WorldWideScience

Sample records for glass works fused

  1. Three-dimensional printing of transparent fused silica glass

    Kotz, Frederik; Arnold, Karl; Bauer, Werner; Schild, Dieter; Keller, Nico; Sachsenheimer, Kai; Nargang, Tobias M.; Richter, Christiane; Helmer, Dorothea; Rapp, Bastian E.

    2017-04-01

    Glass is one of the most important high-performance materials used for scientific research, in industry and in society, mainly owing to its unmatched optical transparency, outstanding mechanical, chemical and thermal resistance as well as its thermal and electrical insulating properties. However, glasses and especially high-purity glasses such as fused silica glass are notoriously difficult to shape, requiring high-temperature melting and casting processes for macroscopic objects or hazardous chemicals for microscopic features. These drawbacks have made glasses inaccessible to modern manufacturing technologies such as three-dimensional printing (3D printing). Using a casting nanocomposite, here we create transparent fused silica glass components using stereolithography 3D printers at resolutions of a few tens of micrometres. The process uses a photocurable silica nanocomposite that is 3D printed and converted to high-quality fused silica glass via heat treatment. The printed fused silica glass is non-porous, with the optical transparency of commercial fused silica glass, and has a smooth surface with a roughness of a few nanometres. By doping with metal salts, coloured glasses can be created. This work widens the choice of materials for 3D printing, enabling the creation of arbitrary macro- and microstructures in fused silica glass for many applications in both industry and academia.

  2. Demonstrating Earth Connections and Fuses Working Together

    Harrison, Mark

    2017-01-01

    Earth wires and fuses work together in UK mains circuits to keep users safe from electric shocks and are taught in many school contexts. The subject can be quite abstract and difficult for pupils to grasp, and a simple but visually clear and direct demonstration is described which would be easy for most physics departments to build and which can…

  3. The anomalous yield behavior of fused silica glass

    Schill, W.; Heyden, S.; Conti, S.; Ortiz, M.

    2018-04-01

    We develop a critical-state model of fused silica plasticity on the basis of data mined from molecular dynamics (MD) calculations. The MD data is suggestive of an irreversible densification transition in volumetric compression resulting in permanent, or plastic, densification upon unloading. The MD data also reveals an evolution towards a critical state of constant volume under pressure-shear deformation. The trend towards constant volume is from above, when the glass is overconsolidated, or from below, when it is underconsolidated. We show that these characteristic behaviors are well-captured by a critical state model of plasticity, where the densification law for glass takes the place of the classical consolidation law of granular media and the locus of constant-volume states defines the critical-state line. A salient feature of the critical-state line of fused silica, as identified from the MD data, that renders its yield behavior anomalous is that it is strongly non-convex, owing to the existence of two well-differentiated phases at low and high pressures. We argue that this strong non-convexity of yield explains the patterning that is observed in molecular dynamics calculations of amorphous solids deforming in shear. We employ an explicit and exact rank-2 envelope construction to upscale the microscopic critical-state model to the macroscale. Remarkably, owing to the equilibrium constraint the resulting effective macroscopic behavior is still characterized by a non-convex critical-state line. Despite this lack of convexity, the effective macroscopic model is stable against microstructure formation and defines well-posed boundary-value problems.

  4. Fiber fuse light-induced continuous breakdown of silica glass optical fiber

    Todoroki, Shin-ichi

    2014-01-01

    This book describes the fiber fuse phenomenon that causes a serious problem for the present optical communication systems. High-power light often brings about catastrophic damage to optical devices. Silica glass optical fibers with ultralow transmission loss are not the exception. A fiber fuse appears in a heated region of the fiber cable delivering a few watts of light and runs toward the light source destroying its core region. Understanding this phenomenon is a necessary first step in the development of future optical communication systems. This book provides supplementary videos and photog

  5. Heat accumulation regime of femtosecond laser writing in fused silica and Nd:phosphate glass

    Bukharin, M.A. [Moscow Institute of Physics and Technology, Moscow Region (Russian Federation); Optosystems Ltd., Troitsk, Moscow (Russian Federation); Khudyakov, D.V. [Optosystems Ltd., Troitsk, Moscow (Russian Federation); Physics Instrumentation Center of the General Physics Institute, Troitsk, Moscow (Russian Federation); Vartapetov, S.K. [Physics Instrumentation Center of the General Physics Institute, Troitsk, Moscow (Russian Federation)

    2015-04-01

    We investigated refractive index induced by direct femtosecond laser writing inside fused silica and Nd:phosphate glass in heat accumulation regime. Spatial profile and magnitude of induced refractive index were investigated at various pulse repetition rates and translation velocities. It was shown that the magnitude of induced refractive index significantly rises with decreasing in time interval between successive laser pulses below the time for thermal diffusion. Going from nonthermal regime to heat accumulation regime, we achieved induced refractive index growth from 4 x 10{sup -3} up to 6.5 x 10{sup -3} in fused silica and from -6 x 10{sup -3} to -9 x 10{sup -3} in Nd:phosphate glass. Aspect ratio of treated area decreased from 2.1 down to less than 1.5 without correcting optical elements. It was shown that in heat accumulation regime, the treated area was surrounded by region of alternatively changed refractive index with significant magnitude up to -2 x 10{sup -3}. Wide regions of decreased refractive index enable fabrication of depressed cladding waveguides. We demonstrated low-loss (0.3 dB/cm) tubular waveguide inside fused silica. For orthogonal polarizations of guiding light, we achieved a small difference between losses as 0.1 dB/cm using highly symmetric written tracks forming the cladding. The desired structure was simulated with the beam propagation method, and the results were in good agreement with experiment data. (orig.)

  6. Analysis of polycyclic aromatic hydrocarbons I. Determination by gas chromatography with glass and fused silica capillary columns

    Perez, M. M.; Gonzalez, D.

    1987-01-01

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons is presented. The separation has been carried out by glass and fused silica capillary column. The limitations and the advantages of the procedure are discussed in terms of separation efficiency, sensitivity and precision. (Author) 17 refs

  7. Analysis of polycyclic aromatic hydrocarbons. I. Determination by gas chromatography with glass and fused solica capillary columns

    Perez Garcia, M.; Gonzalez, D.

    1987-01-01

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons is presented. The separation has been carried out by glass and fused silice capillary column. The limitations and the advantages of the procedure are discussed in terms of separation efficiency, sensitivity and precision. (author). 3 figs., 17 refs

  8. Analysis of optical properties behaviour of CLEARCERAM, fused silica and CaF2 glasses exposed to simulated space conditions

    Fernández-Rodríguez, M.; Alvarado, C. G.; Núñez, A.; Álvarez-Herrero, A.

    2017-11-01

    Optical instrumentation on-board satellites suffer degradation due to the hostile conditions of space environment. Space conditions produce instrumentation performances changes causing a decrease or a cancellation of their features. Particularly, space environment conditions have a significant influence on the optical properties of glasses which are part of space optical systems. Space environment characteristics which effects on the optical system have to be taken into account are: outgassing, volatile components, gas or water vapor which form part of the spacecraft materials, vacuum, microgravity, micrometeorites, space debris, thermal, mechanical and radiation environment and effects of the high atmosphere [1]. This work is focused on analyzing temperature variations and ultraviolet (UV) and gamma radiation effects on the optical properties of several glasses used on space applications. Thermal environment is composed of radiation from the Sun, the albedo and the Earth radiation and the radiation from the spacecraft to deep space. Flux and influence of temperature on satellite materials depend on factors as the period of year or the position of them on the space system. Taking into account that the transfer mechanisms of heat are limited by the conduction and the radiation, high gradients of temperature are obtained in system elements which can cause changes of their optical properties, birefringence… Also, these thermal cycles can introduce mechanical loads into material structure due to the expansion and the contraction of the material leading to mechanical performances degradation [2]. However, it is the radiation environment the main cause of damage on optical properties of materials used on space instrumentation. This environment consists of a wide range of energetic particles between keV and MeV which are trapped by the geomagnetic field or are flux of particles that cross the Earth environment from the external of the Solar System [3]. The damage

  9. Structural changes in irreversibly densified fused silica: implications for the chemical resistance of high level nuclear waste glasses

    Susman, S.; Volin, K.J.; Liebermann, R.C.; Gwanmesia, G.D.; Yanbin Wang

    1990-01-01

    Energetic photons and energetic particles create changes in the structure of nuclear waste glasses. These can be observed as changes in the average bulk physical properties. For example, exposure of fused silica to high doses of neutron bombardment leads to a maximum average compaction of 3%. However, this does not reveal the true extent of the densification that takes place at a microscopic level. Recent advances in high pressure technology have yielded large samples of fused silica which have been permanently densified under pressure and whose bulk density has been increased by 20%. These specimens have an overall structure that replicates the microstructure of a radiation damaged glass. Measurements have been made for the first time of the structural changes in this pressure densified vitreous silica using neutron diffraction and infrared absorption spectrometry. Extensive alterations in intermediate range order have been observed with consequent anticipated changes in chemical reactivity. The resistance of high level waste glasses to leaching by groundwater must be considered in light of these experimental findings. (author)

  10. Experimental Investigation on Cutting Characteristics in Nanometric Plunge-Cutting of BK7 and Fused Silica Glasses.

    An, Qinglong; Ming, Weiwei; Chen, Ming

    2015-03-27

    Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of BK7 and fused silica glasses, including machined surface morphology, surface roughness, cutting force and specific cutting energy, were investigated with nanometric plunge-cutting experiments. The same cutting speed of 300 mm/min was used in the experiments with single-crystal diamond tool. CUCT was determined according to the mentioned cutting characteristics. The results revealed that 320 nm was found as the CUCT in BK7 cutting and 50 nm was determined as the size effect of undeformed chip thickness. A high-quality machined surface could be obtained with the undeformed chip thickness between 50 and 320 nm at ductile cutting stage. Moreover, no CUCT was identified in fused silica cutting with the current cutting conditions, and brittle-fracture mechanism was confirmed as the predominant chip-separation mode throughout the nanometric cutting operation.

  11. Characterization of deep wet etching of fused silica glass for single cell and optical sensor deposition

    Zhu, Haixin; Holl, Mark; Ray, Tathagata; Bhushan, Shivani; Meldrum, Deirdre R

    2009-01-01

    The development of a high-throughput single-cell metabolic rate monitoring system relies on the use of transparent substrate material for a single cell-trapping platform. The high optical transparency, high chemical resistance, improved surface quality and compatibility with the silicon micromachining process of fused silica make it very attractive and desirable for this application. In this paper, we report the results from the development and characterization of a hydrofluoric acid (HF) based deep wet-etch process on fused silica. The pin holes and notching defects of various single-coated masking layers during the etching are characterized and the most suitable masking materials are identified for different etch depths. The dependence of the average etch rate and surface roughness on the etch depth, impurity concentration and HF composition are also examined. The resulting undercut from the deep HF etch using various masking materials is also investigated. The developed and characterized process techniques have been successfully implemented in the fabrication of micro-well arrays for single cell trapping and sensor deposition. Up to 60 µm deep micro-wells have been etched in a fused silica substrate with over 90% process yield and repeatability. To our knowledge, such etch depth has never been achieved in a fused silica substrate by using a non-diluted HF etchant and a single-coated masking layer at room temperature

  12. Mechanical and thermal cycling effects on the flexural strength of glass ceramics fused to titanium

    Vasquez, Vanessa; Ozcan, Mutlu; Nishioka, Renato; Souza, Rodrigo; Mesquita, Alfredo; Pavanelli, Carlos

    This study evaluated the effects of mechanical and thermal cycling on the flexural strength (ISO 9693) of three brands of ceramics fused to commercially pure titanium (cpTi). Metallic frameworks of 25 x 3 x 0.5 mm dimensions (N = 84) were cast in cpTi, followed by 150-mu m aluminum oxide airborne

  13. Using STED and ELSM confocal microscopy for a better knowledge of fused silica polished glass interface

    Catrin, Rodolphe; Neauport, Jerome; Taroux, Daniel; Corbineau, Thomas; Cormont, Philippe; Maunier, Cedric; Legros, Philippe

    2013-01-01

    Characteristics and nature of close surface defects existing in fused silica polished optical surfaces were explored. Samples were deliberately scratched using a modified polishing process in presence of different fluorescent dyes. Various techniques including Epi-fluorescence Laser Scanning Mode (ELSM) or Stimulated Emission Depletion (STED) confocal microscopy were used to measure and quantify scratches that are sometimes embedded under the polished layer. We show using a nondestructive technique that depth of the modified region extends far below the surface. Moreover cracks of 120 nm width can be present ten micrometers below the surface. (authors)

  14. Characterization of low concentration uranium glass working materials

    Eppich, G. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wimpenny, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Leever, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knight, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hutcheon, I. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ryerson, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-22

    A series of uranium-doped silicate glasses were created at (Lawrence Livermore National Laboratory) LLNL, to be used as working reference material analogs for low uranium concentration research. Specifically, the aim of this effort was the generation of well-characterized glasses spanning a range of concentrations and compositions, and of sufficient homogeneity in uranium concentration and isotopic composition, for instrumentation research and development purposes. While the glasses produced here are not intended to replace or become standard materials for uranium concentration or uranium isotopic composition, it is hoped that they will help fill a current gap, providing low-level uranium glasses sufficient for methods development and method comparisons within the limitations of the produced glass suite. Glasses are available for research use by request.

  15. Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates

    Ficek, M.; Sobaszek, M.; Gnyba, M. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Ryl, J. [Department of Electrochemistry, Corrosion and Material Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk (Poland); Gołuński, Ł. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Smietana, M.; Jasiński, J. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw (Poland); Caban, P. [Institute of Electronic Materials Technology, 133 Wolczynska St., 01-919 Warsaw (Poland); Bogdanowicz, R., E-mail: rbogdan@eti.pg.gda.pl [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-11-30

    Highlights: • Growth of 60% of transmittance diamond films with resistivity as low as 48 Ω cm. • Two step seeding process of fused silica: plasma hydrogenation and wet seeding. • Nanodiamond seeding density of 2 × 10{sup 10} cm{sup −2} at fused silica substrates. • High refractive index (2.4 @550 nm) was achieved for BDD films deposited at 500 °C. - Abstract: This paper presents boron-doped diamond (BDD) film as a conductive coating for optical and electronic purposes. Seeding and growth processes of thin diamond films on fused silica have been investigated. Growth processes of thin diamond films on fused silica were investigated at various boron doping level and methane admixture. Two step pre-treatment procedure of fused silica substrate was applied to achieve high seeding density. First, the substrates undergo the hydrogen plasma treatment then spin-coating seeding using a dispersion consisting of detonation nanodiamond in dimethyl sulfoxide with polyvinyl alcohol was applied. Such an approach results in seeding density of 2 × 10{sup 10} cm{sup −2}. The scanning electron microscopy images showed homogenous, continuous and polycrystalline surface morphology with minimal grain size of 200 nm for highly boron doped films. The sp{sup 3}/sp{sup 2} ratio was calculated using Raman spectra deconvolution method. A high refractive index (range of 2.0–2.4 @550 nm) was achieved for BDD films deposited at 500 °C. The values of extinction coefficient were below 0.1 at λ = 550 nm, indicating low absorption of the film. The fabricated BDD thin films displayed resistivity below 48 Ohm cm and transmittance over 60% in the visible wavelength range.

  16. Ductility and work hardening in nano-sized metallic glasses

    Chen, D. Z., E-mail: dzchen@caltech.edu [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); Gu, X. W. [Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States); An, Q.; Goddard, W. A. [Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125 (United States); Greer, J. R. [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); The Kavli Nanoscience Institute, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-02-09

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ∼18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ∼3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  17. Measurement of temperature and concentration influence on the dispersion of fused silica glass photonic crystal fiber infiltrated with water-ethanol mixture

    Van, Hieu Le; Buczynski, Ryszard; Long, Van Cao; Trippenbach, Marek; Borzycki, Krzysztof; Manh, An Nguyen; Kasztelanic, Rafal

    2018-01-01

    We present experimental and simulation results of the zero-dispersion shift in photonics crystal fibers infiltrated with water-ethanol mixture. The fiber based on the fused silica glass with a hexagonal lattice consists of seven rings of air-holes filled by liquid. We show that it is possible to shift the zero-dispersion wavelength by 35 ps/nm/km when changing the temperature by 60 °C, and by 42 ps/nm/km when changing the concentration of ethanol from 0 to 100%. The results also show that for the optical fiber filed with pure ethanol the flattened part of the dispersion shifts from anomalous to the normal regime at temperatures below -70 °C.

  18. Development of a fused glass disc XRF facility and comparison with the pressed powder pellet technique at Instituto de Geociencias, Sao Paulo University, Brazil

    Mori, Paulo Ernesto; Correia, Ciro Teixeira [Sao Paulo Univ., SP (Brazil). Dept. of Mineralogia e Geotectonia; Reeves, Shane [Melbourne Univ., Parkville, VIC (Australia). School of Earth Sciences; Haukka, Maunu [Melbourne Univ., Parkville, VIC (Australia). Dept. of Chemical Engineering

    1999-09-01

    An X-ray fluorescence spectrometry pressed powder pellet technique (PPP) currently in use at the X-ray facility of the Instituto de Geociencias, Sao Paulo University has been extended to include additional elements and complemented by a full major and trace element calibration by fused glass disc X-ray fluorescence. A total of 38 major and trace elements are available (F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Pb, Bi, La, Ce, Nd, Th and U) with variable detection limits, but generally below 10 ppm for trace elements. Loss-on-ignitions determined by weight difference and totals provide extremely good control on data quality. A full analysis, including background, matrix correction and all relevant corrections can be achieved automatically in less than 60 minutes. Virtually any sample matrix can be accommodated. The data support the view that fused disc and power pellet techniques are complementary and together provide a definite, rigorous XRF analysis. However, both techniques require considerable attention to details, with the glass disc technique prone to losses of F and S and increase detection limits for certain elements. The powder pellet technique requires fine micronizing and caution when dealing with the light elements Si and Al. Additionally the paper presents a new, previously unpublished experimentally determined Alpha coefficients for all matrix-corrected elements, which are based on the lithium metaborate system and contrast with the Philips theoretical alpha coefficients. (author)

  19. Development of a fused glass disc XRF facility and comparison with the pressed powder pellet technique at Instituto de Geociencias, Sao Paulo University, Brazil

    Mori, Paulo Ernesto; Correia, Ciro Teixeira; Reeves, Shane; Haukka, Maunu

    1999-01-01

    An X-ray fluorescence spectrometry pressed powder pellet technique (PPP) currently in use at the X-ray facility of the Instituto de Geociencias, Sao Paulo University has been extended to include additional elements and complemented by a full major and trace element calibration by fused glass disc X-ray fluorescence. A total of 38 major and trace elements are available (F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Pb, Bi, La, Ce, Nd, Th and U) with variable detection limits, but generally below 10 ppm for trace elements. Loss-on-ignitions determined by weight difference and totals provide extremely good control on data quality. A full analysis, including background, matrix correction and all relevant corrections can be achieved automatically in less than 60 minutes. Virtually any sample matrix can be accommodated. The data support the view that fused disc and power pellet techniques are complementary and together provide a definite, rigorous XRF analysis. However, both techniques require considerable attention to details, with the glass disc technique prone to losses of F and S and increase detection limits for certain elements. The powder pellet technique requires fine micronizing and caution when dealing with the light elements Si and Al. Additionally the paper presents a new, previously unpublished experimentally determined Alpha coefficients for all matrix-corrected elements, which are based on the lithium metaborate system and contrast with the Philips theoretical alpha coefficients. (author)

  20. Analysis of polycyclic aromatic hydrocarbons I. Determination by gas chromatography with glass and fused silica capillary columns; Analisis de Hidrocarburos aromaticos policiclicos. I. Determinacion por cromatografia de gases con columnas capilares de vidrio de silice fundida

    Perez, M M; Gonzalez, D

    1987-07-01

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons is presented. The separation has been carried out by glass and fused silica capillary column. The limitations and the advantages of the procedure are discussed in terms of separation efficiency, sensitivity and precision. (Author) 17 refs.

  1. Micropatterning of biomolecules on a glass substrate in fused silica microchannels by using photolabile linker-based surface activation

    Jang, K.; Mawatari, K.; Kitamori, T.; Xu, Y.; Sato, K.; Tanaka, Y.

    2012-01-01

    We report on a straightforward method for creating micropatterns of multiple biomolecules. The anti-fouling agent 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer and a photolabile linker (PL) were covalently linked to an amino-terminated silane surface. Patterns were generated by selective removal of the MPC polymer via UV irradiation. Multiple micropatterns of fluorescein isothiocyanate (FITC)-labeled bovine serum albumin (BSA) and rhodamine-labeled goat fragment antigen-binding fragments (FAB) were deposited on a same glass substrate. We also employed micropatterning of multiple biomolecules in that Texas red-labeled BSA and FITC-labeled rabbit anti-mouse IgG were placed inside a microchannel. (author)

  2. Laboratory work in support of West Valley glass development

    Bunnell, L.R.

    1988-05-01

    Over the past six years, Pacific Northwest Laboratory (PNL) has conducted several studies in support of waste glass composition development and testing of glass compositions suitable for immobilizing the nuclear wastes stored at West Valley, New York. As a result of pilot-scale testing conducted by PNL, the glass composition was changed from that originally recommended in response to changes in the waste stream, and several processing-related problems were discovered. These problems were solved, or sufficiently addressed to determine their likely effect on the glass melting operations to be conducted at West Valley. This report describes the development of the waste glass composition, WV-205, and discusses solutions to processing problems such as foaming and insoluble sludges, as well as other issues such as effects of feed variations on processing of the resulting glass. An evaluation of the WV-205 glass from a repository perspective is included in the appendix to this report

  3. Glasses

    Dyre, Jeppe

    2004-01-01

    The temperature dependence of the viscosity of most glassforming liquids is known to depart significantly from the classical Arrhenius behaviour of simple fluids. The discovery of an unexpected correlation between the extent of this departure and the Poisson ratio of the resulting glass could lead...... to new understanding of glass ageing and viscous liquid dynamics....

  4. Heat Transfer Modelling of Glass Media within TPV Systems

    Bauer, Thomas; Forbes, Ian; Penlington, Roger; Pearsall, Nicola

    2004-11-01

    Understanding and optimisation of heat transfer, and in particular radiative heat transfer in terms of spectral, angular and spatial radiation distributions is important to achieve high system efficiencies and high electrical power densities for thermophtovoltaics (TPV). This work reviews heat transfer models and uses the Discrete Ordinates method. Firstly one-dimensional heat transfer in fused silica (quartz glass) shields was examined for the common arrangement, radiator-air-glass-air-PV cell. It has been concluded that an alternative arrangement radiator-glass-air-PV cell with increased thickness of fused silica should have advantages in terms of improved transmission of convertible radiation and enhanced suppression of non-convertible radiation.

  5. Visual ergonomics and computer work--is it all about computer glasses?

    Jonsson, Christina

    2012-01-01

    The Swedish Provisions on Work with Display Screen Equipment and the EU Directive on the minimum safety and health requirements for work with display screen equipment cover several important visual ergonomics aspects. But a review of cases and questions to the Swedish Work Environment Authority clearly shows that most attention is given to the demands for eyesight tests and special computer glasses. Other important visual ergonomics factors are at risk of being neglected. Today computers are used everywhere, both at work and at home. Computers can be laptops, PDA's, tablet computers, smart phones, etc. The demands on eyesight tests and computer glasses still apply but the visual demands and the visual ergonomics conditions are quite different compared to the use of a stationary computer. Based on this review, we raise the question if the demand on the employer to provide the employees with computer glasses is outdated.

  6. The Relationship between Glass Ceiling Barriers to Woman and Perceived Organizational Justice in Working Life

    Özyer, Kubilay; Azizoğlu, Öznur

    2014-01-01

    Women are participating more and more to the working life nowadays. But they couldn’t adequately take part in high management positions. There are too many reasons which effect this case. Especially; in some research it suggested that women couldn’t go beyond to a barrier, “glass ceiling”, which is an invisible obstacle for women, and they have to work under it. For these reason; in this study firstly, the terms of glass ceiling obstacle to women and perceived organizational justice and the i...

  7. The Cracked Glass Ceiling: Equal Work but Unequal Status

    Dobele, Angela R.; Rundle-Thiele, Sharyn; Kopanidis, Foula

    2014-01-01

    The achievement of gender equity in universities continues to warrant attention. Globally, universities have much work ahead of them if they are to redress the gender imbalance in senior positions and remuneration rates. To examine this issue, multiple sources of evidence were used to observe teaching and research workload of academic staff…

  8. Working beyond the Glass Ceiling: Women Managers in Initial Teacher Training in England

    Thompson, Barbara

    2007-01-01

    Recently in England, women have been successful in obtaining managerial responsibilities in the field of teacher training. In this setting at least, it could be argued that the glass ceiling that has kept women in lower-paid and lower status posts has been shattered. In order to explore this proposition from the perspective of those who work as…

  9. You Can't Get There from Here: Working Women and the Glass Ceiling.

    Business and Professional Women's Foundation, Washington, DC.

    Over the past two decades women and minorities have made unprecedented strides into the work force, yet discrimination due to gender and race is still a problem. The dearth of women in management is due to the "glass ceiling" phenomenon--the organizational, attitudinal, and societal barriers that effectively keep women and minorities…

  10. Additive manufacturing of transparent fused quartz

    Luo, Junjie; Hostetler, John M.; Gilbert, Luke; Goldstein, Jonathan T.; Urbas, Augustine M.; Bristow, Douglas A.; Landers, Robert G.; Kinzel, Edward C.

    2018-04-01

    This paper investigates a filament-fed process for additive manufacturing (AM) of fused quartz. Glasses such as fused quartz have significant scientific and engineering applications, which include optics, communications, electronics, and hermetic seals. AM has several attractive benefits such as increased design freedom, faster prototyping, and lower processing costs for small production volumes. However, current research into glass AM has focused primarily on nonoptical applications. Fused quartz is studied here because of its desirability for use in high-quality optics due to its high transmissivity and thermal stability. Fused quartz filaments are fed into a CO2 laser-generated molten region, smoothly depositing material onto the workpiece. Spectroscopy and pyrometry are used to measure the thermal radiation incandescently emitted from the molten region. The effects of the laser power and scan speed are determined by measuring the morphology of single tracks. Thin walls are printed to study the effects of layer-to-layer height. This information is used to deposit solid pieces including a cylindrical-convex shape capable of focusing visible light. The transmittance and index homogeneity of the printed fused quartz are measured. These results show that the filament-fed process has the potential to print transmissive optics.

  11. Cross-craft interactions between metal and glass working: slag additions to early Anglo-Saxon red glass

    Peake, James R. N.; Freestone, Ian C.

    Opaque red glass has been extensively studied over the years, but its compositional complexity and variability means that the way in which it was manufactured is still not fully understood. Previous studies have suggested the use of metallurgical by-products in its manufacture, but until now the evidence has been limited. SEM-EDS analysis of glass beads from the early Anglo-Saxon cemetery complex at Eriswell, southeast England, has provided further insights into the production and technology of opaque red glass, which could only have been possible through invasive sampling. The matrix of the red glasses contains angular particles of slag, the main phases of which typically correspond to either fayalite (Fe2SiO4) or kirschsteinite (CaFeSiO4), orthosilicate (olivine-type) minerals characteristic of some copper- and iron-smelting slags. This material appears to have been added in part as a reducing agent, to promote the precipitation of sub-micrometer particles of the colorant phase, copper metal. Its use represents a sophisticated, if empirical, understanding of materials and can only have resulted through deliberate experimentation with metallurgical by-products by early glass workers. Slag also seems to have been added as a source of iron to colour `black' glass. The compositions of the opaque red glasses appear to be strongly paralleled by Merovingian beads from northern Europe and Anglo-Saxon beads from elsewhere in England, suggesting that this technology is likely to have been quite widespread.

  12. Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures [Thermo-mechanical modeling of laser-induced structural relaxation and deformation of SiO2 glass

    Vignes, Ryan M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Soules, Thomas F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Stolken, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Settgast, Randolph R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Elhadj, Selim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Matthews, Manyalibo J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Mauro, J.

    2012-12-17

    In a fully coupled thermomechanical model of the nanoscale deformation in amorphous SiO2 due to laser heating is presented. Direct measurement of the transient, nonuniform temperature profiles was used to first validate a nonlinear thermal transport model. Densification due to structural relaxation above the glass transition point was modeled using the Tool-Narayanaswamy (TN) formulation for the evolution of structural relaxation times and fictive temperature. TN relaxation parameters were derived from spatially resolved confocal Raman scattering measurements of Si–O–Si stretching mode frequencies. These thermal and microstructural data were used to simulate fictive temperatures which are shown to scale nearly linearly with density, consistent with previous measurements from Shelby et al. Volumetric relaxation coupled with thermal expansion occurring in the liquid-like and solid-like glassy states lead to residual stresses and permanent deformation which could be quantified. But, experimental surface deformation profiles between 1700 and 2000 K could only be reconciled with our simulation by assuming a roughly 2 × larger liquid thermal expansion for a-SiO2 with a temperature of maximum density ~150 K higher than previously estimated by Bruckner et al. Calculated stress fields agreed well with recent laser-induced critical fracture measurements, demonstrating accurate material response prediction under processing conditions of practical interest.

  13. Fused salt electrolysis

    Ares, Osvaldo; Botbol, Jose.

    1989-01-01

    Working conditions for zirconium preparation by fused salt electrolysis were studied. For such purpose, a cell was built for operation under argon atmosphere. A graphite crucible served as anode, with steel cathodes. Proper design allowed cathode rechange under the inert atmosphere. Cathodic deposits of zirconium powder occluded salts from the bath. After washing with both water and hydrochloric acid, the metallic powder was consolidated by fusion. Optimum operating conditions were found to arise from an electrolyte of 12% potassium hexafluorzirconate -88% sodium chloride, at 820 deg C and 5 A/cm 2 cathodic current density. Deposits contained 35% of metal and current efficiency reached 66%. The powder contained up to 600 ppm of chlorine and 1.700 ppm of fluorine; after fusion, those amounts decreased to 2 ppm and 3 ppm respectively, with low proportion of metallic impurities. Though oxygen proportion was 4.500 ppm, it should be lowered by improving working conditions, as well as working on an ampler scale. (Author)

  14. Functional Use Database (FUse)

    U.S. Environmental Protection Agency — There are five different files for this dataset: 1. A dataset listing the reported functional uses of chemicals (FUse) 2. All 729 ToxPrint descriptors obtained from...

  15. Fused Bead Analysis of Diogenite Meteorites

    Mittlefehldt, D.W.; Beck, B.W.; McSween, H.Y.; Lee, C.T. A.

    2009-01-01

    Bulk rock chemistry is an essential dataset in meteoritics and planetary science [1]. A common method used to obtain the bulk chemistry of meteorites is ICP-MS. While the accuracy, precision and low detection limits of this process are advantageous [2], the sample size used for analysis (approx.70 mg) can be a problem in a field where small and finite samples are the norm. Fused bead analysis is another bulk rock analytical technique that has been used in meteoritics [3]. This technique involves forming a glass bead from 10 mg of sample and measuring its chemistry using a defocused beam on a microprobe. Though the ICP-MS has lower detection limits than the microprobe, the fused bead method destroys a much smaller sample of the meteorite. Fused bead analysis was initially designed for samples with near-eutectic compositions and low viscosities. Melts generated of this type homogenize at relatively low temperatures and produce primary melts near the sample s bulk composition [3]. The application of fused bead analysis to samples with noneutectic melt compositions has not been validated. The purpose of this study is to test if fused bead analysis can accurately determine the bulk rock chemistry of non-eutectic melt composition meteorites. To determine this, we conduct two examinations of the fused bead. First, we compare ICP-MS and fused bead results of the same samples using statistical analysis. Secondly, we inspect the beads for the presence of crystals and chemical heterogeneity. The presence of either of these would indicate incomplete melting and quenching of the bead.

  16. The effect of high-pressure devitrification and densification on ballistic-penetration resistance of fused silica

    Avuthu, Vasudeva Reddy

    Despite the clear benefits offered by more advanced transparent materials, (e.g. transparent ceramics offer a very attractive combination of high stiffness and high hardness levels, highly-ductile transparent polymers provide superior fragment-containing capabilities, etc.), ballistic ceramic-glass like fused-silica remains an important constituent material in a majority of transparent impact-resistant structures (e.g. windshields and windows of military vehicles, portholes in ships, ground vehicles and spacecraft) used today. Among the main reasons for the wide-scale use of glass, the following three are most frequently cited: (i) glass-structure fabrication technologies enable the production of curved, large surface-area, transparent structures with thickness approaching several inches; (ii) relatively low material and manufacturing costs; and (iii) compositional modifications, chemical strengthening, and controlled crystallization have been demonstrated to be capable of significantly improving the ballistic properties of glass. In the present work, the potential of high-pressure devitrification and densification of fused-silica as a ballistic-resistance-enhancement mechanism is investigated computationally. In the first part of the present work, all-atom molecular-level computations are carried out to infer the dynamic response and material microstructure/topology changes of fused silica subjected to ballistic impact by a nanometer-sized hard projectile. The analysis was focused on the investigation of specific aspects of the dynamic response and of the microstructural changes such as the deformation of highly sheared and densified regions, and the conversion of amorphous fused silica to SiO2 crystalline allotropic modifications (in particular, alpha-quartz and stishovite). The microstructural changes in question were determined by carrying out a post-processing atom-coordination procedure. This procedure suggested the formation of high-density stishovite (and

  17. Determination of work of adhesion of gelatin hydrogels on a glass substrate

    Thakre, Avinash A.; Singh, Arun K.

    2018-04-01

    In this article, work of adhesion (w adh ) of soft gelatin hydrogels on a smooth glass substrate is determined experimentally using the wedge adhesion test. The results showed that w adh decreases with the increase in gelatin concentration in the hydrogels but the same is found to be independent of thickness of hydrogel specimen. These results are used further for establishing a scaling law between w adh and mesh size (ξ) of the three dimensional structure present in the hydrogel as w adh ∼ ξ 8.6. Finite element analysis is also carried out for validating the fracture stability of wedge test in view of analytical prediction. At the end, practical significance of the present study is also discussed.

  18. Fusion algebra and fusing matrices

    Gao Yihong; Li Miao; Yu Ming.

    1989-09-01

    We show that the Wilson line operators in topological field theories form a fusion algebra. In general, the fusion algebra is a relation among the fusing (F) matrices. In the case of the SU(2) WZW model, some special F matrix elements are found in this way, and the remaining F matrix elements are then determined up to a sign. In addition, the S(j) modular transformation of the one point blocks on the torus is worked out. Our results are found to agree with those obtained from the quantum group method. (author). 24 refs

  19. Colored fused filament fabrication

    Song, Haichuan; Lefebvre, Sylvain

    2017-01-01

    Filament fused fabrication is the method of choice for printing 3D models at low cost, and is the de-facto standard for hobbyists, makers and schools. Unfortunately, filament printers cannot truly reproduce colored objects. The best current techniques rely on a form of dithering exploiting occlusion, that was only demonstrated for shades of two base colors and that behaves differently depending on surface slope. We explore a novel approach for 3D printing colored objects, capable of creating ...

  20. Women and work : an exploratory study on problems and perspectives relating to the apparent inability of women teachers to break through the glass ceiling

    2012-01-01

    M.B.A. The aim of this research is to determine whether a glass ceiling does exist in education, and if so, possible reasons why women teachers fail to break through the so-called "glass ceiling". Objectives The objectives identified include the following: To determine historical perspectives on women and work To explore the incidence of glass ceilings To ascertain the value the Department of Education places on women teachers To determine by means of questionnaires whether there is a 'gla...

  1. Heat transfer modelling in thermophotovoltaic cavities using glass media

    Bauer, T.; Forbes, I.; Penlington, R.; Pearsall, N. [Northumbria University, Newcastle upon Tyne (United Kingdom). School of Engineering and Technology

    2005-08-15

    Optimisation of heat transfer, and in particular radiative heat transfer in terms of the spectral, angular and spatial radiation distributions, is required to achieve high efficiencies and high electrical power densities for thermophotovoltaic (TPV) conversion. This work examines heat transfer from the radiator to the PV cell in an infinite plate arrangement using three different arrangements of participating dielectric media. The modelling applies the Discrete Ordinates method and assumes fused silica (quartz glass) as the dielectric medium. The arrangement radiator-glass-PV cell (also termed dielectric photon concentration) was found to be superior in terms of efficiency and power density. (author)

  2. Experimental study of fiber-glass plastic work pieces contour milling

    Trushin, N. N.; Lisitsin, V. N.

    2018-03-01

    The article represents the results of study of cut and feed speed influence on wear of monolithic hard alloy end milling cutter during cutting of foiled fiber-glass plastic sheets, used for printed-circuit boards’ production. The peculiarities and problems of cutting layered materials are described. The most effective feed and cut speed values are determined by cutter wear analysis.

  3. Quantification of Residual Stress from Photonic Signatures of Fused Silica

    Cramer, K. Elliott; Hayward, Maurice; Yost, William E.

    2013-01-01

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 +/- 0.54 x 10(exp -12)/Pa. Fused silica specimens containing impacts artificially made at NASA's Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented. Keywords: Glass, fused silica, photoelasticity, residual stress

  4. Glass fiber reinforced polyester in the works of Tous and Fargas

    D. Hernández Falagán

    2017-06-01

    Full Text Available The architects Enric Tous (1925; t 1952 and Josep Maria Fargas (1926-2011, t 1952 achieved remarkable success during the 1960s and 1970s thanks to their commitment to technical experimentation and exploration of new construction systems. Among their most significant contributions is the incorporation of polyester reinforced with glass fiber as a material applied to solutions of light facades. This article tracks the origin, context, and results they obtained with this material. We propose an approach to the GRC material through the experience developed by the architects, analyzing the characteristics and specific implications of the systems proposed in their projects. Through this reading, the industrial initiative implemented by Tous and Fargas is put into value, and the key aspects that limited the progression of the construction system are detected.

  5. Cavity Formation Modeling of Fiber Fuse in Single-Mode Optical Fibers

    Yoshito Shuto

    2017-01-01

    Full Text Available The evolution of a fiber-fuse phenomenon in a single-mode optical fiber was studied theoretically. To clarify both the silica-glass densification and cavity formation, which have been observed in fiber fuse propagation, we investigated a nonlinear oscillation model using the Van Der Pol equation. This model was able to phenomenologically explain both the densification of the core material and the formation of periodic cavities in the core layer as a result of a relaxation oscillation.

  6. Studies of glasses by positron annihilation

    Brauer, G.; Boden, G.

    1981-04-01

    Investigations of silica glasses, pyrocerams and metallic glasses by positron annihilation (lifetime, Doppler broadening) are presented. The measurements on silica glasses showed, that silica glass fused from naturally occuring quartz exhibits a higher order than that one produced from SiCl 4 . Furthermore it was found that the order of silica glasses increases after heat treatment above 900 0 C. Thus the X-amorphous state of silica glasses could be characterized by positron annihilation what is impossible at present by diffraction methods. (author)

  7. Liquefier Dynamics in Fused Deposition

    Bellini, Anna; Guceri, Selcuk; Bertoldi, Maurizio

    2004-01-01

    Layered manufacturing (LM) is an evolution of rapid prototyping (RP) technology whereby a part is built in layers. Fused deposition modeling (FDM) is a particular LM technique in which each section is fabricated through vector style deposition of building blocks, called roads, which...

  8. Outbursts In Symbiotic Binaries (FUSE 2000)

    Kenyon, Scott J.; Sonneborn, George (Technical Monitor)

    2002-01-01

    with line variations - will yield physical parameters for the expanding shell of gas in the outer atmosphere of the hot component. We also worked on several diagnostic tools, including upgrades to photoionization programs developed by the PI and others. We plan to use these tools to derive electron densities and temperatures front intercombination and forbidden lines observed on optical and FUSE spectra. Preliminary results indicate a large electron density, n(sub e) is greater than or = 10(exp 10)/cc and a modest electron temperature, T(sub e) approx. 20,000 K. We see no evidence for shocked gas as observed in some other symbiotics. However, we have yet to include several important lines of [Fe VII] and [Ne V] in the analysis. Inclusion of these lines will yield an improved estimate of the electron temperature in the gas. Finally, we have one additional FUSE spectrum planned for acquisition during this cycle. These data will provide important information concerning the state of the system farther along in its decline. Once we have this spectrum in hand, we plan to complete our analysis and publish our results.

  9. Fused aromatic thienopyrazines: structure, properties and function

    Mondal, Rajib; Ko, Sangwon; Bao, Zhenan

    2010-01-01

    Recent development of a fused aromatic thieno[3.4-b]pyrazine system and their application in optoelectronic devices are reviewed. Introduction of a fused aromatic unit followed by side chain engineering, dramatically enhanced the charge carrier

  10. Breaking through the Glass Doors: Men Working in Early Childhood Education and Care with Particular Reference to Research and Experience in Austria and New Zealand

    Koch, Bernhard; Farquhar, Sarah

    2015-01-01

    This article proposes that there exist "glass doors" impeding men from entering and participating in ECEC work. Across developed countries, men's participation as carers and teachers in early childhood education and care (ECEC) services tends to be viewed as highly desirable and much has been written about the importance of men in ECEC.…

  11. Relaxations in spin glasses: Similarities and differences from ordinary glasses

    Ngai, K.L.; Rajagopal, A.K.; Huang, C.Y.

    1984-01-01

    Relaxation phenomena have become a major concern in the physics of spin glasses. There are certain resemblances of these relaxation properties to those of ordinary glasses. In this work, we compare the relaxation properties of spin glasses near the freezing temperature with those of glasses near the glass transition temperature. There are similarities between the two types of glasses. Moreover, the relaxation properties of many glasses and spin glasses are in conformity with two coupled ''universality'' relations predicted by a recent model of relaxations in condensed matter

  12. Using glass-graded zirconia to increase delamination growth resistance in porcelain/zirconia dental structures.

    Chai, Herzl; Mieleszko, Adam J; Chu, Stephen J; Zhang, Yu

    2018-01-01

    Porcelain fused to zirconia (PFZ) restorations are widely used in prosthetic dentistry. However, their tendency to delaminate along the P/Z interface remains a practical problem so that assessing and improving the interfacial strength are important design aspects. This work examines the effect of modifying the zirconia veneering surface with an in-house felspathic glass on the interfacial fracture resistance of fused P/Z. Three material systems are studied: porcelain fused to zirconia (control) and porcelain fused to glass-graded zirconia with and without the presence of a glass interlayer. The specimens were loaded in a four-point-bend fixture with the porcelain veneer in tension. The evolution of damage is followed with the aid of a video camera. The interfacial fracture energy G C was determined with the aid of a FEA, taking into account the stress shielding effects due to the presence of adjacent channel cracks. Similarly to a previous study on PFZ specimens, the fracture sequence consisted of unstable growth of channel cracks in the veneer followed by stable cracking along the P/Z interface. However, the value of GC for the graded zirconia was approximately 3 times that of the control zirconia, which is due to the good adhesion between porcelain and the glass network structure on the zirconia surface. Combined with its improved bonding to resin-based cements, increased resistance to surface damage and good esthetic quality, graded zirconia emerges as a viable material concept for dental restorations. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Baseline LAW Glass Formulation Testing

    Kruger, Albert A.; Mooers, Cavin; Bazemore, Gina; Pegg, Ian L.; Hight, Kenneth; Lai, Shan Tao; Buechele, Andrew; Rielley, Elizabeth; Gan, Hao; Muller, Isabelle S.; Cecil, Richard

    2013-01-01

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements

  14. Exploding metallic fuse physics experiments

    Goforth, J.H.; Hackett, K.E.; Lindemuth, I.R.; Lopez, E.A.; McCullough, W.F.; Dona, H.; Reinovsky, R.E.

    1986-01-01

    The ultimate practicality of inductive pulse compression systems as drivers for energetic plasma implosions hinges on the development of a suitable opening switch capable of interrupting tons of megamp currents in time scales of a few hundred nanoseconds while withstanding L(dI/dt) voltages of a megavolt or more. 1. Exploding metallic foils (fuses) are a candidate for switching elements in the inductive store pulsed power systems used in the Los Alamos and Air Force Weapons Laboratory foil implosion X-ray source generation programs. To verify or modify new theoretical and computational predictions about the electrical and hydrodynamic behavior of exploding metallic foils used as fuses. The authors have initiated a new series of small scale capacitor bank driven fuse experiments. The experiments represent an extension of previous experiments, but in the new series a foil geometry more amenable to theoretical and computational analysis is used. The metallic foil (aluminum or copper) is laminated between two thin layers of insulating material (mylar or kaptan). Adjacent to one layer of insulation is a much heavier backing insulator (polyethylene) whereas air is adjacent to the other layer. Because of the differing masses on the two sides of the foil, the foil expansion and hydrodynamic motion is essentially one-sided and the layer of insulation on the expanding side becomes a readily-characterizable ''flyer'' which provides a controlled amount of hydrodynamic tamping. In addition to the usual voltage, current, and dI/dt electrical measurements, time-resolved spectrometer measurements are used to determine the temperature of the expanding metallic foil. Post-shot examination of the flyer and the insulation impacted by the flyer gives insight into the experimental behavior

  15. Thermal Conductivity of Foam Glass

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  16. About a New Type of Fuse Based on the Controllable Fusing Effect

    PLESCA, A.

    2009-06-01

    Full Text Available Fuses are among the best known of electrical devices and there are an extremely large number in use throughout the world. Beside of the advantageous features, the nowadays fuses have certain drawbacks. Therefore, a new type of fuse based on controllable fusing concept is proposed and a study as regards the total clearing time is done. The new concept has been validated through many experimental tests at different current values. The new type of fuse based on controllable fusing concept can be integrated within an overcurrent protection system especially to protect power semiconductors where the Joule integral criterion is better satisfied.

  17. Mechanical losses in thin fused silica fibres

    Bilenko, I A; Braginsky, V B; Lourie, S L

    2004-01-01

    Intracavity topology of the readout system for LIGO III project and table-top QND mechanical measurements under development require the use of small probe masses and suspensions with a very low level of internal losses. A good choice is to use thin fused silica fibres similar to LIGO II mirrors suspensions. Mechanical losses of silica fibres are investigated in this work through the study of quality factor dependence on diameter for pendulum and violin modes of oscillations with diameters ranging from 1.5 to 40 μm. The estimated values of effective mechanical loss angle show noticeably greater growth with lower diameters than might be expected while extrapolating known results of research done for thicker fibres

  18. Mechanical losses in thin fused silica fibres

    Bilenko, I A; Braginsky, V B; Lourie, S L [Department of Oscillatory Physics, Physics Faculty, Moscow State University (Russian Federation)

    2004-03-07

    Intracavity topology of the readout system for LIGO III project and table-top QND mechanical measurements under development require the use of small probe masses and suspensions with a very low level of internal losses. A good choice is to use thin fused silica fibres similar to LIGO II mirrors suspensions. Mechanical losses of silica fibres are investigated in this work through the study of quality factor dependence on diameter for pendulum and violin modes of oscillations with diameters ranging from 1.5 to 40 {mu}m. The estimated values of effective mechanical loss angle show noticeably greater growth with lower diameters than might be expected while extrapolating known results of research done for thicker fibres.

  19. Understanding error generation in fused deposition modeling

    Bochmann, Lennart; Transchel, Robert; Wegener, Konrad; Bayley, Cindy; Helu, Moneer; Dornfeld, David

    2015-01-01

    Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08–0.30 mm) are generally greater than in the x direction (0.12–0.62 mm) and the z direction (0.21–0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology. (paper)

  20. Understanding error generation in fused deposition modeling

    Bochmann, Lennart; Bayley, Cindy; Helu, Moneer; Transchel, Robert; Wegener, Konrad; Dornfeld, David

    2015-03-01

    Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08-0.30 mm) are generally greater than in the x direction (0.12-0.62 mm) and the z direction (0.21-0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology.

  1. Fusing Recommendations for Social Bookmarking Websites

    Bogers, Toine; van den Bosch, Antal

    2011-01-01

    Social bookmarking websites are rapidly growing in popularity. Recommender systems, a promising remedy to the information overload accompanying the explosive growth in content, are designed to identify which unseen content might be of interest to a particular user, based on his or her past...... that use tag overlap and metadata provide better results for social bookmarking data sets than the transaction patterns that are used traditionally in recommender systems research. In addition, we investigate how to fuse different recommendation approaches to further improve recommendation accuracy. We...... preferences. Most previous work in recommendation for social bookmarking suffers from a lack of comparisons between the different available approaches. In this article, we address this issue by comparing and evaluating eight recommendation approaches on four data sets from two domains. We find that approaches...

  2. Use of low fusing alloy in dentistry.

    Wee, A G; Schneider, R L; Aquilino, S A

    1998-11-01

    Low fusing alloy has been used in dentistry for remount procedures in both fixed and removable prosthodontics, in implant prosthodontics for the fabrication of solid implant casts, in maxillofacial prosthetics as oral radiation shields, and in dental research for its unique properties. Previously, the use of low fusing alloy was thought to offer a high degree of dimensional accuracy. However, multiple in vitro studies have shown that its presumed dimensional accuracy may be questionable. This article reviews the physical properties, metallurgical considerations of low fusing alloy, its applications in dentistry, and a safe, simple method of using low fusing alloy.

  3. Holes generation in glass using large spot femtosecond laser pulses

    Berg, Yuval; Kotler, Zvi; Shacham-Diamand, Yosi

    2018-03-01

    We demonstrate high-throughput, symmetrical, holes generation in fused silica glass using a large spot size, femtosecond IR-laser irradiation which modifies the glass properties and yields an enhanced chemical etching rate. The process relies on a balanced interplay between the nonlinear Kerr effect and multiphoton absorption in the glass which translates into symmetrical glass modification and increased etching rate. The use of a large laser spot size makes it possible to process thick glasses at high speeds over a large area. We have demonstrated such fabricated holes with an aspect ratio of 1:10 in a 1 mm thick glass samples.

  4. 30 CFR 57.6502 - Safety fuse.

    2010-07-01

    ... blasthole detonates. (d) Fuse shall be cut and capped in dry locations. (e) Blasting caps shall be crimped... the primer and the explosive material are securely in place. (g) Safety fuse shall be ignited only... to be fired, electric initiation systems, igniter cord and connectors, or other nonelectric...

  5. 30 CFR 56.6502 - Safety fuse.

    2010-07-01

    ... be cut and capped in dry locations. (e) Blasting caps shall be crimped to fuse only with implements... material are securely in place. (g) Safety fuse shall be ignited only with devices designed for that... initiation systems, igniter cord and connectors, or other nonelectric initiation systems shall be used...

  6. Effects of beta/gamma radiation on nuclear waste glasses

    Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-07-01

    A key challenge in the disposal of high-level nuclear waste (HLW) in glass waste forms is the development of models of long-term performance based on sound scientific understanding of relevant phenomena. Beta decay of fission products is one source of radiation that can impact the performance of HLW glasses through the interactions of the emitted {beta}-particles and g-rays with the atoms in the glass by ionization processes. Fused silica, alkali silicate glasses, alkali borosilicate glasses, and nuclear waste glasses are all susceptible to radiation effects from ionization. In simple glasses, defects (e.g., non-bridging oxygen and interstitial molecular oxygen) are observed experimentally. In more complex glasses, including nuclear waste glasses, similar defects are expected, and changes in microstructure, such as the formation of bubbles, have been reported. The current state of knowledge regarding the effects of {beta}/{gamma} radiation on the properties and microstructure of nuclear waste glasses are reviewed. (author)

  7. Effects of beta/gamma radiation on nuclear waste glasses

    Weber, W.J.

    1997-01-01

    A key challenge in the disposal of high-level nuclear waste (HLW) in glass waste forms is the development of models of long-term performance based on sound scientific understanding of relevant phenomena. Beta decay of fission products is one source of radiation that can impact the performance of HLW glasses through the interactions of the emitted β-particles and g-rays with the atoms in the glass by ionization processes. Fused silica, alkali silicate glasses, alkali borosilicate glasses, and nuclear waste glasses are all susceptible to radiation effects from ionization. In simple glasses, defects (e.g., non-bridging oxygen and interstitial molecular oxygen) are observed experimentally. In more complex glasses, including nuclear waste glasses, similar defects are expected, and changes in microstructure, such as the formation of bubbles, have been reported. The current state of knowledge regarding the effects of β/γ radiation on the properties and microstructure of nuclear waste glasses are reviewed. (author)

  8. Terahertz-induced Kerr effect in amorphous chalcogenide glasses

    Zalkovskij, Maksim; Strikwerda, Andrew; Iwaszczuk, Krzysztof

    2013-01-01

    We have investigated the terahertz-induced third-order (Kerr) nonlinear optical properties of the amorphous chalcogenide glasses As2S3 and As2Se3. Chalcogenide glasses are known for their high optical Kerr nonlinearities which can be several hundred times greater than those of fused silica. We use...

