WorldWideScience

Sample records for glass tube filled

  1. Process and device for subdividing a glass tube filled with a radioactive gas

    International Nuclear Information System (INIS)

    Caffarella, T.E.; Radda, G.J.; Watts, D.J.

    1977-01-01

    A process is described for subdividing into individual sealed segments an elongated glass tube coated internally with a luminescent material and filled with a radioactive gas, this tube having a longitudinal axis. It consists in directing a focused laser beam on to the surface of the tube in an ambient atmosphere with a pressure greater than that of the gas in the tube and to create a relative, repetitive and alternating movement between the laser beam and the surface of the tube. This movement is transversal to the longitudinal axis of the tube, so as to heat and soften the tube along a cutting line until the tube divides and presents new ends where it contracts, causing these ends to seal up [fr

  2. Axial Crushing and Energy Absorption of Empty and Foam Filled Jute-glass/ Epoxy Bi-tubes

    Directory of Open Access Journals (Sweden)

    Khalid Asad A.

    2016-01-01

    Full Text Available Experimental work on the axial crushing of empty and polyurethane foam filled bi-tubular composite cone-tube has been carried out. Hand lay-up method was used to fabricate the bi-tubes using woven roving glass, jute and hybrid jute-glass/epoxy materials. The tubes were of 56 mm diameter, and the cones top diameters were 65 mm. Cone semi-apical angles of 5°, 10°, 15°, 20° and 25° were examined. Height of 120 mm was maintained for all the fabricated specimens. Effects of material used, cone semi apical angle and foam filler on the load-displacement relation, maximum load, crush force efficiency, and the specific energy absorption and failure mode were investigated. Results show that the foam filler improved the progressive crushing process, increased the maximum load and the absorbed energy of the bi-tubes. The maximum crushing load and the specific energy absorption increased with increasing the cone semi apical angle up to 20° for the empty bi-tubes and up to 25° for the foam filled bi-tubes. Progressive failure mode with fiber and matrix cracking was observed at the top narrow side of the fractured bi-tubes as well as at the bottom surface of 20° and 25° cone semi-apical angle bi-tubes.

  3. 3D integrated HYDRA simulations of hohlraums including fill tubes

    Science.gov (United States)

    Marinak, M. M.; Milovich, J.; Hammel, B. A.; Macphee, A. G.; Smalyuk, V. A.; Kerbel, G. D.; Sepke, S.; Patel, M. V.

    2017-10-01

    Measurements of fill tube perturbations from hydro growth radiography (HGR) experiments on the National Ignition Facility show spoke perturbations in the ablator radiating from the base of the tube. These correspond to the shadow of the 10 μm diameter glass fill tube cast by hot spots at early time. We present 3D integrated HYDRA simulations of these experiments which include the fill tube. Meshing techniques are described which were employed to resolve the fill tube structure and associated perturbations in the simulations. We examine the extent to which the specific illumination geometry necessary to accommodate a backlighter in the HGR experiment contributes to the spoke pattern. Simulations presented include high resolution calculations run on the Trinity machine operated by the Alliance for Computing at Extreme Scale (ACES) partnership. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  4. Simulations of fill tube effects on the implosion of high-foot NIF ignition capsules

    International Nuclear Information System (INIS)

    Dittrich, T R; Hurricane, O A; Berzak-Hopkins, L F; Callahan, D A; Casey, D T; Clark, D; Dewald, E L; Doeppner, T; Haan, S W; Hammel, B A; Harte, J A; Hinkel, D E; Kozioziemski, B J; Kritcher, A L; Ma, T; Nikroo, A; Pak, A E; Parham, T G; Park, H-S; Patel, P K

    2016-01-01

    Encouraging results have been obtained using a strong first shock during the implosion of carbon-based ablator ignition capsules. These “high-foot” implosion results show that capsule performance deviates from 1D expectations as laser power and energy are increased. A possible cause of this deviation is the disruption of the hot spot by jets originating in the capsule fill tube. Nominally, a 10 μm outside diameter glass (SiO 2 ) fill tube is used in these implosions. Simulations indicate that a thin coating of Au on this glass tube may lessen the hotspot disruption. These results and other mitigation strategies will be presented. (paper)

  5. Simulations of fill tube effects on the implosion of high-foot NIF ignition capsules

    Science.gov (United States)

    Dittrich, T. R.; Hurricane, O. A.; Berzak-Hopkins, L. F.; Callahan, D. A.; Casey, D. T.; Clark, D.; Dewald, E. L.; Doeppner, T.; Haan, S. W.; Hammel, B. A.; Harte, J. A.; Hinkel, D. E.; Kozioziemski, B. J.; Kritcher, A. L.; Ma, T.; Nikroo, A.; Pak, A. E.; Parham, T. G.; Park, H.-S.; Patel, P. K.; Remington, B. A.; Salmonson, J. D.; Springer, P. T.; Weber, C. R.; Zimmerman, G. B.; Kline, J. L.

    2016-05-01

    Encouraging results have been obtained using a strong first shock during the implosion of carbon-based ablator ignition capsules. These “high-foot” implosion results show that capsule performance deviates from 1D expectations as laser power and energy are increased. A possible cause of this deviation is the disruption of the hot spot by jets originating in the capsule fill tube. Nominally, a 10 μm outside diameter glass (SiO2) fill tube is used in these implosions. Simulations indicate that a thin coating of Au on this glass tube may lessen the hotspot disruption. These results and other mitigation strategies will be presented.

  6. Flexural Behavior of GFRP Tubes Filled with Magnetically Driven Concrete.

    Science.gov (United States)

    Xie, Fang; Chen, Ju; Dong, Xinlong; Feng, Bing

    2018-01-08

    Experimental investigation of GFRP (glass fiber reinforced polymer) tubes that were filled with magnetically driven concrete was carried out to study the flexural behavior of specimens under bending. Specimens having different cross section and lengths were tested. The test specimens were fabricated by filling magnetically driven concrete into the GFRP tubes and the concrete was vibrated using magnetic force. Specimens vibrated using vibrating tube were also tested for comparison. In addition, specimens having steel reinforcing bars and GFRP bars were both tested to study the effect of reinforcing bars on the magnetically driven concrete. The load-displacement curves, load-strain curves, failure mode, and ultimate strengths of test specimens were obtained. Design methods for the flexural stiffness of test specimens were also discussed in this study.

  7. Method for automatic filling of nuclear fuel rod cladding tubes

    International Nuclear Information System (INIS)

    Bezold, H.

    1979-01-01

    Prior to welding the zirconium alloy cladding tubes with end caps, they are automatically filled with nuclear fuel tablets and ceramic insulating tablets. The tablets are introduced into magazine drums and led through a drying oven to a discharging station. The empty cladding tubes are removed from this discharging station and filled with tablets. A filling stamp pushes out the columns of tablets in the magazine tubes of the magazine drum into the cladding tube. Weight and measurement of length determine the filled state of the cladding tube. The cladding tubes are then led to the welding station via a conveyor belt. (DG) [de

  8. Behavior of FRP-Confined Concrete-Filled Steel Tube Columns

    Directory of Open Access Journals (Sweden)

    Yiyan Lu

    2014-05-01

    Full Text Available This paper presents the results of an experimental study into the behavior of concrete-filled steel tube columns confined by fiber-reinforced polymer (FRP. Eleven columns were tested to investigate the effects of the FRP layer number, the thickness of the steel tube and concrete strength on their load capacity and axial deformation capacity. The experimental results indicated that the FRP wrap can effectively confine the concrete expansion and delay the local buckling of the steel tube. Both the load capacity and the axial deformation capacity of concrete-filled steel tube columns can be substantially enhanced with FRP confinement. A model is proposed to predict the load capacity of the FRP-confined concrete-filled steel tube columns. The predicted results are generally in good agreement with the experimental ones obtained in this study and in the literature.

  9. Preservative loss from silicone tubing during filling processes.

    Science.gov (United States)

    Saller, Verena; Matilainen, Julia; Rothkopf, Christian; Serafin, Daniel; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2017-03-01

    Significant loss of preservative was observed during filling of drug products during filling line stops. This study evaluated the losses of three commonly used preservatives in protein drugs, i.e. benzyl alcohol, phenol, and m-cresol. Concentration losses during static incubation were quantified and interpreted with regard to the potential driving forces for the underlying sorption, diffusion, and desorption steps. Partitioning from the solution into the silicone polymer was identified as the most decisive parameter for the extent of preservative loss. Additionally, the influence of tubing inner diameter, starting concentration as well as silicone tubing type was evaluated. Theoretical calculations assuming equilibrium between solution and tubing inner surface and one-directional diffusion following Fick's first law were used to approximate experimental data. Since significant losses were found already after few minutes, adequate measures must be taken to avoid deviations during filling of preservative-containing protein solutions that may impact product quality or antimicrobial efficacy. As a possible alternative to the highly permeable silicone tubing, a specific make of fluoropolymer tubing was identified being suitable for peristaltic pumps and not showing any preservative losses. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Vibration characteristics of teak wood filled steel tubes

    Science.gov (United States)

    Danawade, Bharatesh Adappa; Malagi, Ravindra Rachappa

    2018-05-01

    The objective of this paper is to determine fundamental frequency and damping ratio of teak wood filled steel tubes. Mechanically bonded teak wood filled steel tubes have been evaluated by experimental impact hammer test using modal analysis. The results of impact hammer test were verified and validated by finite element tool ANSYS using harmonic analysis. The error between the two methods was observed to be within acceptable limit.

  11. Self-sensing concrete-filled FRP tube using FBG strain sensor

    Science.gov (United States)

    Yan, Xin; Li, Hui

    2007-01-01

    Concrete-filled fiber-reinforced polymer (FRP) tube is a type of newly developed structural column. It behaves brittle failure at its peak strength, and so the health monitoring on the hoop strain of the FRP tube is essential for the life cycle safety of the structure. Herein, the optic fiber Bragg grating (FBG) strain sensor was chosen as the strain measuring gauge and embedded in the inter-ply of fibers in the middle height and the hoop direction of the FRP tube. The compressive behaviors of the concrete-filled FRP tubes were experimentally studied. The hoop strain of the FRP tube was recorded in real time using the embedded FBG strain sensor as well as the embedded or surface electric resistance strain gauges. Results indicated that the FBG strain sensor can faithfully record the hoop strain ofthe concrete-filled FRP tubes in compression as compared with the embedded or surface electric resistance strain gauges, and the strain recorded can reach more than 7000μɛ.

  12. Tritium application: self-luminous glass tube(SLGT)

    International Nuclear Information System (INIS)

    Kim, K.; Lee, S.K.; Chung, E.S.; Kim, K.S.; Kim, W.S.; Nam, G.J.

    2005-01-01

    To manufacture SLGTs (self-luminous glass tubes), 4 core technologies are needed: coating technology, tritium injection technology, laser sealing/cutting technology and tritium handling technology. The inside of the glass tubes is coated with greenish ZnS phosphor particles with sizes varying from 4∝5 [μm], and Cu, and Al as an activator and a co-dopant, respectively. We also found that it would be possible to produce a phosphor coated glass tube for the SLGT using the well established cold cathode fluorescent lamp (CCFL) bulb manufacturing technology. The conceptual design of the main process loop (PL) is almost done. A delicate technique will be needed for the sealing/cutting of the glass tubes. Instead of the existing torch technology, a new technology using a pulse-type laser is under investigation. The design basis of the tritium handling facilities is to minimize the operator's exposure to tritium uptake and the emission of tritium to the environment. To fulfill the requirements, major tritium handling components are located in the secondary containment such as the glove boxes (GBs) and/or the fume hoods. The tritium recovery system (TRS) is connected to a GB and PL to minimize the release of tritium as well as to remove the moisture and oxygen in the GB. (orig.)

  13. FABRICATION OF GAS-FILLED TUNGSTEN-COATED GLASS SHELLS

    International Nuclear Information System (INIS)

    NIKROO, A; BAUGH, W; STEINMAN, D.A.

    2003-09-01

    OAK-B135 Deuterium (D 2 ) filled glass shells coated with a high Z element are needed for high energy density (HED) experiments by researchers at Los Alamos National Laboratory. They report here on our initial attempt to produce such shells. Glass shells made using the drop tower technique were coated with gold, palladium or tungsten, or a mixture of two of these elements. It was found that gold and palladium coatings did not stick well to the glass and resulted in poor or delaminated films. Tungsten coatings resulted in films suitable for these targets. Bouncing of shells during coating resulted in uniform tungsten coatings, but the surface of such coatings were filled with small nodules. Proper agitation of shells using a tapping technique resulted in smooth films with minimal particulate contamination. For coating rates of ∼ 0.15 (micro)m/hr coatings with ∼ 2 nm RMS surface finish could be deposited. The surface roughness of coatings at higher rates, 0.7 (micro)m/hr, was considerably worse (∼ 100 nm RMS). The columnar structure of the coatings allowed permeation filling of the tungsten coated glass shells with deuterium at 300 C

  14. Tritium application: self-luminous glass tube(SLGT)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Lee, S.K.; Chung, E.S.; Kim, K.S.; Kim, W.S. [Nuclear Power Lab., Korea Electric Power Research Inst. (KEPRI), Daejeon (Korea); Nam, G.J. [Engineering Information Technology Center, Inst. for Advanced Engineering (IAE), Kyonggi-do (Korea)

    2005-07-01

    To manufacture SLGTs (self-luminous glass tubes), 4 core technologies are needed: coating technology, tritium injection technology, laser sealing/cutting technology and tritium handling technology. The inside of the glass tubes is coated with greenish ZnS phosphor particles with sizes varying from 4{proportional_to}5 [{mu}m], and Cu, and Al as an activator and a co-dopant, respectively. We also found that it would be possible to produce a phosphor coated glass tube for the SLGT using the well established cold cathode fluorescent lamp (CCFL) bulb manufacturing technology. The conceptual design of the main process loop (PL) is almost done. A delicate technique will be needed for the sealing/cutting of the glass tubes. Instead of the existing torch technology, a new technology using a pulse-type laser is under investigation. The design basis of the tritium handling facilities is to minimize the operator's exposure to tritium uptake and the emission of tritium to the environment. To fulfill the requirements, major tritium handling components are located in the secondary containment such as the glove boxes (GBs) and/or the fume hoods. The tritium recovery system (TRS) is connected to a GB and PL to minimize the release of tritium as well as to remove the moisture and oxygen in the GB. (orig.)

  15. Characterization of Low Density Glass Filled Epoxies

    National Research Council Canada - National Science Library

    Quesenberry, Matthew

    2003-01-01

    This report discusses the experimental determination and modeling of several thermophysical and mechanical properties of glass filled epoxy composite systems for potential use as electronic potting compounds...

  16. 3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

    Energy Technology Data Exchange (ETDEWEB)

    Buice, E S; Alger, E T; Antipa, N A; Bhandarkar, S D; Biesiada, T A; Conder, A D; Dzenitis, E G; Flegel, M S; Hamza, A V; Heinbockel, C L; Horner, J; Johnson, M A; Kegelmeyer, L M; Meyer, J S; Montesanti, R C; Reynolds, J L; Taylor, J S; Wegner, P J

    2011-02-18

    This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 {micro}m diameter glass-core fill-tube that tapers down to a 10{micro} diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1{sigma}), which corresponds to approximately 5 {micro}m linear error on the capsule surface.

  17. 3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

    International Nuclear Information System (INIS)

    Buice, E.S.; Alger, E.T.; Antipa, N.A.; Bhandarkar, S.D.; Biesiada, T.A.; Conder, A.D.; Dzenitis, E.G.; Flegel, M.S.; Hamza, A.V.; Heinbockel, C.L.; Horner, J.; Johnson, M.A.; Kegelmeyer, L.M.; Meyer, J.S.; Montesanti, R.C.; Reynolds, J.L.; Taylor, J.S.; Wegner, P.J.

    2011-01-01

    This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 (micro)m diameter glass-core fill-tube that tapers down to a 10(micro) diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1σ), which corresponds to approximately 5 (micro)m linear error on the capsule surface.

  18. A Study on Thermal Performance of a Novel All-Glass Evacuated Tube Solar Collector Manifold Header with an Inserted Tube

    Directory of Open Access Journals (Sweden)

    Jichun Yang

    2015-01-01

    Full Text Available A novel all-glass evacuated tube collector manifold header with an inserted tube is proposed in this paper which makes water in all-glass evacuated solar collector tube be forced circulated to improve the performance of solar collector. And a dynamic numerical model was presented for the novel all-glass evacuated tube collector manifold header water heater system. Also, a test rig was built for model validation and comparison with traditional all-glass evacuated tube collector. The experiment results show that the efficiency of solar water heater with a novel collector manifold header is higher than traditional all-glass evacuated tube collector by about 5% and the heat transfer model of water heater system is valid. Based on the model, the relationship between the average temperature of water tank and inserted tube diameter (water mass flow has been studied. The results show that the optimized diameter of inserted tube is 32 mm for the inner glass with the diameter of 47 mm and the water flow mass should be less than 1.6 Kg/s.

  19. Experimental Characterization of the Energy Absorption of Functionally Graded Foam Filled Tubes Under Axial Crushing Loads

    Science.gov (United States)

    Ebrahimi, Saeed; Vahdatazad, Nader; Liaghat, Gholamhossein

    2018-03-01

    This paper deals with the energy absorption characterization of functionally graded foam (FGF) filled tubes under axial crushing loads by experimental method. The FGF tubes are filled axially by gradient layers of polyurethane foams with different densities. The mechanical properties of the polyurethane foams are firstly obtained from axial compressive tests. Then, the quasi-static compressive tests are carried out for empty tubes, uniform foam filled tubes and FGF filled tubes. Before to present the experimental test results, a nonlinear FEM simulation of the FGF filled tube is carried out in ABAQUS software to gain more insight into the crush deformation patterns, as well as the energy absorption capability of the FGF filled tube. A good agreement between the experimental and simulation results is observed. Finally, the results of experimental test show that an FGF filled tube has excellent energy absorption capacity compared to the ordinary uniform foam-filled tube with the same weight.

  20. Incorporation of tv tube glass waste in aluminous porcelain

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, J.N.F.; Santos, T.F.; Paes Junior, H.R. [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil)

    2016-07-01

    Full test: This work analyzes the reuse of TV tube glass waste as a method to provide alternative raw material for aluminous porcelain, through of replacement of natural sodic feldspar by up to 30 wt.%. Aluminous porcelain formulations containing TV tube glass waste were pressed and fired in air at 1300 deg C using a fast-firing cycle. Ceramic pieces were characterized by X-ray diffraction, scanning electron microscopy, linear shrinkage, apparent density, apparent porosity, water absorption, and electrical resistivity. XRD and SEM results indicated that all aluminous porcelain pieces are composed essentially of mullite, quartz, and ?-alumina embedded in a vitreous matrix. The results also showed that the aluminous porcelain pieces containing TV tube glass waste presented low water absorption values between 0.42 and 0.45 %, apparent density between 2.44 and 2.46 g/cm3, and volume electrical resistivity between 1.91 and 2.93 x 1011 ?.cm. Thus, the TV tube glass waste could be used into aluminous porcelain formulations, in the range up to 30 wt.%, as a replacement for traditional flux material (sodic feldspar). (author)

  1. Self-sensing concrete-filled FRP tubes using FBG strain sensors

    Science.gov (United States)

    Yan, Xin; Li, Hui

    2007-07-01

    Concrete-filled fiber-reinforced polymer (FRP) tube is a type of newly developed structural column. It behaves brittle failure at its peak strength, and so the health monitoring on the hoop strain of the FRP tube is essential for the life cycle safety of the structure. Herein, three types of FRP tubes including 5-ply tube, 2-ply tube with local reinforcement and FRP-steel composite tube were embedded with the optic fiber Bragg grating (FBG) strain sensors in the inter-ply of FRP or the interface between FRP and steel in the middle height and the hoop direction. The compressive behaviors of the concrete-filled FRP tubes were experimentally studied. The hoop strains of the FRP tubes were recorded in real time using the embedded FBG strain sensors as well as the embedded or surface electric resistance strain gauges. Results indicated that the FBG strain sensors can faithfully record the hoop strains of the FRP tubes in compression as compared with the embedded or surface electric resistance strain gauges, and the strains recorded can reach more than μɛ.

  2. 40 CFR 426.100 - Applicability; description of the glass tubing (Danner) manufacturing subcategory.

    Science.gov (United States)

    2010-07-01

    ... glass tubing (Danner) manufacturing subcategory. 426.100 Section 426.100 Protection of Environment... CATEGORY Glass Tubing (Danner) Manufacturing Subcategory § 426.100 Applicability; description of the glass tubing (Danner) manufacturing subcategory. The provisions of this subpart are applicable to discharges...

  3. Determining optical and radiation characteristics of cathode ray tubes' glass to be reused as radiation shielding glass

    International Nuclear Information System (INIS)

    Zughbi, A.; Kharita, M.H.; Shehada, A.M.

    2017-01-01

    A new method of recycling glass of Cathode Ray Tubes (CRTs) has been presented in this paper. The glass from CRTs suggested being used as raw materials for the production of radiation shielding glass. Cathode ray tubes glass contains considerable amounts of environmentally hazardous toxic wastes, namely heavy metal oxides such as lead oxide (PbO). This method makes CRTs glass a favorable choice to be used as raw material for Radiation Shielding Glass and concrete. The heavy metal oxides increase its density, which make this type of glass nearly equivalent to commercially available shielding glass. CRTs glass have been characterized to determine heavy oxides content, density, refractive index, and radiation shielding properties for different Gamma-Ray energies. Empirical methods have been used by using the Gamma-Ray source cobalt-60 and computational method by using the code XCOM. Measured and calculated values were in a good compatibility. The effects of irradiation by gamma rays of cobalt-60 on the optical transparency for each part of the CRTs glass have been studied. The Results had shown that some parts of CRTs glass have more resistant to Gamma radiation than others. The study had shown that the glass of cathode ray tubes could be recycled to be used as radiation shielding glass. This proposed use of CRT glass is only limited to the available quantity of CRT world-wide. - Highlights: • A new method of recycling glass of Cathode Ray Tubes (CRTs) has been presented. • The glass from CRTs used as raw materials for radiation shielding glass. • The resulted glass have good optical properties and stability against radiations.

  4. Determining optical and radiation characteristics of cathode ray tubes' glass to be reused as radiation shielding glass

    Science.gov (United States)

    Zughbi, A.; Kharita, M. H.; Shehada, A. M.

    2017-07-01

    A new method of recycling glass of Cathode Ray Tubes (CRTs) has been presented in this paper. The glass from CRTs suggested being used as raw materials for the production of radiation shielding glass. Cathode ray tubes glass contains considerable amounts of environmentally hazardous toxic wastes, namely heavy metal oxides such as lead oxide (PbO). This method makes CRTs glass a favorable choice to be used as raw material for Radiation Shielding Glass and concrete. The heavy metal oxides increase its density, which make this type of glass nearly equivalent to commercially available shielding glass. CRTs glass have been characterized to determine heavy oxides content, density, refractive index, and radiation shielding properties for different Gamma-Ray energies. Empirical methods have been used by using the Gamma-Ray source cobalt-60 and computational method by using the code XCOM. Measured and calculated values were in a good compatibility. The effects of irradiation by gamma rays of cobalt-60 on the optical transparency for each part of the CRTs glass have been studied. The Results had shown that some parts of CRTs glass have more resistant to Gamma radiation than others. The study had shown that the glass of cathode ray tubes could be recycled to be used as radiation shielding glass. This proposed use of CRT glass is only limited to the available quantity of CRT world-wide.

  5. Multi objective optimization of foam-filled circular tubes for quasi-static and dynamic responses

    Directory of Open Access Journals (Sweden)

    Fauzan Djamaluddin

    Full Text Available AbstractFuel consumption and safety are currently key aspects in automobile design. The foam-filled thin-walled aluminium tube represents a potentially effective material for use in the automotive industry, due to its energy absorption capability and light weight. Multi-objective crashworthiness design optimization for foam-filled double cylindrical tubes is presented in this paper. The double structures are impacted by a rigid wall simulating quasi-static and dynamic loadings. The optimal parameters under consideration are the minimum peak crushing force and maximum specific energy absorption, using the non-dominated sorting genetic algorithm-II (NSGA-II technique. Radial basis functions (RBF and D-Optimal are adopted to determine the more complex crashworthiness functional objectives. The comparison is performed by finite element analysis of the impact crashworthiness characteristics in tubes under static and dynamic loads. Finally, the optimum crashworthiness performance of empty and foam-filled double tubes is investigated and compared to the traditional single foam-filled tube. The results indicate that the foam-filled double aluminium circular tube can be recommended for crashworthy structures.

  6. Behavior of Hollow Thin Welded Tubes Filled with Sand Slag Concrete

    Directory of Open Access Journals (Sweden)

    Noureddine Ferhoune

    2016-01-01

    Full Text Available This paper presents the axial bearing capacity of thin welded rectangular steel stubs filled with concrete sand. A series of tests was conducted to study the behavior of short composite columns under axial compressive load; the cross section dimensions were 100 × 70 × 2 mm. A total of 20 stubs have been tested, as follows: 4 hollow thin welded tubes were tested to axial and eccentric load compression, 4 were filled with ordinary concrete appointed by BO columns, 6 were filled with concrete whose natural sand was completely substituted by a crystallized sand slag designated in this paper by BSI, and 6 were tucked in concrete whose natural sand was partially replaced by a crystallized sand slag called BSII. The main parameters studied are the height of the specimen (300 mm–500 mm, eccentricity of load and type of filling concrete. Based on test results obtained, it is confirmed that the length of the tubes has a considerable effect on the bearing capacity and the failure mode. In all test tubes, fracture occurred by the convex local buckling of steel section due to the outward thrust of the concrete; it was observed that the sand concrete improves the bearing capacity of tubes compounds compared to those filled with ordinary concrete.

  7. New model of universal gas-filled neutron tube

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Bessarabskii, I.G.; Voitsik, L.R.; Mints, A.Z.

    1985-01-01

    The UNG-1 gas-filled neutron tube is serially produced. In type UNG neutron generators, the tube operates in the pulsed mode in the high voltage doubling circuit arrangement. During extended operation, its advantages were discovered: long operating time, fairly stable neutron yield, and simplicity of use and operation. However, the mean neutron yield (approx.10 7 s -1 ) generated by the tube in the optimal mode at the present time proved to be inadequate in solving numerous geophysical problems. So a model of a neutron tube, model UNG-2, was designed, ensuring an enhanced neutron yield of 10 8 s -1 in the continuous-operating mode. When the tube is connected to the high voltage doubling circuit, the mean neutron yield is only somewhat in excess of the neutron yield from the UNG-1 tube

  8. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  9. Mechanical behavior of cellular borosilicate glass with pressurized Ar-filled closed pores

    International Nuclear Information System (INIS)

    Wang Bo; Matsumaru, Koji; Yang Jianfeng; Fu Zhengyi; Ishizaki, Kozo

    2012-01-01

    High strength borosilicate foams were fabricated by melting glass powder under high-pressure argon gas and subsequent heat treatment of the glass bulk at atmospheric pressure. In the first step, borosilicate glass powder was melted at 1100 °C for 1 h by capsule-free hot isostatic pressing (HIPing) under a high gas pressure of 10–70 MPa. Pressurized Ar-filled spherical pores were introduced into the glass, and argon atoms were dissolved in the glass network structure. The expansion of argon-filled pores and the release of the dissolved Ar gas resulted in the formation of pressurized Ar-filled closed pores by isothermal heat treatment at 800 °C for 10 min. A high porosity of up to 80% with a bimodal distribution of micro-size cells was obtained for the resultant cellular borosilicate glass. By increasing the total gas pressure from 10 to 70 MPa, the compressive strength and the Young’s modulus were increased considerably from 15 to 52 MPa and from 4.1 to 12.6 GPa, respectively, which can be substantially attributed to the high collapse stress from the high enclosed gas pressure. The cellular glass with a high porosity showed a large failure strain under uniaxial compression.

  10. External glass peening of zircaloy calandria tubes to increase the critical heat flux

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Coleman, C.E.; Nitheanandan, T.; Kroeger, V.D.; Moyer, R.G.; Sanderson, D.B.; Root, J.H.; Rogge, R.B.

    1997-12-01

    Glass-peening the outside surfaces of Zircaloy calandria tubes increases the nucleation sites available for boiling heat transfer and has been demonstrated to enhance the critical heat flux (CHF) in pool-boiling experiments. The objective of this study is to optimise the heat-transfer enhancement by glass peening while ensuring that the microstructure of the peened tube is acceptable for reactor use. Pool-boiling tests were done using small Zircaloy tubes with as-received ('smooth') surfaces and variously peened surfaces, to evaluate two peening parameters, glass-bead size and the coverage of peened surface. Our results showed that the maximum enhancement of CHF (by 60% compared with as-received tubes) was obtained using a glass-bead size of 90-125 μm with a coverage of 100%. The CHF enhancement was found to be insensitive to glass-bead size over a wide range (from 60-90 μm to 125-180 μm). Using a fixed glass-bead size of 125-180 μm to evaluate the influence of peening coverage, the maximum effect on the CHF response was obtained with a coverage of 1 00%. The microstructures of the peened tubes were evaluated using light microscopy, X-ray and neutron diffraction, and mechanical tests. After peening, the microstructure in the subsurface layer (-30 μm) consisted of deformed α-Zr grains, and the crystallographic texture of the grains changed slightly. After stress-relieving at 500 degrees C for 1 h, some recrystallisation had occurred and the residual strains remaining in the tube were low. The tensile and burst properties of glass-peened and stress-relieved tubes were similar to those of as-received tubes. The microstructures introduced by peening and stress relieving were judged to have little effect on creep and growth behaviour. Since there are no deleterious consequences of the glass-peening treatment, the peened and stress-relieved tubes are found to be acceptable for reactor use. (author)

  11. Physical Characteristics and Technology of Glass Foam from Waste Cathode Ray Tube Glass

    Directory of Open Access Journals (Sweden)

    G. Mucsi

    2013-01-01

    Full Text Available This paper deals with the laboratory investigation of cathode-ray-tube- (CRT- glass-based glass foam, the so-called “Geofil-Bubbles” which can be applied in many fields, mainly in the construction industry (lightweight concrete aggregate, thermal and sound insulation, etc.. In this study, the main process engineering material properties of raw materials, such as particle size distribution, moisture content, density, and specific surface area, are shown. Then, the preparation of raw cathode ray tube glass waste is presented including the following steps: crushing, grinding, mixing, heat curing, coating, and sintering. Experiments were carried out to optimize process circumstances. Effects of sintering conditions—such as temperature, residence time, and particle size fraction of green pellet—on the mechanical stability and particle density of glass foam particles were investigated. The mechanical stability (abrasion resistance was tested by abrasion test in a Deval drum. Furthermore, the cell structure was examined with optical microscopy and SEM. We found that it was possible to produce foam glass (with proper mechanical stability and particle density from CRT glass. The material characteristics of the final product strongly depend on the sintering conditions. Optimum conditions were determined: particle size fraction was found to be 4–6 mm, temperature 800°C, and residence time 7.5 min.

  12. Numerical analysis of concrete-filled tubes with stiffening plates under large deformation axial loading

    OpenAIRE

    Albareda Valls, Albert

    2013-01-01

    Concrete-filled tubes have been increasingly used these recent decades thanks to their improved structural behavior, especially under compression.Concrete filling in these sections improves ¡ts compressive strength thanks to lateral pressure coming from confinement effect provided by the steel tube. At elevated percentages of loading,concrete suffers an important volumetric expansion, which is clearly restricted by the tube. Therefore, the core is subjected to a severe lateral pressure tha...

  13. Plastic collapse and energy absorption of circular filled tubes under quasi-static loads by computational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Beng, Yeo Kiam; Tzeng, Woo Wen [Universiti Malaysia Sabah, Sabah (Malaysia)

    2017-02-15

    This study presents the finite element analysis of plastic collapse and energy absorption of polyurethane-filled aluminium circular tubes under quasi-static transverse loading. Increasing focuses were given to impact damage of structures where energy absorbed during impact could be controlled to avoid total structure collapse of energy absorbers and devices designed to dissipate energy. ABAQUS finite element analysis application was utilized for modelling and simulating the polyurethane-filled aluminium tubes, different set of diameterto- thickness ratios and span lengths, subjected to transverse three-point-bending load. Different sets of polyurethane-filled aluminium tubes subjected to the transverse loading were modelled and simulated. The failure modes and mechanisms of filled tubes and its capabilities as energy absorbers to further improve and strengthening of empty tube were also identified. The results showed that plastic deformation response was affected by the geometric constraints and parameters of the specimens. The diameter-to-thickness ratio and span lengths had shown to play crucial role in optimizing the PU-filled tube as energy absorber.

  14. Design options for reducing the impact of the fill-tube in ICF implosion experiments on the NIF

    Science.gov (United States)

    Weber, Christopher R.; Berzak Hopkins, L. F.; Casey, D. T.; Clark, D. S.; Hammel, B. A.; Le Pape, S.; Macphee, A.; Milovich, J.; Pickworth, L. A.; Robey, H. F.; Smalyuk, V. A.; Stadermann, M.; Felker, S. J.; Nikroo, A.; Thomas, C. A.; Crippen, J.; Rice, N.

    2017-10-01

    Inertial Confinement Fusion (ICF) capsules on the National Ignition Facility (NIF) are filled with thermonuclear fuel through a fill-tube. When the capsule implodes, perturbations caused by the fill-tube allow ablator material to mix into the hot spot and reduce fusion performance. This talk will explore several design options that attempt to reduce this damaging effect. Reducing the diameter of the fill-tube and its entrance hole is the obvious course and has been tested in experiments. Simulations also show sensitivity to the amount of glue holding the fill-tube to the capsule and suggest that careful control of this feature can limit the amount of injected mass. Finally, an off-axis fill-tube reduces the initial squirt of material into the fuel and may be a way of further optimizing this engineering feature. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  15. Concrete-Filled Steel Tube Arch Bridges in China

    Directory of Open Access Journals (Sweden)

    Jielian Zheng

    2018-02-01

    Full Text Available In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has been increasing rapidly, which is rare in the history of bridge development. The large-scale construction of expressways and high-speed railways demands the development of long-span arch bridges, and advances in design and construction techniques have made it possible to construct such bridges. In the present study, the current status, development, and major innovative technologies of CFST arch bridges and concrete arch bridges with a CFST skeleton in China are elaborated. This paper covers the key construction technologies of CFST arch bridges, such as the design, manufacture, and installation of steel tube arch trusses, the preparation and pouring of in-tube concrete, and the construction of the world’s longest CFST arch bridge—the First Hejiang Yangtze River Bridge. The main construction technologies of reinforced concrete arch bridges are also presented, which include cable-stayed fastening-hanging cantilever assembly, adjusting the load by means of stay cables, surrounding the concrete for arch rib pouring, and so forth. In addition, the construction of two CFST skeleton concrete arch bridges—the Guangxi Yongning Yong River Bridge and the Yunnan–Guangxi Railway Nanpan River Bridge—is discussed. CFST arch bridges in China have already gained a world-leading position; with the continuous innovation of key technologies, China will become the new leader in promoting the development of arch bridges. Keywords: Concrete-filled steel tube (CFST arch bridge, Steel-reinforced concrete arch bridge, Cable-stayed fastening-hanging cantilever assembly, Vacuum-assisted pouring in-tube concrete, Adjusting load by stay cables

  16. On Love's approximation for fluid-filled elastic tubes

    International Nuclear Information System (INIS)

    Caroli, E.; Mainardi, F.

    1980-01-01

    A simple procedure is set up to introduce Love's approximation for wave propagation in thin-walled fluid-filled elastic tubes. The dispersion relation for linear waves and the radial profile for fluid pressure are determined in this approximation. It is shown that the Love approximation is valid in the low-frequency regime. (author)

  17. Water motion and movement without sticking, weight loss and cross-contaminant in superhydrophobic glass tube.

    Science.gov (United States)

    Yuan, Jian-Jun; Jin, Ren-Hua

    2010-02-10

    We report that a simple fabrication of a superhydrophobic nanosurface consisted of a grass-like silica thin film on the inner wall of a glass tube and its feature in water motion and water movement. The glass tube with a superhydrophobic inner wall can make the water flow with friction-drag reduction and completely preventing water sticking. Transferring water by this tube did not cause weight loss at all. Therefore, aqueous solutions containing high content metal ions were cross-moved without washing the tube used and no cross-contamination occurred after cross-movement. Furthermore, in an inside diameter of 6.0 mm glass tube where the half-length of the inner surface is covered by superhydrophobic nanograss and the other half is an unmodified hydrophilic surface, the water droplets flowing down from the hydrophilic side can be stopped spontaneously at the hydrophilic-superhydrophobic boundary as if there is an invisible flow-stopping fence built inside the glass tube.

  18. [Is the use of plastic capillary tubes justified for blood gases analysis?].

    Science.gov (United States)

    Daurès, Marie-Françoise; Bozonnat, Marie-Cécile; Cristol, Jean-Paul

    2011-01-01

    Some clinical units, such as neonatal or maternity units, preferentially use capillary tubes when analysing blood gases. Using glass tubes is delicate and nurses must recollect blood when breaking. In order to eliminate this problem, we tested flexible, plastic capillary tubes in both the above mentionned units and in our biochemistry laboratory. Each unit, where glass tubes were habitually used, tested 200 flexible, plastic capillary tubes. In addition, the nursing staffed filled out a questionnaire concerned tube usage. Both units clearly preferred using the flexible tubes. In the laboratory, results for blood gas analyses were compared between rigid glass and flexible plastic capillary tubes for 112 patients. Concordance tests did not showed significant differences between the two tube types, except for hematocrit and total haemoglobin. A questionnaire was also presented to the lab technician, who confirmed the easier usability of plastic capillary tubes.

  19. Experimental investigation on temperature distribution of foamed concrete filled steel tube column under standard fire

    Science.gov (United States)

    Kado, B.; Mohammad, S.; Lee, Y. H.; Shek, P. N.; Kadir, M. A. A.

    2018-04-01

    Standard fire test was carried out on 3 hollow steel tube and 6 foamed concrete filled steel tube columns. Temperature distribution on the columns was investigated. 1500 kg/m3 and 1800 kg/m3 foamed concrete density at 15%, 20% and 25% load level are the parameters considered. The columns investigated were 2400 mm long, 139.7 mm outer diameter and 6 mm steel tube thickness. The result shows that foamed concrete filled steel tube columns has the highest fire resistance of 43 minutes at 15% load level and low critical temperature of 671 ºC at 25% load level using 1500 kg/m3 foamed concrete density. Fire resistance of foamed concrete filled column increases with lower foamed concrete strength. Foamed concrete can be used to provide more fire resistance to hollow steel column or to replace normal weight concrete in concrete filled columns. Since filling hollow steel with foamed concrete produce column with high fire resistance than unfilled hollow steel column. Therefore normal weight concrete can be substituted with foamed concrete in concrete filled column, it will reduces the self-weight of the structure because of its light weight at the same time providing the desired fire resistance.

