been reflected such things as the obvious improvement of surface roughness, microstructure uniformity, and actual area. The improved surface microstructure based on laser modification is more conducive to interface bonding of CFRP structure repair. This can enhance the interfacial adhesion strength and reliability of repair.

  10. ANALISA TEKNIS DAN EKONOMIS PENGGUNAAN COREMAT UNTUK KONSTRUKSI FRP (FIBERGLASS REINFORCED PLASTIC SANDWICH PADA BADAN KAPAL

    Parlindungan Manik

    2012-04-01

    Full Text Available Planning of ship construction is make its having good effectivity value and efficiency. Composite as material alternative to changes of steel feedstock and wood has many applied named FRP (fiberglass reinforced plastics single skin. The weakness of this FRP was heavy construction and requires many production time. Therefore, will be checked comparison between single skin with sandwich constructions for shell. In this research, the way for making composite is hand lay up method with three various thickness of skin there are : t, t/2, and t/4. To know strength comparison from the various skin of sandwich with single skin, must be test, consist of tensile test.. The result is analyzed then compared by BKI (Biro Klasifikasi Indonesia rules for the fiberglass ship. Based on the result, indicates that optimization skin thickness of sandwich construction applies Coremat which tensile strength it is equivalent with Single Skin at 2/3t and usage of Sandwich construction causes 23,12 % lighter. In economic analyze, advantage from low weight is compensation of addition 23,12 % DWT. Material cost for Sandwich about 11,35% bigger than Single Skin construction.

  11. Surface Quality of Staggered PCD End Mill in Milling of Carbon Fiber Reinforced Plastics

    Guangjun Liu

    2017-02-01

    Full Text Available Machined surface quality determines the reliability, wear resistance and service life of carbon fiber reinforced plastic (CFRP workpieces. In this work, the formation mechanism of the surface topography and the machining defects of CFRPs are proposed, and the influence of milling parameters and fiber cutting angles on the surface quality of CFRPs is obtained, which can provide a reference for extended tool life and good surface quality. Trimming and slot milling tests of unidirectional CFRP laminates are performed. The surface roughness of the machined surface is measured, and the influence of milling parameters on the surface roughness is analyzed. A regression model for the surface roughness of CFRP milling is established. A significance test of the regression model is conducted. The machined surface topography of milling CFRP unidirectional laminates with different fiber orientations is analyzed, and the effect of fiber cutting angle on the surface topography of the machined surface is presented by using a digital super depth-of-field microscope and scanning electron microscope (SEM. To study the influence of fiber cutting angle on machining defects, the machined topography under different fiber orientations is analyzed. The slot milling defects and their formation mechanism under different fiber cutting angles are investigated.

  12. Fatigue damage characterization in plain-wave carbon-carbon fabric reinforced plastic composites

    Khan, Z.; Al-sulaiman, F.S.; Farooqi, J.K.

    1997-01-01

    In this paper fatigue damage mechanisms in 8 ply Carbon-Carbon Fabric reinforced Plastic Laminates obtained from polyester resin-prepreg plain weave carbon-carbon fabric layers have been investigated. Enhanced dye penetrant, X-ray radiography, optical microscopy, edge replication, and scanning electron fractography have been employed to examine the fatigue damage in three classes of laminates having the unidirectional (O)/sub delta/, the angle-plied (0,0,45,-45)/sub s/ fiber orientations. It is shown the laminates that have off axis plies, i.e.,0,0,45,-45), and (45,-45,0,0) /sub s/, the fatigue damage is initiated through matrix cracking. This matrix cracking induces fiber fracture in adjacent plies near the matrix crack tip. This event is followed by the man damage event of delamination of the stacked plies. It is shown that the delamination was the major damage mode, which caused the eventual fatigue failure in the angle-plied composites. The unidirectional composite (O)/sub delta/ laminates failed predominantly by lateral fracture instead of delamination. Fiber fracture was observed in the prime damage mode in unidirectional (O)/sub delta/ composite laminates. (author)

  13. Chemically etched sharpened tip of transparent crystallized glass fibers with nonlinear optical Ba2TiSi2O8 nanocrystals

    Enomoto, Itaru; Benino, Yasuhiko; Komatsu, Takayuki; Fujiwara, Takumi

    2007-01-01

    Glass fibers with a diameter of ∼100 μm are drawn by just pulling up melts of 40BaO·20TiO 2 ·40SiO 2 glass, and transparent crystallized glass fibers consisting of nonlinear optical fresnoite Ba 2 TiSi 2 O 8 nanocrystals (particle size: ∼100-200 nm) are fabricated by crystallization of glass fibers. Precursor glass fibers and nanocrystallized glass fibers are etched chemically using a meniscus method, in which an etching solution of 0.1wt%-HF/hexane is used. Glass fibers with sharpened tips (e.g., the taper length is ∼L=200 μm and the tip angle is ∼θ=23deg) are obtained. It is found that etched nanocrystallized glass fibers also have sharpened tips (L=50 μm, θ=80deg). Compared with precursor glass fibers, nanocrystallized glass fibers show a high resistance against chemical etching in a 0.1 wt%HF solution. Although sharpened tips in nanocrystallized glass fibers do not have nanoscaled apertures, the present study suggests that nanocrystallized glass fibers showing second harmonic generations would have a potential for fiber-type light control optical devices. (author)

  14. On the application of the dynamic plasticity theory for the treatment of reinforced concrete structures under transient loading

    Ammann, W.

    1983-01-01

    After a short introduction of the theory of dynamic plasticity, the possible applications of this theory on reinforced concrete structures under transient loading are discussed. Estimates can be obtained by relations giving lower and upper limits for dynamically loaded supporting beams. A procedure similar for the mode approximation method is described for the calculation of beams after a sudden failure of a support. (orig.) [de

  15. Production of Starch Based Bioplastic from Cassava Peel Reinforced with Microcrystalline Celllulose Avicel PH101 Using Sorbitol as Plasticizer

    Maulida; Siagian, M; Tarigan, P

    2016-01-01

    The production of starch based bioplastics from cassava peel reeinforced with microcrystalline cellulose using sorbitol as plasticizer were investigated. Physical properties of bioplastics were determined by density, water uptake, tensile strength and Fourier Transform Infrared Spectroscopy. Bioplastics were prepared from cassava peel starch plasticized using sorbitol with variation of 20; 25; 30% (wt/v of sorbitol to starch) reinforced with microcrystalline celllulose (MCC) Avicel PH101 fillers with range of 0 to 6% (wt/wt of MCC to starch). The results showed improvement in tensile strength with higher MCC content up to 9, 12 mpa compared to non-reinforced bioplastics. This could be mainly attributed to the strong hydrogen bonds between MCC and starch. On the contrary, the addition of MCC decreased the elongation at break, density and water uptake. Fourier Transform Infrared Spectroscopy showed the functional groups of bioplastics, which the majority of O-H groups were found at the bioplastics with reinforcing filler MCC that represented substantial hydrogen bonds. The highest tensile strength value was obtained for bioplastic with MCC content 6% and sorbitol content 20%. With good adhesion between MCC and starch the production of bioplastics could be widely used as a substitute for conventional plastics with more benefits to the environment. (paper)

  16. Production of Starch Based Bioplastic from Cassava Peel Reinforced with Microcrystalline Celllulose Avicel PH101 Using Sorbitol as Plasticizer

    Maulida; Siagian, M.; Tarigan, P.

    2016-04-01

    The production of starch based bioplastics from cassava peel reeinforced with microcrystalline cellulose using sorbitol as plasticizer were investigated. Physical properties of bioplastics were determined by density, water uptake, tensile strength and Fourier Transform Infrared Spectroscopy. Bioplastics were prepared from cassava peel starch plasticized using sorbitol with variation of 20; 25; 30% (wt/v of sorbitol to starch) reinforced with microcrystalline celllulose (MCC) Avicel PH101 fillers with range of 0 to 6% (wt/wt of MCC to starch). The results showed improvement in tensile strength with higher MCC content up to 9, 12 mpa compared to non-reinforced bioplastics. This could be mainly attributed to the strong hydrogen bonds between MCC and starch. On the contrary, the addition of MCC decreased the elongation at break, density and water uptake. Fourier Transform Infrared Spectroscopy showed the functional groups of bioplastics, which the majority of O-H groups were found at the bioplastics with reinforcing filler MCC that represented substantial hydrogen bonds. The highest tensile strength value was obtained for bioplastic with MCC content 6% and sorbitol content 20%. With good adhesion between MCC and starch the production of bioplastics could be widely used as a substitute for conventional plastics with more benefits to the environment.

  17. Glass fiber sensors for detecting special nuclear materials at portal and monitor stations

    Hull, C.D.; Seymour, R.; Crawford, T.; Bliss, M.; Craig, R.A.

    2001-01-01

    Nuclear Safeguards and Security Systems LLC (NucSafe) participated in the Illicit Trafficking Radiation Assessment Program (ITRAP) recently conducted by the Austrian Research Center, Seibersdorf (ARCS) for IAEA, INTERPOL, and the World Customs Organization (IAEA, in press). This presentation reviews ITRAP test results of NucSafe instrumentation. NucSafe produces stationary, mobile, and hand-held systems that use neutron and gamma ray sensors to detect Special Nuclear Materials (SNM). Neutron sensors are comprised of scintillating glass fibers (trade name 'PUMA' for Pu Materials Analysis), which provide several advantages over 3 He and 10 BF 3 tubes. PUMA 6 Li glass fiber sensors offer greater neutron sensitivity and dynamic counting range with significantly less microphonic susceptibility than tubes, while eliminating transport and operational hazards. PUMA sensors also cost less per active area than gas tubes, which is important since rapid neutron detection at passenger, freight, and vehicle portals require large sensor areas to provide the required sensitivity

  18. Micropatterning of nanocomposite polymer scaffolds using sacrificial phosphate glass fibers for tendon tissue engineering applications.

    Alshomer, Feras; Chaves, Camilo; Serra, Tiziano; Ahmed, Ifty; Kalaskar, Deepak M

    2017-04-01

    This study presents a simple and reproducible method of micropatterning the novel nanocomposite polymer (POSS-PCU) using a sacrificial phosphate glass fiber template for tendon tissue engineering applications. The diameters of the patterned scaffolds produced were dependent on the diameter of the glass fibers (15 μm) used. Scaffolds were tested for their physical properties and reproducibility using various microscopy techniques. For the first time, we show that POSS-PCU supports growth of human tenocytes cells. Furthermore, we show that cellular alignment, their biological function and expression of various tendon related proteins such as scleraxis, collagen I and III, tenascin-C are significantly elevated on the micropatterned polymer surfaces compared to flat samples. This study demonstrated a simple, reproducible method of micropatterning POSS-PCU nanocomposite polymer for novel tendon repair applications, which when provided with physical cues could help mimic the microenvironment of tenocytes cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Proof-testing and probabilistic lifetime estimation of glass fibers for sensor applications.

    Komachiya, M; Minamitani, R; Fumino, T; Sakaguchi, T; Watanabe, S

    1999-05-01

    The mechanical reliability of sensing glass fiber is one of the important problems in the practical use of fiber-optic sensors. To ensure long-term reliability on a mass-production level, a method of proof-testing is applied to a sensing glass fiber that will be subjected to mechanical deformation in its service situation. We propose to employ a higher strain level (screening level) in the proof-testing with a fiber-recoating technique that can suppress excessive damage during the testing. We consider a standard lifetime of 15 years of automotive applications and ensure a practical level of failure probability by a model calculation by using the strength data of a prototype fiber with the method of fracture-mechanics theory.

  20. Effective thermal conductivity of glass-fiber board and blanket standard reference materials

    Smith, D.R.; Hust, J.G.

    1983-01-01

    This chapter reports on measurements of effective thermal conductivity performed on a series of specimens of glass-fiber board and glass-fiber blanket. Explains that measurements of thermal conductivity were conducted as a function of temperature from 85 to 360 K, of temperature difference with T=10 to 100 K, of bulk density from 11 to 148 kg/m 3 and for nitrogen, argon, and helium inter-fiber fill gases at pressures from atmospheric to high vacuum. Analyzes and compares results with values from the published literature and National Bureau of Standards (NBS) certification data for similar material. Gives polynomial expressions for the functional relation between conductivity, temperature, and density for board and for blanket

  1. FeCoNi coated glass fibers in composite sheets for electromagnetic absorption and shielding behaviors

    Lee, Joonsik; Jung, Byung Mun; Lee, Sang Bok; Lee, Sang Kwan; Kim, Ki Hyeon

    2017-09-01

    To evaluate the electromagnetic (EM) absorption and shield of magnetic composite sheet, we prepared the FeCoNi coated glass fibers filled in composite sheet. The FeCoNi was coated by electroless plating on glass fiber as a filler. The coated FeCoNi found that consist of mixtures of bcc and fcc phase. The magnetization and coercivity of coated FeCoNi are about 110 emu/g and 57 Oe, respectively. The permittivity and permeability of the FeCoNi composite sheet were about 21 and 1, respectively. Power absorption increased 95% with the increment of frequency up to 10 GHz. Inter-decoupling of this composite sheet showed maximum 30 dB at around 5.3 GHz, which is comparable to that of a conductive Cu foil. Shielding effectiveness (SE) was measured by using rectangular waveguide method. SE of composite obtained about 37 dB at X-band frequency region.

  2. Reconstruction of fiber Bragg grating strain profile used to monitor the stiffness degradation of the adhesive layer in carbon fiber–reinforced plastic single-lap joint

    Song Chunsheng; Zhang Jiaxiang; Yang Mo; Shang Erwei; Zhang Jinguang

    2017-01-01

    The adhesive-bonded joint of carbon fiber–reinforced plastic is one of the core components in aircraft structure design. It is an effective guarantee for the safety and reliability of the aerospace aircraft structure to use effective methods for monitoring and early warning of internal failure. In this article, the mapping relation model between the strain profiles of the adherend of the carbon fiber–reinforced plastic single-lap adhesive joint and the stiffness degradation evolution of adhes...

  3. The Effect of Thermooxidative Aging on the Durability of Glass Fiber-Reinforced Epoxy

    Amin Khajeh

    2015-01-01

    Full Text Available Thin-skinned organic matrix composites within aeronautical structures are subjected to thermooxidative aging during their service life, leading to reductions in their durability. In this paper, a durability evaluation of fiberglass epoxy prepreg is performed on the original composite thickness before and after 800 h isothermal aging at 82°C. The characterization of both aged and unaged composites comprised tensile tests, DMA, FTIR, weight loss measurements, SEM, and DSC. The tensile strength and modulus of the composites increased after being exposed to pronounced aging conditions, whereas a decrease was observed in the toughness. DMA results revealed that the glass transition temperature and rubbery state modulus increased as a result of the thermooxidative aging. FTIR spectroscopy demonstrated the formation of carbonyl compounds due to oxidation of the chemical structure of the resin. SEM observations indicated the existence of minor superficial cracking and poor fiber-matrix adhesion after aging. In addition, a minor mass change was observed from mass loss monitoring methods. The overall findings suggest that postcuring and physical aging enhanced the brittleness of the resin, leading to a significant decline in the useful structural life of the thin-skinned composite.

  4. Multiscale probabilistic modeling of a crack bridge in glass fiber reinforced concrete

    Rypla R.

    2017-06-01

    Full Text Available The present paper introduces a probabilistic approach to simulating the crack bridging effects of chopped glass strands in cement-based matrices and compares it to a discrete rigid body spring network model with semi-discrete representation of the chopped strands. The glass strands exhibit random features at various scales, which are taken into account by both models. Fiber strength and interface stress are considered as random variables at the scale of a single fiber bundle while the orientation and position of individual bundles with respect to a crack plane are considered as random variables at the crack bridge scale. At the scale of the whole composite domain, the distribution of fibers and the resulting number of crack-bridging fibers is considered. All the above random effects contribute to the variability of the crack bridge performance and result in size-dependent behavior of a multiply cracked composite.

  5. A Method for Cobalt and Cesium Leaching from Glass Fiber in HEPA Filter

    Kim, Gye Nam; Lee, Suk Chol; Yang, Hee Chul; Yoon, In Ho; Choi, Wang Kyu; Moon, Jei Kwon

    2011-01-01

    A great amount of radioactive waste has been generated during the operation of nuclear facilities. Recently, the storage space of a radioactive waste storage facility in the Korea Atomic Energy Research Institute (KAERI) was almost saturated with many radioactive wastes. So, the present is a point of time that a volume reduction of the wastes in a radioactive waste storage facility needs. There are spent HEPA filter wastes of about 2,226 sets in the radioactive waste storage facility in KAERI. All these spent filter wastes have been stored in accordance with their original form without any treatment. Up to now a compression treatment of these spent HEPA filters has been carried out to repack the compressed spent HEPA filters into a 200 liter drum for their volume reduction. Frame and separator are contaminated with a low concentration of nuclide, while the glass fiber is contaminated with a high concentration of nuclide. So, for the disposal of the glass filter to the environment, the glass fiber should be leached to lower its radioactive concentration first and then must be stabilized by solidification and so on. Therefore, it is necessary to develop a leaching process of glass fiber in a HEPA filter. Leaching is a separation technology, which is often used to remove a metal or a nuclide from a solid mixture with the help of a liquid solvent

  6. Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials.

    Chung, In; Jang, Joon I; Malliakas, Christos D; Ketterson, John B; Kanatzidis, Mercouri G

    2010-01-13

    We report that the one-dimensional polar selenophosphate compounds APSe(6) (A = K, Rb), which show crystal-glass phase-change behavior, exhibit strong second harmonic generation (SHG) response in both crystal and glassy forms. The crystalline materials are type-I phase-matchable with SHG coefficients chi((2)) of 151.3 and 149.4 pm V(-1) for K(+) and Rb(+) salts, respectively, which is the highest among phase-matchable nonlinear optical (NLO) materials with band gaps over 1.0 eV. The glass of APSe(6) exhibits comparable SHG intensities to the top infrared NLO material AgGaSe(2) without any poling treatments. APSe(6) exhibit excellent mid-IR transparency. We demonstrate that starting from noncentrosymmetric phase-change materials such as APSe(6) (A = K, Rb), we can obtain optical glass fibers with strong, intrinsic, and temporally stable second-order nonlinear optical (NLO) response. The as-prepared glass fibers exhibit SHG and difference frequency generation (DFG) responses over a wide range of wavelengths. Raman spectroscopy and pair distribution function (PDF) analyses provide further understanding of the local structure in amorphous state of KPSe(6) bulk glass and glass fiber. We propose that this approach can be widely applied to prepare permanent NLO glass from materials that undergo a phase-change process.

  7. Optics of carbon fiber-reinforced plastics – A theoretical and an experimental study

    Hohmann, Ansgar; ElMaklizi, Ahmed; Foschum, Florian; Voit, Florian; Bergmann, Florian; Simon, Emanuel; Reitzle, Dominik; Kienle, Alwin

    2016-01-01

    Laser processing of carbon fiber-reinforced plastics (CFRP) as well as their design optimization are strongly emerging fields. As the optics of CFRP is still rather unknown, the optical behavior of CFRP was investigated in this study. Different simulation models were implemented to simulate reflectance from CFRP samples as well as distribution and absorption of light within these samples. The methods include an analytical solution of Maxwell's equations and Monte Carlo solutions of the radiative transfer theory. We show that strong inaccurracies occur, if light propagation in CFRP is modeled using the radiative transfer theory. Therefore, the solution of Maxwell's equations is the method of choice for calculation of light propagation in CFRP. Furthermore, measurements of the reflectance of light from CFRP were performed and compared to the simulations for investigation of the optical behavior. Information on the refractive index of carbon fibers was obtained via goniometric measurements. The amount of reflected light was determined as 6.05±0.38% for light polarized parallel to the fiber direction, while it was 3.65±0.41% for light polarized perpendicular to the fiber direction in case of laser-processed CFRP. - Highlights: • The light scattering of CFRP was studied using Maxwell's equations and radiative transfer theory. • The simulations were validated by experiments. • Strong inaccuracies occur if light propagation in CFRP structures is modeled with the RTT. • The Bouguer–Lambert–Beer model with μ_a=4πf_VIm(n_c_y_l)/λ cannot be used in CFRP samples. • Reflectance values were determined and information on the refractive index was inferred.