  9. Glass sealing

    Brow, R.K.; Kovacic, L.; Chambers, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  10. Electrochromic Glasses.

    1980-07-31

    this glass and that dipole-dipole correlations contribute to the "ferroelectric-like" character of this amorphous system. The TeO2 -W03 glasses can only...shows the dielectric constant and Fig. I(b) glass from pure TeO2 ot pure WO. In addition, glass the tan 8 of the WO glass as a function of temperature... glasses containing WO, in various glass forming nitworks of LifO-B1O0, Na:O-BzO,, and TeO2 were prepared from reagent grade oxides at 800 C - 9SO C in

  11. Control system for glassing hot presses

    Howell, J.F.

    1984-06-13

    A software programmable control system has been developed that automates the glass fusing process used in the production of semiconductor thermopile elements. The new control system replaces an older, mostly manual, electromechanical design. This report describes the new control design and its functional features.

  12. Optimized Synthesis of Foam Glass from Recycled CRT Panel Glass

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Most of the panel glass from cathode ray tubes (CRTs) is landfilled today. Instead of landfilling, the panel glass can be turned into new environment-friendly foam glass. Low density foam glass is an effective heat insulating material and can be produced just by using recycle glass and foaming...... additives. In this work we recycle the CRT panel glass to synthesize the foam glass as a crucial component of building and insulating materials. The synthesis conditions such as foaming temperature, duration, glass particle size, type and concentrations of foaming agents, and so on are optimized...... by performing systematic experiments. In particular, the concentration of foaming agents is an important parameter that influences the size of bubbles and the distribution of bubbles throughout the sample. The foam glasses are characterised regarding density and open/closed porosity. Differential scanning...

  13. Porphyrins Fused with Unactivated Polycyclic Aromatic Hydrocarbons

    Diev, Vyacheslav V.; Schlenker, Cody W.; Hanson, Kenneth; Zhong, Qiwen; Zimmerman, Jeramy D.; Forrest, Stephen R.; Thompson, Mark E.

    2012-01-01

    A systematic study of the preparation of porphyrins with extended conjugation by meso,β-fusion with polycyclic aromatic hydrocarbons (PAHs) is reported. The meso-positions of 5,15-unsubstituted porphyrins were readily functionalized with PAHs. Ring fusion using standard Scholl reaction conditions (FeCl 3, dichloromethane) occurs for perylene-substituted porphyrins to give a porphyrin β,meso annulated with perylene rings (0.7:1 ratio of syn and anti isomers). The naphthalene, pyrene, and coronene derivatives do not react under Scholl conditions but are fused using thermal cyclodehydrogenation at high temperatures, giving mixtures of syn and anti isomers of the meso,β-fused porphyrins. For pyrenyl-substituted porphyrins, a thermal method gives synthetically acceptable yields (>30%). Absorption spectra of the fused porphyrins undergo a progressive bathochromic shift in a series of naphthyl (λ max = 730 nm), coronenyl (λ max = 780 nm), pyrenyl (λ max = 815 nm), and perylenyl (λ max = 900 nm) annulated porphyrins. Despite being conjugated with unsubstituted fused PAHs, the β,meso-fused porphyrins are more soluble and processable than the parent nonfused precursors. Pyrenyl-fused porphyrins exhibit strong fluorescence in the near-infrared (NIR) spectral region, with a progressive improvement in luminescent efficiency (up to 13% with λ max = 829 nm) with increasing degree of fusion. Fused pyrenyl-porphyrins have been used as broadband absorption donor materials in photovoltaic cells, leading to devices that show comparatively high photovoltaic efficiencies. © 2011 American Chemical Society.

  14. Porphyrins Fused with Unactivated Polycyclic Aromatic Hydrocarbons

    Diev, Vyacheslav V.

    2012-01-06

    A systematic study of the preparation of porphyrins with extended conjugation by meso,β-fusion with polycyclic aromatic hydrocarbons (PAHs) is reported. The meso-positions of 5,15-unsubstituted porphyrins were readily functionalized with PAHs. Ring fusion using standard Scholl reaction conditions (FeCl 3, dichloromethane) occurs for perylene-substituted porphyrins to give a porphyrin β,meso annulated with perylene rings (0.7:1 ratio of syn and anti isomers). The naphthalene, pyrene, and coronene derivatives do not react under Scholl conditions but are fused using thermal cyclodehydrogenation at high temperatures, giving mixtures of syn and anti isomers of the meso,β-fused porphyrins. For pyrenyl-substituted porphyrins, a thermal method gives synthetically acceptable yields (>30%). Absorption spectra of the fused porphyrins undergo a progressive bathochromic shift in a series of naphthyl (λ max = 730 nm), coronenyl (λ max = 780 nm), pyrenyl (λ max = 815 nm), and perylenyl (λ max = 900 nm) annulated porphyrins. Despite being conjugated with unsubstituted fused PAHs, the β,meso-fused porphyrins are more soluble and processable than the parent nonfused precursors. Pyrenyl-fused porphyrins exhibit strong fluorescence in the near-infrared (NIR) spectral region, with a progressive improvement in luminescent efficiency (up to 13% with λ max = 829 nm) with increasing degree of fusion. Fused pyrenyl-porphyrins have been used as broadband absorption donor materials in photovoltaic cells, leading to devices that show comparatively high photovoltaic efficiencies. © 2011 American Chemical Society.

  15. Foaming of CRT panel glass powder with Na2CO3

    Petersen, Rasmus Rosenlund; König, Jakob; Smedskjær, Morten Mattrup

    melt, while Na2O becomes incorporated into the glass structure. We have quantified the melt expansion through density measurements and the Na2O incorporation is indicated by the decrease of the glass transition temperature (Tg) of the final foam glass. The glass foaming quality depends on the foaming......Recycling of cathode ray tube (CRT) glass remains a challenging task. The CRT glass consists of four glass types fused together: Funnel-, neck-, frit- and panel glass. The three former glasses contain toxic lead oxide, and therefore have a low recycling potential. The latter on the other hand...... is lead-free, but since barium and strontium oxide are present, panel glass is incompatible with most common recycling methods. However, foam glass production is a promising approach for the recycling of panel glass waste, since the process parameters can be changed according to the glass waste...

  16. Comparative evaluation of fiber fuse models

    Davis, D.D.; Mettler, S.C.; DiGiovanni, D.J.

    1997-01-01

    A phenomenon which results in the catastrophic destruction of the guiding properties of an optical fiber has been observed at laser power densities on the order of 3 x 10 6 watts/cm 2 in the core. This phenomenon is characterized by the propagation of a bright visible light from the point of initiation toward the laser source. The term 'fiber fuse' has been used because of the similarity in appearance to a burning fuse. The fiber fuse has been shown to start when the end of the fiber is contacted. It has also been initiated spontaneously from mechanical splices. This paper reports experimental data gathered on the fiber fuse and discusses their relationship to proposed physical mechanisms

  17. SINA: A test system for proximity fuses

    Ruizenaar, M. G. A.

    1989-04-01

    SINA, a signal generator that can be used for testing proximity fuses, is described. The circuitry of proximity fuses is presented; the output signal of the RF circuit results from a mixing of the emitted signal and received signal that is Doppler shifted in frequency by the relative motion of the fuse with respect to the reflecting target of surface. With SINA, digitized and stored target and clutter signals (previously measured) can be transformed to Doppler signals, for example during a real flight. SINA can be used for testing fuse circuitry, for example in the verification of results of computer simulations of the low frequency Doppler signal processing. The software of SINA and its use are explained.

  18. Endodontic therapy for a fused mandibular molar.

    Rotstein, I; Moshonov, J; Cohenca, N

    1997-06-01

    Variations in tooth morphology present a clinical challenge when endodontic treatment is required. A case of conservative endodontic therapy for a fused mandibular second and third molar is presented.

  19. Evaluation of optical properties of the amorphous carbon film on fused silica

    Baydogan, Nilguen Dogan

    2004-01-01

    Deposition was done using a pulsed filtered cathodic arc with a graphite cathode. The carbon plasma is fully ionised and condenses on the substrate, forming diamond-like material but with amorphous structure. Optical properties of amorphous carbon films on fused-silica glass were investigated and the curves of optical density have a characteristic band at approximately 950 nm. Changes of the colourimetric quantities were evaluated and compared to uncoated fused silica glass. These changes were investigated as a function of the applied substrate bias voltage using the CIE and CIELAB colour systems. It is suggested that the mechanism of absorption is related to an allowed direct transition at the amorphous carbon films on fused silica glass. The optical energy gap of the amorphous carbon film depends on the bias voltage applied to the substrate holder. The optical colour parameters and optical band gap indicated that there is a relation between the dominant wavelength of the reflectance in the visible range and the wavelength of the optical band gap

  20. Glass consistency and glass performance

    Plodinec, M.J.; Ramsey, W.G.

    1994-01-01

    Glass produced by the Defense Waste Processing Facility (DWPF) will have to consistently be more durable than a benchmark glass (evaluated using a short-term leach test), with high confidence. The DWPF has developed a Glass Product Control Program to comply with this specification. However, it is not clear what relevance product consistency has on long-term glass performance. In this report, the authors show that DWPF glass, produced in compliance with this specification, can be expected to effectively limit the release of soluble radionuclides to natural environments. However, the release of insoluble radionuclides to the environment will be limited by their solubility, and not glass durability

  1. HVI Ballistic Limit Charaterization of Fused Silica Thermal Pane

    Bohl, William E.; Miller, Joshua E.; Christiansen, Eric L.; Deighton, Kevin.; Davis, Bruce

    2015-01-01

    The Orion spacecraft's windows are exposed to the micrometeroid and orbital debris (MMOD) space environments while in space as well as the Earth entry environment at the mission's conclusion. The need for a low-mass spacecraft window design drives the need to reduce conservatism when assessing the design for loss of crew due to MMOD impact and subsequent Earth entry. Therefore, work is underway at NASA and Lockheed Martin to improve characterization of the complete penetration ballistic limit of an outer fused silica thermal pane. Hypervelocity impact tests of the window configuration at up to 10 km/s and hydrocode modeling have been performed with a variety of projectile materials to enable refinement of the fused silica ballistic limit equation.

  2. Colloidal glasses

    First page Back Continue Last page Overview Graphics. Colloidal glasses. Glassy state is attained when system fails to reach equilibrium due to crowding of constituent particles. In molecular glasses, glassy state is reached by rapidly lowering the temperature. In colloidal glasses, glassy state is reached by increasing the ...

  3. Research on non-destructive testing (NDT) aerospace igniter fuse with neutron radiography (NR)

    Mo Dawei; Liu Yisi; Cai Qingsheng; Chen Boxian

    1995-01-01

    The research works, facilities and results of NDT aerospace igniter fuse with neutron radiography at Tsinghua University swimming-pool reactor are introduced. The image quality (NR) of ASTM E545-85 I level was approached. The NR experimental research of the typical and possible defects was performed. The theoretical analysis was performed too. The feasibility of NDT aerospace igniter fuse with NR was proved experimentally

  4. Survey results of output measurements in diagnostic X ray equipments using glass dosimeter and the questionnaire. Aichi association of radiological technologists 50 year anniversary memorial work

    Kondo, Yuji; Hirofuji, Yoshiaki; Saiga, Osamu; Ishibashi, Kazuto

    2003-01-01

    The Aichi Association of Radiological Technologists executed the survey according to the task of radiation control in Aichi prefecture. The survey investigated the number of clinics/hospitals who own radiation dosimeters. The association also measured outputs using glass dosimeter (GD-450) manufactured by Chiyoda Technical in diagnostic X ray. The purpose and significance of the survey are: to illustrate that the radiation control task is not involved as routine maintenance work, to examine why the task is not routinely performed, to investigate the number of clinics/hospitals who own diagnostic X ray radiation dosimeters, to inform that the use of dosimeter is essential to achieve accurate measurement for exposed dose, and to motivate the significance of radiation control in routine work. The result of the survey clearly indicated the necessity of radiation control, and suggested the information needed for the Aichi Association of Radiological Technologists to determine the guideline for the medical radiation exposed dose. (author)

  5. Silicate glasses

    Lutze, W.

    1988-01-01

    Vitrification of liquid high-level radioactive wastes has received the greatest attention, world-wide, compared to any other HLW solidification process. The waste form is a borosilicate-based glass. The production of phosphate-based glass has been abandoned in the western world. Only in the Soviet Union are phosphate-based glasses still being developed. Vitrification techniques, equipment and processes and their remote operation have been developed and studied for almost thirty years and have reached a high degree of technical maturity. Industrial demonstration of the vitrification process has been in progress since 1978. This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e., borosilicate glasses

  6. Mechanical Properties of a High Lead Glass Used in the Mars Organic Molecule Analyzer

    Salem, Jonathan A.; Smith, Nathan A.; Ersahin, Akif

    2015-01-01

    The elastic constants, strength, fracture toughness, slow crack growth parameters, and mirror constant of a high lead glass supplied as tubes and funnels were measured using ASTM International (formerly ASTM, American Society for Testing and Materials) methods and modifications thereof. The material exhibits lower Young's modulus and slow crack growth exponent as compared to soda-lime silica glass. Highly modified glasses exhibit lower fracture toughness and slow crack growth exponent than high purity glasses such as fused silica.

  7. Do Workers Who Experience Conflict between the Work and Family Domains Hit a "Glass Ceiling?": A Meta-Analytic Examination

    Hoobler, Jenny M.; Hu, Jia; Wilson, Morgan

    2010-01-01

    Based in Conservation of Resources (COR; Hobfoll, 1989) and self-verification (Swann, 1987) theories, we argue that when workers experience conflict between the work and family domains, this should have implications for evaluations of their work performance and ultimately affect more "objective" career outcomes such as salary and hierarchical…

  8. Fusing Facial Features for Face Recognition

    Jamal Ahmad Dargham

    2012-06-01

    Full Text Available Face recognition is an important biometric method because of its potential applications in many fields, such as access control, surveillance, and human-computer interaction. In this paper, a face recognition system that fuses the outputs of three face recognition systems based on Gabor jets is presented. The first system uses the magnitude, the second uses the phase, and the third uses the phase-weighted magnitude of the jets. The jets are generated from facial landmarks selected using three selection methods. It was found out that fusing the facial features gives better recognition rate than either facial feature used individually regardless of the landmark selection method.

  9. Recycle Glass in Foam Glass Production

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  10. Fused aromatic thienopyrazines: structure, properties and function

    Mondal, Rajib

    2010-01-01

    Recent development of a fused aromatic thieno[3.4-b]pyrazine system and their application in optoelectronic devices are reviewed. Introduction of a fused aromatic unit followed by side chain engineering, dramatically enhanced the charge carrier mobility in thin film transistor devices and mobilities up to 0.2 cm2/Vs were achieved. The optoelectronic properties of these fused aromatic thienopyrazine polymers (Eg = 1.3 to 1.6 eV, HOMO = -4.9 to -5.2 V) were tuned by introduction of various fused aromatic rings within thienopyrazine. By balancing the fundamental properties of these polymers, both high charge carrier mobilities and moderate PCEs in solar cells were achieved. Further, effects of copolymerizing units are discussed. Low band gap semiconducting polymer (Eg ∼ 1 eV) with high field effect mobility (0.044 cm2/Vs) was obtained using cyclopentadithiophene as copolymerizing unit. Finally, a molecular design approach to enhance the absorption coefficients is discussed, which resulted in improved power conversion efficiency in bulk heterojunction solar cells. © 2010 The Royal Society of Chemistry.

  11. Fungal Systematics and Evolution: FUSE 1

    Crous, Pedro W; Schumacher, René K; Wingfield, Michael J; Lombard, Lorenzo; Giraldo, Alejandra; Christensen, Martha; Gardiennet, Alain; Nakashima, Chiharu; Pereira, Olinto L; Smith, Alexander J; Groenewald, Johannes Z

    2015-01-01

    Fungal Systematics and Evolution (FUSE) is introduced as a new series to expedite the publication of issues relating to the epitypification of formerly described species, report new sexual-asexual connections, the merging of sexual and asexual gen¬era following the end of dual nomenclature, and to

  12. Investigation of fused silica dynamic behaviour

    Malaise, F.; Chevalier, J.M.; Bertron, I.; Malka, F.

    2006-01-01

    The survivability of the fused silica shields to shrapnel impacts is a key factor for the affordable operation of the intense laser irradiation future facility Laser Mega Joule (LMJ). This paper presents experimental data and computational modelling for LMJ fused silica upon shock wave loading and unloading. Gas-gun flyer plate impact and explosively driven tests have been conducted to investigate the dynamic behaviour of this material. Hugoniot states and the Hugoniot Elastic Limit of LMJ fused silica have been obtained. These experimental data are useful for determining some constitutive model constants of the 'Crack-Model', a continuum tensile and compressive failure model with friction based. This model has been improved by taking into account nonlinear elasticity. The numerical results obtained by performing computations of the previous tests and some ballistic impact tests are discussed. The numerical comparisons with the experimental data show good agreement. Further developments to simulate the permanent densification and the solid-to-solid phase transformation of fused silica are required. (authors)

  13. Cosmos & Glass

    Beim, Anne

    1996-01-01

    The article unfolds the architectural visions of glass by Bruno Taut. It refers to inspirations by Paul Sheerbart and litterature and the Crystal Chain, also it analyses the tectonic univers that can be found in the glass pavillion for the Werkbund exposition in Cologne....

  14. Glass Glimpsed

    Lock, Charles

    2015-01-01

    Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology.......Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology....

  15. Spin glasses

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  16. Dihydropyridine-fused and pyridine-fused coumarins: Reduction on a glassy carbon electrode in dimethylformamide

    Nuñez-Vergara, Luis J.; Pardo-Jiménez, V.; Barrientos, C.; Olea-Azar, C.A.; Navarrete-Encina, P.A.; Squella, J.A.

    2012-01-01

    In this study, two series of dihydropyridine-fused and pyridine-fused coumarins were synthesised and electrochemically characterised in aprotic medium. In both series, the most easily reducible groups were the endocyclic carbonyl groups. The electrochemical mechanism for both types of compounds is strongly dependent on the experimental time-scale. Cyclic voltammetric (CV) reduction on a glassy carbon electrode (GCE) of the endocyclic carbonyl group of dihydropyridine-fused coumarins involves an ECEC mechanism with two electron transfer steps that are coupled with chemical reactions to produce the corresponding hemiacetal derivative. In the case of pyridine-fused coumarins, CV reduction of the endocyclic carbonyl group involves an EEC mechanism. ESR studies revealed the presence of a stabilised intermediate only for the pyridine-fused derivatives. Our theoretical study showed a spin density map of radical species delocalised mainly within the coumarin ring, indicating the reduction of the endocyclic carbonyl group. In the case of the dihydropyridine-fused derivatives, the mildly acid hydrogen of the dihydropyridine ring destabilises the radical via a father–son type reaction.

  17. Strong work-hardening behavior induced by the solid solution strengthening of dendrites in TiZr-based bulk metallic glass matrix composites

    Ma, D.Q. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Jiao, W.T. [College of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004 (China); Zhang, Y.F. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Hebei Vocational and Technical College of Building Materials, Qinhuangdao 066004 (China); Wang, B.A.; Li, J.; Zhang, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Ma, M.Z., E-mail: mz550509@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, R.P. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-03-05

    Highlights: • Hardness of dendrite of TiZr-based BMGMCs increases. • Strong work-hardening behavior is obtained after solid solution strengthening. • Lattice distortions of dendrite suffering from rapid cooling are detected. - Abstract: A series of TiZr-based bulk metallic glass matrix composites (BMGMCs) with distinguished mechanical properties are successfully fabricated by adding different volume fractions of Ta (Ti{sub 38.8}Zr{sub 28.8}Cu{sub 6.2}Be{sub 16.2}Nb{sub 10} as the basic composition, denoted as Ta{sub 0.0}–Ta{sub 8.0}). Along with the growth of precipitated phase, typical dendritic morphology is fully developed in the TiZr-based BMGMCs of Ta{sub 8.0}. Energy-dispersive spectrometry analysis of the dendrites and glass matrix indicates that the metallic elements of Nb and Ta should preferentially form solid solution into dendrites. The chaotic structure of high-temperature precipitate phase is trapped down by the rapid cooling of the copper-mould. The detected lattice distortions in the dendrites are attributed to the strong solid solution strengthening of the metallic elements of Ti, Zr, Nb, and Ta. These lattice distortions increase the resistance of the dislocation motion and pin the dislocations, thus the strength and hardness of dendrite increase. Dendrites create a strong barrier for the shear band propagation and generate multiple shear bands after solid solution strengthening, thereby providing the TiZr-based BMGMCs with greatly improved capacity to sustain plastic deformation and resistance to brittle fracture. Thus, the TiZr-based BMGMCs possess distinguished work-hardening capability. Among these TiZr-based BMGMCs, the sample Ta{sub 0.5} possesses the largest plastic strain (ε{sub p}) at 20.3% and ultimate strength (σ{sub max}) of 2613 MPa during compressive loading. In addition, the sample of Ta{sub 0.5} exhibits work-hardening up to an ultrahigh tensile strength of 1680 MPa during the tensile process, and then progressively

  18. 29 CFR 1926.907 - Use of safety fuse.

    2010-07-01

    ... way shall be forbidden. (b) The hanging of a fuse on nails or other projections which will cause a...-called “drop fuse” method of dropping or pushing a primer or any explosive with a lighted fuse attached...

  19. Helium behaviour in nuclear glasses

    Fares, T.

    2011-01-01

    The present thesis focuses on the study of helium behavior in R7T7 nuclear waste glass. Helium is generated by the minor actinides alpha decays incorporated in the glass matrix. Therefore, four types of materials were used in this work. These are non radioactive R7T7 glasses saturated with helium under pressure, glasses implanted with 3 He + ions, glasses doped with curium and glasses irradiated in nuclear reactor. The study of helium solubility in saturated R7T7 glass has shown that helium atoms are inserted in the glass free volume. The results yielded a solubility of about 10 16 at. cm -3 atm. -1 . The incorporation limit of helium in this type of glass has been determined; its value amounted to about 2*10 21 at. cm -3 , corresponding to 2.5 at.%. Diffusion studies have shown that the helium migration is controlled by the single population dissolved in the glass free volume. An ideal diffusion model was used to simulate the helium release data which allowed to determine diffusion coefficients obeying to the following Arrhenius law: D = D 0 exp(-E a /kBT), where D 0 = 2.2*10 -2 and 5.4*10 -3 cm 2 s -1 and E a = 0.61 eV for the helium saturated and the curium doped glass respectively. These results reflect a thermally activated diffusion mechanism which seems to be not influenced by the glass radiation damage and helium concentrations studied in the present work (up to 8*10 19 at. g -1 , corresponding to 0.1 at.%). Characterizations of the macroscopic, structural and microstructural properties of glasses irradiated in nuclear reactor did not reveal any impact associated with the presence of helium at high concentrations. The observed modifications i.e. a swelling of 0.7 %, a decrease in hardness by 38 %, an increase between 8 and 34 % of the fracture toughness and a stabilization of the glass structure under irradiation, were attributed to the glass nuclear damage induced by the irradiation in reactor. Characterizations by SEM and TEM of R7T7 glasses implanted

  20. Joining Dental Ceramic Layers With Glass

    Saied, MA; Lloyd, IK; Haller, WK; Lawn, BR

    2011-01-01

    Objective Test the hypothesis that glass-bonding of free-form veneer and core ceramic layers can produce robust interfaces, chemically durable and aesthetic in appearance and, above all, resistant to delamination. Methods Layers of independently produced porcelains (NobelRondo™ Press porcelain, Nobel BioCare AB and Sagkura Interaction porcelain, Elephant Dental) and matching alumina or zirconia core ceramics (Procera alumina, Nobel BioCare AB, BioZyram yttria stabilized tetragonal zirconia polycrystal, Cyrtina Dental) were joined with designed glasses, tailored to match thermal expansion coefficients of the components and free of toxic elements. Scanning electron microprobe analysis was used to characterize the chemistry of the joined interfaces, specifically to confirm interdiffusion of ions. Vickers indentations were used to drive controlled corner cracks into the glass interlayers to evaluate the toughness of the interfaces. Results The glass-bonded interfaces were found to have robust integrity relative to interfaces fused without glass, or those fused with a resin-based adhesive. Significance The structural integrity of the interfaces between porcelain veneers and alumina or zirconia cores is a critical factor in the longevity of all-ceramic dental crowns and fixed dental prostheses. PMID:21802131

  1. 30 CFR 57.12036 - Fuse removal or replacement.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fuse removal or replacement. 57.12036 Section 57.12036 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12036 Fuse removal or replacement. Fuses shall not be removed or...

  2. 30 CFR 56.12036 - Fuse removal or replacement.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fuse removal or replacement. 56.12036 Section 56.12036 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... § 56.12036 Fuse removal or replacement. Fuses shall not be removed or replaced by hand in an energized...

  3. The challenges of treating a fused tooth

    Baratto-Filho, Flares; Leonardi, Denise Piotto; Crozeta, Bruno Monguilhott; Baratto, Samantha Pugsley; Campos, Edson Alves; Tomazinho, Flavia Sens Fagundes; Deliberador, Tatiana Miranda

    2012-01-01

    This paper describes and discusses the multidisciplinary treatment involving a permanent maxillary lateral incisor fused to a supernumerary tooth, both presenting pulp necrosis and periapical lesion. A 15-year-old male patient sought treatment complaining of pain, swelling and mobility on the maxillary right lateral incisor. After clinical and radiographic examination, root canal preparation was performed according to the crown-down technique and a calcium hydroxide dressing was placed for 15...

  4. Fungal Systematics and Evolution: FUSE 1

    Crous, Pedro W; Schumacher, René K; Wingfield, Michael J; Lombard, Lorenzo; Giraldo, Alejandra; Christensen, Martha; Gardiennet, Alain; Nakashima, Chiharu; Pereira, Olinto L; Smith, Alexander J; Groenewald, Johannes Z

    2015-01-01

    Fungal Systematics and Evolution (FUSE) is introduced as a new series to expedite the publication of issues relating to the epitypification of formerly described species, report new sexual-asexual connections, the merging of sexual and asexual gen¬era following the end of dual nomenclature, and to describe species or note interesting observations regarding fungi. This first paper includes 18 new combinations, 13 new species, three new genera and one new family. All taxa are ascomycetes, excep...

  5. Titanium metal obtention by fused salts electrolysis

    Perillo, P.M.; Ares, Osvaldo; Botbol, Jose.

    1989-01-01

    Potassium fluorotitanate dissolved in fused sodium chloride or potassium chloride may be electrolyzed under an inert gas atmosphere. Solid electrolysis products are formed on the cathode which contains titanium metal, sodium chloride, lower fluorotitanates and small quantities of alkali metal fluorotitanate. The extraction of titanium from the electrolysis products may be carried out by aqueous leaching (removal of chloride salts of alkali metals and a certain amount of fluorotitanates). Titanium metal obtained is relatively pure. (Author)

  6. Electrolysis of uranium tetrafluorure fused salts

    Perillo, P.M.; Botbol, J.

    1991-01-01

    Electrolytic preparation of U has been unsuccessful because the metal formed is in easily oxidized state. Electrolytic depositions were made under various conditions from fused NaCl-KCl baths containing UF 4 . X-ray diffraction studies were made of the products. The results indicate that mixed U with several oxides phases are produced. It was concluded that the method was unlikely to be efficient for the production of U metal. (Author) [es

  7. Helicopter Aircrew Training Using Fused Reality

    2006-06-01

    PROCESS Blue screening involving human filming usually employs a blue or green backdrop, since skin contains little blue or green hue. These backdrops...Helicopter Aircrew Training Using Fused Reality 27 - 10 RTO-MP-HFM-136 a. b. c. d. e. f. Figure 13: Frames Showing Physical Object ( witch ... filming . However, when a user’s hands disrupt the light from a helmet-mounted light source, the shadows cast onto the distant background are diffuse and

  8. Arsenic Sulfide Nanowire Formation on Fused Quartz Surfaces

    Olmstead, J.; Riley, B.J.; Johnson, B.R.; Sundaram, S.K.

    2005-01-01

    Arsenic sulfide (AsxSy) nanowires were synthesized by an evaporation-condensation process in evacuated fused quartz ampoules. During the deposition process, a thin, colored film of AsxSy was deposited along the upper, cooler portion of the ampoule. The ampoule was sectioned and the deposited film analyzed using scanning electron microscopy (SEM) to characterize and semi-quantitatively evaluate the microstructural features of the deposited film. A variety of microstructures were observed that ranged from a continuous thin film (warmer portion of the ampoule), to isolated micron- and nano-scale droplets (in the intermediate portion), as well as nanowires (colder portion of the ampoule). Experiments were conducted to evaluate the effects of ampoule cleaning methods (e.g. modify surface chemistry) and quantity of source material on nanowire formation. The evolution of these microstructures in the thin film was determined to be a function of initial pressure, substrate temperature, substrate surface treatment, and initial volume of As2S3 glass. In a set of two experiments where the initial pressure, substrate thermal gradient, and surface treatment were the same, the initial quantity of As2S3 glass per internal ampoule volume was doubled from one test to the other. The results showed that AsxSy nanowires were only formed in the test with the greater initial quantity of As2S3 per internal ampoule volume. The growth data for variation in diameter (e.g. nanowire or droplet) as a function of substrate temperature was fit to an exponential trendline with the form y = Aekx, where y is the structure diameter, A = 1.25×10-3, k = 3.96×10-2, and x is the temperature with correlation coefficient, R2 = 0.979, indicating a thermally-activated process.

  9. Stones, Glass and Steel One Architect's journey towards understanding the impact of geology on his design work.

    Guillot, R. E.

    2016-12-01

    Geological forms and materials have long served as inspiration for creativity. The earliest drawings in the caves of Lascaux were perhaps the simplest and most elegant narratives ever to link the earth and the stories of the people that inhabit it. The earth is a storytelling and inspirational tool.Ironically, in contemporary architecture, the forces that create minerals and the geology of the earth over time are the same forces that architecture seeks to overcome. Our buildings are stronger, taller and seemingly more gravity defying than ever before. They soar and hover while still being subject to the same forces that drove cathedrals and pyramids to embrace the ground and rise from it. How can the earth and its geological elements serve as inspiration for the art of architecture as well as connecting buildings with the places that they inhabit? Typically, the Architect's interest is in the narrow band of geology called topography- the earth's crust which is a relatively minor chapter in the story of the earth. This is the layer that impacts soils and bearing pressures for foundations but very little of the Architect's imagination. The human connection to the elements of the earth; the translucence, strata, color and at times the frozen sounds of the violent formation of the landforms themselves all can inform the language of architecture.Through a discussion of my work designed and built in the United States and around the World, I will share the inspiration of geology through my own architecture and the many architectural forms it takes.

  10. GLASS BOX

    Curtis, Laura

    2008-01-01

    The goals of this effort were to develop Glass Box capabilities to allow for the capturing of analyst activities and the associated data resources, track and log the results of automated processing...

  11. Fabrication of Radiation Shielding Glass

    Tavichai, Nattaya; Pormsean, Suriyont; Dararutana, Pisutti; Sirikulrat, Narin

    2003-06-01

    In this work, lead glass doped with 50%, 55%,60%, 65%, and 70% w/w Pb 3 O 4 . After that, glass mixtures were melt at 1,250οC with 4 hours soaking time. Molten glass was shaped by mould casting technique then annealed at 700οC and cooled down to room temperature. It was found that the glass with 60%w/w Pb 3 O 4 show maximum absorption coefficient of about 0.383 cm -1 with I-131 at energy 364 keV. The observed refractive indices of the samples range between 1.5908 to 1.5922

  12. First experimental tests of a lead glass drift calorimeter

    Guerra, A.D.; Bellazzini, R.; Conti, M.; Massai, M.M.; Schwartz, G.; Habel, R.; Mulera, T.; Perez-Mendez, V.

    1985-10-01

    We are building a drift collection calorimeter, which has a combined radiator and electric field shaping structure made of fused lead glass tubing, treated in a H 2 reducing atmosphere. We describe the construction detail of the calorimeter and the experimental measurements on several prototypes with radioative sources and minimum ionizing particles. 9 refs., 11 figs

  13. Analysis of glass fibre sizing

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2014-01-01

    Glass fibre reinforced polymer composites are widely used for industrial and engineering applications which include construction, aerospace, automotive and wind energy industry. During the manufacturing glass fibres, they are surface-treated with an aqueous solution. This process and the treated...... surfaces are called sizing. The sizing influences the properties of the interface between fibres and a matrix, and subsequently affects mechanical properties of composites. In this work the sizing of commercially available glass fibres was analysed so as to study the composition and chemical structures....... Soxhlet extraction was used to extract components of the sizing from the glass fibres. The glass fibres, their extracts and coated glass plates were analysed by Thermo-Gravimetric Analysis combined with a mass spectrometer (TGA-MS), and Attenuated Total Reflectance Fourier Transform Infrared (ATR...

  14. Analytical Plan for Roman Glasses

    Strachan, Denis M.; Buck, Edgar C.; Mueller, Karl T.; Schwantes, Jon M.; Olszta, Matthew J.; Thevuthasan, Suntharampillai; Heeren, Ronald M.

    2011-01-01

    Roman glasses that have been in the sea or underground for about 1800 years can serve as the independent “experiment” that is needed for validation of codes and models that are used in performance assessment. Two sets of Roman-era glasses have been obtained for this purpose. One set comes from the sunken vessel the Iulia Felix; the second from recently excavated glasses from a Roman villa in Aquileia, Italy. The specimens contain glass artifacts and attached sediment or soil. In the case of the Iulia Felix glasses quite a lot of analytical work has been completed at the University of Padova, but from an archaeological perspective. The glasses from Aquileia have not been so carefully analyzed, but they are similar to other Roman glasses. Both glass and sediment or soil need to be analyzed and are the subject of this analytical plan. The glasses need to be analyzed with the goal of validating the model used to describe glass dissolution. The sediment and soil need to be analyzed to determine the profile of elements released from the glass. This latter need represents a significant analytical challenge because of the trace quantities that need to be analyzed. Both pieces of information will yield important information useful in the validation of the glass dissolution model and the chemical transport code(s) used to determine the migration of elements once released from the glass. In this plan, we outline the analytical techniques that should be useful in obtaining the needed information and suggest a useful starting point for this analytical effort.

  15. Bioactive glass in tissue engineering

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  16. Metallic glasses: structural models

    Nassif, E.

    1984-01-01

    The aim of this work is to give a summary of the attempts made up to the present in order to discribe by structural models the atomic arrangement in metallic glasses, showing also why the structure factors and atomic distribution functions cannot be always experimentally determined with a reasonable accuracy. (M.W.O.) [pt

  17. Recycling potential for low voltage and high voltage high rupturing capacity fuse links.

    Psomopoulos, Constantinos S; Barkas, Dimitrios A; Kaminaris, Stavros D; Ioannidis, George C; Karagiannopoulos, Panagiotis

    2017-12-01

    Low voltage and high voltage high-rupturing-capacity fuse links are used in LV and HV installations respectively, protecting mainly the LV and HV electricity distribution and transportation networks. The Waste Electrical and Electronic Equipment Directive (2002/96/EC) for "Waste of electrical and electronic equipment" is the main related legislation and as it concerns electrical and electronic equipment, it includes electric fuses. Although, the fuse links consist of recyclable materials, only small scale actions have been implemented for their recycling around Europe. This work presents the possibilities for material recovery from this specialized industrial waste for which there are only limited volume data. Furthermore, in order to present the huge possibilities and environmental benefits, it presents the potential for recycling of HRC fuses used by the Public Power Corporation of Greece, which is the major consumer for the country, but one of the smallest ones in Europe and globally, emphasizing in this way in the issue. According to the obtained results, fuse recycling could contribute to the effort for minimize the impacts on the environment through materials recovery and reduction of the wastes' volume disposed of in landfills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication : Procedures, Materials, and Applications

    Salentijn, Gert Ij; Oomen, Pieter E; Grajewski, Maciej; Verpoorte, Elisabeth

    2017-01-01

    In this work, the use of fused deposition modeling (FDM) in a (bio)analytical/lab-on-a-chip research laboratory is described. First, the specifications of this 3D printing method that are important for the fabrication of (micro)devices were characterized for a benchtop FDM 3D printer. These include

  19. Perspectives on spin glasses

    Contucci, Pierluigi

    2013-01-01

    Presenting and developing the theory of spin glasses as a prototype for complex systems, this book is a rigorous and up-to-date introduction to their properties. The book combines a mathematical description with a physical insight of spin glass models. Topics covered include the physical origins of those models and their treatment with replica theory; mathematical properties like correlation inequalities and their use in the thermodynamic limit theory; main exact solutions of the mean field models and their probabilistic structures; and the theory of the structural properties of the spin glass phase such as stochastic stability and the overlap identities. Finally, a detailed account is given of the recent numerical simulation results and properties, including overlap equivalence, ultrametricity and decay of correlations. The book is ideal for mathematical physicists and probabilists working in disordered systems.

  20. Glass compositions

    France, P W

    1985-05-30

    A fluoride glass for use in the production of optical fibres has an enhanced D/H ratio, preferably such that OD:OH is at least 9:1. In the example, such a glass is prepared by treating with D/sub 2/O a melt comprising 51.53 mole per cent ZrF/sub 4/, 20.47 mole per cent BaF/sub 2/, 5.27 mole per cent LaF/sub 3/, 3.24 mole per cent AlF/sub 3/, and 19.49 mole per cent LiF.

  1. Fused Reality for Enhanced Flight Test Capabilities

    Bachelder, Ed; Klyde, David

    2011-01-01

    The feasibility of using Fused Reality-based simulation technology to enhance flight test capabilities has been investigated. In terms of relevancy to piloted evaluation, there remains no substitute for actual flight tests, even when considering the fidelity and effectiveness of modern ground-based simulators. In addition to real-world cueing (vestibular, visual, aural, environmental, etc.), flight tests provide subtle but key intangibles that cannot be duplicated in a ground-based simulator. There is, however, a cost to be paid for the benefits of flight in terms of budget, mission complexity, and safety, including the need for ground and control-room personnel, additional aircraft, etc. A Fused Reality(tm) (FR) Flight system was developed that allows a virtual environment to be integrated with the test aircraft so that tasks such as aerial refueling, formation flying, or approach and landing can be accomplished without additional aircraft resources or the risk of operating in close proximity to the ground or other aircraft. Furthermore, the dynamic motions of the simulated objects can be directly correlated with the responses of the test aircraft. The FR Flight system will allow real-time observation of, and manual interaction with, the cockpit environment that serves as a frame for the virtual out-the-window scene.

  2. Fracture Strength of Fused Silica From Photonic Signatures Around Collision Sites

    Yost, William T.; Cramer, K Elliott

    2015-01-01

    Impact sites in glass affect its fracture strength. An analytical model that predicts fracture strength from grey-field polariscope (GFP) readings (photoelastic retardations) has been developed and reported in the literature. The model is suggestive that stress fields, resulting from impact damage, destablizes sites within the glass, which lead to pathways that cause strength degradation. Using data collected from fused silica specimens fabricated from outer window panes that were designed for the space shuttle, the model was tested against four categories of inflicted damage. The damage sites were cored from the window carcasses, examined with the GFP and broken using the ASTM Standard C1499-09 to measure the fracture strength. A correlation is made between the fracture strength and the photoelastic retardation measured at the damage site in each specimen. A least-squares fit is calculated. The results are compared with the predictions from the model. A plausible single-sided NDE damage site inspection method (a version of which is planned for glass inspection in the Orion Project) that relates photoelastic retardation in glass components to its fracture strength is presented.

  3. Fused upper central incisors: management of two clinical cases

    Sfasciotti, Gian Luca; Marini, Roberta; Bossù, Maurizio; Ierardo, Gaetano; Annibali, Susanna

    2012-01-01

    This paper reports the management of two clinical cases, in which the upper right central incisor was fused with a supernumerary tooth and the upper left central incisor was macrodontic. A radiographic examination revealed that the fused teeth had two separate roots. Hemisectioning of the fused teeth was performed, the supernumerary portion was extracted and the remaining part was reshaped to remove any sharp margins and to achieve a normal morphology. The macrodontic central incisors were no...

  4. Generating User Interfaces with the FUSE-System

    Frank Lonczewski; Siegfried Schreiber

    2017-01-01

    With the FUSE(Formal User interface Specification Environment)-System we present a methodology and a set of integrated tools for the automatic generation of graphical user interfaces. FUSE provides tool-based support for all phases (task-, user-, problem domain analysis, design of the logical user interface, design of user interface in a particular layout style) of the user interface development process. Based on a formal specification of dialogue- and layout guidelines, FUSE allows the autom...

  5. Neutronic study of a nuclear reactor of fused salts

    Garcia B, F. B.; Francois L, J. L.

    2012-10-01

    The reactors of fused salts called Molten Salt Reactor have presented a resurgence of interest in the last decade, due to they have a versatility in particular to operate, either with a thermal or fast neutrons spectrum. The most active development was by the middle of 1950 and principles of 1970 in the Oak Ridge National Laboratory. In this work some developed models are presented particularly and studied with the help of the MCNPX code, for the development of the neutronic study of this reactor, starting of proposed models and from a simple and homogeneous geometry until other more complex models and approximate to more real cases. In particular the geometry conditions and criticality of each model were analyzed, the isotopic balance, as well as the concentrations of the salts and different assigned fuel types. (Author)

  6. A Radiographic Study of Fused and Geminated Tooth

    Park, Chul Jae; Lee, Sang Rae [Dept. of Oral Radiology, College of Dentistry, Kyunhee University, Seoul (Korea, Republic of)

    1990-02-15

    The incidence and several characteristic features of fused and geminated teeth were studied radiographically, with full mouth periapical radiogram and pantomogram, in 4201 patients of mixed dentition and 5358 patients of permanent dentition. The obtained results were as follows: 1. The prevalence was revealed to 2.86%, 0.32%, 0.33%, and 0.06% in deciduous fused tooth, permanent fused tooth, deciduous geminated tooth and permanent geminated tooth respectively, and these anomalies were occurred in female more than male. 2. Fused teeth were observed predominantly in lower anterior teeth area, especially in lateral incisor and canine region, and many cases of deciduous geminated tooth were observed in upper central incisor region. 3. Congenital missing rates of succedaneous tooth in deciduous fused teeth were 57.1%, 85.7%, 71.0%, 69.0% in upper right and left central-lateral incisor regions, lower right and left lateral incisor-canine regions, respectively. 4. Prevalence of dental caries was 42.3%, 18.8% and 5.6% in deciduous fused, deciduous geminated and permanent fused tooth, respectively. 5. In classifying of fused and geminated teeth into 9 type, by following appearance such as number of crown, root, pulp chamber and pulp canal of those teeth, it was more favorable that Type I (2 crown, 2 root, 2 pulp chamber, 2 pulp canal) in deciduous fused tooth and Type IX (1 crown, 1 root, 1 pulp chamber, 1 pulp canal) in permanent used tooth, deciduous and permanent geminated tooth.

  7. A Radiographic Study of Fused and Geminated Tooth

    Park, Chul Jae; Lee, Sang Rae

    1990-01-01

    The incidence and several characteristic features of fused and geminated teeth were studied radiographically, with full mouth periapical radiogram and pantomogram, in 4201 patients of mixed dentition and 5358 patients of permanent dentition. The obtained results were as follows: 1. The prevalence was revealed to 2.86%, 0.32%, 0.33%, and 0.06% in deciduous fused tooth, permanent fused tooth, deciduous geminated tooth and permanent geminated tooth respectively, and these anomalies were occurred in female more than male. 2. Fused teeth were observed predominantly in lower anterior teeth area, especially in lateral incisor and canine region, and many cases of deciduous geminated tooth were observed in upper central incisor region. 3. Congenital missing rates of succedaneous tooth in deciduous fused teeth were 57.1%, 85.7%, 71.0%, 69.0% in upper right and left central-lateral incisor regions, lower right and left lateral incisor-canine regions, respectively. 4. Prevalence of dental caries was 42.3%, 18.8% and 5.6% in deciduous fused, deciduous geminated and permanent fused tooth, respectively. 5. In classifying of fused and geminated teeth into 9 type, by following appearance such as number of crown, root, pulp chamber and pulp canal of those teeth, it was more favorable that Type I (2 crown, 2 root, 2 pulp chamber, 2 pulp canal) in deciduous fused tooth and Type IX (1 crown, 1 root, 1 pulp chamber, 1 pulp canal) in permanent used tooth, deciduous and permanent geminated tooth.

  8. Fuse Modeling for Reliability Study of Power Electronic Circuits

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    This paper describes a comprehensive modeling approach on reliability of fuses used in power electronic circuits. When fuses are subjected to current pulses, cyclic temperature stress is introduced to the fuse element and will wear out the component. Furthermore, the fuse may be used in a large......, and rated voltage/current are opposed to shift in time to effect early breaking during the normal operation of the circuit. Therefore, in such cases, a reliable protection required for the other circuit components will not be achieved. The thermo-mechanical models, fatigue analysis and thermo...

  9. Effect of Gamma Irradiation on Some Properties of Bismuth Silicate Glasses and Their Glass Derivatives

    Abo Hussein, E.M.K.

    2014-01-01

    Glasses containing bismuth oxide have attracted considerable attention, although it is non-conventional glass forming oxide, but it has wide applications. In this work, it is aimed to prove that bismuth silicate glass can act as a good shielding material for γ- rays. For this purpose glass containing 20% bismuth oxide and 80% SiO_2 was prepared using melting-annealing technique. Also effects of adding some alkali heavy metal oxides to this glass such as PbO, BaO or SrO were also studied. The formed glasses were also heat treated at 450 degree C for 4 hours to give the corresponding heat treated glasses. Electron Paramagnetic Resonance (EPR) measurements show that the prepared glasses and heat treated glasses have very good stability when exposed to γ- irradiation, which encourage the assumption of using these glasses as gamma ray shielding materials. Many properties have been investigated, such as density to understand the structural properties, also mechanical properties were verified by measuring microhardness, while the chemical resistance was identified by testing their durability in both acidic and basic solutions. The EPR results were supported by measuring electrical conductivity of the glass and heat treated glass samples at different temperatures ranging from 298 to 553 K, which proved that these glasses have very low conductivity even at high temperature. The formed phases of heat treated glass or glass ceramic samples were demonstrated by means of X-ray diffraction (XRD). Also studying the structure of glasses and heat treated glasses before and after irradiation was investigated by the Infrared transmitting spectra. Calculations of optical band gap energies were demonstrated for some selected glasses and heat treated glasses from the data of UV optical absorption spectra to support the probability of using these bismuth silicate glasses for gamma radiation shielding processing.

  10. Glass: Rotary Electric Glass Furnace

    Recca, L.

    1999-01-29

    Compared to conventional gas-fired furnaces, the new rotary electric furnace will increase energy efficiency while significantly reducing air emissions, product turnaround time, and labor costs. As this informative new fact sheet explains, the thousand different types of glass optical blanks produced for the photonics industry are used for lasers, telescopes, cameras, lights, and many other products.

  11. Joints in Tempered Glass Using Glass Dowel Discs

    Nielsen, Jens Henrik; Poulsen, Peter Noe

    One of the major reasons for using glass in structures is its transparency; however, traditional mechanical joints such as friction joints and steel dowel pinned connections are compromising the transparency. The present paper describes a novel joint which is practically maintaining the complete...... transparency of the glass. This is achieved by using a dowel disc made entirely of tempered glass. The concept of the joint is proved by pilot tests and numerical models. From the work it is seen that the load-carrying capacity of such a connection is similar to what is found for traditionally in-plane loaded...

  12. Phase separation in an ionomer glass

    Pedersen, Malene Thostrup; Tian, K.V.; Dobó-Nagy, C.

    2015-01-01

    The G338 ionomer glass is a fluoro-alumino-silicate system, which is used as the powder component of glass ionomer cements (GICs) in dental applications. However, despite progress in understanding the nature of this glass, chemical identity of its separated amorphous phases has not yet been...... amorphous phases in G388 are Ca/Na-Al-Si-O, Ca-Al-F and Ca-P-O-F phases, respectively. However, the exact chemical compositions of the three phases still require further exploration. The results of this work are important for understanding the impact of phase separation within ionomer glasses on the setting...... conclusively determined. In this work, we identify these phases by performing differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analyses on both the as-received glass and heat-treated samples. We detected three glass transitions in the as-received G338 glass during DSC upscaning, implying...

  13. Nitrate glass

    Kirilenko, I.A.; Vinogradov, E.E.

    1977-01-01

    Experimental evidence on behaviour of nitrate glasses is reviewed in terms of relationships between the presence of water in vitrescent nitrate systems and the properties of the systems. The glasses considered belong to systems of Mg(NO 3 ) 2 - Nd(NO 3 ) 3 ; Hg(NO 3 ) 2 -Nd(NO 3 ) 3 ; NaNO 3 -Mg(NO 3 ) 2 -Nd(NO 3 ) 3 ; M-Zn(NO 3 ) 3 , where M is a mixture of 20% mass NaNO 3 and 80% mass Mg(NO 3 ) 2 , and Zn is a rare earth ion. Nitrate glass is shown to be a product of dehydration. Vitrification may be regarded as a resusl of formation of molecular complexes in the chain due to hydrogen bonds of two types, i.e. water-water, or water-nicrate group. Chain formation, along with low melting points of the nitrates, hinder crystallization of nitrate melts. Provided there is enough water, this results in vitrification

  14. Shattered glass seeking the densest matter: the color glass condensate

    Appell, D

    2004-01-01

    "Physicists investigating heavy-particle collisions believe they are on the track of a universal form of matter, one common to very high energy particles ranging from protons to heavy nuclei such as uranium. Some think that this matter, called a color glass condensate, may explain new nuclear properties and the process of particle formation during collisions. Experimentalists have recently reported intriguing data that suggest a color glass condensate has actually formed in past work" (1 page)

  15. Bilateral maxillary fused second and third molars: a rare occurrence.

    Liang, Rui-Zhen; Wu, Jin-Tao; Wu, You-Nong; Smales, Roger J; Hu, Ming; Yu, Jin-Hua; Zhang, Guang-Dong

    2012-12-01

    This case report describes the diagnosis and endodontic therapy of maxillary fused second and third molars, using cone-beam computed tomography (CBCT). A 31-year-old Chinese male, with no contributory medical or family/social history, presented with throbbing pain in the maxillary right molar area following an unsuccessful attempted tooth extraction. Clinical examination revealed what appeared initially to be a damaged large extra cusp on the buccal aspect of the distobuccal cusp of the second molar. However, CBCT revealed that a third molar was fused to the second molar. Unexpectedly, the maxillary left third molar also was fused to the second molar, and the crown of an unerupted supernumerary fourth molar was possibly also fused to the apical root region of the second molar. Operative procedures should not be attempted without adequate radiographic investigation. CBCT allowed the precise location of the root canals of the right maxillary fused molar teeth to permit successful endodontic therapy, confirmed after 6 months.

  16. Development of electro fused aggregates for use in refractories for the burning zone of cement kilns

    Ferreira, Luis Leonardo Horne Curimbaba

    2006-01-01

    Electro fused aggregates are largely used in refractory production due to the better performance reached when they are employed. In this work electro fused aggregates were designed for application in refractories for the burning zone of cement kilns. Initially reaction evaluation was conducted aiming the identification of the most prone refractory systems when single refractory phases react with Portland cement phases at high temperatures. In the next step, raw materials of the best refractory systems were electro fused to generate different aggregate compositions. The electro fused aggregates properties were evaluated and the classified ones were used to produce refractory bricks for the burning zone of cement kilns. General characteristics of these bricks were measured and compared with a standard magnesia-spinel refractory. Aggregates of the system Mg O - TiO 2 - Ca O, more specifically aggregates belonged to the compatibility triangle Mg O - Mg 2 TiO 4 - CaTiO 3 , showed suitable characteristics for development of refractories for the burning zone cement kilns. (author)

  17. Predicting the glass transition temperature of bioactive glasses from their molecular chemical composition.

    Hill, Robert G; Brauer, Delia S

    2011-10-01

    A recently published paper (M.D. O'Donnell, Acta Biomaterialia 7 (2011) 2264-2269) suggests that it is possible to correlate the glass transition temperature (T(g)) of bioactive glasses with their molar composition, based on iterative least-squares fitting of published T(g) data. However, we show that the glass structure is an important parameter in determining T(g). Phase separation, local structural effects and components (intermediate oxides) which can switch their structural role in the glass network need to be taken into consideration, as they are likely to influence the glass transition temperature of bioactive glasses. Although the model suggested by O'Donnell works reasonably well for glasses within the composition range presented, it is oversimplified and fails for glasses outside certain compositional boundaries. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. High insulation foam glass material from waste cathode ray tube panel glass

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    . In general CRT consists of two types of glasses: barium/strontium containing glass (panel glass) and lead containing glass (funnel and panel glass). In this work we present the possibility to produce high performance insulation material from the recycled lead-free glass. We studied the influence of foaming...... between 750 and 850°C. We investigated the influence of milling time, particle size, foaming and oxidizing agent concentrations, temperature and time on the foaming process, foam density, foam porosity and homogeneity. Only moderate foaming was observed in carbon containing samples, while the addition...... of the oxidizing agent greatly improved the foaming quality. The results showed that the amount of oxygen available from the glass is not sufficient to combust all of the added carbon, therefore, additional oxygen was supplied via manganese reduction. In general, a minimum in the foam glass density was observed...