  20. Electronic waste: chemical characterization glasses of tubes cathode rays with viability for recycling

    International Nuclear Information System (INIS)

    Lima, Norma Maria O.; Morais, Crislene R. Silva; Lima, Lenilde Mergia Ribeiro

    2011-01-01

    Electronic waste, or e-waste, often makes incorrect destinations, which causes serious environmental problems. The aim of this study was to analyze the X-ray fluorescence to study the recycling technology for the glass of Cathode Ray Tubes or, popularly, 'picture tubes', identified by the acronym CRT (Cathode Ray Tubes), which integrate computer monitors. It was observed that the glass screen and funnel analyzed have different chemical compositions. As the silicon oxide (SiO2), the largest component of these glasses percentage 59.89% and 48.63% respectively for the screen and funnel this oxide is responsible for forming the vitreous network. The study of recycling of computer monitors it is important, since about 45% of existing materials on a monitor are made of glass, since it is 100% recyclable and can be reused, thus reducing the amount of waste deposited in the environment. (author)

  1. Mechanical strength evaluation of the glass base material in the JRR-3 neutron guide tube

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tetsuya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-02-01

    The lifetime of the thermal neutron guide tube installed JRR-3 was investigated after 6 years from their first installation. And it was confirmed that a crack had been piercing into the glass base material of the side plate of the neutron guide tube. The cause of the crack was estimated as a static fatigue of the guide tube where an inside of the tube had been evacuated and stressed as well as an embrittlement of the glass base material by gamma ray irradiation. In this report, we evaluate the mechanical strength of the glass base material and estimate the time when the base material gets fatigue fracture. Furthermore, we evaluate a lifetime of the neutron guide tube and confirm the validity of update timing in 2000 and 2001 when the thermal neutron guide tubes T1 and T2 were exchanged into those using the super mirror. (author)

  2. The axial crushes behaviour on foam-filled round Jute/Polyester composite tubes

    Science.gov (United States)

    Othman, A.; Ismail, A. E.

    2018-04-01

    The present paper investigates the effect of axial loading compression on jute fibre reinforced polyester composite round tubes. The specimen of composite tube was fabricated by hand lay-up method of 120 mm length with fix 50.8 mm inner diameter to determine the behaviour of energy absorption on number of layers of 450 angle fibre and internally reinforced with and without foam filler material. The foam filler material used in this studies were polyurethane (PU) and polystyrene (PE) with average of 40 and 45 kg/m3 densities on the axial crushing load against displacement relations and on the failure modes. The number of layers of on this study were two; three and four were selected to calculate the crush force efficiency (CFE) and the specific energy absorption (SEA) of the composite tubes. Result indicated that the four layers’ jute/polyester show significant value in term of crushing load compared to 2 and 3 layers higher 60% for 2 layer and 3% compared to 3 layers. It has been found that the specific energy absorption of the jute/polyester tubes with polystyrene foam-filled is found higher respectively 10% to 12% than empty and polyurethane (PU) foam tubes. The increase in the number of layers from two to four increases the mean axial load from 1.01 KN to 3.60 KN for empty jute/polyester and from 2.11 KN to 4.26 KN for the polyurethane (PU) foam-filled jute/polyester tubes as well as for 3.60 KN to 5.58 KN for the polystyrene (PE) foam-filled jute/polyester. The author’s found that the failure of mechanism influence the characteristic of curve load against displacement obtained and conclude that an increasing number of layers and introduce filler material enhance the capability of specific absorbed energy.

  3. Management practices for end-of-life cathode ray tube glass: Review of advances in recycling and best available technologies.

    Science.gov (United States)

    Iniaghe, Paschal O; Adie, Gilbert U

    2015-11-01

    Cathode ray tubes are image display units found in computer monitors and televisions. In recent years, cathode ray tubes have been generated as waste owing to the introduction of newer and advanced technologies in image displays, such as liquid crystal displays and high definition televisions, among others. Generation and subsequent disposal of end-of-life cathode ray tubes presents a challenge owing to increasing volumes and high lead content embedded in the funnel and neck sections of the glass. Disposal in landfills and open dumping are anti-environmental practices considering the large-scale contamination of environmental media by the potential of toxic metals leaching from glass. Mitigating such environmental contamination will require sound management strategies that are environmentally friendly and economically feasible. This review covers existing and emerging management practices for end-of-life cathode ray tubes. An in-depth analysis of available technologies (glass smelting, detoxification of cathode ray tube glass, lead extraction from cathode ray tube glass) revealed that most of the techniques are environmentally friendly, but are largely confined to either laboratory scale, or are often limited owing to high cost to mount, or generate secondary pollutants, while a closed-looped method is antiquated. However, recycling in cementitious systems (cement mortar and concrete) gives an added advantage in terms of quantity of recyclable cathode ray tube glass at a given time, with minimal environmental and economic implications. With significant quantity of waste cathode ray tube glass being generated globally, cementitious systems could be economically and environmentally acceptable as a sound management practice for cathode ray tube glass, where other technologies may not be applicable. © The Author(s) 2015.

  4. Experimental Study on Stress Monitoring of Sand-Filled Steel Tube during Impact Using Piezoceramic Smart Aggregates.

    Science.gov (United States)

    Du, Guofeng; Zhang, Juan; Zhang, Jicheng; Song, Gangbing

    2017-08-22

    The filling of thin-walled steel tubes with quartz sand can help to prevent the premature buckling of the steel tube at a low cost. During an impact, the internal stress of the quartz sand-filled steel tube column is subjected to not only axial force but also lateral confining force, resulting in complicated internal stress. A suitable sensor for monitoring the internal stress of such a structure under an impact is important for structural health monitoring. In this paper, piezoceramic Smart Aggregates (SAs) are embedded into a quartz Sand-Filled Steel Tube Column (SFSTC) to monitor the internal structural stress during impacts. The piezoceramic smart aggregates are first calibrated by an impact hammer. Tests are conducted to study the feasibility of monitoring the internal stress of a structure. The results reflect that the calibration value of the piezoceramic smart aggregate sensitivity test is in good agreement with the theoretical value, and the output voltage value of the piezoceramic smart aggregate has a good linear relationship with external forces. Impact tests are conducted on the sand-filled steel tube with embedded piezoceramic smart aggregates. By analyzing the output signal of the piezoceramic smart aggregates, the internal stress state of the structure can be obtained. Experimental results demonstrated that, under the action of impact loads, the piezoceramic smart aggregates monitor the compressive stress at different locations in the steel tube, which verifies the feasibility of using piezoceramic smart aggregate to monitor the internal stress of a structure.

  5. Electrophoretic deposition (EPD) of multi-walled carbon nano tubes (MWCNT) onto indium-tin-oxide (ITO) glass substrates

    International Nuclear Information System (INIS)

    Mohd Roslie Ali; Shahrul Nizam Mohd Salleh

    2009-01-01

    Full text: Multi-Walled Carbon Nano tubes (MWCNT) were deposited onto Indium-Tin-Oxide (ITO)-coated glass substrates by introducing the use of Electrophoretic Deposition (EPD) as the method. The Multi-Walled Carbon Nano tubes (MWCNT) were dispersed ultrasonically in ethanol and sodium hydroxide (NaOH) to form stable suspension. The addition of Sodium Hydroxide in ethanol can stabilize the suspension, which was very important step before the deposition take place. Two substrates of Indium-Tin-Oxide(ITO)-coated glass placed in parallel facing each other (conductive side) into the suspension. The deposition occurs at room temperature, which the distance fixed at 1 cm between both electrodes and the voltage level applied was fixed at 400 V, respectively. The deposition time also was fixed at 30 minutes. The deposited ITO-Glass with Multi-Walled Carbon Nano tubes (MWCNT) will be characterized using Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), and Raman Microscope. The images of SEM shows that the Multi -Walled Carbon Nano tubes (MWCNT) were distributed uniformly onto the surface of ITO-Glass. The deposited ITO-Glass with Multi-Walled Carbon Nano tubes (MWCNT) could be the potential material in various practical applications such as field emission devices, fuel cells, and super capacitors. Electrophoretic deposition (EPD) technique was found to be an efficient technique in forming well distribution of Multi-Walled Carbon Nano tubes (MWCNT) onto ITO-Glass substrates, as proved in characterization methods, in which the optimum conditions will play the major role. (author)

  6. Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube.

    Science.gov (United States)

    Hafizi, B; Peñano, J; Fischer, R; DiComo, G; Ting, A

    2014-08-01

    Thermal blooming of a laser beam propagating in a gas-filled tube is investigated both analytically and experimentally. A self-consistent formulation taking into account heating of the gas and the resultant laser beam spreading (including diffraction) is presented. The heat equation is used to determine the temperature variation while the paraxial wave equation is solved in the eikonal approximation to determine the temporal and spatial variation of the Gaussian laser spot radius, Gouy phase (longitudinal phase delay), and wavefront curvature. The analysis is benchmarked against a thermal blooming experiment in the literature using a CO₂ laser beam propagating in a tube filled with air and propane. New experimental results are presented in which a CW fiber laser (1 μm) propagates in a tube filled with nitrogen and water vapor. By matching laboratory and theoretical results, the absorption coefficient of water vapor is found to agree with calculations using MODTRAN (the MODerate-resolution atmospheric TRANsmission molecular absorption database) and HITRAN (the HIgh-resolution atmospheric TRANsmission molecular absorption database).

  7. Development of Self-Luminous Glass Tube (SLGT) Manufacturing Technology

    International Nuclear Information System (INIS)

    Kim, Kwang Sin; Kim, Kyeong Sook; Chung, Eun Su; Song, Kyu Min; Lee, Sook Kyung; Son, Soon Hwan

    2005-01-01

    Tritium produced from the Wolsong Tritium Removal Facility (WTRF) will be a radioactive waste when it is stored in the vault inside the WTRF, which requires maintenance cost and is a troublesome waste such that it cannot be sent to the radioactive waste disposal facility. However, when tritium is utilized it can be valuable resource for many applications. As a starting point to utilize tritium we tried to domesticate the selfluminous glass tube (SLGT) manufacturing technology. As a hydrogen isotope, tritium has similar chemical properties to hydrogen but slightly different physical properties. Due to its unstable nature, tritium emits beta rays, which are streams of electrons, with 0∼18.6 keV (5.7 keV in average) energies and 12.323 years of a half-life. The energy level of tritium is relatively low and the biological effects of tritium to the human body are not significant, which makes tritium a popular radioactive isotope for use in industries. The electrons in a beta ray collide with phosphor to produce light so that tritium sealed in phosphor coated glass tubes can make the tubes glow without an external supply of energy. To manufacture these SLGTs, 4 core technologies are needed: coating technology, tritium injection technology, laser sealing/cutting technology and tritium handling technology

  8. Assessment of the impact that the capsule fill tube has on implosions conducted with high density carbon ablators

    Science.gov (United States)

    Pak, Arthur; Benedetti, L. R.; Berzak Hopkins, L. F.; Clark, D.; Divol, L.; Dewald, E. L.; Fittinghoff, D.; Izumi, N.; Khan, S. F.; Landen, O.; Lepape, S.; Ma, T.; Marley, E.; Nagel, S.; Volegov, P.; Weber, C.; Bradley, D. K.; Callahan, D.; Grim, G.; Hurricane, O. A.; Patel, P.; Schneider, M. B.; Edwards, M. J.

    2017-10-01

    In recent inertial confinement implosion experiments conducted at the National Ignition Facility, bright and spatially localized x-ray emission within the hot spot at stagnation has been observed. This emission is associated with higher Z ablator material that is injected into the hot spot by the hydrodynamic perturbation induced by the 5-10 um diameter capsule fill tube. The reactivity of the DT fuel and subsequent yield of the implosion are strongly dependent on the density, temperature, and confinement time achieved throughout the stagnation of the implosion. Radiative losses from higher Z ablator material that mixes into the hot spot as well as non-uniformities in the compression and confinement induced by the fill tube perturbation can degrade the yield of the implosion. This work will examine the impact to conditions at stagnation that results from the fill tube perturbation. This assessment will be based from a pair of experiments conducted with a high density carbon ablator where the only deliberate change was reduction in fill tube diameter from 10 to 5 um. An estimate of the radiative losses and impact on performance from ablator mix injected into the hot spot by the fill tube perturbation will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Effects of Oxidation and fractal surface roughness on the wettability and critical heat flux of glass-peened zirconium alloy tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Nitheanandan, T.; Bullock, C.D.; Slater, L.F.; McRae, G.A.

    2003-05-01

    Glass-bead peening the outside surfaces of zirconium alloy tubes has been shown to increase the Critical Heat Flux (CHF) in pool boiling of water. The CHF is found to correlate with the fractal roughness of the metal tube surfaces. In this study on the effect of oxidation on glass-peened surfaces, test measurements for CHF, surface wettability and roughness have been evaluated using various glass-peened and oxidized zirconium alloy tubes. The results show that oxidation changes the solid-liquid contact angle (i.e., decreases wettability of the metal-oxide surface), but does not change the fractal surface roughness, appreciably. Thus, oxidation of the glass-peened surfaces of zirconium alloy tubes is not expected to degrade the CHF enhancement obtained by glass-bead peening. (author)

  10. Mechanical Characterization of Basalt and Glass Fiber Epoxy Composite Tube

    OpenAIRE

    Lapena, Mauro Henrique; Marinucci, Gerson

    2017-01-01

    The application of basalt fibers are possible in many areas thanks to its multiple and good properties. It exhibits excellent resistance to alkalis, similar to glass fiber, at a much lower cost than carbon and aramid fibers. In the present paper, a comparative study on mechanical properties of basalt and E-glass fiber composites was performed. Results of apparent hoop tensile strength test of ring specimens cut from tubes and the interlaminar shear stress (ILSS) test are presented. Tensile te...

  11. Numerical investigation of tube hyroforming of TWT using Corner Fill Test

    Science.gov (United States)

    Zribi, Temim; Khalfallah, Ali

    2018-05-01

    Tube hydroforming presents a very good alternative to conventional forming processes for obtaining good quality mechanical parts used in several industrial fields, such as the automotive and aerospace sectors. Research in the field of tube hydroforming is aimed at improving the formability, stiffness and weight reduction of manufactured parts using this process. In recent years, a new method of hydroforming appears; it consists of deforming parts made from welded tubes and having different thicknesses. This technique which contributes to the weight reduction of the hydroformed tubes is a good alternative to the conventional tube hydroforming. This technique makes it possible to build rigid and light structures with a reduced cost. However, it is possible to improve the weight reduction by using dissimilar tailor welded tubes (TWT). This paper is a first attempt to analyze by numerical simulation the behavior of TWT hydroformed in square cross section dies, commonly called (Corner Fill Test). Considered tubes are composed of two materials assembled by butt welding. The present analysis will focus on the effect of loading paths on the formability of the structure by determining the change in thickness in several sections of the part. A comparison between the results obtained by hydroforming the butt joint of tubes made of dissimilar materials and those obtained using single-material tube is achieved. Numerical calculations show that the bi-material welded tube has better thinning resistance and a more even thickness distribution in the circumferential directions when compared to the single-material tube.

  12. The effect of tube filling on the electronic properties of Fe filled carbon nanotubes

    International Nuclear Information System (INIS)

    Linganiso, Ella C.; Chimowa, George; Franklyn, Paul J.; Bhattacharyya, Somnath; Coville, Neil J.

    2012-01-01

    Graphical abstract: HRTEM image of a twisted CNT filled with a bent single crystal of Fe. Insets from top to bottom show the power spectra of the corresponding regions, indicating the twisting of the Fe lattice. Inset in the top right shows the relative angling of the lattice fringes to accommodate the twisting of the Fe. Highlights: ► Synthesis of Fe filled CNTs with Fe content varying from 3 to 35%. ► TEM analysis indicates that Fe in the tubes is in contact with the CNTs. ► TEM analysis reveals that α-Fe crystallizes after CNT formation. ► Temperature dependent electronic transport measurements performed. ► Conductivity varies with the % Fe filling in the CNTs. - Abstract: Carbon nanotubes filled with Fe nanostructures (Fe-CNTs) were synthesized using an injection method in a 1-stage horizontal CVD furnace and a bubbling method in a 2-stage horizontal CVD reactor. Fe-CNTs were obtained through the pyrolysis of a mixture of dichlorobenzene and ferrocene in 5%H 2 /Ar. Metal impurities from the Fe-CNTs were removed using 1 M HCl solution. CNTs filled with crystalline Fe nanoparticles, nanorods and nanowires were obtained using these procedures. An intimate interaction between the Fe and the CNT was established by HRTEM studies. The α-Fe phase was observed to be the most dominant fraction found in the synthesized Fe-CNTs. The Fe 2 O 3 residue obtained from the TGA analysis revealed the amount of Fe filled inside the CNTs and this ranged between 3 and 31% by mass after purification. The temperature dependence of the conductivity in the temperature range between 2.5 and 100 K for an entangled network of Fe-CNTs was measured. An increase in conductivity due to the increased Fe filling inside the CNTs with increased temperature was observed. The observed temperature dependence was explained in terms of variable range hopping (VRH) conduction mechanisms. A transition from Efros–Shklovskii behavior at low % Fe filling of the CNTs to Mott 3D VRH behavior at

  13. Petrology and geochemistry of VLT glasses from double drive tube 79001/2

    Science.gov (United States)

    Wentworth, Susan J.; Lindstrom, D. J.; Martinez, R. R.; Mckay, D. S.

    1993-01-01

    As a part of more general studies of soils from Apollo 17 double drive tube 79001/2, glasses from the 79001/2 core are being analyzed by a multidisciplinary approach including SEM/EDS and INAA. Efforts are currently focused on VLT (very low-Ti; TiO2 less than 1 wt%) mare glasses, which are common in 79001/2 and have also been found in other Apollo 17 soils. One of the primary objectives is to determine whether any or all of the Apollo 17 VLT glasses represent pristine volcanic compositions. In addition, the range of VLT glass compositions and possible relationships between the glasses and VLT lithic samples, for which some geochemical data have been obtained previously, is being defined.

  14. Microleakage of conventional, resin-modified, and nano-ionomer glass ionomer cement as primary teeth filling material

    Directory of Open Access Journals (Sweden)

    Dita Madyarani

    2014-12-01

    Full Text Available Background: Glass ionomer cements are one of many dental materials that widely used in pediatric dentistry due to their advantage of fluoride release and chemical bond to tooth structure. Adherence of the filling material to the cavity walls is one of the most important characteristic that need to be examined its effect on microleakage. Purpose: This study was conducted to examine the microleakage of nano-ionomer glass ionomer cement compared with the conventional and resin-modified glass ionomer cements. Methods: Standard class V cavities sized 3 mm x 2 mm x 2 mm were made on a total of 21 extracted maxillary primary canine teeth and restored with the conventional, resin-modified, dan nano-ionomer glass ionomer cements. All the teeth were immersed in a 2% methylene blue dye for 4 hours. The depth of dye penetration was assessed using digital microscope after sectioning the teeth labio-palatally. The results were statistically analyzed using Kruskal-Wallis test. Results: All type of glass ionomer material showed microleakage. Conventional glass ionomer cement demonstrated the least microleakage with mean score 1.29. the resin-modified glass ionomer cements (mean score 1.57 and nano-ionomer glass ionomer cement (mean score 2.57. Conclusion: The conventional glassionomer, resin modified glassionomer, and nano-ionomer glassionomer showed micro leakage as filling material in primary teeth cavity. The micro leakage among three types was not significant difference. All three material were comparable in performance and can be used for filling material but still needs a coating material to fill the microleakage.Latar belakang: Semen ionomer kaca adalah salah satu dari banyak bahan gigi yang banyak digunakan dalam praktek kedokteran gigi anak karena bahan tersebut merilis fluoride dan berikatan kimia dengan struktur gigi. Perlekatan bahan tumpatan pada dinding kavitas adalah salah satu karakteristik paling penting yang perlu diteliti efeknya terhadap

  15. EXPERIMENTAL STUDIES ON THE QUASI-STATIC AXIAL CRUSHING BEHAVIOR OF FOAM-FILLED STEEL EXTRUSION TUBES

    OpenAIRE

    AL EMRAN ISMAIL

    2010-01-01

    The concerns of automotive safety have been given special attention in order to reduce human fatalities or injuries. One of the techniques to reduce collision impact or compression energy is by filling polymeric foam into metallic tubes. In this work, polyurethane foam was introduced into the steel extrusion tubes and quasi-statically compressed at constant cross-head displacement. Different tube thicknesses and foam densities were used and these parameters were related to the crashwor...

  16. Nocturnal reverse flow in water-in-glass evacuated tube solar water heaters

    International Nuclear Information System (INIS)

    Tang, Runsheng; Yang, Yuqin

    2014-01-01

    Highlights: • Performance of water-in-glass evacuated tube solar water heaters (SWH) at night was studied. • Experimental measurements showed that reverse flow occurred in SWHs at night. • Reverse flow in SWHs was very high but the heat loss due to reverse flow was very low. • Reverse flow seemed not sensitive to atmospheric clearness but sensitive to collector tilt-angle. - Abstract: In this work, the thermal performance of water-in-glass evacuated tube solar water heaters (SWH) at nights was experimentally investigated. Measurements at nights showed that the water temperature in solar tubes was always lower than that in the water tank but higher than the ambient air temperature and T exp , the temperature of water inside tubes predicted in the case of the water in tubes being naturally cooled without reverse flow. This signified that the reverse flow in the system occurred at nights, making the water in solar tubes higher than T exp . It is found that the reverse flow rate in the SWH, estimated based on temperature measurements of water in solar tubes, seemed not sensitive to the atmospheric clearness but sensitive to the collector tilt-angle, the larger the tilt-angle of the collector, the higher the reverse flow rate. Experimental results also showed that, the reverse flow in the SWH was much higher as compared to that in a thermosyphonic domestic solar water heater with flat-plate collectors, but the heat loss from collectors to the air due to reverse flow in SWHs was very small and only took about 8–10% of total heat loss of systems

  17. Construction of lead glass tubing matrices for applications in medical physics and high energy physics

    International Nuclear Information System (INIS)

    Schwartz, G.; Conti, M.; Del Guerra, A.; Cinti, M.; Di Fino, M.; Habel, R.

    1985-01-01

    Honeycomb matrices which act both as gamma ray converter/radiator and electron drift structures have been manufactured from lead glass tubing of high density (5-6 g/cm 3 ). Baking the tubing in a reducing atmosphere produces a resistive metallic layer which can be used as a continuous voltage divider for drift field shaping. The application of a multiwire proportional chamber/converter detector to positron emission tomography is described; arrays of lead glass capillaries ( < 1.0 mm inner diameter) are used as converter for the 511 keV annihilation photons. Another application is under study in high energy physics, a high density projection chamber in electromagnetic calorimetry. The various phases of the construction of these lead glass matrices for both applications are described in detail

  18. Study on the friction and wear properties of glass fabric composites filled with nano- and micro-particles under different conditions

    International Nuclear Information System (INIS)

    Su Fenghua; Zhang Zhaozhu; Liu Weimin

    2005-01-01

    The glass fabric composites filled with the particulates of polytetrafluoroethylene (PTFE), micro-sized MoS 2 , nano-TiO 2 , and nano-CaCO 3 , respectively, were prepared by dip-coating of the glass fabric in a phenolic resin containing the particulates to be incorporated and the successive curing. The friction and wear behaviors of the resulting glass fabric composites sliding against AISI-1045 steel in a pin-on-disk configuration at various temperatures were evaluated on a Xuanwu-III high temperature friction and wear tester. The morphologies of the worn surfaces of the filled glass fabric composites and the counterpart steel pins were analyzed by means of scanning electron microscopy, and the elemental distribution of F on the worn surface of the counterpart steel was determined by means of energy dispersive X-ray analysis (EDXA). It was found that PTFE and nano-TiO 2 particulates as the fillers contributed to significantly improve the friction-reducing and anti-wear properties of the glass fabric composites, but nano-CaCO 3 and micro-MoS 2 as the fillers were harmful to the friction and wear behavior of the glass fabric composites. The friction and wear properties of the glass fabric composites filled with the particulate fillers were closely dependent on the environmental temperature and the wear rates of the composites at elevated temperature above 200 deg. C were much larger than that below 150 deg. C, which was attributed to the degradation and decomposition of the adhesive resin at excessively elevated temperature. The bonding strengths between the interfaces of the glass fabric, the adhesive resin, and the incorporated particulates varied with the types of the particulate fillers, which largely accounted for the differences in the tribological properties of the glass fabric composites filled with different fillers. Moreover, the transferred layers of varied features formed on the counterpart steel pins also partly accounted for the different friction and

  19. Experiments of draining and filling processes in a collapsible tube at high external pressure

    Science.gov (United States)

    Flaud, P.; Guesdon, P.; Fullana, J.-M.

    2012-02-01

    The venous circulation in the lower limb is mainly controlled by the muscular action of the calf. To study the mechanisms governing the venous draining and filling process in such a situation, an experimental setup, composed by a collapsible tube under external pressure, has been built. A valve preventing back flows is inserted at the bottom of the tube and allows to model two different configurations: physiological when the fluid flow is uni-directional and pathological when the fluid flows in both directions. Pressure and flow rate measurements are carried out at the inlet and outlet of the tube and an original optical device with three cameras is proposed to measure the instantaneous cross-sectional area. The experimental results (draining and filling with physiological or pathological valves) are confronted to a simple one-dimensional numerical model which completes the physical interpretation. One major observation is that the muscular contraction induces a fast emptying phase followed by a slow one controlled by viscous effects, and that a defect of the valve decreases, as expected, the ejected volume.

  20. A study on characteristic of glass dosimeter according to grade change of tube current

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jin Hyun; Kim, Seong Ho; Mun, Hyun Jun; Kim, Lyun Kyun; Son, In Hwa; Kim, Young Jun; Min, Jung Whan [Dept. of Radiological Science, Shingu University, Sungnam (Korea, Republic of); Kim, Ki Won [Dept. of Radiology, Samsung Medical Center, Seoul (Korea, Republic of)

    2014-06-15

    This study was evaluated the linearity and reproducibility according to dose, and reproducibility according to delay time by changing tube current amount (5 mAs, 10 mAs, 16 mAs, 20 mAs, 25 mAs, 32 mAs respectively, which are low energy radiations) using Glass Dosimeter (GD) and piranha semiconductor dosimeter which are used for measuring exposure dose. Measurements of radiation dose were performed using external detector of piranha 657 which is multi-function QA device (RTI Electronic, Sweden). Conditions of measurement were 80 kVp, SSD 100 and exposure region is 10 cm x 10 cm. Glass dosimeter was exposed to radiation. Twenty-four glass dosimeters were divided into six groups (5 mAs, 10 mAs, 16 mAs, 20 mAs, 25 mAs, 32 mAs respectively), then measured. This study was resulted by measuring the linearity and reproducibility according to change of tube current in low energy field. In dose characteristic of GD, this study could be useful as previous study with regard to dose characteristic according to change of tube voltage in low energy field.

  1. Dental Glass Ionomer Cements as Permanent Filling Materials? – Properties, Limitations and Future Trends

    Directory of Open Access Journals (Sweden)

    Ulrich Lohbauer

    2009-12-01

    Full Text Available Glass ionomer cements (GICs are clinically attractive dental materials that have certain unique properties that make them useful as restorative and luting materials. This includes adhesion to moist tooth structures and base metals, anticariogenic properties due to release of fluoride, thermal compatibility with tooth enamel, biocompatibility and low toxicity. The use of GICs in a mechanically loaded situation, however, has been hampered by their low mechanical performance. Poor mechanical properties, such as low fracture strength, toughness and wear, limit their extensive use in dentistry as a filling material in stress-bearing applications. In the posterior dental region, glass ionomer cements are mostly used as a temporary filling material. The requirement to strengthen those cements has lead to an ever increasing research effort into reinforcement or strengthening concepts.

  2. Damage assessment for seismic response of recycled concrete filled steel tube columns

    Science.gov (United States)

    Huang, Yijie; Xiao, Jianzhuang; Shen, Luming

    2016-09-01

    A model for evaluating structural damage of recycled aggregate concrete filled steel tube (RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the effect of repeated cyclic loading into account. Available test results were collected and utilized to calibrate the parameters of the proposed model. A seismic test for six RCFST columns was also performed to validate the proposed damage assessment model. The main test parameters were the recycled coarse aggregate (RCA) replacement percentage and the bond-slip property. The test results indicated that the seismic performance of the RCFST member depends on the RCA contents and their damage index increases as the RCA replacement percentage increases. It is also indicated that the damage degree of RCFST changes with the variation of the RCA replacement percentage. Finally, comparisons between the RCA contents, lateral deformation ratio and damage degree were implemented. It is suggested that an improvement procedure should be implemented in order to compensate for the performance difference between the RCFST and normal concrete filled steel tubes (CFST).

  3. Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar

    International Nuclear Information System (INIS)

    Ling, Tung-Chai; Poon, Chi-Sun

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → A recycling/treatment process to remove lead on funnel glass surface is described. → Utilizing recycled funnel glass in mortar can reduce hazardous CRT glass wastes. → Effects of CRT glass content on the properties of cement mortar are studied. → Fly ash can effectively mitigate ASR expansion of mortar even at 100% glass content. → Alkaline medium in cement matrix successfully prevented the leaching of lead. - Abstract: Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production.

  4. Nanoscale Characterization of Glass Flake Filled Vinyl Ester Anti-Corrosion Coatings

    Directory of Open Access Journals (Sweden)

    Salim Barbhuiya

    2017-08-01

    Full Text Available Vinyl ester is a thermoset matrix resin that is widely used in the coating industry. The presence of glass flakes further enhances the anti-corrosion performance of this coating. This paper reports the nanoscaled characterization of glass flake filled vinyl ester anti-corrosion coatings on mild steel. Bond strength properties of one uncoated and four coated samples with different thicknesses (300, 600, 900 and 1200 μm were studied using nanoscratch technique and ASTM Standard Test. It was found that the bond strength of coating with thickness 900 μm was the highest. The frequency distributions of elastic modulus on coating with 900 μm thickness determined using nanoindentation indicated that only 20–25% of the coating is composed of glass flakes and the balance is vinyl ester matrix. The critical depth at which the material is subject to failure due to external load and abrasion, was found to be around 100 nm.

  5. Spectral Optical Readout of Rectangular-Miniature Hollow Glass Tubing for Refractive Index Sensing.

    Science.gov (United States)

    Rigamonti, Giulia; Bello, Valentina; Merlo, Sabina

    2018-02-16

    For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances.

  6. Spectral Optical Readout of Rectangular–Miniature Hollow Glass Tubing for Refractive Index Sensing

    Science.gov (United States)

    Rigamonti, Giulia; Bello, Valentina

    2018-01-01

    For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances. PMID:29462907

  7. Experimental Study of Concrete-filled Carbon Fiber Reinforced Polymer Tube with Internal Reinforcement under Axially Loading

    Directory of Open Access Journals (Sweden)

    Wenbin SUN

    2014-12-01

    Full Text Available Comparing with the circular concrete columns confined with fiber reinforced polymer (FRP wrap or tube, the rectilinear confined columns were reported much less. Due to the non-uniform distribution of confining pressure in the rectilinear confined columns, the FRP confinement effectiveness was significant reduced. This paper presents findings of an experimental program where nine prefabricated rectangular cross-section CFRP tubes with CFRP integrated crossties filled concrete to form concrete-filled FRP tube (CFFT short columns and three plain concrete control specimens were tested. All specimens were axially loaded until failure. The rest results showed that the stress-strain curves of CFFTs consisted of two distinct branches, an ascending branch before the concrete peak stress was reaches and a second branch that terminated when the tube ruptured, and that the CFFTs with integrated crossties experienced most uniform confinement pressure distribution. Test research also found that the stress-strain curves of CFFTs indicated an increase in ductility. These demonstrate that this confinement system can produce higher lateral confinement stiffness. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6035

  8. Crash worthy capacity of a hybridized epoxy-glass fiber aluminum columnar tube using repeated axial resistive force

    International Nuclear Information System (INIS)

    Paruka, Perowansa; Siswanto, Waluyo Adi; Maleque, Md Abdul; Shah, Mohd Kamal Mohd

    2015-01-01

    A combination of aluminum columnar member with composite laminate to form a hybrid structure can be used as collapsible energy absorbers especially in automotive vehicular structures to protect occupants and cargo. A key advantage of aluminum member in composite is that it provides ductile and stable plastic collapse mechanisms with progressive deformation in a stable manner by increasing energy absorption during collision. This paper presents an experimental investigation on the influence of the number of hybrid epoxy glass layers in overwrap composite columnar tubes. Three columnar tube specimens were used and fabricated by hand lay-up method. Aluminum square hollow shape was combined with externally wrapped by using an isophthalic epoxy resin reinforced with glass fiber skin with an orientation angle of 0 .deg. /90 .deg. The aluminum columnar tube was used as reference material. Crushed hybrid-composite columnar tubes were prepared using one, two, and three layers to determine the crash worthy capacity. Quasi-static crush test was conducted using INSTRON machine with an axial loading. Results showed that crush force and the number of layers were related to the enhancement of energy absorption before the collapse of columnar tubes. The energy absorption properties of the crushed hybrid-composite columnar tubes improved significantly with the addition of layers in the overwrap. Microscopic analysis on the modes of epoxy-glass fiber laminate failure was conducted by using scanning electron microscopy.

  9. Crash worthy capacity of a hybridized epoxy-glass fiber aluminum columnar tube using repeated axial resistive force

    Energy Technology Data Exchange (ETDEWEB)

    Paruka, Perowansa [Jalan Politeknik, Kota Kinabalu (Malaysia); Siswanto, Waluyo Adi [Universiti Tun Hussein Onn Malaysia, Parit Raja (Malaysia); Maleque, Md Abdul [Universiti Islam Antarabangsa Malaysia, Kuala Lumpur (Malaysia); Shah, Mohd Kamal Mohd [Universiti Malaysia Sabah, Kota Kinabalu (Malaysia)

    2015-05-15

    A combination of aluminum columnar member with composite laminate to form a hybrid structure can be used as collapsible energy absorbers especially in automotive vehicular structures to protect occupants and cargo. A key advantage of aluminum member in composite is that it provides ductile and stable plastic collapse mechanisms with progressive deformation in a stable manner by increasing energy absorption during collision. This paper presents an experimental investigation on the influence of the number of hybrid epoxy glass layers in overwrap composite columnar tubes. Three columnar tube specimens were used and fabricated by hand lay-up method. Aluminum square hollow shape was combined with externally wrapped by using an isophthalic epoxy resin reinforced with glass fiber skin with an orientation angle of 0 .deg. /90 .deg. The aluminum columnar tube was used as reference material. Crushed hybrid-composite columnar tubes were prepared using one, two, and three layers to determine the crash worthy capacity. Quasi-static crush test was conducted using INSTRON machine with an axial loading. Results showed that crush force and the number of layers were related to the enhancement of energy absorption before the collapse of columnar tubes. The energy absorption properties of the crushed hybrid-composite columnar tubes improved significantly with the addition of layers in the overwrap. Microscopic analysis on the modes of epoxy-glass fiber laminate failure was conducted by using scanning electron microscopy.

  10. Foaming of waste cathode ray tube panel glass via CaCO3

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    The disposal of obsolete electrical and electronic equipment has become a global environmental problem. However, with responsible collecting, dismantling and materials separation, majority of materials can be recycled. Cathode ray tube (CRT) glass represents as much as two-thirds of the weight...

  11. Proposals for Calculation of Bucking Coefficient for Concrete-Filled Steel Tube Columns

    Science.gov (United States)

    Krishan, A. L.; Sagadatov, A. I.; Surovtsov, M. M.

    2017-11-01

    This paper demonstrates that the methodology currently standardized in Russia to factor in the flexibility of reinforced concrete components under extra-central compression produce results that satisfactorily match the experimental values; however, that only holds for the components with a flexibility of λ=40÷60. Given the complex stress state of the concrete core and the steel shell as well as due to the concrete-filled steel tube columns being prone to deformation, this method cannot be used to reliably calculate their load capacity. The literature review has revealed many researchers’ suggestions to factor in the flexibility of concrete-filled steel tubes by means of the buckling coefficient that reduces the limit value of longitudinal force a short compressed element can take. We have analyzed the methods currently standardized in Europe and China as well as more advanced methods proposed by Chinese scientists. Calculating by these methods led to the results that excessively deviated from experimental values. By statistically analyzing a large volume of own and third-party research data as well as the data obtained by non-linear deformation computing, we have derived a new formula to determine the bucking coefficient depending on the relative flexibility.

  12. Investigation of in-plane moment connections of I-beams to square concrete-filled steel tube columns under gravity loads

    Directory of Open Access Journals (Sweden)

    Abdelrahim K. Dessouki

    2015-04-01

    Full Text Available This paper focuses on experimental and analytical behavior of the ultimate moment of the connections of steel I-beams to square concrete-filled steel tube columns. External stiffeners around the columns are used at the beam flange levels. Five specimens are tested monotonically. The test parameters are the column stiffener dimensions and filling the steel tube column with concrete. Two types of failure modes are observed; beam flange failure and stiffener failure. The experimental results show that the ultimate moment of the connection is increased by increasing stiffener’s dimensions and filling the steel tube column with concrete. ANSYS finite element program is used to simulate the behavior, taking into account both geometric and material nonlinearities. Analytical results that are in fair agreement with the experimental ones are then used to discuss the influence of the main geometric parameters on the connection behavior. The parameters are the stiffener and column dimensions as well as filling the steel tube column with concrete. Different square column cross sections are chosen to cover the three classes of section classifications according to Egyptian code of practice, which are: compact, non compact or slender. The increase in the ultimate moment of the connections is based upon both column cross sections’ compactness and stiffener dimensions while the maximum advantages occur with slender columns.

  13. Seismic performance of recycled concrete-filled square steel tube columns

    Science.gov (United States)

    Chen, Zongping; Jing, Chenggui; Xu, Jinjun; Zhang, Xianggang

    2017-01-01

    An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic lateral loading. Two parameters, replacement percentage of recycled coarse aggregate (RCA) and axial compression level, were considered in the test. Based on the experimental data, the hysteretic loops, skeleton curves, ductility, energy dissipation capacity and stiffness degradation of RCFST columns were analyzed. The test results indicate that the failure modes of RCFST columns are the local buckling of the steel tube at the bottom of the columns, and the hysteretic loops are full and their shapes are similar to normal CFST columns. Furthermore, the ductility coefficient of all specimens are close to 3.0, and the equivalent viscous damping coefficient corresponding to the ultimate lateral load ranges from 0.323 to 0.360, which demonstrates that RCFST columns exhibit remarkable seismic performance.

  14. Foam glass obtained through high-pressure sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2018-01-01

    Foam glasses are usually prepared through a chemical approach, that is, by mixing glass powder with foaming agents, and heating the mixture to a temperature above the softening point (106.6 Pa s) of the glass. The foaming agents release gas, enabling expansion of the sintered glass. Here, we use...... a physical foaming approach to prepare foam glass. First, closed pores filled with inert gases (He, Ar, or N2) are physically introduced into a glass body by sintering cathode ray tube (CRT) panel glass powder at high gas pressure (5‐25 MPa) at 640°C and, then cooled to room temperature. The sintered bodies...... are subjected to a second heat treatment above the glass transition temperature at atmospheric pressure. This heat treatment causes expansion of the pores due to high internal gas pressure. We found that the foaming ability strongly depends on the gas pressure applied during sintering, and on the kinetic...

  15. Hydrogen transport and storage in engineered glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G.D.

    1995-04-18

    New, high strength glass microspheres filled with pressurized hydrogen exhibit densities which make them attractive for bulk hydrogen storage and transport. The membrane tensile stress at failure for our engineered glass microspheres is about 150,000 psi, permitting a threefold increase in pressure limit and storage capacity above commercial microspheres, which have been studied a decade ago and have been shown to fail at membrane stresses of 50,000 psi. Our analysis relating glass microspheres for hydrogen transport with infrastructure and economics, indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as pressurized tube transports and liquid hydrogen trailers.

  16. Stress analysis of glass-ceramic insulator and molybdenum cylinders in vacuum tube subassembly

    International Nuclear Information System (INIS)

    Spears, R.K.