  8. Evaluation of air jet erosion profiles in metal mesh supported SCR plate catalyst based on glass fiber concentrations

    Rajath, S.; Nandakishora, Y.; Siddaraju, C.; Roy, Sukumar

    2018-04-01

    This paper explains the evaluation of erosion profiles in metal mesh supported SCR plate catalyst structures in which the glass fibers concentration in the catalyst material is considered as prime factor for erosion resistance and mechanical strength. The samples are prepared and tested at the specified and constant conditions like velocity as 30m/s, sand flow rate as 2g/min, average particle diameter 300 µm and all these samples were tested at different angles at impact preferably 15°,30°,45°,60°,75°,and 90° as per ASTM G76 standards. Say, if 5% glass fibers are present in catalyst material, then erosion resistance increases, but the density of glass fibers is very less because each glass fiber is approximately 20 microns in diameter and weight of individual is negligible. The composition in which 2% fiber is present has slightly higher erosion comparatively, but 3% glass fibers or more foreign inclusion like excessive binders can be eliminated that contributes much for the conversion of NOx. So 2% -3% glass fibers are preferred and optimized based on NOx conversion and erosion resistance property.

  9. Plastic

    Jeong Gi Hyeon

    1987-04-01

    This book deals with plastic, which includes introduction for plastic, chemistry of high polymers, polymerization, speciality and structure of a high molecule property of plastic, molding, thermosetting plastic, such as polyethylene, polyether, polyamide and polyvinyl acetyl, thermal plastic like phenolic resins, xylene resins, melamine resin, epoxy resin, alkyd resin and poly urethan resin, new plastic like ionomer and PPS resin, synthetic laminated tape and synthetic wood, mixed materials in plastic, reprocessing of waste plastic, polymer blend, test method for plastic materials and auxiliary materials of plastic.

  10. Ultrasonic assisted consolidation of commingled thermoplastic/glass fibers rovings

    Francesca eLionetto

    2015-04-01

    Full Text Available Thermoplastic matrix composites are finding new applications in different industrial area thanks to their intrinsic advantages related to environmental compatibility and processability. The approach presented in this work consists in the development of a technology for the simultaneous deposition and consolidation of commingled thermoplastic rovings through to the application of high energy ultrasound. An experimental equipment, integrating both fiber impregnation and ply consolidation in a single process, has been designed and tested. It is made of an ultrasonic welder, whose titanium sonotrode is integrated on a filament winding machine. During winding, the commingled roving is at the same time in contact with the mandrel and the horn. The intermolecular friction generated by ultrasound is able to melt the thermoplastic matrix and impregnate the reinforcement fibers. The heat transfer phenomena occurring during the in situ consolidation were simulated solving by finite element (FE analysis an energy balance accounting for the heat generated by ultrasonic waves and the melting characteristics of the matrix. To this aim, a calorimetric characterization of the thermoplastic matrix has been carried out to obtain the input parameters for the model. The FE analysis has enabled to predict the temperature distribution in the composite during heating and cooling The simulation results have been validated by the measurement of the temperature evolution during ultrasonic consolidation.The reliability of the developed consolidation equipment was proved by producing hoop wound cylinder prototypes using commingled continuous E-glass rovings and Polypropylene (PP filaments. The consolidated composite cylinders are characterized by high mechanical properties, with values comparable with the theoretical ones predicted by the micromechanical analysis.

  11. Performance of Hybrid Reinforced Concrete Beam Column Joint: A Critical Review

    Md Rashedul Kabir

    2016-04-01

    Full Text Available Large residual strain in reinforced concrete structures after a seismic event is a major concern for structural safety and serviceability. Alternative reinforcement materials like fiber-reinforced polymer (FRP have been widely used to mitigate corrosion problems associated with steel. Low modulus of elasticity and brittle behavior compared to steel has made the use of FRP unsuitable in seismic resistant strictures. A combination of steel-FRP reinforcement configuration can address the problem of corrosion. Therefore, introducing a material that shows strong post elastic behavior without any decay due to corrosion is in demand. Shape memory alloy (SMA, a novel material, is highly corrosion resistive and shows super elastic property. Coupling SMA with FRP or steel in the plastic hinge region allows the structure to undergo large deformations, but regains its original shape upon unloading. In this study, the performance characteristics of four previously tested beam-column joints reinforced with different configurations (steel, SMA/steel, glass fiber reinforced polymer (GFRP and SMA/FRP are compared to assess their capacity to endure extreme loading. Experimental results are scrutinized to compare the behavior of these specimens in terms of load-story drift and energy dissipation capacity. SMA/FRP and SMA/Steel couples have been found to be an acceptable approach to reduce residual deformation in beam-column joints with adequate energy dissipation capacity. However, SMA/FRP is superior to SMA/Steel concerning to the corrosion issue in steel.

  12. Performance-based plastic design of earthquake resistant reinforced concrete moment frames

    Liao, Wen-Cheng

    Performance-Based Plastic Design (PBPD) method has been recently developed to achieve enhanced performance of earthquake resistant structures. The design concept uses pre-selected target drift and yield mechanism as performance criteria. The design base shear for selected hazard level is determined by equating the work needed to push the structure monotonically up to the target drift to the corresponding energy demand of an equivalent SDOF oscillator. This study presents development of the PBPD approach as applied to reinforced concrete special moment frame (RC SMF) structures. RC structures present special challenge because of their complex and degrading ("pinched") hysteretic behavior. In order to account for the degrading hysteretic behavior the 1-EMA 440 C2 factor approach was used in the process of determining the design base shear. Four baseline RC SMF (4, 8, 12 and 20-story) as used in the FEMA P695 were selected for this study. Those frames were redesigned by the PBPD approach. The baseline frames and the PBPD frames were subjected to extensive inelastic pushover and time-history analyses. The PBPD frames showed much improved response meeting all desired performance objectives, including the intended yield mechanisms and the target drifts. On the contrary, the baseline frames experienced large story drifts due to flexural yielding of the columns. The work-energy equation to determine design base shear can also be used to estimate seismic demands, called the energy spectrum method. In this approach the skeleton force-displacement (capacity) curve of the structure is converted into energy-displacement plot (Ec) which is superimposed over the corresponding energy demand plot ( Ed) for the specified hazard level to determine the expected peak displacement demands. In summary, this study shows that the PBPD approach can be successfully applied to RC moment frame structures as well, and that the responses of the example moment frames were much improved over those

  13. New Fiber Reinforced Waterless Concrete for Extraterrestrial Structural Applications

    Toutanji, H.; Tucker, D.; Ethridge, E.

    2005-01-01

    Commercial use of sulfur concrete on Earth is well established, particularly in corrosive, e.g., acid and salt, environments. Having found troilite (FeS) on the Moon raises the question of using extracted sulfur as a lunar construction mate: iii an attractive alternative to conventional concrete as it does not require water For the purpose of this paper it is assumed that lunar ore is mined, refined, and the raw sulfur processed with appropriate lunar regolith to form, for example, brick and beam elements. Glass fibers produced from regolith were used as a reinforcement to improve the mechanical properties of the sulfur concrete. Glass fibers and glass rebar were produced by melting the lunar regolith simulant. Lunar regolith stimulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline 46100 high temperature MoSi2 furnace at melting temperatures of 1450 to 1600G. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The viability of sulfur concrete as a construction material for extraterrestrial application is presented. The mechanical properties of the glass fiber reinforced sulfur concrete were investigated.

  14. Effect of combined extrusion parameters on mechanical properties of basalt fiber-reinforced plastics based on polypropylene

    Bashtannik, P. I.; Ovcharenko, V. G.; Boot, Yu. A.

    1997-11-01

    Basalt fibers are efficient reinforcing fillers for polypropylene because they increase both the mechanical and the tribotechnical properties of composites. Basalt fibers can compete with traditional fillers (glass and asbestos fibers) of polypropylene with respect to technological, economic, and toxic properties. The effect of technological parameters of producing polypropylene-based basalt fiber-reinforced plastics (BFRPs) by combined extrusion on their mechanical properties has been investigated. The extrusion temperature was found to be the main parameter determining the mechanical properties of the BFRPs. With temperature growth from 180 to 240°C, the residual length of the basalt fibers in the composite, as well as the adhesive strength of the polymer-fiber system, increased, while the composite defectiveness decreased. The tensile strength and elastic modulus increased from 35 to 42 MPa and 3.2 to 4.2 GPa, respectively. At the same time, the growth in composite solidity led to its higher brittleness. Thus, a higher temperature of extrusion allows us to produce materials which can be subjected to tensile and bending loads, while the materials produced at a lower temperature of extrusion are impact stable. The effect of the gap size between the extruder body and moving disks on the mechanical properties of the BFRPs is less significant than that of temperature. An increase of the gap size from 2 to 8 mm improves the impregnation quality of the fibers, but the extruder productivity diminishes. The possibility of controling the properties of reinforced polypropylene by varying the technological parameters of combined extrusion is shown. The polypropylene-based BFRPs produced by the proposed method surpass the properties of glass and asbestos fiber-reinforced plastics.

  15. Effect of gamma radiation on the magnetic properties of a carbon-fiber-reinforced plastic with a polysulfone matrix

    Rodin, Yu.P.; Arkhipov, A.A.; Korkhov, V.P.; Pudnik, V.V.

    1994-01-01

    In the present article, the authors report results of a study of the change in the magnetic susceptibility of a carbon-fiber-reinforced plastic based on a thermoplastic matrix -- aromatic polysulfone -- in relation to the absorbed dose of γ-radiation. The study results show that the change in the magnetic susceptibility of specimens which have absorbed different doses of gamma radiation correlates with the change in their mechanical properties, thermal behavior, and structural changes. A method is described for measuring susceptibility which can be used successfully to study the structure and properties of polymer materials and composites based on them. 3 refs., 3 figs

  16. Modeling the Non-Linear Response of Fiber-Reinforced Laminates Using a Combined Damage/Plasticity Model

    Schuecker, Clara; Davila, Carlos G.; Pettermann, Heinz E.

    2008-01-01

    The present work is concerned with modeling the non-linear response of fiber reinforced polymer laminates. Recent experimental data suggests that the non-linearity is not only caused by matrix cracking but also by matrix plasticity due to shear stresses. To capture the effects of those two mechanisms, a model combining a plasticity formulation with continuum damage has been developed to simulate the non-linear response of laminates under plane stress states. The model is used to compare the predicted behavior of various laminate lay-ups to experimental data from the literature by looking at the degradation of axial modulus and Poisson s ratio of the laminates. The influence of residual curing stresses and in-situ effect on the predicted response is also investigated. It is shown that predictions of the combined damage/plasticity model, in general, correlate well with the experimental data. The test data shows that there are two different mechanisms that can have opposite effects on the degradation of the laminate Poisson s ratio which is captured correctly by the damage/plasticity model. Residual curing stresses are found to have a minor influence on the predicted response for the cases considered here. Some open questions remain regarding the prediction of damage onset.

  17. Fracture strengths of chair-side-generated veneers cemented with glass fibers.

    Turkaslan, S; Bagis, B; Akan, E; Mutluay, M M; Vallittu, P K

    2015-01-01

    CAD/CAM (computer-aided design and computer-aided manufacturing) systems have refreshed the idea of chair-side production of restorations, but the fracture of ceramic veneers remains a problem. Cementation with glass fibers may improve the fracture strengths and affect the failure modes of CAD/CAM-generated ceramic veneers. Therefore, this study compared the fracture strengths of ceramic veneers produced at chair side and cemented with or without glass fibers with those of composite veneers. Thirty intact mandibular incisors were randomly divided into three groups ( n = 10) and treated with CAD/CAM-fabricated veneers cemented with dual-cure composite resin luting cement (CRLC; Group 1), CAD/CAM-fabricated veneers cemented with a glass fiber network (GFN) and dual-cure CRLC (Group 2), and a direct particulate filler composite veneer constructed utilizing fiber and a restorative composite resin (Group 3). The specimens were tested with a universal testing machine after thermal cycling treatment. The loads at the start of fracture were the lowest for traditionally fabricated composite veneers and higher for CAD/CAM-generated. Veneers cemented either without or with the GFN. The failure initiation loads (N) for the veneers were 798.92 for Group 1, 836.27 for Group 2, and 585.93 for Group 3. The predominant failure mode is adhesive failure between the laminates and teeth for Group 1, cohesive failure in the luting layer for Group 2, and cohesive laminate failure for Group 3, which showed chipping and small fractures. Ceramic material is a reliable alternative for veneer construction at chair side. Fibers at the cementation interface may improve the clinical longevity and provide higher fracture strength values.

  18. Relining effects on the push-out shear bond strength of glass fiber posts

    Adriana Rosado Valente ANDRIOLI

    Full Text Available Abstract Introduction The correct use of glass fiber posts in endodontically treated teeth is essential for the clinical success of restorative treatment. Objective This study evaluated the push-out shear bond strength of relined (R or non-relined (NR glass fiber posts, cemented with self-adhesive resin cement [RelyXTM U100 (U100] and conventional resin cement [RelyXTM ARC (ARC]. Material and method Sixty human single-rooted teeth were endodontically treated and divided into ARC-NR; U100-NR; ARC-R; U100-R groups. The teeth were sectioned into cervical, middle and apical thirds, and subjected to the push-out test. Bond strength was analyzed by the Friedman test; cement and post types were compared by the Mann Whitney test. The pattern of failures was evaluated with digital camera through images at 200x magnification, and was classified as adhesive (at the cement/dentin or cement/post interface, cohesive (cement or post, and mixed failures. Result In ARC-NR, bond strength values were higher in the cervical third; in U100-NR and ARC-R they were similar between the thirds. In U100-R, in the cervical and middle thirds the bond strength values were similar, and there was lower value in the apical third. For non-relined glass fiber posts, the highest mean bond strength values were observed with self-adhesive resin cement. Whereas, relined posts cemented with conventional resin cement had stronger cement layer in comparison with non-relined fiber posts. Conclusion The post relining technique was efficient in ARC-R. ARC-NR and U100-R showed improved bond strength in the cervical region of canal walls. The main failures were adhesive at the cement-post interface.

  19. Grafting Carbon Nanotubes on Glass Fiber by Dip Coating Technique to Enhance Tensile and Interfacial Shear Strength

    Bahador Dastorian Jamnani

    2015-01-01

    Full Text Available The effects of noncovalent bonding and mechanical interlocking of carbon nanotubes (CNT coating on tensile and interfacial strength of glass fiber were investigated. CNT were coated over glass fiber by a simple dip coating method. Acid treated CNT were suspended in isopropanol solution containing Nafion as binding agent. To achieve uniform distribution of CNT over the glass fiber, an optimized dispersion process was developed by two parameters: CNT concentration and soaking time. CNT concentration was varied from 0.4 to 2 mg/mL and soaking time was varied from 1 to 180 min. The provided micrographs demonstrated appropriate coating of CNT on glass fiber by use of CNT-Nafion mixture. The effects of CNT concentration and soaking time on coating layer were studied by performing single fiber tensile test and pull-out test. The obtained results showed that the optimum CNT concentration and soaking time were 1 mg/mL and 60 min, respectively, which led to significant improvement of tensile strength and interfacial shear stress. It was found that, at other concentrations and soaking times, CNT agglomeration or acutely curly tubes appeared over the fiber surface which caused a reduction of nanotubes interaction on the glass fiber.

  20. Optimization of the contents of hollow glass microsphere and sodium hexametaphosphate for glass fiber vacuum insulation panel

    Li, C. D.; Chen, Z. F.; Zhou, J. M.

    2016-07-01

    In this paper, various additive amounts of hollow glass microspheres (HGMs) and sodium hexametaphosphate (SHMP) powders were blended with flame attenuated glass wool (FAGW) to form hybrid core materials (HCMs) through the wet method. Among them, the SHMP was dissolved in the glass fiber suspension and coated on the surface of glass fibers while the HGMs were insoluble in the glass fiber suspension and filled in the fiber-fiber pores. The average pore diameter of the FAGW/HGM HCMs was 8-11 μm which was near the same as that of flame attenuated glass fiber mats (FAGMs, i.e., 10.5 µm). The tensile strength of the SHMP coated FAGMs was enhanced from 160 N/m to 370 N/m when SHMP content increased from 0 wt.% to 0.2 wt.%. By contrast, the tensile strength of the FAGW/HGM HCMs decreased from 160 N/m to 40 N/m when HGM content increased from 0 wt.% to 50 wt.%. Both the FAGW/HGM HCMs and SHMP coated FAGMs were vacuumed completely to form vacuum insulation panels (VIPs). The results showed that both the addition of SHMP and HGM led a slight increase in the thermal conductivity of the corresponding VIPs. To obtain a high-quality VIP, the optimal SHMP content and HGM content in glass fiber suspension was 0.12-0.2 wt.% and 0 wt.%.

  1. Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Blades

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Sellappan, V.; Vallejo, A.; Ozen, M.

    2010-11-01

    A multi-disciplinary design-optimization procedure has been introduced and used for the development of cost-effective glass-fiber reinforced epoxy-matrix composite 5 MW horizontal-axis wind-turbine (HAWT) blades. The turbine-blade cost-effectiveness has been defined using the cost of energy (CoE), i.e., a ratio of the three-blade HAWT rotor development/fabrication cost and the associated annual energy production. To assess the annual energy production as a function of the blade design and operating conditions, an aerodynamics-based computational analysis had to be employed. As far as the turbine blade cost is concerned, it is assessed for a given aerodynamic design by separately computing the blade mass and the associated blade-mass/size-dependent production cost. For each aerodynamic design analyzed, a structural finite element-based and a post-processing life-cycle assessment analyses were employed in order to determine a minimal blade mass which ensures that the functional requirements pertaining to the quasi-static strength of the blade, fatigue-controlled blade durability and blade stiffness are satisfied. To determine the turbine-blade production cost (for the currently prevailing fabrication process, the wet lay-up) available data regarding the industry manufacturing experience were combined with the attendant blade mass, surface area, and the duration of the assumed production run. The work clearly revealed the challenges associated with simultaneously satisfying the strength, durability and stiffness requirements while maintaining a high level of wind-energy capture efficiency and a lower production cost.

  2. Hybrid carbon/glass fiber composites: Micromechanical analysis of structure–damage resistance relationships

    Mishnaevsky, Leon; Dai, Gaoming

    2014-01-01

    A computational study of the effect of microstructure of hybrid carbon/glass fiber composites on their strength is presented. Unit cells with hundreds of randomly located and misaligned fibers of various properties and arrangements are subject to tensile and compression loading, and the evolution...... strength than pure composites, while the strength of hybrid composites under inform force loading increases steadily with increasing the volume content of carbon fibers....... of fiber damages is analyzed in numerical experiments. The effects of fiber clustering, matrix properties, nanoreinforcement, load sharing rules on the strength and damage resistance of composites are studied. It was observed that hybrid composites under uniform displacement loading might have lower...

  3. Quick analytical separation of glucose and fructose with impregnated woven glass fiber

    Jones, S.C.

    1978-01-01

    (1) A wide separation of glucose and fructose was obtained in 30 min with simple, inexpensive equipment using polysilicic impregnated woven glass fiber and the solvent acetone-n-butanol-1 M H 3 BO 3 (50:40:10). (2) A calibration of a radiochromatogram scanner was performed for 11 C. (3) Three Rsub(F) values could be compared to provide positive chemical identification of [ 11 C]glucose and [ 11 C]fructose. (4) Radiochemical composition and approximate specific activity were determined from a small aliquot (1-4 μl). (Auth.)

  4. Paper-based microfluidics with high resolution, cut on a glass fiber membrane for bioassays.

    Fang, Xueen; Wei, Shasha; Kong, Jilie

    2014-03-07

    In this report, we describe a simple, low-cost, straight forward and highly reproducible fabrication method of microfluidic systems. This system was cut on a glass fiber membrane by a common cutter without using any other sophisticated equipment or organic solvents. This format represents a novel type of paper-based microfluidics with high resolution of the microchannel down to ~137 μm, comparable to those made by conventional photolithography. We successfully applied this method to microfluidics to create a star micro-array format of multiplexed urine tests in this study.