  19. ELIMINATING NEGETIVE EFFECT OF INVERTER-BASED DGs ON FUSE-RECLOSER COORDINATION IN DISTRIBUTION SYSTEMS

    shakarami, mahmoudreza; namdari, farhad; salehi, moslem

    2015-01-01

    Despite many advantages of distributed generation (DG) sources, they may have a negative effect on the protection of distribution systems. In a distribution system, fuse-recloser protection scheme is designed such that the recloser could operate faster than the fuse to prevent fuse burning; but, the presence of DGs in fault conditions may lead to increased fuse current and thus faster performance of the fuse than the recloser and lack of coordination. In this paper, effect of DGs on fuse-recl...

  20. Simulation of the evolution of fused silica's surface defect during wet chemical etching

    Liu, Taixiang; Yang, Ke; Li, Heyang; Yan, Lianghong; Yuan, Xiaodong; Yan, Hongwei

    2017-08-01

    Large high-power-laser facility is the basis for achieving inertial confinement fusion, one of whose missions is to make fusion energy usable in the near future. In the facility, fused silica optics plays an irreplaceable role to conduct extremely high-intensity laser to fusion capsule. But the surface defect of fused silica is a major obstacle limiting the output power of the large laser facility and likely resulting in the failure of ignition. To mitigate, or event to remove the surface defect, wet chemical etching has been developed as a practical way. However, how the surface defect evolves during wet chemical etching is still not clearly known so far. To address this problem, in this work, the three-dimensional model of surface defect is built and finite difference time domain (FDTD) method is developed to simulate the evolution of surface defect during etching. From the simulation, it is found that the surface defect will get smooth and result in the improvement of surface quality of fused silica after etching. Comparatively, surface defects (e.g. micro-crack, scratch, series of pinholes, etc.) of a typical fused silica at different etching time are experimentally measured. It can be seen that the simulation result agrees well with the result of experiment, indicating the FDTD method is valid for investigating the evolution of surface defect during etching. With the finding of FDTD simulation, one can optimize the treatment process of fused silica in practical etching or even to make the initial characterization of surface defect traceable.

  1. Computational model of exploding metallic fuses for multimegajoule switching

    Lindemuth, I.R.; Brownell, J.H.; Greene, A.E.; Nickel, G.H.; Oliphant, T.A.; Weiss, D.L.

    1985-01-01

    A new model for determining the time-dependent behavior of exploding metallic fuses is formulated. The model draws on an atomic data base and gives insight into the temporal behavior of the material density and temperature of the fuse as well as the nonlinear electrical circuit interaction. The model includes an embedding insulating tamper and leads to a plausible explanation of fuse ''restrike.'' The model predicts time-scale compression of 500 for inductive store systems powered by explosive driven magnetic flux compression generators. A scenario for achieving multimegajoule foil implosions is predicted

  2. Fused upper central incisors: management of two clinical cases.

    Sfasciotti, Gian Luca; Marini, Roberta; Bossù, Maurizio; Ierardo, Gaetano; Annibali, Susanna

    2011-03-01

    This paper reports the management of two clinical cases, in which the upper right central incisor was fused with a supernumerary tooth and the upper left central incisor was macrodontic. A radiographic examination revealed that the fused teeth had two separate roots. Hemisectioning of the fused teeth was performed, the supernumerary portion was extracted and the remaining part was reshaped to remove any sharp margins and to achieve a normal morphology. The macrodontic central incisors were not treated. At 12-months post-surgery there were no periodontal problems and no hypersensitivity. Orthodontic treatment was performed to appropriately align the maxillary teeth and to correct the malocclusion.

  3. Renal cell carcinoma in patient with crossed fused renal ectopia

    Ozgur Cakmak

    2016-01-01

    Full Text Available Primary renal cell carcinomas have rarely been reported in patients with crossed fused renal ectopia. We presented a patient with right to left crossed fused kidney harbouring renal tumor. The most frequent tumor encountered in crossed fused renal ectopia is renal cell carcinoma. In this case, partial nephrectomy was performed which pave way to preservation of the uninvolved both renal units. Due to unpredictable anatomy, careful preoperative planning and meticulous delineation of renal vasculature is essential for preservation of the uninvolved renal units.

  4. Fracture and Fatigue Resistance of Cemented versus Fused CAD-on Veneers over Customized Zirconia Implant Abutments.

    Nossair, Shereen Ahmed; Aboushelib, Moustafa N; Morsi, Tarek Salah

    2015-01-05

    To evaluate the fracture mechanics of cemented versus fused CAD-on veneers on customized zirconia implant abutments. Forty-five identical customized CAD/CAM zirconia implant abutments (0.5 mm thick) were prepared and seated on short titanium implant abutments (Ti base). A second scan was made to fabricate 45 CAD-on veneers (IPS Empress CAD, A2). Fifteen CAD-on veneers were cemented on the zirconia abutments (Panavia F2.0). Another 15 were fused to the zirconia abutments using low-fusing glass, while manually layered veneers served as control (n = 15). The restorations were subjected to artificial aging (3.2 million cycles between 5 and 10 kg in a water bath at 37°C) before being axially loaded to failure. Fractured specimens were examined using scanning electron microscopy to detect fracture origin, location, and size of critical crack. Stress at failure was calculated using fractography principles (alpha = 0.05). Cemented CAD-on restorations demonstrated significantly higher (F = 72, p CAD-on and manually layered restorations. Fractographic analysis of fractured specimens indicated that cemented CAD-on veneers failed due to radial cracks originating from the veneer/resin interface. Branching of the critical crack was observed in the bulk of the veneer. Fused CAD-on veneers demonstrated cohesive fracture originating at the thickest part of the veneer ceramic, while manually layered veneers failed due to interfacial fracture at the zirconia/veneer interface. Within the limitations of this study, cemented CAD-on veneers on customized zirconia implant abutments demonstrated higher fracture than fused and manually layered veneers. © 2014 by the American College of Prosthodontists.

  5. Nano-sized glass as an economically viable and eco-benign ...

    Somayeh Zolfagharinia

    2017-09-02

    Sep 2, 2017 ... Abstract. In this work, glass wastes were employed as cost-effective supports for the immobilization of ... benign energy, and high reaction efficiency. Based on ... glass (bottles and jars), flat glass (windows and wind- screens) ...

  6. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  7. Crystallization In Multicomponent Glasses

    Kruger, A.A.; Hrma, P.R.

    2009-01-01

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  8. Composite polymer: Glass edge cladding for laser disks

    Powell, H.T.; Wolfe, C.A.; Campbell, J.H.; Murray, J.E.; Riley, M.O.; Lyon, R.E.; Jessop, E.S.

    1987-11-02

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation. 18 figs.

  9. Composite polymer-glass edge cladding for laser disks

    Powell, Howard T.; Riley, Michael O.; Wolfe, Charles R.; Lyon, Richard E.; Campbell, John H.; Jessop, Edward S.; Murray, James E.

    1989-01-01

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation.

  10. Design and fabrication of multispectral optics using expanded glass map

    Bayya, Shyam; Gibson, Daniel; Nguyen, Vinh; Sanghera, Jasbinder; Kotov, Mikhail; Drake, Gryphon; Deegan, John; Lindberg, George

    2015-06-01

    As the desire to have compact multispectral imagers in various DoD platforms is growing, the dearth of multispectral optics is widely felt. With the limited number of material choices for optics, these multispectral imagers are often very bulky and impractical on several weight sensitive platforms. To address this issue, NRL has developed a large set of unique infrared glasses that transmit from 0.9 to > 14 μm in wavelength and expand the glass map for multispectral optics with refractive indices from 2.38 to 3.17. They show a large spread in dispersion (Abbe number) and offer some unique solutions for multispectral optics designs. The new NRL glasses can be easily molded and also fused together to make bonded doublets. A Zemax compatible glass file has been created and is available upon request. In this paper we present some designs, optics fabrication and imaging, all using NRL materials.

  11. Spectroscopic studies of irradiated glasses: Application in nuclear dosimetry

    Farah, Khaled

    2010-01-01

    The present work aims to study the effects of ionizing radiation on silicate glasses in order to develop a new dosimetry system simple, precise, stable and inexpensive. Indeed, changes in mechanical properties, optical and paramagnetic glasses when subjected to ionizing radiation. The prediction of long-term behavior, physical aging under irradiation, the glass is paramount. many studies have brought many ways to avoid obscuring glass windows used in nuclear reactors or hot cells and optical devices. Recently, much work has concentrated on the application of the color induced by irradiation for developing a recyclable glass in the glass industry is of great interest economically and environmentally.

  12. Fused Adaptive Lasso for Spatial and Temporal Quantile Function Estimation

    Sun, Ying; Wang, Huixia J.; Fuentes, Montserrat

    2015-01-01

    and temporal data with a fused adaptive Lasso penalty to accommodate the dependence in space and time. This method penalizes the difference among neighboring quantiles, hence it is desirable for applications with features ordered in time or space without

  13. Fusing Intelligence With Law Enforcement Information: An Analytic Imperative

    Thornlow, Christopher C

    2005-01-01

    ... and Law Enforcement Communities to fuse and analyze foreign threat intelligence with domestic law enforcement information in a timely fashion to provide adequate indications and warning of such an...

  14. Quantification of residual stress from photonic signatures of fused silica

    Cramer, K. Elliott; Yost, William T.; Hayward, Maurice

    2014-01-01

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 ± 0.54 × 10 −12 Pa −1 . Fused silica specimens containing impacts artificially made at NASA’s Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented

  15. Behaviour of E-glass fibre reinforced vinylester resin composites ...

    Unknown

    Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. ... Impact fatigue; static fatigue; residual stress; E-glass fibre; vinylester resin. 1. ... The present work ..... American Society for Testing and Materials) 497 p. 311.

  16. Recycling of Glass

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  17. Polyamorphism in metalic glass.

    Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P.L.; Luo, W.K.; Shastri, S.D.; Ma, E.; X-Ray Science Division; Johns Hopkins Univ.; Chinese Academy of Sciences

    2007-03-01

    A metal, or an alloy, can often exist in more than one crystal structure. The face-centered-cubic and body-centered-cubic forms of iron (or steel) are a familiar example of such polymorphism. When metallic materials are made in the amorphous form, is a parallel 'polyamorphism' possible? So far, polyamorphic phase transitions in the glassy state have been observed only in glasses involving directional and open (such as tetrahedral) coordination environments. Here, we report an in situ X-ray diffraction observation of a pressure-induced transition between two distinct amorphous polymorphs in a Ce{sub 55}Al{sub 45} metallic glass. The large density difference observed between the two polyamorphs is attributed to their different electronic and atomic structures, in particular the bond shortening revealed by ab initio modeling of the effects of f-electron delocalization. This discovery offers a new perspective of the amorphous state of metals, and has implications for understanding the structure, evolution and properties of metallic glasses and related liquids. Our work also opens a new avenue towards technologically useful amorphous alloys that are compositionally identical but with different thermodynamic, functional and rheological properties due to different bonding and structural characteristics.

  18. Diffusion in glass

    Mubarak, A S

    1991-12-31

    Rutherford backscattering spectromertry technique (RBS) was used to characterize and investigate the depth distribution profiles of Ca-impurities of Ca-doped soda-time glass. The purposely added Ca-impurities were introduced inti the glass matrix by a normal ion exchange diffusion process. The measurements and analysis were performed using 2 MeV {sup 2}He{sup +} ions supplied from the University of Jordan Van de Graff acceierator (JOVAG). The normalized concetration versus depth profile distributions for the Ca-imourities were determined, both theoretically and experimentally. The theoretical treatment was carried out by setting up and soiving the diffusion equation under the conditions of the experiment. The resulting profiles are characterized by a compiementary error function. the theoretical treeatment was extended to include the various methods of enhancing the diffusion process, e.g. using an electric field. The diffusion coefficient, assumed constant, of the Ca-impurities exchanged in the soda-lime glass was determined to be 1.23 x 10{sup 13} cm{sup 2}/s. A comparison between theoretically and experimentally determined profiles is made and commented at, where several conclusions are drawn and suggestions for future work are mentioned. (author). 38 refs., 21 figs., 10 Tabs.

  19. Nuclear traces in glass

    Segovia A, M. de N.

    1978-01-01

    The charged particles produce, in dielectric materials, physical and chemical effects which make evident the damaged zone along the trajectory of the particle. This damaged zone is known as the latent trace. The latent traces can be enlarged by an etching of the detector material. This treatment attacks preferently the zones of the material where the charged particles have penetrated, producing concavities which can be observed through a low magnification optical microscope. These concavities are known as developed traces. In this work we describe the glass characteristics as a detector of the fission fragments traces. In the first chapter we present a summary of the existing basic theories to explain the formation of traces in solids. In the second chapter we describe the etching method used for the traces development. In the following chapters we determine some chatacteristics of the traces formed on the glass, such as: the development optimum time; the diameter variation of the traces and their density according to the temperature variation of the detector; the glass response to a radiation more penetrating than that of the fission fragments; the distribution of the developed traces and the existing relation between this ditribution and the fission fragments of 252 Cf energies. The method which has been used is simple and cheap and can be utilized in laboratories whose resources are limited. The commercial glass which has been employed allows the registration of the fission fragments and subsequently the realization of experiments which involve the counting of the traces as well as the identification of particles. (author)

  20. BNFL Report Glass Formers Characterization

    Schumacher, R.F.

    2000-07-27

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. In addition, all of the blends may require consideration for their handling. A number of engineering considerations and recommendations were prepared based on the experimental findings, experience, and other process considerations. Recommendations for future testing are included. In conjunction with future work, it is recommended that a professional consultant be engaged to guide and assist with testing and design input.

  1. BNFL Report Glass Formers Characterization

    Schumacher, R.F.

    2000-01-01

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. In addition, all of the blends may require consideration for their handling. A number of engineering considerations and recommendations were prepared based on the experimental findings, experience, and other process considerations. Recommendations for future testing are included. In conjunction with future work, it is recommended that a professional consultant be engaged to guide and assist with testing and design input

  2. Fused deposition modeling (FDM) fabricated part behavior under tensile stress, thermal cycling, and fluid pressure

    Hossain, Mohammad Shojib

    Material extrusion based additive manufacturing (AM) technology, such as fused deposition modeling (FDM), is gaining popularity with the numerous 3D printers available worldwide. FDM technology is advancing from exclusively prototype construction to achieving production-grade quality. Today, FDM-fabricated parts are widely used in the aerospace industries, biomedical applications, and other industries that may require custom fabricated, low volume parts. These applications are and were possible because of the different production grade material options (e.g., acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyphenylsulfone (PPSF), etc.) available to use in FDM systems. Recent researchers are exploring other material options including polycaprolactone (PCL), polymethylmethacrylate (PMMA), composites containing ceramic, glass and metal fillers, and even metals which depict the diversified materials and possibility of new material options using FDM technology. The understanding of the behavior and mechanical properties of the finished FDM-fabricated parts is of utmost importance in the advancement of this technology. The processing parameters, e.g., build orientation, raster width (RW), contour width (CW), raster angle (RA), and raster to raster air gap (RRAG) are important factors in determining the mechanical properties of FDM fabricated parts. The work presented here focused on the mechanical properties improvement by modifying those build parameters. The main concentration is on how modifying those parameters can improve ultimate tensile stress (UTS), Young's modulus, and tensile strain of the final product. In this research, PC parts were fabricated using three build methods: 1) default method, 2) Insight revision method, and 3) visual feedback method. By modifying build parameters, the highest average UTS obtained for PC was 63.96 MPa which was 7% higher than that of 59.73 MPa obtained using the default build parameters. The parameter modification

  3. Defect production in silica glasses under gamma-irradiation at the quenched nuclear reactor

    Mussaeva, M.A.; Kalanov, M.U.; Ibragimova, E.M.; Sandalov, V.N.; Muminov, M.L.

    2004-01-01

    Full text: Radiation defect production in oxides is highly interesting for atom and solar energy, and also for burying nuclear waste. Combine effect of neutron and gamma-radiation on materials was studied extensively and only neutrons are believed to displace atoms, although 60 Co-gamma quanta were proved to displace light anions (O, F) by inelastic mechanism. On the example of polished plates of pure fused quartz and barium-silica glasses containing nano-crystalline inclusions, and also nano-porous glass, the effect of gamma-radiation of the quenched reactor was studied in the energy range of 0.2-7 MeV. The time period was selected when practically constant current ∼10-20 nA is maintained in the ionizing chamber, corresponding to the average gamma-flux of 15-30 Gy/s. Optical absorption and photoluminescence spectra and also structure of the grasses were studied. It turned out, that the charged oxygen vacancies accumulation rate is higher in Barium glass than in the pure one, because for SiO 2 with small Z the photoelectric effect is weak, while the Compton scattering and photonuclear reactions prevail, and for Barium - just the opposite. The radiation-induced growth of the crystalline precipitates was noticed in the both glasses, which before had been attributed to the elastic atom displacements by fast neutrons. The density of Ba-glass increases with irradiation. The efficiency of defect production by the gamma-component even of the quenched reactor turned out much higher than that under irradiation with 60 Co gamma-source of ∼1.25 MeV to the equivalent dose at the current dose rate of ∼ 7 Gy/s (and before at 45 Gy/s). A 100-times increase of the surface proton conductivity was discovered in the porous glasses under gamma-irradiation due to water vapor radiolysis on the pore surface. The irradiated porous glass is recommended as an active electrode in the hydrogen fuel element. The work was done under the grant F2.1.2 from Center of Science and Technology

  4. Investigations on vanadium doped glasses

    Madhusudana Rao, P.

    2013-01-01

    The glass samples studied in the present work have been prepared by melt quenching technique. They were prepared by mixing and grinding together by appropriate amounts of Li 2 O - Na 2 O - B 2 O 3 doped with V 2 O 5 in an agate motor before transferring into crucible. The mixtures were heated in an electric furnace at 1225K for 20 mm. The melt was then quenched to room temperature by pouring it on plane brass plate and pressing it with another brass plate. White and yellow coloured glasses have been obtained with good optical quality and high transparency. Finally the vitreous sample were annealed for 3 hrs at 423K to relieve residual internal stress and slowly cooled to room temperature. The polished glasses have been used for XRD, FTIR analysis and for DSC report. The DSC thermo grams for all the glasses were recorded on in the temperature range 50-550℃ with a heating rate of 10℃/min. Electron spin resonance and optical absorption of 20Li 2 O - 10 Na 2 O - (70-X)B 2 O 3 doped with XV 2 O 5 glass system are studied. ESR spectra of V 4+ ions doped in the glass exhibit peak at g =1.98. Spin Hamiltonian parameters are calculated. It was found that these parameters are dependent upon alkali ion concentration in the glass and the VO +2 ion in an octahedral coordination with a tetragonal compression. The physical parameters of all glasses were also evaluated with respect to the composition

  5. Spin glasses

    Mookerjee, Abhijit

    1976-01-01

    ''Spin glasses'', are entire class of magnetic alloys of moderate dilution, in which the magnetic atoms are far enough apart to be unlike the pure metal, but close enough so that the indirect exchange energy between them (mediated by the s-d interaction between local moments and conduction electrons) dominates all other energies. Characteristic critical phenomena displayed such as freezing of spin orientation at 'Tsub(c)' and spreading of magnetic ordering, are pointed out. Anomalous behaviour, associated with these critical phenomena, as reflected in : (i) Moessbauer spectroscopy giving hyperfine splitting at Tsub(c), (ii) maxima in susceptibility and remanent magnetism, (iii) thermopower maxima and change in slope, (iv) Characteristic cusp in susceptibility and its removal by very small magnetic fields, and (v) conductivity-resistivity measurements, are discussed. Theoretical developments aimed at explaining these phenomena, in particular, the ideas from percolation and localisation theories, and the approach based on the gellations of polymers, are discussed. Finally, a new approach based on renormalisation group in disordered systems is also briefly mentioned. (K.B.)

  6. Preparation of basalt-based glass ceramics

    MIHOVIL LOGAR

    2003-06-01

    Full Text Available Local and conventional raw materials–massive basalt from the Vrelo locality on Kopaonik mountain–have been used as starting materials to test their suitability for the production of glass-ceramics. Crystallization phenomena of glasses of the fused basalt rocks were studied by X-ray phase analysis, optical microscopy and other techniques. Various heat treatments were used, and their influences, on controlling the microstructures and properties of the products were studied with the aim of developing high strength glass-ceramic materials. Diopside CaMg(SiO32 and hypersthene ((Mg,FeSiO3 were identifies as the crystalline phases. The final products contained considerable amounts of a glassy phase. The crystalline size was in range of 8–480 mm with plate or needle shape. Microhardness, crashing strength and wears resistence of the glass-ceramics ranged from 6.5–7.5, from 2000–6300 kg/cm2 and from 0.1–0.2 g/cm, respectively.

  7. Conjugate acene fused buckybowls: evaluating their suitability for p-type, ambipolar and n-type air stable organic semiconductors.

    Purushotham, Uppula; Sastry, G Narahari

    2013-04-14

    Elaborate and exhaustive first principles calculations were carried out to screen the novel properties of a series of acene fused buckybowls. The acene fused compounds exhibit hole transport property due to their higher electron injection and lower hole transport barrier relative to the work function potential of Au electrodes. The higher HOMO and lower LUMO energy levels suggest lower hole and electron injection barriers of F and CN substituted and boron doped bowls which indicates ambipolar property of these bowls. The dicyano substituted pentacene fused bowls show only electron transport property with lower LUMO (-4.26 eV to -4.27 eV) and higher HOMO (-5.56 eV to -5.90 eV) energy levels. High electron affinity (>2.80 eV) and low LUMO energy (semiconductors.

  8. Oxygen diffusion in glasses and ceramic materials

    Kolitsch, A.; Richter, E.; Wolf, M.

    1978-10-01

    A survey is given on the published works to study oxygen diffusion in glasses and ceramic materials in the last years. In the first part methods are described for the measurement of oxygen diffusion coefficients and in the second part the published reports on oxygen diffusion in glasses, ceramic and other oxides are discussed. The most important results are summarized in different tables. (author)

  9. In situ study of glasses decomposition layer

    Zarembowitch-Deruelle, O.

    1997-01-01

    The aim of this work is to understand the involved mechanisms during the decomposition of glasses by water and the consequences on the morphology of the decomposition layer, in particular in the case of a nuclear glass: the R 7 T 7 . The chemical composition of this glass being very complicated, it is difficult to know the influence of the different elements on the decomposition kinetics and on the resulting morphology because several atoms have a same behaviour. Glasses with simplified composition (only 5 elements) have then been synthesized. The morphological and structural characteristics of these glasses have been given. They have then been decomposed by water. The leaching curves do not reflect the decomposition kinetics but the solubility of the different elements at every moment. The three steps of the leaching are: 1) de-alkalinization 2) lattice rearrangement 3) heavy elements solubilization. Two decomposition layer types have also been revealed according to the glass heavy elements rate. (O.M.)

  10. Process for manufacturing hollow fused-silica insulator cylinder

    Sampayan, Stephen E.; Krogh, Michael L.; Davis, Steven C.; Decker, Derek E.; Rosenblum, Ben Z.; Sanders, David M.; Elizondo-Decanini, Juan M.

    2001-01-01

    A method for building hollow insulator cylinders that can have each end closed off with a high voltage electrode to contain a vacuum. A series of fused-silica round flat plates are fabricated with a large central hole and equal inside and outside diameters. The thickness of each is related to the electron orbit diameter of electrons that escape the material surface, loop, and return back. Electrons in such electron orbits can support avalanche mechanisms that result in surface flashover. For example, the thickness of each of the fused-silica round flat plates is about 0.5 millimeter. In general, the thinner the better. Metal, such as gold, is deposited onto each top and bottom surface of the fused-silica round flat plates using chemical vapor deposition (CVD). Eutectic metals can also be used with one alloy constituent on the top and the other on the bottom. The CVD, or a separate diffusion step, can be used to defuse the deposited metal deep into each fused-silica round flat plate. The conductive layer may also be applied by ion implantation or gas diffusion into the surface. The resulting structure may then be fused together into an insulator stack. The coated plates are aligned and then stacked, head-to-toe. Such stack is heated and pressed together enough to cause the metal interfaces to fuse, e.g., by welding, brazing or eutectic bonding. Such fusing is preferably complete enough to maintain a vacuum within the inner core of the assembled structure. A hollow cylinder structure results that can be used as a core liner in a dielectric wall accelerator and as a vacuum envelope for a vacuum tube device where the voltage gradients exceed 150 kV/cm.

  11. Asymmetry of light absorption upon propagation of focused femtosecond laser pulses with spatiotemporal coupling through glass materials

    Zhukov, Vladimir P.; Bulgakova, Nadezhda M.

    2017-05-01

    Ultrashort laser pulses are usually described in terms of temporal and spatial dependences of their electric field, assuming that the spatial dependence is separable from time dependence. However, in most situations this assumption is incorrect as generation of ultrashort pulses and their manipulation lead to couplings between spatial and temporal coordinates resulting in various effects such as pulse front tilt and spatial chirp. One of the most intriguing spatiotemporal coupling effects is the so-called "lighthouse effect", the phase front rotation with the beam propagation distance [Akturk et al., Opt. Express 13, 8642 (2005)]. The interaction of spatiotemporally coupled laser pulses with transparent materials have interesting peculiarities, such as the effect of nonreciprocal writing, which can be used to facilitate microfabrication of photonic structures inside optical glasses. In this work, we make an attempt to numerically investigate the influence of the pulse front tilt and the lighthouse effect on the absorption of laser energy inside fused silica glass. The model, which is based on nonlinear Maxwell's equations supplemented by the hydrodynamic equations for free electron plasma, is applied. As three-dimensional solution of such a problem would require huge computational resources, a simplified two-dimensional model has been proposed. It has enabled to gain a qualitative insight into the features of propagation of ultrashort laser pulses with the tilted front in the regimes of volumetric laser modification of transparent materials, including directional asymmetry upon direct laser writing in glass materials.

  12. Material removal and surface figure during pad polishing of fused silica

    Suratwala, T I; Feit, M D; Steele, W A

    2009-05-04

    The material removal and surface figure after ceria pad polishing of fused silica glass have been measured and analyzed as a function of kinematics, loading conditions, and polishing time. Also, the friction at the workpiece/lap interface, the slope of the workpiece relative to the lap plane, and lap viscoelastic properties have been measured and correlated to material removal. The results show that the relative velocity between the workpiece & lap (determined by the kinematics) and the pressure distribution determine the spatial and temporal material removal and hence the final surface figure of the workpiece. In the case where the applied loading and relative velocity distribution over the workpiece are spatially uniform, a significant non-uniform spatial material removal from the workpiece surface is observed. This is due to a non-uniform pressure distribution resulting from: (1) a moment caused by a pivot point and interface friction forces; (2) viscoelastic relaxation of the polyurethane lap; and (3) a physical workpiece/lap interface mismatch. Both the kinematics and these contributions to the pressure distribution are quantitatively described, and then combined to form a spatial and temporal Preston model & code for material removal (called Surface Figure or SurF{copyright}). The surface figure simulations are consistent with the experiment for a wide variety of polishing conditions. This study is an important step towards deterministic full-aperture polishing, which would allow optical glass fabrication to be performed in a more repeatable, less iterative, and hence more economical manner.

  13. Two-photon induced fluorescence and other optical effects in irradiated and doped fused silica

    Kramer, S.D.

    1986-07-01

    The objective of this program was to assess and identify irradiation techniques which could be used to modify the optical charactistics of doped fused silica. Primary emphasis was placed on determining if gamma ray or neutron bombardment of the glass would enhance certain Raman and nonlinear optical effects. In particular, the effect of irradiation on optical two photon induced fluorescence was studied in detail. The maximum radiation exposures used were 10 6 rads (Si) of gamma rays and neutron fluences of 1 x 10 14 neutrons/cm 2 . The optical measurements were made at room temperature between one and four months after irradiation. The maximum input light intensity was 10 9 watts/cm 2 at a near infrared (1.06 μ) input wavelength which was chosen to lie in a transparent spectral region of the glass. Under these experimental conditions a careful search revealed no detectable two-photon induced fluorescence in the region from 550 to 900 nm. The upper limit for the photon efficiency of this process was determined to be less than 1 x 10 -10 %. 89 refs., 12 figs

  14. Fused silica segments: a possible solution for x-ray telescopes with very high angular resolution like Lynx/XRS

    Salmaso, Bianca; Basso, Stefano; Civitani, Marta; Ghigo, Mauro; Hołyszko, Joanna; Spiga, Daniele; Vecchi, Gabriele; Pareschi, Giovanni

    2017-09-01

    In order to look beyond Chandra, the Lynx/XRS mission has been proposed in USA and is currently studied by NASA. The optic will have an effective area of 2.5 m2 and an angular resolution of 0.5 arcsec HEW at 1 keV. In order to fulfill these requirements different technologies are considered, with the approaches of both full and segmented shells (that, possibly, can be also combined together). Concerning the production of segmented mirrors, a variety of thin substrates (glass, metal, silicon) are envisaged, that can be produced using both direct polishing or replication methods. Innovative post-fabrication correction methods (such as piezoelectric or magneto-restrictive film actuators on the back surface, differential deposition, ion implantation) are being also considered in order to reach the final tolerances. In this paper we are presenting a technology development based on fused silica (SiO2) segmented substrates, owing the low coefficient of thermal expansion of Fused Silica and its high chemical stability compared to other glasses. Thin SiO2 segmented substrates (typically 2 mm thick) are figured by direct polishing combined with final profile ion figuring correction, while the roughness reduction is reached with pitch tools. For the profile and roughness correction, the segments are glued to a substrate. In this paper we present the current status of this technology.

  15. Glass binder development for a glass-bonded sodalite ceramic waste form

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; Kroll, Jared O.; Peterson, Jacob A.

    2017-01-01

    This paper discusses work to develop Na_2O-B_2O_3-SiO_2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na_2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.

  16. A Real-Time Embedded Control System for Electro-Fused Magnesia Furnace

    Fang Zheng

    2013-01-01

    Full Text Available Since smelting process of electro-fused magnesia furnace is a complicated process which has characteristics like complex operation conditions, strong nonlinearities, and strong couplings, traditional linear controller cannot control it very well. Advanced intelligent control strategy is a good solution to this kind of industrial process. However, advanced intelligent control strategy always involves huge programming task and hard debugging and maintaining problems. In this paper, a real-time embedded control system is proposed for the process control of electro-fused magnesia furnace based on intelligent control strategy and model-based design technology. As for hardware, an embedded controller based on an industrial Single Board Computer (SBC is developed to meet industrial field environment demands. As for software, a Linux based on Real-Time Application Interface (RTAI is used as the real-time kernel of the controller to improve its real-time performance. The embedded software platform is also modified to support generating embedded code automatically from Simulink/Stateflow models. Based on the proposed embedded control system, the intelligent embedded control software of electro-fused magnesium furnace can be directly generated from Simulink/Stateflow models. To validate the effectiveness of the proposed embedded control system, hardware-in-the-loop (HIL and industrial field experiments are both implemented. Experiments results show that the embedded control system works very well in both laboratory and industry environments.

  17. Optimum inductively coupled plasma etching of fused silica to remove subsurface damage layer

    Jiang, Xiaolong; Liu, Ying, E-mail: liuychch@ustc.edu.cn; Liu, Zhengkun; Qiu, Keqiang; Xu, Xiangdong; Hong, Yilin; Fu, Shaojun

    2015-11-15

    Highlights: • SSD layer of fused silica is removed by ICP etch with surface roughness of 0.23 nm. • Metal contamination is successfully avoided by employing an isolation device. • Unique low-density plasma induced pitting damage is discovered and eliminated. • Lateral etching of SSD is avoided due to the improvement of etching anisotropy. - Abstract: In this work, we introduce an optimum ICP etching technique that successfully removes the subsurface damage (SSD) layer of fused silica without causing plasma induced surface damage (PISD) or lateral etching of SSD. As one of the commonest PISD initiators, metal contamination from reactor chamber is prevented by employing a simple isolation device. Based on this device, a unique low-density pitting damage is discovered and subsequently eliminated by optimizing the etching parameters. Meanwhile etching anisotropy also improves a lot, thus preventing the lateral etching of SSD. Using this proposed technique, SSD layer of fused silica is successfully removed with a surface roughness of 0.23 nm.

  18. Particle damage sources for fused silica optics and their mitigation on high energy laser systems.

    Bude, J; Carr, C W; Miller, P E; Parham, T; Whitman, P; Monticelli, M; Raman, R; Cross, D; Welday, B; Ravizza, F; Suratwala, T; Davis, J; Fischer, M; Hawley, R; Lee, H; Matthews, M; Norton, M; Nostrand, M; VanBlarcom, D; Sommer, S

    2017-05-15

    High energy laser systems are ultimately limited by laser-induced damage to their critical components. This is especially true of damage to critical fused silica optics, which grows rapidly upon exposure to additional laser pulses. Much progress has been made in eliminating damage precursors in as-processed fused silica optics (the advanced mitigation process, AMP3), and very high damage resistance has been demonstrated in laboratory studies. However, the full potential of these improvements has not yet been realized in actual laser systems. In this work, we explore the importance of additional damage sources-in particular, particle contamination-for fused silica optics fielded in a high-performance laser environment, the National Ignition Facility (NIF) laser system. We demonstrate that the most dangerous sources of particle contamination in a system-level environment are laser-driven particle sources. In the specific case of the NIF laser, we have identified the two important particle sources which account for nearly all the damage observed on AMP3 optics during full laser operation and present mitigations for these particle sources. Finally, with the elimination of these laser-driven particle sources, we demonstrate essentially damage free operation of AMP3 fused silica for ten large optics (a total of 12,000 cm 2 of beam area) for shots from 8.6 J/cm 2 to 9.5 J/cm 2 of 351 nm light (3 ns Gaussian pulse shapes). Potentially many other pulsed high energy laser systems have similar particle sources, and given the insight provided by this study, their identification and elimination should be possible. The mitigations demonstrated here are currently being employed for all large UV silica optics on the National Ignition Facility.

  19. Effect of high thermal expansion glass infiltration on mechanical ...

    This work studies the effect on the mechanical properties of alumina-10 wt% zirconia (3 mol% yttria stabilized) composite by infiltrating glass of a higher thermal expansion (soda lime glass) on the surface at high temperature. The glass improved the strength of composite at room temperature as well as at high temperature.

  20. Substitution of strontium for calcium in glass ionomer cements (Part ...

    Substitution of strontium for calcium in glass ionomer cements (Part 1): Glass synthesis and characterisation, and the effects on the cement handling variables and ... acid to form glass ionomer cements, whose properties were investigated at different time points: working and setting times were determined by rheometry; and, ...

  1. The electrical properties of semiconducting vanadium phosphate glasses

    Moridi, G.R.; Hogarth, C.A.; Hekmat Shooar, N.H.

    1984-01-01

    Vanadium phosphate glasses are a group of oxide glasses which show the semiconducting behaviour. In contrast to the conventional glasses, the conduction mechanism in these glasses is electronic, rather than being ionic. Since 1954, when the first paper appeared on the semiconducting properties of these glasses, much work has been carried out on transition-metal-oxide glasses in general, and vanadium phosphate glasses in particular. The mechanism of conduction is basicaly due to the transport of electrons between the transition-metal ions in different valency states. In the present paper, we have reviewed the previous works on the electrical characteristics of P 2 O 5 -V 2 O 5 glasses and also discussed the current theoretical ideas relevant for the interpretation of the experimental data

  2. HVI Ballistic Limit Characterization of Fused Silica Thermal Panes

    Miller, J. E.; Bohl, W. D.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.

    2015-01-01

    Fused silica window systems are used heavily on crewed reentry vehicles, and they are currently being used on the next generation of US crewed spacecraft, Orion. These systems improve crew situational awareness and comfort, as well as, insulating the reentry critical components of a spacecraft against the intense thermal environments of atmospheric reentry. Additionally, these materials are highly exposed to space environment hazards like solid particle impacts. This paper discusses impact studies up to 10 km/s on a fused silica window system proposed for the Orion spacecraft. A ballistic limit equation that describes the threshold of perforation of a fuse silica pane over a broad range of impact velocities, obliquities and projectile materials is discussed here.

  3. Glass Ceiling : Women in management

    Rantala, Virve

    2010-01-01

    This study has examined the phenomenon called Glass Ceiling. It has approached the phenomenon in two different views. One is career development and another one is women in management. Main purpose for this study was to inspect women working life and career opportunities. Why women’s career developments end in a certain level? What is glass ceiling and how to break it? Paper also investigates reasons behind the effect. Prejudices and biases are the worst enemies for women’s career. How to chan...

  4. Building with green and glass. Innovations in the horticulture for living and working; Bouwen met groen en glas. Innovaties uit de glastuinbouw voor wonen en werken

    Bergs, J.; Ter Haar, H.; Huisman, S.; Kristinsson, J.; Kruseman, I.; Oei, P.

    2007-07-01

    New technologies and insights from greenhouses, space technology and psychology are used for innovative applications in the building sector. Use is made of daylight, solar heat and vegetation. Architects can thus realize a clean, healthy and comfortable indoor climate in houses, school buildings, offices, health care centers, and also reduce the consumption of energy for cooling and heating. In particular attention is paid to the use of glass. [Dutch] Glastuinbouw, ruimtevaart en psychologie. Drie boeiende vakgebieden die op het eerste gezicht weinig met elkaar te maken hebben. Bouwen met groen en glas bewijst het tegendeel door gebruik te maken van nieuwe technieken en inzichten uit deze vakgebieden. Het concept maakt optimaal gebruik van daglicht, zonnewarmte en de weldaad van groen. Het toont de vele mogelijkheden die architecten met groen en glas kunnen aanboren. Waarom zou een architect dat doen? Omdat Bouwen met groen en glas de kern raakt van een uiterst actueel en tevens tijdloos thema: een schoon, gezond en prettig binnenklimaat in woningen, scholen, kantoren en zorginstellingen, gecombineerd met een substantieel lager energieverbruik voor koelen en verwarmen. Nieuwe technieken uit de glastuinbouw bieden nieuwe oplossingen. Bijvoorbeeld, in de zomer warmte oogsten en opslaan om die in de winter weer aan te boren. Veel glas stimuleert ook de toepassing van groen. Planten zijn meer dan versiering. Ze reinigen de lucht, zorgen voor bevochtiging en bieden mensen aangename omstandigheden om in te leren en te werken. Bouwen met groen en glas pleit dan ook voor gebouwen met een eigen ecosysteem, met planten als integraal onderdeel van het gebouw en de technische installaties.

  5. lead glass brick

    When you look through the glass at a picture behind, the picture appears raised up because light is slowed down in the dense glass. It is this density (4.06 gcm-3) that makes lead glass attractive to physicists. The refractive index of the glass is 1.708 at 400nm (violet light), meaning that light travels in the glass at about 58% its normal speed. At CERN, the OPAL detector uses some 12000 blocks of glass like this to measure particle energies.

  6. High-Speed Fuses in IGBT based Voltage Source Converters

    Iov, Florin; Blaabjerg, Frede; Rasmussen, Henrik

    2005-01-01

    The demand for protection of power electronic applications has during the last couple of years increased regarding the high-power IGBT modules. Even with an active protection, a high power IGBT still has a risk of exhibiting a violent rupture in the case of a fault if IGBT fuses do not protect it...... protection. First, the problem of adding inductance in the DC-link circuit is treated, second a short discussion of the protection of the IGBT module is done, and finally, the impact of the high frequency loading on the current carrying capability of the fuses is presented....

  7. Nondestructive detection system of faults in fuses using radioisotope

    Goncalves, D.

    1973-01-01

    A system is developed to show the viability of non-destructive detection of the faults of explosive safety fuses which are manufactured by Fabrica da Estrela do Ministerio do Exercito. The faults are detected by an ion-chamber based on the variation of the intensity of the beta particles that penetrate the fuse which passes through a collimator. The beta particles are emitted by Strontium-90 + Yttrium-90 encapsulated in either stainless steel or aluminum. The concept of 'bucking Voltage' is applied to differentiate electronically the signal generated by the ion-chamber. (author)

  8. Modelling and Analysis of Proximity Effect in IGBT Fuses

    Iov, Florin; Blaabjerg, Frede; Rasmussen, Henrik

    2005-01-01

    The demand for protection of power electronic applications has during the last couple of years increased regarding the high-power IGBT modules. The consequences of electrical faults can be severe in special cases; not only on the equipment but also to people, if safety principles are not applied....... Even with an active protection, a high power IGBT still has a risk of exhibiting a violent rupture in the case of a fault if e.g. IGBT fuses are not protecting it. By introducing fuses into voltage source converters a better protection of IGBT's can be achieved. However, skin and proximity effects...

  9. DEFENSE HIGH LEVEL WASTE GLASS DEGRADATION

    Ebert, W.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the analyses that were done to develop models for radionuclide release from high-level waste (HLW) glass dissolution that can be integrated into performance assessment (PA) calculations conducted to support site recommendation and license application for the Yucca Mountain site. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M andO 2000a). It specifically addresses the item, ''Defense High Level Waste Glass Degradation'', of the product technical work plan. The AP-3.15Q Attachment 1 screening criteria determines the importance for its intended use of the HLW glass model derived herein to be in the category ''Other Factors for the Postclosure Safety Case-Waste Form Performance'', and thus indicates that this factor does not contribute significantly to the postclosure safety strategy. Because the release of radionuclides from the glass will depend on the prior dissolution of the glass, the dissolution rate of the glass imposes an upper bound on the radionuclide release rate. The approach taken to provide a bound for the radionuclide release is to develop models that can be used to calculate the dissolution rate of waste glass when contacted by water in the disposal site. The release rate of a particular radionuclide can then be calculated by multiplying the glass dissolution rate by the mass fraction of that radionuclide in the glass and by the surface area of glass contacted by water. The scope includes consideration of the three modes by which water may contact waste glass in the disposal system: contact by humid air, dripping water, and immersion. The models for glass dissolution under these contact modes are all based on the rate expression for aqueous dissolution of borosilicate glasses. The mechanism and rate expression for aqueous dissolution are adequately understood; the analyses in this AMR were conducted to

  10. Photoelastic response of permanently densified oxide glasses

    Bechgaard, Tobias K.; Mauro, John C.; Thirion, Lynn M.; Rzoska, Sylwester J.; Bockowski, Michal; Smedskjaer, Morten M.

    2017-05-01

    The stress-induced birefringence (photoelastic response) in oxide glasses has important consequences for several applications, including glass for flat panel displays, chemically strengthened cover glass, and advanced optical glasses. While the effect of composition on the photoelastic response is relatively well documented, the effect of pressure has not been systematically studied. In this work, we evaluate the effect of hot isostatic compression on the photoelastic response of ten oxide glasses within two commonly used industrial glass families: aluminosilicates and boroaluminosilicates. Hot isostatic compression generally results in decreasing modifier-oxygen bond lengths and increasing network-former coordination numbers. These structural changes should lead to an increase in the stress optic coefficient (C) according to the model of Zwanziger et al., which can successfully predict the composition and structure dependence of C. However, in compressed glasses, we observe the opposite trend, viz., a decrease in the stress optic coefficient as a result of pressurization. We discuss this result based on measured changes in refractive index and elastic moduli within the context of atomic and lattice effects, building on the pioneering work of Mueller. We propose that the pressure-induced decrease in C is a result of changes in the shear modulus due to underlying topological changes in the glass network.

  11. Dedication for Safety-Related Fuses used in Class-1E Power System

    Hong, Younghee

    2014-01-01

    The safety-related fuses used in class-1E power system provide overcurrent protection for electrical system and isolate the class 1E circuit from a fault or overload condition. These days, the number of nuclear grade suppliers has been reduced. Accordingly, commercial grade, instead of safety-related, fuses are procured and used in the utilities through the dedication process. Therefore, this paper introduces the commercial grade fuse dedication process/engineering and how to assure the quality requirements with this process and engineering. The fuses used in class-1E power system are to protect overcurrent and to isolate fault. Therefore the fuse for acceptance in order to improve the quality and reliability for commercial grade fuses shall be dedicated. The fuse resistance value may be useful as an indicator of acceptance. The current carrying capacity test can change the fuse performance properties. Therefore these critical characteristics are needed for additional review and analysis with fuse manufactures

  12. Glass and nuclear wastes

    Sombret, C.

    1982-10-01

    Glass shows interesting technical and economical properties for long term storage of solidified radioactive wastes by vitrification or embedding. Glass composition, vitrification processes, stability under irradiation, thermal stability and aqueous corrosion are studied [fr

  13. Microstructuring of glasses

    Hülsenberg, Dagmar; Bismarck, Alexander

    2008-01-01

    As microstructured glass becomes increasingly important for microsystems technology, the main application fields include micro-fluidic systems, micro-analysis systems, sensors, micro-actuators and implants. And, because glass has quite distinct properties from silicon, PMMA and metals, applications exist where only glass devices meet the requirements. The main advantages of glass derive from its amorphous nature, the precondition for its - theoretically - direction-independent geometric structurability. Microstructuring of Glasses deals with the amorphous state, various glass compositions and their properties, the interactions between glasses and the electromagnetic waves used to modify it. Also treated in detail are methods for influencing the geometrical microstructure of glasses by mechanical, chemical, thermal, optical, and electrical treatment, and the methods and equipment required to produce actual microdevices.

  14. Fuse and application of said fuse to the construction of an emergency shutdown system for a nuclear reactor

    Taulier, H.H.L.; Brugeille, G.

    1978-01-01

    A fuse device for an automatic emergency shutdown system in fast reactors provides a coupling between a casing tube placed within a fuel can and a series of neutron-absorbing masses held together above the reactor core under normal operating conditions but released in free fall to the lower portion of the casing tube at the level of the reactor core as a result of melting of the fuse when operating characteristics such as temperature or neutron flux attain a level which exceeds a predetermined threshold

  15. Fuse and application of said fuse to the construction of an emergency shutdown system for a nuclear reactor

    Taulier, H.H.L.; Brugeilles, G.

    1976-01-01

    A fuse device for an automatic emergency shutdown system in fast reactors provides a coupling between a casing tube placed within a fuel can and a series of neutron-absorbing masses held together above the reactor core under normal operating conditions. They are released in free fall to the lower portion of the casing tube at the level of the reactor core as a result of melting of the fuse when operating characteristics such as temperature or neutron flux attain a level which exceeds a predetermined threshold

  16. Measurement of optical glasses

    Nicolau-Rebigan, S.

    1978-11-01

    The possibilities of measurement of the optical glasses parameters needed in building optical devices especially in lasers devices are presented. In the first chapter the general features of the main optical glasses as well as the modalities of obtaining them are given. Chapter two defines the optical glass parameters, and the third chapter describes the measuring methods of the optical glass parameters. Finally, the conclusions which point out the utilization of this paper are presented. (author)

  17. Mechanically reinforced glass beams

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    laminated float glass beam is constructed and tested in four-point bending. The beam consist of 4 layers of glass laminated together with a slack steel band glued onto the bottom face of the beam. The glass parts of the tested beams are \\SI{1700}{mm} long and \\SI{100}{mm} high, and the total width of one...

  18. Borosilicate nuclear waste glass alteration kinetics theoretical basis for the kinetic law of nuclear glass alteration

    Jegou, Ch.; Gin, St.; Advocat, Th.; Vernaz, E.

    1997-01-01

    Work carried out since the early 1980's to predict the long-term behavior of nuclear containment glasses has revealed the inadequacy of existing models, notably in accounting for the fundamental mechanisms involved in some complex systems (e.g. glass-water-clay), inciting us to examine and discuss the theoretical basis for the hypotheses generally assumed in our models. This paper discusses the theoretical basis for the Aagaard-Helgeson law and its application to nuclear glasses. The contribution of other types of kinetic laws is also considered to describe the alteration kinetics of nuclear glasses. (authors)

  19. Vacuum fused deposition modelling system to improve tensile ...

    In the printing process, the interlayer bonding is made too quick thus the layers are not fully fused together causing the reduced tensile strength. This paper presents a possible solution to this problem by incorporating vacuum technology in FDM system to improve tensile strength of 3D printed specimens. In this study, a ...

  20. Fused silica thermal conductivity dispersion at high temperature

    Bouchut, P.; Decruppe, D.; Delrive, L.

    2004-01-01

    A continuous CO 2 laser is focused to locally anneal small fused silica spots. A noncontact radiometry diagnostic enables us to follow surface temperature variation that occurs from site to site. A 'steady state' dispersion of surface temperature is observed across our sample. We show that nonhomogeneous silica thermal conductivity, above 1000 K is responsible for this temperature dispersion

  1. New developments in fused deposition modeling of ceramics

    Bellini, Anna; Shor, L.; Guceri, S.I.

    2005-01-01

    Purpose - To shift from rapid prototyping (RP) to agile fabrication by broadening the material selection, e.g. using ceramics, hence improving the properties (e.g. mechanical properties) of fused deposition modeling (FDM) products. Design/methodology/approach - This paper presents the development...

  2. Evaluation of a color fused dual-band NVG

    Hogervorst, M.A.; Toet, A.

    2009-01-01

    We designed and evaluated a dual-band Night Vision Goggles sensor system. The sensor system consists of two optically aligned NVGs fitted with filters splitting the sensitive range into a visual and a near-infrared band. The Color-the-night technique (Hogervorst & Toet, FUSION2008) was used to fuse

  3. Evaluation of a color fused dual-band NVG

    Hogervorst, M.A.; Toet, A.

    2009-01-01

    We have tested a prototype dual-band NVG system consisting of two NVGs fitted with filters that split the NVG sensitive range into a short (visual) and a long wavelength (NIR) band. The Color-the-night technique (see Hogervorst & Toet, SPIE D&S ‘08) was used to fuse the images of the two sensors. We

  4. The burning fuse model of unbecoming in time

    Norton, John D.

    2015-11-01

    In the burning fuse model of unbecoming in time, the future is real and the past is unreal. It is used to motivate the idea that there is something unbecoming in the present literature on the metaphysics of time: its focus is merely the assigning of a label "real."

  5. Crossed fused renal ectopia: Challenges in diagnosis and management

    Shailesh Solanki

    2013-01-01

    Full Text Available Aim: Crossed fused renal ectopia is a rare congenital malformation, which is reported to be usually asymptomatic but may have varied presentations. This survey was conducted to study the clinical profile and the challenges posed in the management of this entity. Materials and Methods: Retrospective analysis of 6 patients diagnosed to have crossed fused renal ectopia during 1997-2010. The diagnosis was confirmed during surgical exploration in one patient. In one patient it was detected on antenatal ultrasonography and in the other 4 patients it was detected during investigations for abdominal pain, abdominal mass, anorectal malformation and urinary tract infection. Results: The left moiety was crossed and fused with the right moiety in 4 cases. Ultrasonography was found to be a good screening investigation with useful diagnostic contributions from CT scans, radionuclide scintigraphy and magnetic resonance urography. Micturating cystourethrography revealed presence of VUR in 4 cases, 3 of whom have undergone ureteric reimplantation. Two patients required pyeloplasty for pelviureteric junction obstruction; in one of these patients the upper ureter was entrapped in the isthmus. In one patient, a non-functioning moiety resulted in nephrectomy. All children were asymptomatic at last follow-up with stable renal functions. Conclusions: Crossed fused renal ectopia was detected in most patients during investigation for other problems. It was found more commonly in boys. The left moiety was crossed to the right in the majority of cases. Associated urological problems were found in most cases and required the appropriate surgical management.