    1980-01-01

    This study determined the state of stress between molybdenum cylinders and a glass-ceramic insulator of a vacuum tube during cooling when the glass-ceramic coefficient of expansion differed from molybdenum by +-2 x 10 -7 / 0 C. A thermoelastic stress analysis was performed on the vacuum tube subassembly using the finite element method. Two cases, which examined the effect of cooling over a 700 0 C range, were considered. In Case One, the expansion coefficient of the glass-ceramic was 2 x 10 -7 / 0 C less than that of molybdenum while for Case Two, it was 2 x 10 -7 / 0 C greater. For Case One, it was found that the tangential stresses in the insulator were entirely compressive but the maximum principal stresses in the r-z plane were mainly tensile. For Case Two, the tangential stresses were tensile in the insulator as were most of the maximum principal stresses in the r-z plane except for stress in the upper regions of the insulator. The magnitude of the stress at the maximum principal stress location appears to be substantially lower than what has been observed in practice (i.e., cracking of this design had never been a major problem, but it has been observed that if the coefficient of expansion of the glass-ceramic was 2 x 10 -7 / 0 C lower than molybdenum, cracking usually resulted). This analysis showed that the expansion coefficient of the glass-ceramic could be varied quite liberally from molybdenum before the ultimate strength (13,000 lb/in. 2 ) of the glass-ceramic was exceeded

  17. Failure analysis of glass-ceramic insulators of shock tested vacuum (neutron) tubes

    International Nuclear Information System (INIS)

    Spears, R.K.

    1980-01-01

    Eight investigative techniques were used to examine the glass-ceramic insulators in vacuum (neutron) tubes. The insulators were extracted from units that had been subjected to low temperature mechanical shock tests. Two of the three units showed reduced neutron output after these tests and an insulator on one of these two was cracked completely through which probably occurred during shock testing. The objective of this study was to determine if any major differences existed between the insulators of these tubes. After eight analyses, it was concluded that no appreciable differences existed. It appeared that cracking of the one glass-ceramic sample was initiated at inner-sleeve interface voids. For this sample, the interface void density was much higher than is presently acceptable. All insulators were made with glass-ceramic having a Na 2 O content of 4.6 wt%. An increased Na 2 O content will cause an increase in the coefficient of expansion and will reduce the residual stress level since the molybdenum has a higher coefficient of thermal expansion than the insulator. Thus, it is believed that a decrease in interface voids and an increase in Na 2 O should aid in reduced cracking of the insulator during these tests

  18. Freezing of aluminium oxide and iron flowing upward in circular quartz glass tubes

    International Nuclear Information System (INIS)

    Kuhn, D.; Moeschke, M.; Werle, H.

    1983-10-01

    The freezing of aluminium oxide and iron flowing upward in circular quartz glass tubes has been studied in a series of experiments. Several tubes were used in the same test. This demonstrated a good reproducibility and allowed systematic parameter variations, especially of the channel diameter. The time-dependance of the penetration was observed with a film camera and these date provide a good basis for a detailed check of sophisticated models which are in development. (orig.) [de

  19. Structural integrity testing of glass-ceramic/molybdenum vacuum tube frames

    International Nuclear Information System (INIS)

    Spears, R.K.

    1980-01-01

    In this study, vacuum tube subassemblies made of glass-ceramic insulators sealed to inner and outer molybdenum frames were loaded in compression to failure with a tensile test machine. Several factors were varied in processing these subassemblies. These factors included etching and nonetching of molybdenum piece parts, annealing and nonannealing of subassemblies, and vapor and non-vapor honing of insulators after sealing. After failure, the subassemblies were examined for fracture patterns. In most cases, fracture started at points near the lower portion of the inner sleeve-insulator interface. More load was carried by subassemblies having molybdenum piece parts that were acid etched. No difference appeared between the strength of subassemblies having annealed and nonannealed glass-ceramic insulators. Parts with vapor-honed insulators failed at substantially lower loads

  20. Modeling and experiments with low-frequency pressure wave propagation in liquid-filled, flexible tubes

    DEFF Research Database (Denmark)

    Bjelland, C; Bjarnø, Leif

    1992-01-01

    relations and frequency-dependent attenuation. A 12-m-long, liquid-filled tube with interior stress members and connectors in each end is hanging vertically from an upper fixture. The lower end connector is excited by a power vibrator to generate the relevant wave modes. Measurements with reference...

  1. A new desalination system using a combination of heat pipe, evacuated tube and parabolic trough collector

    International Nuclear Information System (INIS)

    Jafari Mosleh, H.; Jahangiri Mamouri, S.; Shafii, M.B.; Hakim Sima, A.

    2015-01-01

    Highlights: • A new desalination uses a combination of heat pipe and parabolic trough collector. • A twin-glass evacuated tube is used to decrease the thermal losses from heat pipe. • Adding oil into the space between heat pipe and tube collector enhances the yield. • The yield and efficiency reach up to 0.933 kg/(m 2 h) and 65.2%, respectively. - Abstract: The solar collectors have been commonly used in desalination systems. Recent investigations show that the use of a linear parabolic trough collector in solar stills can improve the efficiency of a desalination system. In this work, a combination of a heat pipe and a twin-glass evacuated tube collector is utilized with a parabolic trough collector. Results show that the rate of production and efficiency can reach to 0.27 kg/(m 2 h) and 22.1% when aluminum conducting foils are used in the space between the heat pipe and the twin-glass evacuated tube collector to transfer heat from the tube collector to the heat pipe. When oil is used as a medium for the transfer of heat, filling the space between heat pipe and twin-glass evacuated tube collector, the production and efficiency can increase to 0.933 kg/(m 2 h) and 65.2%, respectively

  2. Decolorization of dyeing wastewater in continuous photoreactors using tio2 coated glass tube media

    Directory of Open Access Journals (Sweden)

    Jutaporn Chanathaworn

    2014-02-01

    Full Text Available The present study deals with a decolorization development of malachite green (MG dyeing wastewater using TiO2 thin films coated glass tube media in photoreactor. The TiO2 photocatalyst was synthesized by three methods: TTIP sol-gel, TiO2 powder-modified sol, and TiO2 powder suspension coating on raschig ring glass tube media and was investigated crystallinity phase by SEM, XRD, and AFM. Degradation kinetics of the dyeing wastewater by photocatalytic was carried out under UV light irradiation. The Langmuir first-order model provided the best fit to the experimental data. The catalyst prepared by powder suspension technique and coated on glass tube had given the highest of decolorization kinetics and efficiency. Continuous photoreactor packed with the TiO2 coating media was designed and proven to be the high effectiveness for MG dyeing degradation and stable throughout the recyclability test. The light intensity, dye solution flow rate, and TiO2 loading were the most important parameters that response to decolorization efficiency. The optimum condition of photo decolorization of MG dye solution can be obtained from RSM model. Effectiveness of the synthesized TiO2 thin films using suspension technique and the continuous photoreactor design were obtained with a great potential to be proven for wastewater treatment at industrial scale.

  3. Pressure Measurements on a Deforming Surface in Response to an Underwater Explosion in a Water-Filled Aluminum Tube

    Directory of Open Access Journals (Sweden)

    G. Chambers

    2001-01-01

    Full Text Available Experiments have been conducted to benchmark DYSMAS computer code calculations for the dynamic interaction of water with cylindrical structures. Small explosive charges were suspended using hypodermic needle tubing inside Al tubes filled with distilled water. Pressures were measured during shock loading by tourmaline crystal, carbon resistor and ytterbium foil gages bonded to the tube using a variety of adhesives. Comparable calculated and measured pressures were obtained for the explosive charges used, with some gages surviving long enough to record results after cavitation with the tube wall.

  4. Hydraulic Properties of Closely Spaced Dipping Open Fractures Intersecting a Fluid-Filled Borehole Derived From Tube Wave Generation and Scattering

    Science.gov (United States)

    Minato, Shohei; Ghose, Ranajit; Tsuji, Takeshi; Ikeda, Michiharu; Onishi, Kozo

    2017-10-01

    Fluid-filled fractures and fissures often determine the pathways and volume of fluid movement. They are critically important in crustal seismology and in the exploration of geothermal and hydrocarbon reservoirs. We introduce a model for tube wave scattering and generation at dipping, parallel-wall fractures intersecting a fluid-filled borehole. A new equation reveals the interaction of tube wavefield with multiple, closely spaced fractures, showing that the fracture dip significantly affects the tube waves. Numerical modeling demonstrates the possibility of imaging these fractures using a focusing analysis. The focused traces correspond well with the known fracture density, aperture, and dip angles. Testing the method on a VSP data set obtained at a fault-damaged zone in the Median Tectonic Line, Japan, presents evidences of tube waves being generated and scattered at open fractures and thin cataclasite layers. This finding leads to a new possibility for imaging, characterizing, and monitoring in situ hydraulic properties of dipping fractures using the tube wavefield.

  5. Performance of Retrofitted Self-Compacting Concrete-Filled Steel Tube Beams Using External Steel Plates

    Directory of Open Access Journals (Sweden)

    Ahmed A. M. AL-Shaar

    2018-01-01

    Full Text Available Self-compacting concrete-filled steel tube (SCCFST beams, similar to other structural members, necessitate retrofitting for many causes. However, research on SCCFST beams externally retrofitted by bolted steel plates has seldom been explored in the literature. This paper aims at experimentally investigating the retrofitting performance of square self-compacting concrete-filled steel tube (SCCFST beams using bolted steel plates with three different retrofitting schemes including varied configurations and two different steel plate lengths under flexure. A total of 18 specimens which consist of 12 retrofitted SCCFST beams, three unretrofitted (control SCCFST beams, and three hollow steel tubes were used. The flexural behaviour of the retrofitted SCCFST beams was examined regarding flexural strength, failure modes, and moment versus deflection curves, energy absorption, and ductility. Experimental results revealed that the implemented retrofitting schemes efficiently improve the moment carrying capacity and stiffness of the retrofitted SCCFST beams compared to the control beams. The increment in flexural strength ranged from 1% to 46%. Furthermore, the adopted retrofitting schemes were able to restore the energy absorption and ductility of the damaged beams in the range of 35% to 75% of the original beam ductility. Furthermore, a theoretical model was suggested to predict the moment capacity of the retrofitted SCCFST beams. The theoretical model results were in good agreement with the test results.

  6. Hydrogen transport and storage in engineered glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G.D.

    1995-02-28

    New, high strength glass microspheres filled with pressurized hydrogen exhibit densities which make them attractive for bulk hydrogen storage and transport. The membrane tensile stress at failure for engineered glass microspheres is about 150,000 psi, permitting a three-fold increase in pressure limit and storage capacity above commercial microspheres, which have been studied a decade ago and have been shown to fail at membrane stresses of 50,000 psi. This analysis relating glass microspheres for hydrogen transport with infrastructure and economics, indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as pressurized tube transports and liquid hydrogen trailers. This paper will describe the matching of current glass microspheres with the useful application in commercial hydrogen bulk transport and storage.

  7. Ion beam characteristics of the controlatron/zetatron family of the gas filled neutron tubes

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.S.; Shope, L.A.; O' Neal, M.L.; Boers, J.E.; Bickes, R.W. Jr.

    1981-03-01

    A gas filled tube used to produce a neutron flux with the D(T,He/sup 4/)n reaction is described. Deuterium and tritium ions generated in a reflex discharge are extracted and accelerated to 100 keV by means of an accelerator electrode onto a deutero-tritide target electrode. The electrodes are designed to focus the ion beam onto the target. Total tube currents consisting of extracted ions, unsuppressed secondary electrons, and ions generated by interactions with the background gas are typically 100 mA. The characteristics of the extracted ion beam are discussed. Accelerating voltages greater than 50 kV are required to focus the beam through the accelerator aperture for configurations that give beams with the proper energy density onto the target. The perveance of the beam is discussed. Maximum perveance values are 2 to 20 nanopervs. Tube focusing and neutron production characteristics are described.

  8. Preparation of tubular urease immobilized on the inner wall of glass tube by radiation-polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Y; Hayashi, T; Kawashima, K [National Food Research Inst., Yatabe, Ibaraki (Japan); Oka, O

    1981-03-01

    A method to prepare immobilized urease on the inner wall of a glass tube by radiation-polymerization under frozen state was investigated. As a part of a continuous flow analyzer, i.w.. Technicon Auto Analyzer II, the immobilized urease tube of 1 cm length was set and used for the routine determination of urea. This flow-through system could measure urea concentration of up to 30 mM at rate of 30 samples per hour. The system were possible to assay 2000 to 3000 samples, continuously in practice. The activity of the urease tube stored in a refrigerator maintained 94% of the initial activity after 115 days.

  9. Preparation of tubular urease immobilized on the inner wall of glass tube by radiation-polymerization

    International Nuclear Information System (INIS)

    Tanaka, Yoshikazu; Hayashi, Toru; Kawashima, Koji; Oka, Osamu.

    1981-01-01

    A method to prepare immobilized urease on the inner wall of a glass tube by radiation-polymerization under frozen state was investigated. As a part of a continuous flow analyzer, i.w.. Technicon Auto Analyzer II, the immobilized urease tube of 1 cm length was set and used for the routine determination of urea. This flow-through system could measure urea concentration of up to 30 mM at rate of 30 samples per hour. The system were possible to assay 2000 to 3000 samples, continuously in practice. The activity of the urease tube stored in a refrigirator maintained 94% of the initial activity after 115 days. (author)

  10. The glass-like glazed coating made of cathode-ray tube faceplates cullet

    Directory of Open Access Journals (Sweden)

    N.І. Zavgorodnya

    2016-05-01

    Full Text Available The tendency of the current time is to find ways of expedient municipal solid waste recycling as a secondary raw material with similar physicochemical and mechanical characteristics for the purpose of efficient use of resources and reduction of harmful impact on the environment. Due to the termination the production of monitors and television sets with cathode-ray tubes, a significant part of them is grow out of use in the form of dimensional waste. Kinescopes of these electric devices contain valuable components including the screen and conical glass and cathode-luminophors. Existing trends in the world of CRT faceplates cullet recycling argue for reasonability of recycling ways of this valuable secondary raw materials. Aim: The aim of researches is to determine the impact of the full replacement of quartz sand by faceplates cullet and using the zinc sulfide, reconstituted of used cathode-luminophors, as a secondary raw material in the production of glass-like glaze on the basic properties of color glaze. Materials and Methods: Cathode-ray tube faceplates are cut off during removal process, washed from dirt, dried, crushed by press, milled in a cheek grinder and finally crushed in a barrel mill. The slurried impurity (clay, dyes of desired color, including ZnS, water are added to this powder. The received mix is processed of wet grinding for slip production. Slip is surfaced on glass-ceramic tile, dried up, burned at maximum temperature of 900ºС. Results: Experimental research has shown that glass-forming, modifying and intermediate oxides of inorganic substances are added to the glaze with the CRT faceplates cullet. The Chasiv Yar clay belongs to the group with significant gas emission. The water vapor arising during the clay dehydration plays role of the "carrier" of heavy non-volatile components, considerably accelerates gas processes and increases activity of gas components. Zinc sulphide, dissolved in the silicate glaze melts when heated

  11. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  12. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  13. Preparation of lead oxide nanoparticles from cathode-ray tube funnel glass by self-propagating method.

    Science.gov (United States)

    Wang, Yu; Zhu, Jianxin

    2012-05-15

    This paper presents a novel process of extracting lead oxide nanoparticles from cathode-ray tube (CRT) funnel glass using self-propagating high-temperature synthesis (SHS) method. The impacts of added amount of funnel glass on the extraction ratio of lead, the lead extraction velocity and the micromorphology, as well as particle size of extracted nanoparticles were investigated. We found that self-propagating reaction in the presence of Mg and Fe(2)O(3) could separate lead preferentially and superfine lead oxide nanoparticles were obtained from a collecting chamber. The separation ratio was related closely to the amount of funnel glass added in the original mixture. At funnel glass addition of no more than 40wt.%, over 90wt.% of lead was recovered from funnel glass. High extraction yield reveals that the network structure of funnel glass was fractured due to the dramatic energy generated during the SHS melting process. The PbO nanoparticles collected show good dispersion and morphology with a mean grain size of 40-50nm. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Bridge-in-a-backpack(TM) task 3.3 : investigate soil-structure interaction-modeling and experimental results of concrete filled FRP tube arches.

    Science.gov (United States)

    2015-12-01

    This report includes fulfillment of Task 3.3 of a multi-task contract to further enhance concrete filled FRP tubes, or : the Bridge in a Backpack. Task 3 is an investigation of soil-structure interaction for the FRP tubes. Task 3.3 is the : modeling ...

  15. The performance of solar collector CPC (compound parabolic concentrator) type with three pipes covered by glass tubes

    Science.gov (United States)

    Gaos, Yogi Sirodz; Yulianto, Muhamad; Juarsa, Mulya; Nurrohman, Marzuki, Edi; Yuliaji, Dwi; Budiono, Kabul

    2017-03-01

    Indonesia is a tropical country that has potential energy of solar radiation worth of 4.5 until 4.8 kWh/m2. However, this potential has not been utilized regularly. This paper will discuss the performance of solar collector compound parabolic concentrator (CPC) type with water as the working fluid. This CPC solar collector utilized three pipes covered by glass tubes. This paper has contribution to provide the temperature achievement between three pipes covered by glass tubes with and without glass cover of solar collector CPC type. The research conducted by varying the water flow rate of 1 l/m up to 6 l/m with three pipes arranged in series and parallel. From the results, the used of solar collector CPC type in the current study shows that the decrease of solar radiation, which was caused by climate change, did not influence the heat absorbance by water in the pipe. Therefore, the design of the solar collector in this research has potential to be used in future when solar radiation are used as the energy source.

  16. CFD Study of Fluid Flow in an All-glass Evacuated Tube Solar Water Heater

    DEFF Research Database (Denmark)

    Ai, Ning; Fan, Jianhua; Li, Yumin

    2008-01-01

    Abstract: The all-glass evacuated tube solar water heater is one of the most widely used solar thermal technologies. The aim of the paper is to investigate fluid flow in the solar water heater by means of computational fluid dynamics (CFD). The investigation was carried out with a focus on the co...... for future system optimization....

  17. Experimental analysis of energy absorption behaviour of Al-tube filled with pumice lightweight concrete under axial loading condition

    Science.gov (United States)

    Rajak, D. K.; Deshpande, P. G.; Kumaraswamidhas, L. A.

    2017-08-01

    This Paper aimed at experimental investigation of compressive behaviour of square tube filled with pumice lightweight concrete (PLC). Square section of 20×20×30 mm is investigated, which is the backbone structure. The compression deformation result shows the better folding mechanism, displacement value, and energy absorption. PLC concrete filled with aluminium thin-wall tubes has been revealed superior energy absorption capacity (EAC) under low strain rate at room temperature. Superior EAC resulted as a result of mutual deformation benefit between aluminium section and PLC is also analysed. PLC was characterised by Fourier Transform Infrared (FTIR) and Field Emission Scanning Electron Microscopy (FESEM), and Energy Dispersive X-ray Spectrometry (EDX) analysis for better understanding of material behaviour. Individual and comparative load bearing graphs is logged for better prospective of analysing. Novel approach aimed at validation of porous lightweight concrete for better lightweight EA filler material.

  18. Adjustable lead glass shielding device for use with a over-the-table x-ray tube

    International Nuclear Information System (INIS)

    Eubig, C.; Groves, B.M.; Davey, G.

    1978-01-01

    Sources of scattered radiation exposure to personnel from a ceiling-mounted x-ray tube were examined at the side of cardiac catheterization patients. A fully adjustable mounting for a lead glass shield was designed to afford maximum radiation protection to the attending physician's head and neck area, while minimizing interference with the procedure

  19. Adjustable lead glass shielding device for use with an over-the-table x-ray tube.

    Science.gov (United States)

    Eubig, C; Groves, B M; Davey, G

    1978-12-01

    Sources of scattered radiation exposure to personnel from a ceiling-mounted x-ray tube were examined at the side of cardiac catheterization patients. A fully adjustable mounting for a lead glass shield was designed to afford maximum radiation protection to the attending physician's head and neck area, while minimizing interference with the procedure.

  20. Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications.

    Science.gov (United States)

    Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok

    2012-01-15

    Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm(3) can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement-sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Investigation of Mild Steel Thin-Wall Tubes in Unfilled and Foam-Filled Triangle, Square, and Hexagonal Cross Sections Under Compression Load

    Science.gov (United States)

    Rajak, Dipen Kumar; Kumaraswamidhas, L. A.; Das, S.

    2018-02-01

    This study has examined proposed structures with mild steel-reinforced LM30 aluminum (Al) alloy having diversely unfilled and 10 wt.% SiCp composite foam-filled tubes for improving axial compression performance. This class of material has novel physical, mechanical, and electrical properties along with low density. In the present experiment, Al alloy foams were prepared by the melt route technique using metal hydride powder as a foaming agent. Crash energy phenomena for diverse unfilled and foam-filled in mild steel thin-wall tubes (triangular, square and hexagonal) were studied as well. Compression deformation investigation was conducted at strain rates of 0.001-0.1/s for evaluating specific energy absorption (SEA) under axial loading conditions. The results were examined to measure plateau stress, maximum densification strain, and deformation mechanism of the materials. Specific energy absorption and total energy absorption capacities of the unfilled and filled sections were determined from the compressive stress-strain curves, which were then compared with each other.

  2. Geochemistry of HASP, VLT, and other glasses from double drive tube 79001/2

    Science.gov (United States)

    Lindstrom, D. J.; Wentworth, S. J.; Martinez, R. R.; Mckay, D. S.

    1992-01-01

    The Apollo 17 double drive tube 79001/2 (station 9, Van Serg Crater) is distinctive because of its extreme maturity, abundance, and variety of glass clasts. It contains mare glasses of both high Ti and very low Ti (VLT) compositions, and highland glasses of all compositions common in lunar regolith samples: highland basalt (feldspathic; Al2O3 greater than 23 wt percent), KREEP (Al2O3 less than 23 wt percent, K2O greater than 0.25 wt percent), and low-K Fra Mauro (LKFM; Al2O3 less than 23 wt percent, K2O less than 0.25 wt percent). It also contains rare specimens of high-alumina, silica-poor (HASP), and ultra Mg glasses. HASP glasses contain insufficient SiO2 to permit the calculation of a standard norm, and are thought to be the product of volatilization during impact melting. They have been studied by electron microprobe major-element analysis techniques but have not previously been analyzed for trace elements. The samples analyzed for this study were polished grain mounts of the 90-160 micron fraction of four sieved samples from the 79001/2 core (depth range 2.3-11.5 cm). A total of 80 glasses were analyzed by SEM/EDS and electron microprobe, and a subset of 33 of the glasses, representing a wide range of compositional types, was chosen for high-sensitivity INAA. A microdrilling device removed disks (mostly 50-100 micron diameter, weighing approx. 0.1-0.5 micro-g) for INAA. Preliminary data reported here are based only on short counts done within two weeks of irradiation.

  3. A Study on the Development of Nonglass Solar Vacuum Tube Collector

    International Nuclear Information System (INIS)

    Oh, Seung Jin

    2008-02-01

    Nature has been providing us energy from the beginning of the world. However human has hardly used it wisely. Solar energy is a kind of renewable energy from the nature. This study has been carried out to study the use of solar energy as it is harnessed in the form of thermal energy. Solar energy is one of the most promising energy resources such as hydrogen, biomass, wind and geothermal energy, because it is clean and inexhaustible. Space heating in buildings can be provided from solar energy by systems that are similar in many respects to water heater systems. By tapping into solar energy, we can not only solve the problem of energy shortage, but also can protect the environment and benefit the human beings. There are currently two types of evacuated tube; a single glass tube and a double glass tube. The former consists of a single glass tube which contains a flat or curved aluminium plate attached to a copper heat pipe or water flow pipe. The latter consists of rows of parallel transparent glass tubes, each of which contains an absorber tube. Evacuated tube collectors introduced above, however, pose some problems as they break rather easily under mechanical stresses. This paper introduces some preliminary results in design and fabrication of a non-glass solar vacuum tube collector in which the thermosyphon(heat pipe)made of copper is used as a heat transfer device. A series of tests have been performed to assess the ability of a non-glass solar vacuum tube collector. The series of experiments are as follows: 1)Vacuum level inside a vacuum tube. 2)Effects of the air remaining inside a vacuum tube on the temperature on the absorber plate. 3)Comparison of a non-glass vacuum solar collector with a single glass evacuated tube(SEIDO 5). Different vacuum levels inside non-glass vacuum tubes were applied to check any leakage or unexpected physical or chemical developments with time. The vacuum level changed from 10 -2 torr to 5torr in 5 days due to air infiltration from

  4. Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications

    International Nuclear Information System (INIS)

    Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok

    2012-01-01

    Highlights: ► It is feasible to use recycled CRT glass in mortar as shield against X-ray radiation. ► Shielding properties of CRT mortar is strongly depended on CRT content. ► Linear attenuation coefficient was reduced by 142% upon 100% CRT glass in mortar. ► Effect of mortar thickness and irradiation energies on shielding was investigated. - Abstract: Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm 3 can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement–sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy.

  5. Development of Lateral Prestress in High-Strength Concrete-Filled FRP Tubes

    Science.gov (United States)

    Vincent, T.; Ozbakkaloglu, T.

    2018-02-01

    This paper reports on an experimental investigation into the axial and lateral strain development of fiber reinforced polymer (FRP) confined high-strength concrete (HSC) with prestressed FRP shells. A total of 24 aramid FRP (AFRP)-confined concrete specimens were manufactured as concrete-filled FRP tubes (CFFTs) with instrumentation to measure the strain variations during application of prestress, removal of end constraints and progressive prestress losses. Prestressed CFFT specimens were prepared with three different dose rates of expansive mineral admixture to create a range of lateral prestress applied to AFRP tubes manufactured with sheet thicknesses of 0.2 or 0.3 mm/ply and referred to as lightly- or well-confined, respectively. In addition to these three levels of prestress, non-prestressed companion specimens were manufactured and tested to determine baseline performance. The experimental results from this study indicate that lateral prestressing of CFFTs manufactured with HSC can be achieved by varying the expansive mineral admixture dose rate with a lateral prestress of up to 7.3 MPa recorded in this study. Significant strain variations were measured during removal of the end constraints with up to 700 microstrain recorded in the axial direction. Finally, the measurement of prestress losses for the month following prestress application revealed minimal progressive losses, with only 250 and 100 με recorded for the axial and hoop strains, respectively.

  6. Production and construction technology of C100 high strength concrete filled steel tube

    Science.gov (United States)

    Wu, Yanli; Sun, Jinlin; Yin, Suhua; Liu, Yu

    2017-10-01

    In this paper, the effect of the amount of cement, water cement ratio and sand ratio on compressive strength of C100 concrete was studied. The optimum mix ratio was applied to the concrete filled steel tube for the construction of Shenyang Huangchao Wanxin mansion. The results show that the increase of amount of cement, water cement ratio can improve the compressive strength of C100 concrete but increased first and then decreased with the increase of sand ratio. The compressive strength of C100 concrete can reach 110MPa with the amount of cement 600kg/m3, sand ratio 40% and water cement ratio 0.25.

  7. Electronic waste: chemical characterization glasses of tubes cathode rays with viability for recycling; Lixo eletronico: caracterizacao quimica dos vidros de tubos de raios catodicos com viabilidade para reciclagem

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Norma Maria O.; Morais, Crislene R. Silva, E-mail: normalimam@ig.com.br [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Unidade Academica de Engenharia de Materiais; Lima, Lenilde Mergia Ribeiro [Universidade Federal de Campina Grande (UATEC/UFCG), Campina Grande, PB (Brazil). Unidade Academica de Tecnologia do Desenvolvimento

    2011-07-01

    Electronic waste, or e-waste, often makes incorrect destinations, which causes serious environmental problems. The aim of this study was to analyze the X-ray fluorescence to study the recycling technology for the glass of Cathode Ray Tubes or, popularly, 'picture tubes', identified by the acronym CRT (Cathode Ray Tubes), which integrate computer monitors. It was observed that the glass screen and funnel analyzed have different chemical compositions. As the silicon oxide (SiO2), the largest component of these glasses percentage 59.89% and 48.63% respectively for the screen and funnel this oxide is responsible for forming the vitreous network. The study of recycling of computer monitors it is important, since about 45% of existing materials on a monitor are made of glass, since it is 100% recyclable and can be reused, thus reducing the amount of waste deposited in the environment. (author)

  8. High insulation foam glass material from waste cathode ray tube panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    . In general CRT consists of two types of glasses: barium/strontium containing glass (panel glass) and lead containing glass (funnel and panel glass). In this work we present the possibility to produce high performance insulation material from the recycled lead-free glass. We studied the influence of foaming...... between 750 and 850°C. We investigated the influence of milling time, particle size, foaming and oxidizing agent concentrations, temperature and time on the foaming process, foam density, foam porosity and homogeneity. Only moderate foaming was observed in carbon containing samples, while the addition...... of the oxidizing agent greatly improved the foaming quality. The results showed that the amount of oxygen available from the glass is not sufficient to combust all of the added carbon, therefore, additional oxygen was supplied via manganese reduction. In general, a minimum in the foam glass density was observed...

  9. Rectangular drift tube characteristics

    International Nuclear Information System (INIS)

    Denisov, D.S.; Musienko, Yu.V.

    1985-01-01

    Results on the study of the characteristics of a 50 x 100 mm aluminium drift tube are presented. The tube was filled with argon-methane and argon-isobutane mixtures. With 16 per cent methane concentration the largest deviation from a linear relation between the drift time and the drift path over 50 mm is less than 2 mm. The tube filled with argon-isobutane mixture is capable of operating in a limited streamer mode

  10. Stripe-like Clay Nanotubes Patterns in Glass Capillary Tubes for Capture of Tumor Cells.

    Science.gov (United States)

    Liu, Mingxian; He, Rui; Yang, Jing; Zhao, Wei; Zhou, Changren

    2016-03-01

    Here, we used capillary tubes to evaporate an aqueous dispersion of halloysite nanotubes (HNTs) in a controlled manner to prepare a patterned surface with ordered alignment of the nanotubes . Sodium polystyrenesulfonate (PSS) was added to improve the surface charges of the tubes. An increased negative charge of HNTs is realized by PSS coating (from -26.1 mV to -52.2 mV). When the HNTs aqueous dispersion concentration is higher than 10%, liquid crystal phenomenon of the dispersion is found. A typical shear flow behavior and decreased viscosity upon shear is found when HNTs dispersions with concentrations higher than 10%. Upon drying the HNTs aqueous dispersion in capillary tubes, a regular pattern is formed in the wall of the tube. The width and spacing of the bands increase with HNTs dispersion concentration and decrease with the drying temperature for a given initial concentration. Morphology results show that an ordered alignment of HNTs is found especially for the sample of 10%. The patterned surface can be used as a model for preparing PDMS molding with regular micro-/nanostructure. Also, the HNTs rough surfaces can provide much higher tumor cell capture efficiency compared to blank glass surfaces. The HNTs ordered surfaces provide promising application for biomedical areas such as biosensors.

  11. Field survey and laboratory tests on composite materials case of GRP (Glass Fiber Reinforced Polyester tubes for water suply

    Directory of Open Access Journals (Sweden)

    Radu Hariga

    2013-09-01

    Full Text Available In the Moldova land, were made two lines of water adduction, having 6000 m length and 40 m slope, or 1/150 slope. The water supply component tubes were disposed under the plant: The tubes are made of glass – reinforced thermosetting plastics (GRP. After about 180 days of operation, one of the lines showed severe deterioration of the quality pipe components. This paper deals with some laboratory tests in order to detect the failure cases of the pipelines components.

  12. Effect on mechanical properties of glass reinforced epoxy (GRE) pipe filled with different geopolymer filler molarity for piping application

    Science.gov (United States)

    Hashim, M. F. Abu; Abdullah, M. M. A.; Ghazali, C. M. R.; Hussin, K.; Binhussain, M.

    2017-04-01

    This study investigated the use of a novel white clay geopolymer as a filler to produce high strength glass reinforced epoxy pipe. It was found that using white clay geopolymer as filler gives better compressive strength to the glass reinforced epoxy pipe. The disadvantages of current glass reinforced epoxy pipes such low compressive strength which can be replaced by the composite pipes. Geopolymerization is an innovative technology that can transform several aluminosilicate materials into useful products called geopolymers or inorganic polymers. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentages white clay geopolymer filler with 4 Molarity and 8 Molarity were prepared. Morphology of white clay geopolymer filler surface was indicates using scanning electron microscopy. The additions of white clay geopolymer filler for both 4 Molarity and 8 Molarity show higher compressive strength than glass reinforced epoxy pipe without any geopolymer filler. The compressive test of these epoxy geopolymer pipe samples was determined using Instron Universal Testing under compression mode. Nonetheless, the compressive strength of glass reinforced epoxy pipe with white clay geopolymer filler continues to drop when added to 40 wt% of the geopolymer filler loading for both 4 Molarity and 8 Molarity. These outcomes showed that the mixing of geopolymer materials in epoxy system can be attained in this research.

  13. The Effect of Resin-modified Glass-ionomer Cement Base and Bulk-fill Resin Composite on Cuspal Deformation.

    Science.gov (United States)

    Nguyen, K V; Wong, R H; Palamara, J; Burrow, M F

    2016-01-01

    This study investigated cuspal deformation in teeth restored with different types of adhesive materials with and without a base. Mesio-occluso-distal slot cavities of moderately large dimension were prepared on extracted maxillary premolars (n=24). Teeth were assigned to one of four groups and restored with either a sonic-activated bulk-fill resin composite (RC) (SonicFill), or a conventional nanohybrid RC (Herculite Ultra). The base materials used were a flowable nanofilled RC (Premise Flowable) and a high-viscosity resin-modified glass-ionomer cement (RMGIC) (Riva Light-Cure HV). Cuspal deflection was measured with two direct current differential transformers, each contacting a buccal and palatal cusp. Cuspal movements were recorded during and after restoration placement. Data for the buccal and palatal cusp deflections were combined to give the net cuspal deflection. Data varied widely. All teeth experienced net inward cuspal movement. No statistically significant differences in cuspal deflection were found among the four test groups. The use of a flowable RC or an RMGIC in closed-laminate restorations produced the same degree of cuspal movement as restorations filled with only a conventional nanohybrid or bulk-fill RC.

  14. Distribusi Streptococcus mutans pada Tepi Tumpatan Glass Ionomer

    Directory of Open Access Journals (Sweden)

    Abdul Muthalib

    2015-10-01

    Full Text Available Secondary caries always occurs as a result of the filling not being hermetically. Purposes of this research is to prove whether there is a leak on the border of the tooth enamel and border between the Glass-ionomer filling with the Streptococcus mutans infection with parameter of SMAAPPI (Simplified S. mutans Approximal Plaque Index by Keeni et al, 1981. The subject of the research were 20 patients who came to the Dental Clinic at University of Indonesia with criteria possessing Glass-ionomer filling at the lower jaws. Collection of the samples were dental plaque gathered using a 1.5 mm excavator to scrape one way direction from the enamel, along the border between the enamel and Glass-ionomer filling and Glass-ionomer filling's surface. Isolation with medium transport sem-synthetic Cariostat and TSY20B and identification by using biochemical test. isolated colony strain local Streptococcus mutans from enamel, the border enamel and Glass-ionomer and the surface of the Glass-ionomer. The results were Streptococcus mutans were found from enamel 3006 colonies, on the border between the enamel and Glass-ionomer 143 colonies and on the surface of the Glss-ionomer 7291 colonies. Amoung of Streptococcus mutans colony obtained on the border of the enamel and Glass-ionomer were smaller compared to the surface of the Glass-ionomer and tooth enamel. Concluded that the leak of the filling was not caused by the number of distributed Streptooccus mutans colonies on the side, because the fluoroapatite fastener occurred due to the Glass-ionomer releasing in fluor along the border of the filling.

  15. The Effects of Phonation Into Glass, Plastic, and LaxVox Tubes in Singers: A Systematic Review.

    Science.gov (United States)

    Mendes, Amanda Louize Félix; Dornelas do Carmo, Rodrigo; Dias de Araújo, Aline Menezes Guedes; Paranhos, Luiz Renato; da Mota, Camila Silva Oliveira; Dias, Sheila Schneiberg Valença; Reis, Francisco Prado; Aragão, José Aderval

    2018-05-03

    The present study aimed to perform a systematic literature review to assess the effects of phonation therapy on voice quality and function in singers. The systematic search was performed in February and updated in October 2017. No restriction of year, language, or publication status was applied. The primary electronic databases searched were LILACS, SciELO, PubMed, and Cochrane. Kappa coefficient was used to assess the agreement between examiners in judging article eligibility. The eligible articles were analyzed based on their risk of bias using the tools proposed by the Joanna Briggs Institute. Mendeley Desktop 1.13.3 software package (Mendeley Ltd, London, UK) was used to standardize the references of identified articles. The general sample consisted of 1965 articles screened out of the electronic databases. Two examiners analyzed the sample in the search for eligible articles. The agreement between examiners reached excellent outcomes (kappa coefficient = 0.88). After the selection, phase 6 articles remained eligible. Together, the eligible studies accounted 141 subjects (65 men and 76 women) aged between 18 and 72 years old. Electroglottography was considered as the most common method (83.33%) of assessment of the effects of phonation therapy in singers. The most prevalent exercises within the therapies were phonation into straws and phonation into glass tubes. The phonation into glass tubes immersed in water, straws, and LaxVox tubes promoted positive effects on the voice quality in singers, such as more comfortable phonation, better voice projection, and economy in voice emission. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  16. Low pressure gas filling of laser fusion microspheres

    International Nuclear Information System (INIS)

    Koo, J.C.; Dressler, J.L.; Hendricks, C.D.

    1979-01-01

    In our laser fusion microsphere production, large, thin gel-microspheres are formed before the chemicals are fused into glass. In this transient stage,, the gel-microspheres are found to be highly permeable to argon and many other inert gases. When the gel transforms to glass, the argon gas, for example, is trapped within to form argon filled, fusion target quality, glass microspheres. On the average, the partial pressure of the argon fills attained in this process is around 2 x 10 4 Pa at room temperature

  17. Dynamic Measurements of Plastic Deformation in a Water-Filled Aluminum Tube in Response to Detonation of a Small Explosives Charge

    Directory of Open Access Journals (Sweden)

    Harold Sandusky

    1999-01-01

    Full Text Available Experiments have been conducted to benchmark computer code calculations for the dynamic interaction of explosions in water with structures. Aluminum cylinders with a length slightly more than twice their diameter were oriented vertically, sealed on the bottom by a thin plastic sheet, and filled with distilled water. An explosive charge suspended in the center of the tube plastically deformed but did not rupture the wall. Tube wall velocity, displacement, and strain were directly measured. The agreement among the three sets of dynamic data and the agreement of the terminal displacement measurements with the residual deformation were excellent.

  18. High temperature collecting performance of a new all-glass evacuated tubular solar air heater with U-shaped tube heat exchanger

    International Nuclear Information System (INIS)

    Wang, Pin-Yang; Guan, Hong-Yang; Liu, Zhen-Hua; Wang, Guo-San; Zhao, Feng; Xiao, Hong-Sheng

    2014-01-01

    Highlights: • A novel solar air heater with simplified CPC and U-type heat exchanger is designed and tested. • The system is made up of 10 linked collecting panels. • Simplified CPC has a much lower cost at the expense of slight efficiency loss. • The air heater can propose the heated air exceeding 200 °C with great air flow rate. - Abstract: Experiment and simulation are conducted on a new-type all-glass evacuated tubular solar air heater with simplified compound parabolic concentrator (CPC). The system is made up of 10 linked collecting panels and each panel includes a simplified CPC and an all-glass evacuated tube with a U-shaped copper tube heat exchanger installed inside. Air is gradually heated when passing through each U-shaped copper tube. The heat transfer model of the solar air heater is established and the outlet air temperature, the heat power and heat efficiency are calculated. Calculated and experimental results show that the present experimental system can provide the heated air exceeding 200 °C. The whole system has an outstanding high-temperature collecting performance and the present heat transfer model can meet the general requirements of engineering calculations

  19. Grout compactness monitoring of concrete-filled fiber-reinforced polymer tube using electromechanical impedance

    Science.gov (United States)

    Shi, Yaokun; Luo, Mingzhang; Li, Weijie; Song, Gangbing

    2018-05-01

    The concrete-filled fiber-reinforced polymer tube (CFFT) is a type of structural element widely used in corrosive environments. Poor grout compactness results in incomplete contact or even no contact between the fiber-reinforced polymer (FRP) tube and the concrete grout, which reduces the load bearing capacity of a CFFT. The monitoring of grout compactness for CFFTs is important. The piezoceramic-based electromechanical impedance (EMI) method has emerged as an efficient and low-cost structural health monitoring technique. This paper presents a feasibility study using the EMI method to monitor grout compactness of CFFTs. In this research, CFFT specimens with different levels of compactness (empty, 1/5, 1/3, 1/2, 2/3, and full compactness) were prepared and subjected to EMI measurement by using four piezoceramic patches that were bonded circumferentially along the outer surface of the CFFT. To analyze the correlation between grout compactness and EMI signatures, a compactness index (CI) was proposed based on the root-mean-square deviation (RMSD). The experimental results show that the changes in admittance signatures are able to determine the grout compactness qualitatively. The proposed CI is able to effectively identify the compactness of the CFFT, and provides location information of the incomplete concrete infill.