  5. Hybrid fiber and nanopowder reinforced composites for wind turbine blades

    Nikoloz M. Chikhradze

    2015-01-01

    Full Text Available The results of an investigation into the production of wind turbine blades manufactured using polymer composites reinforced by hybrid (carbon, basalt, glass fibers and strengthened by various nanopowders (oxides, carbides, borides are presented. The hybrid fiber-reinforced composites (HFRC were manufactured with prepreg technology by molding pre-saturated epoxy-strengthened matrix-reinforced fabric. Performance of the manufactured composites was estimated with values of the coefficient of operating condition (COC at a moderate and elevated temperature.

  6. Fiber-reinforced Composite Resin Prosthesis to Restore Missing ...

    A fiber-reinforced composite inlay-onlay FPD was used for a single posterior tooth replacement in a patient refusing implant for psychological reasons. The FRC-FPD was made of pre-impregnated E-glass fibers (everStick, StickTeck, Turku, Finland) embedded in a resin matrix (Stick Resin, StickTeck, Turku, Finland).

  7. MWCNTs-Reinforced Epoxidized Linseed Oil Plasticized Polylactic Acid Nanocomposite and Its Electroactive Shape Memory Behaviour

    Alam, Javed; Alam, Manawwer; Raja, Mohan; Abduljaleel, Zainularifeen; Dass, Lawrence

    2014-01-01

    A novel electroactive shape memory polymer nanocomposite of epoxidized linseed oil plasticized polylactic acid and multi-walled carbon nanotubes (MWCNTs) was prepared by a combination of solution blending, solvent cast technique, and hydraulic hot press moulding. In this study, polylactic acid (PLA) was first plasticized by epoxidized linseed oil (ELO) in order to overcome the major limitations of PLA, such as high brittleness, low toughness, and low tensile elongation. Then, MWCNTs were inc...

  8. Intrinsic strength of sodium borosilicate glass fibers by using a two-point bending technique

    Nishikubo, Y; Yoshida, S; Sugawara, T; Matsuoka, J

    2011-01-01

    Flaws existing on glass surface can be divided into two types, extrinsic and intrinsic. Although the extrinsic flaws are generated during processing and using, the intrinsic flaws are regarded as structural defects which result from thermal fluctuation. It is known that the extrinsic flaws determine glass strength, but effects of the intrinsic flaws on the glass strength are still unclear. Since it is considered that the averaged bond-strength and the intrinsic flaw would affect the intrinsic strength, the intrinsic strength of glass surely depends on the glass composition. In this study, the intrinsic failure strain of the glass fibers with the compositions of 20Na 2 O-40xB 2 O 3 -(80-40x)SiO 2 (mol%, x = 0, 0.5, 1.0, 1.5) were measured by using a two-point bending technique. The failure strength was estimated from the failure strain and Young's modulus of glass. It is elucidated that two-point bending strength of glass fiber decreases with increasing B 2 O 3 content in glass. The effects of the glass composition on the intrinsic strength are discussed in terms of elastic and inelastic deformation behaviors prior to fracture.

  9. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes.

    Smirnov, A; Yasinskii, V M; Filimonenko, D S; Rostova, E; Dietler, G; Sekatskii, S K

    2018-01-01

    In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO 2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000-6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.

  10. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes

    A. Smirnov

    2018-01-01

    Full Text Available In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm and the probe’s tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000–6000 of the TF + probe system (Cherkun et al., 2006. We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.

  11. Amorphous silicon thin-film solar cells on glass fiber textiles

    Plentz, Jonathan, E-mail: jonathan.plentz@leibniz-ipht.de; Andrä, Gudrun; Pliewischkies, Torsten; Brückner, Uwe; Eisenhawer, Björn; Falk, Fritz

    2016-02-15

    Graphical abstract: - Highlights: • Amorphous silicon solar cells on textile glass fiber fabrics are demonstrated. • Open circuit voltages of 883 mV show shunt-free contacting on non-planar fabrics. • Short-circuit current densities of 3.7 mA/cm{sup 2} are limited by transmission losses. • Fill factors of 43.1% and pseudo fill factors of 70.2% show high series resistance. • Efficiencies of 1.4% and pseudo efficiencies of 2.1% realized on textile fabrics. - Abstract: In this contribution, amorphous silicon thin-film solar cells on textile glass fiber fabrics for smart textiles are prepared and the photovoltaic performance is characterized. These solar cells on fabrics delivered open circuit voltages up to 883 mV. This shows that shunt-free contacting of the solar cells was successful, even in case of non-planar fabrics. The short-circuit current densities up to 3.7 mA/cm{sup 2} are limited by transmission losses in a 10 nm thin titanium layer, which was used as a semi-transparent contact. The low conductivity of this layer limits the fill factor to 43.1%. Pseudo fill factors, neglecting the series resistance, up to 70.2% were measured. Efficiencies up to 1.4% and pseudo efficiencies up to 2.1% were realized on textile fabrics. A transparent conductive oxide could further improve the efficiency to above 5%.

  12. Fiber-reinforced plastic composites. Possibilities and limitations of applications as machine-construction materials

    Ophey, Lothar

    1988-01-01

    The use of fiber-reinforced composite structural materials in engineering applications is discussed in a survey of currently available technology and future prospects. The ongoing rapid growth in the use of these materials is described, and the criteria to be applied in selecting base materials, lamination schemes, fasteners, and processing methods are examined in detail and illustrated with graphs, diagrams, flow charts, and drawings. A description of a sample application (comparing the properties of steel, CFRP, SiC-reinforced Al, CFRP/steel, and CFRP/Al automobile piston rods) is included.

  13. Utilization of mango seed starch in manufacture of bioplastic reinforced with microparticle clay using glycerol as plasticizer

    Maulida; Kartika, T.; Harahap, M. B.; Ginting, M. H. S.

    2018-02-01

    Bioplastics are plastics that can be used just like conventional plastics but will disintegrate by the activity of microorganisms into water and carbon dioxide. Starch is a natural polymer material that can used for bioplastic production. The addition of reinforcing particles has been shown to improve the mechanical properties of bioplastics. The aim of this research is to know the potency of mango seed starch and microparticle clay as filler and glycerol concentration as plasticizer on tensile strength and elongation at break, functional group (FTIR) and surface morphology (SEM). In this study used mango seed starch size of 5 grams, with the variation of clay filler mass of 0; 3; 6 and nine wt%, while the mass of glycerol with a variation of 0; 20; 25; 30; And 35% wt. The heating temperature of the bioplastics solution used was 80.53 °C. The resulting bioplastics was analyzed for their physical and chemical properties, including FTIR, SEM, tensile strength, elongation at break. The FTIR analysis shows that no new functional groups was formed. From the analysis of mango starch content obtained 62.82%, 44.0% amylopectin content, amylose content 14.82%, and water content 12.65%. In this study obtained bioplastics with the best conditions on the use of 6% clay and 25% glycerol, with a tensile strength of 5.657MPa, percent elongation at breakup 43.431%.

  14. Finite element elasto-plastic analysis of thin walled structures of reinforced concrete as applied to reactor facilities

    Fujita, F.; Tsuboi, Y.

    1981-01-01

    The authors developed a new program of elasto-plastic analysis of reinforced concrete shells, in which the simplest model of shell element and an orthotropic constitutive relation are adopted, and verified its validity with reference to the results of model experiments of containers and box-wall structures with various loading conditions. For the two-dimensional stress-strain relationship of concrete, an orthotropic nonlinear formula proposed by one of the authors was adopted. For concrete, the octahedral shear failure and tension cut-off criteria were also imposed. The Kirchhoff-Love's assumptions were assumed to be valid for the whole range of the analysis and the layered approach of elasto-plastic stiffness evaluation. Derivation of the shell element is outlined with examination of its accuracy in elastic range and the assumption of elasto-plastic material property and the procedure of nonlinear analysis are described. As examples, the method is applied to the analysis of a cylindrical container and a box-wall structure. Comparison of the computed results with the corresponding experimental data indicates the applicability of the proposed method. (orig./HP)

  15. Investigation of the Reliability of Bridge Elements Reinforced with Basalt Plastic Fibers

    Koval', T. I.

    2017-09-01

    The poorly studied problem on the reliability and durability of basalt-fiber-reinforced concrete bridge elements is considered. A method of laboratory research into the work of specimens of the concrete under a manyfold cyclic dynamic load is proposed. The first results of such experiments are presented.

  16. Properties of wood-plastic composites (WPCs) reinforced with extracted and delignified wood flour

    Yao Chen; Nicole M. Stark; Mandla A. Tshabalala; Jianmin Gao; Yongming Fan

    2014-01-01

    The water sorption and mechanical properties of wood-plastic composites (WPCs) made of extracted and delignified wood flour (WF) has been investigated. WF was prepared by extraction with the solvent systems toluene/ethanol (TE), acetone/water (AW), and hot water (HW), and its delignification was conducted by means of sodium chlorite/acetic acid (AA) solution. A 2 4...

  17. Moisture Performance of wood-plastic composites reinforced with extracted and delignified wood flour

    Yao Chen; Nicole M. Stark; Mandla A. Tshabalala; Jianmin Gao; Yongming Fan

    2014-01-01

    This study investigated the effect of using extracted and delignified wood flour on water sorption properties of wood–plastic composites. Wood flour (WF) extraction was performed with three solvent systems: toluene/ethanol (TE), acetone/water (AW), and hot water (HW); delignification was conducted using sodium chlorite/acetic acid solution. A 24 full-factorial...

  18. An Investigation on Tensile Properties of Glass Fiber/Aluminium Laminates

    M. Sadighi

    2009-12-01

    Full Text Available The idea of combining low weight and good mechanical properties has led to efforts to develop a new light fiber/metal laminate (FML in the last decade. FMLs are hybrid composites consisting of alternating thin layers of metal sheets and fiber-reinforced epoxy prepregs. In this study, the effect of fiber orientation on tensile properties of this material is investigated both analytically and experimentally. An analytical constitutive model based on classical lamination theory by using Kirchhoff-Love assumption, which incorporates the elastic-plastic behavior of the aluminium alloy was applied. Test results show that fiber sheet, with zero angle in laminates, improve the tensile strength. The composite layers with different fiber orientation change specimens' mode of fracture. Good agreement is obtained between the model predictions and experimental results.

  19. Application of a global plasticity model to determine the ultimate strength of a reinforced concrete slab

    Hoffmann, A.; Millard, A.; Nahas, G.

    1983-08-01

    In order to predict the behaviour of composite beams and shells loaded up to failure, a global method has been developped. This method is based on a generalized stress approach, formulated in terms of moment-curvature relations. The case of a reinforced concrete slab subjected to uniform pressure has been considered. It is shown that numerical results compare fairly well with experimental data. Some improvements to the model are also suggested

  20. Fibre Bragg Grating Sensor Signal Post-processing Algorithm: Crack Growth Monitoring in Fibre Reinforced Plastic Structures

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2016-01-01

    A novel method to assess a crack growing/damage event in fibre reinforced plastic, using conventional single mode Fibre Bragg Grating sensors embedded in the host material is presented in this article. Three different damage mechanisms that can change the sensor output, longitudinal strain εxx......, transversal stress σyy;zz, and non-uniform strain εxx(xx), were identified. These damage mechanisms were identified during the experimental testing and linked with the sensor output using a digital image correlation technique. A dedicated algorithm to extract information from the reflected spectrum...... that enables crack detection was developed. Double Cantilever Beams specimens made with glass fibre and bonded with structural adhesive, were instrumented with a Fibre Bragg Grating array embedded in the host material, and tested using an experimental fracture procedure. This method was successfully validated...

  1. Experimental Study of a Thermosyphon Solar Water Heater Coupled to a Fibre-Reinforced Plastic (FRP) Storage Tank

    Nwosu, P. N.; Oparaku, O. U.; Okonkwo, W. I.; Unachukwu, G. O.; Agbiogwu, D.

    2011-01-01

    The thermal performance of the thermosyphon solar water heater was analyzed to show its applicability in a tropical climate using data of cloudy, sunny and hazy days. The average daily efficiency of the parallel-connected module, ranged between 35 and 40%. Also, an analysis of the temperature storage characteristics of a novel fibre-reinforced plastic (FRP) storage tank was undertaken. The inlet andoutlet positions were determined using the recommendation of Simon and Wenxian [1]: the optional position for the inlet/outlet was around the very top/bottom of the tank. The obtained results showed that the coupled FRP tank substantially retained and delivered the stored hot water during off-sunshine hours with minimal losses, and stratification occurred in the tank as a result. In view of the thermal performance, FRP materials can be efficiently employed in the design of solar hot water storage tanks. (authors)

  2. Axial Collapse Characteristics of Aluminum/Carbon Fiber Reinforced Plastic Composite Thin-Walled Members with Different Section Shapes

    Hwang, Woo Chae; Kim, Ji Hoon; Yang, In Young [Chosun University, Gwangju (Korea, Republic of); Lee, Kil Sung [Humancomposites CO. Ltd, Gunsan (Korea, Republic of); Cha, Cheon Seok [Dongkang College, Gwangju (Korea, Republic of); Ra, Seung Woo [SEOUL METAL CO. Ltd, Seoul (Korea, Republic of)

    2014-09-15

    In the present study, we aimed to obtain design data that can be used for the side members of lightweight cars by experimentally examining the types of effects that the changes in the section shape and outermost layer of an aluminum (Al)/carbon fiber reinforced plastic (CFRP) composite structural member have on its collapse characteristics. We have drawn the following conclusions based on the test results: The circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at 0° was observed to be 52.9 and 49.93 higher than that of the square and hat-shaped members, respectively. In addition, the energy absorption characteristic of the circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at 90° was observed to be 50.49 and 49.2 higher than that of the square and hat-shaped members, respectively.

  3. Characterization and Effects of Fiber Pull-Outs in Hole Quality of Carbon Fiber Reinforced Plastics Composite.

    Alizadeh Ashrafi, Sina; Miller, Peter W; Wandro, Kevin M; Kim, Dave

    2016-10-13

    Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal.

  4. Behavior of reinforced concrete beams reinforced with GFRP bars

    D. H. Tavares

    Full Text Available The use of fiber reinforced polymer (FRP bars is one of the alternatives presented in recent studies to prevent the drawbacks related to the steel reinforcement in specific reinforced concrete members. In this work, six reinforced concrete beams were submitted to four point bending tests. One beam was reinforced with CA-50 steel bars and five with glass fiber reinforced polymer (GFRP bars. The tests were carried out in the Department of Structural Engineering in São Carlos Engineering School, São Paulo University. The objective of the test program was to compare strength, reinforcement deformation, displacement, and some anchorage aspects between the GFRP-reinforced concrete beams and the steel-reinforced concrete beam. The results show that, even though four GFRP-reinforced concrete beams were designed with the same internal tension force as that with steel reinforcement, their capacity was lower than that of the steel-reinforced beam. The results also show that similar flexural capacity can be achieved for the steel- and for the GFRP-reinforced concrete beams by controlling the stiffness (reinforcement modulus of elasticity multiplied by the bar cross-sectional area - EA and the tension force of the GFRP bars.

  5. The influence of glass fibers on the morphology of β-nucleated isotactic polypropylene evaluated by differential scanning calorimetry

    Janevski Aco

    2015-01-01

    Full Text Available The presence of fillers/fibers can significantly affect the polymorphic behavior of semi-crystalline polymers. The influence of glass fibers on morphology of β-nucleated iPP during isothermal and nonisothermal crystallization was analyzed in detail by DSC, and the kinetics and thermodynamic parameters were determined for the systems containing 10-60 % glass fibers. The presence of glass fibers in model composites with β-iPP has insignificant effect on the morphology of the polymer. Thermodynamic and kinetics parameters of crystallization of iPP in model composites are close to those obtained for the nucleated polymer. The relative content of β-crystalline phase is slightly affected by increasing glass fiber’s content from 10 % mas to 60 % mas, due to appearance of α-crystallites. However, the stability of β-crystalline phase is decreased by the increasing glass fibers content and there appeared certain amount of β1 and β2 phases which are known as disposed to recrystallization.

  6. Hybrid Carbon-Glass Fiber/Toughened Epoxy Thick Composite Joints Subject to Drop-Weight and Ballistic Impacts

    Liaw, Benjamin; Delale, Feridun

    2007-01-01

    ... No. DAAD19-02-R-0010 to conduct research on hybrid carbon-S2 glass fiber/toughened epoxy thick-section, hybrid interwoven composite joints subject to drop-weight and ballistic impacts. Dr. Basavaraju B. Raju of U.S...

  7. Novel Application of Glass Fibers Recovered From Waste Printed Circuit Boards as Sound and Thermal Insulation Material

    Sun, Zhixing; Shen, Zhigang; Ma, Shulin; Zhang, Xiaojing

    2013-10-01

    The aim of this study is to investigate the feasibility of using glass fibers, a recycled material from waste printed circuit boards (WPCB), as sound absorption and thermal insulation material. Glass fibers were obtained through a fluidized-bed recycling process. Acoustic properties of the recovered glass fibers (RGF) were measured and compared with some commercial sound absorbing materials, such as expanded perlite (EP), expanded vermiculite (EV), and commercial glass fiber. Results show that RGF have good sound absorption ability over the whole tested frequency range (100-6400 Hz). The average sound absorption coefficient of RGF is 0.86, which is prior to those of EP (0.81) and EV (0.73). Noise reduction coefficient analysis indicates that the absorption ability of RGF can meet the requirement of II rating for sound absorbing material according to national standard. The thermal insulation results show that RGF has a fair low thermal conductivity (0.046 W/m K), which is comparable to those of some insulation materials (i.e., EV, EP, and rock wool). Besides, an empirical dependence of thermal conductivity on material temperature was determined for RGF. All the results showed that the reuse of RGF for sound and thermal insulation material provided a promising way for recycling WPCB and obtaining high beneficial products.

  8. Standard practice for acoustic emission examination of pressurized containers made of fiberglass reinforced plastic with balsa wood cores

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice covers guidelines for acoustic emission (AE) examinations of pressurized containers made of fiberglass reinforced plastic (FRP) with balsa cores. Containers of this type are commonly used on tank trailers for the transport of hazardous chemicals. 1.2 This practice is limited to cylindrical shape containers, 0.5 m [20 in.] to 3 m [120 in.] in diameter, of sandwich construction with balsa wood core and over 30 % glass (by weight) FRP skins. Reinforcing material may be mat, roving, cloth, unidirectional layers, or a combination thereof. There is no restriction with regard to fabrication technique or method of design. 1.3 This practice is limited to containers that are designed for less than 0.520 MPa [75.4 psi] (gage) above static pressure head due to contents. 1.4 This practice does not specify a time interval between examinations for re-qualification of a pressure container. 1.5 This practice is used to determine if a container is suitable for service or if follow-up NDT is needed before that...

  9. Analysis of elastic-plastic dynamic response of reinforced concrete frame structure

    Li Zhongcheng

    2009-01-01

    Based on a set of data from seismic response test on an R/C frame, a force-based R/C beam fibre model with non-linear material properties and bond-slip effects are presented firstly in this paper, and then the applications to the tested R/C frame are presented to illustrate the model characteristics and to show the accuracy of seismic analysis including consideration of non-linear factors. It can be concluded that the elastic-plastic analysis is a potential step toward the accurate modelling for the dynamic analyses of R/C structures. Especially for the seismic safety re-evaluation of the existing NPPs, the elastic-plastic methodology with consideration of different non-linearities should be involved. (author)

  10. A Comparative Study of Natural Fiber and Glass Fiber Fabrics Properties with Metal or Oxide Coatings

    Lusis, Andrej; Pentjuss, Evalds; Bajars, Gunars; Sidorovicha, Uljana; Strazds, Guntis

    2015-01-01

    Rapidly growing global demand for technical textiles industries is stimulated to develop new materials based on hybrid materials (yarns, fabrics) made from natural and glass fibres. The influence of moisture on the electrical properties of metal and metal oxide coated bast (flax, hemp) fibre and glass fibre fabrics are studied by electrical impedance spectroscopy and thermogravimetry. The bast fibre and glass fiber fabrics are characterized with electrical sheet resistance. The method for description of electrical sheet resistance of the metal and metal oxide coated technical textile is discussed. The method can be used by designers to estimate the influence of moisture on technical data of new metal coated hybrid technical textile materials and products

  11. Physical Properties of AR-Glass Fibers in Continuous Fiber Spinning Conditions

    Lee, Ji-Sun; Lee, MiJai; Lim, Tae-Young; Lee, Youngjin; Jeon, Dae-Woo; Kim, Jin-Ho [Korea Institute of Ceramic Engineering and Technology, Jinju (Korea, Republic of); Hyun, Soong-Keun [Inha University, Incheon (Korea, Republic of)

    2017-04-15

    In this study, a glass fiber is fabricated using a continuous spinning process from alkali resistant (AR) glass with 4 wt%zirconia. In order to confirm the melting properties of the marble glass, the raw material is placed into a Pt crucible and melted at 1650 ℃ for 2 h, and then annealed. In order to confirm the transparency of the clear marble glass, the visible transmittance is measured and the fiber spinning condition is investigated by using high temperature viscosity measurements. A change in the diameter is observed according to the winding speed in the range of 100–900 rpm; it is also verified as a function of the fiberizing temperature in the range of 1200–1260 ℃. The optimum winding speed and spinning temperature are 500 rpm and 1240 ℃, respectively. The properties of the prepared spinning fiber are confirmed using optical microscope, tensile strength, modulus, and alkali-resistant tests.