  6. Ultrafast laser induced electronic and structural modifications in bulk fused silica

    Mishchik, K.; D' Amico, C.; Velpula, P. K.; Mauclair, C.; Boukenter, A.; Ouerdane, Y.; Stoian, R. [Laboratoire Hubert Curien, UMR 5516 CNRS, Université de Lyon, Université Jean Monnet, 42000 Saint Etienne (France)

    2013-10-07

    Ultrashort laser pulses can modify the inner structure of fused silica, generating refractive index changes varying from soft positive (type I) light guiding forms to negative (type II) values with void presence and anisotropic sub-wavelength modulation. We investigate electronic and structural material changes in the type I to type II transition via coherent and incoherent secondary light emission reflecting free carrier behavior and post-irradiation material relaxation in the index change patterns. Using phase contrast microscopy, photoluminescence, and Raman spectroscopy, we determine in a space-resolved manner defect formation, redistribution and spatial segregation, and glass network reorganization paths in conditions marking the changeover between type I and type II photoinscription regimes. We first show characteristic patterns of second harmonic generation in type I and type II traces, indicating the collective involvement of free carriers and polarization memory. Second, incoherent photoemission from resonantly and non-resonantly excited defect states reveals accumulation of non-bridging oxygen hole centers (NBOHCs) in positive index domains and oxygen deficiency centers (ODCs) with O{sub 2}{sup −} ions segregation in void-like regions and in the nanostructured domains, reflecting the interaction strength. Complementary Raman investigations put into evidence signatures of the different environments where photo-chemical densification (bond rearrangements) and mechanical effects can be indicated. NBOHCs setting in before visible index changes serve as precursors for subsequent compaction build-up, indicating a scenario of cold, defect-assisted densification for the soft type I irradiation regime. Additionally, we observe hydrodynamic effects and severe bond-breaking in type II zones with indications of phase transition. These observations illuminate densification paths in fused silica in low power irradiation regimes, and equally in energetic ranges

  7. Bioactive glass coatings for orthopedic metallic implants

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  8. Immobilization of krypton-85 in zeolite 5A and porous glass

    Christensen, A.B.; DelDebbio, J.A.; Knecht, D.A.; Tanner, J.E.; Cossel, S.C.

    1981-12-01

    This report demonstrates the technical and economic feasibility for immobilizing krypton-85 by high pressure/high temperature encapsulation in zeolite 5A or thirsty Vyco porous glass. Data are presented to show how process conditions affect the encapsulation and how to compact the zeolite beads with glass frit or other additives to form a fused mass with low dispersibility potential. Krypton specific loadings of 30 and 50 m 3 STP gas per m 3 solid are readily achieved at 100 MPa in porous glass at 900 0 C and zeolite 5A at 700 0 C. Krypton is encapsulated by a sintering process where the porous glass and zeolite 5A voids are sealed. With zeolite 5A, the initial water concentration has a catalytic effect on the sintering, resulting in a transition from crystalline zeolite 5A to an amorphous aluminosilicate. Krypton leakage experiments are used to predict leakage rates from glass or zeolite of less than 0.03% and 0.3% for 10-y storage at 300 and 400 0 C, respectively. Heating the loaded zeolite at 600 to 700 0 C for 4 h removes 0.1% of the total krypton which is loosely held and reduces the subsequent leakage rates at 300 to 400 0 C. Zeolite 5A is chosen as the preferred material to immobilize krypton-85. A preconceptual design and cost estimate is given for a facility to encapsulate 110% of the krypton production of a 2000 metric ton of heavy metal per year reprocessing plant, or 230 m 3 of gas containing 19 MCi of krypton-85. A hot isostatic press (HIP) with an isolated work zone of 8 or 16 L capacity is required to operate for 600 or 300 cycles per year, respectively. Existing HIP technology uses work zones from 1 to 3500 L capacity at similar production rates. A preliminary safety evaluation shows that an incredible worst case accident could be contained and the maximum off-site dose would be well below accident protective action guidance levels

  9. Challenges in commercial manufacture of radiation shielding glasses

    Gupta, R.K.

    2011-01-01

    Radioactive hot-cells employ Radiation Shielding Windows (RSWs), assembled from specialty glasses, developed exclusively for nuclear industry. RSWs serve the twin purpose of direct viewing and shielding protection to the operator and use various types of radiation resistant and optically compatible glasses, such as low-density borosilicate glass; medium-density glass with up to 45% Lead and high-density glass with over 70% lead. Some glasses are Ceria-doped for enhancing their resistance threshold to radiation browning. A clear view of future requirement, capital and environmental costs could be the driving force towards bringing about changes in melting practices, encourage melting development, and enhancing collaboration. With DAE and CGCRI working in tandem, production of the entire range of RSW glasses by an Indian glass industry participant may no longer be a distant dream

  10. Fusing Simultaneous EEG and fMRI Using Functional and Anatomical Information

    Hansen, Sofie Therese; Winkler, Irene; Hansen, Lars Kai

    2015-01-01

    Simultaneously measuring electro physical and hemodynamic signals has become more accessible in the last years and the need for modeling techniques that can fuse the modalities is growing. In this work we augment a specific fusion method, the multimodal Source Power Co-modulation (mSPoC), to not ...... on cortex level to the EEG sensors. The augmented mSPoC is shown to outperform the original version in realistic simulations where the signal to noise ratio is low or where training epochs are scarce....

  11. A bendable and wearable cardiorespiratory monitoring device fusing two noncontact sensor principles.

    Teichmann, Daniel; De Matteis, Dennis; Bartelt, Thorsten; Walter, Marian; Leonhardt, Steffen

    2015-05-01

    A mobile device is presented for monitoring both respiration and pulse. The device is developed as a bendable/flexible inlay that can be placed in a shirt pocket or the inside pocket of a jacket. To achieve optimum monitoring performance, the device combines two sensor principles, which work in a safe noncontact way through several layers of cotton or other textiles. One sensor, based on magnetic induction, is intended for respiratory monitoring, and the other is a reflective photoplethysmography sensor intended for pulse detection. Because each sensor signal has some dependence on both physiological parameters, fusing the sensor signals allows enhanced signal coverage.

  12. XAFS study on silica glasses irradiated in a nuclear reactor

    Yoshida, Tomoko; Yoshida, Hisao; Hara, Takanobu; Ii, Tatsuya; Okada, Tomohisa; Tanabe, Tetsuo

    2000-01-01

    X-ray absorption technique (XANES and EXAFS) was applied to study the local structures of silica glasses before and after the irradiation in a nuclear reactor. Although our separate photoluminescence (PL) measurements clearly showed the different aspects about oxygen vacancies in these samples, i.e., at least the B 2β type oxygen-deficient center exists as an intrinsic defect in the fused silica glass while another type B 2α center is formed in the synthesized silica glass, such differences did not directly reflect on the X-ray absorption spectra (XANES and EXAFS). However, the curve-fitting analysis of EXAFS showed that the number of oxygen atoms coordinated to Si relatively increased after the irradiation. This result may indicate the occurrence of the structural relaxation in the irradiated samples, that is, a slightly distorted SiO 4 tetrahedra in silica glasses relaxed to the regular SiO 4 tetrahedra due to the break of some connections between SiO 4 units in the silica glasses. Thus, the X-ray absorption technique gave the important information of the in-reactor irradiated silica glasses which complements the results obtained from PL measurements

  13. Thermal and optical properties of Tm3+ doped tellurite glasses.

    Ozen, G; Demirata, B; Oveçoğlu, M L; Genç, A

    2001-02-01

    Ultraviolet, visible (UV/VIS) and differential thermal analysis (DTA) measurements were carried out in order to investigate the optical and thermal properties of various 0.5 mol.% Tm2O3 containing (1 - x)TeO2 + xLiCl glasses in molar ratio. The samples were prepared by fusing the mixture of their respective reagent grade powders in a platinum cricuble at 750 degrees C for 30 min. DTA curves taken in the 23-600 degrees C temperature range with a heating rate of 10 degrees C/min reveal a change in the value of the glass transition temperature, Tg, while melting was not observed for the glasses containing LiCl content less than 50 mol.%. These glasses were found to be moisture-resistant. However, the glasses with LiCl content higher than 50 mol.%, in which a melting peak was observed at Tc = 401 degrees C, were moisture-sensitive. Absorption measurements in the UV/VIS region of the glasses without Tm2O3 content show that the Urbach cutoff occurs at about 320 nm and, is relatively independent of the LiCl content. Six absorption bands were observed in the Tm2O3 doped glasses corresponding to the absorption of the 1G4, 3F2, 3F3 and 3F4, 3H5 and 3H4 levels from the 3H6 ground level of Tm3+ ions. The spectra also show that the integrated absorption cross-section of each band depends on the glass composition. Judd-Ofelt theory was used to determine the Judd-Ofelt parameters as well as the radiative transition probabilities for the metastable levels of Tm3+ ions in (0.3)LiCl + (0.7) TeO2: 0.01 Tm2O3 glass which is moisture-resistant.

  14. Fluoride glass fiber optics

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  15. Multiple Glass Ceilings

    Russo, Giovanni; Hassink, Wolter

    2011-01-01

    Both vertical (between job levels) and horizontal (within job levels) mobility can be sources of wage growth. We find that the glass ceiling operates at both margins. The unexplained part of the wage gap grows across job levels (glass ceiling at the vertical margin) and across the deciles of the intra-job-level wage distribution (glass ceiling at the horizontal margin). This implies that women face many glass ceilings, one for each job level above the second, and that the glass ceiling is a p...

  16. Homogeneity of Inorganic Glasses

    Jensen, Martin; Zhang, L.; Keding, Ralf

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...

  17. X-ray spectrometric determination of glass content of melts incorporating radioactive waste: a feasibility study

    Slates, R.V.

    1978-09-01

    X-ray fluorescence spectrometry was evaluated for the determination of glass content and homogeneity of glass incorporating high-level radioactive waste. Accuracy and precision were determined for analyses of Al 2 O 3 , SiO 2 , CaO, TiO 2 , MnO, Fe 2 O 3 , and NiO in specimens of known composition. These specimens were prepared by fusing powdered glass with nonradioactive synthetic waste. Matrix effects of sodium on these analyses were specifically evaluated. X-ray fluorescence spectrometry was shown to be applicable to the proposed determinations by comparing the known glass contents of 14 glass waste compositions with those calculated from experimentally determined concentrations of SiO or TiO 2

  18. Final Report. Baseline LAW Glass Formulation Testing, VSL-03R3460-1, Rev. 0

    Muller, Isabelle S. [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Gan, Hao [The Catholic University of America, Washington, DC (United States); Buechele, Andrew [The Catholic University of America, Washington, DC (United States); Rielley, Elizabeth [The Catholic University of America, Washington, DC (United States); Bazemore, Gina [The Catholic University of America, Washington, DC (United States); Cecil, Richard [The Catholic University of America, Washington, DC (United States); Hight, Kenneth [The Catholic University of America, Washington, DC (United States); Mooers, Cavin [The Catholic University of America, Washington, DC (United States); Lai, Shan-Tao T. [The Catholic University of America, Washington, DC (United States); Kruger, Albert A. [The Catholic University of America, Washington, DC (United States)

    2015-06-18

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  19. Leaching of glass

    Hench, L.L.

    1977-01-01

    Understanding surface compositional profiles of glasses over a range of 0-2000 A with a variety of analytical instruments shows that five general types of glass surfaces exist. The surface character of a glass article depends upon bulk composition and environmental history during which surface dealkalization, film formation, and network dissolution can occur. Environmental-surface interactions generally result in complex compositional profiles of all the constituents in a glass. Durable glasses almost always develop a stable surface film which has a higher concentration of network formers than the bulk composition. Compositional effects that are used to improve glass durability usually improve the stability of the surface films. Durability tests or service conditions that lead to film destruction are especially severe for the most silicate glasses. 43 references

  20. The effect of heat treatment on the magnitude and composition of residual gas in sealed silica glass ampoules

    Palosz, W.; Szofran, F. R.; Lehoczky, S. L.

    1994-01-01

    The residual gas pressure and composition in sealed silica glass ampoules as a function of different treatment procedures has been investigated. The dependence of the residual gas on the outgassing and annealing parameters has been determined. The effects of the fused silica brand, of the ampoule fabrication, and of post-outgassing procedures have been evaluated.

  1. Immobilization of Uranium Silicides in Sintered Glass

    Mateos, P.; Russo, D.O.; Heredia, A.D.; Sanfilippo, M.

    2003-01-01

    High activity nuclear spent fuels vitrification by fusion is a well known technology which has industrial scale in France, England, Japan, EEUU. Borosilicates glasses are used in this process.Sintered glasses are an alternative to the immobilization task in which there is also a wide experience around the world.The available technics are: cold pressing and sintering , hot-pressing and hot isostatic pressing.This work compares Borosilicates and Iron silicates sintered glasses behaviour when different ammounts of nuclear simulated waste is added

  2. The Thermal Collector With Varied Glass Covers

    Luminosu, I.; Pop, N.

    2010-01-01

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collection area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.

  3. 30 CFR 75.601-2 - Short circuit protection; use of fuses; approval by the Secretary.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit protection; use of fuses... Trailing Cables § 75.601-2 Short circuit protection; use of fuses; approval by the Secretary. Fuses shall not be employed to provide short circuit protection for trailing cables unless specifically approved...

  4. 30 CFR 75.601-3 - Short circuit protection; dual element fuses; current ratings; maximum values.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit protection; dual element fuses... Trailing Cables § 75.601-3 Short circuit protection; dual element fuses; current ratings; maximum values. Dual element fuses having adequate current-interrupting capacity shall meet the requirements for short...

  5. Influence of System Parameters on Fuse Protection Use in Regenerative DC Drives

    Isa Salman Qamber

    2009-06-01

    Full Text Available Current limiting fuses are widely used to protect the thyristors in DC drive systems. One very important problem is the choice of the correct voltage rating for fuses protecting regenerative DC drives, where many types of fault may occur, which makes fuse protection difficult. In the event of a commutation failure while regenerating, the fuses need to interrupt the loop supplied by the AC and DC voltages acting in series, which is the most difficult case for protection by fuses. In this paper a detailed study of the complete interruption process has been investigated by modeling of arcing process of the fuse protection against the regenerative circuit internal commutation fault. The effect of varying the motor time constant, supply impedance, number of fuses used to clear the fault and DC machine rating on the total transient response is studied. The model of a 200 A fuse is employed in this study. Fuses in series with both the semiconductor devices (F1 and fuses in AC lines (F2 are considered. Comparison was made between arc energy produced for fuses protecting the regenerative circuit if failure occurs, with the arc energy produced in a standard AC test in order to investigate the required voltage rating for the fuse.

  6. Crossed fused renal ectopia in a Persian cat

    Sang-Hyuk Seo

    2017-03-01

    Full Text Available Case summary This report describes a rare case of crossed fused renal ectopia (CFRE in a cat. A mature intact male Persian cat presented with bloody nasal discharge and ascites. Diagnostic studies revealed an ectopic left kidney fused with an orthotopic right kidney and a concurrent feline infectious peritonitis (FIP infection. The FIP was responsible for clinical signs in this cat, while clinical signs associated with CFRE were not obvious. Despite receiving intensive treatment, the cat died. A post-mortem examination was not performed because the owners declined approval. Relevance and novel information To the best of our knowledge, this is the first report of L-shaped CFRE in a cat. In addition, this report describes the CT features of L-shaped CFRE in a cat.

  7. Natural glass analogues to alteration of nuclear waste glass: A review and recommendations for further study

    McKenzie, W.F.

    1990-01-01

    The purpose of this report is to review previous work on the weathering of natural glasses; and to make recommendations for further work with respect to studying the alteration of natural glasses as it relates quantifying rates of dissolution. the first task was greatly simplified by the published papers of Jercinovic and Ewing (1987) and Byers, Jercinovic, and Ewing (1987). The second task is obviously the more difficult of the two and the author makes no claim of completeness in this regard. Glasses weather in the natural environment by reacting with aqueous solutions producing a rind of secondary solid phases. It had been proposed by some workers that the thickness of this rind is a function of the age of the glass and thus could be used to estimate glass dissolution rates. However, Jercinovic and Ewing (1987) point out that in general the rind thickness does not correlate with the age of the glass owing to the differences in time of contact with the solution compared to the actual age of the sample. It should be noted that the rate of glass dissolution is also a function of the composition of both the glass and the solution, and the temperature. Quantification of the effects of these parameters (as well as time of contact with the aqueous phase and flow rates) would thus permit a prediction of the consequences of glass-fluid interactions under varying environmental conditions. Defense high- level nuclear waste (DHLW), consisting primarily of liquid and sludge, will be encapsulated by and dispersed in a borosilicate glass before permanent storage in a HLW repository. This glass containing the DHLW serves to dilute the radionuclides and to retard their dispersion into the environment. 318 refs

  8. Natural glass analogues to alteration of nuclear waste glass: A review and recommendations for further study

    McKenzie, W.F.

    1990-01-01

    The purpose of this report is to review previous work on the weathering of natural glasses; and to make recommendations for further work with respect to studying the alteration of natural glasses as it relates quantifying rates of dissolution. the first task was greatly simplified by the published papers of Jercinovic and Ewing (1987) and Byers, Jercinovic, and Ewing (1987). The second task is obviously the more difficult of the two and the author makes no claim of completeness in this regard. Glasses weather in the natural environment by reacting with aqueous solutions producing a rind of secondary solid phases. It had been proposed by some workers that the thickness of this rind is a function of the age of the glass and thus could be used to estimate glass dissolution rates. However, Jercinovic and Ewing (1987) point out that in general the rind thickness does not correlate with the age of the glass owing to the differences in time of contact with the solution compared to the actual age of the sample. It should be noted that the rate of glass dissolution is also a function of the composition of both the glass and the solution, and the temperature. Quantification of the effects of these parameters (as well as time of contact with the aqueous phase and flow rates) would thus permit a prediction of the consequences of glass-fluid interactions under varying environmental conditions. Defense high- level nuclear waste (DHLW), consisting primarily of liquid and sludge, will be encapsulated by and dispersed in a borosilicate glass before permanent storage in a HLW repository. This glass containing the DHLW serves to dilute the radionuclides and to retard their dispersion into the environment. 318 refs.

  9. Solubility of actinides and surrogates in nuclear glasses

    Lopez, Ch.

    2003-01-01

    The nuclear wastes are currently incorporated in borosilicate glass matrices. The resulting glass must be perfectly homogeneous. The work discussed here is a study of actinide (thorium and plutonium) solubility in borosilicate glass, undertaken to assess the extent of actinide solubility in the glass and to understand the mechanisms controlling actinide solubilization. Glass specimens containing; actinide surrogates were used to prepare and optimize the fabrication of radioactive glass samples. These preliminary studies revealed that actinide Surrogates solubility in the glass was enhanced by controlling the processing temperature, the dissolution kinetic of the surrogate precursors, the glass composition and the oxidizing versus reducing conditions. The actinide solubility was investigated in the borosilicate glass. The evolution of thorium solubility in borosilicate glass was determined for temperatures ranging from 1200 deg C to 1400 deg C.Borosilicate glass specimens containing plutonium were fabricated. The experimental result showed that the plutonium solubility limit ranged from 1 to 2.5 wt% PuO 2 at 1200 deg C. A structural approach based on the determination of the local structure around actinides and their surrogates by EXAFS spectroscopy was used to determine their structural role in the glass and the nature of their bonding with the vitreous network. This approach revealed a correlation between the length of these bonds and the solubility of the actinides and their surrogates. (author)

  10. Tetrakis(4-tert-butylphenyl) substituted and fused quinoidal porphyrins

    Zeng, Wangdong

    2012-01-01

    4-tert-Butylphenyl-substituted and fused quinoidal porphyrins 1 and 2 are prepared for the first time. They show (1) intense one-photon absorption in the far-red/near-infrared region, (2) enhanced two-photon absorption compared with aromatic porphyrin monomers, and (3) amphoteric redox behavior. Their geometry and electronic structure are studied by DFT calculations. This journal is © 2012 The Royal Society of Chemistry.

  11. Bilateral maxillary fused second and third molars: a rare occurrence

    Liang, Rui-Zhen; Wu, Jin-Tao; Wu, You-Nong; Smales, Roger J; Hu, Ming; Yu, Jin-Hua; Zhang, Guang-Dong

    2012-01-01

    This case report describes the diagnosis and endodontic therapy of maxillary fused second and third molars, using cone-beam computed tomography (CBCT). A 31-year-old Chinese male, with no contributory medical or family/social history, presented with throbbing pain in the maxillary right molar area following an unsuccessful attempted tooth extraction. Clinical examination revealed what appeared initially to be a damaged large extra cusp on the buccal aspect of the distobuccal cusp of the secon...

  12. Study on fused/cast AZS refractories for deployment in vitrification of radioactive waste effluents

    Sengupta, Pranesh, E-mail: praneshsengupta@gmail.com [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Mishra, R.K.; Soudamini, N. [Waste Management Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sen, D.; Mazumder, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kaushik, C.P. [Waste Management Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ajithkumar, T.G. [Central NMR Facility, National Chemical Laboratory, Pune 411 008 (India); Banerjee, K. [Nuclear Recycle Group, Mumbai 400 085 (India)

    2015-12-15

    Fused/cast Al{sub 2}O{sub 3}–ZrO{sub 2}–SiO{sub 2} (FC-AZS)’ is being considered as ‘glass contact refractory’ within ceramic melters, to be used for nuclear waste immobilization. Microstructural analyses reveal random distributions of baddeleyite (ZrO{sub 2}) within aluminosilicate (Al{sub 2}SiO{sub 5}) matrix. {sup 27}Al and {sup 29}Si NMR data suggest that within aluminosilicate matrix Al occurs in both 4- and 6-fold co-ordinations whereas Si prefers a 4-fold environment. Polydispersity of pores has been studied with small-angle neutron scattering (SANS) technique. Corrosion rates of FC-AZS within 6 M HNO{sub 3}, simulated wastes (500 h exposure), and borosilicate melt (975 °C, 800 h exposure) are found to be 0.38 × 10{sup 3} μmy{sup −1}, 0.13 × 10{sup 3} μmy{sup −1} and 4.75 × 10{sup 3} μmy{sup −1} respectively. A comparison of chemical interaction data clearly suggests that FC-AZS exhibits better chemical durability than AZC refractory (Al{sub 2}O{sub 3}–ZrO{sub 2}–Cr{sub 2}O{sub 3}, also used for similar purpose). Thermal cycling studies indicate that FC-AZS retains structural integrity (including compressive strength and density) even up to 20 cycles. - Highlights: • Vitrification of nuclear waste using AZS refractory within ceramic melter. • Microstructure of AZS refractory. • Interaction of AZS with simulated high level waste and glass.

  13. An Economic Theory of the Glass Ceiling

    Paul A. Grout; In-Uck Park; Silvia Sonderegger

    2007-01-01

    The glass ceiling is one of the most controversial and emotive aspects of employment in organisations. This paper provides a model of the glass ceiling that exhibits the following features that are frequently thought to characterise the problem: (i) there is a lower number of female employees in higher positions, (ii) women have to work harder than men to obtain equivalent jobs, (iii) women are then paid less than men when promoted, and (iv) some organisations are more female friendly than ot...

  14. Fused Silica Final Optics for Inertial Fusion Energy: Radiation Studies and System-Level Analysis

    Latkowski, Jeffery F.; Kubota, Alison; Caturla, Maria J.; Dixit, Sham N.; Speth, Joel A.; Payne, Stephen A.

    2003-01-01

    The survivability of the final optic, which must sit in the line of sight of high-energy neutrons and gamma rays, is a key issue for any laser-driven inertial fusion energy (IFE) concept. Previous work has concentrated on the use of reflective optics. Here, we introduce and analyze the use of a transmissive final optic for the IFE application. Our experimental work has been conducted at a range of doses and dose rates, including those comparable to the conditions at the IFE final optic. The experimental work, in conjunction with detailed analysis, suggests that a thin, fused silica Fresnel lens may be an attractive option when used at a wavelength of 351 nm. Our measurements and molecular dynamics simulations provide convincing evidence that the radiation damage, which leads to optical absorption, not only saturates but that a 'radiation annealing' effect is observed. A system-level description is provided, including Fresnel lens and phase plate designs

  15. Hybrid Z-Θ Pinches with fused capacitor banks

    Grandey, R.; Gersten, M.; Loter, N.; Rauch, J.; Rostoker, N.; Thompson, W.; Ware, K.

    1987-01-01

    The Hybrid Z-Θ Pinch circuit equations in the thin shell model were reexamined to see what advantages can be obtained by using a fused, high-energy (>--1MJ) bank driver. The DNA ACE facility at MLI utilizes a 36 μF capacitor band which can be charged to 120 kV to provide 250 kJ of stored energy. This configuration appears to be very appropriate to test the performance of a hybrid-stabilized fused-bank driven pinch. The circuit analyses suggest that the energy transfer efficiency from the bank to a pinched plasma can be increased from less than 1%, for a nonfused bank, to about 10% for a fused configuration. In the applicable region of parameter space, the Hybrid Pinch does not increase the efficiency of energy transfer into the plasma over that obtainable from a Z-pinch. The additional stability may allow larger initial radii to be used with concomitant improved coupling into radiation above 1 keV

  16. High strength fused silica flexures manufactured by femtosecond laser

    Bellouard, Yves; Said, Ali A.; Dugan, Mark; Bado, Philippe

    2009-02-01

    Flexures are mechanical elements used in micro- and precision-engineering to precisely guide the motion of micro-parts. They consist of slender bodies that deform elastically upon the application of a force. Although counter-intuitive at first, fused silica is an attractive material for flexure. Pending that the machining process does not introduce surface flaws that would lead to catastrophic failure, the material has a theoretically high ultimate tensile strength of several GPa. We report on high-aspect ratio fused silica flexures manufactured by femtosecond laser combined with chemical etching. Notch-hinges with thickness as small as twenty microns and aspect ratios comparable to aspect ratios obtained by Deep- Reactive-Ion-Etching (DRIE) were fabricated and tested under different loading conditions. Multiple fracture tests were performed for various loading conditions and the cracks morphologies were analyzed using Scanning Electron Microscopy. The manufactured elements show outstanding mechanical properties with flexural strengths largely exceeding those obtained with other technologies and materials. Fused silica flexures offer a mean to combine integrated optics with micro-mechanics in a single monolithic substrate. Waveguides and mechanical elements can be combined in a monolithic devices opening new opportunities for integrated opto-mechatronics devices.

  17. A hierarachical data structure representation for fusing multisensor information

    Maren, A.J. [Tennessee Univ., Tullahoma, TN (United States). Space Inst.; Pap, R.M.; Harston, C.T. [Accurate Automation Corp., Chattanooga, TN (United States)

    1989-12-31

    A major problem with MultiSensor Information Fusion (MSIF) is establishing the level of processing at which information should be fused. Current methodologies, whether based on fusion at the data element, segment/feature, or symbolic levels, are each inadequate for robust MSIF. Data-element fusion has problems with coregistration. Attempts to fuse information using the features of segmented data relies on a Presumed similarity between the segmentation characteristics of each data stream. Symbolic-level fusion requires too much advance processing (including object identification) to be useful. MSIF systems need to operate in real-time, must perform fusion using a variety of sensor types, and should be effective across a wide range of operating conditions or deployment environments. We address this problem through developing a new representation level which facilitates matching and information fusion. The Hierarchical Data Structure (HDS) representation, created using a multilayer, cooperative/competitive neural network, meets this need. The HDS is an intermediate representation between the raw or smoothed data stream and symbolic interpretation of the data. it represents the structural organization of the data. Fused HDSs will incorporate information from multiple sensors. Their knowledge-rich structure aids top-down scene interpretation via both model matching and knowledge-based region interpretation.

  18. A hierarachical data structure representation for fusing multisensor information

    Maren, A.J. (Tennessee Univ., Tullahoma, TN (United States). Space Inst.); Pap, R.M.; Harston, C.T. (Accurate Automation Corp., Chattanooga, TN (United States))

    1989-01-01

    A major problem with MultiSensor Information Fusion (MSIF) is establishing the level of processing at which information should be fused. Current methodologies, whether based on fusion at the data element, segment/feature, or symbolic levels, are each inadequate for robust MSIF. Data-element fusion has problems with coregistration. Attempts to fuse information using the features of segmented data relies on a Presumed similarity between the segmentation characteristics of each data stream. Symbolic-level fusion requires too much advance processing (including object identification) to be useful. MSIF systems need to operate in real-time, must perform fusion using a variety of sensor types, and should be effective across a wide range of operating conditions or deployment environments. We address this problem through developing a new representation level which facilitates matching and information fusion. The Hierarchical Data Structure (HDS) representation, created using a multilayer, cooperative/competitive neural network, meets this need. The HDS is an intermediate representation between the raw or smoothed data stream and symbolic interpretation of the data. it represents the structural organization of the data. Fused HDSs will incorporate information from multiple sensors. Their knowledge-rich structure aids top-down scene interpretation via both model matching and knowledge-based region interpretation.

  19. Effect of a core-softened O-O interatomic interaction on the shock compression of fused silica

    Izvekov, Sergei; Weingarten, N. Scott; Byrd, Edward F. C.

    2018-03-01

    Isotropic soft-core potentials have attracted considerable attention due to their ability to reproduce thermodynamic, dynamic, and structural anomalies observed in tetrahedral network-forming compounds such as water and silica. The aim of the present work is to assess the relevance of effective core-softening pertinent to the oxygen-oxygen interaction in silica to the thermodynamics and phase change mechanisms that occur in shock compressed fused silica. We utilize the MD simulation method with a recently published numerical interatomic potential derived from an ab initio MD simulation of liquid silica via force-matching. The resulting potential indicates an effective shoulder-like core-softening of the oxygen-oxygen repulsion. To better understand the role of the core-softening we analyze two derivative force-matching potentials in which the soft-core is replaced with a repulsive core either in the three-body potential term or in all the potential terms. Our analysis is further augmented by a comparison with several popular empirical models for silica that lack an explicit core-softening. The first outstanding feature of shock compressed glass reproduced with the soft-core models but not with the other models is that the shock compression values at pressures above 20 GPa are larger than those observed under hydrostatic compression (an anomalous shock Hugoniot densification). Our calculations indicate the occurrence of a phase transformation along the shock Hugoniot that we link to the O-O repulsion core-softening. The phase transformation is associated with a Hugoniot temperature reversal similar to that observed experimentally. With the soft-core models, the phase change is an isostructural transformation between amorphous polymorphs with no associated melting event. We further examine the nature of the structural transformation by comparing it to the Hugoniot calculations for stishovite. For stishovite, the Hugoniot exhibits temperature reversal and associated

  20. Phase transitions and structural formation of PEG-PCL-PEG copolymer in the processes of fused deposition 3D printing

    Dunaev, A.; Mariyanac, A.; Mironov, A.; Mironova, O.; Popov, V.; Syachina, M.

    2018-04-01

    In present work the analysis of thermal field distribution and thermal analysis were used to study phase and structural transformations in the block copolymer of polycaprolactone and polyethylene glycol in the process of scaffolds fabrication for tissue engineering using fused deposition modeling. It was shown that the intact polymer has a noticeable thermal history and formed degree of crystallinity which is close to its equilibrium value, while the microstructure of the polymer stays unchanged.

  1. Fractography of glass

    Tressler, Richard

    1994-01-01

    As the first major reference on glass fractography, contributors to this volume offer a comprehensive account of the fracture of glass as well as various fracture surface topography Contributors discuss optical fibers, glass containers, and flatglass fractography In addition, papers explore fracture origins; the growth of the original flaws of defects; and macroscopic fracture patterns from which fracture patterns evolve This volume is complete with photographs and schematics

  2. Diamond turning of glass

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  3. Glass to contain wastes

    Moncouyoux, M.; Jacquet-Francillon, M.

    1994-01-01

    Here are the tables and figures presented during the conference on the glass to confine high level radioactive wastes: definition, fabrication, storage and disposal. The composition of glasses are detailed, their properties and the vitrification proceeding. The behaviour of these glasses in front of water, irradiation and heat are shown. The characteristics of parcels are given according to the radiation protection rule, ALARA principle, the concept of multi-barriers and the geological stability

  4. Glass microspheres for brachytherapy

    Prado, Miguel O.; Prastalo, Simon; Blaumann, Herman; Longhino, Juan M.; Repetto Llamazares, A.H.V.

    2007-01-01

    We developed the capacity to produce glass microspheres containing in their structure one or more radioactive isotopes useful for brachytherapy. We studied the various facts related with their production: (Rare earth) alumino silicate glass making, glass characterization, microspheres production, nuclear activation through (n,γ) nuclear reactions, mechanical characterization before and after irradiation. Corrosion tests in simulated human plasma and mechanical properties characterization were done before and after irradiation. (author) [es

  5. Cordierite Glass-Ceramics for Dielectric Materials

    Siti Mazatul Azwa Saiyed Mohd Nurddin; Selamat, Malek; Ismail, Abdullah

    2007-01-01

    The objective of this project is to examine the potential of using Malaysian silica sand deposit as SiO2 raw material in producing cordierite glass-ceramics (2MgO-2Al2O3-5SiO2) for dielectric materials. Upgraded silica sands from Terengganu and ex-mining land in Perak were used in the test-works. The glass batch of the present work has a composition of 45.00% SiO2, 24.00% Al2O3, 15.00% MgO and 8.50% TiO2 as nucleation agent. From the differential thermal analysis results, the crystallization temperature was found to start around 900 deg. C. The glass samples were heat-treated at 900 deg. C and 1000 deg. C. The X-ray diffraction analysis (XRD) results showed glass-ceramics from Terengganu samples containing mainly cordierite and minor β-quartz crystals. However, glass-ceramics from ex-mining land samples contained mainly α-quartz and minor cordierite crystals. Glass-ceramics with different crystal phases exhibit different mechanical, dielectric and thermal properties. Based on the test works, both silica sand deposits, can be potentially used to produce dielectric material component

  6. Silicate glasses. Chapter 1

    Lutze, W.

    1988-01-01

    This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e. borosilicate glass. A historical overview of waste form development programs in nine countries is followed by a summary of the design criteria for borosilicate glass compositions glass compositions. In the sections on glass properties the waste form is characterized in terms of potential alterations under the influence of heat, thermal gradients, radiation, aqueous solutions and combinations thereof. The topics are phase transformations, mechanical properties, radiation effects and chemical durability. The results from studies of volcanic glasses, as natural analogues for borosilicate nuclear waste glasses in order to verify predictions obtained from short-term tests in the laboratory, have been compiled in a special section on natural analogues. A special section on advanced vitrification techniques summarizes the various actual and potential processing schemes and describes the facilities. The literature has been considered until 1985. (author). 430 refs.; 68 figs.; 29 tabs

  7. Glass and vitrification

    Barton, J.L.; Vacher, R.; Moncouyoux, J.P.; Vernaz, E.

    1997-01-01

    Most glasses used as materials are oxides glasses that are produced by a quick quench of a liquid. Glasses are characterized by the absence of periodicity in the atomic arrangements, they do not have symmetries and do not present order over a long distance. This series of 4 short articles present: 1) the properties of glass and its industrial story, 2) the glass structure, 3) a forty years long story of glass as dies used to confine wastes and 4) the methodology used to study the behaviour of glass over very long periods of time. This methodology is based on 5 steps: 1) define and specify the material to study (the prediction of long term alteration of a material is nonsense unless you know well its initial properties), 2) identify all the alteration processes that are likely to happen, determine their kinetics and the influence of environmental parameters, 3) develop mathematical models in order to simulate long-term behaviour of glasses, 4) determine the release rates of the radionuclides confined in the glass, and 5) validate data and models, it is not possible to expect a complete validation of a model that will be extrapolated over tens of thousands of years, nevertheless some ways of validation can lead to a satisfactory level of confidence taking into account reasonable uncertainties. (A.C.)

  8. Examination of Relationship Between Photonic Signatures and Fracture Strength of Fused Silica Used in Orbiter Windows

    Yost, William T.; Cramer, K. Elliott; Estes, Linda R.; Salem, Jonathan A.; Lankford, James, Jr.; Lesniak, Jon

    2011-01-01

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outermost pane of the orbiter windows. Four categories of damage: hyper-velocity impacts that occur during space-flight (HVI); hypervelocity impacts artificially made at the Hypervelocity Impact Technology Facility (HIT-F); impacts made by larger objects falling onto the pane surface to simulate dropped items on the window during service/storage of vehicle (Bruises); and light scratches from dull objects designed to mimic those that might occur by dragging a dull object across the glass surface (Chatter Checks) are examined. The damage sites are cored from fused silica window carcasses, examined with the GFP and other methodologies, and broken using the ASTM Standard C1499-09 to measure the fracture strength. A correlation is made between the fracture strength and damage-site measurements including geometrical measurements and GFP measurements of photoelastic retardation (stress patterns) surrounding the damage sites. An analytical damage model to predict fracture strength from photoelastic retardation measurements is presented and compared with experimental results.

  9. Study on fused/cast AZS refractories for deployment in vitrification of radioactive waste effluents

    Sengupta, Pranesh; Mishra, R. K.; Soudamini, N.; Sen, D.; Mazumder, S.; Kaushik, C. P.; Ajithkumar, T. G.; Banerjee, K.

    2015-12-01

    'Fused/cast Al2O3-ZrO2-SiO2 (FC-AZS)' is being considered as 'glass contact refractory' within ceramic melters, to be used for nuclear waste immobilization. Microstructural analyses reveal random distributions of baddeleyite (ZrO2) within aluminosilicate (Al2SiO5) matrix. 27Al and 29Si NMR data suggest that within aluminosilicate matrix Al occurs in both 4- and 6-fold co-ordinations whereas Si prefers a 4-fold environment. Polydispersity of pores has been studied with small-angle neutron scattering (SANS) technique. Corrosion rates of FC-AZS within 6 M HNO3, simulated wastes (500 h exposure), and borosilicate melt (975 °C, 800 h exposure) are found to be 0.38 × 103 μmy-1, 0.13 × 103 μmy-1 and 4.75 × 103 μmy-1 respectively. A comparison of chemical interaction data clearly suggests that FC-AZS exhibits better chemical durability than AZC refractory (Al2O3-ZrO2-Cr2O3, also used for similar purpose). Thermal cycling studies indicate that FC-AZS retains structural integrity (including compressive strength and density) even up to 20 cycles.

  10. Impact of the Fused Deposition (FDM Printing Process on Polylactic Acid (PLA Chemistry and Structure

    Michael Arthur Cuiffo

    2017-06-01

    Full Text Available Polylactic acid (PLA is an organic polymer commonly used in fused deposition (FDM printing and biomedical scaffolding that is biocompatible and immunologically inert. However, variations in source material quality and chemistry make it necessary to characterize the filament and determine potential changes in chemistry occurring as a result of the FDM process. We used several spectroscopic techniques, including laser confocal microscopy, Fourier transform infrared (FTIR spectroscopy and photoacousitc FTIR spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS in order to characterize both the bulk and surface chemistry of the source material and printed samples. Scanning electron microscopy (SEM and differential scanning calorimetry (DSC were used to characterize morphology, cold crystallinity, and the glass transition and melting temperatures following printing. Analysis revealed calcium carbonate-based additives which were reacted with organic ligands and potentially trace metal impurities, both before and following printing. These additives became concentrated in voids in the printed structure. This finding is important for biomedical applications as carbonate will impact subsequent cell growth on printed tissue scaffolds. Results of chemical analysis also provided evidence of the hygroscopic nature of the source material and oxidation of the printed surface, and SEM imaging revealed micro- and submicron-scale roughness that will also impact potential applications.

  11. Characterization of glass and glass ceramic nuclear waste forms

    Lutze, W.; Borchardt, J.; De, A.K.

    1979-01-01

    Characteristics of solidified nuclear waste forms, glass and glass ceramic compositions and the properties (composition, thermal stability, crystallization, phase behavior, chemical stability, mechanical stability, and radiation effects) of glasses and glass ceramics are discussed. The preparation of glass ceramics may be an optional step for proposed vitrification plants if tailored glasses are used. Glass ceramics exhibit some improved properties with respect to glasses. The overall leach resistance is similar to that of glasses. An increased leach resistance may become effective for single radionuclides being hosted in highly insoluble crystal phases mainly when higher melting temperatures are applicable in order to get more leach resistant residual glass phases. The development of glass ceramic is going on. The technological feasibility is still to be demonstrated. The potential gain of stability when using glass ceramics qualifies the material as an alternative nuclear waste form

  12. Nuclear waste immobilization in iron phosphate glasses

    Garcia, D.A.; Rodriguez, Diego A.; Menghini, Jorge E.; Bevilacqua, Arturo

    2007-01-01

    Iron-phosphate glasses have become important in the nuclear waste immobilization area because they have some advantages over silicate-based glasses, such as a lower processing temperature and a higher nuclear waste load without losing chemical and mechanical properties. Structure and chemical properties of iron-phosphate glasses are determined in terms of the main components, in this case, phosphate oxide along with the other oxides that are added to improve some of the characteristics of the glasses. For example, Iron oxide improves chemical durability, lead oxide lowers fusion temperature and sodium oxide reduces viscosity at high temperature. In this work a study based on the composition-property relations was made. We used different techniques to characterize a series of iron-lead-phosphate glasses with uranium and aluminium oxide as simulated nuclear waste. We used the Arquimedes method to determine the bulk density, differential temperature analysis (DTA) to determine both glass transition temperature and crystallization temperature, dilatometric analysis to calculate the linear thermal expansion coefficient, chemical durability (MCC-1 test) and X-ray diffraction (XRD). We also applied some theoretic models to calculate activation energies associated with the glass transition temperature and crystallization processes. (author)

  13. Dynamics and thermodynamics of polymer glasses.

    Cangialosi, D

    2014-04-16

    The fate of matter when decreasing the temperature at constant pressure is that of passing from gas to liquid and, subsequently, from liquid to crystal. However, a class of materials can exist in an amorphous phase below the melting temperature. On cooling such materials, a glass is formed; that is, a material with the rigidity of a solid but exhibiting no long-range order. The study of the thermodynamics and dynamics of glass-forming systems is the subject of continuous research. Within the wide variety of glass formers, an important sub-class is represented by glass forming polymers. The presence of chain connectivity and, in some cases, conformational disorder are unfavourable factors from the point of view of crystallization. Furthermore, many of them, such as amorphous thermoplastics, thermosets and rubbers, are widely employed in many applications. In this review, the peculiarities of the thermodynamics and dynamics of glass-forming polymers are discussed, with particular emphasis on those topics currently the subject of debate. In particular, the following aspects will be reviewed in the present work: (i) the connection between the pronounced slowing down of glassy dynamics on cooling towards the glass transition temperature (Tg) and the thermodynamics; and, (ii) the fate of the dynamics and thermodynamics below Tg. Both aspects are reviewed in light of the possible presence of a singularity at a finite temperature with diverging relaxation time and zero configurational entropy. In this context, the specificity of glass-forming polymers is emphasized.

  14. Heavy metal oxide glasses as gamma rays shielding material

    Kaur, Preet; Singh, Devinder; Singh, Tejbir

    2016-01-01

    The gamma rays shielding parameters for heavy metal oxide glasses and concrete samples are comparable. However, the transparent nature of glasses provides additional feature to visualize inside the shielding material. Hence, different researchers had contributed in computing/measuring different shielding parameters for different configurations of heavy metal oxide glass systems. In the present work, a detailed study on different heavy metal (_5_6Ba, _6_4Gd, _8_2Pb, _8_3Bi) oxide glasses has been presented on the basis of different gamma rays shielding parameters as reported by different researchers in the recent years. It has been observed that among the selected heavy metal oxide glass systems, Bismuth based glasses provide better gamma rays shielding. Hence, Bismuth based glasses can be better substitute to concrete walls at nuclear reactor sites and nuclear labs.

  15. Heavy metal oxide glasses as gamma rays shielding material

    Kaur, Preet; Singh, Devinder; Singh, Tejbir, E-mail: dr.tejbir@gmail.com

    2016-10-15

    The gamma rays shielding parameters for heavy metal oxide glasses and concrete samples are comparable. However, the transparent nature of glasses provides additional feature to visualize inside the shielding material. Hence, different researchers had contributed in computing/measuring different shielding parameters for different configurations of heavy metal oxide glass systems. In the present work, a detailed study on different heavy metal ({sub 56}Ba, {sub 64}Gd, {sub 82}Pb, {sub 83}Bi) oxide glasses has been presented on the basis of different gamma rays shielding parameters as reported by different researchers in the recent years. It has been observed that among the selected heavy metal oxide glass systems, Bismuth based glasses provide better gamma rays shielding. Hence, Bismuth based glasses can be better substitute to concrete walls at nuclear reactor sites and nuclear labs.

  16. Fiber fuse behavior in kW-level continuous-wave double-clad field laser

    Sun Jun-Yi; Xiao Qi-Rong; Li Dan; Wang Xue-Jiao; Zhang Hai-Tao; Gong Ma-Li; Yan Ping

    2016-01-01

    In this study, original experimental data for fiber fuse in kW-level continuous-wave (CW) high power double-clad fiber (DCF) laser are reported. The propagating velocity of the fuse is 9.68 m/s in a 3.1-kW Yb-doped DCF laser. Three other cases in Yb-doped DCF are also observed. We think that the ignition of fiber fuse is caused by thermal mechanism, and the formation of bullet-shaped tracks is attributed to the optical discharge and temperature gradient. The inducements of initial fuse and formation of bullet-shaped voids are analyzed. This investigation of fiber fuse helps better understand the fiber fuse behavior, in order to avoid the catastrophic destruction caused by fiber fuse in high power fiber laser. (paper)

  17. Creating large second-order optical nonlinearity in optical waveguides written by femtosecond laser pulses in boro-aluminosilicate glass

    An, Hong-Lin; Arriola, Alexander; Gross, Simon; Fuerbach, Alexander; Withford, Michael J.; Fleming, Simon

    2014-01-01

    The thermal poling technique was applied to optical waveguides embedded in a commercial boro-aluminosilicate glass, resulting in high levels of induced second-order optical nonlinearity. The waveguides were fabricated using the femtosecond laser direct-write technique, and thermally poled samples were characterized with second harmonic optical microscopy to reveal the distribution profile of the induced nonlinearity. It was found that, in contrast to fused silica, the presence of waveguides in boro-aluminosilicate glass led to an enhancement of the creation of the second-order nonlinearity, which is larger in the laser written waveguiding regions when compared to the un-modified substrate. The magnitude of the nonlinear coefficient d33 achieved in the core of the laser-written waveguides, up to 0.2 pm/V, was comparable to that in thermally poled fused silica, enabling the realization of compact integrated electro-optic devices in boro-aluminosilicate glasses.

  18. Evaluation of Structural Cellular Glass

    Adams, M. A.; Zwissler, J. G.

    1984-01-01

    Preliminary design information presented. First report discusses state of structural-cellular-glass programs as of June 1979. Second report gives further details of program to develop improved cellular glasses and to characterize properties of glasses and commercially available materials.

  19. Finite element analysis of stresses in Berkovich, Vickers and Knoop indentation for densifying and non-densifying glasses

    Chen, Kanghua

    2002-08-01

    A constitutive law for fused silica accounting for its permanent densification under large compressive stresses is presented. The implementation of the constitutive equations in the general-purpose finite element code ABAQUS via user subroutine is proposed and carefully verified. The three-dimensional indentation mechanics under Berkovich, Vickers and Knoop indenters is extensively investigated based on the proposed constitutive relation. The results of stress distribution and plastic zone for both densifying and non-densifying optical glasses are systematically compared. These numerical results are in good agreement with the experimental observations of optical manufacturing. That is, fused silica shows lower material removal rate, smaller surface roughness and subsurface damage in contrast to non-densifying optical glasses under the same grinding condition. Material densification of fused silica is thoroughly studied through numerical simulations of indentation mechanics. The exact amount of densification and shear strain of fused silica under Berkovich indentation is calculated to show the deformation mechanism of glass materials under three-dimensional indentations. The surface profiles show the material "pile-up" around the indenter tip for non-densifying glasses and "sink-in" for fused silica after the indentation load is removed. An important inverse problem is studied: estimation of abrasive size and indentation load through the examination of residual indentation footprints. A series of 2D axisymmetric spherical indentation simulations generate a wide range of relationships among the indentation load, indenter size, residual indentation depth and size of residual indentation zone for the five selected brittle materials: glass fused silica (FS), BK7, semiconductor Si, laser glass LHG8, and optical crystal CaF2.. The application of the inverse problem is verified by the good agreement between the estimated abrasive size and the actual abrasive size found

  20. Electric glass capturing markets

    Wikman, K.; Wikstroem, T.

    1996-11-01

    Electric glass has found its place on the construction market. In public buildings, electrically heatable windows are becoming the leading option for large glass walls. Studies on detached houses, both new and renovated, show that floor heating combined with electrically heatable windowpanes is the best choice with respect to resident`s comfort. (orig.)

  1. Radioresistance of inorganic glasses

    Vorob'ev, A.A.; Zavadovskaya, E.K.; Fedorov, B.V.; Starodubtsev, V.A.

    1977-01-01

    Regularities are considered in the variation of properties of glass due to irradiations. On the basis of previous theoretical statements and experimental investigations, it is inferred that the irradiation resistance of glasses of the same type, synthesis conditions, content of impurities and amount of imperfections, is a function of the ''element-oxygen'' bond energy. The irradiation resistance depends on the number and the nature of glass structure imperfections. The averaged level of bonding forces is indicative of the glass formation temperature; the imperfections in glasses are formed in structure elements whose amount predominates as compared to the others. Electric charges which accumulate on the crack surface tend to increase its size, thus lessening even further the electric strength of the dielectric. The greater the irradiation time, the greater the number of irradiation imperfections causing a drop in the electric strength of glass. When choosing a glass for service in a radiation field, it is necessary to select those of a highest temperature of glass formation and with a least amount of imperfections

  2. Nucleation in ZBLAN glasses

    de Leede, G.L.A.; Waal, de H.

    1989-01-01

    Nucleation rates were detd. in a ZrF4-BaF2-NaF-LaF3-AlF3 glass (ZBLAN) using an optical method. The results were compared with a similar glass having a slightly different compn. The difference in the nucleation rate is explained by classical nucleation theory using calcd. free-energy differences

  3. Fused filament 3D printing of ionic polymer-metal composites for soft robotics

    Carrico, James D.; Leang, Kam K.

    2017-04-01

    Additive manufacturing techniques are used to create three-dimensional structures with complex shapes and features from polymer and/or metal materials. For example, fused filament three-dimensional (3D) printing utilizes non-electroactive polymers, such as acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA), to build structures and components in a layer-by-layer fashion for a wide variety of applications. Presented here is a summary of recent work on a fused filament 3D-printing technique to create 3D ionic polymer-metal composite (IPMC) structures for applications in soft robotics. The 3D printing technique overcomes some of the limitations of existing manufacturing processes for creating IPMCs, such as limited shapes and sizes and time-consuming manufacturing steps. In the process described, first a precursor material (non-acid Nafion precursor resin) is extruded into a thermoplastic filament for 3D printing. Then, a custom-designed 3D printer is described that utilizes the precursor filament to manufacture custom-shaped structures. Finally, the 3D-printed samples are functionalized by hydrolyzing them in an aqueous solution of potassium hydroxide and dimethyl sulfoxide, followed by application of platinum electrodes. Presented are example 3D-printed single and multi-degree-of-freedom IPMC actuators and characterization results, as well as example soft-robotic devices to demonstrate the potential of this process.

  4. Fused Smart Sensor Network for Multi-Axis Forward Kinematics Estimation in Industrial Robots

    Rene de Jesus Romero-Troncoso

    2011-04-01

    Full Text Available Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint’s angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot.

  5. Incident laser modulation of a repaired damage site with a rim in fused silica rear subsurface

    Li Li; Xiang Xia; Zu Xiao-Tao; Yuan Xiao-Dong; He Shao-Bo; Jiang Xiao-Dong; Zheng Wan-Guo

    2012-01-01

    Local CO2 laser treatment has proved to be an effective method to prevent the 351-nm laser-induced damage sitesin a fused silica surface from exponentially growing,which is responsible for limiting the lifetime of optics in high fluence laser systems.However,the CO2 laser induced ablation crater is often surrounded by a raised rim at the edge,which can also result in the intensification of transmitted ultraviolet light that may damage the downstream optics.In this work,the three-dimensional finite-difference time-domain method is developed to simulate the distribution of electrical field intensity in the vicinity of the CO2 laser mitigated damage site located in the exit subsurface of fused silica.The simulated results show that the repaired damage sites with raised rims cause more notable modulation to the incident laser than those without rims.Specifically,we present a theoretical model of using dimpled patterning to control the rim structure around the edge of repaired damage sites to avoid damage to downstream optics.The calculated results accord well with previous experimental results and the underlying physical mechanism is analysed in detail.