  20. Lid heater for glass melter

    International Nuclear Information System (INIS)

    Phillips, T.D.

    1993-01-01

    A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes. 3 figures

  1. Numerical heat transfer analysis of transcritical hydrocarbon fuel flow in a tube partially filled with porous media

    Directory of Open Access Journals (Sweden)

    Jiang Yuguang

    2016-01-01

    Full Text Available Hydrocarbon fuel has been widely used in air-breathing scramjets and liquid rocket engines as coolant and propellant. However, possible heat transfer deterioration and threats from local high heat flux area in scramjet make heat transfer enhancement essential. In this work, 2-D steady numerical simulation was carried out to study different schemes of heat transfer enhancement based on a partially filled porous media in a tube. Both boundary and central layouts were analyzed and effects of gradient porous media were also compared. The results show that heat transfer in the transcritical area is enhanced at least 3 times with the current configuration compared to the clear tube. Besides, the proper use of gradient porous media also enhances the heat transfer compared to homogenous porous media, which could help to avoid possible over-temperature in the thermal protection.

  2. The time development of the plasma-glass boundary layer in a T-tube

    International Nuclear Information System (INIS)

    Pavlov, M.; Djurovic, S.

    1982-01-01

    The refraction of a laser beam by a flat boundary layer between the plasma and the glass plate is analysed. A boundary layer with a constant gradient electron density is assumed. Results of the analysis for plasmas produced in a small T-tube show that the boundary layer thickness increases with time faster than linearly. This means that a relatively fast collapse due to cooling through the boundary layer happens at the second half of the reflected plasma life time, while the boundary layer is negligible thin during the first 2μs after the reflected shock front has passed the point of observation. (author)

  3. Determination of residence times of ions in a resistive glass selected ion flow-drift tube using the Hadamard transformation.

    Science.gov (United States)

    Spesyvyi, Anatolii; Španěl, Patrik

    2015-09-15

    Selected ion flow tube mass spectrometry, SIFT-MS, used for trace gas analyses has certain fundamental limitations that could be alleviated by adding a facility that allows reaction times and ion interaction energies to be varied. Thus, a selected ion flow-drift tube, SIFDT, has been created to explore the influence of an embedded electric field on these parameters and on reaction processes. The new SIFTD instrument was constructed using a miniature resistive glass drift tube. Arrival times of ions, t, analysed by a downstream quadrupole mass spectrometer over the m/z range 10-100 were studied by modulating the injected ion current using a gate lens. Single pulse modulation was compared with pseudorandom time multiplexing exploiting the Hadamard transformation. A simple model involving analysis of ethanol and water vapour mixture in air was used to explore the advantages of the SIFDT concept to SIFT-MS analysis. It is shown that the resistive glass drift tube is suitable for SIFDT experiments. The Hadamard transformation can be used to routinely determine reagent ion residence time in the flow-drift tube and also to observe differences in arrival times for different product ions. Two-dimensional data combining arrival time and mass spectra can be obtained rapidly. The calculated ion drift velocities vary with the reduced field strength, E/N, and the calculated ion mobilities agree with theoretical and previous literature values. This study has provided evidence that the SIFDT-MS technique can be implemented in a miniature and low-cost instrument and two- or three-dimensional data can be obtained (product ion count rates as functions of m/z, t and E/N) using the Hadamard transformation thus providing exciting possibilities for further analytical additions and extensions of the SIFT-MS technique. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Experimental investigation of the higher coefficient of thermal performance for water-in-glass evacuated tube solar water heaters in China

    International Nuclear Information System (INIS)

    Zhang, Xinyu; You, Shijun; Xu, Wei; Wang, Min; He, Tao; Zheng, Xuejing

    2014-01-01

    Highlights: • The energy grades system for solar water heater (SWH) in China was introduced. • Heat loss and capacity of heat collection mainly affected SWH thermal performance. • Optimum ratio of tank volume to collector area for solar water heater is 57 to 72 L/m 2 . • The recommendation polyurethane insulation layer should be around 50 mm thick. • SWH with shorter tube has a better thermal performance. - Abstract: Solar water heaters (SWHs), now widely used in China, represent an environmentally friendly way to heat water. We tested the performance of more than 1000 water-in-glass evacuated tube SWHs according to Chinese standards and found that the heat loss from the storage tank and capacity of the solar collector affected their thermal performance. The optimum parameters to maximize the performance of water-in-glass evacuated tube SWHs included a ratio of tank volume to collector area of 57–72 L/m 2 , which should give a system efficiency of 0.49–0.57, meaning that the temperature of water in the tank will exceed 45 °C after one day of heat collection. In addition, the polyurethane insulation layer should be around 50 mm thick with a free foaming density of about 35 kg/m 3 , and the evacuated tube should be short. The tilt angle did not affect the performance of the SWHs. These results should aid in the design of highly efficient SWHs

  5. Enhancing the moderator effectiveness as a heat sink during loss-of-coolant accidents in CANDU-PHW reactors using glass-peened surfaces

    International Nuclear Information System (INIS)

    Nitheanandan, T.; Tiede, R.W.; Sanderson, D.B.; Fong, R.W.L.; Coleman, C.E.

    1998-08-01

    The horizontal fuel channel concept is a distinguishing feature of the CANDU-PHW reactor. Each fuel channel consists of a Zr-2.5Nb pressure tube and a Zircaloy-2 calandria tube, separated by a gas filled annulus. The calandria tube is surrounded by heavy-water moderator that also provides a backup heat sink for the reactor core. This heat sink (about 10 mm away from the hot pressure tube) ensures adequate cooling of fuel in the unlikely event of a loss-of-coolant accident (LOCA). One of the ways of enhancing the use of the moderator as a heat sink is to improve the heat-transfer characteristics between the calandria tube and the moderator. This enhancement can be achieved through surface modifications to the calandria tube which have been shown to increase the tube's critical heat flux (CHF) value. An increase in CHIF could be used to reduce moderator subcooling requirements for CANDU fuel channels or increase the margin to dryout. A series of experiments was conducted to assess the benefits provided by glass-peening the outside surface of calandria tubes for postulated LOCA conditions. In particular, the ability to increase the tube's CHF, and thereby reduce moderator subcooling requirements was assessed. Results from the experiments confirm that glass-peening the outer surface of a tube increases its CHF value in pool boiling. This increase in CHF could be used to reduce moderator subcooling requirements for CANDU fuel channels by at least 5 degrees C. (author)

  6. Decreases in blood ethanol concentrations during storage at 4 °C for 12 months were the same for specimens kept in glass or plastic tubes

    Directory of Open Access Journals (Sweden)

    A.W. Jones

    2016-04-01

    Full Text Available Background: The stability of ethanol was investigated in blood specimens in glass or plastic evacuated tubes after storage in a refrigerator at 4 °C for up to 12 months. Methods: Sterile blood, from a local hospital, was divided into 50 mL portions and spiked with aqueous ethanol (10% w/v to give target concentrations of 0.20, 1.00, 2.00 and 3.00 g/L. Ethanol was determined in blood by headspace gas chromatography (HS-GC with an analytical imprecision of <3% (coefficient of variation, CV%. Aliquots of blood were re-analysed after 2, 7, 14, 28, 91, 182 and 364 days of storage at 4 °C. Results: The standard deviation (SD of analysis by HS-GC was 0.0059 g/L at 0.20 g/L and 0.0342 g/L at 3.00 g/L, corresponding to CVs of 2.9% and 1.1%, respectively. The decreases in blood ethanol content were analytically significant after 14–28 days of storage for both glass and plastic tubes The mean (lowest and highest loss of ethanol after 12 months storage was 0.111 g/L (0.084–0.129 g/L for glass tubes and 0.112 g/L (0.088–0.140 g/L for plastic tubes. The corresponding percentage losses of ethanol were 43–45% at a starting concentration of 0.20 g/L and 3.9–4.1% at 3.00 g/L. Conclusion: The concentration of ethanol in blood gradually decreases during storage at 4 °C. After 12 months storage the absolute decrease in concentration was ~0.11 g/L when the starting concentration ranged from 0.20 to 3.0 g/L. Decreases in ethanol content were the same for specimens kept in glass or plastic evacuated tubes. Keywords: Alcohol, Analysis, Blood, Ethanol stability, Plastic vs glass tubes, Storage conditions

  7. Study on Axial Compressive Capacity of FRP-Confined Concrete-Filled Steel Tubes and Its Comparisons with Other Composite Structural Systems

    Directory of Open Access Journals (Sweden)

    Jun Deng

    2017-01-01

    Full Text Available Concrete-filled steel tubular (CFST columns have been widely used for constructions in recent decades because of their high axial strength. In CFSTs, however, steel tubes are susceptible to degradation due to corrosion, which results in the decrease of axial strength of CFSTs. To further improve the axial strength of CFST columns, carbon fiber reinforced polymer (CFRP sheets and basalt fiber reinforced polymer (BFRP sheets are applied to warp the CFSTs. This paper presents an experimental study on the axial compressive capacity of CFRP-confined CFSTs and BFRP-confined CFSTs, which verified the analytical model with considering the effect of concrete self-stressing. CFSTs wrapped with FRP exhibited a higher ductile behavior. Wrapping with CFRP and BFRP improves the axial compressive capacity of CFSTs by 61.4% and 17.7%, respectively. Compared with the previous composite structural systems of concrete-filled FRP tubes (CFFTs and double-skin tubular columns (DSTCs, FRP-confined CFSTs were convenient in reinforcing existing structures because of softness of the FRP sheets. Moreover, axial compressive capacity of CFSTs wrapped with CFRP sheets was higher than CFFTs and DSTCs, while the compressive strength of DSTCs was higher than the retrofitted CFSTs.

  8. Microstructure examination of the interface of the glass-ceramic insulator of the molybdenum frame of a vacuum tube

    International Nuclear Information System (INIS)

    Spears, R.K.

    1980-01-01

    A common technique used in examining the structural integrity of a glass-ceramic insulator-molybdenum cylinder bond in a vacuum tube subassembly is to slit the outer molybdenum cylinder and separate it from the glass-ceramic insulator. Typically, a black glassy layer (0.001 to 0.002 in. thick) remains on the cylinder. This layer has been interpreted as a requirement for an adequate seal. A subassembly was found that did not exhibit this feature. Further investigation of approximately 100 subassemblies revealed four more parts lacking a black glassy layer. These parts were found to be from two production runs and from three glass-ceramic lots. A microstructural analysis showed that on those parts having a black glassy layer, the crystalline phase in the glass-ceramic grew to within one to two microns of the metal interface and then terminated. A dark region existed in the insulator between the interface and the termination of the crystalline phase. This was attributed to molybdenum oxide dissolved in the glass. On those parts where the glass-ceramic broke clean from the cylinder, the crystalline phase extended up to the metal. Also observed on these parts was the appearance of a dark region adjacent to the metal that extended approximately one to two microns into the glass-ceramic. This was assumed to be an oxide of molybdenum. This report presents information concerning the microstructure of the interface

  9. Monitoring of Soft Deposition Layers in Liquid-Filled Tubes with Guided Acoustic Waves Excited by Clamp-on Transducers.

    Science.gov (United States)

    Tietze, Sabrina; Singer, Ferdinand; Lasota, Sandra; Ebert, Sandra; Landskron, Johannes; Schwuchow, Katrin; Drese, Klaus Stefan; Lindner, Gerhard

    2018-02-09

    The monitoring of liquid-filled tubes with respect to the formation of soft deposition layers such as biofilms on the inner walls calls for non-invasive and long-term stable sensors, which can be attached to existing pipe structures. For this task a method is developed, which uses an ultrasonic clamp-on device. This method is based on the impact of such deposition layers on the propagation of circumferential guided waves on the pipe wall. Such waves are partly converted into longitudinal compressional waves in the liquid, which are back-converted to guided waves in a circular cross section of the pipe. Validating this approach, laboratory experiments with gelatin deposition layers on steel tubes exhibited a distinguishable sensitivity of both wave branches with respect to the thickness of such layers. This allows the monitoring of the layer growth.

  10. Development of small-diameter lead-glass-tube matrices for gamma-ray conversion in positron emission tomography

    International Nuclear Information System (INIS)

    Schwartz, G.M.

    1985-05-01

    A gamma-ray converter for a multiwire proportional chamber (MWPC) positron emission tomograph is described. The converter is made of small-diameter (0.48 mm inner diameter, 0.06 mm wall thickness) lead-oxide-glass tubes fused to form a honeycomb matrix. The surfaces of the tubes are reduced in a hydrogen atmosphere to provide the drift electric field for detection of the conversion electrons. The detection efficiency for a 10 mm thick converter is 6.65%, with a time resolution of 160 ns (FWHM). A scheme which will improve the spatial resolution of the tomograph by use of the self quenching streamer mode of chamber operation is described. Details of construction of the converters and the MWPC are presented, as well as the design performance of a high spatial resolution positron emission tomograph (HISPET). 40 refs., 22 figs

  11. Finite Element Analysis and Crashworthiness Optimization of Foam-filled Double Circular under Oblique Loading

    Directory of Open Access Journals (Sweden)

    Fauzan Djamaluddin

    Full Text Available Abstract Finite element analysis and optimization design carry out for the quasi static responses of foam-filled double circular tube is presented in this paper. In the investigation of the crashworthiness capability, some aspects were considered for variations in geometry parameters of tubes and the loading condition to investigate the crashworthiness capability. Empty, foam-filled, and full foam-filled doublé tubes of thin walled structures were observed subjected to oblique impact (0˚ - 40˚. The numerical solution was used to determine the crashworthiness parameters. In addition, NSGA II and Radial Basis Function were used to optimize the crashworthiness capability of tubes. In conclution, the crash performaces of foam-filled double tube is better than the other structures in this work. The outcome that expected is the new design information of various kinds of cylindrical tubes for energy absorber application.

  12. Use of a high density lead glass tubing projection chamber in positron emission tomography and in high energy physics

    International Nuclear Information System (INIS)

    Conti, M.; Guerra, A.D.; Habel, R.; Mulera, T.; Perez-Mendez, V.; Schwartz, G.

    1985-10-01

    We describe the principle of operation of a high density Projection Chamber, in which the converter/radiator and drift field shaping structures are combined in the form of high density (5 to 6 g/cm 3 ) lead glass tubing. The main applications of this type of detector to Medical Physics (Positron Emission Tomography) and High Energy Physics (Electromagnetic Calorimetry) are discussed

  13. Construction Simulation Analysis of 60m-span Concrete Filled Steel Tube arch bridge

    Science.gov (United States)

    Shi, Jing Xian; Ding, Qing Hua

    2018-06-01

    The construction process of the CFST arch bridge is complicated. The construction process not only affects the structural stress in the installation, but also determines the form a bridge and internal force of the bridge. In this paper, a 60m span concrete filled steel tube tied arch bridge is taken as the background, and a three-dimensional finite element simulation model is established by using the MIDAS/Civil bridge structure analysis software. The elevation of the main arch ring, the beam stress, the forces in hanger rods and the modal frequency of the main arch during the construction stage are calculated, and the construction process is simulated and analyzed. Effectively and reasonably guide the construction and ensure that the line and force conditions of the completed bridge meet the design requirements and provides a reliable technical guarantee for the safe construction of the bridge.

  14. The Fuge Tube Diode Array Spectrophotometer

    Science.gov (United States)

    Arneson, B. T.; Long, S. R.; Stewart, K. K.; Lagowski, J. J.

    2008-01-01

    We present the details for adapting a diode array UV-vis spectrophotometer to incorporate the use of polypropylene microcentrifuge tubes--fuge tubes--as cuvettes. Optical data are presented validating that the polyethylene fuge tubes are equivalent to the standard square cross section polystyrene or glass cuvettes generally used in…

  15. Optimized Synthesis of Foam Glass from Recycled CRT Panel Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Most of the panel glass from cathode ray tubes (CRTs) is landfilled today. Instead of landfilling, the panel glass can be turned into new environment-friendly foam glass. Low density foam glass is an effective heat insulating material and can be produced just by using recycle glass and foaming...... additives. In this work we recycle the CRT panel glass to synthesize the foam glass as a crucial component of building and insulating materials. The synthesis conditions such as foaming temperature, duration, glass particle size, type and concentrations of foaming agents, and so on are optimized...... by performing systematic experiments. In particular, the concentration of foaming agents is an important parameter that influences the size of bubbles and the distribution of bubbles throughout the sample. The foam glasses are characterised regarding density and open/closed porosity. Differential scanning...

  16. Development of a low-permeability glass--ceramic to seal to molybdenum

    International Nuclear Information System (INIS)

    Eagan, R.J.

    1975-03-01

    This report describes the development of low-permeability glass-ceramics which can be sealed directly to molybdenum for the purpose of producing long-life vacuum tubes. Low permeability to helium and thermal expansion match to molybdenum are the bases upon which particular glass-ceramic compositions were selected and developed. The fabrication of tube envelopes using glass-ceramics is simplified when compared to conventional ceramic/metal tubes and these melting and sealing techniques are presented

  17. Fun with Singing Wine Glasses

    Science.gov (United States)

    Boone, Christine; Galloway, Melodie; Ruiz, Michael J.

    2018-01-01

    A fun activity is presented using singing wine glasses for introductory physics students. Students tune a white wine glass and a red wine glass to as many semitones as possible by filling the glasses with the appropriate amounts of water. A smart phone app is used to measure the frequencies of equal-temperament tones. Then plots of frequency…

  18. Hydrogen transport and storage in engineered glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G.D.

    1994-04-20

    New, high-strength, hollow, glass microspheres filled with pressurized hydrogen exhibit storage densities which make them attractive for bulk hydrogen storage and transport. The hoop stress at failure of our engineered glass microspheres is about 150,000 psi, permitting a three-fold increase in pressure limit and storage capacity above commercial microspheres, which fail at wall stresses of 50,000 psi. For this project, microsphere material and structure will be optimized for storage capacity and charge/discharge kinetics to improve their commercial practicality. Microsphere production scale up will be performed, directed towards large-scale commercial use. Our analysis relating glass microspheres for hydrogen transport with infrastructure and economics` indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as hydride beds, cryocarbons and pressurized tube transports. For microspheres made from advanced materials and processes, analysis will also be performed to identify the appropriate applications of the microspheres considering property variables, and different hydrogen infrastructure, end use, production and market scenarios. This report presents some of the recent modelling results for large beds of glass microspheres in hydrogen storage applications. It includes plans for experiments to identify the properties relevant to large-bed hydrogen transport and storage applications, of the best, currently producible, glass microspheres. This work began in March, 1994. Project successes will be manifest in the matching of cur-rent glass microspheres with a useful application in hydrogen bulk transport and storage, and in developing microsphere materials and processes that increase the storage density and reduce the storage energy requirement.

  19. Influence of the glass particle size on the foaming process and physical characteristics of foam glasses

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2016-01-01

    We have prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. The effect of the glass particle size on the foaming process, the apparent density and the pore morphology is revealed. The results show that the foaming is mainly caused...... by the reduction of manganese. Foam glasses with a density of

  20. Radiation-resistant camera tube

    International Nuclear Information System (INIS)

    Kuwahata, Takao; Manabe, Sohei; Makishima, Yasuhiro

    1982-01-01

    It was a long time ago that Toshiba launched on manufacturing black-and-white radiation-resistant camera tubes employing nonbrowning face-plate glass for ITV cameras used in nuclear power plants. Now in compliance with the increasing demand in nuclear power field, the Company is at grips with the development of radiation-resistant single color-camera tubes incorporating a color-stripe filter for color ITV cameras used under radiation environment. Herein represented are the results of experiments on characteristics of materials for single color-camera tubes and prospects for commercialization of the tubes. (author)

  1. Dynamics of explosively imploded pressurized tubes

    Science.gov (United States)

    Szirti, Daniel; Loiseau, Jason; Higgins, Andrew; Tanguay, Vincent

    2011-04-01

    The detonation of an explosive layer surrounding a pressurized thin-walled tube causes the formation of a virtual piston that drives a precursor shock wave ahead of the detonation, generating very high temperatures and pressures in the gas contained within the tube. Such a device can be used as the driver for a high energy density shock tube or hypervelocity gas gun. The dynamics of the precursor shock wave were investigated for different tube sizes and initial fill pressures. Shock velocity and standoff distance were found to decrease with increasing fill pressure, mainly due to radial expansion of the tube. Adding a tamper can reduce this effect, but may increase jetting. A simple analytical model based on acoustic wave interactions was developed to calculate pump tube expansion and the resulting effect on the shock velocity and standoff distance. Results from this model agree quite well with experimental data.

  2. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method.

    Science.gov (United States)

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-12-07

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs.

  3. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method

    Science.gov (United States)

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-01-01

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs. PMID:27941617

  4. Technology of hardening fills for mined spaces

    International Nuclear Information System (INIS)

    Simek, P.; Holas, M.; Chyla, A.; Pech, P.

    1985-01-01

    The technology is described of hardening fills for mined spaces of uranium deposits in North Bohemian chalk. A special equipment was developed for the controlled preparation of a hardening mixture. The composition of the fill is determined by the strength of the filled rock, expecially by the standard strength, i.e., the minimal strength of the filling under uniaxial pressure. The said parameter determines the consumption of binding materials and thereby the total costs of the filling. A description is presented of the filling technology, including rabbit tube transport of the mixture and quality control. (Pu)

  5. Investigation on the fiber based approach to estimate the axial load carrying capacity of the circular concrete filled steel tube (CFST)

    Science.gov (United States)

    Piscesa, B.; Attard, M. M.; Suprobo, P.; Samani, A. K.

    2017-11-01

    External confining devices are often used to enhance the strength and ductility of reinforced concrete columns. Among the available external confining devices, steel tube is one of the most widely used in construction. However, steel tube has some drawbacks such as local buckling which needs to be considered when estimating the axial load carrying capacity of the concrete-filled-steel-tube (CFST) column. To tackle this problem in design, Eurocode 4 provided guidelines to estimate the effective yield strength of the steel tube material. To study the behavior of CFST column, in this paper, a non-linear analysis using a fiber-based approach was conducted. The use of the fiber-based approach allows the engineers to predict not only the axial load carrying capacity but also the complete load-deformation curve of the CFST columns for a known confining pressure. In the proposed fiber-based approach, an inverse analysis is used to estimate the constant confining pressure similar to design-oriented models. This paper also presents comparisons between the fiber-based approach model with the experimental results and the 3D non-linear finite element analysis.

  6. Can Plant-Based Natural Flax Replace Basalt and E-Glass for Fiber-Reinforced Polymer Tubular Energy Absorbers? A Comparative Study on Quasi-Static Axial Crushing

    Directory of Open Access Journals (Sweden)

    Libo Yan

    2017-12-01

    Full Text Available Using plant-based natural fibers to substitute glass fibers as reinforcement of composite materials is of particular interest due to their economic, technical, and environmental significance. One potential application of plant-based natural fiber reinforced polymer (FRP composites is in automotive engineering as crushable energy absorbers. Current study experimentally investigated and compared the energy absorption efficiency of plant-based natural flax, mineral-based basalt, and glass FRP (GFRP composite tubular energy absorbers subjected to quasi-static axial crushing. The effects of number of flax fabric layer, the use of foam filler and the type of fiber materials on the crashworthiness characteristics, and energy absorption capacities were discussed. In addition, the failure mechanisms of the hollow and foam-filled flax, basalt, and GFRP tubes in quasi-static axial crushing were analyzed and compared. The test results showed that the energy absorption capabilities of both hollow and foam-filled energy absorbers made of flax were superior to the corresponding energy absorbers made of basalt and were close to energy absorbers made of glass. This study, therefore, indicated that flax fiber has the great potential to be suitable replacement of basalt and glass fibers for crushable energy absorber application.

  7. In-plane spectroscopy with optical fibers and liquid-filled APEX™ glass microcuvettes

    International Nuclear Information System (INIS)

    Gaillard, William R; Tantawi, Khalid Hasan; Williams, John D; Waddell, Emanuel; Fedorov, Vladimir

    2013-01-01

    Chemical etching and laser drilling of microstructural glass results in opaque or translucent sidewalls, limiting the optical analysis of glass microfluidic devices to top down or non-planar topologies. These non-planar observation topologies prevent each layer of a multilayered device from being independently optically addressed. However, novel photosensitive glass processing techniques in APEX™ have resulted in microfabricated glass structures with transparent sidewalls. Toward the goal of a transparent multilayered glass microfluidic device, this study demonstrates the ability to perform spectroscopy with optical fibers and microcuvettes fabricated in photosensitive APEX™ glass. (technical note)

  8. [Evaluation of cermet fillings in abutment teeth in removable partial prostheses].

    Science.gov (United States)

    Saulic, S; Tihacek-Sojic, Lj

    2001-01-01

    The aim of the study was to describe the clinical process of setting the purpose filling on abutment teeth, after finishing the removable partial dentures. The aim was also to investigate the use of cermet glass-ionomer cement for the purpose filling in the abutment teeth for removable partial dentures, as well as to investigate the surface of the purpose filling. For the clinical evaluation of purpose filling slightly modified criteria according to Ryg's were used in 20 patients with different type of edentulousness. Changes occurring on the surface of purpose filling have been experimentally established by the method of scanning electron microscopy on the half-grown third molars in seven patients. It could be concluded that cement glass-ionomer was not the appropriate material for the purpose fillings in abutment teeth for removable partial dentures.

  9. A liquid filled light distributor and a method of use

    DEFF Research Database (Denmark)

    2013-01-01

    the proximal end is arranged to be in optical communication with a light source and wherein the refractive index of the tube wall is n1 and the refractive index of the fluid is n2 and n1/n2 light from the light source travels along the longitudinal direction of the tubular body and that a part......The present invention relates to liquid filled light distributor comprising an elongated tubular body with a tube wall defining an in inner lumen filled with a liquid, said tubular body having -a proximal end closed by first closing means -a distal end closed by second closing means. Wherein...... of the light is emitted through the tube wall along at least a part of the tubular body. Further a method of use for the liquid filled light distributor is provided....

  10. An Experimental Study on Shrinkage Strains of Normal-and High-Strength Concrete-Filled Frp Tubes

    Science.gov (United States)

    Vincent, Thomas; Ozbakkaloglu, Togay

    2017-09-01

    It is now well established that concrete-filled fiber reinforced polymer (FRP) tubes (CFFTs) are an attractive construction technique for new columns, however studies examining concrete shrinkage in CFFTs remain limited. Concrete shrinkage may pose a concern for CFFTs, as in these members the curing of concrete takes place inside the FRP tube. This paper reports the findings from an experimental study on concrete shrinkage strain measurements for CFFTs manufactured with normal- and high-strength concrete (NSC and HSC). A total of 6 aramid FRP (AFRP)-confined concrete specimens with circular cross-sections were manufactured, with 3 specimens each manufactured using NSC and HSC. The specimens were instrumented with surface and embedded strain gauges to monitor shrinkage development of exposed concrete and concrete sealed inside the CFFTs, respectively. All specimens were cylinders with a 152 mm diameter and 305 mm height, and their unconfined concrete strengths were 44.8 or 83.2 MPa. Analysis of the shrinkage measurements from concrete sealed inside the CFFTs revealed that embedment depth and concrete compressive strength only had minor influences on recorded shrinkage strains. However, an analysis of shrinkage measurements from the exposed concrete surface revealed that higher amounts of shrinkage can occur in HSC. Finally, it was observed that shrinkage strains are significantly higher for concrete exposed at the surface compared to concrete sealed inside the CFFTs.

  11. Study on the adsorption of 233Pa in glass

    International Nuclear Information System (INIS)

    Natsumi, R.R.; Saiki, M.; Lima, F.W. de.

    1982-08-01

    It is intended to examine the adsorption of protactinium on glass in relation to pH, presence of complexing agents concentration and type of electrolytes. The study was made by using carrier-free 233 Pa solution and Pyrex glass tube was selected as adsorbent glass material surface. The adsorption curve of protactinium on glass surface as a function of the pH of the tracer solution showed the existence of two pronounced adsorption regions. It was found that this adsorption can be reduced by using electrolytes or complexing agents. Desorption of protactinium previously adsorbed on the Pyrex glass tube was also studied. Hidrochloric, oxalic and hydrofluoric acid solutions were used for the desorption experiments. (Author) [pt

  12. Filling bore-holes with explosive

    Energy Technology Data Exchange (ETDEWEB)

    Alfredsson, S H

    1965-03-02

    In this device for filling boreholes formed in a rock formation with particulate explosive, the explosive is conveyed into the hole by means of a pressure fluid through a tube which has a lesser diameter than the hole. The tube is characterized by a lattice work arranged externally on it, and having a structure adapted to allow passage of a pressure fluid returning between the tube and the wall of the hole, but retaining particles of explosive entrained by the returning pressure fluid. In another arrangement of the device, the lattice work has the form of a brush, including filaments or bristles which are dimensioned to bridge the spacing between the tube and the wall of the hole. (12 claims)

  13. Flexible walled container having membrane fitment for use with aseptic filling apparatus

    International Nuclear Information System (INIS)

    Davis, J.C.; Reiss, R.J.; Rica, A.F.

    1984-01-01

    There is disclosed an aseptic flexible walled container having a rigid fitment member cooperative with an aseptic filling apparatus and including a neck, outer flanges surrounding the neck, a frangible membrane and an outer end rim receptive of an hermetically sealed lid. The neck is formed with an internal chamferred seating shoulder for fluid-tight engagement with a fill tube. One outer flange cooperates with clamping jaws of the aseptic filling apparatus for detachably sealing the fitment to a sterilizing chamber and placing it in position for insertion of the filling tube which ruptures the membrane and permits the aseptic introduction of product to the container's interior. The other outer flange is secured to an opening in a wall of the flexible container. The joined fitment and container are presterilized prior to filling. Selected materials for the multi-ply container walls and the fitment permit the container to withstand gamma ray and other sterilization treatment, heat and pressure while maintaining required strength. After the container is aseptically filled, such as with flowable food product, the fill tube is withdrawn and a lid is hermetically sealed onto the rim of the fitment. A heat shield adjacent a container wall surrounds the fitment to protect the container from excessive heat generated by the associated filling apparatus during filling

  14. Crush analysis of the foam-filled bitubal circular tube under oblique impact

    Science.gov (United States)

    Djamaluddin, F.; Abdullah, S.; Arrifin, A. K.; Nopiah, Z. M.

    2018-02-01

    This paper presents crashworthiness analysis of bitubal cylindrical tubes under different impact angular. The numerical solution of double cylindrical tubes are determined by finite element analysis (FEA). Moreover, the structure was impacted by mass block as impactor respect to longitudinal direction of the tubes. The model of structure was developed by non-linear ABAQUS sofware with variations of load angle and dimensions of tube. The outcome of this study is the respons parameters such as the peak crusing force (PCF), energy absorption (EA) and specific energy absorption (SEA), thus it can be expected this tube as the great energy absorber.

  15. An on-line monitor for cation exchange elution chromatography using lithium silicate glass beads as solid scintillator

    International Nuclear Information System (INIS)

    Zhu Rongbao; Yang Liucheng; Wei Liansheng; Ji Liqiang; Zhang Zengrui

    1988-03-01

    A new type of on-line monitoring system used to monitor radioactive nuclides with α or soft β radiation in the effluent from a high pressure ion exchange column is described. The beads made of cerium-impregnated lithium silicate glass are used as scientillation material. They are filled into a quartz glass tube to form a flow cell. By reducing the diameter of glass beads to more closly approximate the average range of α or soft β radiation in solution, the absolute counting efficiency for 241 Am, 242 Cm α radiation have reached and 85.8% and 92.8% respectively, for 14 C, 90 Sr- 90 Y β radiation, 62.1% and 88.6% respectively. These values can be comparable to those achieved with on-line liquid scientillation technique. When the total amount of 241 Am added into column is decreased to 7.4 Bq it is still possible to obtain a clear chromatography peak (half peak width = 0.22 mL)

  16. Influence of the glass-calcium carbonate mixture's characteristics on the foaming process and the properties of the foam glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2014-01-01

    We prepared foam glasses from cathode-ray-tube panel glass and CaCO3 as a foaming agent. We investigated the influences of powder preparation, CaCO3 concentration and foaming temperature and time on the density, porosity and homogeneity of the foam glasses. The results show that the decomposition...

  17. Biaxial bending of slender HSC columns and tubes filled with concrete under short- and long-term loads: I Theory

    Directory of Open Access Journals (Sweden)

    Jose A. Rodríguez-Gutiérrez

    2014-05-01

    Full Text Available An analytical method that calculates both the short- and long-term response of slender columns made of high-strength concrete (HSC and tubes filled with concrete with generalized end conditions and subjected to transverse loads along the span and axial load at the ends (causing a single or double curvature under uniaxial or biaxial bending is presented. The proposed method, which is an extension of a method previously developed by the authors, is capable of predicting not only the complete load-rotation and load-deflection curves (both the ascending and descending parts but also the maximum load capacity. The columns that can be analyzed include solid and hollow (rectangular, circular, oval, C-, T-, L-, or any arbitrary shape cross sections and columns made of circular and rectangular steel tubes filled with HSC. The fiber method is used to calculate the moment-curvature diagrams at different levels of the applied axial load (i.e., the M-P-φ curves, and the Gauss method of integration (for the sum of the contributions of the fibers parallel to the neutral axis is used to calculate the lateral rotations and deflections along the column span. Long-term effects, such as creep and shrinkage of the concrete, are also included. However, the effects of the shear deformations and torsion along the member are not included. The validity of the proposed method is presented in a companion paper and compared against the experimental results for over seventy column specimens reported in the technical literature by different researchers.

  18. Dynamic and Stagnating Plasma Flow Leading to Magnetic-Flux-Tube Collimation

    International Nuclear Information System (INIS)

    You, S.; Yun, G.S.; Bellan, P.M.

    2005-01-01

    Highly collimated, plasma-filled magnetic-flux tubes are frequently observed on galactic, stellar, and laboratory scales. We propose that a single, universal magnetohydrodynamic pumping process explains why such collimated, plasma-filled magnetic-flux tubes are ubiquitous. Experimental evidence from carefully diagnosed laboratory simulations of astrophysical jets confirms this assertion and is reported here. The magnetohydrodynamic process pumps plasma into a magnetic-flux tube and the stagnation of the resulting flow causes this flux tube to become collimated

  19. Wear and friction behaviour of soft particles filled random direction short GFRP composites

    International Nuclear Information System (INIS)

    Srivastava, V.K.; Wahne, S.

    2007-01-01

    The random direction short E-glass fibre reinforced epoxy resin composites filled with the particles of mica and tricalcium phosphate (TCP) were prepared by hand lay-up method. The wear and friction behaviour of random direction short E-glass fibre reinforced epoxy resin (GFRP) composites sliding against AISI-1045 steel in a pin-on-disc configuration were evaluated on a TR-20LE wear and friction tester. The microhardness, density, tensile strength and compressive strength of the filled and unfilled mica as well as TCP particles were determined. The morphology of the worn surfaces of the unfilled and filled random E-glass fibre composites and the transfer films were analyzed with the scanning electron microscope. It was found that the particles as the fillers contributed significantly to improve the mechanical properties and wear resistance of the E-glass fibre. This was because the particulates as the fillers contributed to enhance the bonding strength between the fibre and the epoxy resin. Moreover, the wear and friction properties of the random E-glass fibre composites were reduced by increasing filler weight of particles

  20. Collecting performance of an evacuated tubular solar high-temperature air heater with concentric tube heat exchanger

    International Nuclear Information System (INIS)

    Wang, Ping-Yang; Li, Shuang-Fei; Liu, Zhen-Hua

    2015-01-01

    Highlights: • A novel evacuated tube solar high temperature air heater is designed. • The solar air heater system consists of 30 linked collecting units. • Every unit consisted of a evacuated tube, a simplified CPC and concentric tube. • The flow air is heated over temperature of 200 °C. - Abstract: A set of evacuated tube solar high temperature air heaters with simplified CPC (compound parabolic concentrator) and concentric tube heat exchanger is designed to provide flow air with a temperature of 150–230 °C for industrial production. The solar air heater system consists of 30 linked collecting units. Each unit includes a simplified CPC and an all-glass evacuated tube absorber with a concentric copper tube heat exchanger installed inside. A stainless steel mesh layer with high thermal conductivity is filled between the evacuated tube and the concentric copper tube. Air passes through each collecting unit, and its temperature increases progressively. An experimental investigation of the thermal performance of the air heater is performed, and the experimental results demonstrate the presented high-temperature solar air heater has excellent collecting performance and large output power, even in the winter. The measured thermal efficiency corresponding to the air temperature of 70 °C reaches 0.52. With the increase of air temperature, thermal efficiency reaches 0.35 at an air temperature of 150 °C, and 0.21 at an air temperature of 220 °C.

  1. Lead removal from cathode ray tube glass by the action of calcium hydroxide and poly(vinyl chloride)

    International Nuclear Information System (INIS)

    Grause, Guido; Takahashi, Kenshi; Kameda, Tomohito; Yoshioka, Toshiaki

    2014-01-01

    Highlights: • About 99.9% of lead is removed from CRT glass by PbCl 2 volatilization. • PVC is used as chlorination agent with the aid of Ca(OH) 2 as HCl absorbing material. • The residual calcium silicate has a lead content as low as 140 mg kg −1 . • Lead leaching from the residue was below the detection limit. - Abstract: With the development of flat screen technology, the cathode ray tubes (CRTs) used in TV sets became obsolete, leaving huge amounts of lead-containing CRT glass for disposal. We developed a novel lead volatilization process in which PbCl 2 was generated in the presence of poly(vinyl chloride) (PVC) as a chlorination agent and Ca(OH) 2 as an HCl absorber. PVC was incinerated in air atmosphere and the resulting HCl was captured by Ca(OH) 2 before exiting the reactor with the air flow. CaCl 2 and Ca(OH) 2 reacted with the lead glass forming volatile PbCl 2 and crystalline Ca-silicates. Since the reactivity of lead glass with gaseous HCl is negligible, the presence of Ca(OH) 2 was essential for the success of this method. At a temperature of 1000 °C, a molar Cl/Pb ratio of 16, and a molar Ca/Si ratio of about 2, approximately 99.9% of the lead was volatilized, leaving a residue with a lead content of 140 mg kg −1 . The residual calcium silicate, with its low lead level, has the potential to be repurposed for other uses

  2. Modeling of high-strength concrete-filled FRP tube columns under cyclic load

    Science.gov (United States)

    Ong, Kee-Yen; Ma, Chau-Khun; Apandi, Nazirah Mohd; Awang, Abdullah Zawawi; Omar, Wahid

    2018-05-01

    The behavior of high-strength concrete (HSC) - filled fiber-reinforced-polymer (FRP) tubes (HSCFFTs) column subjected to cyclic lateral loading is presented in this paper. As the experimental study is costly and time consuming, a finite element analysis (FEA) is chosen for the study. Most of the previous studies have focused on examining the axial load behavior of HSCFFT column instead of seismic behavior. The seismic behavior of HSCFFT columns has been the main interest in the industry. The key objective of this research is to develop a reliable numerical non-linear FEA model to represent the seismic behavior of such column. A FEA model was developed using the Concrete Damaged Plasticity Model (CDPM) available in the finite element software package (ABAQUS). Comparisons between experimental results from previous research and the predicted results were made based on load versus displacement relationships and ultimate strength of the column. The results showed that the column increased in ductility and able to deform to a greater extent with the increase of the FRP confinement ratio. With the increase of confinement ratio, HSCFFT column achieved a higher moment resistance, thus indicated a higher failure strength in the column under cyclic lateral load. It was found that the proposed FEA model can regenerate the experimental results with adequate accuracy.