  12. Evaluation of Mechanical Properties of Glass Fiber Posts Subjected to Laser Surface Treatments.

    Barbosa Siqueira, Carolina; Spadini de Faria, Natália; Raucci-Neto, Walter; Colucci, Vivian; Alves Gomes, Erica

    2016-10-01

    The aim of this study was to evaluate the influence of laser irradiation on flexural strength, elastic modulus, and surface roughness and morphology of glass fiber posts (GFPs). Laser treatment of GFPs has been introduced to improve its adhesion properties. A total of 40 GFPs were divided into 4 groups according to the irradiation protocol: GC-no irradiation, GYAG-irradiation with erbium:yttrium-aluminum-garnet [Er:YAG], GCR-irradiation with erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG), and GDI-irradiation with diode laser. The GFP roughness and morphology were evaluated through laser confocal microscopy before and after surface treatment. Three-point bending flexural test measured flexural strength and elastic modulus. Data about elastic modulus and flexural strength were subjected to one-way ANOVA and Bonferroni test (p properties of GFPs.

  13. Dimensional stability of wood-plastic composites reinforced with potassium methyl siliconate modified fiber and sawdust made from beetle-killed trees

    Cheng Piao; Zhiyong Cai; Nicole M. Stark; Charles J. Montezun

    2014-01-01

    Wood fromtwovarieties of beetle-killed trees was used to fabricate wood–plastic composites. Loblolly pine and lodgepole pine beetle-killed trees were defibrated mechanically and thermomechanically, respectively, into fiber. Fiber and sawdust produced from the trees were modified with potassium methyl siliconate (PMS) and injection-molded into fiber/sawdust reinforced...

  14. Push-out bond strengths of different dental cements used to cement glass fiber posts.

    Pereira, Jefferson Ricardo; Lins do Valle, Accácio; Ghizoni, Janaina Salomon; Lorenzoni, Fábio César; Ramos, Marcelo Barbosa; Barbosa, Marcelo Ramos; Dos Reis Só, Marcus Vinícius

    2013-08-01

    Since the introduction of glass fiber posts, irreversible vertical root fractures have become a rare occurrence; however, adhesive failure has become the primary failure mode. The purpose of this study was to evaluate the push-out bond strength of glass fiber posts cemented with different luting agents on 3 segments of the root. Eighty human maxillary canines with similar root lengths were randomly divided into 8 groups (n=10) according to the cement assessed (Rely X luting, Luting and Lining, Ketac Cem, Rely X ARC, Biscem, Duo-link, Rely X U100, and Variolink II). After standardized post space preparation, the root dentin was pretreated for dual-polymerizing resin cements and untreated for the other cements. The mixed luting cement paste was inserted into post spaces with a spiral file and applied to the post surface that was seated into the canal. After 7 days, the teeth were sectioned perpendicular to their long axis into 1-mm-thick sections. The push-out test was performed at a speed of 0.5 mm/min until extrusion of the post occurred. The results were evaluated by 2-way ANOVA and the all pairwise multiple comparison procedures (Tukey test) (α=.05). ANOVA showed that the type of interaction between cement and root location significantly influenced the push-out strength (Pcements and glass ionomer cements showed significantly higher values compared to dual-polymerizing resin cements. In all root segments, dual-polymerizing resin cements provided significantly lower bond strength. Significant differences among root segments were found only for Duo-link cement. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  15. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions

    Chen, Sisi; Yang, Qingbo; Brow, Richard K.; Liu, Kun; Brow, Katherine A.; Ma, Yinfa

    2017-01-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. - Highlights: • Novel dynamic flow cell culture modules were designed. • Bioactive glass fibers were evaluated for their effects on VEGF secretion. • Borate-based glass fibers stimulate VEGF secretion under dynamic condition. • CuO and ZnO doped borate-based glass fibers stimulate the greatest VEGF release.

  16. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions

    Chen, Sisi [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Yang, Qingbo [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Brow, Richard K. [Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Liu, Kun [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Brow, Katherine A. [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Ma, Yinfa [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); and others

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. - Highlights: • Novel dynamic flow cell culture modules were designed. • Bioactive glass fibers were evaluated for their effects on VEGF secretion. • Borate-based glass fibers stimulate VEGF secretion under dynamic condition. • CuO and ZnO doped borate-based glass fibers stimulate the greatest VEGF release.

  17. PMR Polyimide prepreg with improved tack characteristics. [Polymerization of Monomer Reactants applications to fiber reinforced plastics

    Serafini, T. T.; Delvigs, P.

    1978-01-01

    Current PMR Polyimide prepreg technology utilizes methanol or ethanol solvents for preparation of the PMR prepreg solutions. The volatility of these solvents limits the tack and drape retention characteristics of unprotected prepreg exposed to ambient conditions. Studies conducted to achieve PMR 15 Polyimide prepreg with improved tack and drape characteristics are described. Improved tack and drape retention were obtained by incorporation of an additional monomer. The effects of various levels of the added monomer on the thermo-oxidative stability and mechanical properties of graphite fiber reinforced PMR 15 composites exposed and tested at 316 C (600 F) are discussed.

  18. Change in the structure and properties of carbon fiber-reinforced plastic with a polysulfone matrix under the effect of gamma irradiation

    Arkhipov, A.A.; Korkhov, V.P.; Pudnik, V.V.; Rodin, Yu.P.

    1993-01-01

    This article presents the results of studying the change in the structure and properties of carbon fiber-reinforced plastic with a thermoplastic matrix -- aromatic polysulfone -- as a function of the absorbed dose of gamma radiation. In view of the presence in the polysulfone macromolecules and in carbon fibers of a large number of aromatic rings and double bonds providing high radiation resistance of the composite, irradiation was carried out up to large values of absorbed doses (10 9 rad). Specimens of orthogonally reinforced composite KTMU-1 with a thickness of 1.3 mm made from aromatic polysulfone PSF-150 and carbon ribbon that absorbed various gamma radiation dosages were used. It was found that structural transformations under the effect of gamma radiation did not have a substantial effect on the mechanical properties of carbon fiber-reinforced plastic. 2 refs., 3 figs., 3 tabs

  19. Mechanical properties of concrete reinforced with recycled HDPE plastic fibres\\ud

    Pešić, Ninoslav; Živanović, Stana; Garcia, Reyes; Papastergiou, Panos

    2016-01-01

    This work investigates potential engineering benefits of the pioneering application of simply extruded recycled high-density polyethylene (HDPE) plastic fibres in structural concrete. Mechanical and serviceability properties of concrete are studied through the testing of seven series of specimens: one made of the plain concrete and, for each of the two fibre diameters View the MathML source and View the MathML source, three series with 0.40%, 0.75% and 1.25% volume fraction of fibres. While t...

  20. Simplified elastic-plastic analysis of reinforced concrete structures - design method for self-restraining stress

    Aihara, S.; Atsumi, K.; Ujiie, K.; Satoh, S.

    1981-01-01

    Self-restraining stresses generate not only moments but also axial forces. Therefore the moment and force equilibriums of cross section are considered simultaneously, in combination with other external forces. Thus, under this theory, two computer programs are prepared for. Using these programs, the design procedures which considered the reduction of self-restraining stress, become easy if the elastic design stresses, which are separated normal stresses and self-restraining stresses, are given. Numerical examples are given to illustrate the application of the simplified elastic-plastic analysis and to study its effectiveness. First this method is applied to analyze an upper shielding wall in MARK-2 type's Reactor building. The results are compared with those obtained by the elastic-plastic analysis of Finite Element Method. From this comparison it was confirmed that the method described, had adequate accuracy for re-bar design. As a second example, Mat slab of Reactor building is analyzed. The quantity of re-bars calculated by this method, comes to about two third of re-bars less than those required when self-restraining stress is considered as normal stress. Also, the self-restraining stress reduction factor is about 0.5. (orig./HP)

  1. Assessment of the exit defects in carbon fibre-reinforced plastic plates caused by drilling

    Zhang Houjiang; Zhang Liangchi [Sydney Univ. (Australia). Dept. of Mechanical and Mechatronic Engineering; Chen Wuyi; Chen Dingchang [Beijing Univ. of Aeronautics and Astronautics, BJ (China). Dept. of Manufacturing Engineering

    2001-07-01

    This paper investigates the formation of the exit defects in carbon fibre-reinforced plates and characterizes their features in terms of drilling conditions. It was found that spalling and fuzzing are the major mechanisms of exit defects. The spalling, consisting of a main region and a secondary region, is caused by chisel and cutting edge actions, in which the former plays a key role. The fuzzing, however, exists in the cutting region where the included angle between the fibre direction of the surface layer and that of the cutting speed is acute. A severer spalling damage corresponds to a high spindle speed, a large feed rate and a great thrust force. Some empirical relationships, including a dimensionless formula, were developed for assessing the characteristic dimension of the spalling damage based on the known drilling conditions. (orig.)

  2. Buckling Modes of Structural Elements of Off-Axis Fiber-Reinforced Plastics

    Paimushin, V. N.; Polyakova, N. V.; Kholmogorov, S. A.; Shishov, M. A.

    2018-05-01

    The structures of two types of unidirectional fiber-reinforced composites — with an ELUR-P carbon fiber tape, an XT-118 cold-cure binder with an HSE 180 REM prepreg, and a hot-cure binder — were investigated. The diameters of fibers and fiber bundles (threads) of both the types of composites were measured, and their mutual arrangement was examined both in the semifinished products (in the uncured state) and in the finished composites. The defects characteristic of both the types of binder and manufacturing technique were detected in the cured composites. Based on an analysis of the results obtained, linearized problems on the internal multiscale buckling modes of an individual fiber (with and without account of its interaction with the surrounding matrix) or of a fiber bundle are formulated. In the initial atate, these structural elements of the fibrous composites are in a subcritical (unperturbed) state under the action of shear stresses and tension (compression) in the transverse direction. Such an initial stress state is formed in them in tension and compression tests on flat specimens made of off-axis-reinforced composites with straight fibers. To formulate the problems, the equations derived earlier from a consistent variant of geometrically nonlinear equations of elasticity theory by reducing them to the one-dimensional equations of the theory of straight rods on the basis of a refined Timoshenko shear model with account of tensile-compressive strains in the transverse direction are used. It is shown that, in loading test specimens, a continuous rearrangement of composite structure can occur due to the realization and continuous change of internal buckling modes as the wave-formation parameter varies continuously, which apparently explain the decrease revealed in the tangential shear modulus of the fibrous composites with increasing shear strains.

  3. Elastic and Plastic Behavior of an Ultrafine-Grained Mg Reinforced with BN Nanoparticles

    Trojanová, Zuzanka; Dash, Khushbu; Máthis, Kristián; Lukáč, Pavel; Kasakewitsch, Alla

    2018-04-01

    Pure microcrystalline magnesium (µMg) was reinforced with hexagonal boron nitride (hBN) nanoparticles and was fabricated by powder metallurgy process followed by hot extrusion. For comparison pure magnesium powder was consolidated by hot extrusion too. Both materials exhibited a significant fiber texture. Mg-hBN nanocomposites (nc) and pure Mg specimens were deformed between room temperature and 300 °C under tension and compression mode. The yield strength and ultimate tensile and compression strength as well as characteristic stresses were evaluated and reported. The tensile and compressive strengths of Mg-hBN nc are quiet superior in values compared to monolithic counterpart as well as Mg alloys. The compressive yield strength of µMg was recorded as 90 MPa, whereas the Mg-hBN nancomposite shows 125 MPa at 200 °C. The tensile yield strength of µMg was computed as 67 MPa which is quite lower as compared to Mg-hBN nanocomposite's value which was recorded as 157 MPa at 200 °C. Under tensile stress the true stress-strain curves are flat in nature, whereas the stress-strain curves observed in compression at temperatures up to 100 °C exhibited small local maxima at the onset of deformation followed by a significant work hardening.

  4. FIQUE FIBER AN ALTERNATIVE FOR REINFORCED PLASTICS. INFLUENCE OF SURFACE MODIFICATION

    MARIO FERNANDO MUÑOZ VELEZ

    2014-12-01

    Full Text Available In this paper are studied the physicochemical, mechanical and thermal properties of the natural fique fibers, that can be used as reinforcement of polymeric matrices. The fibers were subjected to superficial modifications from chemical treatments which are conventionally used to promote the compatibility of natural fibers (hydrophilics with matrices of polymeric nature (hydrophobics. The superficial modification process of the fibers was carried out by alkalinization treatment with NaOH, followed by grafting of a coupling agent type silane and then a pre-impregnation with polyethylene. By running FTIR tests, it was possible to observe functional typical groups of native fibers and confirmed the proper execution of the superficial modifications proposed; in the same way, the thermal characterization by TGA allowed to demonstrate the loss of hemicellulose and lignin, that were removed with alkaline treatment, and the appearance of a new transition due to the polyethylene deposited subsequently with the pre-impregnate treatment. Finally, it was found that the alkaline treatment conditioned the mechanical properties of the treated fibers, being negligible the influence of silanization and the pre-impregnation in this characterization.

  5. Smart Natural Fiber Reinforced Plastic (NFRP) Composites Based On Recycled Polypropylene in The Presence Kaolin

    Suharty, N. S.; Ismail, H.; Diharjo, K.; Handayani, D. S.; Lestari, W. A.

    2017-07-01

    Composites contain double filler material which act as reinforcement and flame retardants of recycled polypropylene (rPP)/kaolin(Kao)/palm oil empty bunch fiber (PEBF) have been succesfully prepared. The composites were synthesized through reactively solution method, using coupling agent PP-g-AA and compatibilizer DVB. The effect of double filler [Kao/PEBF] were investigated flexural strength (FS), inflammability, and morphology. Mechanical testing result in accordance to ASTM D790, the FS of rPP/DVB/PP-g-AA/Kao+ZB/PEBF composite was 48% higher than that of rPP matrix. Moreover, flexural modulus (FM) was significantly improved by 56% as compared to that of rPP matrix. The scanning electron images (SEM) shown good dispersion of [Ka/PEBF] and good filler-matrix interaction. The inflammability testing result which is tested using ASTM D635, showed that the flame resistance of rPP/DVB/PP-g-AA/Kao+ZB/PEBF composite was improve by increasing of time to ignition (TTI) about 857% and burning rate (BR) decreasing to 66% compared to the raw material rPP matrix. In the same time, the addition of 20% (w/w) PEBF as a second filler to form rPP/DVB/PP-g-AA/Kao+ZB/PEBF composites (F5) is able to increase: the FS by 17.5%, the FM by 19%, the TTI by 7.6% and the BR by 3.7% compared to the composite without PEBF (F2).

  6. Raising of geo ecological safety of engineering collectors: the new method of assessment of water tightness of reinforced concrete blocks with basalt plastic lining

    Lyapidevskaya Olga

    2017-01-01

    Full Text Available This work presents analytics ways to estimation and assessment of water tightness of reinforced concrete blocks with basalt plastic lining for increasing geo ecological safety of engineering collectors. It is proved the advisability of application basalt plastic lining instead secondary protection of concrete with hydraulic seal. The results of estimation filtration coefficient and assessment of water tightness of basalt plastic lining of engineering collectors are represented. It is carried out comparative analysis of filtration coefficient and water tightness data of basalt plastic lining and secondary protection. The geo ecological effect is proved at the expense of application of new materials and reducing breakdown events with collectors that may lead pollution of ground and subsoil water with sewage.

  7. Computer Modeling of the Dynamic Strength of Metal-Plastic Cylindrical Shells Under Explosive Loading

    Abrosimov, N. A.; Novosel'tseva, N. A.

    2017-05-01

    A technique for numerically analyzing the dynamic strength of two-layer metal-plastic cylindrical shells under an axisymmetric internal explosive loading is developed. The kinematic deformation model of the layered package is based on a nonclassical theory of shells. The geometric relations are constructed using relations of the simplest quadratic version of the nonlinear elasticity theory. The stress and strain tensors in the composite macrolayer are related by Hooke's law for an orthotropic body with account of degradation of the stiffness characteristics of the multilayer package due to local failure of some its elementary layers. The physical relations in the metal layer are formulated in terms of a differential theory of plasticity. An energy-correlated resolving system of dynamic equations for the metal-plastic cylindrical shells is derived by minimizing the functional of total energy of the shells as three-dimensional bodies. The numerical method for solving the initial boundary-value problem formulated is based on an explicit variational-difference scheme. The reliability of the technique considered is verified by comparing numerical results with experimental data. An analysis of the ultimate strains and strength of one-layer basalt-and glass-fiber-reinforced plastic and two-layer metalplastic cylindrical shells is carried out.

  8. A fiber-reinforced composite prosthesis restoring a lateral midfacial defect: a clinical report.

    Kurunmäki, Hemmo; Kantola, Rosita; Hatamleh, Muhanad M; Watts, David C; Vallittu, Pekka K

    2008-11-01

    This clinical report describes the use of a glass fiber-reinforced composite (FRC) substructure to reinforce the silicone elastomer of a large facial prosthesis. The FRC substructure was shaped into a framework and embedded into the silicone elastomer to form a reinforced facial prosthesis. The prosthesis is designed to overcome the disadvantages associated with traditionally fabricated prostheses; namely, delamination of the silicone of the acrylic base, poor marginal adaptation over time, and poor simulation of facial expressions.

  9. A device for uranium series leaching from glass fiber in HEPA filter

    Gye-Nam Kim; Hye-Min Park; Wang-Kyu Choi; Jei-Kwon Moon

    2012-01-01

    For the disposal of a high efficiency particulate air (HEPA) glass filter into the environment, the glass fiber should be leached to lower its radioactive concentration to the clearance level. To derive an optimum method for the removal of uranium series from a HEPA glass fiber, five methods were applied in this study. That is, chemical leaching by a 4.0 M HNO 3 -0.1 M Ce(IV) solution, chemical leaching by a 5 wt% NaOH solution, chemical leaching by a 0.5 M H 2 O 2 -1.0 M Na 2 CO 3 solution, chemical consecutive chemical leaching by a 4.0 M HNO 3 solution, and repeated chemical leaching by a 4.0 M HNO 3 solution were used to remove the uranium series. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after leaching for 5 h by the 4.0 M HNO 3 -0.1 M Ce(IV) solution were 2.1, 0.3, 1.1, and 1.2 Bq/g. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after leaching for 36 h by 4.0 M HNO 3 -0.1 M Ce(IV) solution were 76.9, 3.4, 63.7, and 71.9 Bq/g. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after leaching for 8 h by a 0.5 M H 2 O 2 -1.0 M Na 2 CO 3 solution were 8.9, 0.0, 1.91, and 6.4 Bq/g. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after consecutive leaching for 8 h by the 4.0 M HNO 3 solution were 2.08, 0.12, 1.55, and 2.0 Bq/g. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after three repetitions of leaching for 3 h by the 4.0 M HNO 3 solution were 0.02, 0.02, 0.29, and 0.26 Bq/g. Meanwhile, the removal efficiencies of 238 U, 235 U, 226 Ra, and 234 Th from the waste solution after its precipitation-filtration treatment with NaOH and alum for reuse of the 4.0 M HNO 3 waste solution were 100, 100, 93.3, and 100%. (author)

  10. Measurement of Three-Dimensional Anisotropic Thermal Diffusivities for Carbon Fiber-Reinforced Plastics Using Lock-In Thermography

    Ishizaki, Takuya; Nagano, Hosei

    2015-11-01

    A new measurement technique to measure the in-plane thermal diffusivity, the distribution of in-plane anisotropy, and the out-of-plane thermal diffusivity has been developed to evaluate the thermal conductivity of anisotropic materials such as carbon fiber-reinforced plastics (CFRPs). The measurements were conducted by using a laser-spot-periodic-heating method. The temperature of the sample is detected by using lock-in thermography. Thermography can analyze the phase difference between the periodic heat input and the temperature response of the sample. Two kinds of samples, unidirectional (UD) and cross-ply (CP) pitch-based CFRPs, were fabricated and tested in an atmospheric condition. All carbon fibers of the UD sample run in one direction [90°]. The carbon fibers of the CP sample run in two directions [0°/90°]. It is found that, by using lock-in thermography, it is able to visualize the thermal anisotropy and calculate the angular dependence of the in-plane thermal diffusivity of the CFRPs. The out-of-plane thermal diffusivity of CFRPs was also measured by analyzing the frequency dependence of the phase difference.