  6. Thermodynamic properties of thulium and ytterbium in fused NaCl-KCl-CsCl eutectic

    Novoselova, A., E-mail: A.Novoselova@ihte.uran.ru [Institute of High-Temperature Electrochemistry, Ural Division, Russian Academy of Science, S. Kovalevskaya Str., 22, Ekaterinburg 620990 (Russian Federation); Smolenski, V. [Institute of High-Temperature Electrochemistry, Ural Division, Russian Academy of Science, S. Kovalevskaya Str., 22, Ekaterinburg 620990 (Russian Federation)

    2011-07-15

    Research highlights: > Tm and Yb chloride compounds as fission products. > The investigation of electrochemical properties of lanthanides. > Determination of the apparent standard redox potentials of the couple Ln(III)/Ln(II) in fused NaCl-KCl-CsCl eutectic at (823 to 973) K. > The calculation of the basic thermodynamic properties of redox reaction in molten salt. - Abstract: This work presents the results of a study of the Tm{sup 3+}/Tm{sup 2+} and Yb{sup 3+}/Yb{sup 2+} couple redox potentials vs. Cl{sup -}/Cl{sub 2} reference electrode at the temperature range (823 to 973) K in fused NaCl-KCl-CsCl eutectic by direct potentiometric method. Initial concentrations of TmCl{sub 3} and YbCl{sub 3} in solvents did not exceed 5.0 mol%. Basic thermodynamic properties of the reactions TmCl{sub 2(l)} + 1/2 Cl{sub 2(g)} {r_reversible} TmCl{sub 3(l)} and YbCl{sub 2(l)} + 1/2 Cl{sub 2(g)} {r_reversible} YbCl{sub 3(l)} were calculated using the temperature dependencies of apparent standard potentials of the couples E{sub Tm{sup 3+}/Tm{sup 2+*}} and E{sub Yb{sup 3+}/Yb{sup 2+*}}.

  7. FUSE SPECTROSCOPIC ANALYSIS OF THE SLOWEST SYMBIOTIC NOVA AG PEG DURING QUIESCENCE

    Sion, Edward Michael; Godon, Patrick; Katynski, Marcus; Mikolajewska, Joanna

    2018-01-01

    We present a far ultraviolet spectroscopic analysis of the slowest known symbiotic nova AG Peg (MIII giant + hot white dwarf; P_orb = 818.4 days) which underwent a nova explosion in 1850 followed by a very slow decline that did not end until ~ 1996, marking the beginning of queiscence. Eight years of quiescence ended in June 2015, when AG Peg exhibited a Z And-type outburst with an optical amplitude of ~ 3 magnitudes. We have carried out accretion disk and WD photosphere synthetic spectral modeling of a FUSE spectrum (Froning et al. 2014) obtained on June 5.618, 2003 during the quiescence intervai ~ 12 years before the 2015 outburst. The spectrum is heavily affected by ISM absorption as well as strong broad emission lines. We de-reddened the FUSE fluxes with E(B-V) = 0.10 which is the maximum galactic reddening in the direction of AG Peg and took the distance of 800 pc (Kenyon et al. 1993) but used a range of white dwarf masses, surface temperatures and disk inclination angles. Our analysis also incororates archival HST FOS spectra obtained in 1996 at the onset of quiescence, 147 years after the 1850 nova explosion. The results of our analysis are presented and implications are discussed.This work is supported in part by NASA ADP grant NNX17AF36G to Villanova University.

  8. Fused smart sensor network for multi-axis forward kinematics estimation in industrial robots.

    Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; Romero-Troncoso, Rene de Jesus

    2011-01-01

    Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint's angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot.

  9. Explosively formed fuse opening switches for use in flux-compression generator circuits

    Goforth, J.H.; Marsh, S.P.

    1990-01-01

    Explosive-driven magnetic flux compression generators (explosive generators) provide for the generation of large amounts of energy compactly stored in a magnetic field. Opening switches for use in explosive generator circuits allow the energy to be used for applications requiring higher power than can be developed by the generators themselves. The authors have developed a type of opening switch that they describe as an explosively formed fuse (EEF). These switches are well suited to explosive generator circuits and provide a considerable enhancement of explosive pulsed-power capability. The authors first experiments with explosively formed fuses occurred while attempting to utilize the enhanced pressure developed in the high-pressure interaction between two detonation fronts. In these tests they attempted to use the interaction to sever conducting plates along lines perpendicular to current flow. The technique worked to some extent, and to ascertain how much advantage was gained from the high-pressure interaction, they substituted an areal detonation in place of the discrete lines required to produce lines of interaction. This paper describes the authors development effort, the state of the art, and the different manifestations of their technique

  10. Nonlinear Properties of Soft Glass Waveguides

    Steffensen, Henrik

    -infrared applications and the THz applications. In the mid-infrared, it is investigated whether soft glasses are a suitable candidate for supercontinuum generation (SCG). A few commercially available fluoride fibers are tested for their zero dispersion wavelength (ZDW), a key property when determining the possibility......This thesis builds around the investigation into using soft glass materials for midinfrared and THz applications. Soft glasses is a term that cov ers a wide range of chemical compositions where many are yet to be fully investigated. The work in this thesis is separated in two parts, the mid...... of SCG in a fiber. A group of soft glasses, namely the chalcogenides, are known to display two photon absorption (TPA) which could potentially limit the SCG when this is initiated within the frequency range where this nonlinear process occur. An analytic model is presented to estimate the soliton self...

  11. Origin of Inhomogeneity in Glass Melts

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    The homogeneity of a glass plays a crucial role in many applications as the inhomogeneities can provide local changes in mechanical properties, optical properties, and thermal expansion coefficient. Homogeneity is not a single property of the glass, instead, it consists of several factors...... such as bubbles, striae, trace element concentration, undissolved species, and crystallised species. As it is not possible to address all the factors in a single study, this work focuses on one of the major factors: chemical striae. Up to now, the quantification of chemical striae in glasses, particularly......, in less transparent glasses, has been a challenge due to the lack of an applicable method. In this study, we have established a simple and accurate method for quantifying the extent of the striae, which is based on the scanning and picture processing through the Fourier transformation. By performing...

  12. Glass-Glass Transitions by Means of an Acceptor-Donor Percolating Electric-Dipole Network

    Zhang, Le; Lou, Xiaojie; Wang, Dong; Zhou, Yan; Yang, Yang; Kuball, Martin; Carpenter, Michael A.; Ren, Xiaobing

    2017-11-01

    We report the ferroelectric glass-glass transitions in KN (K+/Nb5 +) -doped BaTiO3 ferroelectric ceramics, which have been proved by x-ray diffraction profile and Raman spectra data. The formation of glass-glass transitions can be attributed to the existence of cubic (C )-tetragonal (T )-orthorhombic (O )-rhombohedral (R ) ferroelectric transitions in short-range order. These abnormal glass-glass transitions can perform very small thermal hysteresis (approximately 1.0 K ) with a large dielectric constant (approximately 3000), small remanent polarization Pr , and relative high maximum polarization Pm remaining over a wide temperature range (220-350 K) under an electrical stimulus, indicating the potential applications in dielectric recoverable energy-storage devices with high thermal reliability. Further phase field simulations suggest that these glass-glass transitions are induced by the formation of a percolating electric defect-dipole network (PEDN). This proper PEDN breaks the long-range ordered ferroelectric domain pattern and results in the local phase transitions at the nanoscale. Our work may further stimulate the fundamental physical theory and accelerate the development of dielectric energy-storing devices.

  13. Mechanical relaxation in glasses

    Hiki, Y.

    2004-01-01

    The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other

  14. Polymorphism in glasses

    Landa, L.M.; Nikolaeva, I.N.

    1979-01-01

    To defect phase interfaces and spasmodic properties change, the inhomogeneity and the second radiation effects in quartz glass, metamict phase and intermediate states have been investigated. When irradiating with fast neutrons the transformation of quartz glass - metamict phase occurs completely. The transformation is completed at 2x10 20 part./cm 2 dose. Thermal treatment not only increases the number of inhomogeneities but also results in increasing quartz glass density. Annealing transforms the metamict phase into common quartz glass at 1400 K. The fact, that thermal treatment results in the complete transformation of metamict phase into quartz glass, and the inverse transformation occurs only partially, is quite regular, as the metamict phase has a lesser entropy and is a more ordered state. It is shown that different amorphous phases of a chemical composition have different structures and properties, that there are interfaces between them, and the transformation from one state to another in microvolumes is realized spasmodically and requires expenditure of energy

  15. Glass leaching performance

    Chick, L.A.; Turcotte, R.P.

    1983-05-01

    Current understanding of the leaching performance of high-level nuclear waste (HLW) glass is summarized. The empirical model of waste glass leaching behavior developed shows that at high water flow rates the glass leach rate is kinetically limited to a maximum value. At intermediate water flow rates, leaching is limited by the solution concentration of silica and decreases with decreasing water flow rates. Release of soluble elements is controlled by silica dissolution because silica forms the binding network of the glass. At low water flow rates, mass loss rates reach values controlled by formation rates of alteration minerals, or by diffusion of dissolution products through essentially stagnant water. The parameters reviewed with respect to their quantifiable influence on leaching behavior include temperature, pH, leachant composition, glass composition, thermal history, and radiation. Of these, temperature is most important since the rate of mass loss approximately doubles with each 10 0 C increase in dilute solutions. The pH has small effects within the 4 to 10 range. The chemical composition of the leachant is most important with regard to its influence on alteration product formation. Glass composition exhibits the largest effects at high flow rates where improved glasses leach from ten to thirty times slower than glass 76 to 68. The effects of the thermal history (devitrification) of the glass are not likely to be significant. Radiation effects are important primarily in that radiolysis can potentially drive pH values to less than 4. Radiation damage to the glass causes insignificant changes in leaching performance

  16. Glass formability in medium-sized molecular systems/pharmaceuticals. I. Thermodynamics vs. kinetics

    Tu, Wenkang; Li, Xiangqian; Chen, Zeming; Liu, Ying Dan; Wang, Li-Min, E-mail: simone.capaccioli@unipi.it, E-mail: Limin-Wang@ysu.edu.cn [State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Labardi, Massimiliano [CNR-IPCF, Sede Secondaria Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy); Capaccioli, Simone, E-mail: simone.capaccioli@unipi.it, E-mail: Limin-Wang@ysu.edu.cn [CNR-IPCF, Sede Secondaria Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy); Department of Physics, Pisa University, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Paluch, M. [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)

    2016-05-07

    Scrutinizing critical thermodynamic and kinetic factors for glass formation and the glass stability of materials would benefit the screening of the glass formers for the industry of glassy materials. The present work aims at elucidating the factors that contribute to the glass formation by investigating medium-sized molecules of pharmaceuticals. Glass transition related thermodynamics and kinetics are performed on the pharmaceuticals using calorimetric, dielectric, and viscosity measurements. The characteristic thermodynamic and kinetic parameters of glass transition are found to reproduce the relations established for small-molecule glass formers. The systematic comparison of the thermodynamic and kinetic contributions to glass formation reveals that the melting-point viscosity is the crucial quantity for the glass formation. Of more interest is the finding of a rough correlation between the melting-point viscosity and the entropy of fusion normalized by the number of beads of the pharmaceuticals, suggesting the thermodynamics can partly manifest its contribution to glass formation via kinetics.

  17. Glass formability in medium-sized molecular systems/pharmaceuticals. I. Thermodynamics vs. kinetics.

    Tu, Wenkang; Li, Xiangqian; Chen, Zeming; Liu, Ying Dan; Labardi, Massimiliano; Capaccioli, Simone; Paluch, M; Wang, Li-Min

    2016-05-07

    Scrutinizing critical thermodynamic and kinetic factors for glass formation and the glass stability of materials would benefit the screening of the glass formers for the industry of glassy materials. The present work aims at elucidating the factors that contribute to the glass formation by investigating medium-sized molecules of pharmaceuticals. Glass transition related thermodynamics and kinetics are performed on the pharmaceuticals using calorimetric, dielectric, and viscosity measurements. The characteristic thermodynamic and kinetic parameters of glass transition are found to reproduce the relations established for small-molecule glass formers. The systematic comparison of the thermodynamic and kinetic contributions to glass formation reveals that the melting-point viscosity is the crucial quantity for the glass formation. Of more interest is the finding of a rough correlation between the melting-point viscosity and the entropy of fusion normalized by the number of beads of the pharmaceuticals, suggesting the thermodynamics can partly manifest its contribution to glass formation via kinetics.

  18. Tree Classification with Fused Mobile Laser Scanning and Hyperspectral Data

    Puttonen, Eetu; Jaakkola, Anttoni; Litkey, Paula; Hyyppä, Juha

    2011-01-01

    Mobile Laser Scanning data were collected simultaneously with hyperspectral data using the Finnish Geodetic Institute Sensei system. The data were tested for tree species classification. The test area was an urban garden in the City of Espoo, Finland. Point clouds representing 168 individual tree specimens of 23 tree species were determined manually. The classification of the trees was done using first only the spatial data from point clouds, then with only the spectral data obtained with a spectrometer, and finally with the combined spatial and hyperspectral data from both sensors. Two classification tests were performed: the separation of coniferous and deciduous trees, and the identification of individual tree species. All determined tree specimens were used in distinguishing coniferous and deciduous trees. A subset of 133 trees and 10 tree species was used in the tree species classification. The best classification results for the fused data were 95.8% for the separation of the coniferous and deciduous classes. The best overall tree species classification succeeded with 83.5% accuracy for the best tested fused data feature combination. The respective results for paired structural features derived from the laser point cloud were 90.5% for the separation of the coniferous and deciduous classes and 65.4% for the species classification. Classification accuracies with paired hyperspectral reflectance value data were 90.5% for the separation of coniferous and deciduous classes and 62.4% for different species. The results are among the first of their kind and they show that mobile collected fused data outperformed single-sensor data in both classification tests and by a significant margin. PMID:22163894

  19. Diopside-Fluorapatite-Wollastonite Based Bioactive Glasses and Glass-ceramics =

    Kansal, Ishu

    Bioactive glasses and glass-ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaO-MgO-P2O5-SiO2-F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) - fluorapatite (9CaO•3P2O5•CaF2) - wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside - fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium

  20. Nanodrilling of fused silica using nanosecond laser radiation

    Lorenz, P., E-mail: pierre.lorenz@iom-leipzig.de; Zajadacz, J.; Bayer, L.; Ehrhardt, M.; Zimmer, K.

    2015-10-01

    Graphical abstract: - Highlights: • Low-fluence irradiation of 10 nm Mo on SiO{sub 2} results in the formation of Mo droplets. • High-fluence irradiation of droplets results in the formation of holes in the SiO{sub 2}. • The process allows the formation of randomly distributed and periodic holes. • The randomly distributed hole density ρ{sub h} depends on the fluence (ρ{sub h} ≤ 1.3 μm{sup −2}). • The interaction of the laser beam with Mo/SiO{sub 2} was simulated by FEM. - Abstract: The fast laser drilling of dielectric surfaces with hole diameters in the sub-μm range and a high aspect ratio is a challenge for laser methods. In this study, a novel laser structuring method for the production of randomly and periodically distributed holes in a fused silica surface will be presented using a self-assembling process. A fused silica surface was covered with a 10 nm thick magnetron-sputtered molybdenum film. The metal film was irradiated by a KrF excimer laser (wavelength λ = 248 nm, pulse duration Δt{sub p} = 25 ns) with low laser fluences (Φ < 1 J/cm{sup 2}) and the laser-induced heating resulting in a melting of the metal film and finally in a self-assembled formation of randomly distributed metal droplets due to the surface tension of the metal liquid phase using a top hat beam profile. Furthermore, the usage of a periodically modulated laser beam profile allows the fabrication of periodically distributed droplet pattern. The multi-pulse irradiation of the laser-generated metal droplets with higher laser fluences results in a stepwise evaporation of the metal and in a partial evaporation of the fused silica near the metal droplets. Finally, the laser-induced stepwise evaporation process results in a formation of cone-like holes in the fused silica surface where the resultant holes are dependent on the size of the generated metal droplets and on the laser parameters. The “drilling” process allows the fabrication of holes with a depth up to 1

  1. Endodontic treatment of a fused tooth. Report of a case.

    Gallottini, L; Barbato Bellatini, R C; Migliau, G

    2007-01-01

    Dental fusion, a rare developmental anomaly present in 0.2% of the general population, consists of the union of two teeth originating from two different tooth germs. The irregular coronal morphology and the complex endodontic anatomy, characterized by the partial or total union of the pulp chambers, together with the peculiarity of the root canal systems, make diagnosis, therapy and rehabilitation difficult. The authors describe the endodontic treatment of a permanent lower second molar fused with a third molar and having four root canals.

  2. Textiles: Some technocal information and data VI: fusing

    Cawood, MP

    1980-09-01

    Full Text Available only one month is reauired to train an oDerator for fusing whereas 4 - 6 monthsare - - -- - necessary f i r sewing machine bperatod. 3. Higher production rates and a reduction in manufacturing costs'-7, 11. 14-11. It has been stated that although... less thanoncea day. Funhermore, confusionsG~ existed with respect to temperature (i e glue line or surface) and nressure laress or air line) s~ecifications and a wide ranee of temperatures &ere deingempibYedfor thesakeiype of adhesive. ~ ~ ~ a r e n...

  3. Stimulated resonant scattering at stressed fused silica surface

    Bouchut, Philippe; Reymermier, Maryse

    2015-01-01

    The radiative emission in CO 2 laser heated stressed fused silica is radically modified when gold microspheres are on the surface. At high heating rates, the emission dynamics changes from thermoluminescence to stimulated resonant scattering with an emission rate that is increased tenfold and the near infrared (NIR) spectrum is red-shifted. We show that the dynamic tensile stress that rises in heated silica is coupled with a fluctuating electromagnetic field that enables electromagnetic friction between moving OH emitters from silica bulk and NIR resonant scatterers at the silica surface. (paper)

  4. Cerium-doped scintillating fused-silica fibers

    Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P.; Faulkner, J.; Kunori, S.

    2018-04-01

    We report on a set of measurements made on (scintillating) cerium-doped fused-silica fibers using high-energy particle beams. These fibers were uniformly embedded in a copper absorber in order to utilize electromagnetic showers as a source of charged particles for generating signals. This new type of cerium-doped fiber potentially offers myriad new applications in calorimeters in high-energy physics, tracking systems, and beam monitoring detectors for future applications. The light yield, pulse shape, attenuation length, and light propagation speeds are given and discussed. Possible future applications are also explored.

  5. Collaborative Filtering Fusing Label Features Based on SDAE

    Huo, Huan; Liu, Xiufeng; Zheng, Deyuan

    2017-01-01

    problem, auxiliary information such as labels are utilized. Another approach of recommendation system is content-based model which can’t be directly integrated with CF-based model due to its inherent characteristics. Considering that deep learning algorithms are capable of extracting deep latent features......, this paper applies Stack Denoising Auto Encoder (SDAE) to content-based model and proposes LCF(Deep Learning for Collaborative Filtering) algorithm by combing CF-based model which fuses label features. Experiments on real-world data sets show that DLCF can largely overcome the sparsity problem...... and significantly improves the state of art approaches....

  6. Glass material oxidation and dissolution system: Converting miscellaneous fissile materials to glass

    Forsberg, C.W.; Ferrada, J.J.

    1996-01-01

    The cold war and the development of nuclear energy have resulted in significant inventories of miscellaneous fissile materials (MFMs). MFMs include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel (SNF), (3) certain hot cell wastes, and (4) many one-of-a-kind materials. Major concerns associated with the long-term management of these materials include: safeguards and nonproliferation issues; health, environment, and safety concerns. waste management requirements; and high storage costs. These issues can be addressed by converting the MFMs to glass for secure, long-term storage or repository disposal; however, conventional glass-making processes require oxide-like feed materials. Converting MFMs to oxide-like materials with subsequent vitrification is a complex and expensive process. A new vitrification process has been invented, the Glass Material Oxidation and Dissolution System (GMODS), which directly converts metals, ceramics, and amorphous solids to glass; oxidizes organics with the residue converted to glass; and converts chlorides to borosilicate glass and a secondary sodium chloride (NaCl) stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium, Zircaloy, stainless steel, multiple oxides, and other materials to glass. However, significant work is required to develop GMODS further for applications at an industrial scale. If implemented, GMODS will provide a new approach to manage these materials

  7. Seizing the Future: How Ohio's Career-Technical Education Programs Fuse Academic Rigor and Real-World Experiences to Prepare Students for College and Careers

    Guarino, Heidi; Yoder, Shaun

    2015-01-01

    "Seizing the Future: How Ohio's Career and Technical Education Programs Fuse Academic Rigor and Real-World Experiences to Prepare Students for College and Work," demonstrates Ohio's progress in developing strong policies for career and technical education (CTE) programs to promote rigor, including college- and career-ready graduation…

  8. Glass as a matrix for SRP high-level defense waste

    Wiley, J.R.; Bibler, N.E.; Dukes, M.D.; Plodinec, M.J.

    1980-01-01

    Work done at Savannah River Laboratory and elsewhere that has led to development of glass as a candidate for solidifying Savannah River Plant waste is summarized. Areas of development described are glass formulation and fabrication, and leaching and radiation effects

  9. Entropy Crisis, Defects and the Role of Competition in Monatomic Glass Formers

    Gujrati, P. D.

    2007-01-01

    We establish the existence of an entropy crisis in monatomic glass formers. The work finally shows that the entropy crisis is ubiqutous in all supercooled liquids. We also study the roles of defects and energetic competition on the ideal glass.

  10. Photoluminescence and ESR of glasses of the Ge-S system

    Cernoskova, E.; Cernosek, Z.; Holubova, J.

    1999-01-01

    In this work the chalcogenide glasses were studied by photoluminescence, electron spin resonance (ESR) as well as optically induce ESR (LESR) methods. Dependence of energy of luminescence and Stokes shift on glass composition was determined

  11. Physical, thermal and structural properties of Calcium Borotellurite glass system

    Paz, E.C. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Açailândia, MA (Brazil); Dias, J.D.M. [CCSST – UFMA, Imperatriz, MA (Brazil); Melo, G.H.A. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Imperatriz, MA (Brazil); Lodi, T.A. [CCSST – UFMA, Imperatriz, MA (Brazil); Carvalho, J.O. [CCSST – UFMA, Imperatriz, MA (Brazil); IFTO, Araguaína, TO (Brazil); Façanha Filho, P.F.; Barboza, M.J.; Pedrochi, F. [CCSST – UFMA, Imperatriz, MA (Brazil); Steimacher, A., E-mail: steimacher@hotmail.com [CCSST – UFMA, Imperatriz, MA (Brazil)

    2016-08-01

    In this work the glass forming ability in Calcium Borotellurite (CBTx) glass system was studied. Six glass samples were prepared by melt-quenching technique and the obtained samples are transparent, lightly yellowish, with no visible crystallites. The structural studies were carried out by using XRD, FTIR, Raman Spectra, density measurements, and the thermal analysis by using DTA and specific heat. The results are discussed in terms of tellurium oxide content and their changes in structural and thermal properties of glass samples. The addition of TeO{sub 2} increased the density and thermal stability values and decreased glass transition temperature (Tg). Raman and FTIR spectroscopies indicated that the network structure of CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. CBTx system showed good glass formation ability and good thermal stability, which make CBTx glasses suitable for manufacturing process and a candidate for rare-earth doping for several optical applications. - Highlights: • Glass forming ability on Calcium Borotellurite system was studied. • The glass structure was investigated by XRD, Raman and FTIR. • The glass network structure of the CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. • The density and thermal stability of the CBTx glass decreases with TeO{sub 2} while the Cp and the Tg decreases. • The obtained CBTx glasses are suitable for manufacturing process and rare-earth doping for several optical applications.

  12. Effect of different glasses in glass bonded zeolite

    Lewis, M.A.; Ackerman, J.P.; Verma, S.

    1995-01-01

    A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing

  13. The Influence of Cooling Rates on Paleointensity of Volcanic Glasses: an Experimental Approach on Synthetic Glass

    von Aulock, F. W.; Ferk, A.; Leonhardt, R.; Hess, K.-U.; Dingwell, D. B.

    2009-04-01

    The suitability of volcanic glass for paleointensity determinations has been proposed in many studies throughout the last years. Besides the mainly single domain magnetic remanence carriers and the pristine character of the volcanic glass, this was also reasoned by the possibility to correct paleointensity data for cooling rate dependency using relaxation geospeedometry. This method gives the cooling rate of a glass at the glass transition interval which marks the change of a ductile supercooled liquid to a brittle glass. In this study the cooling rate correction as carried out for example by Leonhardt et al. 2006 is tested on synthetic volcanic glass. In order to obtain a stable multicomponent glass with ideal magnetic properties, a natural phonolithic glass from Tenerife (Spain) was melted to avoid heterogeneity and degassing. Further it was tempered for 5 hours at 900 °C to yield a sufficient concentration of magnetic remanence carriers. To exclude nucleation or crystallisation 7 samples were then heated to about 50 °C above the glass transition temperature at around 720 °C and quenched at different rates from 0.1 to 15 K/min. After carrying out a paleointensity experiment using a modified Thellier method, which incorporated alteration, additivity and tail checks, the dependence of the thermoremance on cooling rate was investigated. Using the original cooling rates we corrected the data and obtained paleointensities of around 46 T, which is a good approximation of the ambient field of 48 T. Taking into account that the uncorrected mean paleointensity is about 57 T, this suggests that cooling rate correction is not only working, but also a necessary tool to yield the true field value. R. Leonhardt , J. Matzka, A.R.L. Nichols , D.B. Dingwell Cooling rate correction of paleointensity determination for volcanic glasses by relaxation geospeedometry; Earth and Planetary Science Letters 243 (2006) 282-292

  14. Oxynitride glasses: a review

    Garcia, A.R.; Clausell, C.; Barba, A.

    2016-07-01

    Oxynitride glasses are special types of silicates or silicoaluminates which have been the object of many studies over the last forty years. They can be prepared by means of various complex methods, leading to variable levels of nitrogen incorporation, though in all cases giving limited transparency in the visible range. More recently, a new family of oxynitride glasses incorporating fluorine has been investigated. This paper outlines the effect of composition, in particular nitrogen and fluorine content, on properties such as glass transition temperature, hardness, Young's modulus, compactness and molar volume. (Author)

  15. Orbital glass in HTSC

    Kusmartsev, F.V.

    1992-10-01

    The physical reasons why the orbital glass may exist in granular high-temperature superconductors and the existing experimental data appeared recently are discussed. The orbital glass is characterized by the coexistence of the orbital paramagnetic state with the superconducting state and occurs at small magnetic fields H c0 c1 . The transition in orbital glass arises at the critical field H c0 which is inversely proportional to the surface cross-area S of an average grain. In connection with theoretical predictions the possible experiments are proposed. (author). 10 refs

  16. Linear free energy relationships in glass corrosion

    Abrajano, T.A. Jr.; Bates, J.K.; Bohlke, J.K.

    1988-01-01

    Various theoretical models that have been proposed to correlate glass durability to their composition for a wide variety of silicate, borosilicate, and aluminosilicate glasses are examined. Comparisons are made between the predictions of these models and those of an empirical formulation extracted from existing data in the present work. The empirical approach provides independent confirmation of the relative accuracy of the silica release rate predictions of the different theoretical models in static leaching systems. Extension of the empirical approach used in this work are discussed. 23 refs., 2 figs., 1 tab

  17. Bioactive glasses and glass-ceramics

    de Aza, P. N.

    2007-04-01

    Full Text Available Since the late 1960´s, a great interest in the use of bioceramic materials for biomedical applications has been developed. In a previous paper, the authors reviewed crystalline bioceramic materials “sensus stricto”, it is to say, those ceramic materials, constituted for non-metallic inorganic compounds, crystallines and consolidates by thermal treatment of powders at high temperature. In the present review, the authors deal with those called bioactive glasses and glassceramics. Although all of them are also obtained by thermal treatment at high temperature, the first are amorphous and the second are obtained by devitrification of a glass, although the vitreous phase normally prevails on the crystalline phases. After an introduction to the concept of bioactive materials, a short historical review of the bioactive glasses development is made. Its preparation, reactivity in physiological media, mechanism of bonding to living tissues and mechanical strength of the bone-implant interface is also reported. Next, the concept of glass-ceramic and the way of its preparation are exposed. The composition, physicochemical properties and biological behaviour of the principal types of bioactive glasses and glass-ceramic materials: Bioglass®, Ceravital®, Cerabone®, Ilmaplant® and Bioverit® are also reviewed. Finally, a short review on the bioactive-glass coatings and bioactive-composites and most common uses of bioactive-glasses and glass-ceramics are carried out too.

    Desde finales de los años sesenta, se ha despertado un gran interés por el uso de los materiales biocerámicos para aplicaciones biomédicas. En un trabajo previo, los autores hicieron una revisión de los denominados materiales biocerámicos cristalinos en sentido estricto, es decir, de aquellos materiales, constituidos por compuestos inorgánicos no metálicos, cristalinos y consolidados mediante tratamientos térmicos a altas temperaturas. En el presente trabajo, los autores

  18. Planning the FUSE Mission Using the SOVA Algorithm

    Lanzi, James; Heatwole, Scott; Ward, Philip R.; Civeit, Thomas; Calvani, Humberto; Kruk, Jeffrey W.; Suchkov, Anatoly

    2011-01-01

    Three documents discuss the Sustainable Objective Valuation and Attainability (SOVA) algorithm and software as used to plan tasks (principally, scientific observations and associated maneuvers) for the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. SOVA is a means of managing risk in a complex system, based on a concept of computing the expected return value of a candidate ordered set of tasks as a product of pre-assigned task values and assessments of attainability made against qualitatively defined strategic objectives. For the FUSE mission, SOVA autonomously assembles a week-long schedule of target observations and associated maneuvers so as to maximize the expected scientific return value while keeping the satellite stable, managing the angular momentum of spacecraft attitude- control reaction wheels, and striving for other strategic objectives. A six-degree-of-freedom model of the spacecraft is used in simulating the tasks, and the attainability of a task is calculated at each step by use of strategic objectives as defined by use of fuzzy inference systems. SOVA utilizes a variant of a graph-search algorithm known as the A* search algorithm to assemble the tasks into a week-long target schedule, using the expected scientific return value to guide the search.

  19. Laser induced damage and fracture in fused silica vacuum windows

    Campbell, J.H.; Hurst, P.A.; Heggins, D.D.; Steele, W.A.; Bumpas, S.E.

    1996-11-01

    Laser-induced damage, that initiates catastrophic fracture, has been observed in large (≤61 cm dia) fused silica lenses that also serve as vacuum barriers in Nova and Beamlet lasers. If the elastic stored energy in the lens is high enough, the lens will fracture into many pieces (implosion). Three parameters control the degree of fracture in the vacuum barrier window: elastic stored energy (tensile stress), ratio of window thickness to flaw depth, and secondary crack propagation. Fracture experiments were conducted on 15-cm dia fused silica windows that contain surface flaws caused by laser damage. Results, combined with window failure data on Beamlet and Nova, were used to develop design criteria for a ''fail-safe'' lens (that may catastrophically fracture but not implode). Specifically, the window must be made thick enough so that the peak tensile stress is less than 500 psi (3.4 MPa) and the thickness/critical flaw size is less than 6. The air leak through the window fracture and into the vacuum must be rapid enough to reduce the load on the window before secondary crack growth occurs. Finite element stress calculations of a window before and immediately following fracture into two pieces show that the elastic stored energy is redistributed if the fragments ''lock'' in place and thereby bridge the opening. In such cases, the peak stresses at the flaw site can increase, leading to further (i.e. secondary) crack growth

  20. Ball driven type MEMS SAD for artillery fuse

    Seok, Jin Oh; Jeong, Ji-hun; Eom, Junseong; Lee, Seung S; Lee, Chun Jae; Ryu, Sung Moon; Oh, Jong Soo

    2017-01-01

    The SAD (safety and arming device) is an indispensable fuse component that ensures safe and reliable performance during the use of ammunition. Because the application of electronic devices for smart munitions is increasing, miniaturization of the SAD has become one of the key issues for next-generation artillery fuses. Based on MEMS technology, various types of miniaturized SADs have been proposed and fabricated. However, none of them have been reported to have been used in actual munitions due to their lack of high impact endurance and complicated explosive train arrangements. In this research, a new MEMS SAD using a ball driven mechanism, is successfully demonstrated based on a UV LIGA (lithography, electroplating and molding) process. Unlike other MEMS SADs, both high impact endurance and simple structure were achieved by using a ball driven mechanism. The simple structural design also simplified the fabrication process and increased the processing yield. The ball driven type MEMS SAD performed successfully under the desired safe and arming conditions of a spin test and showed fine agreement with the FEM simulation result, conducted prior to its fabrication. A field test was also performed with a grenade launcher to evaluate the SAD performance in the firing environment. All 30 of the grenade samples equipped with the proposed MEMS SAD operated successfully under the high-G setback condition. (paper)

  1. Ball driven type MEMS SAD for artillery fuse

    Seok, Jin Oh; Jeong, Ji-hun; Eom, Junseong; Lee, Seung S.; Lee, Chun Jae; Ryu, Sung Moon; Oh, Jong Soo

    2017-01-01

    The SAD (safety and arming device) is an indispensable fuse component that ensures safe and reliable performance during the use of ammunition. Because the application of electronic devices for smart munitions is increasing, miniaturization of the SAD has become one of the key issues for next-generation artillery fuses. Based on MEMS technology, various types of miniaturized SADs have been proposed and fabricated. However, none of them have been reported to have been used in actual munitions due to their lack of high impact endurance and complicated explosive train arrangements. In this research, a new MEMS SAD using a ball driven mechanism, is successfully demonstrated based on a UV LIGA (lithography, electroplating and molding) process. Unlike other MEMS SADs, both high impact endurance and simple structure were achieved by using a ball driven mechanism. The simple structural design also simplified the fabrication process and increased the processing yield. The ball driven type MEMS SAD performed successfully under the desired safe and arming conditions of a spin test and showed fine agreement with the FEM simulation result, conducted prior to its fabrication. A field test was also performed with a grenade launcher to evaluate the SAD performance in the firing environment. All 30 of the grenade samples equipped with the proposed MEMS SAD operated successfully under the high-G setback condition.

  2. Quinone-fused porphyrins as contrast agents for photoacoustic imaging

    Banala, Srinivas

    2017-06-27

    Photoacoustic (PA) imaging is an emerging non-invasive diagnostic modality with many potential clinical applications in oncology, rheumatology and the cardiovascular field. For this purpose, there is a high demand for exogenous contrast agents with high absorption coefficients in the optical window for tissue imaging, i.e. the near infrared (NIR) range between 680 and 950 nm. We herein report the photoacoustic properties of quinone-fused porphyrins inserted with different transition metals as new highly promising candidates. These dyes exhibit intense NIR absorption, a lack of fluorescence emission, and PA sensitivity in concentrations below 3 nmol mL. In this context, the highest PA signal was obtained with a Zn(ii) inserted dye. Furthermore, this dye was stable in blood serum and free thiol solution and exhibited negligible cell toxicity. Additionally, the Zn(ii) probe could be detected with an up to 3.2 fold higher PA intensity compared to the clinically most commonly used PA agent, ICG. Thus, further exploration of the \\'quinone-fusing\\' approach to other chromophores may be an efficient way to generate highly potent PA agents that do not fluoresce and shift their absorption into the NIR range.

  3. Electric fuses operation, a review: 2. Arcing period

    Bussière, W

    2012-01-01

    In the electric fuse operation the arcing period follows immediately the pre-arcing period depicted in Part 1 (Part 1. Pre-arcing period). The transition between these two operation steps is not fully understood at this time. To simplify the beginning of the arcing period can be identified with the electric arc ignition i.e. with the electrodes voltage drop. The consecutive plasma is of metallic type at the beginning of the arcing period and of metallic plus silica type with varying mixture up to the end of the arcing period. The energy brought by the fault current is withdrawn by means of the interaction between the electric arc and the arc quenching material (usually silica sand) whose morphometric properties influence the properties of the plasma column: composition, thermodynamic properties and transport coefficients of the plasma column depend on the porosity (and other morphometric properties) of the filler. The fuse element erosion also known as burn-back is responsible for the lengthening of the plasma column and the variations of the electric field. The whole of these processes is depicted by means of experimental results or modellings when possible.

  4. Fabrication and Characterization of Linear and Nonlinear Photonic Devices in Fused Silica by Femtosecond Laser Writing

    Ng, Jason Clement

    Femtosecond laser processing is a flexible, three-dimensional (3D) fabrication technique used to make integrated low-loss photonic devices in fused silica. My work expanded the suite of available optical devices through the design and optimization of linear optical components such as low-loss (70-nm spectral window. My work further complemented femtosecond laser processing with the development of nonlinear device capabilities. While thermal poling is a well known process, significant challenges had restricted the development of nonlinear devices in fused silica. The laser writing process would erase the induced nonlinearity (erasing) while a written waveguide core acted as a barrier to the thermal poling process (blocking). Using second harmonic (SH) microscopy, the effectiveness of thermal poling on laser-written waveguides was systematically analyzed leading to the technique of "double poling", which effectively overcomes the two challenges of erasing and blocking. In this new process the substrate is poled before and after waveguide writing to restore the induced nonlinearity within the vicinity of the waveguide to enable effective poling for inducing a second-order nonlinearity (SON) in fused silica. A new flexible, femtosecond laser based erasure process was also developed to enable quasi-phase matching and to form arbitrarily chirped gratings. Following this result, second harmonic generation (SHG) in a quasiphase-matched (QPM) femtosecond laser written waveguide device was demonstrated. SHG in a chirped QPM structure was also demonstrated to illustrate the flexibility of the femtosecond laser writing technique. These are the first demonstration of frequency doubling in an all-femtosecond-laser-written structure. A maximum SHG conversion efficiency of 1.3 +/- 0.1x10 -11/W-cm-2 was achieved for the fundamental wavelength of 1552.8 nm with a phase-matching bandwidth of 4.4 nm for a 10.0-mm-long waveguide. For a shorter sample, an effective SON of chi(2) = 0

  5. Fabrication of Through via Holes in Ultra-Thin Fused Silica Wafers for Microwave and Millimeter-Wave Applications

    Xiao Li

    2018-03-01

    Full Text Available Through via holes in fused silica are a key infrastructure element of microwave and millimeter-wave circuits and 3D integration. In this work, etching through via holes in ultra-thin fused silica wafers using deep reactive-ion etching (DRIE and laser ablation was developed and analyzed. The experimental setup and process parameters for both methods are presented and compared. For DRIE, three types of mask materials including KMPR 1035 (Nippon Kayaku, Tokyo, Japan photoresist, amorphous silicon and chromium—with their corresponding optimized processing recipes—were tested, aiming at etching through a 100 μm fused silica wafer. From the experiments, we concluded that using chromium as the masking material is the best choice when using DRIE. However, we found that the laser ablation method with a laser pulse fluence of 2.89 J/cm2 and a pulse overlap of 91% has advantages over DRIE. The laser ablation method has a simpler process complexity, while offering a fair etching result. In particular, the sidewall profile angle is measured to be 75° to the bottom surface of the wafer, which is ideal for the subsequent metallization process. As a demonstration, a two-inch wafer with 624 via holes was processed using both technologies, and the laser ablation method showed better efficiency compared to DRIE.

  6. Fun with Singing Wine Glasses

    Boone, Christine; Galloway, Melodie; Ruiz, Michael J.

    2018-01-01

    A fun activity is presented using singing wine glasses for introductory physics students. Students tune a white wine glass and a red wine glass to as many semitones as possible by filling the glasses with the appropriate amounts of water. A smart phone app is used to measure the frequencies of equal-temperament tones. Then plots of frequency…

  7. Waste glass weathering

    Bates, J.K.; Buck, E.C.

    1994-01-01

    The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass

  8. Super ionic conductive glass

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  9. Phosphate glasses, containing nitrogen

    Lisitsyna, E.A.; Khalilev, V.D.; Koryavin, A.A.; Goncharova, L.N.

    1987-01-01

    Possibilities of nitrogen-containing glass synthesis by the introduction into the charge of ammonium salts, as well as aluminium nitride, are studied. Zinc alumoyttrium phosphate glass (mol. %) Zn(PO 3 ) 2 - 4O, Al(PO 3 ) 3 - 3O, Y(PO 3 ) 3 -3O is suggested as a matrix. It is shown that the effect of amide and imide groups on the properties of the glass is less noticeable than the effect of nitride groups. Direct introduction of nitride constituent was realized using AlN, but aluminium introduction was taken into account so that the oxide was subtracted. The attempt to introduce more than 2.5 mass % of nitrogen into initial matrix by aluminium nitride has failed due to repeated restoration of glass with amorphous phosphorus isolation

  10. Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling

    Xiaohu Deng

    2018-01-01

    Full Text Available Compared to the common selective laser sintering (SLS manufacturing method, fused deposition modeling (FDM seems to be an economical and efficient three-dimensional (3D printing method for high temperature polymer materials in medical applications. In this work, a customized FDM system was developed for polyether-ether-ketone (PEEK materials printing. The effects of printing speed, layer thickness, printing temperature and filling ratio on tensile properties were analyzed by the orthogonal test of four factors and three levels. Optimal tensile properties of the PEEK specimens were observed at a printing speed of 60 mm/s, layer thickness of 0.2 mm, temperature of 370 °C and filling ratio of 40%. Furthermore, the impact and bending tests were conducted under optimized conditions and the results demonstrated that the printed PEEK specimens have appropriate mechanical properties.

  11. Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling.

    Deng, Xiaohu; Zeng, Zhi; Peng, Bei; Yan, Shuo; Ke, Wenchao

    2018-01-30

    Compared to the common selective laser sintering (SLS) manufacturing method, fused deposition modeling (FDM) seems to be an economical and efficient three-dimensional (3D) printing method for high temperature polymer materials in medical applications. In this work, a customized FDM system was developed for polyether-ether-ketone (PEEK) materials printing. The effects of printing speed, layer thickness, printing temperature and filling ratio on tensile properties were analyzed by the orthogonal test of four factors and three levels. Optimal tensile properties of the PEEK specimens were observed at a printing speed of 60 mm/s, layer thickness of 0.2 mm, temperature of 370 °C and filling ratio of 40%. Furthermore, the impact and bending tests were conducted under optimized conditions and the results demonstrated that the printed PEEK specimens have appropriate mechanical properties.

  12. Bioactive Glasses: Where Are We and Where Are We Going?

    Francesco Baino

    2018-03-01

    Full Text Available Bioactive glasses caused a revolution in healthcare and paved the way for modern biomaterial-driven regenerative medicine. The first 45S5 glass composition, invented by Larry Hench fifty years ago, was able to bond to living bone and to stimulate osteogenesis through the release of biologically-active ions. 45S5-based glass products have been successfully implanted in millions of patients worldwide, mainly to repair bone and dental defects and, over the years, many other bioactive glass compositions have been proposed for innovative biomedical applications, such as soft tissue repair and drug delivery. The full potential of bioactive glasses seems still yet to be fulfilled, and many of today’s achievements were unthinkable when research began. As a result, the research involving bioactive glasses is highly stimulating and requires a cross-disciplinary collaboration among glass chemists, bioengineers, and clinicians. The present article provides a picture of the current clinical applications of bioactive glasses, and depicts six relevant challenges deserving to be tackled in the near future. We hope that this work can be useful to both early-stage researchers, who are moving with their first steps in the world of bioactive glasses, and experienced scientists, to stimulate discussion about future research and discover new applications for glass in medicine.

  13. Bioactive Glasses: Where Are We and Where Are We Going?

    Baino, Francesco; Hamzehlou, Sepideh; Kargozar, Saeid

    2018-03-19

    Bioactive glasses caused a revolution in healthcare and paved the way for modern biomaterial-driven regenerative medicine. The first 45S5 glass composition, invented by Larry Hench fifty years ago, was able to bond to living bone and to stimulate osteogenesis through the release of biologically-active ions. 45S5-based glass products have been successfully implanted in millions of patients worldwide, mainly to repair bone and dental defects and, over the years, many other bioactive glass compositions have been proposed for innovative biomedical applications, such as soft tissue repair and drug delivery. The full potential of bioactive glasses seems still yet to be fulfilled, and many of today's achievements were unthinkable when research began. As a result, the research involving bioactive glasses is highly stimulating and requires a cross-disciplinary collaboration among glass chemists, bioengineers, and clinicians. The present article provides a picture of the current clinical applications of bioactive glasses, and depicts six relevant challenges deserving to be tackled in the near future. We hope that this work can be useful to both early-stage researchers, who are moving with their first steps in the world of bioactive glasses, and experienced scientists, to stimulate discussion about future research and discover new applications for glass in medicine.

  14. Wetting and surface tension of bismate glass melt

    Shim, Seung-Bo; Kim, Dong-Sun; Hwang, Seongjin; Kim, Hyungsun

    2009-01-01

    Lead oxide glass frits are used widely in the electronics industry for low-temperature firing. On the other hand, one of the low-sintering and low-melting lead-free glass systems available, the bismate glass system, is considered to be an alternative to lead oxide glass. In order to extend the applications of Bi 2 O 3 glasses, this study examined the thermophysical properties of low-melting Bi 2 O 3 -B 2 O 3 -ZnO-BaO-Al 2 O 3 -SiO 2 glass frits with various ZnO/B 2 O 3 ratios. The fundamental thermal properties, such as glass transition temperature and softening point, were examined by differential thermal analysis and a glass softening point determination system. The wetting angles, viscosities and surface tension of the various bismate glasses on an alumina substrate were measured using hot-stage microscopy and the sessile drop method. These thermophysical properties will be helpful in understanding the work of adhesion and the liquid spread kinetics of glass frits.

  15. Professor I I Glass A Tribute and Memorial

    Igra, Ozer

    2013-01-01

    The book provides personal memories along with description of scientific works written by ex-graduate students and research associates of the late Professor Glass. The described research work covers a wide range of shock wave phenomena, resulting from seeds planted by Professor Glass. Professor Glass was born in Poland in 1918. He immigrated together with his parents to Canada at the age of 12 and received all his professional education at the University of Toronto, Canada. He became a world recognized expert in shock wave phenomena, and during his 45 years of active research he supervised more than 125 master and doctoral students, post-doctoral fellows and visiting research associates. In this book seven of his past students/research-associates describe their personal memories of Professor Glass and present some of their investigations in shock wave phenomena which sprung from their past work with Professor Glass. Specifically, these investigations include underwater shock waves, shock/bubble interaction, m...

  16. Trace- and ultra-trace elemental analysis in forensic glass case work: looking back at 15 years use of ICP-MS and LA-ICP-MS at a forensic-science lab

    Duecking, M.; Weis, P.; Watzke, P.; Becker, S.

    2009-01-01

    Full text: The poster will present the use of LA-ICPMS at the BKA for forensic glass analysis. An overview will be given on the developments during the last 15 years, starting with the installation of the first ICPMS in 1993. A method for the quantification of elements in glass by LA-ICPMS was developed, validated and established in routine casework. Accreditation for the method according to ISO 17025 and ISO 17020 was received in 2007 and 2008, respectively. Latest developments of the technique will be presented. Forensic relevant features and limitations of the method such as sample size and homogeneity will be shown. (author)

  17. Glass compositions suitable for PFR wastes

    Boult, K.A.; Dalton, J.T.; Eccles, E.W.; Hough, A.; Marples, J.A.C.; Paige, E.L.; Sutcliffe, P.W.

    1988-03-01

    Previous work had identified glass compositions that were suitable for vitrifying current and future high level wastes from the Prototype Fast Reactor (PFR) fuel reprocessing plant. Further work on these glasses has shown that: a) Foaming and crystallisation can occur under certain conditions, both probably associated with the presence of iron in the waste. Either of these could lead to greater difficulties in processing. b) Inconel 690, the preferred JCM (Joule-heated Ceramic Melter) electrode material has an acceptable corrosion rate at 1200 0 C: ca 0.6mm.y -1 . c) The leach rates are unaffected by radiation damage. The density of the glass decreases slightly with α-dose, with a dependency that extrapolates, at infinite time, to an 0.13% linear expansion. d) The concentrations of the radiologically important elements Tc, Np, Pu and Am, observed in a 'repository simulation' leach test, were satisfactorily low. (author)

  18. Damages by radiation in glasses

    Olguin, F.; Gutierrez, C.; Cisniega, G.; Flores, J.H.; Golzarri, J.I.; Espinoza, G.

    1997-01-01

    As a part of the works carried out to characterize the electrons beam from the Pelletron accelerator of the Mexican Nuclear Center aluminium-silicate glass samples were irradiated. The purpose of these irradiations is to cause alterations in the amorphous microstructure of the material by means of the creation of color centers. The population density of these defects, consequence to the irradiation, is function of the exposure time which varied from 1 to 30 minutes, with an electronic beam energy of 400 keV, doing the irradiations at free atmosphere. the obtained spectra are correlated by damage which the radiation produced. (Author)

  19. Effects of Mixed Alkaline Earth Oxides in Potash Silicate Glass ...

    The aim of this work is to investigate the effects of mixed alkaline earth oxide in potash silicate glasses with regards to their physical properties. More recently; there has been an increase in the demand for light weight glasses which retains their physical and chemical properties for both domestic and industrial applications.

  20. RR Tel: Getting Under the Flux Limit: An Observation with FUSE

    Sonnenborn, George (Technical Monitor); Kenyon, Scott J.

    2004-01-01

    The goal of this program is to acquire a FUSE spectrum of the symbiotic binary RR Tel. With these data, we plan to derive improved constraints on the hot component, the nebula, and perhaps the red giant wind. Based on results from AG Dra, we should also be able to use some line detections to improve atomic parameters for high ionization emission lines. This results would benefit the general FUSE community. As of this writing, the FUSE observation of RR Tel has not been made. Because RR Tel is a very bright UV source, the FUSE team is assessing the likelihood that RR Tel will have an adverse affect on the instrument.

  1. The prediction of the long-term behaviour of glasses

    Courtois, Ch.; Regent, A.; Plas, F.

    1997-01-01

    Several experts draw a conclusion about the scientific content of this week-long seminar. All agree to highlight the variety and quality of the work done. It appears that there is a consensus about the phenomenology of the long-term behaviour of glasses. All the parameters that are likely to intervene in alteration processes have been identified, but some particular points require further studies: - the impact of alpha, beta and gamma irradiation, - the alteration of glass in no-saturated water, - the coupling effect with the materials surrounding glass (metal canister, over-container...), - the optimization of glass composition to deal with high burn-up spent fuels, - the relation between the formation free energy of glasses and their alteration kinetics, - the release of radionuclides trapped in glass, and - the use of mutual analogue. (A.C.)

  2. Toward Molecular Engineering of Polymer Glasses

    Freed, Karl F. [Univ. of Chicago, IL (United States); Xu, Wen-Sheng [Univ. of Chicago, IL (United States); Dudowicz, Jacek B. [Univ. of Chicago, IL (United States); Douglas, Jack F. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States)

    2017-04-05

    Glass formation has been central to fabrication technologies since the dawn of civilization. Glasses not only encompass window panes, the insulation in our homes, the optical fibers supplying our cable TV, and vessels for eating and drinking, but they also include a vast array of ‘‘plastic’’ polymeric materials. Glasses find applications in high technology (e.g., producing microelectronic materials, etc., amorphous semiconductors), and recent advances have created ‘‘plastic metallic glasses’’ that are promising for fabricating everyday structural materials. Many commercially relevant systems, such as microemulsions and colloidal suspensions, have complex molecular structures and thus solidify by glass formation. Despite the importance of understanding the fundamental nature of glass formation for the synthesis of new materials, a predictive molecular theory has been lacking. Much of our understanding of glass formation derives from the analysis of experimental data, a process that has uncovered a number of interesting universal behaviors, namely, relations between properties that are independent of molecular details. However, these empirically derived relations and their limitations remain to be understood on the basis of theories, and, more importantly, there is strong need for theories of the explicit variation with molecular system to enable the rational design and tailoring of new materials. We have recently developed the generalized entropy theory, the only analytic, theory that enables describing the dependence of the properties of glass-formation on monomer molecular structures. These properties include the two central quantities of glass formation, the glass transition temperature and the glass fragility parameter, material dependent properties that govern how a material may be processed (e.g., by extrusion, ink jet, molding, etc.) Our recent works, which are further described below, extend the studies of glass formation in polymer systems

  3. Wastes based glasses and glass-ceramics

    Barbieri, L.