  3. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Aldo R. Boccaccini

    2010-07-01

    Full Text Available Traditionally, bioactive glasses have been used to fill and restore bone defects. More recently, this category of biomaterials has become an emerging research field for bone tissue engineering applications. Here, we review and discuss current knowledge on porous bone tissue engineering scaffolds on the basis of melt-derived bioactive silicate glass compositions and relevant composite structures. Starting with an excerpt on the history of bioactive glasses, as well as on fundamental requirements for bone tissue engineering scaffolds, a detailed overview on recent developments of bioactive glass and glass-ceramic scaffolds will be given, including a summary of common fabrication methods and a discussion on the microstructural-mechanical properties of scaffolds in relation to human bone (structure-property and structure-function relationship. In addition, ion release effects of bioactive glasses concerning osteogenic and angiogenic responses are addressed. Finally, areas of future research are highlighted in this review.

  4. Small size neutron tube UNG-1

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Mints, A.Z.; Shkol'nikov, A.S.

    A tube UNG-1 (universal neutron gas-filled) is designed for the use in the well neutron generators IGN-1 and IGN-1-M (a pulse neutron generator). Their serial production in the USSR has been started in 1963. At the same year, the serial production of the tubes UNG-1 has been started. Thus, this tube is the first serial logging accelerating tube in the USSR. A Penning source, equipped with a hot cathode, was selected as an ion source of the tube

  5. Method of fabricating a poision tube for reactor control rods

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Yasuhiko; Yoshida, Toshimi; Masaoka, Isao; Naruse, Akisuke

    1983-04-28

    A method to unify the neutron absorbing performance, enhance the workability in the insertion of neutron absorber tube and further decrease the stresses acting on the neutron absorber coating tube is described. The neutron absorber coated rod comprising neutron absorbing substance and a metal pipe is fabricated by compressing a metal pipe filled with the neutron absorber. Specifically, neutron absorbing substance such as boron carbide powder or the like is filled in a metal pipe such as made of stainless steel tube by way of vibration packing or the like. Then, after heating the metal pipe, it is applied with compression working such as swaging into a fine tube to increase the packing density of the absorbing substance filled in the pipe to greater than 60% of the theoretical density and completely contacted closely to the inner wall of the pipe. The neutron absorber coated rod thus fabricated can be inserted to an external coating tube with ease at a predetermined gap.

  6. Fun with singing wine glasses

    Science.gov (United States)

    Boone, Christine; Galloway, Melodie; Ruiz, Michael J.

    2018-05-01

    A fun activity is presented using singing wine glasses for introductory physics students. Students tune a white wine glass and a red wine glass to as many semitones as possible by filling the glasses with the appropriate amounts of water. A smart phone app is used to measure the frequencies of equal-temperament tones. Then plots of frequency against water volume percent are made using a spreadsheet. Students can also play combinations of pitches with several glasses. A video (Ruiz 2018 Video: Singing glasses http://mjtruiz.com/ped/wineglasses/) is provided which includes an excerpt of a beautiful piece written for singing glasses and choir: Stars by Latvian composer Ēriks Ešenvalds.

  7. Potential benefits and impacts on the CRWMS transportation system of filling spent fuel shipping casks with depleted uranium silicate glass

    International Nuclear Information System (INIS)

    Pope, R.B.; Forsberg, C.W.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

    1996-01-01

    A new technology, the Depleted Uranium Silicate COntainer Fill System (DUSCOFS), is proposed to improve the performance and reduce the uncertainties of geological disposal of spent nuclear fuel (SNF), thus reducing both radionuclide release rates from the waste package and the potential for repository nuclear criticality events. DUSCOFS may also provide benefits for SNF storage and transport if it is loaded into the container early in the waste management cycle. Assessments have been made of the benefits to be derived by placing depleted uranium silicate (DUS) glass into SNF containers for enhancing repository performance assessment and controlling criticality over geologic times in the repository. Also, the performance, benefits, and impacts which can be derived if the SNF is loaded into a multi-purpose canister with DUS glass at a reactor site have been assessed. The DUSCOFS concept and the benefits to the waste management cycle of implementing DUSCOFS early in the cycle are discussed in this paper

  8. Fluoride release and recharge behavior of a nano-filled resin-modified glass ionomer compared with that of other fluoride releasing materials.

    Science.gov (United States)

    Mitra, Sumita B; Oxman, Joe D; Falsafi, Afshin; Ton, Tiffany T

    2011-12-01

    To compare the long-term fluoride release kinetics of a novel nano-filled two-paste resin-modified glass-ionomer (RMGI), Ketac Nano (KN) with that of two powder-liquid resin-modified glass-ionomers, Fuji II LC (FLC) and Vitremer (VT) and one conventional glass-ionomer, Fuji IX (FIX). Fluoride release was measured in vitro using ion-selective electrodes. Kinetic analysis was done using regression analysis and compared with existing models for GIs and compomers. In a separate experiment the samples of KN and two conventional glass-ionomers, FIX and Ketac Molar (KM) were subjected to a treatment with external fluoride source (Oral-B Neutra-Foam) after 3 months of fluoride release and the recharge behavior studied for an additional 7-day period. The cumulative amount of fluoride released from KN, VT and FLC and the release profiles were statistically similar but greater than that for FIX at P coating of KN with its primer and of DY with its adhesive did not significantly alter the fluoride release behavior of the respective materials. The overall rate for KN was significantly higher than for the compomer DY. DY showed a linear rate of release vs. t and no burst effect as expected for compomers. The nanoionomer KN showed fluoride recharge behavior similar to the conventional glass ionomers FIX and KM. Thus, it was concluded that the new RMGI KN exhibits fluoride ion release behavior similar to typical conventional and RMGIs and that the primer does not impede the release of fluoride.

  9. Effects of glass fibers on the properties of micro molded plastic parts

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Gasparin, Stefania

    2011-01-01

    Glass fibers are used to reinforce plastics and to improve their mechanical properties. But plastic filled with glass fibers is a concern for molding of micro scale plastic parts. The aim of this paper is to investigate the effects of glass fiber on the replication quality and mechanical properties...... of polymeric thin ribs. It investigates the effect of feature size and gate location on distribution of glass fibers inside the molded parts. The results from this work indicate that glass filled plastic materials have poor replication quality and nonhomogeneous mechanical properties due to the nonuniform...

  10. Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2015-08-01

    Full Text Available The determinations of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, which also wastes too much time and manpower. To address this problem, we propose machine learning models including artificial neural networks (ANNs and support vector machines (SVM to predict the heat collection rate and heat loss coefficient without a direct determination. Parameters that can be easily obtained by “portable test instruments” were set as independent variables, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, final temperature and angle between tubes and ground, while the heat collection rate and heat loss coefficient determined by the detection device were set as dependent variables respectively. Nine hundred fifteen samples from in-service water-in-glass evacuated tube solar water heaters were used for training and testing the models. Results show that the multilayer feed-forward neural network (MLFN with 3 nodes is the best model for the prediction of heat collection rate and the general regression neural network (GRNN is the best model for the prediction of heat loss coefficient due to their low root mean square (RMS errors, short training times, and high prediction accuracies (under the tolerances of 30%, 20%, and 10%, respectively.

  11. Effects of glass fibres on the filling of polymeric thin ribs

    DEFF Research Database (Denmark)

    Ollgaard, Claus; Sundberg, Oliver; Vesth, Kirstine

    the effects of the glass fibers on the replication of polymeric ribs. - Investigate fibers orientations based on the injection parameters - Geometrical size effect on the amount of glass fibers in the post moulded plastic parts. Several tests were carried and analyzed in order to investigate the three project...

  12. Tribo-mechanical behaviour of SiC filled glass-epoxy composites at ...

    African Journals Online (AJOL)

    While glass fibers enhance the toughness of the matrix, silicon carbide shows high hardness, thermal stability and low chemical reactivity, leading to superior friction properties. In this work an attempt was made to evaluate the mechanical properties and tribological behaviour of glass fabric reinforced- epoxy (G-E) ...

  13. Fabrication of highly insulating foam glass made from CRT panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2015-01-01

    We prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. We investigated the influence of the carbon and MnO2 concentrations, the glass-powder preparation and the foaming conditions on the density and homogeneity of the pore structure...... and the dependence of the thermal conductivity on the foam density. The results show that the moderate foaming effect of the carbon is greatly improved by the addition of MnO2. A density as low as 131 kg m-3 can be achieved with fine glass powder. The foam density has a slight dependence on the carbon and MnO2...... concentrations, but it is mainly affected by the foaming temperature and the time. The thermal conductivity of the foam-glass samples is lower than that of commercial foam glasses with the same density. The lowest value was determined to be 42 mW m-1 K-1 for a foam glass with a density of 131 kg m-3. A further...

  14. Low-cost evacuated-tube solar collector appendices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beecher, D.T.

    1980-05-31

    A low cost solar heat energy collector module and array has been designed using the evacuated tube, selective absorber, air cooled concept. Glass tubing as used in fluorescent lamps with automatic sealing methods is a key feature of the evacuated tube design. A molded fiber glass concentrating reflector panel and sheet metal header assembly are proposed. Major design problems involved included the cost of materials and labor, thermal expansion and distortion problems, high stagnation and operating temperatures, isolation, thermal efficiency, sealing, joining, air pressure drop, and weight of the preassembled module. A cost of less than $5 per active square foot of collecting surface has been estimated for materials and labor of the module and its mounting frame.

  15. High-resolution tracking using large capillary bundles filled with liquid scintillator

    CERN Document Server

    Annis, P; Benussi, L; Bruski, N; Buontempo, S; Currat, C; D'Ambrosio, N; Van Dantzig, R; Dupraz, J P; Ereditato, A; Fabre, Jean-Paul; Fanti, V; Feyt, J; Frekers, D; Frenkel, A; Galeazzi, F; Garufi, F; Goldberg, J; Golovkin, S V; Gorin, A M; Grégoire, G; Harrison, K; Höpfner, K; Holtz, K; Konijn, J; Kozarenko, E N; Kreslo, I E; Kushnirenko, A E; Liberti, B; Martellotti, G; Medvedkov, A M; Michel, L; Migliozzi, P; Mommaert, C; Mondardini, M R; Panman, J; Penso, G; Petukhov, Yu P; Rondeshagen, D; Siegmund, W P; Tyukov, V E; Van Beek, G; Vasilchenko, V G; Vilain, P; Visschers, J L; Wilquet, G; Winter, Klaus; Wolff, T; Wörtche, H J; Wong, H; Zimyn, K V

    2000-01-01

    We have developed large high-resolution tracking detectors based on glass capillaries filled with organic liquid scintillator of high refractive index. These liquid-core scintillating optical fibres act simultaneously as detectors of charged particles and as image guides. Track images projected onto the readout end of a capillary bundle are visualized by an optoelectronic chain consisting of a set of image-intensifier tubes followed by a photosensitive CCD or by an EBCCD camera. Two prototype detectors, each composed of \\hbox{$\\approx 10^6$} capillaries with \\hbox{20$-$25 $\\mu$m} diameter and \\hbox{0.9$-$1.8 m} length, have been tested, and a spatial resolution of the order of \\hbox{20$-$40 $\\mu$m} has been attained. A high scintillation efficiency and a large light-attenuation length, in excess of 3 m, was achieved through special purification of the liquid scintillator. Along the tracks of minimum-ionizing particles, the hit densities obtained were $\\sim$ 8 hits/mm at the readout window, and \\hbox{$\\sim$ 3 ...

  16. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering

    NARCIS (Netherlands)

    Gerhardt, L.C.; Boccaccini, A.R.

    2010-01-01

    Traditionally, bioactive glasses have been used to fill and restore bone defects. More recently, this category of biomaterials has become an emerging research field for bone tissue engineering applications. Here, we review and discuss current knowledge on porous bone tissue engineering scaffolds on

  17. Breath alcohol test

    Science.gov (United States)

    ... a glass tube. The tube is filled with bands of yellow crystals. The bands in the tube change colors (from yellow to ... Results Mean With the balloon method: 1 green band means that the blood-alcohol level is 0. ...

  18. Extreme learning machine: a new alternative for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters.

    Science.gov (United States)

    Liu, Zhijian; Li, Hao; Tang, Xindong; Zhang, Xinyu; Lin, Fan; Cheng, Kewei

    2016-01-01

    Heat collection rate and heat loss coefficient are crucial indicators for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, wasting too much time and manpower. To address this problem, we previously used artificial neural networks and support vector machine to develop precise knowledge-based models for predicting the heat collection rates and heat loss coefficients of water-in-glass evacuated tube solar water heaters, setting the properties measured by "portable test instruments" as the independent variables. A robust software for determination was also developed. However, in previous results, the prediction accuracy of heat loss coefficients can still be improved compared to those of heat collection rates. Also, in practical applications, even a small reduction in root mean square errors (RMSEs) can sometimes significantly improve the evaluation and business processes. As a further study, in this short report, we show that using a novel and fast machine learning algorithm-extreme learning machine can generate better predicted results for heat loss coefficient, which reduces the average RMSEs to 0.67 in testing.

  19. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  20. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    International Nuclear Information System (INIS)

    Adamson, D.; Pickenheim, Bradley

    2008-01-01

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  1. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers.

    Science.gov (United States)

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-03-30

    A glass-ceramic optical fiber containing Ba 2 TiSi 2 O 8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba 2 TiSi 2 O 8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.

  2. Method for the protection of the cladding tubes of fuel rods

    International Nuclear Information System (INIS)

    Steinberg, E.

    1978-01-01

    To present stress crack corrosion and to protect the cladding tubes of the fuel rods made of a circonium alloy from attack by iodine, the inward surfaces are provided with protective coatings. Therefore the casting tubes already filled with fuel element pellets are put under over-pressure at a temperature range between 300 and 500 0 C, until almost yield-point is reached. A small amount of H 2 O or H 2 O 2 , filled in, reacts with the cladding tube material to form the Zr-O 2 protective coating. Afterwards comes a pressure relief, and the cladding tube reaches its original dimensions. (DG) [de

  3. Water-filled training tubes increase core muscle activation and somatosensory control of balance during squat.

    Science.gov (United States)

    Ditroilo, Massimiliano; O'Sullivan, Rory; Harnan, Brian; Crossey, Aislinn; Gillmor, Beth; Dardis, William; Grainger, Adam

    2018-09-01

    This study examined trunk muscle activation, balance and proprioception while squatting with a water-filled training tube (WT) and a traditional barbell (BB), with either closed (CE) or open eyes (OE). Eighteen male elite Gaelic footballers performed an isometric squat under the following conditions: BB-OE, BB-CE, WT-OE and WT-CE. The activity of rectus abdominis (RA), external oblique (EO) and multifidus (MF) was measured using electromyography, along with sway of the centre of pressure (CoP) using a force platform. Only the EO and the MF muscles exhibited an increased activity with WT (p velocity and range of the CoP increased significantly with WT (p velocity of the CoP was marginally reduced (d = 0.29). WT elicited a greater level core muscle activation and created a greater challenge to postural stability when compared to a BB. It appears that WT does not benefit from vision but emphasises the somatosensory control of balance. The use of WT may be beneficial in those sports requiring development of somatosensory/proprioceptive contribution to balance control.

  4. Ceramic waste form qualification using results from witness tubes

    International Nuclear Information System (INIS)

    O'Holleran, T.P.; Johnson, S.G.; Bateman, K.J.

    2002-01-01

    A ceramic waste form has been developed to immobilize the salt waste stream from electrometallurgical treatment of spent nuclear fuel. The ceramic waste form is prepared in a hot isostatic press (HIP). The use of small, easily fabricated HIP capsules called witness tubes has been proposed as a practical way to obtain representative samples of ceramic waste form material for process monitoring, waste form qualification, and archiving. Witness tubes are filled with the same material used to fill the corresponding HIP can, and are HIPed along with the HIP can. Relevant physical, chemical, and performance (leach test) data are analyzed and compared. Differences between witness tube and HIP can materials are shown to be statistically insignificant, demonstrating that witness tubes do provide ceramic waste form material representative of the material in the corresponding HIP can.

  5. The design of measuring tubes and their influence on long term stability of EMF in filling machines; Einfluss der Messrohrkonstruktion auf die Langzeitstabilitaet von Abfuell-MID

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, B. [Krohne Messtechnik Gmbh und Co KG, Duisburg (Germany); Hofmann, F.

    2008-07-01

    Electro Magnetic Flow Meters (EMF) have been used for many decades measuring the volumetric flow rate of electric conductive liquids. Changes of the inner diameter because of temperature influences are creating measuring errors. In particular applications, where a high accuracy and repeatability is needed, this can cause trouble. This effect can be recognized after a long use of these meters and the corresponding cleaning procedures with liquid or steam, which is typical for the food and beverage industry. This effect is of a huge importance on electro magnetic flow meters, which are used on rotating filling machines for filling PET (plastic) bottles. Meters with ceramic tubes had a better long term stability than the ones with PFA liner. (orig.)

  6. Experimental study of glass sampling devices

    International Nuclear Information System (INIS)

    Jouan, A.; Moncouyoux, J.P.; Meyere, A.

    1992-01-01

    Two high-level liquid waste containment glass sampling systems have been designed and built. The first device fits entirely inside a standard glass storage canister, and may thus be used in facilities not initially designed for this function. It has been tested successfully in the nonradioactive prototype unit at Marcoule. The work primarily covered the design and construction of an articulated arm supporting the sampling vessel, and the mechanisms necessary for filling the vessel and recovering the sample. System actuation and operation are fully automatic, and the resulting sample is representative of the glass melt. Implementation of the device is delicate however, and its reliability is estimated at about 75%. A second device was designed specifically for new vitrification facilities. It is installed directly on the glass melting furnace, and meets process operating and quality control requirements. Tests conducted at the Marcoule prototype vitrification facility demonstrated the feasibility of the system. Special attention was given to the sampling vessel transfer mechanisms, with two filling and controlled sample cooling options

  7. Impulse generation by detonation tubes

    Science.gov (United States)

    Cooper, Marcia Ann

    Impulse generation with gaseous detonation requires conversion of chemical energy into mechanical energy. This conversion process is well understood in rocket engines where the high pressure combustion products expand through a nozzle generating high velocity exhaust gases. The propulsion community is now focusing on advanced concepts that utilize non-traditional forms of combustion like detonation. Such a device is called a pulse detonation engine in which laboratory tests have proven that thrust can be achieved through continuous cyclic operation. Because of poor performance of straight detonation tubes compared to conventional propulsion systems and the success of using nozzles on rocket engines, the effect of nozzles on detonation tubes is being investigated. Although previous studies of detonation tube nozzles have suggested substantial benefits, up to now there has been no systematic investigations over a range of operating conditions and nozzle configurations. As a result, no models predicting the impulse when nozzles are used exist. This lack of data has severely limited the development and evaluation of models and simulations of nozzles on pulse detonation engines. The first experimental investigation measuring impulse by gaseous detonation in plain tubes and tubes with nozzles operating in varying environment pressures is presented. Converging, diverging, and converging-diverging nozzles were tested to determine the effect of divergence angle, nozzle length, and volumetric fill fraction on impulse. The largest increases in specific impulse, 72% at an environment pressure of 100 kPa and 43% at an environment pressure of 1.4 kPa, were measured with the largest diverging nozzle tested that had a 12° half angle and was 0.6 m long. Two regimes of nozzle operation that depend on the environment pressure are responsible for these increases and were first observed from these data. To augment this experimental investigation, all data in the literature regarding

  8. Precision heat forming of tetrafluoroethylene tubing

    Science.gov (United States)

    Ruiz, W. V.; Thatcher, C. S. (Inventor)

    1981-01-01

    An invention that provides a method of altering the size of tetrafluoroethylene tubing which is only available in limited combination of wall thicknesses and diameter are discussed. The method includes the steps of sliding the tetrafluoroethylene tubing onto an aluminum mandrel and clamping the ends of the tubing to the mandrel by means of clamps. The tetrafluorethylene tubing and mandrel are then placed in a supporting coil which with the mandrel and tetrafluorethylene tubing are then positioned in a insulated steel pipe which is normally covered with a fiber glass insulator to smooth out temperature distribution therein. The entire structure is then placed in an event which heats the tetrafluorethylene tubing which is then shrunk by the heat to the outer dimension of the aluminum mandrel. After cooling the aluminum mandrel is removed from the newly sized tetrafluorethylene tubing by a conventional chemical milling process.

  9. Special wrench for B-nuts reduces torque stress in tubing

    Science.gov (United States)

    Stein, J. A.

    1970-01-01

    Gear-driven torque wrench with bearing support is used to tighten B-nut connection of partially supported fluid line with minimum stress to adjacent tubing and fittings. Wrench is useful for working with weak or brittle lines such as glass tubing.

  10. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  11. Ultrasonic Concentration in a Line-Driven Cylindrical Tube

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, Gregory Russ [Portland State Univ., Portland, OR (United States)

    2004-01-01

    The fractionation of particles from their suspending fluid or noninvasive micromanipulation of particles in suspension has many applications ranging from the recovery of valuable reagents from process flows to the fabrication of microelectromechanical devices. Techniques based on size, density, solubility, or electromagnetic properties exist for fulfilling these needs, but many particles have traits that preclude their use such as small size, neutral buoyancy, or uniform electromagnetic characteristics. While separation by those techniques may not be possible, often compressibility differences exist between the particle and fluid that would allow fractionation by acoustic forces. The potential of acoustic separation is known, but due to inherent difficulties in achieving and maintaining accurate alignment of the transduction system, it is rarely utilized. The objective of this project is to investigate the use of structural excitation as a potentially efficient concentration/fractionation method for particles in suspension. It is demonstrated that structural excitation of a cylindrically symmetric cavity, such as a tube, allows non-invasive, fast, and low power concentration of particles suspended in a fluid. The inherent symmetry of the system eliminates the need for careful alignment inherent in current acoustic concentration devices. Structural excitation distributes the acoustic field throughout the volume of the cavity, which also significantly reduces temperature gradients and acoustic streaming in the fluid; cavitation is no longer an issue. The lowest-order coupled modes of a long cylindrical glass tube and fluid-filled cavity, driven by a line contact, are tuned, via material properties and aspect ratio, to achieve a coupled dipolar vibration of the system, shown to generate efficient concentration of particles to the central axis of the tube. A two dimensional elastodynamic model of the system was developed and subsequently utilized to optimize particle

  12. Is the Glass Half Full or Half Empty? How to Reverse the Effect of Glass Elongation on the Volume Poured

    NARCIS (Netherlands)

    Caljouw, Simone R.; van Wijck, Ruud

    2014-01-01

    To reduce the volume of drinks and the risk of overconsumption, health professionals recommend the use of tall skinny instead of short wide glasses. Yet the results of the present study contradict this health advice. Participants who generously filled up a glass with lemonade served 9% more in tall

  13. Microporous glasses for pro-ecological applications

    International Nuclear Information System (INIS)

    Procyk, B.; Stoch, L.; Kubacki, M.; Rewilak, M.; Soltysiak, J.

    1994-01-01

    Microporous glasses are obtained by appropriate thermal and chemical treatment. On account of their sorptive properties microporous glasses represent an excellent material for storing high-energy radioactive waste products in nuclear power engineering and for binding toxins in natural environment. Microporous glasses may be used as membranes non-organic, as gel filling in chromatography. They may find application in biochemistry, chemical, metallurgical, electrochemical and other industries. The above applications depend on the internal arrangement, size and shape of pores. (author). 4 refs, 4 figs, 1 tab

  14. Borosilicate glass for gamma irradiation fields

    Science.gov (United States)

    Baydogan, N.; Tugrul, A. B.

    2012-11-01

    Four different types of silicate glass specimens were irradiated with gamma radiation using a Co-60 radioisotope. Glass specimens, with four different chemical compositions, were exposed to neutron and mixed neutron/gamma doses in the central thimble and tangential beam tube of the nuclear research reactor. Optical variations were determined in accordance with standardisation concept. Changes in the direct solar absorbance (αe) of borosilicate glass were examined using the increase in gamma absorbed dose, and results were compared with the changes in the direct solar absorbance of the three different type silicate glass specimens. Solar absorption decreased due to decrease of penetration with absorbed dose. αe of borosilicate increased considerably when compared with other glass types. Changes in optical density were evaluated as an approach to create dose estimation. Mixed/thermal neutron irradiation on glass caused to increse αe.

  15. PZT-Based Detection of Compactness of Concrete in Concrete Filled Steel Tube Using Time Reversal Method

    Directory of Open Access Journals (Sweden)

    Shi Yan

    2014-01-01

    Full Text Available A smart aggregate-based approach is proposed for the concrete compactness detection of concrete filled steel tube (CFST columns. The piezoceramic-based smart aggregates (SAs were embedded in the predetermined locations prior to the casting of concrete columns to establish a wave-based smart sensing system for the concrete compactness detection purpose. To evaluate the efficiency of the developed approach, six specimens of the CFST columns with the rectangular cross-section were produced by placing some artificial defects during casting of concrete for simulating various uncompacted voids such as cavities, cracks, and debond. During the test, the time reversal technology was applied to rebuild the received signals and launch the reversed signals again by SAs, to overcome the issue of the lack of the prototype. Based on the proposed nonprototype, two indices of time reversibility (TR and symmetry (SYM were applied to relatively evaluate the level of concrete compactness in the range of the two SAs. The experimental results show that the developed method can effectively detect the compactness of concrete in CFST columns.

  16. SOME METHODS FOR SAVING HEAT ENERGY WHILE MANUFACTURING VERTICAL INSULATING GLASS UNITS

    Directory of Open Access Journals (Sweden)

    S. A. Shybeka

    2018-01-01

    Full Text Available The paper proposes and considers two constructive methods for saving heat energy while manufacturing vertical insulating glass units with various gas filling of inter-glass space. The first method presupposes manufacturing of insulating glass units having specific thickness which is calculated in accordance with specific features of convective heat exchange in the closed loop circuit. Value of the heat-exchange coefficient depends on gas properties which is filling a chamber capacity (coefficients of thermal conductivity, volumetric expansion, kinematic viscosity, thermometric conducivity, temperature difference on the boundary of interlayer and its thickness. It has been shown that while increasing thickness of gas layer convective heat exchange coefficient is initially decreasing up to specific value and then after insignificant increase it practically remains constant. In this connection optimum thicknesses of filled inter-layers for widely-spread gas in production (dry air, argon, krypton, xenon and for carbon dioxide have determined in the paper. Manufacturing of insulating glass units with large thickness of gas chamber practically does not lead to an increase in resistance to heat transfer but it will increase gas consumption rate. The second industrial economic method is interrelated with application of carbon dioxide СО2 as a filler of inter-glass space which has some advantages in comparison with other gases (small cost due to abundance, nontoxicity, transparency for visual light and absorption of heat rays. Calculations have shown that application of carbon dioxide will make it possible to increase resistance to heat transfer of one-chamber glass unit by 0.05 m²×K/W (with emissivity factor of internal glass – 0.837 or by 0.16 m²×K/W (with emission factor – 0.1 in comparison with the glass unit where a chamber is filled with dry air.

  17. Disinfection of Biofilms in Tubes with Ultraviolet Light

    DEFF Research Database (Denmark)

    Bak, Jimmy; Begovic, Tanja

    2009-01-01

    Bacterial biofilms on long-term catheters are a major source of infection. We demonstrate here the potential of UVC light emitting diodes (LED) for disinfection purposes in catheter like tubes contaminated with biofilm. We show that UVC Light propagation is possible through teflon tubes using...... to a flow system and biofilms were produced during a three day period. Tubes in lengths of 10 cm (FEP teflon) were contaminated. Tubes for control and for UVC treatment were contaminated in parallel. The control and UVC treated tubes were both filled with a 20 % NaCl solution during the UVC treatment time...

  18. Study of the performances of acoustic emission testing for glass fibre reinforced plastic pipes containing defects; Etude des performances du controle par emission acoustique de tubes en materiaux composites resine-fibre de verre contenant des defauts

    Energy Technology Data Exchange (ETDEWEB)

    Villard, D.; Vidal, M.C.

    1995-08-01

    Glass fibre reinforced plastic pipes are more and more often used, in nuclear power plants, for building or replacement of water pipings classified `nuclear safety`. Tests have been performed to evaluate the performances of acoustic emission testing for in service inspection of these components. The tests were focused on glass fibre reinforced polyester and vinyl-ester pipes, in as received conditions or containing impacts, and intentionally introduced defects. They have been carried out by CETIM, following the ASTM Standard E 1118 (code CARP), to a maximum pressure lever of 25 Bar The results show that the CARP procedure can be used for detection of defects and evaluation of their noxiousness towards internal pressure: most of the tubes containing low energy impacts could not be distinguished from tubes without defect; on the other hand the important noxiousness of lacks of impregnation of roving layer appeared clearly. Complementary tests have been performed on some tubes at a more important pressure lever, for which the damage of the tubes in enough to deteriorate there elastic properties. The results showed that CARP procedure give valuable informations on damage level. It would be interesting to evaluate acoustic emission on tubes containing realistic in-service degradations. (author). 11 refs., 15 figs., 6 tabs., 2 appends.

  19. Particle size dependence of the Young's modulus of filled polymers: 1. Preliminary experiments

    NARCIS (Netherlands)

    Vollenberg, P.H.T.; Heikens, D.

    1989-01-01

    Experimental results are reported from which it appears that in the case of polymer filled with silane-treated glass beads the Young's modulus is, in accordance with present theory, independent of the particle size of the filler. However, if pure glass beads are used as filler, the Young's modulus

  20. Debonding of epoxy from glass in irradiated laminates

    International Nuclear Information System (INIS)

    Klabunde, C.E.; Coltman, R.R. Jr.

    1982-01-01

    Glass-fabric-filled epoxies irradiated at 4.7 K and examined at room temperature by 20x stereomicroscopy showed an internal flaw structure which increasingly filled the sample as the γ-dose was increased. These flaws were determined to be areas where the plastic had debonded from the glass fibers. The extent of this process correlated well with the dose-dependent loss of mechanical strength. Evidence is reported for a similar mechanism in polyimides although visible flaws have not yet been produced. Possible mechanisms for debonding are suggested. New experiments are also suggested to clarify further the failure mechanism

  1. Evolution of gettering technologies for vacuum tubes to getters for MEMS

    Science.gov (United States)

    Amiotti, M.

    2008-05-01

    Getter materials are technically proven and industrially accepted practical ways to maintain vacuum inside hermetically sealed tubes or devices to assure high reliability and long lifetime of the operating devices. The most industrially proven vacuum tube is the cathode rays tubes (CRTs), where large surfaces are available for the deposition of an evaporated barium film by a radio frequency inductive heating of a stainless steel container filled with a BaAl4 powder mixed to Ni powder. The evolution of the CRTs manufacturing technologies required also new types of barium getters able to withstand some thermal process in air without any deterioration of the evaporation characteristics. In other vacuum tubes such as traveling waves tubes, the space available for the evaporation of a barium film and the sorption capacity required to assure the vacuum for the lifetime of the devices did not allow the use of the barium film, prompting the development of sintered non evaporable getter pills that can be activated during the manufacturing process or by flowing current through an embedded resistance. The same sintered non evaporable getter pills could find usage also in evacuated parts to thermally isolate the infrared sensors for different final applications. In high energy physics particle accelerators, the getter technology moved from localized vacuum getter pumps or getter strips to a getter coating over the surface of vacuum chambers in order to guarantee a more uniform pumping speed. With the advent of solid state electronics, new challenges faced the getter technology to assure long life to vacuum or inert gas filled hermetical packages containing microelectronic devices, especially in the telecommunication and military applications. A well known problem of GaAs devices with Pd or Pt metalization is the H2 poisoning of the metal gate: to prevent this degradation a two layer getter film has been develop to absorb a large quantity of H2 per unit of getter surface. The

  2. Theoretical flow investigations of an all glass evacuated tubular collector

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    Heat transfer and flow structures inside all glass evacuated tubular collectors for different operating conditions are investigated by means of computational fluid dynamics. The investigations are based on a collector design with horizontal tubes connected to a vertical 14 manifold channel. Three...... the highest efficiency, the optimal inlet flow rate was around 0.4-1 kg/min, the flow structures in the glass tubes were relatively uninfluenced by the inlet flow rate, Generally, the results showed only small variations in the efficiencies. This indicates that the collector design is well working for most...

  3. Tribological properties of solid lubricants filled glass fiber reinforced polyamide 6 composites

    International Nuclear Information System (INIS)

    Li, Du-Xin; You, Yi-Lan; Deng, Xin; Li, Wen-Juan; Xie, Ying

    2013-01-01

    Highlights: ► The tribological properties of GF/PA6 improved by the incorporation of PTFE. ► PTFE and UHMWPE exhibited a synergism effect on reducing friction coefficient. ► Solid lubricants enlarged the range of applied velocity for GF/PA6 composite. - Abstract: The main purpose of this paper is to further optimize the tribological properties of the glass fiber reinforced PA6 (GF/PA6,15/85 by weight) for high performance friction materials using single or combinative solid lubricants such as Polytetrafluroethylene (PTFE), ultra-high molecular weight polyethylene (UHMWPE) and the combination of both of them. Various polymer blends, where GF/PA6 acts as the polymer matrix and solid lubricants as the dispersed phase were prepared by injection molding. The tribological properties of these materials and the synergism as a result of the incorporation of both PTFE and UHMWPE were investigated. The results showed that, at a load of 40 N and a velocity of 200 rpm, PTFE was effective in improving the tribological capabilities of matrix material. On the contrary, UHMWPE was not conductive to maintain the structure integrity of GF/PA6 composite and harmful to the friction and wear properties. The combination of PTFE and UHMWPE showed synergism on further reducing the friction coefficient of the composites filled with either PTFE or UHMWPE only. Effects of load and velocity on tribological behavior were also discussed. To further understand the wear mechanism, the worn surfaces were examined by scanning electron microscopy

  4. The effective complex permittivity stability in filled polymer nanocomposites studied above the glass transition temperature

    Directory of Open Access Journals (Sweden)

    Elhaouzi F.

    2018-01-01

    Full Text Available The temperature effecton the dielectric response of nanocomposite at low frequencies range is reported. The investigated samples are formed by a semi-crystalline ethylene-co-butyl acrylate (EBA polymer filled with three concentrations of the dispersed conducting carbon black (CB nanoparticles. The temperature dependence of the complex permittivity has been analyzedabove the glass transition temperature of the neat polymer matrix Tg=-75°C. For all CB concentrations, the dielectric spectra follow a same trend in frequency range 100-106Hz. More interestingly, the stability of the effective complex permittivity ɛ=ɛ' -iɛ'' with the temperature range of 10-70°C is explored. While the imaginary part of the complex permittivity ɛ'' exhibits a slight decreasewith temperature, the real part ɛ' shows a significant reduction especially for high loading samples. The observed dielectric response may be related to the breakup of the three-dimensional structurenetwork formed by the aggregation of CB particles causing change at the interfaceEBA-CB.This interface is estimated bythe volume fraction of constrained polymer chain according to loss tangent data of dynamic mechanical analysis.

  5. Failure Investigation & Design Optimization of a Photo-Multiplier Tube Assembly Under Thermal Loading

    Science.gov (United States)

    Dahya, Kevin

    2004-01-01

    Analysis of GLAST ACD Photo-Multiplier Tube (PMT) assembly under thermal loading demonstrates that the glass tube experiences high stresses due to Coefficient of Thermal Expansion mismatch, as well as increased stress due to high stiffness and incompressibility of potting compound. Further investigation shows adverse loading effects due to the magnetic shield, a thin piece of steel wrapped around the PMT. This steel, Mu Metal, contained an overlap region that directly attributed to crack propagation in the outside surface of the tube. Sensitivities to different configurations were studied to reduce the stress and provide a more uniform loading throughout the PMT to ensure mission success. Studies indicate substituting a softer and more compressible potting compound and moving the Mu metal from the glass tube to the outside wall of the aluminum housing yields lower stress.

  6. Method of reactivity control in pressure tube reactor

    International Nuclear Information System (INIS)

    Fukumura, Nobuo.

    1988-01-01

    Purpose: To provide a method of controlling reactivity in a pressure tube reactor at high conversion ratio intended for high burn-up degree. Method: Control tubes are inserted in heavy water moderator. Light water is filled in the tubes at the initial burning stage. Along with the advance of the burning, the light water is gradually removed and replaced with gases of less reactive nuclear reactivity with neutrons such as air or gaseous carbon dioxide. The tubes are made of less neutron absorbing material such as aluminum. By filling light water, infinite multiplication factor is reduced to suppress the reactivity at the initial burning stage. As light water is gradually removed and replaced with air, etc., it provides an effect like that elimination of heavy water moderator to increase the conversion ratio. Accordingly, nuclear fission materials are produced additionally by so much to extend the burn-up degree. In this way, it can provide excellent effect in realizing high burn-up ratio and high conversion ratio. (Kamimura, M.)

  7. Annihilation and Reanimation of a Tornado in the Improved Tornado Tube

    Science.gov (United States)

    Bednarek, Stanislaw

    2016-01-01

    Some new experiments using an improved version of the "tornado tube" are described here. The improved tornado tube consists of two plastic transparent bottles whose openings are connected with a ball valve, available at most hardware stores. After being filled with fluid and inverting, this tube allows demonstration of the generation,…

  8. Effect of Rebonding on the Bond Strength of Orthodontic Tubes: A Comparison of Light Cure Adhesive and Resin-Modified Glass Ionomer Cement In Vitro

    Directory of Open Access Journals (Sweden)

    Monika Aleksiejunaite

    2017-01-01

    Full Text Available The purpose of this study was to determine the impact of different enamel preparation procedures and compare light cure composite (LCC and resin-modified glass ionomer (RMGI on the bond strength of orthodontic metal tubes rebonded to the enamel. Twenty human molars were divided into two groups (n=10. Tubes were bonded using LCC (Transbond XT in group 1 and RMGI (Fuji Ortho LC in group 2. The tubes in each group were bonded following manufacturers’ instructions (experiment I and then debonded using testing machine. Then, the same brackets were sandblasted and rebonded twice. Before the first rebonding, the enamel was cleaned using carbide bur (experiment II and before second rebonding, it was cleaned using carbide bur and soda blasted (experiment III. Mann–Whitney and Wilcoxon signed-rank tests showed no significant difference between RMGI and LCC bond strengths in case of normal bonding and rebonding, when enamel was cleaned using carbide bur before rebonding. Enamel soda blasting before rebonding significantly increased RMGI tensile bond strength value compared to LLC (p<0.05. LCC and RMGI (especially RMGI provide sufficient bond strengths for rebonding of molar tubes, when residual adhesive from previous bonding is removed and enamel soda blasted.

  9. [Bonding of visible light cured composite resins to glass ionomer and Cermet cements].