  11. Method for detecting damage in carbon-fibre reinforced plastic-steel structures based on eddy current pulsed thermography

    Li, Xuan; Liu, Zhiping; Jiang, Xiaoli; Lodewijks, Gabrol

    2018-01-01

    Eddy current pulsed thermography (ECPT) is well established for non-destructive testing of electrical conductive materials, featuring the advantages of contactless, intuitive detecting and efficient heating. The concept of divergence characterization of the damage rate of carbon fibre-reinforced plastic (CFRP)-steel structures can be extended to ECPT thermal pattern characterization. It was found in this study that the use of ECPT technology on CFRP-steel structures generated a sizeable amount of valuable information for comprehensive material diagnostics. The relationship between divergence and transient thermal patterns can be identified and analysed by deploying mathematical models to analyse the information about fibre texture-like orientations, gaps and undulations in these multi-layered materials. The developed algorithm enabled the removal of information about fibre texture and the extraction of damage features. The model of the CFRP-glue-steel structures with damage was established using COMSOL Multiphysics® software, and quantitative non-destructive damage evaluation from the ECPT image areas was derived. The results of this proposed method illustrate that damaged areas are highly affected by available information about fibre texture. This proposed work can be applied for detection of impact induced damage and quantitative evaluation of CFRP structures.

  12. Quick Preparation of Moisture-Saturated Carbon Fiber-Reinforced Plastics and Their Accelerated Ageing Tests Using Heat and Moisture

    Masao Kunioka

    2016-06-01

    Full Text Available A quick method involving the control of heat and water vapor pressure for preparing moisture-saturated carbon fiber-reinforced plastics (CFRP, 8 unidirectional prepreg layers, 1.5 mm thickness, epoxy resin has been developed. The moisture-saturated CFRP sample was obtained at 120 °C and 0.2 MPa water vapor in 72 h by this method using a sterilizer (autoclave. The bending strength and viscoelastic properties measured by a dynamic mechanical analysis (DMA remained unchanged during repetitive saturation and drying steps. No degradation and molecular structural change occurred. Furthermore an accelerated ageing test with two ageing factors, i.e., heat and moisture was developed and performed at 140–160 °C and 0.36–0.62 MPa water vapor pressure by using a sealed pressure-proof stainless steel vessel (autoclave. The bending strength of the sample decreased from 1107 to 319 MPa at 160 °C and 0.63 MPa water vapor pressure in 9 days. Degraded samples were analyzed by DMA. The degree of degradation for samples was analyzed by DMA. CFRP and degraded CFRP samples were analyzed by using a surface and interfacial cutting analysis system (SAICAS and an electron probe micro-analyzer (EPMA equipped in a scanning electron microscope.

  13. Scanning tone burst eddy-current thermography (S-TBET) for NDT of carbon fiber reinforced plastic (CFRP) components

    Libin, M. N.; Maxfield, B. W.; Balasubramanian, Krishnan

    2014-01-01

    Tone Burst Eddy Current technique uses eddy current to apply transient heating inside a component and uses a conventional IR camera for visualization of the response to the transient heating. This technique has been earliest demonstrated for metallic components made of AL, Steel, Stainless Steel, etc., and for detection of cracks, corrosion and adhesive dis-bonds. Although, not nearly as conducting as metals, the Carbon Fibre Reinforced Plastic (CFRP) material absorbs measurable electromagnetic radiation in the frequency range above 10 kHz. When the surface temperature is observed on the surface that is being heated (defined as the surface just beneath and slightly to one side of the heating coil), the surface temperature increases with increasing frequency because the internal heating increases with frequency. A 2-D anisotropic transient Eddy current heating and thermal conduction model has been developed that provides a reasonable description of the processes described above. The inherent anisotropy of CFRP laminates is included in this model by calculating the heating due to three superimposed, tightly coupled isotropic layers having a specified ply-layup. The experimental apparatus consists of an induction heating coil and an IR camera with low NETD and high frame rates. The coil is moved over the sample using a stepper motor controlled manipulator. The IR data recording is synchronized with the motion control to provide a movie of the surface temperature over time. Several components were evaluated for detection of impact damage, location of stiffeners, etc. on CFRP components

  14. Impacts of the manufacturing process using fiberglass reinforced plastic composite on the environment and occupational health: the automotive industry case

    Cíntia Madureira Orth

    2012-06-01

    Full Text Available The production of fiberglass reinforced plastic composite parts may cause serious damages to the health of workers and/or the environment, especially due to the generation of process trimmings, noise level and gas emission.  In view of that, this essay aims at assessing the main impacts of the Molding and Finish processes of an automotive plant on the environment and occupational health. It was observed that the open molding method adopted by the studied plant is the main cause of the generation of residues and that the waste of raw materials as trimmings may reach up to 30%. The final destination of those trimmings, which represent 45% of all the residues generated by the factory, is the industrial landfill. It was also observed that, due to the use of open molds, the levels of styrene and fiber dust were above the tolerance limits, presenting risks to the health of the workers.  Therefore, the studied company should consider the possibility of adopting less aggressive technologies, such as that used in closed molds. The reduction of the negative impacts of the productive processes in their source should be part of the company’s policy. Furthermore, the prevention must be continuous and improved every day.

  15. Scanning tone burst eddy-current thermography (S-TBET) for NDT of carbon fiber reinforced plastic (CFRP) components

    Libin, M. N.; Maxfield, B. W.; Balasubramanian, Krishnan [Centre for Nondestructive Evaluation, Indian Institute of Technology Madras, Chennai 600036 (India)

    2014-02-18

    Tone Burst Eddy Current technique uses eddy current to apply transient heating inside a component and uses a conventional IR camera for visualization of the response to the transient heating. This technique has been earliest demonstrated for metallic components made of AL, Steel, Stainless Steel, etc., and for detection of cracks, corrosion and adhesive dis-bonds. Although, not nearly as conducting as metals, the Carbon Fibre Reinforced Plastic (CFRP) material absorbs measurable electromagnetic radiation in the frequency range above 10 kHz. When the surface temperature is observed on the surface that is being heated (defined as the surface just beneath and slightly to one side of the heating coil), the surface temperature increases with increasing frequency because the internal heating increases with frequency. A 2-D anisotropic transient Eddy current heating and thermal conduction model has been developed that provides a reasonable description of the processes described above. The inherent anisotropy of CFRP laminates is included in this model by calculating the heating due to three superimposed, tightly coupled isotropic layers having a specified ply-layup. The experimental apparatus consists of an induction heating coil and an IR camera with low NETD and high frame rates. The coil is moved over the sample using a stepper motor controlled manipulator. The IR data recording is synchronized with the motion control to provide a movie of the surface temperature over time. Several components were evaluated for detection of impact damage, location of stiffeners, etc. on CFRP components.

  16. Feasibility study of ultrasonic elliptical vibration-assisted reaming of carbon fiber reinforced plastics/titanium alloy stacks.

    Geng, Daxi; Zhang, Deyuan; Li, Zhe; Liu, Dapeng

    2017-03-01

    The production of high quality bolt holes, especially on the carbon fiber reinforced plastics/titanium alloy (CFRP/Ti) stacks, is essential to the manufacturing process in order to facilitate part assembly and improve the component mechanical integrity in aerospace industry. Reaming is widely used as a mandatory operation for bolt holes to meet the strict industry requirements. In this paper, the ultrasonic elliptical vibration-assisted reaming (UEVR) which is considered as a new method for finish machining of CFRP/Ti stacked holes is studied. The paper outlines an analysis of tool performance and hole quality in UEVR compared with that in conventional reaming (CR). Experimental results show that the quality of holes was significantly improved in UEVR. This is substantiated by monitoring cutting force, hole geometric precision and surface finish. The average thrust forces and torque in UEVR were decreased over 30% and 60% respectively. It is found that, during first 45 holes, better diameter tolerance (IT7 vs. IT8), smaller diameter difference of CFRP and Ti holes (around 3μm vs. 12μm), better geometrical errors were achieved in UEVR as compared to CR. As for surface finish, both of the average roughness and hole surface topography in UEVR were obviously improved. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Evaluation of Variation in Residual Strength of Carbon Fiber Reinforced Plastic Plate with a Hole Subjected to Fatigue Load

    Kim, Sang Young; Kang, Min Sung; Koo, Jae Mean; Seok, Chang Sung [Sungkyunkwan University, Seoul (Korea, Republic of)

    2010-10-15

    CFRP (Carbon Fiber Reinforced Plastic) has received considerable attention in various fields as a structural material, because of its high specific strength, high specific stiffness, excellent design flexibility, favorable chemical properties, etc. Most products consisting of several parts are generally assembled by mechanical joining methods (using rivets, bolts, pins, etc.). Holes must be drilled in the parts to be joined, and the strength of the components subjected to static and fatigue loads caused by stress concentration must be decreased. In this study, we experimentally evaluated the variation in the residual strength of a holenotched CFRP plate subjected to fatigue load. We repeatedly subjected the hole-notched specimen to fatigue load for a certain number of cycles, and then we investigated the residual strength of the hole-notched specimen by performing the fracture test. From the results of the test, we can observe the initiation of a directional crack caused by the applied fatigue load. Further, we observed that the residual strength increases with a decrease in the notch effect due to this crack. It was evaluated that the residual strength increases to a certain level and subsequently decreases. This variation in the residual strength was represented by a simple equation by using a model of the decrease in residual strength for plain plate, which was developed by Reifsnider and a stress redistribution model for hole-notched plate, which was developed by Yip.

  18. Fatigue Damage Evaluation of Short Carbon Fiber Reinforced Plastics Based on Phase Information of Thermoelastic Temperature Change.

    Shiozawa, Daiki; Sakagami, Takahide; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi

    2017-12-06

    Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft, or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to evaluate fatigue damage in short carbon fiber composites. The distribution of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damage was detected from the distribution of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was more clearly detected than before by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the property that carbon fiber shows opposite phase thermoelastic temperature change.

  19. The Effect of an Active Diluent on the Properties of Epoxy Resin and Unidirectional Carbon-Fiber-Reinforced Plastics

    Solodilov, V. I.; Gorbatkina, Y. A.; Kuperman, A. M.

    2003-11-01

    The influence of an active diluent on the properties of an epoxy matrix and carbon-fiber-reinforced plastics (CFRP) is investigated. The physicomechanical properties of an ED-20 epoxy resin modified with diglycidyl ether of diethylene glycol (DEG-1), the adhesion strength at the epoxy matrix-steel wire interface, and the mechanical properties of unidirectional CFRP are determined. The concentration of DEG-1 was varied from 0 to 50 wt.%. The properties of the matrix, the interface, and the composites are compared. It is stated that the matrix strength affects the strength of unidirectional CFRP in bending and not their strength in tension, compression, and shear. The latter fact seems somewhat unexpected. The interlaminar fracture toughness of the composites investigated correlates with the ultimate elongation of the binder. A comparison between the concentration dependences of adhesion strength and the strength of CFRP shows that the matrices utilized provide such a high interfacial strength that the strength of CFRP no longer depends on the adhesion of its constituents.

  20. Application of sandwich honeycomb carbon/glass fiber-honeycomb composite in the floor component of electric car

    Sukmaji, I. C.; Wijang, W. R.; Andri, S.; Bambang, K.; Teguh, T.

    2017-01-01

    Nowadays composite is a superior material used in automotive component due to its outstanding mechanical behavior. The sandwich polypropylene honeycomb core with carbon/glass fiber composite skin (SHCG) as based material in a floor component of electric car application is investigated in the present research. In sandwich structure form, it can absorb noise better compare with the conventional material [1]. Also in present paper, Finite Element Analysis (FEA) of SHCG as based material for floor component of the electric car is analyzed. The composite sandwich is contained with a layer uniform carbon fiber and mixing non-uniform carbon-glass fiber in upper and lower skin. Between skins of SHCG are core polypropylene honeycomb that it have good flexibility to form following dies profile. The variables of volume fraction ratio of carbon/glass fiber in SHCG skin are 20/80%, 30/70%, and 50/50%. The specimen of SHCG is tested using the universal testing machine by three points bending method refers to ASTM C393 and ASTM C365. The cross point between tensile strength to the volume fraction the mixing carbon/glass line and ratio cost line are the searched material with good mechanical performance and reasonable cost. The point is 30/70 volume fraction of carbon/glass fiber. The result of the testing experiment is become input properties of model structure sandwich in FEA simulation. FEA simulation approach is conducted to find critical strength and factor of complex safety geometry against varied distributed passenger loads of a floor component the electric car. The passenger loads variable are 80, 100, 150, 200, 250 and 300 kg.

  1. Synthesis of nanocrystals in KNb(Ge,Si)O5 glasses and chemical etching of nanocrystallized glass fibers

    Enomoto, Itaru; Benino, Yasuhiko; Fujiwara, Takumi; Komatsu, Takayuki

    2006-01-01

    The nanocrystallization behavior of 25K 2 O-25Nb 2 O 5 -(50-x)GeO 2 -xSiO 2 glasses with x=0,25,and50 (i.e., KNb(Ge,Si)O 5 glasses) and the chemical etching behavior of transparent nanocrystallized glass fibers have been examined. All glasses show nanocrystallization, and the degree of transparency of the glasses studied depends on the heat treatment temperature. Transparent nanocrystallized glasses can be obtained if the glasses are heat treated at the first crystallization peak temperature. Transparent nanocrystallized glass fibers with a diameter of about 100μm in 25K 2 O-25Nb 2 O 5 -50GeO 2 are fabricated, and fibers with sharpened tips (e.g., the taper length is about 450μm and the tip angle is about 12 o ) are obtained using a meniscus chemical etching method, in which etching solutions of 10wt%-HF/hexane and 10M-NaOH/hexane are used. Although the tip (aperture size) has not a nanoscaled size, the present study suggests that KNb(Ge,Si)O 5 nanocrystallized glass fibers have a potential for new near-field optical fiber probes with high refractive indices of around n=1.8 and high dielectric constants of around ε=58 (1kHz, room temperature)

  2. Scintillating-Glass-Fiber neutron sensors, their application and performance for plutonium detection and monitoring

    Seymour, R.S.; Richardson, B.; Morichi, M.; Bliss, M.; Craig, R.A.; Sunberg, D.S.

    1998-01-01

    Most neutron detection sensors presently employ 3 He gas-filled detectors. Despite their excellent performance and widespread use, there are significant limitations to this technology. A significant alternative neutron sensor utilizing neutron-active material incorporated into a glass scintillator is presented that offers novel commercial sensors not possible or practical with gas tube technology. The scintillating optical fiber permits sensors with a multitude of sizes ranging from devices of a single fiber of 150μm to sensors with tens of thousands of fibers with areas as large as 5m 2 depending on the neutron flux to be measured. A second significant advantage is the use of high-speed electronics that allow a greater dynamic range, not possible with gas detectors. These sensors are flexible, conformable and less sensitive to vibration that optimizes the source-to-detector geometry and provides robust performance in field applications. The glass-fibers are sensitive to both gamma rays and neutrons. However the coincidence electronics are optimized for neutron to gamma ray discrimination allowing very sensitive measurements with a low false-alarm rate. Applications include SNM surveillance, material control and accountability (MC and A), safeguard inspections, Pu health physics / bioassay and environmental characterization. (author)

  3. Effect of the impact directions, of the fibers and of the aging on the glass fibers composite resistance; Effet des directions de l'impact, des fibres et du vieillissement sur la resistance du composite en fibres de verre

    Vina, J.; Arguelles, A. [Oviedo Univ. (Spain); Zenasni, R.; Ouinas, D. [Universite de Mostaganem (Algeria)

    2006-07-01

    Usually, composites of epoxy matrix reinforced with glass fiber are used in the fabrication of wind turbine blades. This material has an anisotropic structure and its mechanical properties are not the same in all the directions. The impact strength was evaluated from the mechanical tests carried out in two perpendicular directions. The effect of aging was analyzed immersing the specimens into water to 70 C, during different periods of time. From the results of the tests, the dynamic fracture toughness (Kid) and the resilience (KCV) were obtained. An important difference was obtained between the specimens taken out in the blade direction and in the perpendicular direction. The aging specimens, in the two directions, have showed continuous decrements in the dynamic toughness and resilience, from the first period of immersion of 15 days until 180 days. (authors)

  4. Reconstruction of fiber Bragg grating strain profile used to monitor the stiffness degradation of the adhesive layer in carbon fiber–reinforced plastic single-lap joint

    Song Chunsheng

    2017-01-01

    Full Text Available The adhesive-bonded joint of carbon fiber–reinforced plastic is one of the core components in aircraft structure design. It is an effective guarantee for the safety and reliability of the aerospace aircraft structure to use effective methods for monitoring and early warning of internal failure. In this article, the mapping relation model between the strain profiles of the adherend of the carbon fiber–reinforced plastic single-lap adhesive joint and the stiffness degradation evolution of adhesive layer was achieved by finite element software ABAQUS. The fiber Bragg grating was embedded in the adherend between the first and second layers at the end of the adhesive layer to calculate the reflection spectrum of fiber Bragg grating sensor region with improved T-matrix method for reconstruction of the adherend strain profile of fiber Bragg grating sensing area with the help of genetic algorithm. According to the reconstruction results, the maximum error between the ideal and reconstructed strain profile under different tension loads did not exceed 7.43%, showing a good coincidence degree. The monitoring method of the stiffness degradation evolution of adhesive layer of the carbon fiber–reinforced plastic single-lap joint based on the reconstruction of the adherend strain profile of fiber Bragg grating sensing area thus was figured out.

  5. Numerical Analysis of Carbon Fiber Reinforced Plastic (CFRP) Shear Walls and Steel Strips under Cyclic Loads Using Finite Element Method

    Askarizadeh, N.; Mohammadizadeh, M. R.

    2017-01-01

    Reinforced concrete shear walls are the main elements of resistance against lateral loads in reinforced concrete structures. These walls should not only provide sufficient resistance but also provide sufficient ductility in order to avoid brittle fracture, particularly under strong seismic loads. However, many reinforced concrete shear walls need to be stabilized and reinforced due to various reasons such as changes in requirements of seismic regulations, weaknesses in design and execution, p...

  6. Contour scanning of textile preforms using a light-section sensor for the automated manufacturing of fibre-reinforced plastics

    Schmitt, R.; Niggemann, C.; Mersmann, C.

    2008-04-01

    Fibre-reinforced plastics (FRP) are particularly suitable for components where light-weight structures with advanced mechanical properties are required, e.g. for aerospace parts. Nevertheless, many manufacturing processes for FRP include manual production steps without an integrated quality control. A vital step in the process chain is the lay-up of the textile preform, as it greatly affects the geometry and the mechanical performance of the final part. In order to automate the FRP production, an inline machine vision system is needed for a closed-loop control of the preform lay-up. This work describes the development of a novel laser light-section sensor for optical inspection of textile preforms and its integration and validation in a machine vision prototype. The proposed method aims at the determination of the contour position of each textile layer through edge scanning. The scanning route is automatically derived by using texture analysis algorithms in a preliminary step. As sensor output a distinct stage profile is computed from the acquired greyscale image. The contour position is determined with sub-pixel accuracy using a novel algorithm based on a non-linear least-square fitting to a sigmoid function. The whole contour position is generated through data fusion of the measured edge points. The proposed method provides robust process automation for the FRP production improving the process quality and reducing the scrap quota. Hence, the range of economically feasible FRP products can be increased and new market segments with cost sensitive products can be addressed.