    2001-12-01

    Full Text Available Actually, the inertization, recovery and valorisation of the wastes coming from municipal and industrial processes are the most important goals from the environmental and economical point of view. An alternative technology capable to overcome the problem of the dishomogeneity of the raw material chemical composition is the vitrification process that is able to increase the homogeneity and the constancy of the chemical composition of the system and to modulate the properties in order to address the reutilization of the waste. Moreover, the glasses obtained subjected to different controlled thermal treatments, can be transformed in semy-cristalline material (named glass-ceramics with improved properties with respect to the parent amorphous materials. In this review the tailoring, preparation and characterization of glasses and glass-ceramics obtained starting from municipal incinerator grate ash, coal and steel fly ashes and glass cullet are described.

    Realmente la inertización, recuperación y valorización de residuos que proceden de los procesos de incineración de residuos municipales y de residuos industriales son metas importantes desde el punto de vista ambiental y económico. Una tecnología alternativa capaz de superar el problema de la heterogeneidad de la composición química de los materiales de partida es el proceso de la vitrificación que es capaz de aumentar la homogeneidad y la constancia de la composición química del sistema y modular las propiedades a fin de la reutilización del residuo. En este artículo se presentan los resultados de vitrificación en que los vidrios fueron sometidos a tratamientos térmicos controlados diferentes, de manera que se transforman en materiales semicristalinos (también denominados vitrocerámicos con mejores propiedades respecto a los materiales amorfos originales. En esta revisión se muestra el diseño, preparación y caracterización de vidrios y vitrocerámicos partiendo de

  4. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  5. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    Adamson, D.; Pickenheim, Bradley

    2008-01-01

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  6. Fused Adaptive Lasso for Spatial and Temporal Quantile Function Estimation

    Sun, Ying

    2015-09-01

    Quantile functions are important in characterizing the entire probability distribution of a random variable, especially when the tail of a skewed distribution is of interest. This article introduces new quantile function estimators for spatial and temporal data with a fused adaptive Lasso penalty to accommodate the dependence in space and time. This method penalizes the difference among neighboring quantiles, hence it is desirable for applications with features ordered in time or space without replicated observations. The theoretical properties are investigated and the performances of the proposed methods are evaluated by simulations. The proposed method is applied to particulate matter (PM) data from the Community Multiscale Air Quality (CMAQ) model to characterize the upper quantiles, which are crucial for studying spatial association between PM concentrations and adverse human health effects. © 2016 American Statistical Association and the American Society for Quality.

  7. Nanoimprint Lithography on curved surfaces prepared by fused deposition modelling

    Köpplmayr, Thomas; Häusler, Lukas; Bergmair, Iris; Mühlberger, Michael

    2015-01-01

    Fused deposition modelling (FDM) is an additive manufacturing technology commonly used for modelling, prototyping and production applications. The achievable surface roughness is one of its most limiting aspects. It is however of great interest to create well-defined (nanosized) patterns on the surface for functional applications such as optical effects, electronics or bio-medical devices. We used UV-curable polymers of different viscosities and flexible stamps made of poly(dimethylsiloxane) (PDMS) to perform Nanoimprint Lithography (NIL) on FDM-printed curved parts. Substrates with different roughness and curvature were prepared using a commercially available 3D printer. The nanoimprint results were characterized by optical light microscopy, profilometry and atomic force microscopy (AFM). Our experiments show promising results in creating well-defined microstructures on the 3D-printed parts. (paper)

  8. Unified design of sinusoidal-groove fused-silica grating.

    Feng, Jijun; Zhou, Changhe; Cao, Hongchao; Lu, Peng

    2010-10-20

    A general design rule of deep-etched subwavelength sinusoidal-groove fused-silica grating as a highly efficient polarization-independent or polarization-selective device is studied based on the simplified modal method, which shows that the device structure depends little on the incident wavelength, but mainly on the ratio of groove depth to incident wavelength and the ratio of wavelength to grating period. These two ratios could be used as the design guidelines for wavelength-independent structure from deep ultraviolet to far infrared. The optimized grating profile with a different function as a polarizing beam splitter, a polarization-independent two-port beam splitter, or a polarization-independent grating with high efficiency of -1st order is obtained at a wavelength of 1064 nm, and verified by using the rigorous coupled-wave analysis. The performance of the sinusoidal grating is better than a conventional rectangular one, which could be useful for practical applications.

  9. Fused cerebral organoids model interactions between brain regions.

    Bagley, Joshua A; Reumann, Daniel; Bian, Shan; Lévi-Strauss, Julie; Knoblich, Juergen A

    2017-07-01

    Human brain development involves complex interactions between different regions, including long-distance neuronal migration or formation of major axonal tracts. Different brain regions can be cultured in vitro within 3D cerebral organoids, but the random arrangement of regional identities limits the reliable analysis of complex phenotypes. Here, we describe a coculture method combining brain regions of choice within one organoid tissue. By fusing organoids of dorsal and ventral forebrain identities, we generate a dorsal-ventral axis. Using fluorescent reporters, we demonstrate CXCR4-dependent GABAergic interneuron migration from ventral to dorsal forebrain and describe methodology for time-lapse imaging of human interneuron migration. Our results demonstrate that cerebral organoid fusion cultures can model complex interactions between different brain regions. Combined with reprogramming technology, fusions should offer researchers the possibility to analyze complex neurodevelopmental defects using cells from neurological disease patients and to test potential therapeutic compounds.

  10. Fusing Quantitative Requirements Analysis with Model-based Systems Engineering

    Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven

    2006-01-01

    A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.

  11. Visualization of conserved structures by fusing highly variable datasets.

    Silverstein, Jonathan C; Chhadia, Ankur; Dech, Fred

    2002-01-01

    Skill, effort, and time are required to identify and visualize anatomic structures in three-dimensions from radiological data. Fundamentally, automating these processes requires a technique that uses symbolic information not in the dynamic range of the voxel data. We were developing such a technique based on mutual information for automatic multi-modality image fusion (MIAMI Fuse, University of Michigan). This system previously demonstrated facility at fusing one voxel dataset with integrated symbolic structure information to a CT dataset (different scale and resolution) from the same person. The next step of development of our technique was aimed at accommodating the variability of anatomy from patient to patient by using warping to fuse our standard dataset to arbitrary patient CT datasets. A standard symbolic information dataset was created from the full color Visible Human Female by segmenting the liver parenchyma, portal veins, and hepatic veins and overwriting each set of voxels with a fixed color. Two arbitrarily selected patient CT scans of the abdomen were used for reference datasets. We used the warping functions in MIAMI Fuse to align the standard structure data to each patient scan. The key to successful fusion was the focused use of multiple warping control points that place themselves around the structure of interest automatically. The user assigns only a few initial control points to align the scans. Fusion 1 and 2 transformed the atlas with 27 points around the liver to CT1 and CT2 respectively. Fusion 3 transformed the atlas with 45 control points around the liver to CT1 and Fusion 4 transformed the atlas with 5 control points around the portal vein. The CT dataset is augmented with the transformed standard structure dataset, such that the warped structure masks are visualized in combination with the original patient dataset. This combined volume visualization is then rendered interactively in stereo on the ImmersaDesk in an immersive Virtual

  12. Archeological glass from the Ciutadella de Roses site (Empordà, Girona, NE Spain): chemical characterization

    Garcia-Valles, M.; Puig, A. M.; Gimeno, D.; Aulinas, M.

    2012-04-01

    The town of Roses is placed in the homonymous bay some 15 km north of the greek-roman city of Emporium, in the Empordà Country (Catalonia, NE Spain). The north sector of the Empordà constitutes a fertile river plain located within the Pyrenees Range and the Montgrí calcareous block that has been extensively occupied at least since Neolitic times. The Roses fortress is a space of more than 130.000 m2 of renaissance style built in 1543 that constitutes one of the rare fort places preserved in Catalonia after the Succession War (1701-1714). The archaeological excavations conducted in the area of the Ciutadella have shown the rests of the Greek city of Rhode, founded at 776 B.C. by Rhodian people; the Hellenistic quartier (especially important at IV-III centuries B.C.; a roman villa (occupied between centuries II B.C. and VI D.C.); a romain-lombard monastery (Santa Maria, century XI), and a series of rests till century XIX. The excavations conducted in the period 1993-1996 provided glass remnants of several ages in a number of strata at several places within the Ciutadella walls. A number of 25 samples were chosen and cleaned in order to characterize its main chemistry by EMPA. Samples were mounted on a epoxy resin, cut and polished, and external sectors with surface alteration were avoided during analysis. The major constituents Si, Al, Na, K, Fe, Mn, Ca, Mg, Ti and P were analysed, as well as a number of trace elements (metals) that give indication on the colour of glass: Co, Cu, Cr, Sb and Pb. The archaeological data allow dating the concerned strata in several periods: end of VI century-beginning of VII (3 samples) and from middle XVI century to XVIII century. The scope of this work is to provide a first characterization of the glass chemical composition variation along time since late roman times in a near to permanent occupied site. All the studied glass fragments show a sodic-lime composition, being the ones corresponding to VI-VII of low magnesia and

  13. XRD, lead equivalent and UV-VIS properties study of Ce and Pr lead silicate glasses

    Alias, Nor Hayati; Abdullah, Wan Shafie Wan; Isa, Norriza Mohd; Isa, Muhammad Jamal Md; Zali, Nurazila Mat; Abdullah, Nuhaslinda Ee; Muhammad, Azali

    2014-01-01

    In this work, Cerium (Ce) and Praseodymium (Pr) containing lead silicate glasses were produced with 2 different molar ratios low (0.2 wt%) and high (0.4wt%). These types of glasses can satisfy the characteristics required for radiation shielding glasses and minimize the lead composition in glass. The radiation shielding properties of the synthesized glasses is explained in the form of lead equivalent study. The XRD diffraction and UV-VIS analysis were performed to observe the structural changes of the synthesis glasses at 1.5 Gy gamma radiation exposures

  14. Using conceptual spaces to fuse knowledge from heterogeneous robot platforms

    Kira, Zsolt

    2010-04-01

    As robots become more common, it becomes increasingly useful for many applications to use them in teams that sense the world in a distributed manner. In such situations, the robots or a central control center must communicate and fuse information received from multiple sources. A key challenge for this problem is perceptual heterogeneity, where the sensors, perceptual representations, and training instances used by the robots differ dramatically. In this paper, we use Gärdenfors' conceptual spaces, a geometric representation with strong roots in cognitive science and psychology, in order to represent the appearance of objects and show how the problem of heterogeneity can be intuitively explored by looking at the situation where multiple robots differ in their conceptual spaces at different levels. To bridge low-level sensory differences, we abstract raw sensory data into properties (such as color or texture categories), represented as Gaussian Mixture Models, and demonstrate that this facilitates both individual learning and the fusion of concepts between robots. Concepts (e.g. objects) are represented as a fuzzy mixture of these properties. We then treat the problem where the conceptual spaces of two robots differ and they only share a subset of these properties. In this case, we use joint interaction and statistical metrics to determine which properties are shared. Finally, we show how conceptual spaces can handle the combination of such missing properties when fusing concepts received from different robots. We demonstrate the fusion of information in real-robot experiments with a Mobile Robots Amigobot and Pioneer 2DX with significantly different cameras and (on one robot) a SICK lidar.ÿÿÿÿ

  15. Physical properties of glasses exposed to Earth-facing and trailing-side environments on LDEF

    Wiedlocher, David E.; Kinser, Donald L.; Weller, Robert A.; Weeks, Robert A.; Mendenhall, Marcus H.

    1993-01-01

    The exposure of 108 glass samples and 12 glass-ceramic samples to Earth-orbit environments permitted measurements which establish the effects of each environment. Examination of five glass types and one glass ceramic located on both the Earth-facing side and the trailing edge revealed no reduction in strength within experimental limits. Strength measurements subjected less than 5 percent of the sample surface area to stresses above 90 percent of the glass's failure strength. Seven micrometeorite or space debris impacts occurred on trailing edge samples. One of those impacts occurred in a location which was subjected to 50 percent of the applied stress at failure. Micrometeorite or space debris impacts were not observed on Earth-facing samples. The physical shape and structure of the impact sites were carefully examined using stereographic scanning electron microscopy. These impacts induce a stress concentration at the damaged region which influences mechanical strength. The flaw size produced by such damage was examined to determine the magnitude of strength degradation in micrometeorite or space-debris impacted glasses. Scanning electron microscopy revealed topographical details of impact sites which included central melt zones and glass fiber production. The overall crater structure is similar to much larger impacts of large meteorite on the Moon in that the melt crater is surrounded by shocked regions of material which fracture zones and spall areas. Residual stresses arising from shock compression and cooling of the fused zone cannot currently be included in fracture mechanics analyses based on simple flaw size examination.

  16. Biological glasses : nature's way to preserve life

    Buitink, J.

    2000-01-01

    As a result of drying, the cytoplasm of desiccation-tolerant organisms, such as seed and pollen, enters into a highly viscous, solid-like, semi-equilibrium state: the glassy state. The work in this dissertation is focussed on the function and characteristics of intracellular glasses in

  17. Nuclear waste glass corrosion mechanisms

    Jantzen, C.M.

    1987-04-01

    Dissolution of nuclear waste glass occurs by corrosion mechanisms similar to those of other solids, e.g., metallurgical and mineralogic systems. Metallurgical phenomena such as active corrosion, passivation and immunity have been observed to be a function of the glass composition and the solution pH. Hydration thermodynamics was used to quantify the role of glass composition and its effect on the solution pH during dissolution. A wide compositional range of natural, lunar, medieval, and nuclear waste glasses, as well as some glass-ceramics were investigated. The factors observed to affect dissolution in deionized water are pertinent to the dissolution of glass in natural environments such as the groundwaters anticipated to interact with nuclear waste glass in a geologic repository. The effects of imposed pH and oxidation potential (Eh) conditions existing in natural environments on glass dissolution is described in the context of Pourbaix diagrams, pH potential diagrams, for glass

  18. Structural changes in femtosecond laser modified regions inside fused silica

    Juodkazis, Saulius; Kohara, Shinji; Ohishi, Yasuo; Hirao, Norihisa; Vailionis, Arturas; Mizeikis, Vygantas; Saito, Akira; Rode, Andrei

    2010-01-01

    Structural characterization of photomodified microvolumes formed by tightly focused femtosecond laser pulses inside silica glass was carried out using synchrotron x-ray diffraction. The observed distinct separation between the O–O and Si–Si pair correlation peaks can be interpreted as a phase separation induced by microexplosions at the focal volume. The mechanisms of structural transitions induced by femtosecond laser pulses inside dielectrics are discussed

  19. Electrical properties of phosphate glasses

    Mogus-Milankovic, A; Santic, A; Reis, S T; Day, D E

    2009-01-01

    Investigation of the electrical properties of phosphate glasses where transition metal oxide such as iron oxide is the network former and network modifier is presented. Phosphate glasses containing iron are electronically conducting glasses where the polaronic conduction is due to the electron hopping from low to high iron valence state. The identification of structural defects caused by ion/polaron migration, the analysis of dipolar states and electrical conductivity in iron phosphate glasses containing various alkali and mixed alkali ions was performed on the basis of the impedance spectroscopy (IS). The changes in electrical conductivity from as-quenched phosphate glass to fully crystallized glass (glass-ceramics) by IS are analyzed. A change in the characteristic features of IS follows the changes in glass and crystallized glass network. Using IS, the contribution of glass matrix, crystallized grains and grain boundary to the total electrical conductivity for iron phosphate glasses was analyzed. It was shown that decrease in conductivity is caused by discontinuities in the conduction pathways as a result of the disruption of crystalline network where two or more crystalline phases are formed. Also, phosphate-based glasses offer a unique range of biomaterials, as they form direct chemical bonding with hard/soft tissue. The surface charges of bioactive glasses are recognized to be the most important factors in determining biological responses. The improved bioactivity of the bioactive glasses as a result of the effects of the surface charges generated by electrical polarization is discussed.

  20. Theory of glass

    Rivier, N.

    1985-01-01

    The physical properties of glass are direct consequences of its non-crystalline structure. The structure is described from a topological point of view, since topology is the only geometry surviving non-crystallinity, i.e. absence of metric and trivial space group. This fact has two main consequences: the overall homogeneity of glass is a gauge symmetry, and the only extended, structurally stable constituents are odd lines (or 2π-disclinations in the elastic continuum limit). A gauge theory of glass, based on odd lines as sources of frozen-in strain, can explain those properties of glasses which are both specific to, and universal in amorphous solids: low-temperature excitations, and relaxation at high temperatures. The methods of statistical mechanics can be applied to give a minimal description of amorphous structures in statistical equilibrium. Criteria for statistical equilibrium of the structure and detailed balance are given, together with structural equations of state, which turn out to be well-known empirically among botanists and metallurgists. This review is based on lectures given in 1984 in Niteroi. It contains five parts: I - Structure, from a topological viewpoint; II - gauge invariance; III - Tunneling modes; IV - Supercooled liquid and the glass transitions; V - Statistical crystallography. (Author) [pt

  1. Sol-Gel Glasses

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  2. Formulation and synthesis by melting process of titanate enriched glass-ceramics and ceramics

    Advocat, T.; Fillet, C.; Lacombe, J.; Bonnetier, A.; McGlinn, P.

    1999-01-01

    The main objective of this work is to provide containment for the separated radionuclides in stable oxide phases with proven resistance to leaching and irradiation damage and in consequence to obtain a glass ceramic or a ceramic material using a vitrification process. Sphene glass ceramic, zirconolite glass ceramic and zirconolite enriched ceramic have been fabricated and characterized by XRD, SEM/EDX and DTA

  3. Imaging the spectral reflectance properties of bipolar radiofrequency-fused bowel tissue

    Clancy, Neil T.; Arya, Shobhit; Stoyanov, Danail; Du, Xiaofei; Hanna, George B.; Elson, Daniel S.

    2015-07-01

    Delivery of radiofrequency (RF) electrical energy is used during surgery to heat and seal tissue, such as vessels, allowing resection without blood loss. Recent work has suggested that this approach may be extended to allow surgical attachment of larger tissue segments for applications such as bowel anastomosis. In a large series of porcine surgical procedures bipolar RF energy was used to resect and re-seal the small bowel in vivo with a commercial tissue fusion device (Ligasure; Covidien PLC, USA). The tissue was then imaged with a multispectral imaging laparoscope to obtain a spectral datacube comprising both fused and healthy tissue. Maps of blood volume, oxygen saturation and scattering power were derived from the measured reflectance spectra using an optimised light-tissue interaction model. A 60% increase in reflectance of visible light (460-700 nm) was observed after fusion, with the tissue taking on a white appearance. Despite this the distinctive shape of the haemoglobin absorption spectrum was still noticeable in the 460-600 nm wavelength range. Scattering power increased in the fused region in comparison to normal serosa, while blood volume and oxygen saturation decreased. Observed fusion-induced changes in the reflectance spectrum are consistent with the biophysical changes induced through tissue denaturation and increased collagen cross-linking. The multispectral imager allows mapping of the spatial extent of these changes and classification of the zone of damaged tissue. Further analysis of the spectral data in parallel with histopathological examination of excised specimens will allow correlation of the optical property changes with microscopic alterations in tissue structure.

  4. OPTIMAL WAVELENGTH SELECTION ON HYPERSPECTRAL DATA WITH FUSED LASSO FOR BIOMASS ESTIMATION OF TROPICAL RAIN FOREST

    T. Takayama

    2016-06-01

    Full Text Available Above-ground biomass prediction of tropical rain forest using remote sensing data is of paramount importance to continuous large-area forest monitoring. Hyperspectral data can provide rich spectral information for the biomass prediction; however, the prediction accuracy is affected by a small-sample-size problem, which widely exists as overfitting in using high dimensional data where the number of training samples is smaller than the dimensionality of the samples due to limitation of require time, cost, and human resources for field surveys. A common approach to addressing this problem is reducing the dimensionality of dataset. Also, acquired hyperspectral data usually have low signal-to-noise ratio due to a narrow bandwidth and local or global shifts of peaks due to instrumental instability or small differences in considering practical measurement conditions. In this work, we propose a methodology based on fused lasso regression that select optimal bands for the biomass prediction model with encouraging sparsity and grouping, which solves the small-sample-size problem by the dimensionality reduction from the sparsity and the noise and peak shift problem by the grouping. The prediction model provided higher accuracy with root-mean-square error (RMSE of 66.16 t/ha in the cross-validation than other methods; multiple linear analysis, partial least squares regression, and lasso regression. Furthermore, fusion of spectral and spatial information derived from texture index increased the prediction accuracy with RMSE of 62.62 t/ha. This analysis proves efficiency of fused lasso and image texture in biomass estimation of tropical forests.

  5. Fixation of radioactive waste in glass

    Chapman, C.C.; Mendel, J.E.

    1976-08-01

    After a brief review of the source of high level wastes and the specific requirements and desirable characteristics of glass used as a storage vehicle, the development work done on two vitrification systems is outlined. One is an in-can melter system and the second is a ceramic melter. Primary emphasis has been placed on the in-can melter system for use in the near future. Both systems are capable of converting high level waste to a glass which possesses low release potential

  6. Google Glass - Dazzling Yet Brittle Technology

    Saideep Koppaka

    2015-08-01

    Full Text Available In todays digital world everyones carrying a mobile phone a laptop and a tablet. All the devices mentioned above need to be carried by an individual in his bag or in his pocket. Google tried to bring up a wearable revolution with the introduction of Google glass. It is a wearable computer with an optical head mounted display that is worn like a pair of glasses. This paper will discuss the technology working benefits and concerns over the first wearable computer.

  7. Glass temperatures in free-standing canisters

    Hardy, B.J.; Hensel, S.J.

    1993-01-01

    The waste-forms produced by the Defense Waste Processing Facility (DWPF) are subject to the requirements of the Waste Acceptance Product Specifications (WAPS). The WAPS sets the maximum post cooldown temperature of the waste-form glass at 400 degrees C. This criterion must be satisfied for the ambient conditions and heat generation rates expected for the waste-forms. As part of the work described in task plan, WSRC-RP-93-1177, Rev. 0, a computer model was used to calculate the maximum glass temperatures in free standing wasteforms for a variety of ambient temperatures and heat generation rates

  8. Morphological evaluation of maxillary second molars with fused roots: a micro-CT study.

    Ordinola-Zapata, R; Martins, J N R; Bramante, C M; Villas-Boas, M H; Duarte, M H; Versiani, M A

    2017-12-01

    To evaluate the internal and external morphologies of fused-rooted maxillary second molars by means of micro-computed tomography (micro-CT) analysis. A total of 100 fused-rooted maxillary second molars from a Brazilian subpopulation were divided into six groups according to the root morphology. The samples were scanned at a resolution of 19.6 μm and evaluated with regard to the external morphology of the roots, the root canal configuration, the percentage frequency of C-shaped canals and isthmuses, as well as the morphology of the root canal system at 1, 2 and 3 mm from the anatomical apex of the fused roots. The most prevalent root canal fusions were type 1, mesiobuccal root fused with distobuccal root (32%), followed by type 3, DB root fused with P root (27%), and type 4, MB root fused with DB root, and P root fused with MB or DB roots (21%). The prevalence of C-shaped root canal systems were 22%. Depending on the type of root fusion, the percentage frequency of isthmuses in the apical level varied from 9.3% to 42.8%, whilst the presence of apical deltas ranged from 18.5% to 57.1% of teeth. The root canal system of maxillary second molars with fused roots may have a high incidence of merging canals, isthmuses, apical deltas and C-shaped configurations. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  9. High-voltage safety fuses for the transition-radiation tracking detector in the ATLAS experiment

    Voronov, SA; Voronov, YA; Onishchenko, EM; Simakov, AB; Sosnovtsev, VV; Suchkov, SI; Sugrobova, TA

    2004-01-01

    A safety fuse has been designed for the electrical protection of gas-filled detectors in the ATLAS experiment at CERN (Geneva, Switzerland). The fuse is a polished lithium niobate plate with a titanium strip of 91-kOmega resistance deposited by the photolithographic technique. The forced blow-out

  10. and 8-Membered Oxygen-containing Benzo-fused Rings using ...

    NJD

    A number of benzo-fused oxygen-containing heterocycles were synthesized from allyl-3-isopropoxy-4-methoxybenzaldehyde using metathesis or an alkene isomerization-metathesis sequence as key synthetic steps. Benzo-fused compounds thus formed included a 3,6-dihydro-1H-2-benzoxocine, ...

  11. Firefighters United for Safety, Ethics, and Ecology (FUSEE): Torchbearers for a new fire management paradigm

    Timothy Ingalsbee; Joseph Fox; Patrick Withen

    2007-01-01

    Firefighters United for Safety, Ethics, and Ecology (FUSEE) is a nonprofit organization promoting safe, ethical, ecological wildland fire management. FUSEE believes firefighter and community safety are ultimately interdependent with ethical public service, wildlands protection, and ecological restoration of fire-adapted ecosystems. Our members include current, former,...

  12. Sequential Multicomponent Strategy for the Diastereoselective Synthesis of Densely Functionalized Spirooxindole-Fused Thiazolidines

    Rainoldi, Giulia; Begnini, Fabio; De Munnik, Mariska; Lo Presti, Leonardo; Vande Velde, Christophe M.L.; Orru, Romano; Lesma, Giordano; Ruijter, Eelco; Silvani, Alessandra

    2018-01-01

    We developed two Ugi-type three-component reactions of spirooxindole-fused 3-thiazolines, isocyanides, and either carboxylic acids or trimethylsilyl azide, to give highly functionalized spirooxindole-fused thiazolidines. Two diverse libraries were generated using practical and robust procedures

  13. Ion exchange for glass strengthening

    Gy, Rene

    2008-01-01

    This paper presents a short overview of silicate glass strengthening by exchange of alkali ions in a molten salt, below the glass transition temperature (chemical tempering). The physics of alkali inter-diffusion is briefly explained and the main parameters of the process, which control the glass reinforcement, are reviewed. Methods for characterizing the obtained residual stress state and the strengthening are described, along with the simplified modelling of the stress build-up. The fragmentation of chemically tempered glass is discussed. The concept of engineered stress profile glass is presented, and finally, the effect of glass and salt compositions is overviewed

  14. Glass-ceramics: Their production from wastes - a review

    Rawlings, R.D.; Wu, J.P.; Boccaccini, A.R. [University of London, London (United Kingdom). Imperial College of Science & Technology, Dept. of Medicine

    2006-02-15

    Glass-ceramics are polycrystalline materials of fine microstructure that are produced by the controlled crystallisation (devitrification) of a glass. Numerous silicate based wastes, such as coal combustion ash, slag from steel production, fly ash and filter dusts from waste incinerators, mud from metal hydrometallurgy, different types of sludge as well as glass cullet or mixtures of them have been considered for the production of glass-ceramics. Developments of glass-ceramics from waste using different processing methods are described comprehensively in this review, covering R&D work carried out worldwide in the last 40 years. Properties and applications of the different glass-ceramics produced are discussed. The review reveals that considerable knowledge and expertise has been accumulated on the process of transformation of silicate waste into useful glass-ceramic products. These glass-ceramics are attractive as building materials for usage as construction and architectural components or for other specialised technical applications requiring a combination of suitable thermo-mechanical properties. Previous attempts to commercialise glass-ceramics from waste and to scale-up production for industrial exploitation are also discussed.

  15. Preliminary results of durability testing with borosilicate glass compositions

    Adel-Hadadi, M.; Adiga, R.; Barkatt, Aa.

    1987-01-01

    This is a report on the first year of research conducted at the Vitreous State Laboratory of the Catholic University of America in support of the West Valley Demonstration Project. One objective is the vitrification of liquid waste generated by previous nuclear fuel reprocessing. This work has been directed principally at the problem of glass composition optimization. This has necessitated the development of a coordinated program of glass production, durability measurements, and processability assessment. A small-scale continuous melter has been constructed for melting uranium and thorium containing glasses and for studying glass processing characteristics. Glass viscosities have been measured over a range of temperatures. A large number of glasses have also been produced in small crucible melts. Glass durability has been assessed using four types of leach tests: MCC-3, MCC-1, IAEA/ISO, and pulsed-flow tests. Extensive data from these tests are reported. The data have led to the design of very durable glasses (comparable to the Savannah River Laboratory Defense Waste Reference Glass) which have the requisite waste loading and processing characteristics. 14 refs., 4 figs., 77 tabs

  16. Waste glass melting stages

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Three simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentru Karlsruhe (KfK) in Germany were used. The samples were thin sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. The behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied. 2 refs., 8 tabs

  17. Waste glass melting stages

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied

  18. Using physical properties of molten glass to estimate glass composition

    Choi, Kwan Sik; Yang, Kyoung Hwa; Park, Jong Kil

    1997-01-01

    A vitrification process is under development in KEPRI for the treatment of low-and medium-level radioactive waste. Although the project is for developing and building Vitrification Pilot Plant in Korea, one of KEPRI's concerns is the quality control of the vitrified glass. This paper discusses a methodology for the estimation of glass composition by on-line measurement of molten glass properties, which could be applied to the plant for real-time quality control of the glass product. By remotely measuring viscosity and density of the molten glass, the glass characteristics such as composition can be estimated and eventually controlled. For this purpose, using the database of glass composition vs. physical properties in isothermal three-component system of SiO 2 -Na 2 O-B 2 O 3 , a software TERNARY has been developed which determines the glass composition by using two known physical properties (e.g. density and viscosity)

  19. Comparing monolithic and fused core HPLC columns for fast chromatographic analysis of fat-soluble vitamins.

    Kurdi, Said El; Muaileq, Dina Abu; Alhazmi, Hassan A; Bratty, Mohammed Al; Deeb, Sami El

    2017-06-27

    HPLC stationary phases of monolithic and fused core type can be used to achieve fast chromatographic separation as an alternative to UPLC. In this study, monolithic and fused core stationary phases are compared for fast separation of four fat-soluble vitamins. Three new methods on the first and second generation monolithic silica RP-18e columns and a fused core pentafluoro-phenyl propyl column were developed. Application of three fused core columns offered comparable separations of retinyl palmitate, DL-α-tocopheryl acetate, cholecalciferol and menadione in terms of elution speed and separation efficiency. Separation was achieved in approx. 5 min with good resolution (Rs > 5) and precision (RSD ≤ 0.6 %). Monolithic columns showed, however, a higher number of theoretical plates, better precision and lower column backpressure than the fused core column. The three developed methods were successfully applied to separate and quantitate fat-soluble vitamins in commercial products.

  20. Comparing monolithic and fused core HPLC columns for fast chromatographic analysis of fat-soluble vitamins

    Kurdi Said El

    2017-06-01

    Full Text Available HPLC stationary phases of monolithic and fused core type can be used to achieve fast chromatographic separation as an alternative to UPLC. In this study, monolithic and fused core stationary phases are compared for fast separation of four fat-soluble vitamins. Three new methods on the first and second generation monolithic silica RP-18e columns and a fused core pentafluoro-phenyl propyl column were developed. Application of three fused core columns offered comparable separations of retinyl palmitate, DL-α-tocopheryl acetate, cholecalciferol and menadione in terms of elution speed and separation efficiency. Separation was achieved in approx. 5 min with good resolution (Rs > 5 and precision (RSD ≤ 0.6 %. Monolithic columns showed, however, a higher number of theoretical plates, better precision and lower column backpressure than the fused core column. The three developed methods were successfully applied to separate and quantitate fat-soluble vitamins in commercial products.

  1. Refractive index sensors based on the fused tapered special multi-mode fiber

    Fu, Xing-hu; Xiu, Yan-li; Liu, Qin; Xie, Hai-yang; Yang, Chuan-qing; Zhang, Shun-yang; Fu, Guang-wei; Bi, Wei-hong

    2016-01-01

    In this paper, a novel refractive index (RI) sensor is proposed based on the fused tapered special multi-mode fiber (SMMF). Firstly, a section of SMMF is spliced between two single-mode fibers (SMFs). Then, the SMMF is processed by a fused tapering machine, and a tapered fiber structure is fabricated. Finally, a fused tapered SMMF sensor is obtained for measuring external RI. The RI sensing mechanism of tapered SMMF sensor is analyzed in detail. For different fused tapering lengths, the experimental results show that the RI sensitivity can be up to 444.517 81 nm/RIU in the RI range of 1.334 9—1.347 0. The RI sensitivity is increased with the increase of fused tapering length. Moreover, it has many advantages, including high sensitivity, compact structure, fast response and wide application range. So it can be used to measure the solution concentration in the fields of biochemistry, health care and food processing.

  2. FPGA-based fused smart-sensor for tool-wear area quantitative estimation in CNC machine inserts.

    Trejo-Hernandez, Miguel; Osornio-Rios, Roque Alfredo; de Jesus Romero-Troncoso, Rene; Rodriguez-Donate, Carlos; Dominguez-Gonzalez, Aurelio; Herrera-Ruiz, Gilberto

    2010-01-01

    Manufacturing processes are of great relevance nowadays, when there is a constant claim for better productivity with high quality at low cost. The contribution of this work is the development of a fused smart-sensor, based on FPGA to improve the online quantitative estimation of flank-wear area in CNC machine inserts from the information provided by two primary sensors: the monitoring current output of a servoamplifier, and a 3-axis accelerometer. Results from experimentation show that the fusion of both parameters makes it possible to obtain three times better accuracy when compared with the accuracy obtained from current and vibration signals, individually used.

  3. Viscoelasticity of metallic, polymeric and oxide glasses

    Pelletier, J.M. [GEMPPM, INSA Lyon, Bat. B. Pascal, 69621 Villeurbanne (France)]. E-mail: Jean-marc.Pelletier@insa-lyon.fr; Gauthier, C. [GEMPPM, INSA Lyon, Bat. B. Pascal, 69621 Villeurbanne (France); Munch, E. [GEMPPM, INSA Lyon, Bat. B. Pascal, 69621 Villeurbanne (France)

    2006-12-20

    Present work addresses on mechanical spectroscopy experiments performed on bulk metallic glasses (Zr-Ti-Cu-Ni-Be alloys, Mg-Y-Cu alloys), on oxide glasses (SiO{sub 2}-Na{sub 2}O-CaO) and on amorphous polymers (polyethylene terephtalate (PET), nitrile butadiene rubber (NBR), etc.). It appears that whatever the nature of the chemical bonding involved in the material, we observe strong relaxation effects in an intermediate temperature range, near the glass transition temperature. In addition, when crystallization occurs in the initially amorphous material, similar evolution is observed in all the materials. A method is proposed to properly separate elastic, viscoelastic and viscoplastic contributions to the deformation. Finally a physical model is given to describe these viscoelastic phenomena.

  4. Simulation of Glass Fiber Forming Processes

    Von der Ohe, Renate

    Two glass fiber forming processes have been simulated using FEM, which are the drawing of continuous glass fibers for reinforcement purposes and the spinning of discontinuous glass fibers - stone wool for insulation. The aim of this work was to set up a numerical model for each process, and to use...... this model in finding relationships between the production conditions and the resulting fiber properties. For both processes, a free surface with large deformation and radiative and convective heat transfer must be taken into account. The continuous fiber drawing has been simulated successfully......, and parametric studies have been made. Several properties that characterize the process have been calculated, and the relationship between the fictive temperature and the cooling rate of the fibers has been found. The model for the discontinuous fiber spinning was brought to the limits of the commercial code...

  5. SEYMOUR GLASS: CONTEXTUAL AND LINGUISTIC IDENTITY

    O.O. Kulchytska

    2015-09-01

    Full Text Available In the article, the personality of Seymour Glass, the chief character of the Glass family saga by J.D. Salinger, is analyzed from social and his own philosophical perspectives. Two of Salinger’s works – “A Perfect Day for Bananafish” and “Hapworth 16, 1924”, which complement each other in terms of character analysis, – are the focus of our attention. They offer answers to the questions (a how the personality of Seymour predetermines the frame structure of the whole Glass series, (b why Salinger starts with the end of Seymour’s life and ends with its beginning, and (c what are the author’s motives in writing “Hapworth” since one of its central ideas – the philosophy of reincarnation – has already been presented in “Teddy”.

  6. Glass forming ability of calcium aluminosilicate melts

    Moesgaard, Mette; Yue, Yuanzheng

    2011-01-01

    The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite-wollastonite-tridymite and that of......The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite......-wollastonite-tridymite and that of anorthite-wollastonite-gehlenite. The series includes the eutectic compositions as end members. The second series consists of five compositions on a line parallel to the joining line on the alumina rich side. In the present work, GFA is described in terms of glass stability, i.e., the ability of a glass...... to resist crystallization during reheating. In addition, the fragility index (m) is derived by fitting the viscosity data with the Avramov-Milchev equation. The results show that m is inversely proportional to the glass stability for the two series of melts, implying that m is an indirect measure of GFA...

  7. A new bio-active glass ceramic

    Shamim, A.; Arif, I.; Suleman, M.; Hussain, K.; Shah, W.A.

    1995-01-01

    Since 1960 fine ceramics such as alumina have been used side by side with metallic materials for bone and joint replacement. They have high mechanical strength and are free from corrosion problem faced by metals. However they don't bond to the natural living bone and hence are called bio-inactive. This was followed by the development of bio-active glasses and glass-ceramics which bond to the natural bone but have low mechanical strength. In the present work a new bio-active glass-ceramic, based on CaO-SiO/sub 2/-P/sub 2/O/sub 3/-MgO composition, has been developed which has mechanical strength compared to that of a bio-inactive glass ceramic and also bonds strongly to the natural bone. X-ray diffraction analysis reveals wollastanite and apatite phases in the glass ceramic. A new bio-active cement has also been developed which can be used to join broken pieces of bone or by itself at a filler. (author)

  8. Superductile bulk metallic glass

    Yao, K.F.; Ruan, F.; Yang, Y.Q.; Chen, N.

    2006-01-01

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<2%) at room temperature. We report a newly developed Pd-Si binary bulk metallic glass, which exhibits a uniform plastic deformation and a large plastic engineering strain of 82% and a plastic true strain of 170%, together with initial strain hardening, slight strain softening and final strain hardening characteristics. The uniform shear deformation and the ultrahigh plasticity are mainly attributed to strain hardening, which results from the nanoscale inhomogeneity due to liquid phase separation. The formed nanoscale inhomogeneity will hinder, deflect, and bifurcate the propagation of shear bands

  9. IR transmittance of moisture-resistant germanate glasses

    Bocharova, T.V.; Karapetyan, G.O. [St. Petersburg State Technical Univ. (Russian Federation)

    1995-05-01

    The objective of this work was to study the infrared spectra of gallogermante glasses and develop methods of improving their moisture resistance while retaining transparency. The ion exchange properties had been previously investigated.

  10. Working with Rutherford

    Oliphant, M.

    1984-01-01

    The author describes what it was like to work with Rutherford at the Cavendish Laboratory in the early 1930's. The memories are detailed and the anecdotes recounted give a vivid account of Rutherford at that time. Some experiments on heavy water are described. In one, deuterium nuclei were fused to form a new isotope of hydrogen of atomic mass 3, tritium. An alternative reaction of two deuterons produced a neutron and a helium particle of mass 3, helium-3. (UK)

  11. Aging in a Structural Glass

    Kob, Walter; Barrat, Jean-Louis

    1998-01-01

    We discuss the relaxation dynamics of a simple structural glass which has been quenched below its glass transition temperature. We demonstrate that time correlation functions show strong aging effects and investigate in what way the fluctuation dissipation theorem is violated.

  12. Foam Glass for Construction Materials

    Petersen, Rasmus Rosenlund

    2016-01-01

    Foaming is commonly achieved by adding foaming agents such as metal oxides or metal carbonates to glass powder. At elevated temperature, the glass melt becomes viscous and the foaming agents decompose or react to form gas, causing a foamy glass melt. Subsequent cooling to room temperature, result...... in a solid foam glass. The foam glass industry employs a range of different melt precursors and foaming agents. Recycle glass is key melt precursors. Many parameters influence the foaming process and optimising the foaming conditions is very time consuming. The most challenging and attractive goal is to make...... low density foam glass for thermal insulation applications. In this thesis, it is argued that the use of metal carbonates as foaming agents is not suitable for low density foam glass. A reaction mechanism is proposed to justify this result. Furthermore, an in situ method is developed to optimise...

  13. Assessment of water/glass interactions in waste glass melter operation

    Postma, A.K.; Chapman, C.C.; Buelt, J.L.

    1980-04-01

    A study was made to assess the possibility of a vapor explosion in a liquid-fed glass melter and during off-standard conditions for other vitrification processes. The glass melter considered is one designed for the vitrification of high-level nuclear wastes and is comprised of a ceramic-lined cavity with electrodes for joule heating and processing equipment required to add feed and withdraw glass. Vapor explosions needed to be considered because experience in other industrial processes has shown that violent interactions can occur if a hot liquid is mixed with a cooler, vaporizable liquid. Available experimental evidence and theoretical analyses indicate that destructive glass/water interactions are low probability events, if they are possible at all. Under standard conditions, aspects of liquid-fed melter operation which work against explosive interactions include: (1) the aqueous feed is near its boiling point; (2) the feed contains high concentrations of suspended particles; (3) molten glass has high viscosity (greater than 20 poise); and (4) the glass solidifies before film boiling can collapse. While it was concluded that vapor explosions are not expected in a liquid-fed melter, available information does not allow them to be ruled out altogether. Several precautionary measures which are easily incorporated into melter operation procedures were identified and additional experiments were recommended

  14. Polymorphic crystallization of metal-metalloid-glasses above the glass transition temperature

    Koster, U.; Schunemann, U.; Stephenson, G.B.; Brauer, S.; Sutton, M.

    1992-01-01

    Crystallization of metal-metalloid glasses is known to proceed by nucleation and growth processes. Using crystallization statistics in partially crystallized glasses, at temperatures below the glass transition temperature, time-dependent heterogeneous nucleation has been found to occur at a number of quenched-in nucleation sites. Close to the glass transition temperature crystallization proceeds so rapidly that partially crystallized microstructures could not be obtained. Initial results form fully crystallized glasses exhibit evidence for a transient homogeneous nucleation process at higher temperatures. These conclusions are derived post mortem. At there may be some change of the microstructure after crystallization is finished or during he subsequent quenching, it is desirable to directly obtain information during the early stages of crystallization. Recently reported work by Sutton et al. showed that structural changes can be observed in situ during crystallization by time-resolved x-ray diffraction on time scales as short as milliseconds. The aim o the paper is to present the authors study of the crystallization behavior at temperatures near the glass transition by in-situ x-ray diffraction studies and by microstructural analysis after rapid heating experiments. The results are compared to those derived from a computer model of the crystallization process

  15. Conversion of plutonium-containing materials into borosilicate glass using the glass material oxidation and dissolution system

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1996-01-01

    The end of the cold war has resulted in excess plutonium-containing materials (PCMs) in multiple chemical forms. Major problems are associated with the long-term management of these materials: safeguards and nonproliferation issues; health, environment, and safety concerns; waste management requirements; and high storage costs. These issues can be addressed by conversion of the PCMs to glass: however, conventional glass processes require oxide-like feed materials. Conversion of PCMs to oxide-like materials followed by vitrification is a complex and expensive process. A new vitrification process has been invented, the Glass Material Oxidation and Dissolution System (GMODS) to allow direct conversion of PCMs to glass. GMODS directly converts metals, ceramics, and amorphous solids to glass; oxidizes organics with the residue converted to glass; and converts chlorides to borosilicate glass and a secondary sodium chloride stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium (a plutonium surrogate), Zircaloy, stainless steel, multiple oxides, and other materials to glass. Equipment options have been identified for processing rates between 1 and 100,000 t/y. Significant work, including a pilot plant, is required to develop GMODS for applications at an industrial scale

  16. Glass ceilings of professionalisation.

    Stott, Dawn L

    2016-04-01

    The term glass ceiling is a political term often used to describe an unbreakable barrier that isnot visible with the human eye, but it keeps minorities from rising up i.e. it is a barrier to minoritygroups, in the past (and sometimes still) for women, that stops them from achieving theirtrue potential.

  17. What Glass Ceiling?

    Lynch, Michael; Post, Katherine

    1996-01-01

    A recent study drawing on data from the Census Bureau and the Bureau of Labor Statistics suggests that the wage gap between men and women has virtually disappeared, and that the so-called "glass ceiling" results more from age and qualifications than from explicit discrimination. (SLD)

  18. Microchips on glass

    Nanver, L.; De Vreede, L.; Keulemans, M.

    2007-01-01

    Microchips on glass. What about a mobile phone that uses a single microchip to receive all the available frequency bands, plus extras such as television, gps, and Internet access? Or, in due time, see-though implants that will monitor your state of health, and equipment that will let you see through

  19. Glass as matter

    Beim, Anne

    2000-01-01

    Refraiming the Moderns - Substitute Windows and Glass. In general terms, the seminar has contributed to the growing interest in the problems concerning the restoration of Modern Movement architecture. More particularly, it has of course drawn our attention to modern windows, which are increasingly...

  20. Glass ... current issues

    Wright, A.F.; Dupuy, J.

    1985-01-01

    The objectives of the School were twofold. Firstly to inform participants of actual and developing technological applications of glassy materials in which fundamental science makes a strong contribution, and secondly to bring together scientists from the widely different backgrounds of glass science and technology to promote mutual understanding and collaboration. (orig.)

  1. Stained Glass and Flu

    2017-02-01

    Dr. Robert Webster, an Emeritus member of the Department of Infectious Diseases at St. Jude Children's Research Hospital, discusses his cover art story on stained glass and influenza.  Created: 2/1/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/1/2017.

  2. Full spectrum endoscopy (FUSE) versus standard forward-viewing endoscope (SFV) in a high-risk population

    Roepstorff, Søren; Hadi, Sabah Anwar; Rasmussen, Morten

    2017-01-01

    OBJECTIVES: To investigate the diagnostic performance of Full Spectrum Endoscopy (FUSE) compared to a conventional standard forward-viewing endoscope (SFV). The primary outcome was adenoma detection rate (ADR) and mean adenoma detection. Secondary outcome was feasibility of FUSE opposed to SFV...... intubation time, fentanyl and midazolam sedation, CRC detection, ADR, diverticulosis, bowel preparation, patient discomfort and endoscopist difficulty rating. Participants underwent FUSE colonoscopy on days when the FUSE system was available, while the remaining participants had SFV. All colonoscopies were.......1 ± 6.2 min in the FUSE and SFV groups (p = .040). ADR was 67.0% and 59.6% (p = .097), while the mean adenoma detection was 1.79 and 1.38 (p = .022) in the FUSE and SFV groups. Endoscopists reported increased difficulty rating with FUSE compared to SFV (p > .001). CONCLUSION: FUSE colonoscopy provides...

  3. Packaging Glass with a Hierarchically Nanostructured Surface: A Universal Method to Achieve Self-Cleaning Omnidirectional Solar Cells

    Lin, Chin An

    2015-12-01

    Fused-silica packaging glass fabricated with a hierarchical structure by integrating small (ultrathin nanorods) and large (honeycomb nanowalls) structures was demonstrated with exceptional light-harvesting solar performance, which is attributed to the subwavelength feature of the nanorods and an efficient scattering ability of the honeycomb nanowalls. Si solar cells covered with the hierarchically structured packaging glass exhibit enhanced conversion efficiency by 5.2% at normal incidence, and the enhancement went up to 46% at the incident angle of 60°. The hierarchical structured packaging glass shows excellent self-cleaning characteristics: 98.8% of the efficiency is maintained after 6 weeks of outdoor exposure, indicating that the nanostructured surface effectively repels polluting dust/particles. The presented self-cleaning omnidirectional light-harvesting design using the hierarchical structured packaging glass is a potential universal scheme for practical solar applications.

  4. Stretched exponential relaxation in molecular and electronic glasses

    Phillips, J. C.

    1996-09-01

    der Waals supercooled liquids and glasses, orientational glasses, water, fused salts, and heme proteins. In the intrinsic cases the theory of 0034-4885/59/9/003/img5 is often accurate to 2%, which is often better than the quoted experimental accuracies 0034-4885/59/9/003/img12. The extrinsic cases are identified by explicit structural signatures which are discussed at length. The discussion also includes recent molecular dynamical simulations for metallic glasses, spin glasses, quasicrystals and polymers which have achieved the intermediate relaxed Kohlrausch state and which have obtained values of 0034-4885/59/9/003/img2 in excellent agreement with the prediction of the microscopic theory.

  5. Stretched exponential relaxation in molecular and electronic glasses

    Phillips, J.C.

    1996-01-01

    Stretched exponential relaxation, exp[-(t/τ) β ], fits many relaxation processes in disordered and quenched electronic and molecular systems, but it is widely believed that this function has no microscopic basis, especially in the case of molecular relaxation. For electronic relaxation the appearance of the stretched exponential is often described in the context of dispersive transport, where β is treated as an adjustable parameter, but in almost all cases it is generally assumed that no microscopic meaning can be assigned to 0 g , a glass transition temperature. We show that for molecular relaxation β(T g ) can be understood, providing that one separates extrinsic and intrinsic effects, and that the intrinsic effects are dominated by two magic numbers, β SR =3/5 for short-range forces, and β K =3/7 for long-range Coulomb forces, as originally observed by Kohlrausch for the decay of residual charge on a Leyden jar. Our mathematical model treats relaxation kinetics using the Lifshitz-Kac-Luttinger diffusion to traps depletion model in a configuration space of effective dimensionality, the latter being determined using axiomatic set theory and Phillips-Thorpe constraint theory. The experiments discussed include ns neutron scattering experiments, particularly those based on neutron spin echoes which measure S(Q, t) directly, and the traditional linear response measurements which span the range from μs to s, as collected and analysed phenomenologically by Angell, Ngai, Boehmer and others. The electronic materials discussed include a-Si:H, granular C 60 , semiconductor nanocrystallites, charge density waves in TaS 3 , spin glasses, and vortex glasses in high-temperature semiconductors. The molecular materials discussed include polymers, network glasses, electrolytes and alcohols, Van der Waals supercooled liquids and glasses, orientational glasses, water, fused salts, and heme proteins. In the intrinsic cases the theory of β(T g ) is often accurate to 2%, which

  6. Can low-fusing glass application affect the marginal misfit and bond strength of Y-TZP crowns?

    Antunes, Monize Carelli Felipe; Miranda, Jean Soares; Carvalho, Ronaldo Luís Almeida de; Carvalho, Rodrigo Furtado de; Kimpara, Estevão Tomomitsu; Assunção E Souza, Rodrigo Othávio de; Leite, Fabíola Pessôa Pereira

    2018-01-01

    To evaluate the effect of different surface treatments on the marginal misfit and retentive strength between Y-TZP crowns and an epoxy resin. Forty (40) epoxy resin (G10) abutments (height: 5mm, conicity: 60, finish line: large chamfer) with equal dimensions were milled and included in polyurethane to simulate the periodontal ligament. Next, 40 Y-TZP crowns (thickness: 1mm) were milled (Cerec in Lab) and randomly divided into four groups (n=10) according to the surface treatment: GS(glaze spray), GP(glaze powder/liquid), P(zirconia primer) and RS(tribochemical silica coating). The conditioned surfaces were cemented with dual self-adhesive cement, light cured and submitted to thermomechanical cycling (2x106, 100N, 4Hz, 5°/55°C). Marginal misfit was analyzed by a stereomicroscope and SEM. Retentive strength test was performed (1mm/min) until crown debonding. Glaze layer thickness was also performed to GS and GP groups. Marginal misfit data were analyzed by Kruskal Wallis and Dunn tests; one-way ANOVA and Tukey (5%) analyzed the tensile strength data. The marginal misfit of the GS (48.6±19.9μm) and GP (65.4±42.5μm) were statistically lower than the RS (96±62.9μm) and P (156±113.3μm) (p=0.001). The retentive strength of the GP (470.5±104.1N) and GS (416.8±170.2N) were similar to the P (342.1±109.7N), but statistically higher than those of the RS (208.9±110N). The GS and GP glaze layer was 11.64μm and 9.73μm respectively. Thus, glaze application promoted lower marginal discrepancy and higher retentive strength values than conventional techniques.

  7. The compaction of fused silica resulting from ion implantation

    Johnson, C.M.; Ridgway, M.C. [Australian National Univ., Canberra, ACT (Australia); Leech, P.L. [Telstra Research Laboratories, Clayton, Victoria (Australia)

    1996-12-31

    Ion implantation of fused silica results in compaction and consequently an increase in refractive index. This method of modifying the near-surface region has been shown as a potential means for fabricating single mode channel waveguides. This study has measured the compaction of the implanted regions for Si implantations as a function of dose (2x10{sup 12} - 6x10{sup l6} ions/cm{sup 2}), energy (1-9 MeV) and post-implantation annealing temperature (200-900 degree C). For a given energy, a dose-dependence of the step height (depth of compacted region) is observed for doses less than {approx}10{sup 15} ions/cm{sup 2}. At higher doses the step height saturates. For a given dose, a linear trend is evident for the step height as a function of energy suggesting that the major mechanism for this compaction is electronic stopping. As the annealing temperature increases, the step height gradually decreases from {approx}0.1-0.2 {mu} to -10-20% of the original value. From the annealing data, it is possible to extract an activation energy of 0.08 eV associated with the thermal removal of the compacted region. 4 refs., 4 figs.