    Science.gov (United States)

    Kakaboura, A; Vougiouklakis, G

    1990-04-01

    The "sandwich" technique involves combination of composite resins to etched glassionomer cements, is used today in restorative dentistry. The purpose of this study is to evaluate the bond strength between several composite resins and glass ionomer or cerment cements. Cylindrical specimens of the cements Ketac-Silver, Ionobond and GC-Lining Ce-ment were inserted in a mold and their flat free surfaces were etched for 30". Cylindrical plastic tubes were set upon each one of these surfaces and filled with the Composite resins Durafill, Brilliant Lux, Estilux posterior, Estilux posterior CVS and Herculite XR. Half of the specimens transferred in tap water for 24 hours and the others after thermocycling in the first month, kept for 4 months. Shear bond strengths were determined in Monsanto Testing Machine and some fractured surfaces were examined under SEM. The results of this investigation indicate that this technique produces bond strengths between composite resins and glassioners and the combination type of resin and type of cement, affects the values of the strength. Glass cermeet--small particle resin provides the most effective strength and glass ionomer--microfill resins the least. Storage time and thermocycling don't significantly effect the bond strength. SEM examination showed that all fracture failures were obtained in the cement while the opposite resin surfaces were covered with particles of the cements.

  10. Comparison of digoxin concentration in plastic serum tubes with clot activator and heparinized plasma tubes.

    Science.gov (United States)

    Dukić, Lora; Simundić, Ana-Maria; Malogorski, Davorin

    2014-01-01

    Sample type recommended by the manufacturer for the digoxin Abbott assay is either serum collected in glass tubes or plasma (sodium heparin, lithium heparin, citrate, EDTA or oxalate as anticoagulant) collected in plastic tubes. In our hospital samples are collected in plastic tubes. Our hypothesis was that the serum sample collected in plastic serum tube can be used interchangeably with plasma sample for measurement of digoxin concentration. Our aim was verification of plastic serum tubes for determination of digoxin concentration. Concentration of digoxin was determined simultaneously in 26 venous blood plasma (plastic Vacuette, LH Lithium heparin) and serum (plastic Vacuette, Z Serum Clot activator; both Greiner Bio-One GmbH, Kremsmünster, Austria) samples, on Abbott AxSYM analyzer using the original Abbott Digoxin III assay (Abbott, Wiesbaden, Germany). Tube comparability was assessed using the Passing Bablok regression and Bland-Altman plot. Serum and plasma digoxin concentrations are comparable. Passing Bablok intercept (0.08 [95% CI = -0.10 to 0.20]) and slope (0.99 [95% CI = 0.92 to 1.11]) showed there is no constant or proportional error. Blood samples drawn in plastic serum tubes and plastic plasma tubes can be interchangeably used for determination of digoxin concentration.

  11. Liquid filling of photonic crystal fibres for grating writing

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, John; Lægsgaard, Jesper

    2007-01-01

    liquid filling of photonic crystal fibres reduces the scattering from air–glass interfaces during Bragg grating writing in many layered photonic crystal fibres. Within experimental uncertainty, the grating index modulation of a grating written in germanium-doped photonic crystal fibre with 10 rings...

  12. Traveling wave tube and method of manufacture

    Science.gov (United States)

    Vancil, Bernard K. (Inventor)

    2004-01-01

    A traveling wave tube includes a glass or other insulating envelope having a plurality of substantially parallel glass rods supported therewithin which in turn support an electron gun, a collector and an intermediate slow wave structure. The slow wave structure itself provides electrostatic focussing of a central electron beam thereby eliminating the need for focussing magnetics and materially decreasing the cost of construction as well as enabling miniaturization. The slow wave structure advantageously includes cavities along the electron beam through which the r.f. energy is propagated, or a double, interleaved ring loop structure supported by dielectric fins within a ground plane cylinder disposed coaxially within the glass envelope.

  13. Glass Melting under microgravity. ; Space experiment by Mori astronaut. Mujuryokuka deno glass yoyu. ; Morisan no uchu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Makihara, M. (Osaka National Research Institute, Osaka (Japan))

    1993-03-01

    A space experiment on glass melting under microgravity was performed in a space shuttle in September 1992. The experiment has been intended to make glass from glass material floating in air by heating and melting it with light and an acoustic levitation furnace. The acoustic levitation furnace used in the experiment has been arranged so that a sound wave from a speaker makes a steady wave in a cylindrical quartz glass core tube with a length of 16 cm and a diameter of 4 cm, and a test sample can be retained floating in a valley of central wave pressures. The test sample retained floating has been collected and heated by light from a 500-W halogen lamp. Behavior of molten glass liquid under microgravity has been investigated. The glass material powder spheres have been melted completely and made into glass without crystallization. With regard to flows generated in the test sample placed in the acoustic levitation furnace, a glass spot containing cobalt oxide has been attached onto part of the test sample surface for observation. As a result, the spot has been incorporated in the glass without developing diffusion. 6 refs., 4 figs.

  14. Effect of Different Fillers on Adhesive Wear Properties of Glass Fiber Reinforced Polyester Composites

    Directory of Open Access Journals (Sweden)

    E. Feyzullahoğlu

    2017-12-01

    Full Text Available Polymeric composites are used for different aims as substitute of traditional materials such as metals; due to their improved strength at small specific weight. The fiber reinforced polymer (FRP composite material consists of polymeric matrix and reinforcing material. Polymeric materials are commonly reinforced with synthetic fibers such as glass and carbon. The glass fiber reinforced polyester (GFRP composites are used with different filler materials. The aim of this study is to investigate the effects of different filler materials on adhesive wear behavior of GFRP. In this experimental study; polymetilmetacrilat (PMMA, Glass beads (GB and Glass sand (GS were used as filling material in GFRP composite samples. The adhesive wear behaviors of samples were carried out using ball on disc type tribometer. The friction force and coefficient of friction were measured during the test. The volume loss and wear rate values of samples were calculated according to test results. Barcol hardness values of samples were measured. The densities of samples were measured. Results show that the wear resistance of GB filled GFRP composite samples was much more than non-filled and PMMA filled GFRP composite samples.

  15. Evaluation of Foaming Behavior of Glass Melts by High-Temperature Microscopy

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    2016-01-01

    Optical monitoring techniques can record in situ the size of glass samples during a dynamic heating process. This allowed us to study sintering and expansion rate of panel glass from cathode ray tube using MnO2 as foaming agent. We show the maximum expansion rate of glass melt foaming (in situ va...... such as type and concentration of foaming agent, glass composition and particle size to obtain foam glass with high porosity and closed pores. Using this approach we show that the foaming of bottle glass is preferentially conducted at a SiC concentration of 1‒4 wt%....

  16. Characterization of low concentration uranium glass working materials

    Energy Technology Data Exchange (ETDEWEB)

    Eppich, G. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wimpenny, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Leever, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knight, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hutcheon, I. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ryerson, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-22

    A series of uranium-doped silicate glasses were created at (Lawrence Livermore National Laboratory) LLNL, to be used as working reference material analogs for low uranium concentration research. Specifically, the aim of this effort was the generation of well-characterized glasses spanning a range of concentrations and compositions, and of sufficient homogeneity in uranium concentration and isotopic composition, for instrumentation research and development purposes. While the glasses produced here are not intended to replace or become standard materials for uranium concentration or uranium isotopic composition, it is hoped that they will help fill a current gap, providing low-level uranium glasses sufficient for methods development and method comparisons within the limitations of the produced glass suite. Glasses are available for research use by request.

  17. Application of the TEMPEST computer code to canister-filling heat transfer problems

    International Nuclear Information System (INIS)

    Farnsworth, R.K.; Faletti, D.W.; Budden, M.J.

    1988-03-01

    Pacific Northwest Laboratory (PNL) researchers used the TEMPEST computer code to simulate thermal cooldown behavior of nuclear waste glass after it was poured into steel canisters for long-term storage. The objective of this work was to determine the accuracy and applicability of the TEMPEST code when used to compute canister thermal histories. First, experimental data were obtained to provide the basis for comparing TEMPEST-generated predictions. Five canisters were instrumented with appropriately located radial and axial thermocouples. The canister were filled using the pilot-scale ceramic melter (PSCM) at PNL. Each canister was filled in either a continous or a batch filling mode. One of the canisters was also filled within a turntable simulant (a group of cylindrical shells with heat transfer resistances similar to those in an actual melter turntable). This was necessary to provide a basis for assessing the ability of the TEMPEST code to also model the transient cooling of canisters in a melter turntable. The continous-fill model, Version M, was found to predict temperatures with more accuracy. The turntable simulant experiment demonstrated that TEMPEST can adequately model the asymmetric temperature field caused by the turntable geometry. Further, TEMPEST can acceptably predict the canister cooling history within a turntable, despite code limitations in computing simultaneous radiation and convection heat transfer between shells, along with uncertainty in stainless-steel surface emissivities. Based on the successful performance of TEMPEST Version M, development was initiated to incorporate 1) full viscous glass convection, 2) a dynamically adaptive grid that automatically follows the glass/air interface throughout the transient, and 3) a full enclosure radiation model to allow radiation heat transfer to non-nearest neighbor cells. 5 refs., 47 figs., 17 tabs

  18. Biomimetic approaches to create anti-reflection glass surfaces for solar cells using self-organizing techniques

    International Nuclear Information System (INIS)

    Achtelik, J.; Sievers, W.; Lindner, J.K.N.

    2013-01-01

    Highlights: ► Nanostructured glass surfaces with theoretically near-to-zero reflectivity in the UVNIR region. ► Simple fabrication process using self-organization during reactive ion etching proposed. ► Prediction of optical reflectivity from AFM measured surface morphology. -- Abstract: Aiming to diminish the reflection losses of glass covered light harvesting devices, the optical reflectivity of nanostructured glass surfaces is studied theoretically and experimentally. The work is inspired by the nanoscale roughness of insect eyes, which is tried to be replicated on a technical glass surface. To this end, the reflectivity of glass surfaces with topographies represented by linear, parabolic and Fermi-shaped glass/air fill factor profiles is calculated for normal incidence. It is shown that using the latter ones, an almost complete suppression of reflections can be achieved. A simple, self-organization technique to create such Fermi-shaped filling factor profiles in glass experimentally is also presented

  19. Biomimetic approaches to create anti-reflection glass surfaces for solar cells using self-organizing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Achtelik, J.; Sievers, W. [University of Paderborn, Department of Physics, 33098 Paderborn (Germany); Center of Optoelectronics and Photonics Paderborn CeOPP, 33098 Paderborn (Germany); Lindner, J.K.N., E-mail: lindner@physik.uni-paderborn.de [University of Paderborn, Department of Physics, 33098 Paderborn (Germany); Center of Optoelectronics and Photonics Paderborn CeOPP, 33098 Paderborn (Germany)

    2013-05-15

    Highlights: ► Nanostructured glass surfaces with theoretically near-to-zero reflectivity in the UVNIR region. ► Simple fabrication process using self-organization during reactive ion etching proposed. ► Prediction of optical reflectivity from AFM measured surface morphology. -- Abstract: Aiming to diminish the reflection losses of glass covered light harvesting devices, the optical reflectivity of nanostructured glass surfaces is studied theoretically and experimentally. The work is inspired by the nanoscale roughness of insect eyes, which is tried to be replicated on a technical glass surface. To this end, the reflectivity of glass surfaces with topographies represented by linear, parabolic and Fermi-shaped glass/air fill factor profiles is calculated for normal incidence. It is shown that using the latter ones, an almost complete suppression of reflections can be achieved. A simple, self-organization technique to create such Fermi-shaped filling factor profiles in glass experimentally is also presented.

  20. Fire Response of Concrete Filled Hollow Steel Sections

    DEFF Research Database (Denmark)

    Nyman, Simon; Virdi, Kuldeep

    2011-01-01

    Advanced and simplified methods of analysis and design for the fire resistance of structural elements and assemblages of structures have been developed in recent years. Some simplified methods for the fire design of concrete filled tubes have appeared in Eurocode 4 part 1.2. Experience to date in...... hollow sections....

  1. Correlation between the critical heat flux and the fractal surface roughness of zirconium alloy tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; McRae, G.A.; Coleman, C.E.; Nitheanandan, T.; Sanderson, D.B.

    1999-10-01

    In CANDU fuel channels, Zircaloy calandria tubes isolate the hot pressure tubes from the cool heavy water moderator. The heavy-water moderator provides a backup heat sink during some postulated loss-of-coolant accidents. The decay heat from the fuel is transferred to the moderator to ensure fuel channel integrity during emergencies. Moderator temperature requirements are specified to ensure that the transfer of decay heat does not exceed the critical heat flux (CHF) on the outside surface of the calandria tube. An enhanced CHF provides increases in safety margin. Pool boiling experiments indicate the CHF is enhanced with glass-peening of the outside surface of the calandria tubes. The objective of this study was to evaluate the surface characteristics of glass-peened tubes and relate these characteristics to CHF. The micro-topologies of the tube surfaces were analysed using stereo-pair micrographs obtained from scanning electron microscopy (SEM) and photogrammetry techniques. A linear relationship correlated the CHF as a function of the 'fractal' surface roughness of the tubes. (author)

  2. Characteristics of rectangular drift tube for muon identifier

    International Nuclear Information System (INIS)

    Denisov, D.S.; Musienko, Yu.V.

    1987-01-01

    The results of a study of an aluminum drift tube with a cross section of 50 x 100 mm are presented. Argon-methane and argon-isobutane mixtures were used as fillers. For a 16% methane concentration, the nonlinearity of the time-coordinate dependence does not exceed 2 mm. The tube can operate in the self-quenched streamer mode when filled with a mixture of argon with isobutane

  3. Physics of IED blast shock tube simulations for mTBI research

    NARCIS (Netherlands)

    Mediavilla Varas, J.; Philippens, M.M.G.M.; Meijer, S.R.; Berg, A.C. van den; Sibma, P.C.; Bree, J.L.M.J. van; Vries, D.V.W.M. de

    2011-01-01

    Shock tube experiments and simulations are conducted with a spherical gelatin filled skull- brain surrogate, in order to study the mechanisms leading to blast induced mild traumatic brain injury. A shock tube including sensor system is optimized to simulate realistic impro-vised explosive device

  4. Storing of Extracts in Polypropylene Microcentrifuge Tubes Yields Contaminant Peak During Ultra-flow Liquid Chromatographic Analysis

    OpenAIRE

    Kshirsagar, Parthraj R.; Hegde, Harsha; Pai, Sandeep R.

    2016-01-01

    Background and Aim: This study was designed to understand the effect of storage in polypropylene microcentrifuge tubes and glass vials during ultra-flow liquid chromatographic (UFLC) analysis. Materials and Methods: One ml of methanol was placed in polypropylene microcentrifuge tubes (PP material, Autoclavable) and glass vials (Borosilicate) separately for 1, 2, 4, 8, 10, 20, 40, and 80 days intervals stored at ?4?C. Results: Contaminant peak was detected in methanol stored in polypropylene m...

  5. Chalcogenide glass hollow core microstructured optical fibers

    Directory of Open Access Journals (Sweden)

    Vladimir S. eShiryaev

    2015-03-01

    Full Text Available The recent developments on chalcogenide glass hollow core microstructured optical fibers (HC-MOFs are presented. The comparative analysis of simulated optical properties for chalcogenide HC-MOFs of negative-curvature with different size and number of capillaries is given. The technique for the manufacture of microstructured chalcogenide preforms, which includes the assembly of the substrate glass tube and 8-10 capillaries, is described. Further trends to improve the optical transmission in chalcogenide NCHCFs are considered.

  6. Evolution of gettering technologies for vacuum tubes to getters for MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Amiotti, M [SAES Getters S.p.A., Viale Italia 77, 20020 Lainate, Milano (Italy)], E-mail: Marco_Amiotti@saes-group.com

    2008-05-01

    Getter materials are technically proven and industrially accepted practical ways to maintain vacuum inside hermetically sealed tubes or devices to assure high reliability and long lifetime of the operating devices. The most industrially proven vacuum tube is the cathode rays tubes (CRTs), where large surfaces are available for the deposition of an evaporated barium film by a radio frequency inductive heating of a stainless steel container filled with a BaAl{sub 4} powder mixed to Ni powder. The evolution of the CRTs manufacturing technologies required also new types of barium getters able to withstand some thermal process in air without any deterioration of the evaporation characteristics. In other vacuum tubes such as traveling waves tubes, the space available for the evaporation of a barium film and the sorption capacity required to assure the vacuum for the lifetime of the devices did not allow the use of the barium film, prompting the development of sintered non evaporable getter pills that can be activated during the manufacturing process or by flowing current through an embedded resistance. The same sintered non evaporable getter pills could find usage also in evacuated parts to thermally isolate the infrared sensors for different final applications. In high energy physics particle accelerators, the getter technology moved from localized vacuum getter pumps or getter strips to a getter coating over the surface of vacuum chambers in order to guarantee a more uniform pumping speed. With the advent of solid state electronics, new challenges faced the getter technology to assure long life to vacuum or inert gas filled hermetical packages containing microelectronic devices, especially in the telecommunication and military applications. A well known problem of GaAs devices with Pd or Pt metalization is the H{sub 2} poisoning of the metal gate: to prevent this degradation a two layer getter film has been develop to absorb a large quantity of H{sub 2} per unit of

  7. Conservatism in methodologies for moderator subcooling sufficiency for fuel channel integrity upon pressure tube and calandria tube contact

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L., E-mail: LSun@nbpower.com [Point Lepreau Generating Station, Lepreau, NB, (Canada)

    2015-07-01

    During a postulated large LOCA event in CANDU reactors, the pressure tube may balloon to contact with its surrounding calandria tube to transfer heat to the moderator. To confirm the integrity of the fuel channel in this case, many experiments have been performed in the last three decades. Based on the extant database of the pressure tube/calandria tube (PT/CT) contact, an analytical methodology was developed by Canadian Nuclear Industry to determine the sufficiency of moderator subcooling for fuel channel integrity. At the same time a semi-empirical methodology with an idea of Equivalent Moderator Subcooling (EMS) was also developed to judge the sufficiency of the moderator. In this work, some discussions were made over the two methodologies on their conservatism and it is demonstrated that the analytical approach is over conservative comparing with the EMS methodology. By using the EMS methodology, it is demonstrated that applying glass-peened calandria tubes, the requirement to moderator subcooling can be reduced by 10{sup o}C from that for smooth calandria tubes. (author)

  8. Vacuum-venipuncture skills: time required and importance of tube order

    Directory of Open Access Journals (Sweden)

    Fujii C

    2013-08-01

    Full Text Available Chieko FujiiFaculty of Nursing and Medical Care, Keio University, Fujisawa, JapanBackground: The purpose of this study was to assess specific vacuum-venipuncture skills and the influence of the time involved in skin puncture and blood collection.Methods: Thirty subjects undergoing venipuncture in which video analysis was possible were included. These procedures were carried out by four nurses and recorded with a digital camera. Venipuncture skills classified by our observations were delineated on the basis of frame-by-frame video images, and a graph of x and y coordinates was created.Results: With the first blood-collection tube, strong blood flow required the practitioner to push the tube back in to compensate for the strong repulsive force in approximately 46% of cases. By the third blood-collection tube, the blood flow had weakened; therefore, the tube was moved up and down. In cases that required a second venipuncture, the tube was already pierced, so the time required to fill it to 5 mL was significantly longer.Conclusion: Hand movement of the practitioner is adjusted according to blood flow. Reflex movement in response to strong blood flow may increase the risk of pushing the needle through the vein with excessive force. The time required to fill the tube varies among nurses, tube order, and level of venipuncture skills.Keywords: blood collection, blood-collection tube, clinical practice, venipuncture skill

  9. Storing of Extracts in Polypropylene Microcentrifuge Tubes Yields Contaminant Peak During Ultra-flow Liquid Chromatographic Analysis.

    Science.gov (United States)

    Kshirsagar, Parthraj R; Hegde, Harsha; Pai, Sandeep R

    2016-05-01

    This study was designed to understand the effect of storage in polypropylene microcentrifuge tubes and glass vials during ultra-flow liquid chromatographic (UFLC) analysis. One ml of methanol was placed in polypropylene microcentrifuge tubes (PP material, Autoclavable) and glass vials (Borosilicate) separately for 1, 2, 4, 8, 10, 20, 40, and 80 days intervals stored at -4°C. Contaminant peak was detected in methanol stored in polypropylene microcentrifuge tubes using UFLC analysis. The contaminant peak detected was prominent, sharp detectable at 9.176 ± 0.138 min on a Waters 250-4.6 mm, 4 μ, Nova-Pak C18 column with mobile phase consisting of methanol:water (70:30). It was evident from the study that long-term storage of biological samples prepared using methanol in polypropylene microcentrifuge tubes produce contaminant peak. Further, this may mislead in future reporting an unnatural compound by researchers. Long-term storage of biological samples prepared using methanol in polypropylene microcentrifuge tubes produce contaminant peakContamination peak with higher area under the curve (609993) was obtained in ultra-flow liquid chromatographic run for methanol stored in PP microcentrifuge tubesContamination peak was detected at retention time 9.113 min with a lambda max of 220.38 nm and 300 mAU intensity on the given chromatographic conditionsGlass vials serve better option over PP microcentrifuge tubes for storing biological samples. Abbreviations used: UFLC: Ultra Flow Liquid Chromatography; LC: Liquid Chromatography; MS: Mass spectrometry; AUC: Area Under Curve.

  10. Foaming of CRT panel glass powder with Na2CO3

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Smedskjær, Morten Mattrup

    melt, while Na2O becomes incorporated into the glass structure. We have quantified the melt expansion through density measurements and the Na2O incorporation is indicated by the decrease of the glass transition temperature (Tg) of the final foam glass. The glass foaming quality depends on the foaming......Recycling of cathode ray tube (CRT) glass remains a challenging task. The CRT glass consists of four glass types fused together: Funnel-, neck-, frit- and panel glass. The three former glasses contain toxic lead oxide, and therefore have a low recycling potential. The latter on the other hand...... is lead-free, but since barium and strontium oxide are present, panel glass is incompatible with most common recycling methods. However, foam glass production is a promising approach for the recycling of panel glass waste, since the process parameters can be changed according to the glass waste...

  11. The remote handling of canisters containing nuclear waste in glass at the Savannah River Plant

    International Nuclear Information System (INIS)

    Callan, J.E.

    1986-01-01

    The Defense Waste Processing Facility (DWPF) is a complete production area being constructed at the Savannah River Plant for the immobilization of nuclear waste in glass. The remote handling of canisters filled with nuclear waste in glass is an essential part of the process of the DWPF at the Savannah River Plant. The canisters are filled with nuclear waste containing up to 235,000 curies of radioactivity. Handling and movement of these canisters must be accomplished remotely since they radiate up to 5000 R/h. Within the Vitrification Building during filling, cleaning, and sealing, canisters are moved using standard cranes and trolleys and a specially designed grapple. During transportation to the Glass Waste Storage Building, a one-of-a-kind, specially designed Shielded Canister Transporter (SCT) is used. 8 figs

  12. Determination of Material Properties Near the Glass Transition Temperature for an Isogrid Boom

    Science.gov (United States)

    Blandino, Joseph R.; Woods-Vedeler, Jessica A. (Technical Monitor)

    2002-01-01

    Experiments were performed and results obtained to determine the temperature dependence of the modulus of elasticity for a thermoplastic isogrid tube. The isogrid tube was subjected to axial tensile loads of 0-100 lbf and strain was measured at room and elevated temperatures of 100, 120, 140, 160, 180, 190, and 200 F. These were based on tube manufacturer specifying an incorrect glass transition temperature of 210 F. Two protocols were used. For the first protocol the tube was brought to temperature and a tensile test performed. The tube was allowed to cool between tests. For the second protocol the tube was ramped to the desired test temperature and held. A tensile test was performed and the tube temperature ramped to the next test temperature. The second protocol spanned the entire test range. The strain rate was constant at 0.008 in/min. Room temperature tests resulted in the determination of an average modulus of 2.34 x 106 Psi. The modulus decreased above 100 F. At 140 F the modulus had decreased by 7.26%. The two test protocols showed good agreement below 160 F. At this point the glass transition temperature had been exceeded. The two protocols were not repeated because the tube failed.

  13. Apparatus for unloading more particularly for nuclear fuel pellets, and to fill tubes with these pellets

    International Nuclear Information System (INIS)

    Fort, C.; Masson, S.

    1985-01-01

    The device allows to discharge the nuclear fuel pellets arranged in trays, and to introduce them to form stacks of pellets of determined length in storage tubes of associated diameter. It comprises a carriage to make the pellets slip from each tray on a guide vibrating bowl to a shute and then on a conveyor which loads the pellets into an intermediate tube to form a stack of the said length. A lift moves the intermediate tube transversally to its length between a loading position and a transfer position. Means allow to move a storage tube bundle to put each tube in its turn face to the transfer position. The stack of pellets contained in the intermediate tube which is in the transfer position is thus sent back to the storage tube facing it. The invention applies to pellets which have been sintered in the trays in inert atmosphere. These pellets have to be stored before several examinations and grinding, and finally loading into the cans to constitute fuel rods. These sintered pellets have a cylindrical shape and the invention spares them hard handling which would damage them [fr

  14. Measuring device for weight of glass of glass solidification product to be charged

    International Nuclear Information System (INIS)

    Yasutake, Nobuhiro; Arai, Masaki; Akashi, Ken-ichi

    1998-01-01

    The present invention provides a device for accurately calculating the weight of molten glass to be charged during manufacturing glass solidification products of radioactive liquid wastes. Namely, a discharge nozzle at the lower end of a glass melting furnace and an upper end of a vessel for glass solidification materials are connected by a connecting device extensible vertically in a cylindrical shape. Molten glasses are flown down by way of the connecting device and filled into the vessel for solidification products. A first scale is constituted so as to measure the weight of load, and the vessel for solidification products are loaded. A second scale is constituted so as to measure the own weight and a weight of load, and is interposed between a flange at the circumference of a charging port and the lower end of the connecting device, and has an opening for flowing down the molten glass at the central portion. With such a constitution, the first scale can weigh the total of the weight of molten glass charged to the vessel for solidification products, the weight of the vessel for solidification products, the counterforce from the connecting device and the weight of the second scale. If the measured value of the secondary scale and the weight of the vessel for solidification products are subtracted from the former value, the weight of the charged molten glass can be determined. (I.S.)

  15. Comparison of the performance of concrete-filled steel tubular and hollow steel diagrid buildings

    Science.gov (United States)

    Peter, Minu Ann; S, Sajith A.; Nagarajan, Praveen

    2018-03-01

    In the recent construction scenario, diagrid structures are becoming a popular high-rise building structural system. Diagrid structures consist of diagonals in the perimeter and an interior core. The corner and interior vertical columns are not required due to the structural efficiency of diagrid structural systems. Steel and concrete are commonly used material for diagrid. An alternate material for diagrid is concrete-filled steel tube (CFST). CFST incorporates the advantages of both steel and concrete. In CFST, the inward buckling of the steel tube is effectively prevented by the filled concrete. The compressive strength of concrete increases due to the tri-axial state of stress in concrete induced by the steel tube. The longitudinal as well as lateral reinforcement to the concrete core is also provided by the steel tube. This paper compares the performance of CFST and steel diagrid buildings using linear static analysis. For this purpose, a 12 storey and 36 storey building are analysed using finite element method and CFST diagrid building is found to perform better.

  16. Composite Coiled Tubing for Extended Reach in Horizontal Oil Wells

    DEFF Research Database (Denmark)

    Costache, Andrei; Berggreen, Christian

    2017-01-01

    Conventional steel coiled tubing cannot reach along the entire length of very long horizontal oil wells. A lighter and more buoyant coiled tube is made possible using composite materials. The high stiffness to weight ratio of fiber reinforced polymers, coupled with a lower coefficient of friction......, has the potential of greatly extending the reach in horizontal oil wells. This study shows how to design composite coiled tubing and gives a comprehensive discussion about the most influential parameters. Several solutions, using glass-fiber and carbon are considered. Finite element models are used...

  17. Antireflective glass nanoholes on optical lenses.

    Science.gov (United States)

    Lee, Youngseop; Bae, Sang-In; Eom, Jaehyeon; Suh, Ho-Cheol; Jeong, Ki-Hun

    2018-05-28

    Antireflective structures, inspired from moth eyes, are still reserved for practical use due to their large-area nanofabrication and mechanical stability. Here we report an antireflective optical lens with large-area glass nanoholes. The nanoholes increase light transmission due to the antireflective effect, depending on geometric parameters such as fill factor and height. The glass nanoholes of low effective refractive index are achieved by using solid-state dewetting of ultrathin silver film, reactive ion etching, and wet etching. An ultrathin silver film is transformed into nanoholes for an etch mask in reactive ion etching after thermal annealing at a low temperature. Unlike conventional nanopillars, nanoholes exhibit high light transmittance with enhancement of ~4% over the full visible range as well as high mechanical hardness. Also, an antireflective glass lens is achieved by directly employing nanoholes on the lens surface. Glass nanoholes of highly enhanced optical and mechanical performance can be directly utilized for commercial glass lenses in various imaging and lighting applications.

  18. Neutron transmission measurements on hydrogen filled microspheres

    International Nuclear Information System (INIS)

    Dyrnjaja, Eva; Hummel, Stefan; Keding, Marcus; Smolle, Marie-Theres; Gerger, Joachim; Zawisky, Michael

    2014-01-01

    Hollow microspheres are promising candidates for future hydrogen storage technologies. Although the physical process for hydrogen diffusion through glass is well understood, measurements of static quantities (e.q. hydrogen pressure inside the spheres) as well as dynamic properties (e.g. diffusion rate of hydrogen through glass) are still difficult to handle due to the small size of the spheres (d≈15μm). For diffusion rate measurements, the long-term stability of the experiment is also mandatory due to the relatively slow diffusion rate. In this work, we present an accurate and long-term stable measurement technique for static and dynamic properties, using neutron radiography. Furthermore, possible applications for hydrogen filled microspheres within the scope of radiation issues are discussed

  19. Experimental investigation of nano-alumina effect on the filling time ...

    African Journals Online (AJOL)

    In this research, by producing composite samples made of glass fibers and epoxy resin with different percentages of nanoparticles (Nano-alumina), the adding effect of nanoparticles of alumina Alpha and Gamma grade on filling time in the vacuum assistant resin transfer molding process (VARTM) is investigated. The grade ...

  20. PADI ASIC for straw tube read-out

    Energy Technology Data Exchange (ETDEWEB)

    Pietraszko, Jerzy; Traeger, Michael; Fruehauf, Jochen; Schmidt, Christian [GSI, Darmstadt (Germany); Ciobanu, Mircea [ISS, Bucharest (Romania); Collaboration: CBM-Collaboration

    2016-07-01

    A prototype of the CBM MUCH straw tube detector consisting of six individual straws of 6mm inner diameter and 220 mm length filled with Ar/CO{sub 2} gas mixture has been tested at the COSY accelerator in Juelich. The straw tubes were connected to the FEET-PADI6-HDa PCB equipped with PADI-6 fast amplifier/discriminator ASIC. As a reference counter in this measurement the scCVD diamond detector has been used delivering excellent timing, time resolution below 100 ps (sigma), and very precise position information, below 50 μm. The demonstrated position resolution of about 160 μm of the straw tube read out with PADI-6 ASIC confirms the capability of the PADI chip and puts this development as a very attractive readout option for straw tubes and wire chambers.

  1. Computer-Aided Segmentation and Volumetry of Artificial Ground-Glass Nodules at Chest CT

    NARCIS (Netherlands)

    Scholten, Ernst Th.; Jacobs, Colin; van Ginneken, Bram; Willemink, Martin J.; Kuhnigk, Jan-Martin; van Ooijen, Peter M. A.; Oudkerk, Matthijs; Mali, Willem P. Th. M.; de Jong, Pim A.

    OBJECTIVE. The purpose of this study was to investigate a new software program for semiautomatic measurement of the volume and mass of ground-glass nodules (GGNs) in a chest phantom and to investigate the influence of CT scanner, reconstruction filter, tube voltage, and tube current. MATERIALS AND

  2. Development of puncture resistance tire tube; Nirinsha no taipankusei kojo cube no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yamagiwa, T; Nakayama, K; Kiyota, S; Tanaka, A [Honda R and D Co. Ltd., Tokyo (Japan); Makisaka, N

    1997-10-01

    A new tire tube with a puncture resistance function was developed. The tube is a two-chamber structure having an air chamber and a liquid chamber, and the liquid chamber at the crown-side half of the tube is filled with an anti-puncture sealant during a manufacturing process. In a market test, it was confirmed that the number of puncture cases were reduced by 90 % in comparison with conventional tire tubes by using the newly developed tube. This paper describes the structure of the tube and the characteristics of the tube rubber, and the manufacturing process and durability of the tube. 3 refs., 17 figs.

  3. Steel hollow columns with an internal profile filled with self-compacting concrete under fire conditions

    OpenAIRE

    Chu, Thi Binh; Gernay, Thomas; Dotreppe, Jean-Claude; Franssen, Jean-Marc

    2016-01-01

    A detailed experimental and numerical investigation has been performed on the behavior under fire conditions of concrete filled steel hollow section (CFSHS) columns. In this study the internal reinforcement consists of another profile (tube or H section) being embedded with the concrete, and filling is realized by self-compacting concrete (SCC). Ten columns filled with self-compacting concrete embedding another steel profile have been tested in the Fire Testing Laboratory of the University of...

  4. Design of a lead-glass drift calorimeter with MWPC detection

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; del Guerra, A.; Mulera, T.; Hirayama, H.; Nelson, W.R.

    1983-02-01

    A drift collection calorimeter having a combined radiator and field-shaping structure made of lead-glass tubing is described. A high-resistance metallic layer is formed by reduction of the lead oxide at the surface of the glass and forms a continuous voltage divider for drift-field shaping. The energy resolution of such a calorimeter is modeled, for several configurations, by the Monte Carlo technique

  5. EPR of gamma-irradiated polycrystalline alanine-in-glass dosimeter

    International Nuclear Information System (INIS)

    Al-Karmi, Anan M.; Morsy, M.A.

    2008-01-01

    This study attempts to overcome some of the reported discrepancies in alanine-EPR reproducibility that may be related to alanine dosimeter preparation and/or EPR spectrometer settings. The dosimeters were prepared by packing pure polycrystalline L-α-alanine directly as supplied by the manufacturer in glass tubes. This dosimeter production scheme avoids any possible contribution to the EPR signal from a binding material. The dosimeters were irradiated with gamma ray to low-dose ranges typical for medical therapy (0-20 Gy). Special attention has been paid to the study of minimum detectable dose, measurement repeatability and reproducibility, and post-irradiation stability. The dosimeter exhibited a linear dose response in the dose range from 0.1 to 20 Gy. These positive properties favor the polycrystalline alanine-in-glass tube as a radiation dosimeter

  6. Experiment on interface separation detection of concrete-filled steel tubular arch bridge using accelerometer array

    Science.gov (United States)

    Pan, Shengshan; Zhao, Xuefeng; Zhao, Hailiang; Mao, Jian

    2015-04-01

    Based on the vibration testing principle, and taking the local vibration of steel tube at the interface separation area as the study object, a real-time monitoring and the damage detection method of the interface separation of concrete-filled steel tube by accelerometer array through quantitative transient self-excitation is proposed. The accelerometers are arranged on the steel tube area with or without void respectively, and the signals of accelerometers are collected at the same time and compared under different transient excitation points. The results show that compared with the signal of compact area, the peak value of accelerometer signal at void area increases and attenuation speed slows down obviously, and the spectrum peaks of the void area are much more and disordered and the amplitude increases obviously. whether the input point of transient excitation is on void area or not is irrelevant with qualitative identification results. So the qualitative identification of the interface separation of concrete-filled steel tube based on the signal of acceleration transducer is feasible and valid.

  7. Analysis of geosynthetic tubes filled with several liquids with different densities

    Czech Academy of Sciences Publication Activity Database

    Malík, Josef; Sysala, Stanislav

    2011-01-01

    Roč. 29, č. 3 (2011), s. 249-256 ISSN 0266-1144 R&D Projects: GA ČR GA103/08/1700 Institutional research plan: CEZ:AV0Z30860518 Keywords : geosyntetic tube * rigid horizontal foundation * numerical modelling Subject RIV: BA - General Mathematics Impact factor: 2.036, year: 2011 http://www.sciencedirect.com/science/article/pii/S0266114410001214

  8. Silver metaphosphate glass wires inside silica fibers--a new approach for hybrid optical fibers.

    Science.gov (United States)

    Jain, Chhavi; Rodrigues, Bruno P; Wieduwilt, Torsten; Kobelke, Jens; Wondraczek, Lothar; Schmidt, Markus A

    2016-02-22

    Phosphate glasses represent promising candidates for next-generation photonic devices due to their unique characteristics, such as vastly tunable optical properties, and high rare earth solubility. Here we show that silver metaphosphate wires with bulk optical properties and diameters as small as 2 µm can be integrated into silica fibers using pressure-assisted melt filling. By analyzing two types of hybrid metaphosphate-silica fibers, we show that the filled metaphosphate glass has only negligible higher attenuation and a refractive index that is identical to the bulk material. The presented results pave the way towards new fiber-type optical devices relying on metaphosphate glasses, which are promising materials for applications in nonlinear optics, sensing and spectral filtering.

  9. Scintillating-Glass-Fiber neutron sensors, their application and performance for plutonium detection and monitoring

    International Nuclear Information System (INIS)

    Seymour, R.S.; Richardson, B.; Morichi, M.; Bliss, M.; Craig, R.A.; Sunberg, D.S.

    1998-01-01

    Most neutron detection sensors presently employ 3 He gas-filled detectors. Despite their excellent performance and widespread use, there are significant limitations to this technology. A significant alternative neutron sensor utilizing neutron-active material incorporated into a glass scintillator is presented that offers novel commercial sensors not possible or practical with gas tube technology. The scintillating optical fiber permits sensors with a multitude of sizes ranging from devices of a single fiber of 150μm to sensors with tens of thousands of fibers with areas as large as 5m 2 depending on the neutron flux to be measured. A second significant advantage is the use of high-speed electronics that allow a greater dynamic range, not possible with gas detectors. These sensors are flexible, conformable and less sensitive to vibration that optimizes the source-to-detector geometry and provides robust performance in field applications. The glass-fibers are sensitive to both gamma rays and neutrons. However the coincidence electronics are optimized for neutron to gamma ray discrimination allowing very sensitive measurements with a low false-alarm rate. Applications include SNM surveillance, material control and accountability (MC and A), safeguard inspections, Pu health physics / bioassay and environmental characterization. (author)

  10. Strength analysis of filament-wound composite tubes

    Directory of Open Access Journals (Sweden)

    Vasović Ivana

    2010-01-01

    Full Text Available The subject of this work is focused on strength analysis of filament-wound composite tubes made of E glass/polyester under internal pressure. The primary attention of this investigation is to develop a reliable computation procedure for stress, displacement and initial failure analysis of layered composite tubes. For that purpose we have combined the finite element method (FEM with corresponding initial failure criterions. In addition, finite element analyses using commercial code, MSC/NASTRAN, were performed to predict the behavior of filament wound structures. Computation results are compared with experiments. Good agreement between computation and experimental results are obtained.

  11. Mechanical Properties of a High Lead Glass Used in the Mars Organic Molecule Analyzer

    Science.gov (United States)

    Salem, Jonathan A.; Smith, Nathan A.; Ersahin, Akif

    2015-01-01

    The elastic constants, strength, fracture toughness, slow crack growth parameters, and mirror constant of a high lead glass supplied as tubes and funnels were measured using ASTM International (formerly ASTM, American Society for Testing and Materials) methods and modifications thereof. The material exhibits lower Young's modulus and slow crack growth exponent as compared to soda-lime silica glass. Highly modified glasses exhibit lower fracture toughness and slow crack growth exponent than high purity glasses such as fused silica.