  7. Risk of cancer in workers exposed to styrene at eight British companies making glass-reinforced plastics.

    Coggon, David; Ntani, Georgia; Harris, E Clare; Palmer, Keith T

    2015-03-01

    To provide further information on the risks of lymphohaematopoietic (LH) and other cancers associated with styrene. We extended follow-up to December 2012 for 7970 workers at eight companies in England which used styrene in the manufacture of glass-reinforced plastics. Mortality was compared with that for England and Wales by the person-years method, and summarised by SMRs with 95% CIs. A supplementary nested case-control analysis compared styrene exposures, lagged by 5 years, in 122 incident or fatal cases of LH cancer and 1138 matched controls. A total of 3121 cohort members had died (2022 since the last follow-up). No elevation of mortality was observed for LH cancer, either in the full cohort (62 deaths, SMR 0.90, 95% CI 0.69 to 1.15), or in those with more than background exposure to styrene (38 deaths, SMR 0.82, 95% CI 0.58 to 1.14). Nor did the case-control analysis suggest any association with LH cancer. In comparison with background exposure, the OR for non-Hodgkin's lymphoma/chronic lymphocytic leukaemia in workers with high exposure (estimated 8-h time-weighted average of 40-100 ppm) for ≥1 year was 0.54 (95% CI 0.23 to 1.27). Mortality from lung cancer was significantly elevated, and risk increased progressively across exposure categories, with an SMR of 1.44 (95% CI 1.10 to 1.86) in workers highly exposed for ≥1 year. We found no evidence that styrene causes LH cancer. An association with lung cancer is not consistently supported by other studies. It may have been confounded by smoking, but would be worth checking further. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Influence of different adhesive systems on the pull-out bond strength of glass fiber posts.

    da Silva, Luciana Mendonça; Andrade, Andréa Mello de; Machuca, Melissa Fernanda Garcia; da Silva, Paulo Maurício Batista; da Silva, Ricardo Virgolino C; Veronezi, Maria Cecília

    2008-01-01

    This in vitro study evaluated the tensile bond strength of glass fiber posts (Reforpost - Angelus-Brazil) cemented to root dentin with a resin cement (RelyX ARC - 3M/ESPE) associated with two different adhesive systems (Adper Single Bond - 3M/ESPE and Adper Scotchbond Multi Purpose (MP) Plus - 3M/ESPE), using the pull-out test. Twenty single-rooted human teeth with standardized root canals were randomly assigned to 2 groups (n=10): G1- etching with 37% phosphoric acid gel (3M/ESPE) + Adper Single Bond + #1 post (Reforpost - Angelus) + four #1 accessory posts (Reforpin - Angelus) + resin cement; G2- etching with 37% phosphoric acid gel + Adper Scotchbond MP Plus + #1 post + four #1 accessory posts + resin cement. The specimens were stored in distilled water at 37 degrees C for 7 days and submitted to the pull-out test in a universal testing machine (EMIC) at a crosshead speed of 0.5 mm/min. The mean values of bond strength (kgf) and standard deviation were: G1- 29.163 +/- 7.123; G2- 37.752 +/-13.054. Statistical analysis (Student's t-test; a=0.05 showed no statistically significant difference (pAdhesive bonding failures between resin cement and root canal dentin surface were observed in both groups, with non-polymerized resin cement in the apical portion of the post space when Single Bond was used (G1). The type of adhesive system employed on the fiber post cementation did not influence the pull-out bond strength.

  9. Influence of different adhesive systems on the pull-out bond strength of glass fiber posts

    Luciana Mendonça da Silva

    2008-06-01

    Full Text Available This in vitro study evaluated the tensile bond strength of glass fiber posts (Reforpost - Angelus-Brazil cemented to root dentin with a resin cement (RelyX ARC - 3M/ESPE associated with two different adhesive systems (Adper Single Bond - 3M/ESPE and Adper Scotchbond Multi Purpose (MP Plus - 3M/ESPE, using the pull-out test. Twenty single-rooted human teeth with standardized root canals were randomly assigned to 2 groups (n=10: G1- etching with 37% phosphoric acid gel (3M/ESPE + Adper Single Bond + #1 post (Reforpost - Angelus + four #1 accessory posts (Reforpin - Angelus + resin cement; G2- etching with 37% phosphoric acid gel + Adper Scotchbond MP Plus + #1 post + four #1 accessory posts + resin cement. The specimens were stored in distilled water at 37°C for 7 days and submitted to the pull-out test in a universal testing machine (EMIC at a crosshead speed of 0.5 mm/min. The mean values of bond strength (kgf and standard deviation were: G1- 29.163 ± 7.123; G2- 37.752 ±13.054. Statistical analysis (Student's t-test; a=0.05 showed no statistically significant difference (p<0.05 between the groups. Adhesive bonding failures between resin cement and root canal dentin surface were observed in both groups, with non-polymerized resin cement in the apical portion of the post space when Single Bond was used (G1. The type of adhesive system employed on the fiber post cementation did not influence the pull-out bond strength.

  10. Conduction noise absorption by fiber-reinforced epoxy composites with carbon nanotubes

    Lee, Ok Hyoung; Kim, Sung-Soo; Lim, Yun-Soo

    2011-01-01

    Nearly all electronic equipment is susceptible to malfunction as a result of electromagnetic interference. In this study, glass fiber, and carbon fiber as a type reinforcement and epoxy as a matrix material were used to fabricate composite materials. In an attempt to increase the conduction noise absorption, carbon nanotubes were grown on the surface of glass fibers and carbon fibers. A microstrip line with characteristic impedance of 50 Ω in connection with network analyzer was used to measure the conduction noise absorption. In comparing a glass fiber/epoxy composite with a GF-CNT/Ep composite, it was demonstrated that the CNTs significantly influence the noise absorption property mainly due to increase in electric conductivity. In the carbon fiber composites, however, the effectiveness of CNTs on the degree of electric conductivity is negligible, resulting in a small change in reflection and transmission of an electromagnetic wave. - Research Highlights: → In this study, glass fiber and carbon fiber as a type reinforcement and epoxy as a matrix material were used to fabricate composite materials. In an attempt to increase the conduction noise absorption, carbon nanotubes (CNTs) were grown on the surface of glass fibers and carbon fibers. A microstrip line with characteristic impedance of 50 Ω in connection with network analyzer was used to measure the conduction noise absorption. → In comparing a glass fiber/epoxy composite with a GF-CNT/Ep composite, it was demonstrated that the CNTs significantly influence the noise absorption property mainly due to increase in electric conductivity. In the carbon fiber composites, however, the effectiveness of CNTs on the degree of electric conductivity is negligible, resulting in a small change in reflection and transmission of an electromagnetic wave.

  11. Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts

    Köbler, Jonathan; Schneider, Matti; Ospald, Felix; Andrä, Heiko; Müller, Ralf

    2018-06-01

    For short fiber reinforced plastic parts the local fiber orientation has a strong influence on the mechanical properties. To enable multiscale computations using surrogate models we advocate a two-step identification strategy. Firstly, for a number of sample orientations an effective model is derived by numerical methods available in the literature. Secondly, to cover a general orientation state, these effective models are interpolated. In this article we develop a novel and effective strategy to carry out this interpolation. Firstly, taking into account symmetry arguments, we reduce the fiber orientation phase space to a triangle in R^2 . For an associated triangulation of this triangle we furnish each node with an surrogate model. Then, we use linear interpolation on the fiber orientation triangle to equip each fiber orientation state with an effective stress. The proposed approach is quite general, and works for any physically nonlinear constitutive law on the micro-scale, as long as surrogate models for single fiber orientation states can be extracted. To demonstrate the capabilities of our scheme we study the viscoelastic creep behavior of short glass fiber reinforced PA66, and use Schapery's collocation method together with FFT-based computational homogenization to derive single orientation state effective models. We discuss the efficient implementation of our method, and present results of a component scale computation on a benchmark component by using ABAQUS ®.

  12. Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts

    Köbler, Jonathan; Schneider, Matti; Ospald, Felix; Andrä, Heiko; Müller, Ralf

    2018-04-01

    For short fiber reinforced plastic parts the local fiber orientation has a strong influence on the mechanical properties. To enable multiscale computations using surrogate models we advocate a two-step identification strategy. Firstly, for a number of sample orientations an effective model is derived by numerical methods available in the literature. Secondly, to cover a general orientation state, these effective models are interpolated. In this article we develop a novel and effective strategy to carry out this interpolation. Firstly, taking into account symmetry arguments, we reduce the fiber orientation phase space to a triangle in R^2 . For an associated triangulation of this triangle we furnish each node with an surrogate model. Then, we use linear interpolation on the fiber orientation triangle to equip each fiber orientation state with an effective stress. The proposed approach is quite general, and works for any physically nonlinear constitutive law on the micro-scale, as long as surrogate models for single fiber orientation states can be extracted. To demonstrate the capabilities of our scheme we study the viscoelastic creep behavior of short glass fiber reinforced PA66, and use Schapery's collocation method together with FFT-based computational homogenization to derive single orientation state effective models. We discuss the efficient implementation of our method, and present results of a component scale computation on a benchmark component by using ABAQUS ®.

  13. Production of bioplastic from jackfruit seed starch (Artocarpus heterophyllus) reinforced with microcrystalline cellulose from cocoa pod husk (Theobroma cacao L.) using glycerol as plasticizer

    Lubis, M.; Gana, A.; Maysarah, S.; Ginting, M. H. S.; Harahap, M. B.

    2018-02-01

    The production of bioplastic from jackfruit seed starch reinforced with microcrystalline cellulose (MCC) cocoa pod husk using glycerol as plasticizer was investigated to determine the most optimum mass and volume of MCC and glycerol in producing bioplastics. To produce MCC, Cocoa pod husk was subjected to alkali treatment, bleaching, and hydrochloric acid hydrolysis. The degree of crystallinity of MCC, were determined by XRD, functional group by FT-IR and morphologycal analysis by SEM. Analysis of bioplastic mechanical properties includes tensile strength and elongation at break based on ASTM D882 standard. Bioplastics were produced by casting method from jackfruit seed starch and reinforced with MCC from cocoa pod husk at starch mass to MCC ratio of 6:4, 7:3, 8:2, and 9:1, using glycerol as plasticizer at 20%, 25%, 30% (wt/v of glycerol to starch). From the result, the isolated MCC from cocoa pod husk were in a form of rod-like shape of length 5-10 µm with diameter 11.635 nm and 74% crystallinity. The highest tensile strength of bioplastics was obtained at starch to MCC mass ratio of 8:2, addition of 20% glycerol with measured tensile strength of 0.637 MPa and elongation at break of 7.04%. Transform infrared spectroscopy showed the functional groups of bioplastics, which the majority of O-H groups were found at the bioplastics with reinforcing filler MCC that represented substantial hydrogen bonds.

  14. Development of step for light duty truck by using injection molding of long-fiber reinforced thermoplastics; Chosen`i kyoka jushi no shashutsu keisei ni yoru truck yo step no kaihatsu

    Togo, A; Yamamura, H; Yamaguchi, M [Mitsubishi Motor Corp., Tokyo (Japan); Yoshino, K [Kawasaki Steel Corp. Tokyo (Japan)

    1997-10-01

    The new step for light duty truck was developed by injection molding of glass long-fiber reinforced polypropylene. Feature of the step is good surface appearance and no post processings, compared with the conventional one press molded with a glass fiber reinforced polypropylene sheet (Stampable sheet). 3 refs., 14 figs., 6 tabs.

  15. Improving the Wear Resistance of Moulds for the Injection of Glass Fibre–Reinforced Plastics Using PVD Coatings: A Comparative Study

    Francisco Silva

    2017-02-01

    Full Text Available It is well known that injection of glass fibre–reinforced plastics (GFRP causes abrasive wear in moulds’ cavities and runners. Physical vapour deposition (PVD coatings are intensively used to improve the wear resistance of different tools, also being one of the most promising ways to increase the moulds’ lifespan, mainly when used with plastics strongly reinforced with glass fibres. This work compares four different thin, hard coatings obtained using the PVD magnetron sputtering process: TiAlN, TiAlSiN, CrN/TiAlCrSiN and CrN/CrCN/DLC. The first two are monolayer coatings while the last ones are nanostructured and consist of multilayer systems. In order to carry out the corresponding tribological characterization, two different approaches were selected: A laboratorial method, using micro-abrasion wear tests based on a ball-cratering configuration, and an industrial mode, analysing the wear resistance of the coated samples when inserted in a plastic injection mould. As expected, the wear phenomena are not equivalent and the results between micro-abrasion and industrial tests are not similar due to the different means used to promote the abrasion. The best wear resistance performance in the laboratorial wear tests was attained by the TiAlN monolayer coating while the best performance in the industrial wear tests was obtained by the CrN/TiAlCrSiN nanostructured multilayer coating.

  16. An analytical interpretation of the high temperature linear contact between composite materials reinforced with glass fibers and steel

    Rus, Dorin; Florescu, Virgil; Bausic, Florin; Ursache, Robert; Sasu, Anca

    2018-01-01

    In this paper we have tried to present the influence of the metal surface wear and of the contact temperature on the evolution of the sliding speed, of the normal load and of the friction coefficient. We have performed numerous experimental trials that have highlighted the dependency between load and wear in relation to the friction coefficient. A dry linear friction couple was used with a large range of loads and speeds, simulating real-life working conditions: temperature, sliding speed, contact pressure. We have made a connection between the theoretical case and the experimental results arising from the use of the “wear imprint method” for the volume and depth of wear.

  17. Toughening Effect of Microscale Particles on the Tensile and Vibration Properties of S-Glass-Fiber-Reinforced Epoxy Composites

    Erkliğ, A.; Bulut, M.; Fayzulla, B.

    2018-03-01

    The effect of borax, sewage sludge ash, silicon carbide, and perlite microparticles on the tensile, damping, and vibration characteristics of S-glass/epoxy composite laminates was examined Their damping and vibration properties were evaluated experimentally by using the dynamic modal analysis, identifying the response of the fundamental natural frequency to the type and weight content of the particulates. The results obtained showed that the introduction of specific amounts of such particulates into the matrix of S-glass/epoxy composite noticeably improved its mechanical properties.

  18. The thermal and mechanical properties of a low-density glass-fiber-reinforced elastomeric ablation material

    Engelke, W. T.; Robertson, R. W.; Bush, A. L.; Pears, C. D.

    1974-01-01

    An evaluation of the thermal and mechanical properties was performed on a molded low-density elastomeric ablation material designated as Material B. Both the virgin and charred states were examined to provide meaningful inputs to the design of a thermal protection system. Chars representative of the flight chars formed during ablation were prepared in a laboratory furnace from 600 K to 1700 K and properties of effective thermal conductivity, heat capacity, porosity and permeability were determined on the furnace chars formed at various temperature levels within the range. This provided a boxing of the data which will enable the prediction of the transient response of the material during flight ablation.

  19. Influence of antimicrobial solutions in the decontamination and adhesion of glass-fiber posts to root canals

    HARAGUSHIKU, Gisele Aihara; BACK, Eduardo Donato Eing Engelke; TOMAZINHO, Paulo Henrique; BARATTO, Flares; FURUSE, Adilson Yoshio

    2015-01-01

    Objective This study evaluated the effect of root canal disinfectants on the elimination of bacteria from the root canals, as well as their effect on glass-fiber posts bond strength. Material and Methods Fifty-three endodontically treated root canals had post spaces of 11 mm in length prepared and contaminated with E. faecalis. For CFU/ml analysis, eight teeth were contaminated for 1 h or 30 days (n=4). Teeth were decontaminated with 5% NaOCl, 2% CHX, or distilled water. As control, no decontamination was conducted. After decontamination, sterile paper points were used to collect samples, and CFU/ml were counted. For push-out, three groups were evaluated (n=15): irrigation with 2.5% NaOCl, 2% CHX, or sterile distilled water. A bonding agent was applied to root canal dentin, and a glass-fiber post was cemented with a dual-cured cement. After 24 h, 1-mm-thick slices of the middle portion of root canals were obtained and submitted to the push-out evaluation. Three specimens of each group were evaluated in scanning electron microscopy (SEM). Data were analyzed with one-way ANOVA and Dunnett’s T3 test (α=0.05). Results The number of CFU/ml increased from 1 h to 30 days of contamination in control and sterile distilled water groups. Decontamination with NaOCl was effective only when teeth were contaminated for 1 h. CHX was effective at both contamination times. NaOCl did not influence the bond strength (p>0.05). Higher values were observed with CHX (pcontaminated root canals both in reducing the bacterial contamination and in improving the glass-fiber post bonding. PMID:26398518

  20. Influence of antimicrobial solutions in the decontamination and adhesion of glass-fiber posts to root canals

    Gisele Aihara HARAGUSHIKU

    2015-08-01

    Full Text Available AbstractObjective This study evaluated the effect of root canal disinfectants on the elimination of bacteria from the root canals, as well as their effect on glass-fiber posts bond strength.Material and Methods Fifty-three endodontically treated root canals had post spaces of 11 mm in length prepared and contaminated with E. faecalis. For CFU/ml analysis, eight teeth were contaminated for 1 h or 30 days (n=4. Teeth were decontaminated with 5% NaOCl, 2% CHX, or distilled water. As control, no decontamination was conducted. After decontamination, sterile paper points were used to collect samples, and CFU/ml were counted. For push-out, three groups were evaluated (n=15: irrigation with 2.5% NaOCl, 2% CHX, or sterile distilled water. A bonding agent was applied to root canal dentin, and a glass-fiber post was cemented with a dual-cured cement. After 24 h, 1-mm-thick slices of the middle portion of root canals were obtained and submitted to the push-out evaluation. Three specimens of each group were evaluated in scanning electron microscopy (SEM. Data were analyzed with one-way ANOVA and Dunnett’s T3 test (α=0.05.Results The number of CFU/ml increased from 1 h to 30 days of contamination in control and sterile distilled water groups. Decontamination with NaOCl was effective only when teeth were contaminated for 1 h. CHX was effective at both contamination times. NaOCl did not influence the bond strength (p>0.05. Higher values were observed with CHX (p<0.05. SEM showed formation of resin tags in all groups.Conclusion CHX showed better results for the irrigation of contaminated root canals both in reducing the bacterial contamination and in improving the glass-fiber post bonding.

  1. Investigation of degradation products produced by recycling the solvent during chemical degradation of fiber-reinforced composites

    Ucar, Hülya; Simonsen, Morten Enggrob; Søgaard, Erik Gydesen

    2017-01-01

    of the process. In this study, acetone has been used as the organic solvent. To increase the sustainability of the process, the solvent was recycled in eight consecutive batches using new glass fiber-reinforced composites in each recycling. No additional amount of acetone was added, resulting in a reduction...

  2. Bond strength of resin cement to dentin and to surface-treated posts of titanium alloy, glass fiber, and zirconia

    Sahafi, Alireza; Peutzfeldt, Anne; Asmussen, Erik

    2003-01-01

    PURPOSE: To determine the effect of surface treatments on bond strength of two resin cements (ParaPost Cement and Panavia F) to posts of titanium alloy (ParaPost XH), glass fiber (ParaPost Fiber White), and zirconia (Cerapost), and to dentin. MATERIALS AND METHODS: After embedding, planar surfaces...... of posts (n = 9 to 14) and human dentin (n = 10) were obtained by grinding. The posts received one of three surface treatments: 1. roughening (sandblasting, hydrofluoric acid etching), 2. application of primer (Alloy Primer, Metalprimer II, silane), or 3. roughening followed by application of primer...

  3. Collaboration of polymer composite reinforcement and cement concrete

    Khozin, V. G.; Gizdatullin, A. R.

    2018-04-01

    The results of experimental study of bond strength of cement concrete of different types with fiber reinforcing polymer (FRP) bars are reported. The reinforcing bars were manufactured of glass fibers and had a rebar with different types of the surface relief formed by winding a thin strip impregnated with a binder or by “sanding”. The pullout tests were carried out simultaneously for the steel reinforcing ribbed bars A400. The impact of friction, adhesion and mechanical bond on the strength of bonds between FRP and concrete was studied. The influence of the concrete strength and different operation factors on the bond strength of concrete was evaluated.