  8. The compaction of fused silica resulting from ion implantation

    Johnson, C M; Ridgway, M C [Australian National Univ., Canberra, ACT (Australia); Leech, P L [Telstra Research Laboratories, Clayton, Victoria (Australia)

    1997-12-31

    Ion implantation of fused silica results in compaction and consequently an increase in refractive index. This method of modifying the near-surface region has been shown as a potential means for fabricating single mode channel waveguides. This study has measured the compaction of the implanted regions for Si implantations as a function of dose (2x10{sup 12} - 6x10{sup l6} ions/cm{sup 2}), energy (1-9 MeV) and post-implantation annealing temperature (200-900 degree C). For a given energy, a dose-dependence of the step height (depth of compacted region) is observed for doses less than {approx}10{sup 15} ions/cm{sup 2}. At higher doses the step height saturates. For a given dose, a linear trend is evident for the step height as a function of energy suggesting that the major mechanism for this compaction is electronic stopping. As the annealing temperature increases, the step height gradually decreases from {approx}0.1-0.2 {mu} to -10-20% of the original value. From the annealing data, it is possible to extract an activation energy of 0.08 eV associated with the thermal removal of the compacted region. 4 refs., 4 figs.

  9. Cloud Detection by Fusing Multi-Scale Convolutional Features

    Li, Zhiwei; Shen, Huanfeng; Wei, Yancong; Cheng, Qing; Yuan, Qiangqiang

    2018-04-01

    Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.

  10. Picosecond laser damage of fused silica at 355 nm

    Meng Xiangjie; Liu Hongjie; Wang Fang; Zhang Zhen; An Xinyou; Huang Jin; Jiang Xiaodong; Wu Weidong; Ren Weiyi

    2013-01-01

    This paper studies the initiated damage threshold, the damage morphology and the subsequent damage growth on fused silica's input-surface and exit-surface under picosecond laser irradiation at 355 nm. Defects induced fluorescence on surface of the optical component is observed. The results demonstrate a significant dependence of the initiated damage on pulse duration and surface defects, and that of the damage growth on self-focusing, sub-surface defects. The damage-threshold is 3.98 J/cm 2 of input surface and 2.91 J/cm 2 of exit surface. The damage morphologies are quite different between input surface and exit surface. Slow growth behavior appears for the diameter of exit-surface and linear growth one for the depth of exit-surface in the lateral side of damage site with the increase of shot number. Defects have changed obviously compared with nanosecond laser damage in the damage area. Several main reasons such as electric intensification and self-focusing for the observed initiated damage and damage growth behavior are discussed. (authors)

  11. STANDARDIZING QUALITY ASSESSMENT OF FUSED REMOTELY SENSED IMAGES

    C. Pohl

    2017-09-01

    Full Text Available The multitude of available operational remote sensing satellites led to the development of many image fusion techniques to provide high spatial, spectral and temporal resolution images. The comparison of different techniques is necessary to obtain an optimized image for the different applications of remote sensing. There are two approaches in assessing image quality: 1. Quantitatively by visual interpretation and 2. Quantitatively using image quality indices. However an objective comparison is difficult due to the fact that a visual assessment is always subject and a quantitative assessment is done by different criteria. Depending on the criteria and indices the result varies. Therefore it is necessary to standardize both processes (qualitative and quantitative assessment in order to allow an objective image fusion quality evaluation. Various studies have been conducted at the University of Osnabrueck (UOS to establish a standardized process to objectively compare fused image quality. First established image fusion quality assessment protocols, i.e. Quality with No Reference (QNR and Khan's protocol, were compared on varies fusion experiments. Second the process of visual quality assessment was structured and standardized with the aim to provide an evaluation protocol. This manuscript reports on the results of the comparison and provides recommendations for future research.

  12. Standardizing Quality Assessment of Fused Remotely Sensed Images

    Pohl, C.; Moellmann, J.; Fries, K.

    2017-09-01

    The multitude of available operational remote sensing satellites led to the development of many image fusion techniques to provide high spatial, spectral and temporal resolution images. The comparison of different techniques is necessary to obtain an optimized image for the different applications of remote sensing. There are two approaches in assessing image quality: 1. Quantitatively by visual interpretation and 2. Quantitatively using image quality indices. However an objective comparison is difficult due to the fact that a visual assessment is always subject and a quantitative assessment is done by different criteria. Depending on the criteria and indices the result varies. Therefore it is necessary to standardize both processes (qualitative and quantitative assessment) in order to allow an objective image fusion quality evaluation. Various studies have been conducted at the University of Osnabrueck (UOS) to establish a standardized process to objectively compare fused image quality. First established image fusion quality assessment protocols, i.e. Quality with No Reference (QNR) and Khan's protocol, were compared on varies fusion experiments. Second the process of visual quality assessment was structured and standardized with the aim to provide an evaluation protocol. This manuscript reports on the results of the comparison and provides recommendations for future research.

  13. Fused Regression for Multi-source Gene Regulatory Network Inference.

    Kari Y Lam

    2016-12-01

    Full Text Available Understanding gene regulatory networks is critical to understanding cellular differentiation and response to external stimuli. Methods for global network inference have been developed and applied to a variety of species. Most approaches consider the problem of network inference independently in each species, despite evidence that gene regulation can be conserved even in distantly related species. Further, network inference is often confined to single data-types (single platforms and single cell types. We introduce a method for multi-source network inference that allows simultaneous estimation of gene regulatory networks in multiple species or biological processes through the introduction of priors based on known gene relationships such as orthology incorporated using fused regression. This approach improves network inference performance even when orthology mapping and conservation are incomplete. We refine this method by presenting an algorithm that extracts the true conserved subnetwork from a larger set of potentially conserved interactions and demonstrate the utility of our method in cross species network inference. Last, we demonstrate our method's utility in learning from data collected on different experimental platforms.

  14. Synthesis of a new class of fused cyclotetraphosphazene ring systems.

    Beşli, Serap; Mutlu, Ceylan; İbişoğlu, Hanife; Yuksel, Fatma; Allen, Christopher W

    2015-01-05

    Octachlorocyclotetraphosphazene (1) was reacted with butylamines [n-butyl, i-butyl, sec-butyl, and t-butyl] in a 1:0.8 mol ratio in THF to obtain cyclotetraphosphazenes bearing a P-NH group, N4P4Cl7(NHR) [R = n-butyl (2a), i-butyl (2b), sec-butyl (2c), t-butyl (2d)](2a-d). The cyclotetraphosphazene derivatives 2a, 2b, and 2c were treated with sodium hydride giving rise to a new type of cyclophosphazene compounds (P8N8 ring) consisting of three fused tetramer rings (3a-c). Whereas reaction of sodium hydride with the t-butylaminocyclophosphazene derivative (2d) gave a P-O-P bridged compound (4) presumably as a result of hydrolysis reaction associated with moisture in the solvent. It is likely that the 16-membered cyclooctaphosphazene derivatives (3a-c) are formed by a proton abstraction/chloride ion elimination, intramolecular nucleophilic attack, ring opening and intermolecular condensation processes, respectively.

  15. Fusing metabolomics data sets with heterogeneous measurement errors

    Waaijenborg, Sandra; Korobko, Oksana; Willems van Dijk, Ko; Lips, Mirjam; Hankemeier, Thomas; Wilderjans, Tom F.; Smilde, Age K.

    2018-01-01

    Combining different metabolomics platforms can contribute significantly to the discovery of complementary processes expressed under different conditions. However, analysing the fused data might be hampered by the difference in their quality. In metabolomics data, one often observes that measurement errors increase with increasing measurement level and that different platforms have different measurement error variance. In this paper we compare three different approaches to correct for the measurement error heterogeneity, by transformation of the raw data, by weighted filtering before modelling and by a modelling approach using a weighted sum of residuals. For an illustration of these different approaches we analyse data from healthy obese and diabetic obese individuals, obtained from two metabolomics platforms. Concluding, the filtering and modelling approaches that both estimate a model of the measurement error did not outperform the data transformation approaches for this application. This is probably due to the limited difference in measurement error and the fact that estimation of measurement error models is unstable due to the small number of repeats available. A transformation of the data improves the classification of the two groups. PMID:29698490

  16. Integrable Floquet dynamics, generalized exclusion processes and "fused" matrix ansatz

    Vanicat, Matthieu

    2018-04-01

    We present a general method for constructing integrable stochastic processes, with two-step discrete time Floquet dynamics, from the transfer matrix formalism. The models can be interpreted as a discrete time parallel update. The method can be applied for both periodic and open boundary conditions. We also show how the stationary distribution can be built as a matrix product state. As an illustration we construct parallel discrete time dynamics associated with the R-matrix of the SSEP and of the ASEP, and provide the associated stationary distributions in a matrix product form. We use this general framework to introduce new integrable generalized exclusion processes, where a fixed number of particles is allowed on each lattice site in opposition to the (single particle) exclusion process models. They are constructed using the fusion procedure of R-matrices (and K-matrices for open boundary conditions) for the SSEP and ASEP. We develop a new method, that we named "fused" matrix ansatz, to build explicitly the stationary distribution in a matrix product form. We use this algebraic structure to compute physical observables such as the correlation functions and the mean particle current.

  17. Autophagy meets fused in sarcoma-positive stress granules.

    Matus, Soledad; Bosco, Daryl A; Hetz, Claudio

    2014-12-01

    Mutations in fused in sarcoma and/or translocated in liposarcoma (FUS, TLS or FUS) are linked to familial cases of amyotrophic lateral sclerosis (ALS). Mutant FUS selectively accumulates into discrete cytosolic structures known as stress granules under various stress conditions. In addition, mutant FUS expression can alter the dynamics and morphology of stress granules. Although the link between mutant FUS and stress granules is well established, the mechanisms modulating stress granule formation and disassembly in the context of ALS are poorly understood. In this issue of Neurobiology of Aging, Ryu et al. uncover the impact of autophagy on the potential toxicity of mutant FUS-positive stress granules. The authors provide evidence indicating that enhanced autophagy activity reduces the number of stress granules, which in the case of cells containing mutant FUS-positive stress granules, is neuroprotective. Overall, this study identifies an intersection between the proteostasis network and alterations in RNA metabolism in ALS through the dynamic assembly and disassembly of stress granules. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Interdiffusion of Polycarbonate in Fused Deposition Modeling Welds

    Seppala, Jonathan; Forster, Aaron; Satija, Sushil; Jones, Ronald; Migler, Kalman

    2015-03-01

    Fused deposition modeling (FDM), a now common and inexpensive additive manufacturing method, produces 3D objects by extruding molten polymer layer-by-layer. Compared to traditional polymer processing methods (injection, vacuum, and blow molding), FDM parts have inferior mechanical properties, surface finish, and dimensional stability. From a polymer processing point of view the polymer-polymer weld between each layer limits the mechanical strength of the final part. Unlike traditional processing methods, where the polymer is uniformly melted and entangled, FDM welds are typically weaker due to the short time available for polymer interdiffusion and entanglement. To emulate the FDM process thin film bilayers of polycarbonate/d-polycarbonate were annealed using scaled times and temperatures accessible in FDM. Shift factors from Time-Temperature Superposition, measured by small amplitude oscillatory shear, were used to calculate reasonable annealing times (min) at temperatures below the actual extrusion temperature. The extent of interdiffusion was then measured using neutron reflectivity. Analogous specimens were prepared to characterize the mechanical properties. FDM build parameters were then related to interdiffusion between welded layers and mechanical properties. Understating the relationship between build parameters, interdiffusion, and mechanical strength will allow FDM users to print stronger parts in an intelligent manner rather than using trial-and-error and build parameter lock-in.

  19. Glasses and nuclear waste vitrification

    Ojovan, Michael I.

    2012-01-01

    Glass is an amorphous solid material which behaves like an isotropic crystal. Atomic structure of glass lacks long-range order but possesses short and most probably medium range order. Compared to crystalline materials of the same composition glasses are metastable materials however crystallisation processes are kinetically impeded within times which typically exceed the age of universe. The physical and chemical durability of glasses combined with their high tolerance to compositional changes makes glasses irreplaceable when hazardous waste needs immobilisation for safe long-term storage, transportation and consequent disposal. Immobilisation of radioactive waste in glassy materials using vitrification has been used successfully for several decades. Nuclear waste vitrification is attractive because of its flexibility, the large number of elements which can be incorporated in the glass, its high corrosion durability and the reduced volume of the resulting wasteform. Vitrification involves melting of waste materials with glass-forming additives so that the final vitreous product incorporates the waste contaminants in its macro- and micro-structure. Hazardous waste constituents are immobilised either by direct incorporation into the glass structure or by encapsulation when the final glassy material can be in form of a glass composite material. Both borosilicate and phosphate glasses are currently used to immobilise nuclear wastes. In addition to relatively homogeneous glasses novel glass composite materials are used to immobilise problematic waste streams. (author)

  20. Cryogenic refractive index of Heraeus homosil glass

    Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.

    2017-08-01

    This paper reports measurements of the refractive index of Homosil (Heraeus) over the wavelength range of 0.34—3.16 μm and temperature range of 120—335 K. These measurements were performed by using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at the NASA's Goddard Space Flight Center. These measurements were in support of an integrated Structural-Thermal-Optical-Performance (STOP) model that was developed for a fieldwidened Michelson interferometer that is being built and tested for the High Spectral Resolution Lidar (HSRL) project at the NASA Langley Research Center (LaRC). The cryogenic refractive index measurements were required in order to account for the highly sensitive performance of the HSRL instrument to changes in refractive index with temperature, temperature gradients, thermal expansion, and deformation due to mounting stresses. A dense coverage of the absolute refractive index over the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dn/dT) and dispersion relation (dn/dλ) as a function of wavelength and temperature. Our measurements of Homosil will be compared with measurements of other glasses from the fused silica family studied in CHARMS as well as measurements reported elsewhere in the literature.

  1. Mechanical properties of glasses impacted by debris or micrometeorites

    Kinser, Donald L.; Wiedlocher, David E.

    1992-01-01

    Mechanical strength measurements on five glasses and one glass ceramic exposed on the Long Duration Exposure Facility (LDEF) have revealed no damage exceeding experimental limits of error after exposure. The measurement technique subjected less than 5 percent of the sample surface area to stresses above 90 percent of the failure strength. Seven micrometeorite or space debris impacts occurred at locations which were not in that portion of the sample subjected to greater than 90 percent of the applied stress. In consequence of this, the impact events on the sample were not detected in mechanical strength measurements. The physical form and structure of the impact sites was carefully examined to determine the influence of those events upon stress concentration associated with the impact and the resulting mechanical strength influence. The size of the impact site insofar as it determines flaw size for fracture purposes was examined. Surface topography of the impacts reveals that six of the seven sites display impact melting. The classical melt crater structure is surrounded by a zone of fractured glass. Residual stresses arising from shock compression and from cooling of the impact fused zone cannot be included in fracture mechanics analyses based on simple flaw size analyses. Strategies for refining estimates of mechanical strength degradation by impact events are presented.

  2. Overcurrent protection of transformers. Part 2: Traditional and new fusing philosophies for small and large transformers

    Cook, C. J.; Niemira, J. K.

    2003-07-01

    New and traditional fusing philosophies for protecting transformers are discussed. This second in a two-part paper covers selection criteria for a transformer-primary fuse to protect the transformer consistent with industry-accepted through-fault protection curves. Also covered are the principles of coordination as they relate to the proper selection of the primary-side fuse and power fuses and the principles underlying the protection of load-side conductors and cables. The critical nature of secondary fault protection on small three-phase transformers used on industrial, commercial, and institutional power systems, as well as small-to-medium size three-phase power transformers used in utility substations is emphasized, in view of the long lead time and expense involved in replacing these transformers. In contrast, no special protection recommendations are made for small-kVA overhead distribution transformers, since they are not considered likely to experience secondary faults, and the rare faults that do occur will not likely be detected and cleared by the primary fuse. Also of importance is the fact that these transformers are inexpensive and readily available. Overall, large fuse rating, used in combination with a tank-mounted surge arrester is recommended, because it can provide better transformer protection than the smaller fuse ratings traditionally employed. 4 refs., 2 tabs., 4 figs.

  3. Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics.

    Huang, Jin; Wang, Fengrui; Liu, Hongjie; Geng, Feng; Jiang, Xiaodong; Sun, Laixi; Ye, Xin; Li, Qingzhi; Wu, Weidong; Zheng, Wanguo; Sun, Dunlu

    2017-11-24

    The surface laser damage performance of fused silica optics is related to the distribution of surface defects. In this study, we used chemical etching assisted by ultrasound and magnetorheological finishing to modify defect distribution in a fused silica surface, resulting in fused silica samples with different laser damage performance. Non-destructive test methods such as UV laser-induced fluorescence imaging and photo-thermal deflection were used to characterize the surface defects that contribute to the absorption of UV laser radiation. Our results indicate that the two methods can quantitatively distinguish differences in the distribution of absorptive defects in fused silica samples subjected to different post-processing steps. The percentage of fluorescence defects and the weak absorption coefficient were strongly related to the damage threshold and damage density of fused silica optics, as confirmed by the correlation curves built from statistical analysis of experimental data. The results show that non-destructive evaluation methods such as laser-induced fluorescence and photo-thermal absorption can be effectively applied to estimate the damage performance of fused silica optics at 351 nm pulse laser radiation. This indirect evaluation method is effective for laser damage performance assessment of fused silica optics prior to utilization.

  4. Investigations on the structure of Pb-Ge-Se glasses

    Kalra, G.; Upadhyay, M.; Sharma, Y.; Murugavel, S., E-mail: murug@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi – 110007 (India); Abhaya, S.; Amarendra, G. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102 (India)

    2016-05-23

    Chalcogenide glasses have attracted much attention because of their potential application in various solid state devices. In the present work, we report here the detailed thermal, structural, microstructural studies on Pb{sub x}Ge{sub 42-x}Se{sub 58} with (0 ≤ x ≤ 20) glasses. The influence of Pb content on the glass transition temperature, specific heat, and non-reversing enthalpy is observed and discussed qualitatively The Raman spectroscopic studies on the all the glass compositions are carried out and deconvoluted into different structural units. The positron annihilation life-time spectroscopy (PALS) studies helped to understand the nature of defect states present in the glassy system and its variation with Pb content. The concentration of charged defect centers is found to increase, whereas the open volume defect concentration decreases with Pb content in these glasses.

  5. Investigations on the structure of Pb-Ge-Se glasses

    Kalra, G.; Upadhyay, M.; Sharma, Y.; Abhaya, S.; Murugavel, S.; Amarendra, G.

    2016-05-01

    Chalcogenide glasses have attracted much attention because of their potential application in various solid state devices. In the present work, we report here the detailed thermal, structural, microstructural studies on PbxGe42-xSe58 with (0 ≤ x ≤ 20) glasses. The influence of Pb content on the glass transition temperature, specific heat, and non-reversing enthalphy is observed and discussed qualitatively The Raman spectroscopic studies on the all the glass compositions are carried out and deconvoluted into different structural units. The positron annihilation life-time spectroscopy (PALS) studies helped to understand the nature of defect states present in the glassy system and its variation with Pb content. The concentration of charged defect centers is found to increase, whereas the open volume defect concentration decreases with Pb content in these glasses.

  6. Investigations on the structure of Pb-Ge-Se glasses

    Kalra, G.; Upadhyay, M.; Sharma, Y.; Murugavel, S.; Abhaya, S.; Amarendra, G.

    2016-01-01

    Chalcogenide glasses have attracted much attention because of their potential application in various solid state devices. In the present work, we report here the detailed thermal, structural, microstructural studies on Pb x Ge 42-x Se 58 with (0 ≤ x ≤ 20) glasses. The influence of Pb content on the glass transition temperature, specific heat, and non-reversing enthalpy is observed and discussed qualitatively The Raman spectroscopic studies on the all the glass compositions are carried out and deconvoluted into different structural units. The positron annihilation life-time spectroscopy (PALS) studies helped to understand the nature of defect states present in the glassy system and its variation with Pb content. The concentration of charged defect centers is found to increase, whereas the open volume defect concentration decreases with Pb content in these glasses.

  7. Modern aspects of the kinetic theory of glass transition

    Tropin, T V; Aksenov, V L; Schmelzer, J W

    2016-01-01

    This paper reviews glass transition kinetics models that are developed to describe the formation of structural (for example, covalent and metallic) glasses, as well as to account for the transition of a polymer to a solid glassy state. As the two approaches most frequently used over the last decade to model the glass transition, the Tool–Narayanaswamy–Moynihan model and the Adam–Gibbs theory of glass transition are described together with examples of their applications. Also discussed are entropy-based approaches that rely on irreversible thermodynamics methods originated in the work of De Donder, Mandelstam, and Leontovich. The actual problems that arise in applying these methods and the prospects of their development are discussed. A brief overview of statistical glass transition models is given, including the mode-coupling and energy-landscape theories. (reviews of topical problems)

  8. Simulation used to qualify nuclear waste glass for disposal

    Reimus, T.W.; Kuhn, W.L.

    1987-07-01

    A hypothetical vitrification system was simulated errors associated with controlling and predicting the composition of the nuclear waste glass produced in the system. The composition of the glass must fall within certain limits to qualify for permanent geologic disposal. The estimated error in predicting the concentrations of various constituents in the glass was 2% to 8%, depending on the strategy for sampling and analyzing the feed and on the assumed magnitudes of the process uncertainties. The estimated error in controlling the glass composition was 2% to 9%, depending on the strategy for sampling and analyzing the waste and on the assumed magnitudes of the uncertainties. This work demonstrates that simulation techniques can be used to assist in qualifying nuclear waste glass for disposal. 3 refs., 2 figs., 4 tabs

  9. The viscosity window of the silicate glass foam production

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    2017-01-01

    which can offer a practical starting point for the optimisation procedure. The melt viscosity might be the most important parameter for controlling the foaming process and the glass foam density. In this work, we attempt to define a viscosity range in which foaming of different glasses results...... in a maximum of foam expansion. The expansion maximum is obtained for different glasses (labware, E-glass, CRT panel, soda-lime-silica) by foaming with CaCO3 at isokom temperature and from literature data. In general, the viscosity window was found to be within 104–106 Pa s when foaming with MnO2 or metal...... carbonates (CaCO3, Na2CO3, MgCO3, SrCO3, dolomite) whereas SiC requires higher temperatures and correspondingly lower viscosities (103.3–104.0 Pa s). These findings can help assessing the implementation of new resources in the glass foam production....

  10. Characterization of enameled glass excavated from Laem Pho, southern Thailand

    Dhanmanonda, W.; Won-in, K.; Tancharakorn, S.; Tantanuch, W.; Thongleurm, C.; Kamwanna, T.; Dararutana, P.

    2012-07-01

    Laem Pho in Surat Thani, southern province of Thailand is one of the most important historic site on the eastern shore of the Gulf of Thailand. In this work, the enameled glass fragments which looked-like Islamic glass mainly excavated from this site were analyzed using SEM-EDS, PIXE and μ-XRF, in order to understand the chemical composition by comparing the archaeological data and topology. The structure of the enameled decoration was also studied. The resulting data indicated that high-magnesia alkali-lime silicate glass was produced. The presence of transition metals such as copper, iron and manganese were affected on the glass colorations. Typological classifications, technological observations and comparative studies serve to clarify the development and cultural inter-relationships of various glass objects along the trade and exchange networks in ancient maritime.

  11. Thermal, mechanical and Raman studies on mixed alkali borotungstate glasses

    Edukondalu, A.; Sathe, Vasant; Rahman, Syed; Siva Kumar, K.

    2014-04-01

    Mixed alkali borotungstate glasses with xLi2O-(30-x)Na2O-10WO3-60B2O3 (0 ≤ x ≤ 30) composition were prepared by melt quench technique. The amorphous phase of the prepared glass samples was conformed from their X-ray diffraction and SEM studies. Differential scanning calorimetry and Raman spectroscopic studies were employed to investigate the structure of all the prepared glasses. The elastic moduli and Debye temperature were calculated in terms of Makishima-Mackenzie model. Acting as complementary techniques, Raman measurement revealed that the network structure of the present glasses is mainly based on BO3 and BO4 units placed in different structural groups. Raman spectra confirms the presence of tungsten ions mainly as WO6 groups. In the present work, the mixed alkali effect (MAE) has been investigated in the above glass system through modulated DSC studies.

  12. Characterization of enameled glass excavated from Laem Pho, southern Thailand

    Dhanmanonda, W; Won-in, K; Tancharakorn, S; Tantanuch, W; Thongleurm, C; Kamwanna, T; Dararutana, P

    2012-01-01

    Laem Pho in Surat Thani, southern province of Thailand is one of the most important historic site on the eastern shore of the Gulf of Thailand. In this work, the enameled glass fragments which looked-like Islamic glass mainly excavated from this site were analyzed using SEM-EDS, PIXE and μ-XRF, in order to understand the chemical composition by comparing the archaeological data and topology. The structure of the enameled decoration was also studied. The resulting data indicated that high-magnesia alkali-lime silicate glass was produced. The presence of transition metals such as copper, iron and manganese were affected on the glass colorations. Typological classifications, technological observations and comparative studies serve to clarify the development and cultural inter-relationships of various glass objects along the trade and exchange networks in ancient maritime.

  13. Valorization of sugarcane bagasse ash: producing glass-ceramic materials.

    Teixeira, S R; Magalhães, R S; Arenales, A; Souza, A E; Romero, M; Rincón, J M

    2014-02-15

    Some aluminosilicates, for example mullite and wollastonite, are very important in the ceramic and construction industries. The most significant glass-ceramic for building applications has wollastonite as the main crystal phase. In this work we report on the use of sugarcane bagasse ash (SCBA) to produce glass-ceramics with silicates as the major crystalline phases. The glasses (frits) were prepared by mixing ash, limestone (calcium and magnesium carbonates) and potassium carbonate as the fluxing agent. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The results showed that glass-ceramic material can be produced with wollastonite as the major phase, at a temperature lower than 900 °C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Nuclear waste under glass, further discussion

    O'Keefe, J. A.; Barkatt, A.; Glass, B. P.; Alterescu, S.

    J. J. Crovisier and J. Honnorez [1988] discuss an article by W. W. Maggs, “Mg May Protect Waste Under Glass” [Maggs, 1988] summarizing work by A. Barkatt (Catholic University, Washington, D.C.), B. P. Glass (University of Delaware, Newark), and S. Alterescu and J. A. O'Keefe (NASA/GSFC, Greenbelt, Md.). We found that seawater is orders of magnitude less corrosive t h an fresh water in attacking tektite glass; traced the protective effect to the presence of magnesium, at a level of about 1.3 g/L in seawater; and suggested that the effect might be useful in protecting nuclear waste glasses from corrosion.Crovisier and Honnorez first make the point that the rate of corrosion of glass is, in principle, a function of the ratio of surface area 5 to the effective volume V. This concept, which is usually discussed in American literature under the name of S/V effects, is discussed by Crovisier and Honnorez in terms of the “permeability of the environment.” These effects have been carefully considered throughout our work (see, for example, Barkatt et al. [19867rsqb;). It turns out that in the sea the effective S/V is so small that the effects referred to by Crovisier and Honnorez can be ignored.

  15. Apollo 12 ropy glasses revisited

    Wentworth, S. J.; Mckay, D. S.; Lindstrom, D. J.; Basu, A.; Martinez, R. R.; Bogard, D. D.; Garrison, D. H.

    1994-01-01

    We analyzed ropy glasses from Apollo 12 soils 12032 and 12033 by a variety of techniques including SEM/EDX, electron microprobe analysis, INAA, and Ar-39-Ar-40 age dating. The ropy glasses have potassium rare earth elements phosphorous (KREEP)-like compositions different from those of local Apollo 12 mare soils; it is likely that the ropy glasses are of exotic origin. Mixing calculations indicate that the ropy glasses formed from a liquid enriched in KREEP and that the ropy glass liquid also contained a significant amount of mare material. The presence of solar Ar and a trace of regolith-derived glass within the ropy glasses are evidence that the ropy glasses contain a small regolith component. Anorthosite and crystalline breccia (KREEP) clasts occur in some ropy glasses. We also found within these glasses clasts of felsite (fine-grained granitic fragments) very similar in texture and composition to the larger Apollo 12 felsites, which have a Ar-39-Ar-40 degassing age of 800 +/- 15 Ma. Measurements of 39-Ar-40-Ar in 12032 ropy glass indicate that it was degassed at the same time as the large felsite although the ropy glass was not completely degassed. The ropy glasses and felsites, therefore, probably came from the same source. Most early investigators suggested that the Apollo 12 ropy glasses were part of the ejecta deposited at the Apollo 12 site from the Copernicus impact. Our new data reinforce this model. If these ropy glasses are from Copernicus, they provide new clues to the nature of the target material at the Copernicus site, a part of the Moon that has not been sampled directly.

  16. Development of composite polymer-glass edge claddings for Nova Laser Disks

    Campbell, J.H.; Edwards, G.; Frick, F.A.; Gemmell, D.S.; Gim, B.M.; Jancaitis, K.S.; Jessop, E.S.; Kong, M.K.; Lyon, R.E.; Murray, J.E.; Patton, H.G.; Pitts, J.H.; Powell, H.T.; Riley, M.O.; Wallerstein, E.P.; Wolfe, C.R.; Woods, B.W.

    1988-01-01

    Large Nd:glass laser disks for disk amplifiers require an edge cladding which absorbs at 1 μ m. This cladding prevents edge reflections from causing parasitic oscillations that would otherwise deplete the gain. The authors have developed a composite polymer-glass edge cladding that consists of absorbing glass strips bonded to the edges of laser glass disks using an epoxy adhesive. The edge cladding must survive a fluence of approximately 20 J/cm 2 in a 0.5-ms pulse. Failure can occur either by decomposition of the polymer or by mechanical failure from thermal stresses which leads to bond delamination. An epoxy has been developed that gives the required damage resistance, refractive index match and processing characteristics. A slight tilt of the disk edges greatly reduces the threat from parasitic oscillations and a glass surface treatment is used to promote bond adhesion. Laser disks fabricated with this new cladding show identical gain performance to disks using conventional fused-glass cladding and have been tested for over 2000 shots (equivalent to about a 4-year lifetime on Nova) with out degradation

  17. Chemical Composition Measurements of LAWA44 Glass Samples

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-15

    DOE is building the Hanford Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is temporarily stored in 177 underground tanks. Both low-activity and high-level wastes will then be vitrified into borosilicate glass using Joule-heated ceramic melters. Efforts are being made to increase the loading of Hanford tank wastes in the glass. One area of work is enhancing waste glass composition/property models and broadening the compositional regions over which those models are applicable. In this report, the Savannah River National Laboratory provides chemical analysis results for several samples of a simulated low-activity waste glass, LAWA44, provided by the Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 97.9 to 102.6 wt %, indicating acceptable recovery of the glass components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %. It was noted that the measured B2O3 concentrations are somewhat above the targeted values for the study glasses. No obvious trends were observed with regard to the multiple melting steps used to prepare the study glasses, indicating that any potential effects of volatility were below measurable thresholds.

  18. Glass bead cultivation of fungi

    Droce, Aida; Sørensen, Jens Laurids; Giese, H.

    2013-01-01

    Production of bioactive compounds and enzymes from filamentous fungi is highly dependent on cultivation conditions. Here we present an easy way to cultivate filamentous fungi on glass beads that allow complete control of nutrient supply. Secondary metabolite production in Fusarium graminearum...... and Fusarium solani cultivated on agar plates, in shaking liquid culture or on glass beads was compared. Agar plate culture and glass bead cultivation yielded comparable results while liquid culture had lower production of secondary metabolites. RNA extraction from glass beads and liquid cultures was easier...... to specific nutrient factors. •Fungal growth on glass beads eases and improves fungal RNA extraction....

  19. Sodium diffusion in boroaluminosilicate glasses

    Smedskjaer, Morten M.; Zheng, Qiuju; Mauro, John C.

    2011-01-01

    of isothermal sodium diffusion in BAS glasses by ion exchange, inward diffusion, and tracer diffusion experiments. By varying the [SiO2]/[Al2O3] ratio of the glasses, different structural regimes of sodium behavior are accessed. We show that the mobility of the sodium ions decreases with increasing [SiO2]/[Al2O......Understanding the fundamentals of alkali diffusion in boroaluminosilicate (BAS) glasses is of critical importance for advanced glass applications, e.g., the production of chemically strengthened glass covers for personal electronic devices. Here, we investigate the composition dependence...

  20. A system for the non-destructive detection of faults in safety fuses using radioisotopes

    Goncalves, D.

    1980-01-01

    Design of an equipment for on line detection of faults in the safety fuses for conventional explosives employing transmission of #betta#-radiation is reported. The faults are detected by an ion-chamber based on the variation of the intensity of the beta particles transmitted through the fuse during its passage across the collimated beam. Strontium-90 encapsulated in stainless steel or aluminum is used as the #betta#-source. An electrical signal corresponding the fault is obtained by subtraction of an external current, that is equivalent to the output of the ion-chamber in the presence of faultless fuse. (Author) [pt

  1. New gadolinium based glasses for gamma-rays shielding materials

    Kaewjang, S.; Maghanemi, U.; Kothan, S.; Kim, H.J.; Limkitjaroenporn, P.; Kaewkhao, J.

    2014-01-01

    Highlights: • Gd 2 O 3 based glasses have been fabricated and investigated radiation shielding properties between 223 and 662 keV. • Density of the glass increases with increasing of Gd 2 O 3. • All the glasses of Gd 2 O 3 compositions studied had been shown lower HVL than X-rays shielding window. • Prepared glasses to be utilized as radiation shielding material with Pb-free advantage. • This work is the first to reports on radiation shielding properties of Gd 2 O 3 based glass matrices. - Abstract: In this work, Gd 2 O 3 based glasses in compositions (80−x)B 2 O 3 -10SiO 2 -10CaO-xGd 2 O 3 (where x = 15, 20, 25, 30 and 35 mol%) have been fabricated and investigated for their radiation shielding, physical and optical properties. The density of the glass was found to increase with the increasing of Gd 2 O 3 concentration. The experimental values of mass attenuation coefficients (μ m ), effective atomic number (Z eff ) and effective electron densities (N e ) of the glasses were found to increase with the increasing of Gd 2 O 3 concentration and also with the decreasing of photon energy from 223 to 662 keV. The glasses of all Gd 2 O 3 compositions studied have been shown with lower HVL values in comparison to an X-rays shielding window, ordinary concrete and commercial window; indicating their potential as radiation shielding materials with Pb-free advantage. Optical spectra of the glasses in the present study had been shown with light transparency; an advantage when used as radiation shielding materials

  2. New gadolinium based glasses for gamma-rays shielding materials

    Kaewjang, S.; Maghanemi, U.; Kothan, S. [Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chang Mai University, Chang Mai 50200 (Thailand); Kim, H.J. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Limkitjaroenporn, P. [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand); Kaewkhao, J., E-mail: mink110@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand)

    2014-12-15

    Highlights: • Gd{sub 2}O{sub 3} based glasses have been fabricated and investigated radiation shielding properties between 223 and 662 keV. • Density of the glass increases with increasing of Gd{sub 2}O{sub 3.} • All the glasses of Gd{sub 2}O{sub 3} compositions studied had been shown lower HVL than X-rays shielding window. • Prepared glasses to be utilized as radiation shielding material with Pb-free advantage. • This work is the first to reports on radiation shielding properties of Gd{sub 2}O{sub 3} based glass matrices. - Abstract: In this work, Gd{sub 2}O{sub 3} based glasses in compositions (80−x)B{sub 2}O{sub 3}-10SiO{sub 2}-10CaO-xGd{sub 2}O{sub 3} (where x = 15, 20, 25, 30 and 35 mol%) have been fabricated and investigated for their radiation shielding, physical and optical properties. The density of the glass was found to increase with the increasing of Gd{sub 2}O{sub 3} concentration. The experimental values of mass attenuation coefficients (μ{sub m}), effective atomic number (Z{sub eff}) and effective electron densities (N{sub e}) of the glasses were found to increase with the increasing of Gd{sub 2}O{sub 3} concentration and also with the decreasing of photon energy from 223 to 662 keV. The glasses of all Gd{sub 2}O{sub 3} compositions studied have been shown with lower HVL values in comparison to an X-rays shielding window, ordinary concrete and commercial window; indicating their potential as radiation shielding materials with Pb-free advantage. Optical spectra of the glasses in the present study had been shown with light transparency; an advantage when used as radiation shielding materials.

  3. Molten (Mg0.88Fe0.12)2SiO4 at lower mantle conditions - Melting products and structure of quenched glasses

    Williams, Quentin

    1990-01-01

    Infrared spectra of quenched magnesium silicate glasses synthesized by fusing olivine at pressures in excess of 50 GPa and temperatures greater than 2500 K demonstrate that silicon is dominantly present in four-fold coordination with respect to oxygen within these quenched glasses. This low coordination is attributed, by analogy with the structural behavior of glasses compressed at 300 K, to the instability of higher coordinations in glasses of these compositions on decompression. Spectra of glasses formed in a hydrous environment document that water is extensively soluble in melts at these high pressures and temperatures. Also, these results are consistent with the melting of (Mg0.88Fe0.12)2SiO4 compositions to liquids near pyroxene in stoichiometry under these conditions, with iron-rich magnesiowuestite being the liquidus phase.

  4. Fabrication of Radiation Shielding Glasses Based on Lead-free High Refractive Index Glasses Prepared from Local Sand

    Dararutana, Pisutti; Dutchaneepet, Jirapan; Sirikulrat, Narin

    2007-08-01

    Full text: Lead glasses that show high refractive index are the best know and most popular for radiation shielding. Due to harmful effects of lead and considering the health as well as the environmental issues, lead-free glasses were developed. In this work, content of Chumphon sand was fixed at 40 % (by weight) as a main composition but concentrations of BaCO3 were varied from 6 to 30 % (by weight). It was found that the absorption coefficient of the glass samples containing 30 % BaCO3 was 0.233 cm-1 for Ba-133. The density was also measured. It can be concluded that the prepared lead free glasses offered adequate shielding to gamma radiation in comparison with the lead ones. These glasses were one of the environmental friendly materials

  5. Determination of the free enthalpies of formation of borosilicate glasses

    Linard, Y.

    2000-01-01

    This work contributes to the study of the thermochemical properties of nuclear waste glasses. Results are used to discuss mechanisms and parameters integrated in alteration models of conditioning materials. Glass is a disordered material defined thermodynamically as a non-equilibrium state. Taking into account one order parameter to characterise its configurational state, the metastable equilibrium for the glass was considered and the main thermochemical properties were determined. Calorimetric techniques were used to measure heat capacities and formation enthalpies of borosilicate glasses (from 3 to 8 constitutive oxides). Formation Entropies were measured too, using the entropy theory of relaxation processes proposed by Adam and Gibbs (1965). The configurational entropy contribution were determined from viscosity measurements. This set of data has allowed the calculation of Gibb's free energies of dissolution of glasses in pure water. By comparison with leaching experiments, it has been demonstrated that the decreasing of the dissolution rate at high reaction progress cannot be associated to the approach of an equilibrium between the sound glass and the aqueous solution. The composition changes of the reaction area at the glass surface need to be considered too. To achieve a complete description of the thermodynamic stability, the equilibrium between hydrated de-alkalinized glass and/or the gel layer with the aqueous solution should also be evaluated. (author)

  6. Investigation of waste glass pouring behavior over a knife edge

    Ebadian, M.A.

    1998-01-01

    The development of vitrification technology for converting radioactive waste into a glass solid began in the early 1960s. Some problems encountered in the vitrification process are still waiting for a solution. One of them is wicking. During pouring, the glass stream flows down the wall of the pour spout until it reaches an angled cut in the wall. At this point, the stream is supposed to break cleanly away from the wall of the pour spout and fall freely into the canister. However, the glass stream is often pulled toward the wall and does not always fall into the canister, a phenomenon known as wicking. Phase 1 involves the assembly, construction, and testing of a melter capable of supplying molten glass at operational flow rates over a break-off point knife edge. Phase 2 will evaluate the effects of glass and pour spout temperatures as well as glass flow rates on the glass flow behavior over the knife edge. Phase 3 will identify the effects on wicking resulting from varying the knife edge diameter and height as well as changing the back-cut angle of the knife edge. The following tasks were completed in FY97: Design the experimental system for glass melting and pouring; Acquire and assemble the melter system; and Perform initial research work

  7. Antagonist effects of calcium on borosilicate glass alteration

    Mercado-Depierre, S. [CEA Marcoule, DTCD SPDE LCLT, 30207 Bagnols sur Cèze (France); Angeli, F., E-mail: frederic.angeli@cea.fr [CEA Marcoule, DTCD SPDE LCLT, 30207 Bagnols sur Cèze (France); Frizon, F. [CEA Marcoule, DTCD SECM LP2C, 30207 Bagnols sur Cèze (France); Gin, S. [CEA Marcoule, DTCD SPDE LCLT, 30207 Bagnols sur Cèze (France)

    2013-10-15

    Graphical abstract: Display Omitted -- Highlights: •Kinetic study of glass alteration is investigated in calcium-enriched solutions. •New insights into silicon–calcium interactions in glass/cement systems are proposed. •Glass alteration is controlled by pH, Ca concentration and reaction progress. •Evidence of antagonist effects according to the importance of these parameters. -- Abstract: Numerous studies have been conducted on glass and cement durability in contact with water, but very little work to date has focused directly on interactions between the two materials. These interactions are mostly controlled by silicon–calcium reactivity. However, the physical and chemical processes involved remain insufficiently understood to predict the evolution of coupled glass–cement systems used in several industrial applications. Results are reported from borosilicate glass alteration in calcium-rich solutions. Our data show that four distinct behaviors can be expected according to the relative importance of three key parameters: the pH, the reaction progress (short- or long-term alteration) and the calcium concentration. Glass alteration is thus controlled by specific mechanisms depending on the solution chemistry: calcium complexation at the glass surface, precipitation of calcium silicate hydrates (C–S–H) or calcium incorporation in the altered layer. These findings highlight the impact of silicon–calcium interactions on glass durability and open the way for a better understanding of glass–cement mixing in civil engineering applications as well as in nuclear waste storage.

  8. Antagonist effects of calcium on borosilicate glass alteration

    Mercado-Depierre, S.; Angeli, F.; Frizon, F.; Gin, S.

    2013-01-01

    Graphical abstract: Display Omitted -- Highlights: •Kinetic study of glass alteration is investigated in calcium-enriched solutions. •New insights into silicon–calcium interactions in glass/cement systems are proposed. •Glass alteration is controlled by pH, Ca concentration and reaction progress. •Evidence of antagonist effects according to the importance of these parameters. -- Abstract: Numerous studies have been conducted on glass and cement durability in contact with water, but very little work to date has focused directly on interactions between the two materials. These interactions are mostly controlled by silicon–calcium reactivity. However, the physical and chemical processes involved remain insufficiently understood to predict the evolution of coupled glass–cement systems used in several industrial applications. Results are reported from borosilicate glass alteration in calcium-rich solutions. Our data show that four distinct behaviors can be expected according to the relative importance of three key parameters: the pH, the reaction progress (short- or long-term alteration) and the calcium concentration. Glass alteration is thus controlled by specific mechanisms depending on the solution chemistry: calcium complexation at the glass surface, precipitation of calcium silicate hydrates (C–S–H) or calcium incorporation in the altered layer. These findings highlight the impact of silicon–calcium interactions on glass durability and open the way for a better understanding of glass–cement mixing in civil engineering applications as well as in nuclear waste storage

  9. Integrated Disposal Facility FY 2012 Glass Testing Summary Report

    Pierce, Eric M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kerisit, Sebastien N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krogstad, Eirik J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burton, Sarah D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bjornstad, Bruce N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle MV [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-03-29

    PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

  10. Initial Examination of Low Velocity Sphere Impact of Glass Ceramics

    Morrissey, Timothy G [ORNL; Fox, Ethan E [ORNL; Wereszczak, Andrew A [ORNL; Ferber, Mattison K [ORNL

    2012-06-01

    This report summarizes US Army TARDEC sponsored work at Oak Ridge National Laboratory (ORNL) involving low velocity (< 30 m/s or < 65 mph) sphere impact testing of two materials from the lithium aluminosilicate family reinforced with different amounts of ceramic particulate, i.e., glass-ceramic materials, SCHOTT Resistan{trademark}-G1 and SCHOTT Resistan{trademark}-L. Both materials are provided by SCHOTT Glass (Duryea, PA). This work is a follow-up to similar sphere impact studies completed by the authors on PPG's Starphire{reg_sign} soda-lime silicate glass and SCHOTT BOROFLOAT{reg_sign} borosilicate glass. A gas gun or a sphere-drop test setup was used to produce controlled velocity delivery of silicon nitride (Si{sub 3}N{sub 4}) spheres against the glass ceramic tile targets. Minimum impact velocities to initiate fracture in the glass-ceramics were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between sphere and target material. Quasistatic spherical indentation was also performed on both glass ceramics and their contact damage responses were compared to those of soda-lime silicate and borosilicate glasses. Lastly, variability of contact damage response was assessed by performing spherical indentation testing across the area of an entire glass ceramic tile. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Resistan{trademark}-L glass ceramic required the highest velocity of sphere impact for damage to initiate. Starphire{reg_sign} soda-lime silicate glass was second best, then Resistan{trademark}-G1 glass ceramic, and then BOROFLOAT{reg_sign} borosilicate glass. (2) Glass-ceramic Resistan{trademark}-L also required the largest force to initiate ring crack from quasi-static indentation. That ranking was followed, in descending order, by Starphire{reg_sign} soda-lime silicate glass, Resistan{trademark}-G1 glass ceramic, and BOROFLOAT{reg_sign} borosilicate glass

  11. Low thermal expansion glass ceramics

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  12. Fun with singing wine glasses

    Boone, Christine; Galloway, Melodie; Ruiz, Michael J.

    2018-05-01

    A fun activity is presented using singing wine glasses for introductory physics students. Students tune a white wine glass and a red wine glass to as many semitones as possible by filling the glasses with the appropriate amounts of water. A smart phone app is used to measure the frequencies of equal-temperament tones. Then plots of frequency against water volume percent are made using a spreadsheet. Students can also play combinations of pitches with several glasses. A video (Ruiz 2018 Video: Singing glasses http://mjtruiz.com/ped/wineglasses/) is provided which includes an excerpt of a beautiful piece written for singing glasses and choir: Stars by Latvian composer Ēriks Ešenvalds.

  13. Bulk metallic glass matrix composites

    Choi-Yim, H.; Johnson, W.L.

    1997-01-01

    Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods. copyright 1997 American Institute of Physics

  14. The borosilicate glass for 'PAMELA'

    Schiewer, E.

    1986-01-01

    The low enriched waste concentrate (LEWC) stored at Mol, Belgium, will be solidified in the vitrification plant 'PAMELA'. An alkali-borosilicate glass was developed by the Hahn-Meitner-Institut, Berlin, which dissolves (11 +- 3)wt% waste oxides while providing sufficient flexibility for changes in the process parameters. The development of the glass labelled SM513LW11 is described. Important properties of the glass melt (viscosity, resistivity, formation of yellow phase) and of the glass (corrosion in aqueous solutions, crystallization) are reported. The corrosion data of this glass are similar to those of other HLW-glasses. Less than five wt% of crystalline material are produced upon cooling of large glass blocks. Crystallization does not affect the chemical durability. (Auth.)

  15. Production of glass or glass-ceramic to metal seals with the application of pressure

    Kelly, Michael D.; Kramer, Daniel P.

    1987-11-10

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  16. Rheological characterization of plasticized corn proteins for fused deposition modeling

    Chaunier, Laurent; Dalgalarrondo, Michèle; Della Valle, Guy; Lourdin, Denis; Marion, Didier; Leroy, Eric

    2017-10-01

    Additive Manufacturing (AM) of tailored natural biopolymer-based objects by Fused Deposition Modeling (FDM) opens new perspectives for applications such as biomedical temporary devices, or pharmaceutical tablets. This exploits the biocompatibility, resorbability and edibility properties of biopolymers. When adequately plasticized, zeins, storage proteins from endosperm of maize kernels, displayed thermomechanical properties possibly matching FDM processing requirements at a convenient temperature Tprinting=130°C. Indeed, with 20% glycerol added (Tg=42°C), plasticized zeins present a high modulus, E'>1GPa, at ambient conditions, which drops below 0.6 MPa at the processing temperature T=130°C, before flowing in the molten state. The rheological characterization shows that the processing window is limited by a progressive increase of viscosity linked to proteins aggregation and crosslinking by S-S bonding between cysteine amino acid residues, which can lead to gelation. However, for short residence time typical of FDM, the viscosity of plasticized zeins is comparable to the one of standard polymers, like ABS or PLA in their FDM processing conditions: indeed, in presence of glycerol, the molten zeins show a shear-thinning behavior with |η*|≈3kPa.s at 1s-1, decreasing to |η*|≈0.3kPa.s at 100s-1, at 130°C. Moreover, zeins presenting both hydrophilic and hydrophobic domains, amphiphilic plasticizers can be used supplementary to tune their rheological behavior. With 20% oleic acid added to the previous composition, the viscosity is divided down to a ratio about 1/2 at 100s-1 at 130°C, below the value of a standard polymer as PLA at its printing temperature. These results show the possible enhancement of the printability of zein-based materials in the molten state, by combining polar and amphiphilic plasticizers.

  17. Fused-data transrectal EIT for prostate cancer imaging.

    Murphy, Ethan K; Wu, Xiaotian; Halter, Ryan J

    2018-05-25

    Prostate cancer is a significant problem affecting 1 in 7 men. Unfortunately, the diagnostic gold-standard of ultrasound-guided biopsy misses 10%-30% of all cancers. The objective of this study was to develop an electrical impedance tomography (EIT) approach that has the potential to image the entire prostate using multiple impedance measurements recorded between electrodes integrated onto an end-fired transrectal ultrasound (TRUS) device and a biopsy probe (BP). Simulations and sensitivity analyses were used to investigate the best combination of electrodes, and measured tank experiments were used to evaluate a fused-data transrectal EIT (fd-TREIT) and BP approach. Simulations and sensitivity analysis revealed that (1) TREIT measurements are not sufficiently sensitive to image the whole prostate, (2) the combination of TREIT  +  BP measurements increases the sensitive region of TREIT-only measurements by 12×, and (3) the fusion of multiple TREIT  +  BP measurements collected during a routine or customized 12-core biopsy procedure can cover up to 76.1% or 94.1% of a nominal 50 cm 3 prostate, respectively. Three measured tank experiments of the fd-TREIT  +  BP approach successfully and accurately recovered the positions of 2-3 metal or plastic inclusions. The measured tank experiments represent important steps in the development of an algorithm that can combine EIT from multiple locations and from multiple probes-data that could be collected during a routine TRUS-guided 12-core biopsy. Overall, this result is a step towards a clinically deployable impedance imaging approach to scanning the entire prostate, which could significantly help to improve prostate cancer diagnosis.

  18. Cervical facet dislocation adjacent to the fused motion segment

    Kunio Yokoyama

    2016-01-01

    Full Text Available This study reports on a case that forces re-examination of merits and demerits of anterior cervical fusion. A 79-year-old male was brought to the emergency room (ER of our hospital after he fell and struck the occipital region of his head following excessive alcohol consumption. Four years prior, he had undergone anterior cervical discectomy and fusion of C5/6 and a magnetic resonance imaging (MRI performed 3 years after this surgery indicated that he was suffering from degeneration of C6/7 intervertebral discs. After arriving at the ER, he presented motor impairment at level C7 and lower of manual muscle testing grade 1 as well as moderate loss of physical sensation from the trunk and peripheries of both upper limbs to the peripheries of both lower limbs (Frankel B. Cervical computed tomography (CT indicated anterior dislocation of C6/7, and MRI indicated severe spinal cord edema. We performed manipulative reduction of C6/7 with the patient under general anesthesia. Next, we performed laminectomy on C5-T1 and posterior fusion on C6/7. Postoperative CT indicated that cervical alignment had improved, and MRI indicated that the spinal cord edema observed prior to surgery had been mitigated. Three months after surgery, motor function and sensory impairment of the lower limbs had improved, and the patient was ambulatory upon discharge from the hospital (Frankel D. In the present case, although C5 and 6 were rigidly fused, degeneration of the C6/7 intervertebral disc occurred and stability was compromised. As a result, even slight trauma placed a severe dynamic burden on the facet joint of C6/7, which led to dislocation.