  12. Forced convective boiling of water inside helically coiled tube. Characteristics of oscillation of dryout point

    International Nuclear Information System (INIS)

    Nagai, Niro; Sugiyama, Kenta; Takeuchi, Masanori; Yoshikawa, Shinji; Yamamoto, Fujio

    2006-01-01

    The helically coiled tube of heat exchanger is used for the evaporator of prototype fast breeder reactor 'Monju'. This paper aims at the grasp of two-phase flow phenomena of forced convective boiling of water inside helical coiled tube, especially focusing on oscillation phenomena of dryout point. A glass-made helically coiled tube was used to observe the inside water boiling behavior flowing upward, which was heated by high temperature oil outside the tube. This oil was also circulated through a glass made tank to provide the heat source for water evaporation. The criterion for oscillation of dryout point was found to be a function of inlet liquid velocity and hot oil temperature. The observation results suggest the mechanism of dryout point oscillation mainly consists of intensive nucleate boiling near the dryout point and evaporation of thin liquid film flowing along the helical tube. In addition, the oscillation characteristics were experimentally confirmed. As inlet liquid velocity increases, oscillation amplitude also increases but oscillation cycle does not change so much. As hot oil temperature increases, oscillation amplitude and cycle gradually decreases. (author)

  13. Through-glass copper via using the glass reflow and seedless electroplating processes for wafer-level RF MEMS packaging

    International Nuclear Information System (INIS)

    Lee, Ju-Yong; Lee, Sung-Woo; Lee, Seung-Ki; Park, Jae-Hyoung

    2013-01-01

    We present a novel method for the fabrication of void-free copper-filled through-glass-vias (TGVs), and their application to the wafer-level radio frequency microelectromechanical systems (RF MEMS) packaging scheme. By using the glass reflow process with a patterned silicon mold, a vertical TGV with smooth sidewall and fine pitch could be achieved. Bottom-up void-free filling of the TGV is successfully demonstrated through the seedless copper electroplating process. In addition, the proposed process allows wafer-level packaging with glass cap encapsulation using the anodic bonding process, since the reflowed glass interposer is only formed in the device area surrounded with silicon substrate. A simple coplanar waveguide (CPW) line was employed as the packaged device to evaluate the electrical characteristics and thermo-mechanical reliability of the proposed packaging structure. The fabricated packaging structure showed a low insertion loss of 0.116 dB and a high return loss of 35.537 dB at 20 GHz, which were measured through the whole electrical path, including the CPW line, TGVs and contact pads. An insertion loss lower than 0.1 dB and a return loss higher than 30 dB could be achieved at frequencies of up to 15 GHz, and the resistance of the single copper via was measured to be 36 mΩ. Furthermore, the thermo-mechanical reliability of the proposed packaging structure was also verified through thermal shock and pressure cooker test. (paper)

  14. Glass bead sterilizer comprehensively defeats hot air oven in orthodontic clinic

    Directory of Open Access Journals (Sweden)

    Sanjeev Vasudev Jakati

    2015-01-01

    Full Text Available Background: It is necessary to ′try in′ several bands before the correct one is selected. A possible concern with re-using such bands is the lack of cross-infection control. Aim and Objectives: To determine whether such bands could be successfully decontaminated with Glass bead sterilization so that they could be re-used without a cross-infection risk. Materials: Custom made molar bands were taken and buccal tubes,lingual sheath and lingual cleat were welded under strict aseptic conditions. Methods: Samples were divided into 2 groups i.e. A and B, based on mode for sterilization. Sterilized attachments were placed in each of 2 conical flask. The bacteria spores were inoculated into both flask under strict aseptic conditions. Bacteria Bacillus subtillis and Staphylococcus albus species were allowed to multiply in individual flasks filled with BHI broth for 24 hours. Bands from 1st group were placed in a glass bead sterilizer. For the 2 nd group i.e. hot air oven group, all bands were placed together. After sterilization bands were removed and placed in freshly sterilized 500ml conical flask containing BHI broth for 24 hours in the incubator. The following day randomly 4 attachments were selected from each group and streaked on blood agar culture plates. Results: After sterilization and on further incubation in BHI broth for 24 and 48 hrs. Respectively no growth was seen. Conclusion: 1 hr. of Hot Air Oven sterilization (excluding pre sterilization heat up time and post sterilization cooling time at 190°C is as effective as 3 min of Chair side Glass Bead sterilization.

  15. Lead recovery and glass microspheres synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced acid leaching process.

    Science.gov (United States)

    Mingfei, Xing; Yaping, Wang; Jun, Li; Hua, Xu

    2016-03-15

    In this study, a novel process for detoxification and reutilization of waste cathode ray tube (CRT) funnel glass was developed by carbon thermal reduction enhanced acid leaching process. The key to this process is removal of lead from the CRT funnel glass and synchronous preparation of glass microspheres. Carbon powder was used as an isolation agent and a reducing agent. Under the isolation of the carbon powder, the funnel glass powder was sintered into glass microspheres. In thermal reduction, PbO in the funnel glass was first reduced to elemental Pb by carbon monoxide and then located on the surface of glass microspheres which can be removed easily by acid leaching. Experimental results showed that temperature, carbon adding amount and holding time were the major parameters that controlled lead removal rate. The maximum lead removal rate was 94.80% and glass microspheres that measured 0.73-14.74μm were obtained successfully by setting the temperature, carbon adding amount and holding time at 1200°C, 10% and 30min, respectively. The prepared glass microspheres may be used as fillers in polymer materials and abrasive materials, among others. Accordingly, this study proposed a practical and economical process for detoxification and recycling of waste lead-containing glass. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Development of a gradient tube method for examining microbial ...

    African Journals Online (AJOL)

    2013-06-24

    Jun 24, 2013 ... as brackish and salt marshes and these biofilms may be an important component ... the bottom of a sterile 15 mℓ glass test tube, a 5 mℓ molten agarose plug ... B. Field-scale floating sulphur biofilm reactor developed to enable.

  17. Analysis of geosynthetic tubes filled with several liquids with different densities

    Czech Academy of Sciences Publication Activity Database

    Malík, Josef; Sysala, Stanislav

    2010-01-01

    Roč. 29, - (2010), s. 249-256 ISSN 0266-1144 R&D Projects: GA ČR GA103/08/1700 Institutional research plan: CEZ:AV0Z30860518 Keywords : geosyntetic tube * rigid horizontal foundation * numerical modelling Subject RIV: BA - General Mathematics Impact factor: 2.590, year: 2010 www.elsevier.com/locate/geotexmen, doi:10.1016/j.geotexmen.2010.11.004

  18. Laser fusion experiments at 2 TW. [Argus system; implosion of D-T filled glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Storm, E.K.; Ahlstrom, H.G.; Boyle, M.J.

    1976-10-01

    The Lawrence Livermore Laboratory Solid State Laser System, Arqus, has successfully performed laser implosion experiments at power levels exceeding 2 TW. D-T filled glass microspheres have been imploded to yield thermonuclear reaction products in excess of 5 x 10/sup 8/ per event. Neutron and ..cap alpha.. time-of-flight measurements indicate that D-T ion temperatures of approximately 5-6 keV and a density confinement time product (n tau) of approximately 1 x 10/sup 12/ were obtained in these experiments. Typically two 40J, 40 psec pulses of 1.06 ..mu..m light were focused on targets using 20 cm aperture f/1 lenses, producing intensities at the target in excess of 10/sup 16/ W/cm/sup 2/. An extensive array of diagnostics routinely monitored the laser performance and the laser target interaction process. Measurements of absorption and asymmetry in both the scattered light distribution and the ion blow off is evidence for non-classical absorption mechanisms and density scale heights of the order of 2 ..mu..m or less. The symmetry of the thermonuclear burn region is investigated by monitoring the ..cap alpha..-particle flux in several directions, and an experiment to image the thermonuclear burn region is in process. These experiments significantly extend our data base and our understanding of laser induced thermonuclear implosions and the basic laser plasma interaction physics from the 0.4 to 0.7 TW level of previous experiments.

  19. Determination of leachable arsenic from glass ampoules

    International Nuclear Information System (INIS)

    Kayasth, S.R.; Swain, K.K.

    2004-01-01

    Appreciable amounts of different arsenic compounds are used in the manufacture of glass and glass ampoules (injection vials and bottles) used to store drugs. Exposure/intake of arsenic to human beings may result in skin ulceration, injury to mucous membranes, perforation of nasal septum, skin cancer and keratoses, especially of the palms and soles and may cause detrimental effects. Considering the toxicity of arsenic, even if traces of arsenic from such glass containers/ampoules are leached out, it can impart damage to human beings. To check the possibility of leaching of arsenic from glass ampoules, a simple methodology has been developed. Different makes and varieties of glass ampoules filled with de-ionized water were subjected to high pressure and temperature leaching for varying amount of time using autoclave to create extreme conditions for the maximum leaching out of the analyte. Subsequently, the determination of the arsenic contents in leached water using neutron activation analysis is reported in detail with observations. (author)

  20. Radioactive waste slurry dehydrating and drum filling device

    International Nuclear Information System (INIS)

    Ichihashi, Toshio; Abe, Kazuaki; Hasegawa, Akira

    1981-01-01

    Purpose: To obtain a device for simultaneously filling and dehydrating radioactive waste in a waste can without the necessity of a special device for dehydration. Constitution: This device includes a radioactive waste storage tank, a pump for supplying the waste from the tank to a can, a drain tube having a filter at the lower end and installed displaceable in the axial direction of the can, and a drain pump. The slurry stored in the radioactive waste storage tank is supplied by the pump to the can, and the feedwater in the slurry is removed by another pump through a drain pipe having a filter which does not pass solid content from the can. Accordingly, as the slurry is filled in the can, the feedwater contained therein is removed. Consequently, it can simultaneously dehydrate and fill the dehydrated waste in the can. (Yoshihara, H.)

  1. Thermostatic tissue platform for intravital microscopy: 'the hanging drop' model.

    Science.gov (United States)

    Pavlovic, Dragan; Frieling, Helge; Lauer, Kai-Stephan; Bac, Vo Hoai; Richter, Joern; Wendt, Michael; Lehmann, Christian; Usichenko, Taras; Meissner, Konrad; Gruendling, Matthias

    2006-11-01

    Intravital microscopy imposes the particular problem of the combined control of the body temperature of the animal and the local temperature of the observed organ or tissues. We constructed and tested, in the rat ileum microcirculation preparation, a new organ-support platform. The platform consisted of an organ bath filled with physiological solution, and contained a suction tube, a superfusion tube, an intestine-support hand that was attached to a micromanipulator and a thermometer probe. To cover the intestine we used a cover glass plate with a plastic ring glued on its upper surface. After a routine procedure (anaesthesia, monitoring and surgery), the intestine segment (2-3 cm long) was gently exteriorized and placed on the 'hand' of the organ support. A small part of the intestine formed a small 'island' in the bath that was filled with physiological salt solution. The cover glass was secured in place. The physiological salt solution from the superfusion tube, which was pointed to the lower surface of the cover glass, formed a 'hanging drop'. The objective of the microscope was then immersed into distilled water that was formed by the cover glass plastic ring. The 'hanging drop' technique prevented any tissue quenching, ensured undisturbed microcirculation, provided for stable temperature and humidity, and permitted a clear visual field.

  2. Homogeneous nucleation limit on the bulk formation of metallic glasses

    International Nuclear Information System (INIS)

    Drehman, A.J.

    1983-01-01

    Glassy Pd 82 Si 18 spheres, of up to 1 mm diameter, were formed in a drop tube filled with He gas. The largest spheres were successfully cooled to a glass using a cooling rate of less than 800 K/sec. Even at this low cooling rate, crystallization (complete or partial) was the result of heterogeneous nucleation at a high temperature, relative to the temperature at which copious homogeneous nucleation would commence. Bulk underscoring experiments demonstrated that this alloy could be cooled to 385 K below its eutectic melting temperature (1083 K) without the occurrence of crystallization. If heterogeneous nucleation can be avoided, it is estimated that a cooling rate of at most 100 K/sec would be required to form this alloy in the glassy state. Ingots of glassy Pd 40 Ni 40 P 20 were formed from the liquid by cooling at a rate of only 1 K/sec. It was found that glassy samples of this alloy could be heated well above the glass transition temperature without the occurrence of rapid divitrification. This is a result due, in part of the low density of pre-existing nuclei, but, more importantly, due to the low homogeneous nucleation rate and the slow crystal growth kinetics. Based on the observed devitrification kinetics, the steady-state homogeneous nucleation rate is approximately 1 nuclei/cm 3 sec at 590 K (the temperature at which the homogeneous nucleation rate is estimated to be a maximum). Two iron-nickel based glass-forming alloys (Fe 40 Ni 40 P 14 B 6 and Fe 40 Ni 40 B 20 , were not successfully formed into glassy spheres, however, microstructural examination indicates that crystallization was not the result of copious homogeneous nucleation. In contrast, glass forming iron based alloys (Fe 80 B 20 and Fe/sub 79.3/B/sub 16.4/Si/sub 4.0/C/sub 0.3/) exhibit copious homogeneous nucleation when cooled at approximately the same rate

  3. Experimental study on heat transfer enhancement of laminar ferrofluid flow in horizontal tube partially filled porous media under fixed parallel magnet bars

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhnejad, Yahya; Hosseini, Reza, E-mail: hoseinir@aut.ac.ir; Saffar Avval, Majid

    2017-02-15

    In this study, steady state laminar ferroconvection through circular horizontal tube partially filled with porous media under constant heat flux is experimentally investigated. Transverse magnetic fields were applied on ferrofluid flow by two fixed parallel magnet bar positioned on a certain distance from beginning of the test section. The results show promising notable enhancement in heat transfer as a consequence of partially filled porous media and magnetic field, up to 2.2 and 1.4 fold enhancement were observed in heat transfer coefficient respectively. It was found that presence of both porous media and magnetic field simultaneously can highly improve heat transfer up to 2.4 fold. Porous media of course plays a major role in this configuration. Virtually, application of Magnetic field and porous media also insert higher pressure loss along the pipe which again porous media contribution is higher that magnetic field. - Highlights: • Porous media can improve the coefficient of heat transfer up to 2.2 fold. • Both porous media and Nano particles have undesired pressure drop effect. • Application of both porous media and magnetic field in ferrofluid flow will result in significant enhancement in heat transfer up to 2.4 fold. • Magnet bar effect is mainly restricted to approximately one fourth of the test section. • Diluted Ferrofluids 2%, results in over 1.4 fold enhancement in heat transfer coefficient.

  4. Essential Characteristics of Plasma Antennas Filled with He-Ar Penning Gases

    International Nuclear Information System (INIS)

    Sun Naifeng; Li Wenzhong; Wang Shiqing; Li Jian; Ci Jiaxiang

    2012-01-01

    Based on the essential theory of Penning gases, the discharge characteristics of He-Ar Penning gases in insulating tubes were analyzed qualitatively. The relation between the effective length of an antenna column filled with He-Ar Penning gases and the applied radio frequency (RF) power was investigated both theoretically and experimentally. The distribution of the plasma density along the antenna column in different conditions was studied. The receiving characteristics of local frequency modulated (FM) electromagnetic waves by the plasma antenna filled with He-Ar Penning gases were compared with those by an aluminum antenna with the same dimensions. Results show that it is feasible to take plasma antennas filled with He-Ar Penning gases as receiving antennas.

  5. Development of antimicrobial optimum glass ionomer

    International Nuclear Information System (INIS)

    Angioletto, E.; Tezza, V.B.; Santos, M.J.; Montedo, O.R.K.; Pich, C.T.; Fiori, M.A.; Angioletto, Ev.

    2010-01-01

    The use of glass ionomer for restorations in dentistry for lower income population is a well established practice in public clinics of Brazil. However the average price of this kind of material and its low durability still have a negative impact on public health for being imported and frequently replaced it becomes expensive for the manufacturers and for public agencies. In glass ionomer the main antimicrobial agent is fluoride, which is released gradually. The material used for filling provides an average life of five years and its durability can be increased if the ionomer contains other oligodynamic elements. It was formulated, merged a new optimized glass ionomer which was characterized by X-ray diffraction, ion measurement and antimicrobial activity. This new product showed promising results, that pointed structural stability an increase of antimicrobial efficiency. (author)

  6. Microwave discharges in capillary tubes

    International Nuclear Information System (INIS)

    Dervisevic, Emil

    1984-01-01

    This research thesis aims at being a contribution to the study of microwave discharge by a surface wave, and more precisely focusses on the discharge in capillary tubes filled with argon. The author first present theoretical models which describe, on the one hand, the propagation of the surface wave along the plasma column, and, on the other hand, longitudinal and radial profiles of the main discharge characteristics. The second part addresses the study of the influence of parameters (gas pressure and tube radius) on discharge operation and characteristics. Laws of similitude as well as empirical relationships between argon I and argon II emission line intensities, electron density, and electric field in the plasma have been established [fr

  7. Bioactive glass-based scaffolds for bone tissue engineering

    NARCIS (Netherlands)

    Will, J.; Gerhardt, L.C.; Boccaccini, A.R.

    2012-01-01

    Originally developed to fill and restore bone defects, bioactive glasses are currently also being intensively investigated for bone tissue engineering applications. In this chapter, we review and discuss current knowledge on porous bone tissue engineering scaffolds made from bioactive silicate

  8. Application of lanthanide ions doped in different glasses

    International Nuclear Information System (INIS)

    Dhondiyal, Charu Chandra

    2015-01-01

    . The optical absorption spectrum of the RE ions from the UV to the mid infrared originates from transition between electronic states in the partially filled 4f orbital shielded by filled 5s and 5p shells. These partially filled shells of f electron give rise narrow localized electronic transitions that occurs not only in visible parts of the electromagnetic spectrum but also in IR and ultraviolet region. Rare earth ions are unique in that transitions within the 4f n core are substantially screened from outside influence and sharp spectroscopic lines having high peak cross sections result. When these ions are doped in crystalline lattices, glass or polymers. Phosphate glasses were chosen because they possess a large glass formation region, are good host for fluorescent ions, and shows good thermo-mechanical and chemical properties. Different rare earths, their optical properties and application of lanthanide ions will be key thrust area of paper. (author)

  9. Thermal, spectral, and surface properties of LED light-polymerized bulk fill resin composites.

    Science.gov (United States)

    Pişkin, Mehmet Burçin; Atalı, Pınar Yılmaz; Figen, Aysel Kantürk

    2015-02-01

    The aim of this study was to evaluate the thermal, spectral, and surface properties of four different bulk fill materials – SureFil SDR (SDR, Dentsplay DETREY), QuixFil (QF, Dentsplay DETREY), X-tra base (XB, Voco) X-tra fil (XF, Voco) – polymerized by light-emitting diode (LED). Resin matrix, filler type, size and amount, and photoinitiator types influence the degree of conversion. LED-cured bulk fill composites achieved sufficient polymerization. Scanning electron microscope (SEM) analysis revealed different patterns of surface roughness, depending on the composite material. Bulk fill materials showed surface characteristics similar to those of nanohybrid composites. Based on the thermal analysis results, glass transition (T(g)) and initial degradation (T(i)) temperatures changed depending on the bulk fill resin composites.

  10. Crashworthiness of Aluminium Tubes; Part 1: Hydroforming at Different Corner-Fill Radii and End Feeding Levels

    International Nuclear Information System (INIS)

    D'Amours, Guillaume; Rahem, Ahmed; Williams, Bruce; Worswick, Michael; Mayer, Robert

    2007-01-01

    The automotive industry, with an increasing demand to reduce vehicle weight through the adoption of lightweight materials, requires a search of efficient methods that suit these materials. One attractive concept is to use hydroforming of aluminium tubes. By using FE simulations, the process can be optimized to reduce the risk for failure while maintaining energy absorption and component integrity under crash conditions. It is important to capture the level of residual ductility after forming to allow proper design for crashworthiness. This paper presents numerical and experimental studies that have been carried out for high pressure hydroforming operations to study the influence of the tube corner radius, end feeding, material thinning, and work hardening in 76.2 mm diameter, 3 mm wall thickness AA5754 aluminium alloy tube. End feeding was used to increase the formability of the tubes. The influence of the end feed displacement versus tube forming pressure schedule was studied to optimize the forming process operation to reduce thinning. Validation of the numerical simulations was performed by comparison of the predicted strain distributions and thinning, with measured quantities. The effect of element formulation (thin shell versus solid elements) was also considered in the models

  11. Crashworthiness of Aluminium Tubes; Part 1: Hydroforming at Different Corner-Fill Radii and End Feeding Levels

    Science.gov (United States)

    D'Amours, Guillaume; Rahem, Ahmed; Williams, Bruce; Worswick, Michael; Mayer, Robert

    2007-05-01

    The automotive industry, with an increasing demand to reduce vehicle weight through the adoption of lightweight materials, requires a search of efficient methods that suit these materials. One attractive concept is to use hydroforming of aluminium tubes. By using FE simulations, the process can be optimized to reduce the risk for failure while maintaining energy absorption and component integrity under crash conditions. It is important to capture the level of residual ductility after forming to allow proper design for crashworthiness. This paper presents numerical and experimental studies that have been carried out for high pressure hydroforming operations to study the influence of the tube corner radius, end feeding, material thinning, and work hardening in 76.2 mm diameter, 3 mm wall thickness AA5754 aluminium alloy tube. End feeding was used to increase the formability of the tubes. The influence of the end feed displacement versus tube forming pressure schedule was studied to optimize the forming process operation to reduce thinning. Validation of the numerical simulations was performed by comparison of the predicted strain distributions and thinning, with measured quantities. The effect of element formulation (thin shell versus solid elements) was also considered in the models.

  12. Particle size dependence of the Young's modulus of filled polymers: 2. Annealing and solid-state nuclear magnetic resonance experiments

    NARCIS (Netherlands)

    Vollenberg, P.H.T.; Haan, de J.W.; Ven, van de L.J.M.; Heikens, D.

    1989-01-01

    Experimental results are reported from which it appears that in the case of polymer filled with silane-treated glass beads the Young's modulus is, in accordance with present theory, independent of the particle size of the filler. However, if pure glass beads are used as filler, the Young's modulus

  13. Gamma sensitivity of pressurized drift tubes

    International Nuclear Information System (INIS)

    Baranov, S.A.; Bojko, I.R.; Shelkov, G.A.; Ignatenko, M.A.

    1995-01-01

    Using a set of commonly used radioactive sources, the efficiency of pressurized drift tubes for gammas with energy from 5.9 keV up to 1.3 MeV has been measured. The tube was made of aluminium and filled with Ar, 15%CO 2 and 2.5%iC 4 H 10 gas mixture at 3 atm. The measured efficiency is compared with the results of the calculations in the frame of our simple model as well as with that of the Monte Carlo simulation using GEANT code. The results of our calculations are in agreement with experimental data, while GEANT simulation tends to give lower efficiency in the energy range of 200 keV γ <1300 keV. The average efficiency of the tube in the field of ATLAS gamma background is about 0.45%. 8 refs., 7 figs., 1 tab

  14. Color stability of bulk-fill and incremental-fill resin-based composites polished with aluminum-oxide impregnated disks

    Directory of Open Access Journals (Sweden)

    Uzay Koc-Vural

    2017-05-01

    Full Text Available Objectives This study aimed to evaluate the color stability of bulk-fill and nanohybrid resin-based composites polished with 3 different, multistep, aluminum-oxide impregnated finishing and polishing disks. Materials and Methods Disk-shaped specimens (8 mm in diameter and 4 mm in thickness were light-cured between two glass slabs using one nanohybid bulk-fill (Tetric EvoCeram, Ivoclar Vivadent, one micro-hybrid bulk-fill (Quixfil, Dentsply, and two nanohybrid incremental-fill (Filtek Ultimate, 3M ESPE; Herculite XRV Ultra, Kerr resin-based composites, and aged by thermocycling (between 5 - 55℃, 3,000 cycles. Then, they were divided into subgroups according to the polishing procedure as SwissFlex (Coltène/Whaledent, Optidisc (Kerr, and Praxis TDV (TDV Dental (n = 12 per subgroup. One surface of each specimen was left unpolished. All specimens were immersed in coffee solution at 37℃. The color differences (ΔE were measured after 1 and 7 days of storage using a colorimeter based on CIE Lab system. The data were analyzed by univariate ANOVA, Mann-Whitney U test, and Friedmann tests (α = 0.05. Results Univariate ANOVA detected significant interactions between polishing procedure and composite resin and polishing procedure and storage time (p 0.05. Polishing reduced the discoloration resistance of Tetric EvoCeram/SwissFlex, Tetric EvoCeram/Praxis TDV, Quixfil-SwissFlex, and all Herculite XRV Ultra groups after 7 days storage (p < 0.05. Conclusions Discoloration resistance of bulk-fill resin-based composites can be significantly affected by the polishing procedures.

  15. When to fill a tube with thermal enhancers and when to leave it empty

    International Nuclear Information System (INIS)

    Gosselin, Louis; Silva, Alexandre K. da

    2007-01-01

    The present paper answers the fundamental question of when to use thermal enhancers in a heat transfer system such as an externally heated pipe and when to leave it empty. The objective is to maximize the heat transfer rate from the pipe to the cold fluid drawn into the pipe by a fixed pressure drop. Three types of thermal enhancers are considered: (i) porous medium fillings, (ii) internal fins and (iii) insertion of high conductivity solid particles (i.e. solid-liquid mixture). The performance of each thermal enhancer technique is compared with the performance of the empty pipe subject to the same pumping power. The results show that the use of thermal enhancers is not always profitable in terms of increasing the heat transfer rate. The analysis leads to novel limits in which the use of thermal enhancers are recommended so that the heat transfer rate increases for all three types of fillings. It is shown that these limits are related to the properties of the solid enhancer and also to the pressure drop availability. In the case of porous filling, for example, the profitability in terms of heat transfer gain is strongly related to the thermal conductivity of the filling and its permeability

  16. Lateral impact on pressurized glass/epoxy pipes

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, Rafael C.; Alves, Marcilio [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica], e-mail: rafael.santiago@poli.usp.br, e-mail: maralves@usp.br

    2009-07-01

    This work studies the impact of a drop mass against glass/epoxy composite pipes. The experimental tests comprises an impact hammer and the set-up is such that a drop mass falls transversally to the main length of the tube. The impact response is measured with a non-contact laser system and reveals some issues explored here in a numerical model. Inner pressure was applied to the tube in order to access its influence on failure. It has been found that the numerical model represents well the structural collapse of a pressurized pipe under a lateral impact. (author)

  17. A Thin detector with ionization tubes for high energy electrons and photons

    International Nuclear Information System (INIS)

    Amatuni, Ts. A.; Denisov, S.P.; Krasnokutsky, R.N.; Lebedenko, V.N.; Shuvalov, R.S.

    1981-01-01

    A possibility to measure the energy of electrons and photons with a simple detector, consisting of a lead convertor and ionization tubes filled with pure argon, has been studied. The measurements have been performed in a 26.6 GeV electron beam. The best energy resolution approximately 16% was achieved for the convertor thickness 40 mm and argon pressure > 20 atm. The performance of the detector in magnetic field up to 16 kGs has been also studied. It turned out that the mean pulse height rises approximately linearly with increasing magnetic field and becomes flat at H approximately 10 kGs. This behaviour is the same for magnetic field perpendicular and parallel with respect to the ionization tubes. The energy resolution depends weakly on the magnetic field. Ionization tubes filled with argon or xenon under high pressure may be used for minimum ionizing particle detection [ru

  18. Investigation of Stress-Strain-Time Relationships of Concrete Filled Steel Tube Columns

    Directory of Open Access Journals (Sweden)

    Mutlu Seçer

    2010-01-01

    Full Text Available In this study, time dependent creep and shrinkage behaviors of concrete filled steel box section columns are investigated by using various methods. Time dependent behavior is examined by using effective modulus method, age-adjusted effective modulus method, creep rate method and Dischinger method. Shrinkage and creep strains are modeled using ACI 209 specification. In the study, in order to investigate time dependent behavior numerically, a concrete filled steel box section column is selected in a twenty story building and the time dependent stress decrease in concrete and stress increase in steel box section and the changes in strain components are calculated. Stress – time, strain – time and strain components – time graphics are shown and the advantages and the disadvantages of the numerical methods in modeling the time dependent behavior are revealed respectively.

  19. Properties and osteoblast cytocompatibility of self-curing acrylic cements modified by glass fillers.

    Science.gov (United States)

    Lopes, P; Garcia, M P; Fernandes, M H; Fernandes, M H V

    2013-11-01

    Materials filled with a silicate glass (MSi) and a borate glass (MB) were developed and compared in terms of their in vitro behavior. The effect of filler composition and concentration (0, 30, 40 and 50 wt%) on the curing parameters, residual monomer, water uptake, weight loss, bioactivity, mechanical properties (bending and compression) and osteoblast cytocompatibility was evaluated. The addition of bioactive glass filler significantly improved the cements curing parameters and the mechanical properties. The most relevant results were obtained for the lower filler concentration (30 t%) a maximum flexural strength of 40.4 Pa for MB3 and a maximum compressive strength of 95.7 MPa for MSi3. In vitro bioactivity in acellular media was enhanced by the higher glass contents in the cements. Regarding the biological assessment, the incorporation of the silicate glass significantly improved osteoblast cytocompatibility, whereas the presence of the borate glass resulted in a poor cell response. Nevertheless it was shown that the surviving cells on the MB surface were in a more differentiated stage compared to those growing over non-filled poly(methyl methacrylate). Results suggest that the developed formulations offer a high range of properties that might be interesting for their use as self-curing cements.

  20. Apparatus for the in-situ inspection of tubes while submerged in a liquid

    International Nuclear Information System (INIS)

    Abell, G.E.; Plavsity, L.; Sattler, F.J.

    1981-01-01

    Before inspecting the tubes in a nuclear steam generator it has previously been necessary to drain the tubes of primary coolant. This invention provides an apparatus which makes it possible to inspect steam generator tubes which are partially filled with primary coolant. An eddy current sensor and its cable pass through a conduit into which a drying medium such as compressed air is introduced, removing coolant adhering to the surface of the cable. (LL)

  1. FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS

    Science.gov (United States)

    Loeb, E.; Nicklas, J.H.

    1959-02-01

    A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.

  2. A flow-through amperometric sensor based on dialysis tubing and free enzyme reactors

    NARCIS (Netherlands)

    Bohm, S.; Pijanowska, D.G.; Pijanowska, D.; Olthuis, Wouter; Bergveld, Piet

    2001-01-01

    A generic flow-through amperometric microenzyme sensor is described, which is based on semi-permeable dialysis tubing carrying the sample to be analyzed. This tubing (300 μm OD) is led through a small cavity, containing the working and reference electrode. By filling this cavity with a few μl of an

  3. COMSOL Multiphysics Model for HLW Canister Filling

    Energy Technology Data Exchange (ETDEWEB)

    Kesterson, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-11

    The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. Wastes containing high concentrations of Al2O3 and Na2O can contribute to nepheline (generally NaAlSiO4) crystallization, which can sharply reduce the chemical durability of high level waste (HLW) glass. Nepheline crystallization can occur during slow cooling of the glass within the stainless steel canister. The purpose of this work was to develop a model that can be used to predict temperatures of the glass in a WTP HLW canister during filling and cooling. The intent of the model is to support scoping work in the laboratory. It is not intended to provide precise predictions of temperature profiles, but rather to provide a simplified representation of glass cooling profiles within a full scale, WTP HLW canister under various glass pouring rates. These data will be used to support laboratory studies for an improved understanding of the mechanisms of nepheline crystallization. The model was created using COMSOL Multiphysics, a commercially available software. The model results were compared to available experimental data, TRR-PLT-080, and were found to yield sufficient results for the scoping nature of the study. The simulated temperatures were within 60 ºC for the centerline, 0.0762m (3 inch) from centerline, and 0.2286m (9 inch) from centerline thermocouples once the thermocouples were covered with glass. The temperature difference between the experimental and simulated values reduced to 40 ºC, 4 hours after the thermocouple was covered, and down to 20 ºC, 6 hours after the thermocouple was covered

  4. Optimization of the contents of hollow glass microsphere and sodium hexametaphosphate for glass fiber vacuum insulation panel

    Science.gov (United States)

    Li, C. D.; Chen, Z. F.; Zhou, J. M.

    2016-07-01

    In this paper, various additive amounts of hollow glass microspheres (HGMs) and sodium hexametaphosphate (SHMP) powders were blended with flame attenuated glass wool (FAGW) to form hybrid core materials (HCMs) through the wet method. Among them, the SHMP was dissolved in the glass fiber suspension and coated on the surface of glass fibers while the HGMs were insoluble in the glass fiber suspension and filled in the fiber-fiber pores. The average pore diameter of the FAGW/HGM HCMs was 8-11 μm which was near the same as that of flame attenuated glass fiber mats (FAGMs, i.e., 10.5 µm). The tensile strength of the SHMP coated FAGMs was enhanced from 160 N/m to 370 N/m when SHMP content increased from 0 wt.% to 0.2 wt.%. By contrast, the tensile strength of the FAGW/HGM HCMs decreased from 160 N/m to 40 N/m when HGM content increased from 0 wt.% to 50 wt.%. Both the FAGW/HGM HCMs and SHMP coated FAGMs were vacuumed completely to form vacuum insulation panels (VIPs). The results showed that both the addition of SHMP and HGM led a slight increase in the thermal conductivity of the corresponding VIPs. To obtain a high-quality VIP, the optimal SHMP content and HGM content in glass fiber suspension was 0.12-0.2 wt.% and 0 wt.%.

  5. The effect of a nano-filled resin coating on the 3-year clinical performance of a conventional high-viscosity glass-ionomer cement.

    Science.gov (United States)

    Diem, Vu Thi Kieu; Tyas, Martin J; Ngo, Hien C; Phuong, Lam Hoai; Khanh, Ngo Dong

    2014-04-01

    The main aim of the study was to compare the clinical performance of the conventional high-powder/liquid ratio glass-ionomer cement (GIC) Fuji IX GP Extra (F IX), Fuji IX GP Extra with a low-viscosity nano-filled resin coating, G-Coat Plus (F IX+GCP), and a resin composite, Solare (S), as a comparison material. Moderate-depth occlusal cavities in the first permanent molars of 91 11-12-year-old children (1-4 restorations per child) were restored with either F IX (87 restorations), F IX+GCP (84 restorations) or S (83 restorations). Direct clinical assessment, photographic assessment and assessment of stone casts of the restorations were carried out at 6 months, 1 year, 2 years and 3 years. The colour match with the tooth of the GIC restorations improved over the 3 years of the study. Marginal staining and marginal adaptation were minimal for all restorations; three restorations exhibited secondary caries at 3 years. From the assessment of the casts, at 2 years, there was significantly less wear of the F IX GP Extra+GCP restorations than the F IX GP Extra restorations (P G-Coat Plus showed acceptable clinical performance in occlusal cavities in children, the application of G-Coat Plus gave some protection against wear. The application of G-Coat Plus to Fuji IX GP Extra glass-ionomer cement may be beneficial in reducing wear in occlusal cavities.

  6. Alternative design concept for the second Glass Waste Storage Building

    International Nuclear Information System (INIS)

    Rainisch, R.

    1992-10-01

    This document presents an alternative design concept for storing canisters filled with vitrified waste produced at the Defense Waste Processing Facility (DWPF). The existing Glass Waste Storage Building (GWSB1) has the capacity to store 2,262 canisters and is projected to be completely filled by the year 2000. Current plans for glass waste storage are based on constructing a second Glass Waste Storage Building (GWSB2) once the existing Glass Waste Storage Building (GWSB1) is filled to capacity. The GWSB2 project (Project S-2045) is to provide additional storage capacity for 2,262 canisters. This project was initiated with the issue of a basic data report on March 6, 1989. In response to the basic data report Bechtel National, Inc. (BNI) prepared a draft conceptual design report (CDR) for the GWSB2 project in April 1991. In May 1991 WSRC Systems Engineering issued a revised Functional Design Criteria (FDC), the Rev. I document has not yet been approved by DOE. This document proposes an alternative design for the conceptual design (CDR) completed in April 1991. In June 1992 Project Management Department authorized Systems Engineering to further develop the proposed alternative design. The proposed facility will have a storage capacity for 2,268 canisters and will meet DWPF interim storage requirements for a five-year period. This document contains: a description of the proposed facility; a cost estimate of the proposed design; a cost comparison between the proposed facility and the design outlined in the FDC/CDR; and an overall assessment of the alternative design as compared with the reference FDC/CDR design

  7. Glass matrix armor

    International Nuclear Information System (INIS)

    Calkins, N.C.

    1991-01-01

    This patent describes an armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the insides surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material

  8. DWPF Glass Melter Technology Manual: Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs.

  9. DWPF Glass Melter Technology Manual: Volume 3

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs

  10. Integration of a photocatalytic multi-tube reactor for indoor air purification in HVAC systems: a feasibility study.

    Science.gov (United States)

    van Walsem, Jeroen; Roegiers, Jelle; Modde, Bart; Lenaerts, Silvia; Denys, Siegfried

    2018-04-24

    This work is focused on an in-depth experimental characterization of multi-tube reactors for indoor air purification integrated in ventilation systems. Glass tubes were selected as an excellent photocatalyst substrate to meet the challenging requirements of the operating conditions in a ventilation system in which high flow rates are typical. Glass tubes show a low-pressure drop which reduces the energy demand of the ventilator, and additionally, they provide a large exposed surface area to allow interaction between indoor air contaminants and the photocatalyst. Furthermore, the performance of a range of P25-loaded sol-gel coatings was investigated, based on their adhesion properties and photocatalytic activities. Moreover, the UV light transmission and photocatalytic reactor performance under various operating conditions were studied. These results provide vital insights for the further development and scaling up of multi-tube reactors in ventilation systems which can provide a better comfort, improved air quality in indoor environments, and reduced human exposure to harmful pollutants.

  11. Cooling and cracking of technical HLW glass products

    International Nuclear Information System (INIS)

    Kienzler, B.

    1989-01-01

    The author discusses various cooling procedures applied to canisters filled with inactive simulated HLW glass and the measured temperature distributions compared with numerically computed data. Stress computations of the cooling process were carried out with a finite element method. Only those volume elements having temperatures below the transformation temperature Tg were assumed to contribute thermoelastically to the developing stresses. Model calculations were extended to include real HLW glass canisters with inherent thermal power. The development of stress as a function of variations of heat flow conditions and of the radioactive decay was studied

  12. Nd:YAG laser in endodontics: filling-material edge bordering on a root channel laser cavity

    Science.gov (United States)

    Belikov, Andrei V.; Sinelnik, Yuri A.; Moroz, Boris T.; Pavlovskaya, Irina V.

    1997-12-01

    For the very first time it is represented a study of filling material edge bordering upon root channel cavity modified with a laser. As a filling material it is used a glass ionomer cement. It is demonstrated that Nd:YAG laser radiation effects on increase of grade of edge bordering on the average of 20 - 30% at temperature rise of no more than 2 - 3 degrees in periodontium area in a period of operation.

  13. Glass fiber sensors for detecting special nuclear materials at portal and monitor stations

    International Nuclear Information System (INIS)

    Hull, C.D.; Seymour, R.; Crawford, T.; Bliss, M.; Craig, R.A.

    2001-01-01

    Nuclear Safeguards and Security Systems LLC (NucSafe) participated in the Illicit Trafficking Radiation Assessment Program (ITRAP) recently conducted by the Austrian Research Center, Seibersdorf (ARCS) for IAEA, INTERPOL, and the World Customs Organization (IAEA, in press). This presentation reviews ITRAP test results of NucSafe instrumentation. NucSafe produces stationary, mobile, and hand-held systems that use neutron and gamma ray sensors to detect Special Nuclear Materials (SNM). Neutron sensors are comprised of scintillating glass fibers (trade name 'PUMA' for Pu Materials Analysis), which provide several advantages over 3 He and 10 BF 3 tubes. PUMA 6 Li glass fiber sensors offer greater neutron sensitivity and dynamic counting range with significantly less microphonic susceptibility than tubes, while eliminating transport and operational hazards. PUMA sensors also cost less per active area than gas tubes, which is important since rapid neutron detection at passenger, freight, and vehicle portals require large sensor areas to provide the required sensitivity

  14. Method of forming capsules containing a precise amount of material

    Science.gov (United States)

    Grossman, M.W.; George, W.A.; Maya, J.