  4. Investigations of mode I crack propagation in fibre-reinforced plastics with real time X-ray tests and simultaneous sound emission analysis

    Brunner, A.; Nordstrom, R.; Flueeler, P.

    1992-01-01

    The described investigation of crack formation and crack propagation in mode I (tensile stress) in fibre-reinforced plastic samples, especially uni-directional carbon fibre reinforced polyether-ether ketone (PEEK) has several aims. On the one hand, the phenomena of crack formation and crack propagation in these materials are to be studied, and on the other hand, the draft standards for these tests are to be checked. It was found that the combination of real time X-ray tests and simultaneous sound emission analysis is excellently suited for the basic examination of crack formation and crack propagation in DCB samples. With the aid of picture processing and analysis of the video representation, consistent crack lengths and resulting G IC values can be determined. (orig./RHM) [de

  5. A comparative study to check fracture strength of provisional fixed partial dentures made of autopolymerizing polymethylmethacrylate resin reinforced with different materials: An in vitro study.

    Gupt, Parikshit; Nagpal, Archana; Samra, Rupandeep Kaur; Verma, Ramit; Kaur, Jasjeet; Abrol, Surbhi

    2017-01-01

    The purpose of the study was to evaluate the fracture strength of provisional fixed partial dentures made of autopolymerizing polymethylmethacrylate (PMMA) resin using different types of reinforcement materials to determine the best among them. Fifty samples were made (10 samples for each group) with autopolymerizing PMMA resin using reinforcement materials (stainless steel wire: looped and unlooped and glass fiber: loose and unidirectional) as 3-unit posterior bridge. The test specimens were divided into five groups depending on the reinforcing material as Group I, II, III, IV, and V; Group I: PMMA unreinforced (control group), Group II: PMMA reinforced with stainless steel wire (straight ends), Group III: PMMA reinforced with stainless steel wire (looped ends), Group IV: PMMA reinforced with unidirectional glass fibers, and Group V: PMMA reinforced with randomly distributed glass fibers. Universal testing machine was used to evaluate and compare the fracture strength of samples. Comparison of mean ultimate force and ultimate stress was done employing one-way analysis of variance and Tukey's post hoc tests. The highest and lowest mean ultimate force and mean ultimate stress were of Group IV and I, respectively. Tukey's post hoc honestly significant difference multiple comparison for mean ultimate force and stress shows the increase in strength to be statistically significant ( P 0.05). Unidirectional glass fibers showed the maximum strength, which was comparable to mean values of both stainless steel wire groups. Low cost and easy technique of using stainless steel wire make it the material of choice over the unidirectional glass fiber for reinforcement in nonesthetic areas where high strength is required.

  6. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions.

    Chen, Sisi; Yang, Qingbo; Brow, Richard K; Liu, Kun; Brow, Katherine A; Ma, Yinfa; Shi, Honglan

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber composite: biomechanical properties and biocompatibility.

    Qiao, Bo; Li, Jidong; Zhu, Qingmao; Guo, Shuquan; Qi, Xiaotong; Li, Weichao; Wu, Jun; Liu, Yang; Jiang, Dianming

    2014-01-01

    An ideal bone plate for internal fixation of bone fractures should have good biomechanical properties and biocompatibility. In this study, we prepared a new nondegradable bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber (n-HA/PA66/GF) composite. A breakage area on the n-HA/PA66/GF plate surface was characterized by scanning electron microscopy. Its mechanical properties were investigated using bone-plate constructs and biocompatibility was evaluated in vitro using bone marrow-derived mesenchymal stem cells. The results confirmed that adhesion between the n-HA/PA66 matrix and the glass fibers was strong, with only a few fibers pulled out at the site of breakage. Fractures fixed by the n-HA/PA66/GF plate showed lower stiffness and had satisfactory strength compared with rigid fixation using a titanium plate. Moreover, the results with regard to mesenchymal stem cell morphology, MTT assay, Alizarin Red S staining, enzyme-linked immunosorbent assay, and reverse transcription polymerase chain reaction for alkaline phosphatase and osteocalcin showed that the n-HA/PA66/GF composite was suitable for attachment and proliferation of mesenchymal stem cells, and did not have a negative influence on matrix mineralization or osteogenic differentiation of mesenchymal stem cells. These observations indicate that the n-HA/PA66/GF plate has good biomechanical properties and biocompatibility, and may be considered a new option for internal fixation in orthopedic surgery.

  8. On turbulence structure in vertical pipe flow of fiber suspensions [refractivity, flow measurement, turbulent flow, glass fibers, fluid flow

    Steen, M.

    1989-01-01

    A suspension of glass fibers in alcohol has been used to investigate a upward vertical developing pipe flow. The refractive index of the alcohol was matched to that of the glass fibers, making the whole suspension transparent. Laser Doppler Anemometry (LDA) was applied, and fluid velocities could then be measured for consistencies up to c = 12 g/l. Radial profiles of axial U-velocity and turbulence spectra have been recorded at various positions (z/D = 2, 5, 36) downstream of an orifice (step) with 64% open area. Measurements were taken for different consistencies (c = 1.2, 12 g/l), fiber lengths (l = 1, 3 mm) and Reynolds numbers (R e = 8.5 ⋅ 10 3 , 6.5 ⋅ 10 4 ). The fiber crowding factor (n f ) has been used to discuss the observed effects of the present fibers on momentum transfer and turbulence structure. The results show both an increase (l= 1 mm, c= 1.2 g/l) and decrease (l=3 mm, c = 12 g/l) in turbulence levels in the presence of fibers. Suspensions with long fibers at the highest consistency show plug flow in parts of the core. This causes damping of the turbulence mainly at smaller length scales. For short fibers at low consistency, the increased turbulent energy was mainly observed at small length scales in the spectrum. (author)

  9. Behavior of Fiber-Reinforced Smart Soft Composite Actuators According to Material Composition

    Han, Min-Woo; Kim, Hyung-Il; Song, Sung-Hyuk; Ahn, Sung-Hoon [Seoul Nat’l Univ., Seoul (Korea, Republic of)

    2017-02-15

    Fiber-reinforced polymer composites, which are made by combining a continuous fiber that acts as reinforcement and a homogeneous polymeric material that acts as a host, are engineering materials with high strength and stiffness and a lightweight structure. In this study, a shape memory alloy(SMA) reinforced composite actuator is presented. This actuator is used to generate large deformations in single lightweight structures and can be used in applications requiring a high degree of adaptability to various external conditions. The proposed actuator consists of numerous individual laminas of the glass-fiber fabric that are embedded in a polymeric matrix. To characterize its deformation behavior, the composition of the actuator was changed by changing the matrix material and the number of the glass-fiber fabric layers. In addition, current of various magnitudes were applied to each actuator to study the effect of the heating of SMA wires on applying current.

  10. A study on the crushing behavior of basalt fiber reinforced composite structures

    Pandian, A.; Veerasimman, A. P.; Vairavan, M.; Francisco, C.; Sultan, M. T. H.

    2016-10-01

    The crushing behavior and energy absorption capacity of basalt fiber reinforced hollow square structure composites are studied under axial compression. Using the hand layup technique, basalt fiber reinforced composites were fabricated using general purpose (GP) polyester resin with the help of wooden square shaped mould of varying height (100 mm, 150 mm and 200 mm). For comparison, similar specimens of glass fiber reinforced polymer composites were also fabricated and tested. Axial compression load is applied over the top end of the specimen with cross head speed as 2 mm/min using Universal Testing Machine (UTM). From the experimental results, the load-deformation characteristics of both glass fiber and basalt fiber composites were investigated. Crashworthiness and mode of collapse for the composites were determined from load-deformation curve, and they were then compared to each other in terms of their crushing behaviors.

  11. Analysis of elasto-plasticity of a reinforced framework. Report 4. Framework reinforced by a wing wall made of post-placed concrete; Hokyo honegumi no dansosei kaiseki. 4. Atouchi sodekabe ni yoru hokyo honegumi

    Takahashi, H. [Japan Testing Center for Construction Materials, Tokyo (Japan); Shimizu, Y. [Tokyo Institute of Technology, Tokyo (Japan)

    1995-09-01

    An elasto-plasticity stress analysis was performed on reinforcement using a wing wall made of post-placed concrete as an anti-earthquake reinforcement method for ferro-concrete structures. The analytical values were compared with experimental values, and discussions were given on reasonability of the analytic method. Wing walls made of post-placed concrete were inserted into a three-layered single-spanned model of a reinforced framework made of reinforced mortar (the wing walls being three kinds comprising 1/4 span portion in the first layer, and 1/4 portions in the first and second layers). With the columns loaded and retained with an axial force of 3 tf, a horizontal force was applied from one direction under an assumption that the force forms a uniform distribution. The analysis model was permuted with a wire material having one nodal point and three degrees of freedom as has been reported in the previous paper. The model was divided into the wing wall and the column, and the wing wall portion was permuted into a brace having pins at both ends so that the brace has the withstand strength equivalent to that of the wing wall. A tri-linear type or a bi-linear type was hypothesized for restoring force characteristics of each portion. According to the analytical result, the analytical values agreed relatively well with the experimental values in the load-deformation relationship and fracture conditions, verifying the reasonability of the analytical hypothesis. 5 refs., 5 figs., 3 tabs.

  12. Quasi-plane-hypothesis of strain coordination for RC beams seismically strengthened with externally-bonded or near-surface mounted fiber reinforced plastic

    Ren, Zhenhua; Zeng, Xiantao; Liu, Hanlong; Zhou, Fengjun

    2013-03-01

    The application of fiber reinforced plastic (FRP), including carbon FRP and glass FRP, for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement (EBR) and near-surface mounted (NSM) strengthening techniques. This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods, including externally-bonded and near-surface mounted FRP, to study the strain coordination of the FRP and steel rebar of the RC beam. Since there is relative slipping between the RC beam and the FRP, the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis; that is, the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height ( h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of the FRP and steel rebar satisfies the equation: ɛ FRP= βɛ steel, and the value of β is equal to 1.1-1.3 according to the test results.

  13. Surface Crack Detection for Carbon Fiber Reinforced Plastic Materials Using Pulsed Eddy Current Based on Rectangular Differential Probe

    Jialong Wu

    2014-01-01

    Full Text Available Aiming at the surface defect inspection of carbon fiber reinforced composite, the differential and the direct measurement finite element simulation models of pulsed eddy current flaw detection were built. The principle of differential pulsed eddy current detection was analyzed and the sensitivity of defect detection was compared through two kinds of measurements. The validity of simulation results was demonstrated by experiments. The simulation and experimental results show that the pulsed eddy current detection method based on rectangular differential probe can effectively improve the sensitivity of surface defect detection of carbon fiber reinforced composite material.

  14. Design and analysis of a novel latch system implementing fiber-reinforced composite materials

    Guevara Arreola, Francisco Javier

    The use of fiber-reinforced composite materials have increased in the last four decades in high technology applications due to their exceptional mechanical properties and low weight. In the automotive industry carbon fiber have become popular exclusively in luxury cars because of its high cost. However, Carbon-glass hybrid composites offer an effective alternative to designers to implement fiber-reinforced composites into several conventional applications without a considerable price increase maintaining most of their mechanical properties. A door latch system is a complex mechanism that is under high loading conditions during car accidents such as side impacts and rollovers. Therefore, the Department of Transportation in The United States developed a series of tests that every door latch system comply in order to be installed in a vehicle. The implementation of fiber-reinforced composite materials in a door latch system was studied by analyzing the material behavior during the FMVSS No. 206 transverse test using computational efforts and experimental testing. Firstly, a computational model of the current forkbolt and detent structure was developed. Several efforts were conducted in order to create an effective and time efficient model. Two simplified models were implemented with two different contact interaction approaches. 9 composite materials were studied in forkbolt and 5 in detent including woven carbon fiber, unidirectional carbon fiber, woven carbon-glass fiber hybrid composites and unidirectional carbon-glass fiber hybrid composites. The computational model results showed that woven fiber-reinforced composite materials were stiffer than the unidirectional fiber-reinforced composite materials. For instance, a forkbolt made of woven carbon fibers was 20% stiffer than a forkbolt made of unidirectional fibers symmetrically stacked in 0° and 90° alternating directions. Furthermore, Hybrid composite materials behaved as expected in forkbolt noticing a decline

  15. Tensile Characterization of Injection-Molded Fuzzy Glass Fiber/Nylon Composite Material

    2016-05-01

    enhanced reinforcement (CER) in a nylon matrix. A majority of the masterbatch CER material research is focused on electromagnetic shielding applications...close as notionally shown in Fig. 1. These CER systems are subsequently enveloped in a polymer matrix to form a masterbatch CER pellet. In this

  16. Effects of accelerated artificial daylight aging on bending strength and bonding of glass fibers in fiber-embedded maxillofacial silicone prostheses.

    Hatamleh, Muhanad M; Watts, David C

    2010-07-01

    The purpose of this study was to test the effect of different periods of accelerated artificial daylight aging on bond strength of glass fiber bundles embedded into maxillofacial silicone elastomer and on bending strength of the glass fiber bundles. Forty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer. Specimens were randomly allocated into four groups, and each group was subjected to different periods of accelerated daylight aging as follows (in hours); 0, 200, 400, and 600. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2)) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. Also a three-point bending test was performed to evaluate bending strength of the fiber bundles. One-way ANOVA and Bonferroni post hoc tests were carried out to detect statistical significance (p aging only. After 200 hours of exposure to artificial daylight and moisture conditions, bond strength between glass fibers and heat-cured silicones is optimal, and the bending strength of the glass fiber bundles is enhanced.

  17. The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells

    Zhang, Xiaoyuan; Cheng, Shaoan; Huang, Xia; Logan, Bruce E.

    2010-01-01

    on performance. Larger pore nylon mesh were used that had regular mesh weaves with pores ranging from 10 to 160 μm, while smaller pore-size nylon filters (0.2-0.45 μm) and glass fiber filters (0.7-2.0 μm) had a more random structure. The pore size of both types

  18. Effects of bond primers on bending strength and bonding of glass fibers in fiber-embedded maxillofacial silicone prostheses.

    Hatamleh, Muhanad M; Watts, David C

    2011-02-01

    To evaluate the effect of three commonly used bond primers on the bending strength of glass fibers and their bond strength to maxillofacial silicone elastomer after 360 hours of accelerated daylight aging. Eighty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer M511 (Cosmesil). Twenty fiber bundles served as control and did not receive surface treatment with primers, whereas the remaining 60 fibers were treated with three primers (n = 20): G611 (Principality Medical), A-304 (Factor II), and A-330-Gold (Factor II). Forty specimens were dry stored at room temperature (23 ± 1°C) for 24 hours, and the remaining specimens were aged using an environmental chamber under accelerated exposure to artificial daylight for 360 hours. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2) ) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. A 3-point bending test was performed to evaluate the bending strength of the fiber bundles. One-way Analysis of Variance (ANOVA), Bonferroni post hoc test, and an independent t-test were carried out to detect statistical significances (p accelerated daylight aging. Treatment with primer and accelerated daylight aging increased bending strength of glass fibers. © 2011 by The American College of Prosthodontists.

  19. Morphology of root canal surface: A reflection on the process of cementation of the composite relined glass fiber post

    Yasmine Mendes Pupo

    2017-01-01

    Full Text Available Background: The present study was conducted to evaluate the bond strength in the different root thirds (premolars and maxillary central incisors of composite relined glass fiber posts compared to untreated glass fiber posts cemented with dual- or chemical-cure cements. Materials and Methods: Sixty human single-rooted premolars (flat canal (n = 15 and 12 maxillary central incisors were used (round canal (n = 3. The teeth were sectioned, and the roots received endodontic treatment. The standardized preparation of the canals was carried out, and the roots were randomly divided into four groups according to the cementation systems: G1: cemented posts (dual: Ambar/Allcem; G2: relined posts (dual: Ambar/Allcem; G3: cemented posts (chemical: Fusion Duralink/Cement Post; and G4: relined posts (chemical: Fusion Duralink/Cement Post. The roots were cut to give two slices of each third of the root canal per specimen. Push-out test was conducted at a speed of 0.5 mm/min. Data were analyzed by analysis of variance and Tukey's post hoc test (α = 0.05. Results: There was no statistically significant difference between groups for the premolars (flat canal (P = 0.959. There was a significant difference in the central incisors between the middle and apical thirds in the cemented group when using the dual system (P = 0.04 and between the middle and apical thirds (P = 0.003 and cervical and apical thirds (P = 0.033 when using the chemical system. Conclusion: Due to the anatomy of the root canal, flat canal of the premolars does not require relining, but round canal of the maxillary central incisors demands it for more secure in the bond strength.

  20. Mechanical interaction of Engineered Cementitious Composite (ECC) reinforced with Fiber Reinforced Polymer (FRP) rebar in tensile loading

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2010-01-01

    This paper introduces a preliminary study of the composite interaction of Engineered Cementitious Composite (ECC), reinforced with Glass Fiber Reinforced Polymer (GFRP) rebar. The main topic of this paper will focus on the interaction of the two materials (ECC and GFRP) during axial loading......, particularly in post cracking phase of the concrete matrix. The experimental program carried out in this study examined composite behavior under monotonic and cyclic loading of the specimens in the elastic and inelastic deformation phases. The stiffness development of the composite during loading was evaluated...

  1. Flexural properties of polyethylene, glass and carbon fiber-reinforced resin composites for prosthetic frameworks.

    Maruo, Yukinori; Nishigawa, Goro; Irie, Masao; Yoshihara, Kumiko; Minagi, Shogo

    2015-01-01

    High flexural properties are needed for fixed partial denture or implant prosthesis to resist susceptibility to failures caused by occlusal overload. The aim of this investigation was to clarify the effects of four different kinds of fibers on the flexural properties of fiber-reinforced composites. Polyethylene fiber, glass fiber and two types of carbon fibers were used for reinforcement. Seven groups of specimens, 2 × 2 × 25 mm, were prepared (n = 10 per group). Four groups of resin composite specimens were reinforced with polyethylene, glass or one type of carbon fiber. The remaining three groups served as controls, with each group comprising one brand of resin composite without any fiber. After 24-h water storage in 37°C distilled water, the flexural properties of each specimen were examined with static three-point flexural test at a crosshead speed of 0.5 mm/min. Compared to the control without any fiber, glass and carbon fibers significantly increased the flexural strength (p glass fiber (p glass fibers (p > 0.05). Fibers could, therefore, improve the flexural properties of resin composite and carbon fibers in longitudinal form yielded the better effects for reinforcement.

  2. Development of a composite polyethylene--fiberglass-reinforced-plastic high-integrity container for disposal of low-level radioactive waste

    Lowenberg, H.; Shaw, M.D.

    1989-01-01

    This paper reports on a program to develop a high-integrity container (HIC) for handling, transportation, and disposal of low-level radioactive wastes. The HIC, made of a composite material, consists of an inner layer of polyethylene bonded to an outer casing of fiberglass-reinforced plastic. Preliminary handmade prototype units containing about 0.22 m 3 , called HIC-7, have been fabricated and exposed to some of the U.S. Nuclear Regulatory Commission (NRC) and state tests. The HICs withstood over twice the external pressure from maximum burial conditions and twice the Type A package internal pressure requirements. In addition, freedrops on compacted soil and an unyielding surface showed no deleterious effects

  3. Open fibre reinforced plastic (FRP) flat plate collector (FPC) and spray network systems for augmenting the evaporation rate of tannery effluent (soak liquor)

    Srithar, K.; Mani, A.