  19. Constructing nature behind the glass

    Samuel J.M.M. Alberti

    2008-07-01

    Full Text Available By way of introducing this special issue of Museum and Society, ‘Constructing nature behind glass’, this paper first surveys the literature devoted to analyses of natural history objects and collections. Such work is to be found in interesting places – not only in museum studies, history of science, and professional museum literature, but also in visual studies, anthropology and cultural geography. After exploiting this writing for different perspectives on the cultural and practical construction of museum nature, this paper moves on to consider one popular topic, taxidermy. The ambiguous nature of taxidermic mounts, or ‘remnant models’, leads to a discussion of the relative status of specimen and artefact. I identify four configurations of their relationship: museum nature as opposed to material culture; museum nature as material culture; museum nature and material culture sharing parallel processes; and finally, museum nature and material culture entangled. All offer perspectives on the construction of nature and culture behind glass.

  20. Healthcare professionals' views of smart glasses in intensive care: A qualitative study.

    Romare, Charlotte; Hass, Ursula; Skär, Lisa

    2018-04-01

    The aim of this study was to describe healthcare professionals' views of smart glasses before their implementation in an intensive care unit, both regarding quality of use of the glasses and to identify possible intensive care situations where the glasses could be used to increase patient safety. Data were generated through focus group interviews and analysed using thematic content analysis. The findings describe participants' views of smart glasses divided into three categories; Smart glasses to facilitate work at intensive care unit; Quality of use and Utilisation. Participants assumed smart glasses to cause both effect and affect in intensive care. Participants' concern for patients arose recurrently and through their concern intention to work to promote patient safety. Smart glasses are suggested as a complement to existing monitoring and routines and cannot replace human presence in intensive care. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Glasses for Mali

    PH Department

    2008-01-01

    We are collecting old pairs of glasses to take out to Mali, where they can be re-used by people there. The price for a pair of glasses can often exceed 3 months salary, so they are prohibitively expensive for many people. If you have any old spectacles you can donate, please put them in the special box in the ATLAS secretariat, Bldg.40-4-D01 before the Christmas closure on 19 December so we can take them with us when we leave for Africa at the end of the month. (more details in ATLAS e-news edition of 29 September 2008: http://atlas-service-enews.web.cern.ch/atlas-service-enews/news/news_mali.php) many thanks! Katharine Leney co-driver of the ATLAS car on the Charity Run to Mali

  2. Glass manufacturing through induction

    Boen, R.; Paya, B.; Roscini, M.; Fautrelle, Y.; Tuaz, F.; Delage, D.

    1991-01-01

    Oxides and glasses are electrical and thermal insulators, but show the characteristic of being weakly conductors of electricity when they are melt. It is then possible to heat them through HF induction. This interesting property allows the development of a melting process in cold crucible induction furnace. The process is being studied and developed by a consortium made up of CFEI, CEA Marcoule, ELECTRICITE DE FRANCE and MADYLAM laboratory. The studies include 2 parts: a) One experimental part to develop the technology and research for satisfying configurations, through a small size platform (10 to 30 kg/h). The long run continuous pouring melting tests made on different kinds of glass allow to go-on with industrial range units. b) One theoretical part to understand the magneto-thermo-hydraulic phenomenon hardly in relation with the heavy dependence of the physical characteristics (electrical and heat conductivities, viscosity) according to temperature. 6 refs., 4 figs [fr

  3. Glass matrix armor

    Calkins, N.C.

    1991-01-01

    This patent describes an armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the insides surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material

  4. Breaking the glass ceiling.

    Lazarus, A

    1997-03-01

    The glass ceiling is a form of organizational bias and discrimination that prevents qualified professionals from achieving positions of top governance and leadership. This article examines glass ceiling barriers that keep physicians from the upper reaches of management. While these factors apply mainly to women and minority physicians in academia, and are attributable to sexual harassment and discrimination, physicians as a class are frequently denied executive management positions. Such denial results from inadequate preparation for a career in health care administration. Important issues in the professional development of physician executives include mentoring, training and education, administrative experience, and cultural and personality factors. All of those must be considered when making the transition from medicine to management.

  5. HLW immobilization in glass

    Leroy, P.; Jacquet-Francillon, N.; Runge, S.

    1992-01-01

    The immobilization of High Level Waste in glass in France is a long history which started as early as in the 1950's. More than 30 years of Research and Development have been invested in that field. Two industrial facilities are operating (AVM and R7) and a third one (T7), under cold testing, is planned to start active operation in the mid-92. While vitrification has been demonstrated to be an industrially mastered process, the question of the quality of the final waste product, i.e. the HLW glass, must be addressed. The scope of the present paper is to focus on the latter point from both standpoints of the R and D and of the industrial reality

  6. Single- and double energy N{sup +} ion irradiated planar optical waveguides in Er: Tungsten–tellurite oxide glass and sillenite type Bismuth Germanate crystals working up to telecommunications wavelengths

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Department of Crystal Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Zolnai, Z.; Fried, M.; Lohner, T. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Berneschi, S.; Righini, G.C. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Pelli, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2013-07-15

    Ion implantation proved to be a universal technique for producing waveguides in most optical materials. Tellurite glasses are good hosts of rare-earth elements for the development of fibre and integrated optical amplifiers and lasers covering all the main telecommunication bands. Er{sup 3+}-doped tellurite glasses are good candidates for the fabrication of broadband amplifiers in wavelength division multiplexing around 1.55 μm, as they exhibit large stimulated cross sections and broad emission bandwidth. Fabrication of channel waveguides in such a material via N{sup +} ion implantation was reported recently. Sillenite type Bismuth Germanate (BGO) crystals are good nonlinear optical materials. Parameters of waveguide fabrication in both materials via implantation of MeV-energy N{sup +} ions were optimized. First single-energy implantations at 3.5 MeV at various fluences were applied. Waveguide operation up to 1.5 μm was observed in both materials. Then double-energy implantations at a fixed upper energy of 3.5 MeV and lower energies between 2.5 and 3.1 MeV were performed to suppress leaky modes by increasing barrier width. Improvement of waveguide characteristics was found by m-line spectroscopy and spectroscopic ellipsometry.

  7. Amorphous gauge glass theory

    Nielsen, H.B.; Bennett, D.L.

    1987-08-01

    Assuming that a lattice gauge theory describes a fundamental attribute of Nature, it should be pointed out that such a theory in the form of a gauge glass is a weaker assumption than a regular lattice model in as much as it is not constrained by the imposition of translational invariance; translational invariance is, however, recovered approximately in the long wavelength or continuum limit. (orig./WL)

  8. New insight on glass-forming ability and designing Cu-based bulk metallic glasses: The solidification range perspective

    Wu, Jili; Pan, Ye; Li, Xingzhou; Wang, Xianfei

    2014-01-01

    Highlights: • The equation, T rg = T g /T l , was rotationally modified to T rg = κ(T m /T l ) + C/T l . • The newly generalized equation suggests a way for describing glass-forming ability. • Several new Cu-based bulk metallic glasses were discovered by solidification range. - Abstract: In this paper, a new equation was rationally generalized from the reduced glass transition temperature. This equation indicates that solidification range can be used for describing glass-forming ability, which can be calculated with the aid of computational thermodynamic approach. Based on this scenario, several new Cu-based bulk metallic glasses in the ternary Cu–Zr–Ti alloy system were discovered. The as-cast samples were characterized by X-ray diffraction and transmission electronic microscopy. The results indicate that as-cast samples have monolithic amorphous nature. Thermal analysis validates that the smaller solidification range is closely related to the higher glass-forming ability, which is contributed to the effect of solidification time on the formation of bulk metallic glasses. This work also suggests that solidus can influence glass formation

  9. Damage characterization of E-glass and C-glass fibre polymer composites after high velocity impact

    Razali, N.; Sultan, M. T. H.; Cardona, F.; Jawaid, M.

    2017-12-01

    The purpose of this work is to identify impact damage on glass fibre reinforced polymer composite structures after high velocity impact. In this research, Type C-glass (600 g/m2) and Type E-glass (600 g/m2) were used to fabricate Glass Fibre-Reinforced Polymer composites (GFRP) plates. The panels were fabricated using a vacuum bagging and hot bounder method. Single stage gas gun (SSGG) was used to do the testing and data acquisition system was used to collect the damage data. Different types of bullets and different pressure levels were used for the experiment. The obtained results showed that the C-glass type of GFRP experienced more damage in comparison to E-glass type of materials based on the amount of energy absorbed on impact and the size of the damage area. All specimens underwent a partial fibre breakage but the laminates were not fully penetrated by the bullets. This indicated that both types of materials have high impact resistance even though the applied pressures of the gas gun were on the high range. We concluded that within the material specifications of the laminates including the type of glass fibre reinforcement and the thickness of the panels, those composite materials are safe to be applied in structural and body armour applications as an alternative to more expensive materials such as Kevlar and type S-glass fibre based panels.

  10. Preparation of Novel Fused Ring Spiro[benzotetraphene-fluorene] Derivatives and Application for Deep-Blue Host Materials

    Kim, Minji; Lee, Chilwon; Gong, Myoungseon [Dankook Univ., Yongin (Korea, Republic of)

    2014-06-15

    A series of novel fused-ring spiro compounds, spiro[benzo[ij]tetraphene-7,9'-fluorene] derivatives containing an end-capping aryl substituent at both the C3 and C10-positions has been designed and synthesized via multi-step Suzuki coupling reactions. 3-(1-Naphthyl)-10-phenyl, 3-(2-naphthyl)-10-phenyl and 3-[4-(1-naphthyl)phenyl]-10-phenyl showed improved glass transition temperatures (T{sub g}) with good thermal stability. Their photophysical, electrochemical, and electroluminescent properties were investigated and were used to construct blue organic light emission diodes (OLEDs). The typical OLED devices showed excellent performance; the based device exhibited highly efficient deep blue-light emission with a maximum efficiency of 5.27 cd/A (EQE, 4.63%) with CIE (x = 0.133, y = 0.144). According to these characteristics, these deep-blue light emitting materials have sufficient potential for fluorescent OLED applications.

  11. Rapid Detection and Identification of Overdose Drugs in Saliva by Surface-Enhanced Raman Scattering Using Fused Gold Colloids

    Frank Inscore

    2011-07-01

    Full Text Available The number of drug-related emergency room visits in the United States doubled from 2004 to 2009 to 4.6 million. Consequently there is a critical need to rapidly identify the offending drug(s, so that the appropriate medical care can be administered. In an effort to meet this need we have been investigating the ability of surface-enhanced Raman spectroscopy (SERS to detect and identify numerous drugs in saliva at ng/mL concentrations within 10 minutes. Identification is provided by matching measured spectra to a SERS library comprised of over 150 different drugs, each of which possess a unique spectrum. Trace detection is provided by fused gold colloids trapped within a porous glass matrix that generate SERS. Speed is provided by a syringe-driven sample system that uses a solid-phase extraction capillary combined with a SERS-active capillary in series. Spectral collection is provided by a portable Raman analyzer. Here we describe successful measurement of representative illicit, prescribed, and over-the-counter drugs by SERS, and 50 ng/mL cocaine in saliva as part of a focused study.

  12. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    Abe, Yuichiro

    2017-08-15

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  13. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    Abe, Yuichiro; Savikhin, Victoria; Yin, Jun; Grimsdale, Andrew C.; Soci, Cesare; Toney, Michael F.; Lam, Yeng Ming

    2017-01-01

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  14. Radiation shielding glass

    Kido, Kazuhiro; Ueda, Hajime.

    1997-01-01

    It was found that a glass composition comprising, as essential ingredients, SiO 2 , PbO, Gd 2 O 3 and alkali metal oxides can provide a shielding performance against electromagnetic waves, charged particles and neutrons. The present invention provides radiation shielding glass containing at least from 16 to 46wt% of SiO 2 , from 47 to 75wt% of PbO, from 1 to 10wt% of Gd 2 O 3 , from 0 to 3wt% of Li 2 O, from 0 to 7wt% of Na 2 O, from 0 to 7wt% of K 2 O provided that Li 2 O + Na 2 O + K 2 O is from 1 to 10wt%, B 2 O 3 is from 0 to 10wt%, CeO 2 is from 0 to 3wt%, As 2 O 3 is from 0 to 1wt% and Sb 2 O 3 is from 0 to 1wt%. Since the glass can shield electromagnetic waves, charged particles and neutrons simultaneously, radiation shielding windows can be designed and manufactured at a reduced thickness and by less constitutional numbers in a circumstance where they are present altogether. (T.M.)

  15. Reuse of ground waste glass as aggregate for mortars.

    Corinaldesi, V; Gnappi, G; Moriconi, G; Montenero, A

    2005-01-01

    This work was aimed at studying the possibility of reusing waste glass from crushed containers and building demolition as aggregate for preparing mortars and concrete. At present, this kind of reuse is still not common due to the risk of alkali-silica reaction between the alkalis of cement and silica of the waste glass. This expansive reaction can cause great problems of cracking and, consequently, it can be extremely deleterious for the durability of mortar and concrete. However, data reported in the literature show that if the waste glass is finely ground, under 75mum, this effect does not occur and mortar durability is guaranteed. Therefore, in this work the possible reactivity of waste glass with the cement paste in mortars was verified, by varying the particle size of the finely ground waste glass. No reaction has been detected with particle size up to 100mum thus indicating the feasibility of the waste glass reuse as fine aggregate in mortars and concrete. In addition, waste glass seems to positively contribute to the mortar micro-structural properties resulting in an evident improvement of its mechanical performance.

  16. Energy landscapes in proteins and glasses

    Singh, Sadanand

    Soft materials are ubiquitous in our day-to-day life. They include liquids, colloids, polymers, foams, gels, granular systems, and a number of biological materials. While these materials exhibit a wide range of textures and morphologies, many of their properties have common physicochemical origins. A better understanding of such origins would lead to rational design and engineering of functional soft materials. A common feature of soft materials is the wide range of time and length scales that characterizes their behavior. Unfortunately, available molecular modeling techniques are often ill-suited for problems that exhibit multiple length and time scales. In this thesis, we introduce and implement new simulation methods that have enabled molecular-level studies of soft materials. Such methods permit calculation of free energy surfaces, and we demonstrate their usefulness in the context of proteins and glasses, both of which exhibit rugged free energy landscapes. A first application is concerned with human amylin, a protein associated with Type II diabetes. Patients with Type II diabetes exhibit fibrillar deposits of human amylin protein in the pancreas. By applying the advanced simulation methods and algorithms developed in this work, we investigate the structure and folding dynamics of human amylin. A detailed mechanism is presented at the atomic-level for the nucleation and aggregation of the peptide. The results presented in this work could help in development of therapeutic strategies for Type II diabetes. The second application is concerned with the study of vapor-deposited ultrastable glasses. These stable glasses have, far below the conventional glass transition temperature, the properties expected from the equilibrium supercooled liquid state. Our results indicate that optimal stability is attained when deposition occurs near the Kauzmann temperature. We also show that the extraordinary stability of model vapor deposited glasses is associated with distinct

  17. Non-destructive testing of rocket fuse by thermal neutron radiography

    An Fulin; Li Furong

    1999-01-01

    A neutron radiography system in reactor horizontal hole of Tsinghua University was introduced, and its capability of neutron radiography was evaluated by theory and experiment, the non-destructive testing for rocket fuse is successful

  18. 2012 and 2013 Air Quality Fused Surface for the Conterminous U.S. Map Service

    U.S. Environmental Protection Agency — This web service contains a polygon layer that depicts fused air quality predictions for 2012, 2013, and 2014 for census tracts in the conterminous United States....

  19. Endodontic management of a mandibular third molar fused with a fourth molar.

    Turell, I L; Zmener, O

    1999-05-01

    Developmental anomalies in permanent molars frequently require surgical intervention. A case of a mandibular third molar fused with a fourth molar which was successfully treated with conservative endodontic therapy is reported.

  20. Technological aspects of using protective fuses in low-voltage mine networks

    Kowalski, Z; Pudelko, H

    1986-04-01

    Protection systems are evaluated for mining equipment used in underground coal mining in Poland. Operation of contactor switches is analyzed. Systems for protection of vacuum contactor switches from overload are comparatively evaluated. Types of current reducers are reviewed. Design of the aM protection fuse which is activated only when overload current exceeds the limiting level is analyzed. Protection fuses with the aM characteristic meeting IEC and VDE requirements for fuses used in SV5, SV7 and SV8 vacuum contactors for power networks of up to 1000 V are evaluated. Characteristics of the vacuum contactors manufactured in Poland are given in 6 diagrams and 2 tables. Reliability of the vacuum contactors with aM protection fuses is analyzed. 8 references.

  1. Diagnosis and staging of breast cancer by SPECT images fused with CT images

    Li Yanjing; Zhu Qiaomei

    2007-01-01

    Objective: To evaluate the TNM staging value of 99mTc-MIBI scintimammotraphy with SPECT-CT images fusing for the diagnosis of breast cancer. Methods: 10 patients with breast cancer underwent scintimammography with 99mTc-MIBI, and SPECT images were fused with CT images. Images were compared with final diagnosis confirmed by histopathology. Results: Of the 19 breast cancer patients, one case of invasive ductal carcinoma showed false-negative. Among 18 cases of positive lesions, axillary metastases were involved in 10, supraclavicular nodes were also defined in 3, para-sternum nodes were involved in 2, 2 were missed and 1 cases without metastatic node. The axillary lymph nodes were divided into three levels with respect to their position relative to the pectoralis minor muscle by fused images. Conclusion: 99mTc-MIBI scintimammotraphy combined with SPECT-CT images fusing is of some clinical value in TNM staging of breast cancer. (authors)

  2. Synthesis and properties of nitrogenous heterocycles containing a spiro-fused cyclopropane fragment

    Tomilov, Yury V; Nefedov, Oleg M; Kostyuchenko, Irina V

    2000-01-01

    The published data on the methods of synthesis and chemical transformations of nitrogenous heterocyclic compounds spiro-fused with a cyclopropane fragment are described systematically and generalised. The bibliography includes 146 references.

  3. The chemistry of furazans fused to six- and seven-membered heterocycles with one heteroatom

    Sheremetev, Aleksei B

    1999-01-01

    The data on the synthesis and properties of furazan derivatives fused with pyridine, pyran, thiopyran, azepine and thiepine rings are surveyed and described systematically. The bibliography includes 85 references.

  4. Thermal conductivity contrast measurement of Fused Silica exposed to low-energy femtosecond laser pulses

    Bellouard, Y.J.; Dugan, M.; Said, A.A.; Bado, P.

    2006-01-01

    Femtosecond laser irradiation has various noticeable effects on fused silica. Of particular interest, pulses with energy levels below the ablation threshold can locally increase the refractive index and the material etching selectivity to hydrofluoric acid. The mechanism responsible for these

  5. Effects of glass fibers on the properties of micro molded plastic parts

    Islam, Aminul; Hansen, Hans Nørgaard; Gasparin, Stefania

    2011-01-01

    Glass fibers are used to reinforce plastics and to improve their mechanical properties. But plastic filled with glass fibers is a concern for molding of micro scale plastic parts. The aim of this paper is to investigate the effects of glass fiber on the replication quality and mechanical properties...... of polymeric thin ribs. It investigates the effect of feature size and gate location on distribution of glass fibers inside the molded parts. The results from this work indicate that glass filled plastic materials have poor replication quality and nonhomogeneous mechanical properties due to the nonuniform...

  6. Design and test of the borosilicate glass burnable poison rod for Qinshan nuclear power plant core

    Huang Jinhua; Sun Hanhong

    1988-08-01

    Material for the burnable poison of Qinshan Nuclear Power Plant core is GG-17 borosilicate glass. The chemical composition and physico-chemical properties of GG-17 is very close to Pyrex-7740 glass used by Westinghouse. It is expected from the results of the experiments that the borosilicate glass burnable poison rod can be successfully used in Qinshan Nuclear Power Plant due to good physical, mechanical, corrosion-resistant and irradiaton properties for both GG-17 glass and cold-worked stainless steel cladding. Change of material for burnable poison from boron-bearing stainless steel to borosilicate glass will bring about much more economic benefit to Qinshan Naclear Power Plant

  7. Laboratory testing of LITCO glasses

    Ellison, A.; Wolf, S.; Buck, E.; Luo, J.S.; Dietz, N.; Bates, J.K.; Ebert, W.L.

    1995-01-01

    The purpose of this program is to measure, the intermediate and long-term durability of glasses developed by Lockheed Idaho Technology Co. (LITCO) for the immobilization of calcined radioactive wastes. The objective is to use accelerated corrosion tests as an aid in developing durable waste form compositions. This is a report of tests performed on two LITCO glass compositions, Formula 127 and Formula 532. The main avenue for release of radionuclides into the environment in a geologic repository is the reaction of a waste glass with ground water, which alters the glass and releases its components into solution. These stages in glass corrosion are analyzed by using accelerated laboratory tests in which the ratio of sample surface area to solution volume, SA/V, is varied. At low SA/V, the solution concentrations of glass corrosion products remain low and the reaction approaches the forward rate. At higher SA/V the solution approaches saturation levels for glass corrosion products. At very high SA/V the solution is rapidly saturated in glass corrosion products and secondary crystalline phases precipitate. Tests at very high SA/V provide information about the composition of the solution at saturation or, when no solution is recovered, the identities and the order of appearance of secondary crystalline phases. Tests were applied to Formula 127 and Formula 532 glasses to provide information about the interim and long-term stages in glass corrosion

  8. Glass containing radioactive nuclear waste

    Boatner, L.A.; Sales, B.C.

    1985-01-01

    Lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level-radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800 C, since they exhibit very low melt viscosities in the 800 to 1050 C temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550 C and are not adversely affected by large doses of gamma radiation in H 2 O at 135 C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear waste forms. (author)

  9. Transferability of glass lens molding

    Katsuki, Masahide

    2006-02-01

    Sphere lenses have been used for long time. But it is well known that sphere lenses theoretically have spherical aberration, coma and so on. And, aspheric lenses attract attention recently. Plastic lenses are molded easily with injection machines, and are relatively low cost. They are suitable for mass production. On the other hand, glass lenses have several excellent features such as high refractive index, heat resistance and so on. Many aspheric glass lenses came to be used for the latest digital camera and mobile phone camera module. It is very difficult to produce aspheric glass lenses by conventional process of curve generating and polishing. For the solution of this problem, Glass Molding Machine was developed and is spreading through the market. High precision mold is necessary to mold glass lenses with Glass Molding Machine. The mold core is ground or turned by high precision NC aspheric generator. To obtain higher transferability of the mold core, the function of the molding machine and the conditions of molding are very important. But because of high molding temperature, there are factors of thermal expansion and contraction of the mold and glass material. And it is hard to avoid the factors. In this session, I introduce following items. [1] Technology of glass molding and the machine is introduced. [2] The transferability of glass molding is analyzed with some data of glass lenses molded. [3] Compensation of molding shape error is discussed with examples.

  10. Evaluation of the glow curves of a new glass matrix

    Oliveira, Nathália S.; Souza, Samara P.; Ferreira, Pâmela Z.; Dantas, Noelio O.; Silva, Anielle C.A.; Neves, Lucio P.; Perini, Ana P.; Carrera, Betzabel N.S.; Watanabe, Shigueo

    2017-01-01

    Thermoluminescence is a dosimetric technique with may be used to personal, clinical, environmental and high doses. In this work a new glass matrix, with nominal composition of 20Li 2 CO 3 .10Al 2 O 3 .25BaO.45B 2 O 3 (mol%), was studied by the thermoluminescence technique. The glow curves was be analyzed, after the irradiation of this glass matrix with high doses. The results showed that this new glass matrix has a temperature peak in 260°C, which is ideal for dosimetry applications. (author)

  11. Novel Synthesis of Calcium Oxide-Aluminum Oxide Glasses

    Weber, J. K. Richard; Tangeman, Jean A.; Key, Thomas S.; Hiera, Kirsten J.; Paradis, Paul-Francois; Ishikawa, Takehiko; Yu, Jianding; Yoda, Shinichi

    2002-05-01

    Binary Al2O3:CaO glasses containing 36-50 mole% Al2O3 were synthesized by containerless processing of liquids in nitrogen using aerodynamic and a pressurized electrostatic-aerodynamic levitator. The critical cooling rate for glass formation RC under containerless conditions was ca. 70 K/s. The Vickers hardness of the glasses was 775-785; and the infrared transmission extended to approximately 5500 nm. The work function of the 36 mole% Al2O3 composition was 3.7 eV at 1100 K.

  12. Search for stress dependence in the internal friction of fused silica

    Willems, Phil; Lamb, Corinne; Heptonstall, Alastair; Hough, Jim

    2003-01-01

    The quality factor (Q) of the vertical bounce mode of a fused silica fiber pendulum is measured at high and low stresses. The internal friction of fused silica fibers is found to be independent of stress from 12.8 to 213 MPa at a level of 1.6x10 -8 . Comparison with Q's of fiber bending modes is consistent with losses concentrated in the surface of the fiber

  13. Primary retroperitoneal teratoma and crossed fused renal ectopia with turner's syndrome -a case report-

    Kim, Yun Jung; Hong, Ki Ung [St. Francisco General Hospital, New York (United States)

    1988-02-15

    In 1938, Turner described a clinical entity in phenotype females characterized by sexual infantilism, congenital webbed neck and cubitus valgus. After then, the occurrence of renal anomalies in patients with Turner's syndrome has been recognized. Associated crossed fused renal ectopia is very rare. Primary retroperitoneal teratoma is also rare and usually during childhood. The authors report a case of primary retroperitoneal teratoma and crossed fused renal ectopia with Turner's syndrome (mosaic type). The clinical, pathological and radiographical findings are reviewed.

  14. Primary retroperitoneal teratoma and crossed fused renal ectopia with turner's syndrome -a case report-

    Kim, Yun Jung; Hong, Ki Ung

    1988-01-01

    In 1938, Turner described a clinical entity in phenotype females characterized by sexual infantilism, congenital webbed neck and cubitus valgus. After then, the occurrence of renal anomalies in patients with Turner's syndrome has been recognized. Associated crossed fused renal ectopia is very rare. Primary retroperitoneal teratoma is also rare and usually during childhood. The authors report a case of primary retroperitoneal teratoma and crossed fused renal ectopia with Turner's syndrome (mosaic type). The clinical, pathological and radiographical findings are reviewed

  15. Anthracene-fused BODIPYs as near-infrared dyes with high photostability

    Zeng, Lintao; Jiao, Chongjun; Huang, Xiaobo; Huang, Kuo-Wei; Chin, Weeshong; Wu, Jishan

    2011-01-01

    An anthracene unit was successfully fused to the zigzag edge of a boron dipyrromethene (BODIPY) core by an FeCl 3-mediated oxidative cyclodehydrogenation reaction. Meanwhile, a dimer was also formed by both intramolecular cyclization and intermolecular coupling. The anthracene-fused BODIPY monomer 7a and dimer 7b showed small energy gaps (∼1.4 eV) and near-infrared absorption/emission. Moreover, they exhibited high photostability. © 2011 American Chemical Society.

  16. Anthracene-fused BODIPYs as near-infrared dyes with high photostability

    Zeng, Lintao

    2011-11-18

    An anthracene unit was successfully fused to the zigzag edge of a boron dipyrromethene (BODIPY) core by an FeCl 3-mediated oxidative cyclodehydrogenation reaction. Meanwhile, a dimer was also formed by both intramolecular cyclization and intermolecular coupling. The anthracene-fused BODIPY monomer 7a and dimer 7b showed small energy gaps (∼1.4 eV) and near-infrared absorption/emission. Moreover, they exhibited high photostability. © 2011 American Chemical Society.

  17. Enhancement of laser induced damage threshold of fused silica by acid etching combined with UV laser conditioning

    Chen Meng; Xiang Xia; Jiang Yong; Zu Xiaotao; Yuan Xiaodong; Zheng Wanguo; Wang Haijun; Li Xibin; Lu Haibing; Jiang Xiaodong; Wang Chengcheng

    2010-01-01

    Acid etching combined with UV laser conditioning is developed to enhance the laser induced damage threshold (LIDT) of fused silica. Firstly, the fused silica is etched for 1 ∼ 100 min with a buffered 1% HF solution. After acid etching, its transmittance, surface roughness and LIDT are measured. The results reveal that the fused silica has the highest LIDT and transmittance after etching for 10 min. Then UV laser (355 nm) conditioning is adopted to process the 10-min-etched fused silica. When the laser fluence is below 60% of fused silica's zero probability damage threshold, the LIDT increases gradually with the increase of laser conditioning fluence. However, the LIDT rapidly decreases to be lower than the threshold of the 10-min-etched fused silica when the conditioning fluence is up to 80% of the threshold. Proper acid etching and laser conditioning parameters will effectively enhance the laser damage resistance of fused silica. (authors)

  18. Radioactivity measurements for some ophthalmic glasses

    Badawy, W.M.; Ali, E.M.; Gomaa, M.A.; Hussein, A

    2007-01-01

    The main aim of the present work is to implant the latest ICRP/IAEA recommendations related to exemption and clearness to the Ophthalmic Glass. As consumer product, glass lenses may contain trace quantities of uranium, thorium and potassium. Glass lenses under investigation were monitored for the detection of gamma rays and beta particles using radiation measuring devices. Using high purity germanium detector radioactivity concentration was estimated in Bq/kg. Activity concentration of 226 Ra, Th-232 and K-40 were determined using the energy gamma lines of 2l4 Pb (352 keV), 212 Pb (238 keV) and 1460 keV gamma line for 40 K respectively .Experimental results showed that radioactivity concentration for radium -226 varies from 0.19 to 4.98 Bq/kg of radium-226, from to 0.18 to 2.83 Bq/kg for thorium -232 and from 0.8 to 1.13 Bq/kg for potassium. Implementing new ICRP recommendation of exemption and clearness indicated that several Ophthalmic Glass should not be in use

  19. Cavitation and pore blocking in nanoporous glasses.

    Reichenbach, C; Kalies, G; Enke, D; Klank, D

    2011-09-06

    In gas adsorption studies, porous glasses are frequently referred to as model materials for highly disordered mesopore systems. Numerous works suggest that an accurate interpretation of physisorption isotherms requires a complete understanding of network effects upon adsorption and desorption, respectively. The present article deals with nitrogen and argon adsorption at different temperatures (77 and 87 K) performed on a series of novel nanoporous glasses (NPG) with different mean pore widths. NPG samples contain smaller mesopores and significantly higher microporosity than porous Vycor glass or controlled pore glass. Since the mean pore width of NPG can be tuned sensitively, the evolution of adsorption characteristics with respect to a broadening pore network can be investigated starting from the narrowest nanopore width. With an increasing mean pore width, a H2-type hysteresis develops gradually which finally transforms into a H1-type. In this connection, a transition from a cavitation-induced desorption toward desorption controlled by pore blocking can be observed. Furthermore, we find concrete hints for a pore size dependence of the relative pressure of cavitation in highly disordered pore systems. By comparing nitrogen and argon adsorption, a comprehensive insight into adsorption mechanisms in novel disordered materials is provided. © 2011 American Chemical Society

  20. Experimental study of glass sampling devices

    Jouan, A.; Moncouyoux, J.P.; Meyere, A.

    1992-01-01

    Two high-level liquid waste containment glass sampling systems have been designed and built. The first device fits entirely inside a standard glass storage canister, and may thus be used in facilities not initially designed for this function. It has been tested successfully in the nonradioactive prototype unit at Marcoule. The work primarily covered the design and construction of an articulated arm supporting the sampling vessel, and the mechanisms necessary for filling the vessel and recovering the sample. System actuation and operation are fully automatic, and the resulting sample is representative of the glass melt. Implementation of the device is delicate however, and its reliability is estimated at about 75%. A second device was designed specifically for new vitrification facilities. It is installed directly on the glass melting furnace, and meets process operating and quality control requirements. Tests conducted at the Marcoule prototype vitrification facility demonstrated the feasibility of the system. Special attention was given to the sampling vessel transfer mechanisms, with two filling and controlled sample cooling options

  1. Gordon S. Fulcher: Renaissance Man of Glass Science

    Mauro, John

    2014-11-01

    To a glass scientist, the name “Fulcher” conjures images of viscosity vs. temperature diagrams for glass-forming liquids. Indeed, Gordon Fulcher’s seminal 1925 publication, in which he proposed his three-parameter model of viscosity, is one of the most significant and influential papers ever published in the field of glass science. Fulcher developed this equation during the early part of his 14-year career at Corning Glass Works (1920-1934). However, Fulcher’s work in viscosity represents a small fraction of his highly diverse and accomplished career, which included pioneering the field of electrocast ceramics and developing the modern system of scientific abstracting that it still in use today. Fulcher also had a keen interest in social and economic problems, and his latter research focused heavily on the field of metacognition, i.e., the process of thinking.

  2. Hole-assisted fiber based fiber fuse terminator supporting 22 W input

    Tsujikawa, Kyozo; Kurokawa, Kenji; Hanzawa, Nobutomo; Nozoe, Saki; Matsui, Takashi; Nakajima, Kazuhide

    2018-05-01

    We investigated the air hole structure in hole-assisted fiber (HAF) with the aim of terminating fiber fuse propagation. We focused on two structural parameters c/MFD and S1/S2, which are related respectively to the position and area of the air holes, and mapped their appropriate values for terminating fiber fuse propagation. Here, MFD is the mode field diameter, c is the diameter of an inscribed circle linking the air holes, S1 is the total area of the air holes, and S2 is the area of a circumscribed circle linking the air holes. On the basis of these results, we successfully realized a compact fiber fuse terminator consisting of a 1.35 mm-long HAF, which can terminate fiber fuse propagation even with a 22 W input. In addition, we observed fiber fuse termination using a high-speed camera. We additionally confirmed that the HAF-based fiber fuse terminator is effective under various input power conditions. The penetration length of the optical discharge in the HAF was only less than 300 μm when the input power was from 2 to 22 W.

  3. [Effects of laser welding on bond of porcelain fused cast pure titanium].

    Zhu, Juan-fang; He, Hui-ming; Gao, Bo; Wang, Zhong-yi

    2006-04-01

    To investigate the influence of the laser welding on bond of porcelain fused to cast pure titanium. Twenty cast titanium plates were divided into two groups: laser welded group and control group. The low-fusing porcelain was fused to the laser welded cast pure titanium plates at fusion zone. The bond strength of the porcelain to laser welded cast pure titanium was measured by the three-point bending test. The interface of titanium and porcelain was investigated by scanning electron microscopy (SEM) and energy depressive X-ray detector (EDX). The non-welded titanium plates were used as comparison. No significant difference of the bond strength was found between laser-welded samples [(46.85 +/- 0.76) MPa] and the controls [(41.71 +/- 0.55) MPa] (P > 0.05). The SEM displayed the interface presented similar irregularities with a predominance. The titanium diffused to low-fusing porcelain, while silicon and aluminum diffused to titanium basement. Laser welding does not affect low-fusing porcelain fused to pure titanium.

  4. Composition and property measurements for PHA Phase 4 glasses

    Edwards, T.B.

    2000-01-01

    at the low end of the viscosity range (20 poise). Although the HM sludge glass examined (10 wt% PHA) had a measured viscosity of ∼90 poise, the HM glasses at 7wt% PHA are predicted to be higher than the 100 poise limit for DWPF. Further work will be required to resolve these issues

  5. Characterization of iron phosphate glasses prepared by microwave heating

    Almeida, Fabio Jesus Moreira de

    2006-01-01

    Phosphate glasses have been investigated since the fifties, because they are relatively easy to prepare, have low melting temperatures (1000 deg C - 1200 deg C and low glass transition. However, these glasses were very sensitive to humidity, showing a very low chemical durability. Iron phosphate glasses have been prepared by melting inorganic precursors in conventional electric furnaces and induction furnaces. By adding iron, phosphate glasses became chemical resistant and were thought to be used as nuclear waste forms or mechanical resistance fibers. The use of microwaves has been investigated because it makes possible a fast and homogeneous heating of the materials. Microwave promotes the self-heating of the material by the interaction of the external electromagnetic field with the molecules and ions of the material. Niobium phosphate glasses was also produced already through the heating of precursors in microwave ovens. Other glasses containing iron in theirs structure was produced by conventional furnaces and they had your structures analyzed. But even so, it was not still published synthesis of iron phosphate glasses starting from the melting of precursors materials in microwave ovens. In the present work mixtures of (NH 4 ) 2 HPO 4 and Fe 3 O 4 or (NH 4 ) 2 HPO 4 and Fe 2 O 3 were exposed to microwave energy with electromagnetic waves of 2,45 GHz. It was proposed that the absorption of this radiation for the material causes the heating from room temperature to melting temperature. The obtained iron phosphate glasses was analyzed by X-ray diffraction, Moessbauer spectroscopy, and Differential Thermal Analysis. Iron phosphate glasses were also produced in electrical furnaces for comparison. (author)

  6. Characterization of iron phosphate glasses prepared by microwave heating

    Almeida, Fabio Jesus Moreira de

    2006-01-01

    Phosphate glasses have been investigated since the fifties, because they are relatively easy to prepare, have low melting temperatures (1000 deg C - 1200 deg C), and low glass transition. However, these glasses were very sensitive to humidity, showing a very low chemical durability. Iron phosphate glasses have been prepared by melting inorganic precursors in conventional electric furnaces and induction furnaces. By adding iron, phosphate glasses became chemical resistant and were thought to be used as nuclear waste forms or mechanical resistance fibers. The use of microwaves has been investigated because it makes possible a fast and homogeneous heating of the materials. Microwave promotes the self-heating of the material by the interaction of the external electromagnetic field with the molecules and ions of the material. Niobium phosphate glasses was also produced already through the heating of precursors in microwave ovens. Other glasses containing iron in theirs structure was produced by conventional furnaces and they had your structures analyzed. But even so, it was not still published synthesis of iron phosphate glasses starting from the melting of precursors materials in microwave ovens. In the present work mixtures of (NH 4 ) 2 HPO 4 and Fe 3 O 4 or (NH 4 ) 2 HPO 4 and Fe 2 O 3 were exposed to microwave energy with electromagnetic waves of 2,45 GHz. It was proposed that the absorption of this radiation for the material causes the heating from room temperature to melting temperature. The obtained iron phosphate glasses was analyzed by X-ray diffraction, Moessbauer spectroscopy, and Differential Thermal Analysis. Iron phosphate glasses were also produced in electrical furnaces for comparison. (author)

  7. Immobilization of Uranium Silicide in Sintered Iron-Phosphate Glass

    Mateos, Patricia; Russo, Diego; Rodriguez, Diego; Heredia, A; Sanfilippo, M.; Sterba, Mario

    2003-01-01

    This work is a continuation of a previous one performed in vitrification of uranium silicide in borosilicate and iron-silicate glasses, by sintering.We present the results obtained with an iron-phosphate glass developed at our laboratory and we compare this results with those obtained with the above mentioned glasses. The main objective was to develop a method as simple as possible, so as to get a monolithic glass block with the appropriate properties to be disposed in a deep geological repository.The thermal transformation of the uranium silicide was characterized by DTA/TG analysis and X-ray diffraction.We determined the evolution of the crystalline phases and the change in weight.Calcined uranium silicide was mixed with natural U 3 O 8 , the amount of U 3 O 8 was calculated to simulate an isotopic dilution of 4%.This material was mixed with powdered iron-phosphate glass (in wt.%: 64,9 P 2 O 5 ; 22,7 Fe 2 O 3 ; 8,1 Al 2 O 3 ; 4,3 Na 2 O) in different proportions (in wt%): 7%, 10% y 15%.The powders were pressed and sintered at temperatures between 585 y 670 °C. Samples of the sintered pellet were prepared for the lixiviation tests (MCC-1P: monolithic samples; deionised water; 90° C; 7, 14 and 28 days).The samples showed a quite good durability (0,6 g.m -2 .day -1 ), similar to borosilicate glasses.The microstructure of the glass samples showed that the uranium particles are much better integrated to the glass matrix in the iron-phosphate glasses than in the borosilicate or iron-silicate glasses.We can conclude that the sintered product obtained could be a good alternative for the immobilization of nuclear wastes with high content of uranium, as the ones arising from the conditioning of research reactors spent fuels

  8. Producing glass-ceramics from waste materials

    Boccaccini, A.R.; Rawlings, R.D. [Imperial College, London (United Kingdom)

    2002-10-01

    An overview is given of recent research at the Department of Materials of Imperial College, London, UK, concerning the production of useful glass-ceramic products from industrial waste materials. The new work, using controlled crystallisation to improve the properties of vitrified products, could help to solve the problem of what to do with increasing amounts of slag, fly ash and combustion dust. The results show, that it is possible to produce new materials with interesting magnetic and constructive properties.

  9. NEW ERBIUM DOPED ANTIMONY GLASSES FOR LASER AND GLASS AMPLIFICATION

    B. Tioua

    2015-07-01

    Full Text Available Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses. In this poster will offer new doped erbium glasses synthesized in silicate crucibles were obtained in the combination Sb2O3-WO3-Na2O. Several properties are measured and correlated with glass compositions. The absorption spectral studies have been performed for erbium doped glasses. The intensities of various absorption bands of the doped glasses are measured and the Judd-Ofelt parameters have been computed. From the theory of Judd-Ofelt, various radiative properties, such as transition probability, branching ratio and radiative life time for various emission levels of these doped glasses have been determined and reported. These results confirm the ability of antimony glasses for glass amplification.

  10. Mechanical failure and glass transition in metallic glasses

    Egami, T.

    2011-01-01

    Research highlights: → We review the recent results of molecular dynamics simulations on metallic glasses. → They show the equivalence of mechanical failure and glass transition. → We discuss the microscopic mechanism behind this equivalence. → We show that the density of defects in metallic glasses is as high as a quarter. → Our concepts about the defect state in glasses need to be changed. - Abstract: The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  11. Influence of Glass Property Restrictions on Hanford HLW Glass Volume

    Kim, Dong-Sang; Vienna, John D.

    2001-01-01

    A systematic evaluation of Hanford High-Level Waste (HLW) loading in alkali-alumino-borosilicate glasses was performed. The waste feed compositions used were obtained from current tank waste composition estimates, Hanford's baseline retrieval sequence, and pretreatment processes. The waste feeds were sorted into groups of like composition by cluster analysis. Glass composition optimization was performed on each cluster to meet property and composition constraints while maximizing waste loading. Glass properties were estimated using property models developed for Hanford HLW glasses. The impacts of many constraints on the volume of HLW glass to be produced at Hanford were evaluated. The liquidus temperature, melting temperature, chromium concentration, formation of multiple phases on cooling, and product consistency test response requirements for the glass were varied one- or many-at-a-time and the resultant glass volume was calculated. This study shows clearly that the allowance of crystalline phases in the glass melter can significantly decrease the volume of HLW glass to be produced at Hanford.

  12. The phenomenon of nucleon emission at high angular momentum states of fused compound systems

    Rajasekaran, T R; Santhosh-Kumar, S

    2003-01-01

    Nucleon emission from high spin fused compound systems is analyzed in the framework of the statistical theory of hot rotating (STHR) nuclei. This is an elaborate version of our earlier work and we present our results for sup 1 sup 5 sup 6 Er, sup 1 sup 6 sup 6 Er, sup 1 sup 6 sup 8 Yb and sup 1 sup 8 sup 8 Hg. We predict an increase in neutron emission for sup 1 sup 6 sup 6 Er due to the abrupt decrease in neutron separation energy around I approx 55h. Since the drop in the separation energy is closely associated with the structural changes in the rotating nuclei, relative increase in neutron emission probability around certain values of angular momentum may be construed as evidence for the shape transition. A similar effect is predicted for sup 1 sup 6 sup 8 Yb around I approx 55h. We also extend the microscopic cranked Nilsson method (CNM) to hot nuclear systems and compare the results with that of the STHR method. The two methods yield different results for triaxially deformed nuclei although for biaxial d...

  13. Filament Advance Detection Sensor for Fused Deposition Modelling 3D Printers.

    Soriano Heras, Enrique; Blaya Haro, Fernando; de Agustín Del Burgo, José M; Islán Marcos, Manuel; D'Amato, Roberto

    2018-05-09

    The main purpose of this paper is to present a system to detect extrusion failures in fused deposition modelling (FDM) 3D printers by sensing that the filament is moving forward properly. After several years using these kind of machines, authors detected that there is not any system to detect the main problem in FDM machines. Authors thought in different sensors and used the weighted objectives method, one of the most common evaluation methods, for comparing design concepts based on an overall value per design concept. Taking into account the obtained scores of each specification, the best choice for this work is the optical encoder. Once the sensor is chosen, it is necessary to design de part where it will be installed without interfering with the normal function of the machine. To do it, photogrammetry scanning methodology was employed. The developed device perfectly detects the advance of the filament without affecting the normal operation of the machine. Also, it is achieved the primary objective of the system, avoiding loss of material, energy, and mechanical wear, keeping the premise of making a low-cost product that does not significantly increase the cost of the machine. This development has made it possible to use the printer with remains of coil filaments, which were not spent because they were not sufficient to complete an impression. Also, printing models in two colours with only one extruder has been enabled by this development.

  14. Segmentation of foreground apple targets by fusing visual attention mechanism and growth rules of seed points

    Qu, W.; Shang, W.; Shao, Y.; Wang, D.; Yu, X.; Song, H.

    2015-07-01

    Accurate segmentation of apple targets is one of the most important problems to be solved in the vision system of apple picking robots. This work aimed to solve the difficulties that background targets often bring to foreground targets segmentation, by fusing the visual attention mechanism and the growth rule of seed points. Background targets could be eliminated by extracting the ROI (region of interest) of apple targets; the ROI was roughly segmented on the HSV color space, and then each of the pixels was used as a seed growing point. The growth rule of the seed points was adopted to obtain the whole area of apple targets from seed growing points. The proposed method was tested with 20 images captured in a natural scene, including 54 foreground apple targets and approximately 84 background apple targets. Experimental results showed that the proposed method can remove background targets and focus on foreground targets, while the k-means algorithm and the chromatic aberration algorithm cannot. Additionally, its average segmentation error rate was 13.23%, which is 2.71% higher than that of the k-means algorithm and 2.95% lower than that of the chromatic aberration algorithm. In conclusion, the proposed method contributes to the vision system of apple-picking robots to locate foreground apple targets quickly and accurately under a natural scene. (Author)

  15. CuFeO2 formation using fused deposition modeling 3D printing and sintering technique

    Salea, A.; Dasaesamoh, A.; Prathumwan, R.; Kongkaew, T.; Subannajui, K.

    2017-09-01

    CuFeO2 is a metal oxide mineral material which is called delafossite. It can potentially be used as a chemical catalyst, and gas sensing material. There are methods to fabricate CuFeO2 such as chemical synthesis, sintering, sputtering, and chemical vapor deposition. In our work, CuFeO2 is prepared by Fused Deposition Modeling (FDM) 3D printing. The composite filament which composed of Cu and Fe elements is printed in three dimensions, and then sintered and annealed at high temperature to obtain CuFeO2. Suitable polymer blend and maximum percent volume of metal powder are studied. When percent volume of metal powder is increased, melt flow rate of polymer blend is also increased. The most suitable printing condition is reported and the properties of CuFeO2 are observed by Scanning Electron Microscopy, and Dynamic Scanning Calorimeter, X-ray diffraction. As a new method to produce semiconductor, this technique has a potential to allow any scientist or students to design and print a catalyst or sensing material by the most conventional 3D printing machine which is commonly used around the world.

  16. Fabrication of Composite Filaments with High Dielectric Permittivity for Fused Deposition 3D Printing.

    Wu, Yingwei; Isakov, Dmitry; Grant, Patrick S

    2017-10-23

    Additive manufacturing of complex structures with spatially varying electromagnetic properties can enable new applications in high-technology sectors such as communications and sensors. This work presents the fabrication method as well as microstructural and dielectric characterization of bespoke composite filaments for fused deposition modeling (FDM) 3D printing of microwave devices with a high relative dielectric permittivity ϵ = 11 in the GHz frequency range. The filament is composed of 32 vol % of ferroelectric barium titanate (BaTiO 3 ) micro-particles in a polymeric acrylonitrile butadiene styrene (ABS) matrix. An ionic organic ester surfactant was added during formulation to enhance the compatibility between the polymer and the BaTiO 3 . To promote reproducible and robust printability of the fabricated filament, and to promote plasticity, dibutyl phthalate was additionally used. The combined effect of 1 wt % surfactant and 5 wt % plasticizer resulted in a uniform, many hundreds of meters, continuous filament of commercial quality capable of many hours of uninterrupted 3D printing. We demonstrate the feasibility of using the high dielectric constant filament for 3D printing through the fabrication of a range of optical devices. The approach herein may be used as a guide for the successful fabrication of many types of composite filament with varying functions for a broad range of applications.

  17. Fabrication of Composite Filaments with High Dielectric Permittivity for Fused Deposition 3D Printing

    Yingwei Wu

    2017-10-01

    Full Text Available Additive manufacturing of complex structures with spatially varying electromagnetic properties can enable new applications in high-technology sectors such as communications and sensors. This work presents the fabrication method as well as microstructural and dielectric characterization of bespoke composite filaments for fused deposition modeling (FDM 3D printing of microwave devices with a high relative dielectric permittivity ϵ = 11 in the GHz frequency range. The filament is composed of 32 vol % of ferroelectric barium titanate (BaTiO 3 micro-particles in a polymeric acrylonitrile butadiene styrene (ABS matrix. An ionic organic ester surfactant was added during formulation to enhance the compatibility between the polymer and the BaTiO 3 . To promote reproducible and robust printability of the fabricated filament, and to promote plasticity, dibutyl phthalate was additionally used. The combined effect of 1 wt % surfactant and 5 wt % plasticizer resulted in a uniform, many hundreds of meters, continuous filament of commercial quality capable of many hours of uninterrupted 3D printing. We demonstrate the feasibility of using the high dielectric constant filament for 3D printing through the fabrication of a range of optical devices. The approach herein may be used as a guide for the successful fabrication of many types of composite filament with varying functions for a broad range of applications.

  18. Thermal analysis of fused deposition modeling process using infrared thermography imaging and finite element modeling

    Zhou, Xunfei; Hsieh, Sheng-Jen

    2017-05-01

    After years of development, Fused Deposition Modeling (FDM) has become the most popular technique in commercial 3D printing due to its cost effectiveness and easy-to-operate fabrication process. Mechanical strength and dimensional accuracy are two of the most important factors for reliability of FDM products. However, the solid-liquid-solid state changes of material in the FDM process make it difficult to monitor and model. In this paper, an experimental model was developed to apply cost-effective infrared thermography imaging method to acquire temperature history of filaments at the interface and their corresponding cooling mechanism. A three-dimensional finite element model was constructed to simulate the same process using element "birth and death" feature and validated with the thermal response from the experimental model. In 6 of 9 experimental conditions, a maximum of 13% difference existed between the experimental and numerical models. This work suggests that numerical modeling of FDM process is reliable and can facilitate better understanding of bead spreading and road-to-road bonding mechanics during fabrication.

  19. Filament Advance Detection Sensor for Fused Deposition Modelling 3D Printers

    Enrique Soriano Heras

    2018-05-01

    Full Text Available The main purpose of this paper is to present a system to detect extrusion failures in fused deposition modelling (FDM 3D printers by sensing that the filament is moving forward properly. After several years using these kind of machines, authors detected that there is not any system to detect the main problem in FDM machines. Authors thought in different sensors and used the weighted objectives method, one of the most common evaluation methods, for comparing design concepts based on an overall value per design concept. Taking into account the obtained scores of each specification, the best choice for this work is the optical encoder. Once the sensor is chosen, it is necessary to design de part where it will be installed without interfering with the normal function of the machine. To do it, photogrammetry scanning methodology was employed. The developed device perfectly detects the advance of the filament without affecting the normal operation of the machine. Also, it is achieved the primary objective of the system, avoiding loss of material, energy, and mechanical wear, keeping the premise of making a low-cost product that does not significantly increase the cost of the machine. This development has made it possible to use the printer with remains of coil filaments, which were not spent because they were not sufficient to complete an impression. Also, printing models in two colours with only one extruder has been enabled by this development.

  20. Women and work: a ten year retrospective.

    MacRae, Nancy

    2005-01-01

    A look back, after a decade, at the issues surrounding women and work. Work options, childcare and family concerns, the glass ceiling, sexual harassment, women entrepreneurs, race and poverty, unpaid work, and women with disabilities are discussed.