    2007-01-01

    Presently, tanneries in Tamilnadu, India are required to segregate the effluent of soaking and pickling sections from other wastewater streams and send it to shallow solar pans for evaporation to avoid land pollution. A large area of solar pans is required for evaporating the water in the effluent at salt concentration in the range of 4-5%. An experimental study has been made by using fibre reinforced plastic flat plate collector (FRP-FPC) and spray system in a pilot plant with a capacity to handle 5000 l per day, which increases the evaporation rate. After increasing the salt concentration level to near saturation limit, the concentrated liquid was sent to conventional solar pans for its continued evaporation and recovery of salt. In this improved system, the rate of evaporation was found to be 30-40% more than that in the conventional solar pans. The performance is compared with the theoretically simulated performance. (author)

  4. Coupling effect of waste automotive engine oil in the preparation of wood reinforced LDPE plastic composites for panels

    Maame Adwoa Bentumah Animpong

    2017-12-01

    Full Text Available We demonstrated the formulation of wood plastic composite (WPC materials with flexural strength of 13.69 ± 0.09 MPa for applications in outdoor fencing using municipal waste precursors like low density polyethylene (LDPE plastics (54.0 wt. %, sawn wood dust with particle size between 64 and 500 μm derived from variable hardwood species (36.0 wt. % and used automotive engine oil (10 wt. %. The WPC panels were prepared by pre-compounding, extruding at a screw auger torque of 79.8 Nm and pressing through a rectangular mould of dimension 132 mm × 37 mm × 5 mm at temperature 150 °C. The efficacy of black waste oil, as a coupling agent, was demonstrated by the absence of voids and pull-outs on microscopic examination using scanning electron microscopy. No hazardous substances were exhaled during thermo-gravimetric mass spectrometry analysis. The percentage crystallinity of the LDPE in the as-prepared material determined by differential scanning calorimetry was 11.3%. Keywords: Wood plastic composites, Low density polyethylene, Wood dust, Physical, Thermal and mechanical properties

  5. Finite strain anisotropic elasto-plastic model for the simulation of the forming and testing of metal/short fiber reinforced polymer clinch joints at room temperature

    Dean, A.; Rolfes, R.; Behrens, A.; Bouguecha, A.; Hübner, S.; Bonk, C.; Grbic, N.

    2017-10-01

    There is a strong trend in the automotive industry to reduce car body-, chassis- and power-train mass in order to lower carbon emissions. More wide spread use of lightweight short fiber reinforced polymer (SFRP) is a promising approach to attain this goal. This poses the challenge of how to integrate new SFRP components by joining them to traditional sheet metal structures. Recently (1), the clinching technique has been successfully applied as a suitable joining method for dissimilar material such as SFRP and Aluminum. The material pairing PA6GF30 and EN AW 5754 is chosen for this purpose due to their common application in industry. The current contribution presents a verification and validation of a finite strain anisotropic material model for SFRP developed in (2) for the FE simulation of the hybrid clinching process. The finite fiber rotation during forming and separation, and thus the change of the preferential material direction, is represented in this model. Plastic deformations in SFRP are considered in this model via an invariant based non-associated plasticity formulation following the multiplicative decomposition approach of the deformation gradient where the stress-free intermediate configuration is introduced. The model allows for six independent characterization curves. The aforementioned material model allows for a detailed simulation of the forming process as well as a simulative prediction of the shear test strength of the produced joint at room temperature.

  6. Contribution to the numerical study of concrete behaviour and of reinforced concrete structures submitted to coupled thermal and mechanical solicitations: a damageable thermo-elasto-plastic approach

    Nechnech, W.

    2000-12-01

    The aim of this research is the development of an Finite Element model for the analysis of reinforced concrete structures under thermal, mechanical loadings or any combination of them. An available synthesis of results on the concrete behavior under thermal solicitation is exposed. The different behavior of concrete that can be founded notably in thermo-mechanical analysis (Damage, unilateral phenomenon, thermo-mechanical interaction,...) are underlined. The various families of modeling are analyzed thereafter while underlining the important aspects of the behavior that each one can re-transcribe. A new thermo-plastic damage model for plain concrete subjected to combined thermal and cyclic loading is developed using the concept of plastic-work-hardening and stiffness degradation in continuum damage mechanics. Two damage variables are used: the first one for mechanical action and the second one for thermal action. Further, thermo-mechanical interaction strains have been introduced to describe the influence of mechanical loading on the physical process of thermal expansion of concrete. The constitutive relations for elastoplastic responses are decoupled from the degradation damage responses by using the effective stress concept. This method provides advantages in the numerical implementation. A simple and thermodynamically consistent scalar degradation model is introduced to simulate the effect of damage on elastic stiffness and its recovery during crack opening and closing. Efficient computational algorithms for the proposed model are subsequently explored and performance of this model is demonstrated with numerical examples. (author)

  7. Young modulus and internal friction of a fiber-reinforced composite

    Ledbetter, H.M.; Lei, M.; Austin, M.W.

    1986-01-01

    By a kilohertz-frequency resonance method we determined the Young modulus and internal friction of a uniaxially fiber-reinforced composite. The composite comprised glass fibers in an epoxy-resin matrix. We studied three fiber contents: 0, 41, and 49 vol %. The Young modulus fit a linear rule of mixture. The internal friction fit a classical free-damped-oscillator model where one assumes a linear rule of mixture for three quantities: mass, force constant, and mechanical-resistance constant

  8. Taguchi analysis of extrusion variables and composition effects on the morphology and mechanical properties of EPR-g-MA toughened polyamide 6 and its composite with short glass fiber

    Shojaei, A.; Fereydoon, M.

    2009-01-01

    Various compositions of maleated ethylene-propylene-rubber (EPR-g-MA) toughened polyamide 6 without and with short glass fiber, i.e. 5-20 wt.% rubber and 5-20 wt.% fiber, are prepared using an industrial twin-screw extruder at different levels of feed rate (100-250 kg/h), screw speed (200-450 rpm) and barrel temperature (230-260 deg. C). Trial runs designed based on the Taguchi's orthogonal arrays are subjected to tensile, impact, scanning electron microscopy (SEM) and optical microscopy tests; and the results are used to perform the analysis of variance (ANOVA). It is shown that the rubber particle size decreases significantly by increasing the rubber content for the unreinforced blend. The results also indicate that the composition of the compounds is the most influential factor on the phase morphology and mechanical properties of both the unreinforced and reinforced blends compared to the extrusion variables. But the processing parameters can also influence the performance characteristics slightly. The most important processing parameter, among the others, is shown to be the mixing temperature, which decreases the fiber length greatly and leads to the thermo-mechanical degradation of the polymers above 240 deg. C

  9. Environmental effect of water absorption and flexural strength of red ...

    user

    International Journal of Engineering, Science and Technology ... advantages over glass fiber or carbon fiber like renewable, environmental friendly, low ... in fiber reinforced plastics, a judicious selection of matrix and the reinforcing phase can ...

  10. Ho3+-doped AlF3-TeO2-based glass fibers for 2.1 µm laser applications

    Wang, S. B.; Jia, Z. X.; Yao, C. F.; Ohishi, Y.; Qin, G. S.; Qin, W. P.

    2017-05-01

    Ho3+-doped AlF3-TeO2-based glass fibers based on AlF3-BaF2-CaF2-YF3-SrF2-MgF2-TeO2 glasses are fabricated by using a rod-in-tube method. The glass rod including a core and a thick cladding layer is prepared by using a suction method, where the thick cladding layer is used to protect the core from the effect of surface crystallization during the fiber drawing. By inserting the glass rod into a glass tube, the glass fibers with relatively low loss (~2.3 dB m-1 @ 1560 nm) are prepared. By using a 38 cm long Ho3+-doped AlF3-TeO2-based glass fiber as the gain medium and a 1965 nm fiber laser as the pump source, 2065 nm lasing is obtained for a threshold pump power of ~220 mW. With further increasing the pump power to ~325 mW, the unsaturated output power of the 2065 nm laser is about 82 mW and the corresponding slope efficiency is up to 68.8%. The effects of the gain fiber length on the lasing threshold, the slope efficiency, and the operating wavelength are also investigated. Our experimental results show that Ho3+-doped AlF3-TeO2-based glass fibers are promising gain media for 2.1 µm laser applications.

  11. Laser-induced nonlinear crystalline waveguide on glass fiber format and diode-pumped second harmonic generation

    Shi, Jindan; Feng, Xian

    2018-03-01

    We report a diode pumped self-frequency-doubled nonlinear crystalline waveguide on glass fiber. A ribbon fiber has been drawn on the glass composition of 50GeO2-25B2O3-25(La,Yb)2O3. Surface channel waveguides have been written on the surface of the ribbon fiber, using space-selective laser heating method with the assistance of a 244 nm CW UV laser. The Raman spectrum of the written area indicates that the waveguide is composed of structure-deformed nonlinear (La,Yb)BGeO5 crystal. The laser-induced surface wavy cracks have also been observed and the forming mechanism of the wavy cracks has been discussed. Efficient second harmonic generation has been observed from the laser-induced crystalline waveguide, using a 976 nm diode pump. 13 μW of 488 nm output has been observed from a 17 mm long waveguide with 26.0 mW of launched diode pump power, corresponding to a normalized conversion efficiency of 4.4%W-1.

  12. Numerical Modeling and Experimental Study of Elastic-Plastic Behavior of Carbon Nanotubes Reinforced Nanocompsites of PA6/NBR Using a Microfinite Element Model

    Mir Hamid Reza Ghoreishy

    2014-12-01

    Full Text Available A theoretical and experimental study was conducted on the mechanical behavior of nanocomposites based on PA6/NBR thermoplastic elastomer reinforced by single wall carbon nanotubes (SWNTs. The selected samples include 60 and 40% NBR with 0.5, 1.0 and 1.5% SWNT. The modeling methodology was based on the use of two-dimensional "representative volume elements" (RVE. The Abaqus/standard code was employed to carry out the non-linear finite element calculations. Plane stress elements were selected for discretization of the domain. Linear elastic and isotropic hardening elastic-plastic models were utilized to describe the mechanical behaviors of the carbon nanotubes and polymer matrix, respectively. The samples were simultaneously prepared using melt mixing method in a laboratory internal mixer. Different orientations including regular in both longitudinal and transverse directions and random were selected for the nanotubes in the matrix. Also, two structural forms including hollow and solid for the carbon nanotubes were chosen. The highest and lowest predicted moduli were obtained from models with regular orientation in longitudinal and transverse directions, respectively. On the other hand, comparison between the predicted elastic modulus and elastic-plastic behaviors of the samples with their corresponding experimental data revealed that the random orientation in conjunction with hollow structural form gives the best results. Moreover, the selected material model for the thermoplastic elastomer i.e., isotropic hardening can precisely describe the mechanical behavior in both tension and compression modes. It is also concluded that the main source of error in this modeling methodology can be attributed to the effects of interface between polymer and nanotubes and orientation in perpendicular directions.

  13. Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films.

    Teacă, Carmen-Alice; Bodîrlău, Ruxanda; Spiridon, Iuliana

    2013-03-01

    The present paper describes the preparation and characterization of polysaccharides-based bio-composite films obtained by the incorporation of 10, 20 and 30 wt% birch cellulose (BC) within a glycerol plasticized matrix constituted by the corn starch (S) and chemical modified starch microparticles (MS). The obtained materials (coded as MS/S, respectively MS/S/BC) were further characterized. FTIR spectroscopy and X-ray diffraction were used to evidence structural and crystallinity changes in starch based films. Morphological, thermal, mechanical, and water resistance properties were also investigated. Addition of cellulose alongside modified starch microparticles determined a slightly improvement of the starch-based films water resistance. Some reduction of water uptake for any given time was observed mainly for samples containing 30% BC. Some compatibility occurred between MS and BC fillers, as evidenced by mechanical properties. Tensile strength increased from 5.9 to 15.1 MPa when BC content varied from 0 to 30%, while elongation at break decreased significantly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Friction riveting as an alternative mechanical fastening to join engineering plastics

    Gagliardi, Francesco; Conte, Romina; Bentrovato, Renato; Simeoli, Giorgio; Russo, Pietro; Ambrogio, Giuseppina

    2018-05-01

    Friction Rivecting is a quite new joining process to connect multi-material structures. In brief, a metallic rivet is dipped rotating inside matrixes, usually made of plastics, increasing its original diameter. The use of high-performance plastics is more suitable being their higher mechanical and thermal properties important to avoid material degradation and to allow strong part connections. High-speed friction welding system has been usually used to perform the process. In the work here proposed, the joints have been achieved by means of a traditional milling machine and the attention has been focused on a widely used engineering plastic, i.e. polyamide 6 (PA6) with and without glass fiber reinforcement. A specific speed multiplier has been attached into the mandrel of the used machine to increase the reachable rotational speed. Moreover, rivets made of Titanium Grade 2 and of an Aluminum Alloy, the AA-6060, are utilized. The influence that the heating and the forging length can have on the quality of the obtained junctions, considering a fixed joining depth, has been tested and investigated. The performed connections have been judged by tensile tests, which were set to quantify the maximum strength of the joints for a transverse speed of 1,0 mm/min. Barreling effect can be observed close to the tip, which loses the initial shape of a cylinder characterized by straight vertical walls. Finally, the possible degradation of the polymer, due to temperature increment, has been also evaluated close to the working zone. According to that, it has to be highlighted that the process needs a heating balance, which is necessary to get sound joints. The compromise has, on one side, to allow the rivet penetration and deformation, and on the other side, to avoid the degradation of the polymer, which would affect its properties and a proper rivet deformation.

  15. Modification of carbon fabrics by radio-frequency capacitive discharge at low pressure to regulate mechanical properties of carbon fiber reinforced plastics based on it

    Garifullin, A R; Krasina, I V; Skidchenko, E A; Shaekhov, M F; Tikhonova, N V

    2017-01-01

    To increase the values of mechanical properties of carbon fiber (CF) composite materials used in sports equipment production the method of radio-frequency capacitive (RFC) low-pressure plasma treatment in air was proposed. Previously it was found that this type of modification allows to effectively regulate the surface properties of fibers of different nature. This treatment method differs from the traditional ones by efficiency and environmental friendliness as it does not require the use of aggressive, environmentally hazardous chemicals. In this paper it was established that RFC low-pressure air plasma treatment of carbon fabrics enhances the interlaminar shear strength (ILSS) of carbon fiber reinforced plastic (CFRP). As a result of experimental studies of CF by Fourier Transform Infrared (FTIR) spectroscopy method it was proved that after radio-frequency capacitive plasma treatment at low pressure in air the oxygen-containing functional groups is grafted on the surface. These groups improve adhesion at the interface “matrix-fiber”. (paper)

  16. [Survey of carbon fiber reinforced plastic orthoses and occupational and medical problems based on a questionnaire administered to companies involved in the manufacture of prosthetics and orthotics].

    Kaneshiro, Yuko; Furuta, Nami; Makino, Kenichiro; Wada, Futoshi; Hachisuka, Kenji

    2011-09-01

    We surveyed carbon fiber reinforced plastic orthoses (carbon orthoses) and their associated occupational and medical problems based on a questionnaire sent to 310 companies which were members of the Japan Orthotics and Prosthetics Association. Of all the companies, 232 responded: 77 of the 232 companies dealt with ready-made carbon orthoses, 52 dealt with fabricated custom-made orthoses, and 155 did not dealt with carbon orthoses. Although the total number of custom-made carbon ortheses in Japan was 829/ 5 years, there was a difference by region, and one company fabricated only 12 (per 5 years) custom-made carbon orthoses on average. The advantages of the carbon orthosis were the fact that it was "light weight", "well-fitted", had a "good appearance", and "excellent durability", while the disadvantages were that it was "expensive", "high cost of production", of "black color", and required a "longer time for completion", and "higher fabrication techniques". From the standpoint of industrial medicine, "scattering of fine fragments of carbon fibers", "itching on the skin" and "health hazards" were indicated in companies that manufacture the orthosis. In order to make the carbon orthosis more popular, it is necessary to develop a new carbon material that is easier to fabricate at a lower cost, to improve the fabrication technique, and to resolve the occupational and medical problems.

  17. Sound Insulation Property Study on Nylon 66 Scrim Reinforced PVF Laminated Membranes and their Composite Sound Proof Structure

    Chen, Lihe; Chen, Zhaofeng; Zhang, Xinyang; Wang, Weiwei

    2018-01-01

    In this paper, we investigated the sound insulation property of nylon 66 scrim reinforced PVF laminated membranes and their corresponding composite structures with glass fiber felt and carbon fiber board. Sound transmission loss (STL) was measured by standing wave tube method. The results show that, with the decrease of nylon 66 gridlines spacing, STL of nylon 66 scrim reinforced PVF laminated membranes was improved. The sound insulation performance of laminated membranes with gridlines spacing of 3mm is the best, whose STL was up to 10dB at 6.3 kHz. Besides, STL was improved effectively as air layers were embedded into the composite sound proof construction consist of laminated membrane, glass fiber felt and carbon fiber board.

  18. Design of Ultra High Performance Fiber Reinforced Concrete Shells

    Jepsen, Michael S.; Lambertsen, Søren Heide; Damkilde, Lars

    2013-01-01

    Fiber Reinforced Concrete shell. The major challenge in the design phase has been securing sufficient stiffness of the structure while keeping the weight at a minimum. The weight/stiffness issue has been investigated by means of the finite element method, to optimize the structure regarding overall......The paper treats the redesign of the float structure of the Wavestar wave energy converter. Previously it was designed as a glass fiber structure, but due to cost reduction requirements a redesign has been initiated. The new float structure will be designed as a double curved Ultra High Performance...

  19. Biomass-derived porous carbon modified glass fiber separator as polysulfide reservoir for Li-S batteries.

    Selvan, Ramakrishnan Kalai; Zhu, Pei; Yan, Chaoi; Zhu, Jiadeng; Dirican, Mahmut; Shanmugavani, A; Lee, Yun Sung; Zhang, Xiangwu

    2018-03-01

    Biomass-derived porous carbon has been considered as a promising sulfur host material for lithium-sulfur batteries because of its high conductive nature and large porosity. The present study explored biomass-derived porous carbon as polysulfide reservoir to modify the surface of glass fiber (GF) separator. Two different carbons were prepared from Oak Tree fruit shells by carbonization with and without KOH activation. The KOH activated porous carbon (AC) provides a much higher surface area (796 m 2  g -1 ) than pyrolized carbon (PC) (334 m 2  g -1 ). The R factor value, calculated from the X-ray diffraction pattern, revealed that the activated porous carbon contains more single-layer sheets with a lower degree of graphitization. Raman spectra also confirmed the presence of sp 3 -hybridized carbon in the activated carbon structure. The COH functional group was identified through X-ray photoelectron spectroscopy for the polysulfide capture. Simple and straightforward coating of biomass-derived porous carbon onto the GF separator led to an improved electrochemical performance in Li-S cells. The Li-S cell assembled with porous carbon modified GF separator (ACGF) demonstrated an initial capacity of 1324 mAh g -1 at 0.2 C, which was 875 mAh g -1 for uncoated GF separator (calculated based on the 2nd cycle). Charge transfer resistance (R ct ) values further confirmed the high ionic conductivity nature of porous carbon modified separators. Overall, the biomass-derived activated porous carbon can be considered as a promising alternative material for the polysulfide inhibition in Li-S batteries. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The effects of embedded piezoelectric fiber composite sensors on the structural integrity of glass-fiber-epoxy composite laminate

    Konka, Hari P.; Wahab, M. A.; Lian, K.

    2012-01-01

    Piezoelectric fiber composite sensors (PFCSs) made from micro-sized lead zirconate titanate (PZT) fibers have many advantages over the traditional bulk PZT sensors for embedded sensor applications. PFCSs as embedded sensors will be an ideal choice to continuously monitor the stress/strain levels and health conditions of composite structures. PFCSs are highly flexible, easily embeddable, have high compatibility with composite structures, and also provides manufacturing flexibility. This research is focused on examining the effects of embedding PFCS sensors (macro-fiber composite (MFC) and piezoelectric fiber composite (PFC)) on the structural integrity of glass-fiber-epoxy composite laminates. The strengths of composite materials with embedded PFCSs and conventional PZT sensors were compared, and the advantages of PFCS sensors over PZTs were demonstrated. Initially a numerical simulation study is performed to understand the local stress/strain field near the embedded sensor region inside a composite specimen. High stress concentration regions were observed near the embedded sensor corner edge. Using PFCS leads to a reduction of 56% in longitudinal stress concentration and 38% in transverse stress concentration, when compared to using the conventional PZTs as embedded sensors. In-plane tensile, in-plane tension-tension fatigue, and short beam strength tests are performed to evaluate the strengths/behavior of the composite specimens containing embedded PFCS. From the tensile test it is observed that embedding PFCS and PZT sensors in the composite structures leads to a reduction in ultimate strength by 3 and 6% respectively. From the fatigue test results it is concluded that both embedded PFCS and PZT sensors do not have a significant effect on the fatigue behavior of the composite specimens. From the short beam strength test it is found that embedding PFCS and PZT sensors leads to a reduction in shear strength by 7 and 15% respectively. Overall the pure PZT sensors