    1986-06-24

    A method of forming a sealed capsule containing a submilligram quantity of mercury or the like, the capsule being constructed from a hollow glass tube, by placing a globule or droplet of the mercury in the tube. The tube is then evacuated and sealed and is subsequently heated so as to vaporize the mercury and fill the tube therewith. The tube is then separated into separate sealed capsules by heating spaced locations along the tube with a coiled heating wire means to cause collapse spaced locations there along and thus enable separation of the tube into said capsules. 7 figs.

  15. Conceptual design of a pressure tube light water reactor with variable moderator control

    International Nuclear Information System (INIS)

    Rachamin, R.; Fridman, E.; Galperin, A.

    2012-01-01

    This paper presents the development of innovative pressure tube light water reactor with variable moderator control. The core layout is derived from a CANDU line of reactors in general, and advanced ACR-1000 design in particular. It should be stressed however, that while some of the ACR-1000 mechanical design features are adopted, the core design basics of the reactor proposed here are completely different. First, the inter fuel channels spacing, surrounded by the calandria tank, contains a low pressure gas instead of heavy water moderator. Second, the fuel channel design features an additional/external tube (designated as moderator tube) connected to a separate moderator management system. The moderator management system is design to vary the moderator tube content from 'dry' (gas) to 'flooded' (light water filled). The dynamic variation of the moderator is a unique and very important feature of the proposed design. The moderator variation allows an implementation of the 'breed and burn' mode of operation. The 'breed and burn' mode of operation is implemented by keeping the moderator tube empty ('dry' filled with gas) during the breed part of the fuel depletion and subsequently introducing the moderator by 'flooding' the moderator tube for the 'burn' part. This paper assesses the conceptual feasibility of the proposed concept from a neutronics point of view. (authors)

  16. Drift tubes for the SAMUS muon spectrometer of the DO detector

    International Nuclear Information System (INIS)

    Antipov, Yu.M.; Bezzubov, V.A.; Denisov, D.S.; Evdokimov, V.N.; Pishal'nikov, Yu.M.; Stoyanova, D.A.

    1989-01-01

    The construction and manufacturing procedure of 6000 drift tubes for the SAMUS muon spectrometer of the DO detector are described in detail. The diameter of the stainless steel tubes is 30mm, their length varies within the range from 0.2 to 3.8 m. A testing procedure of the main parameters of the tubes is proposed and the results of testing all the tubes after manufacturing are given. With the pure methane filling the maximum drift time for electrons is 0.16 μs, the plateau of effective detection of minimum ionizing particles is equal to 1.0 kV and the coordinate resolution is 0.3 mm. 12 refs.; 9 figs.; 4 tabs

  17. Biocompatibility of root filling pastes used in primary teeth.

    Science.gov (United States)

    Lima, C C B; Conde Júnior, A M; Rizzo, M S; Moura, R D; Moura, M S; Lima, M D M; Moura, L F A D

    2015-05-01

    To evaluate the biocompatibility of two pastes designed to fill the root canals of primary teeth. A study group of 54 mice received subcutaneous tissue implants of polyethylene tubes containing CTZ or calcium hydroxide paste or, as a negative control, empty tubes. Biocompatibility was evaluated on days 7, 21 and 63, yielding a total of nine groups of six animals each. Following the experimental intervals, the implant areas were removed and subjected to histologic processing. After the tissues were stained with HE and Masson trichrome, two pathologists performed a histologic analysis of the samples in a blinded manner. Collagen fibre formation, tissue thickness and inflammatory cell infiltration were analysed qualitatively. Quantitative morphometry was performed for the thickness, perimeter length and tissue area of the region in direct contact with the open tube. anova with the Tukey post-test and Kruskal-Wallis analysis followed by Dunn's post-test, with significance established as P tube decreased during the experimental periods in all groups. The CTZ and calcium hydroxide pastes demonstrated biocompatibility with subcutaneous tissue in this experimental model. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  18. High Power Microwave Tubes: Basics and Trends, Volume 2

    Science.gov (United States)

    Kesari, Vishal; Basu, B. N.

    2018-01-01

    Volume 2 of the book begins with chapter 6, in which we have taken up conventional MWTs (such as TWTs, klystrons, including multi-cavity and multi-beam klystrons, klystron variants including reflex klystron, IOT, EIK, EIO and twystron, and crossed-field tubes, namely, magnetron, CFA and carcinotron). In chapter 7, we have taken up fast-wave tubes (such as gyrotron, gyro-BWO, gyro-klystron, gyro-TWT, CARM, SWCA, hybrid gyro-tubes and peniotron). In chapter 8, we discuss vacuum microelectronic tubes (such as klystrino module, THz gyrotron and clinotron BWO); plasma-assisted tubes (such as PWT, plasma-filled TWT, BWO, including PASOTRON, and gyrotron); and HPM (high power microwave) tubes (such as relativistic TWT, relativistic BWO, RELTRON (variant of relativistic klystron), relativistic magnetron, high power Cerenkov tubes including SWO, RDG or orotron, MWCG and MWDG, bremsstrahlung radiation type tube, namely, vircator, and M-type tube MILO). In Chapter 9, we provide handy information about the frequency and power ranges of common MWTs, although more such information is provided at relevant places in the rest of the book as and where necessary. Chapter 10 is an epilogue that sums up the authors' attempt to bring out the various aspects of the basics of and trends in high power MWTs.

  19. Countercurrent Flow of Molten Glass and Air during Siphon Tests

    International Nuclear Information System (INIS)

    Guerrero, H.N.

    2001-01-01

    Siphon tests of molten glass were performed to simulate potential drainage of a radioactive waste melter, the Defense Waste Processing Facility (DWPF) at the Savannah River Site. Glass is poured from the melter through a vertical downspout that is connected to the bottom of the melter through a riser. Large flow surges have the potential of completely filling the downspout and creating a siphon effect that has the potential for complete draining of the melter. Visual observations show the exiting glass stream starts as a single-phase pipe flow, constricting into a narrow glass stream. Then a half-spherical bubble forms at the exit of the downspout. The bubble grows, extending upwards into the downspout, while the liquid flows counter-currently to one side of the spout. Tests were performed to determine what are the spout geometry and glass properties that would be conducive to siphoning, conditions for terminating the siphon, and the total amount of glass drained

  20. Influence of Thermo-Oxidative Ageing on the Thermal and Dynamical Mechanical Properties of Long Glass Fibre-Reinforced Poly(Butylene Terephthalate) Composites Filled with DOPO.

    Science.gov (United States)

    Zhang, Daohai; He, Min; He, Weidi; Zhou, Ying; Qin, Shuhao; Yu, Jie

    2017-05-04

    In this work, the long glass fibre-reinforced poly(butylene terephthalate) (PBT) composites filled with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were prepared by melt blending, and the influence of thermo-oxidative ageing on the static and dynamic mechanical properties, thermal behaviours and morphology of composites with different ageing time at 120 °C were investigated and analysed. The results showed that the mechanical properties decreased in the primary stage of ageing, while embrittlement occurs in the later period, and the crystallinity of PBT decreases first, and then recovers to some extent. The scanning electron microscopy (SEM) photos of the samples indicated that the obvious crack appeared on the sample surface and a deeper, broader crack occurred with a longer ageing time. The results of energy dispersive X-ray analysis (EDAX) proved the DOPO filler diffused to the sample surface by measuring the content of phosphorus. Thermal gravimetric analysis (TGA) curves showed that the thermal stabilities of composites increased with longer ageing time, as did the values of the limited oxygen index (LOI). Meanwhile, the results of dynamic mechanical analysis (DMA) indicated that the glass transition temperature shifted to a higher temperature after ageing due to the effect of crosslinking, and both the crosslinking and degradation of PBT molecular chains act as the main factors in the whole process of thermo-oxidative ageing.

  1. Results of a new “mirror tuck technique” for fixation of lacrimal bypass tube in conjunctivodacryocystorhinostomy

    Science.gov (United States)

    Goel, Ruchi; Kishore, Divya; Nagpal, Smriti; Kumar, Sushil; Rathie, Neha

    2017-01-01

    Context: Conjunctivodacryocystorhinostomy (CDCR) is the procedure of choice for proximal canalicular blocks. However, the complications of tube migration and extrusion limit its widespread practice. Aim: The aim of this study is to evaluate the efficacy and complications of the new “mirror tuck technique” for fixation of lacrimal bypass glass tube without holes in proximal canalicular blocks in laser CDCR. Materials and Methods: A prospective interventional study was conducted in forty consecutive eyes of adult patients, undergoing 980 nm diode laser CDCR for proximal canalicular blocks. After creating the tract under endoscopic guidance, the collar of the glass tube was fixed to the conjunctiva with 6-0 prolene suture by “mirror tuck technique.” Success was defined as the absence of extrusion of tube with patent tract and relief in epiphora at 1 year of follow-up. Results: Both anatomical and functional success was achieved in 39 (97.5%) cases. Tube displacement occurred in one patient suffering from allergic conjunctivitis in which the tube had to be removed. A temporary heaviness was reported by 5 (12.5%) patients till about 2 weeks. Conjunctival overgrowth over the tube occurred in 1 (2.5%) eye at 5 months which was excised and treated with application of 0.02% mitomycin C with no subsequent recurrence. There were no cases of suture abscess or suture intolerance warranting tube removal. Conclusion: “Mirror tuck technique” is an effective method for tube fixation (for tube without holes) in CDCR. However, it is important to position the conjunctival opening so as to leave sufficient space for passage of sutures for anchorage medially. PMID:28513491

  2. Bio-inspired dental fillings

    Science.gov (United States)

    Deyhle, Hans; Bunk, Oliver; Buser, Stefan; Krastl, Gabriel; Zitzmann, Nicola U.; Ilgenstein, Bernd; Beckmann, Felix; Pfeiffer, Franz; Weiger, Roland; Müller, Bert

    2009-08-01

    Human teeth are anisotropic composites. Dentin as the core material of the tooth consists of nanometer-sized calcium phosphate crystallites embedded in collagen fiber networks. It shows its anisotropy on the micrometer scale by its well-oriented microtubules. The detailed three-dimensional nanostructure of the hard tissues namely dentin and enamel, however, is not understood, although numerous studies on the anisotropic mechanical properties have been performed and evaluated to explain the tooth function including the enamel-dentin junction acting as effective crack barrier. Small angle X-ray scattering (SAXS) with a spatial resolution in the 10 μm range allows determining the size and orientation of the constituents on the nanometer scale with reasonable precision. So far, only some dental materials, i.e. the fiber reinforced posts exhibit anisotropic properties related to the micrometer-size glass fibers. Dental fillings, composed of nanostructures oriented similar to the natural hard tissues of teeth, however, do not exist at all. The current X-ray-based investigations of extracted human teeth provide evidence for oriented micro- and nanostructures in dentin and enamel. These fundamental quantitative findings result in profound knowledge to develop biologically inspired dental fillings with superior resistance to thermal and mechanical shocks.

  3. Study and application of a new filling-masterbatch modified with the power fly-ash glass-microballoon

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Yuying; Lin Jian; Li Longmei [Fuzhou University, Fujian (China). Dept. of Chemical Engineering

    1997-12-31

    Methods of using glass spheres present in coal-fired power station fly ash as a filler in plastics is described. Additives such as carrier resins also need to be used. Polyolefm plastics using the glass spheres as a filler were investigated by SEM. The filler composite system proved to have excellent physical, mechanical, and processing properties. 2 refs., 4 figs., 10 tabs.

  4. Characterization of Thin Walled Mo Tubing produced by FBCVD

    Energy Technology Data Exchange (ETDEWEB)

    Beaux, Miles Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-21

    The goal of this report is to delineate the results of material characterization performed on Mo tubing produced via the fluidized bed chemical vapor deposition (FBCVD) method. Scanning electron microscopy (SEM) imaging reveals that small randomly oriented grains are achieved in the Mo deposition, but do not persist throughout the entire thickness of the material. Energy dispersive spectroscopy (EDS) reveals the Mo tubes contain residual chlorine and oxygen. EDS measurements on the tube surfaces separated from glass and quartz substrates reveal substrate material adhered to this surface. X-ray diffraction (XRD) revealed the presence of carbon contaminant in the form of Mo2C and oxygen in the form of MoO2. Combustion infrared detection (CID) and inert gas fusion (IGF) performed at Luvak Inc. was used to quantify weight percentages of oxygen and carbon in the tubes produced. Hardness value of the FBCVD Mo was found to be comparable to low carbon arc cast molybdenum.

  5. Comprehensive data base of high-level nuclear waste glasses: September 1987 status report: Volume 1, Discussion and glass durability data

    International Nuclear Information System (INIS)

    Kindle, C.H.; Kreiter, M.R.

    1987-12-01

    The Materials Characterization Center (MCC) at Pacific Northwest Laboratory is assembling a comprehensive data base (CDB) of experimental data collected for high-level nuclear waste package components. Data collected throughout the world are included in the data base; current emphasis is on waste glasses and their properties. The goal is to provide a data base of properties and compositions and an analysis of dominant property trends as a function of composition. This data base is a resource that nuclear waste producers, disposers, and regulators can use to compare properties of a particular high-level nuclear waste glass product with the properties of other glasses of similar compositions. Researchers may use the data base to guide experimental tests to fill gaps in the available knowledge or to refine empirical models. The data are incorporated into a computerized data base that will allow the data to be extracted based on, for example, glass composition or test duration. 3 figs

  6. Microstructure of gross chill-mark defect in a glass-ceramic preform

    International Nuclear Information System (INIS)

    Spears, R.K.

    1980-01-01

    The microstructure of a vacuum tube glass-ceramic preform containing gross chill-marks on the top and bottom surfaces as well as on the sides was analyzed. The preform was ceramed in a graphite mold and examined using SEM. The glass-ceramic had an extremely dense and fine crystalline structure except where the chill-marks were located. In those areas of matrix glass following the chill-mark plane were evident. It is concluded that gross chill-marks will affect the microstructure by disrupting the chemistry or nucleating characteristics in such a way that a chill-mark regon would appear to be depleted of crystallites. Although the crystallites in this region are larger, the quantity is lower than in the base glass-ceramic. The affected area caused by the chill-mark left a band of matrix glass approximately 100 μ wide. It is believed that planar defects of this size will degrade the mechanical and permeation properties of the glass-ceramic

  7. Foaming of CRT panel glass powder using Na2CO3

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Smedskjær, Morten Mattrup

    2014-01-01

    The recycling of glass from obsolete cathode ray tubes (CRT) has hitherto only occurred to a very limited extent, but the production of foam glass used as an insulation material component has recently been proposed as a promising recycling method. CRT panel glass has high recycling potential due...... to its non-hazardous composition. Here we report on the foaming of CRT panel glass using Na2CO3 as the foaming agent. We explore how heat treatment temperature and concentration of Na2CO3 affect the density and porosity of the foam glasses, and whether Na2O is incorporated in the glass network....... The optimum foaming temperature for minimising density and maximising closed porosity is found to be between 1023 and 1123 K. The pore structure depends on the amount of added Na2CO3, viz, the pores generally become more open with increasing Na2CO3 content. A minimum density of 0·28 g/cm3 is found when 14 wt...

  8. Peristaltic pumping in an elastic tube: feeding the hungry python

    Science.gov (United States)

    Takagi, Daisuke; Balmforth, Neil

    2010-11-01

    Biological ducts convey contents like food in the digestive system by peristaltic action, propagating waves of muscular contraction and relaxation. The motion is investigated theoretically by considering a radial force of sinusoidal or Gaussian form moving steadily down a fluid-filled axisymmetric tube. Effects of the prescribed force on the resultant fluid flow and elastic deformation of the tube wall are presented. The flow can induce a rigid object suspended in the fluid to propel in different ways, as demonstrated in numerous examples.

  9. High-silica glass matrix process for high-level waste solidification

    International Nuclear Information System (INIS)

    Simmons, J.H.; Macedo, P.B.

    1981-01-01

    In the search for an optimum glass matrix composition, we have determined that chemical durability and thermal stability are maximized, and that stress development is minimized for glass compositions containing large concentrations of glass-forming oxides, of which silica is the major component (80 mol%). These properties and characteristics were recently demonstrated to belong to very old geological glasses known as tektites (ages of 750,000 to 34 million years.) The barrier to simulating tektite compositions for the waste glasses was the high melting temperature (1600 to 1800 0 C) needed for these glasses. Such temperatures greatly complicate furnace design and maintenance and lead to an intolerable vaporization of many of the radioisotopes into the off-gas system. Research conducted at our laboratory led to the development of a porous high-silica waste glass material with approximately 80% SiO 2 by mole and 30% waste loading by weight. The process can handle a wide variety of compositions, and yields long, elliptical, monolithic samples, which consist of a loaded high-silica core completely enveloped in a high-silica glass tube, which has collapsed upon the core and sealed it from the outside. The outer glass layer is totally free of waste isotopes and provides an integral multibarrier protection system

  10. Reactor scram device using fluid poison tubes

    International Nuclear Information System (INIS)

    Iwasaki, Toshio; Hasegawa, Koji.

    1979-01-01

    Purpose: To improve the response function in the reactor scram with no wide space by injecting poisons in soluble poison guide tubes to such a liquid level as giving no effect on usual reactor operation. Constitution: Soluble poison guide tubes in a reactor are connected at their upper ends to a buffer tank and at their lower ends to a pressurizer by way of a header and an injection valve. The header is connected by way of a valve with a level meter, one end of which is connected to the buffer tank. During reactor operation, the injection valve is closed and the soluble poisons in the pressurizer vessel is maintained at a pressurized state and, while on the other hand, soluble poisons are injected by way of the header to the lower end of the soluble poison guide tubes by the opening of a valve, which is thereafter closed. Upon scram, a valve is closed to protect the level meter and pressurized poisons are rapidly filled in the guide tubes by the release of the injection valve. (Kawakami, Y.)

  11. Dynamic Response of a Long-Span Concrete-Filled Steel Tube Tied Arch Bridge and the Riding Comfort of Monorail Trains

    Directory of Open Access Journals (Sweden)

    Hongye Gou

    2018-04-01

    Full Text Available In this study, a dynamic response analysis procedure is proposed and applied to investigate the dynamic responses of a straddle-type concrete-filled steel tube tied arch bridge under train and truck loadings. A numerical model of the coupled monorail train–bridge system is established to investigate the dynamic behaviors of the bridge under moving trains. A refined three-dimensional finite element model is built for the bridge and a 15 degrees-of-freedom vehicle model is presented for the train. The numerical model is validated using in-situ test results and then used to analyze the dynamic displacement and acceleration of the bridge and the trains on the bridge. Based on the simulation results, the impact factor of the bridge is investigated and the riding comfort of the trains is evaluated. The investigation results show that the impact factor of vehicle loads reaches the maximum value when the resonance of the bridge is induced by the moving vehicles. The effect of train braking predominates the longitudinal vibration of the bridge but is negligible in the transverse and vertical directions. The vehicle speed is the dominating factor for the riding comfort of the train.

  12. Direction of CRT waste glass processing: electronics recycling industry communication.

    Science.gov (United States)

    Mueller, Julia R; Boehm, Michael W; Drummond, Charles

    2012-08-01

    Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Novel Technique for Rebubbling DMEK Grafts at the Slit Lamp Using Intravenous Extension Tubing.

    Science.gov (United States)

    Sáles, Christopher S; Straiko, Michael D; Terry, Mark A

    2016-04-01

    To describe a novel technique for rebubbling DMEK grafts at the slit lamp using a cannula coupled to a syringe with intravenous (IV) extension tubing. We present a retrospective case series of eyes that underwent rebubbling using a novel technique at the slit lamp. The rebubbling apparatus is assembled using a standard 43-inch IV extension tube, a 5-cc luer lock syringe, and a 27-gauge cannula. The cannula is screwed onto one end of the extension tubing, and a 5-cc syringe that has been filled with air is screwed onto the opposite end. With the patient seated at the slit lamp, the cannula is positioned in the anterior chamber by the surgeon with one hand while the other hand operates the syringe and the joystick. We performed 5 rebubbling procedures at the slit lamp using a standard syringe and cannula. Despite suboptimal ergonomics with this approach, all of these cases achieved sufficient air fills without any complications. Four rebubbling procedures were subsequently performed at the slit lamp using our novel rebubbling technique. All of these cases also attained sufficient air fills without complications, but they were noted to be much easier to perform by the surgeon. Using IV extension tubing to couple a syringe to a cannula for rebubbling DMEK grafts at the slit lamp is ergonomically superior to the conventional alternative of using a standard cannula on a syringe. The technique is also simple and inexpensive to adopt.

  14. Influence of foaming agents on both the structure and the thermal conductivity of silicate glasses

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is one of the most promising insulation materials for constructions since it has low thermal conductivity, high compressive strength, non-water permeability, and high fire resistance. They can be produced using cullet sources, e.g., cathode ray tubes (CRT) panel glass, and foaming agents...... such as metal carbonates, or oxidizing transition metal oxides combined with carbonaceous sources. In this work, we mix CRT panel glass powder with different foaming agents: CaCO3 (0-4 wt%), Fe2O3 (0-6 wt%), and MnxOy (0-10 wt%). The powder mixtures are sintered in the range between the glass transition...

  15. Amorphous silicon thin-film solar cells on glass fiber textiles

    Energy Technology Data Exchange (ETDEWEB)

    Plentz, Jonathan, E-mail: jonathan.plentz@leibniz-ipht.de; Andrä, Gudrun; Pliewischkies, Torsten; Brückner, Uwe; Eisenhawer, Björn; Falk, Fritz

    2016-02-15

    Graphical abstract: - Highlights: • Amorphous silicon solar cells on textile glass fiber fabrics are demonstrated. • Open circuit voltages of 883 mV show shunt-free contacting on non-planar fabrics. • Short-circuit current densities of 3.7 mA/cm{sup 2} are limited by transmission losses. • Fill factors of 43.1% and pseudo fill factors of 70.2% show high series resistance. • Efficiencies of 1.4% and pseudo efficiencies of 2.1% realized on textile fabrics. - Abstract: In this contribution, amorphous silicon thin-film solar cells on textile glass fiber fabrics for smart textiles are prepared and the photovoltaic performance is characterized. These solar cells on fabrics delivered open circuit voltages up to 883 mV. This shows that shunt-free contacting of the solar cells was successful, even in case of non-planar fabrics. The short-circuit current densities up to 3.7 mA/cm{sup 2} are limited by transmission losses in a 10 nm thin titanium layer, which was used as a semi-transparent contact. The low conductivity of this layer limits the fill factor to 43.1%. Pseudo fill factors, neglecting the series resistance, up to 70.2% were measured. Efficiencies up to 1.4% and pseudo efficiencies up to 2.1% were realized on textile fabrics. A transparent conductive oxide could further improve the efficiency to above 5%.

  16. Porous glasses as a host of luminescent materials, their applications and site selective determination

    Energy Technology Data Exchange (ETDEWEB)

    Reisfeld, Renata, E-mail: renata.reisfeld@mail.huji.ac.il [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Jasinska, Bozena [Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowsskiej 1, 20-031 Lublin (Poland); Levchenko, Viktoria [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Gorgol, Marek [Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowsskiej 1, 20-031 Lublin (Poland); Saraidarov, Tsiala; Popov, Inna [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Antropova, Tatiana [I. V. Grebenshchikov Institute of the Chemistry of Silicates, Russian Academy of Sciences, Nab. Makarova, 2, Liter B, Saint-Petersburg 199034 (Russian Federation); Rysiakiewicz-Pasek, Ewa [Institute of Physics, Wroclaw University of Technology, W. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2016-01-15

    The site selective distribution of pore sizes in pure porous glasses and glasses doped by a luminescent colorant is determined by luminescent spectroscopy, SEM, SAXS and PALS. The potential applications of the studied materials as environmental and biological sensors are outlined. We suggest how luminescent porous glasses doped by complexes of Gd can act as solid scintillators in tracing elementary particles like neutrino. - Highlights: • Porous glasses are a medium for large number of luminescent materials. • Size distribution of empty and filled pores is studied. • The validity of data obtained by different methods is analyzed.

  17. Transport rates and concentration gradients during grain filling in wheat

    International Nuclear Information System (INIS)

    Fisher, D.B.; Gifford, R.M.

    1986-01-01

    Short-term mass transport rates into wheat ears were calculated at mid grain fill from 32 PO 4 translocation velocities and sieve tube sap concentrations in the peduncle. Over a wide range of velocities (8.5 to 170 cm/hr), sieve tube sap concentrations (514 to 1050 milliosmolal) and grains per ear (20 to 54 in intact ears, as few as 7 in partially degrained ears), there were no evident differences in the rate of mass transport per grain through the peduncle. Increased sieve tube sap concentration was accompanied in the endosperm cavity sap by increased sucrose concentration, but amino acid concentration and total osmolality remained essentially constant. Thus the rate of transport into the grains appeared to remain constant in spite of altered concentration gradients across the crease tissues of the grain and changing sucrose concentration in the endosperm cavity. The constancy of endosperm cavity sap osmolality suggests that osmoregulatory processes in the grain may play a role in regulating transport rate into the grain

  18. Effects of polishing on surface roughness, gloss and color of surface reaction type pre-reacted glass-ionomer filled resin composite.

    Science.gov (United States)

    Hosoya, Yumiko; Shiraishi, Takanobu; Odatsu, Tetsuro; Miyazaki, Masashi; García-Godoy, Franklin

    2011-06-01

    To evaluate the effects of polishing on surface roughness, gloss and color of different shades of surface reaction type pre-reacted glass-ionomer (S-PRG) filled nano-hybrid resin composite. Resin disks of 15 mm diameter and 2 mm thickness and final polish with 1000-grit SiC paper, super fine cut diamond (FG) point, silicon (MFR) point and Super-Snap mini-disk red (SNAP) were made with Beautifil II shades: A2, A20, Inc). One week after curing, the surface roughness, gloss and color were measured. Data was analyzed with ANOVA and Fisher's PLSD with alpha= 0.05 For all shades, the order of roughness (Ra) ranked according to groups of 1000-grit SiC > FG > MFR > SNAP with significant differences among all groups. For all shades, the order of gloss ranked according to groups of SNAP > MFR > FG > 1000-grit SiC with significant differences among the groups except for between MFR and FG without significant difference. The influence of the surface roughness on color differed among the polishing groups and shades. However, the values of the color differences (deltaE*ab) between the polishing groups of all shades were imperceptible to the naked eye.

  19. Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope

    Science.gov (United States)

    Aguilar, J. A.; Albert, A.; Ameli, F.; Amram, P.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardellier-Desages, F. E.; Aslanides, E.; Aubert, J.-J.; Bailey, D.; Basa, S.; Battaglieri, M.; Becherini, Y.; Bellotti, R.; Beltramelli, J.; Bertin, V.; Billault, M.; Blaes, R.; Blanc, F.; de Botton, N.; Boulesteix, J.; Bouwhuis, M. C.; Brooks, C. B.; Bradbury, S. M.; Bruijn, R.; Brunner, J.; Burgio, G. F.; Cafagna, F.; Calzas, A.; Capone, A.; Caponetto, L.; Carmona, E.; Carr, J.; Cartwright, S. L.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Charvis, P.; Circella, M.; Colnard, C.; Compère, C.; Coniglione, R.; Cooper, S.; Coyle, P.; Cuneo, S.; Damy, G.; van Dantzig, R.; Deschamps, A.; de Marzo, C.; Denans, D.; Destelle, J.-J.; de Vita, R.; Dinkelspiler, B.; Distefano, C.; Drogou, J.-F.; Druillole, F.; Engelen, J.; Ernenwein, J.-P.; Falchini, E.; Favard, S.; Feinstein, F.; Ferry, S.; Festy, D.; Flaminio, V.; Fopma, J.; Fuda, J.-L.; Gallone, J.-M.; Giacomelli, G.; Girard, N.; Goret, P.; Graf, K.; Hallewell, G.; Hartmann, B.; Heijboer, A.; Hello, Y.; Hernández-Rey, J. J.; Herrouin, G.; Hößl, J.; Hoffmann, C.; Hubbard, J. R.; Jaquet, M.; de Jong, M.; Jouvenot, F.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kooijman, P.; Korolkova, E. V.; Kouchner, A.; Kretschmer, W.; Kuch, S.; Kudryavtsev, V. A.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lamare, P.; Languillat, J.-C.; Laschinsky, H.; Laubier, L.; Legou, T.; Le Guen, Y.; Le Provost, H.; Le van Suu, A.; Lo Nigro, L.; Lo Presti, D.; Loucatos, S.; Louis, F.; Lyashuk, V.; Marcelin, M.; Margiotta, A.; Maron, C.; Massol, A.; Masullo, R.; Mazéas, F.; Mazure, A.; McMillan, J. E.; Migneco, E.; Millot, C.; Milovanovic, A.; Montanet, F.; Montaruli, T.; Morel, J.-P.; Morganti, M.; Moscoso, L.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Nezri, E.; Niess, V.; Nooren, G. J.; Ogden, P.; Olivetto, C.; Palanque-Delabrouille, N.; Papaleo, R.; Payre, P.; Petta, C.; Piattelli, P.; Pineau, J.-P.; Poinsignon, J.; Popa, V.; Potheau, R.; Pradier, T.; Racca, C.; Raia, G.; Randazzo, N.; Real, D.; van Rens, B. A. P.; Réthoré, F.; Riccobene, G.; Rigaud, V.; Ripani, M.; Roca-Blay, V.; Rolin, J.-F.; Romita, M.; Rose, H. J.; Rostovtsev, A.; Ruppi, M.; Russo, G. V.; Sacquin, Y.; Salesa, F.; Salomon, K.; Saouter, S.; Sapienza, P.; Shanidze, R.; Schuller, J.-P.; Schuster, W.; Sokalski, I.; Spurio, M.; Stolarczyk, T.; Stubert, D.; Taiuti, M.; Thompson, L. F.; Tilav, S.; Valdy, P.; Valente, V.; Vallage, B.; Vernin, P.; Virieux, J.; de Vries, G.; de Witt Huberts, P.; de Wolf, E.; Zaborov, D.; Zaccone, H.; Zakharov, V.; Zornoza, J. D.; Zúñiga, J.

    2005-12-01

    The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a three-dimensional matrix of 900 large area photomultiplier tubes housed in pressure-resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the photomultiplier tube chosen for ANTARES.

  20. Experimental Investigation of Natural Convection into a Horizontal Annular Tube with Porous Medium Effects

    Directory of Open Access Journals (Sweden)

    Saad Najeeb Shehab

    2018-12-01

    Full Text Available In this work, an experimental investigation has been done for heat transfer by natural-convection through a horizontal concentric annulus with porous media effects. The porous structure in gap spacing consists of a glass balls and replaced by plastic (PVC balls with different sizes. The outer surface of outer tube is isothermally cooled while the outer surface of inner tube is heated with constant heat flux condition. The inner tube is heated with different supplied electrical power levels. Four different radius ratios of annulus are used. The effects of porous media material, particles size and annulus radius ratio on heat dissipation in terms of average Nusselt number have been analyzed. The experimental results show that the average Nusselt number increases with increasing annulus radius ratio and particle diameter for same porous media material. Furthermore, two empirical correlations of average Nusselt number with average Rayleigh number for glass and PVC particles are developed. The present experimental results are compared with previously works and good correspondence is showed.

  1. Innovative energy absorbing devices based on composite tubes

    Science.gov (United States)

    Tiwari, Chandrashekhar

    Analytical and experimental study of innovative load limiting and energy absorbing devices are presented here. The devices are based on composite tubes and can be categorized in to two groups based upon the energy absorbing mechanisms exhibited by them, namely: foam crushing and foam fracturing. The device based on foam crushing as the energy absorbing mechanism is composed of light weight elastic-plastic foam filling inside an angle ply composite tube. The tube is tailored to have a high Poisson’s ratio (>20). Upon being loaded the device experiences large transverse contraction resulting in rapid decrease in diameter. At a certain axial load the foam core begins to crush and energy is dissipated. This device is termed as crush tube device. The device based upon foam shear fracture as the energy absorbing mechanism involves an elastic-plastic core foam in annulus of two concentric extension-twist coupled composite tubes with opposite angles of fibers. The core foam is bonded to the inner and outer tube walls. Upon being loaded axially, the tubes twist in opposite directions and fracture the core foam in out of plane shear and thus dissipate the energy stored. The device is termed as sandwich core device (SCD). The devices exhibit variations in force-displacement characteristics with changes in design and material parameters, resulting in wide range of energy absorption capabilities. A flexible matrix composite system was selected, which was composed of high stiffness carbon fibers as reinforcements in relatively low stiffness polyurethane matrix, based upon large strain to failure capabilities and large beneficial elastic couplings. Linear and non-linear analytical models were developed encapsulating large deformation theory of the laminated composite shells (using non-linear strain energy formulation) to the fracture mechanics of core foam and elastic-plastic deformation theory of the foam filling. The non-linear model is capable of including material and

  2. Process and device for detecting and localizing leaks in a tube bundle heat exchanger when it is stopped

    International Nuclear Information System (INIS)

    Germain, J.L.; Jeanneteau, E.; Loisy, F.

    1986-01-01

    The device can be used to detect the tubes presenting leaks in a tube bundle exchanger of a light water reactor. This device comprises a feeding point to fill the secondary part of the exchanger, in which the tubes are immersed, with a pressure mixture of vector gas (air) and helium. It has also a feeding point to establish in the tube a sweeping air flow. An analysis apparatus, such as a spectrograph, measures the helium content of air at the outlet of each tube [fr

  3. Researching the Performance of Dual-Chamber Fire-Tube Boiler Furnace

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei

    2015-01-01

    Full Text Available Autonomous heating systems equipped with fire-tube or shell boilers show high effectiveness, consistent performance and great technical parameters. But there is a significant limitation of its thermal productivity due to the complexity of durable large diameter fire-tube bottoms implementation. Optimization of combustion aerodynamics can be the way to expand the fire-tube boilers performance limit. In this case lots of problems connected with reducing emissions of toxic substances, providing of burning stability, local heat stresses and aerodynamic resistances should be solved. To resolve the indicated problems, a modified model of dual-chamber fire-tube boiler furnace is proposed. The performance of suggested flame-tube was simulated using the proven computer-aided engineering software ANSYS Multiphysics. Results display proposed flame tube completely filled with moving medium without stagnant zones. Turbulent vortical combustion is observed even with the straight-through fuel supply. Active flue gas recirculation in suggested dual-chamber furnace reduces emissions of pollutants. Diminution of wall heat fluxes allows boiler operation at lower water treatment costs.

  4. Phase velocity enhancement of linear explosive shock tubes

    Science.gov (United States)

    Loiseau, Jason; Serge, Matthew; Szirti, Daniel; Higgins, Andrew; Tanguay, Vincent

    2011-06-01

    Strong, high density shocks can be generated by sequentially detonating a hollow cylinder of explosives surrounding a thin-walled, pressurized tube. Implosion of the tube results in a pinch that travels at the detonation velocity of the explosive and acts like a piston to drive a shock into the gas ahead of it. In order to increase the maximum shock velocities that can be obtained, a phase velocity generator can be used to drag an oblique detonation wave along the gas tube at a velocity much higher than the base detonation velocity of the explosive. Since yielding and failure of the gas tube is the primary limitation of these devices, it is desirable to retain the dynamic confinement effects of a heavy-walled tamper without interfering with operation of the phase velocity generator. This was accomplished by cutting a slit into the tamper and introducing a phased detonation wave such that it asymmetrically wraps around the gas tube. This type of configuration has been previously experimentally verified to produce very strong shocks but the post-shock pressure and shock velocity limits have not been investigated. This study measured the shock trajectory for various fill pressures and phase velocities to ascertain the limiting effects of tube yield, detonation obliquity and pinch aspect ratio.

  5. Buckling of ZnS-filled single-walled carbon nanotubes – The influence of aspect ratio

    KAUST Repository

    Monteiro, André O.

    2014-08-16

    The mechanical response of single-walled carbon nanotubes (SWCNT) filled with crystalline zinc sulphide (ZnS) nanowires under uniaxial compression is studied using classical molecular dynamics. These simulations were used to analyse the behaviour of SWCNT, with and without ZnS filling, in terms of critical force and critical strain. Force versus strain curves have been computed for hollow and filled systems, the latter clearly showing an improvement of the mechanical behaviour caused by the ZnS nanowire. The same simulations were repeated for a large range of dimensions in order to evaluate the influence of the aspect ratio on the mechanical response of the tubes.

  6. Removal of a glowing spot from an image tube using laser radiation.

    Science.gov (United States)

    Gurski, T. R.

    1972-01-01

    A troublesome problem with the Kron electronograph has been the presence of a white glowing spot on the glass wall of the tube adjacent to the focus electrode. The procedure followed to eliminate the spot was to operate in the dark and apply voltage only to the focused electrode. Ruby laser radiation was unfocused, and its position was shifted on the electrode between laser shots until an effect was observed. This technique for removing the glowing spot should be applicable to other electronic image tubes.

  7. Vapor Phase Hydrogen Peroxide Sanitization of an Isolator for Aseptic Filling of Monoclonal Antibody Drug Product - Hydrogen Peroxide Uptake and Impact on Protein Quality.

    Science.gov (United States)

    Hubbard, Aaron; Reodl, Thomas; Hui, Ada; Knueppel, Stephanie; Eppler, Kirk; Lehnert, Siegfried; Maa, Yuh-Fun

    2018-03-15

    A monoclonal antibody drug product (DP) manufacturing process was transferred to a different production site, where aseptic filling took place within an isolator that was sanitized using vapor phase hydrogen peroxide (VPHP). A quality-by-design approach was applied for study design to understand the impact of VPHP uptake in the isolator on DP quality. A combination of small-scale and manufacturing-scale studies was performed to evaluate the sensitivity of the monoclonal antibody to hydrogen peroxide (H2O2) as well as VPHP uptake mechanisms during the filling process. The acceptable H2O2 level was determined to be 100 ng/mL for the antibody in the H2O2 spiking study; protein oxidation was observed above this threshold. The most prominent sources of VPHP uptake were identified to be via the silicone tubing assembly (associated with the peristaltic pumps) and open, filled vials. Silicone tubing, an effective depot to H2O2, could absorb VPHP during different stages of the filling process and discharge H2O2 into the DP solution during filling interruptions. A small-scale isolator model, established to simulate manufacturing-scale conditions, was a useful tool in understanding H2O2 uptake in relation to tubing dimensions and VPHP concentration in the isolator air (or atmosphere). Although the tubing assembly had absorbed a substantial amount of VPHP during the decontamination phase, the majority of H2O2 could be removed during tubing cleaning and sterilization in the subsequent isolator aeration phase, demonstrating that H2O2 in the DP solution is taken up primarily via atmospheric VPHP residues in the isolator during filling. Picarro sensor monitoring suggested that the validated VPHP aeration process generates reproducible residual VPHP profiles in isolator air, thus allowing small-scale studies to provide more relevant recommendations on tubing size and interruption time limits for commercial manufacturing. The recommended process parameters were demonstrated to be

  8. Complexing Agents and pH Influence on Chemical Durability of Type I Molded Glass Containers.

    Science.gov (United States)

    Biavati, Alberto; Poncini, Michele; Ferrarini, Arianna; Favaro, Nicola; Scarpa, Martina; Vallotto, Marta

    2017-01-01

    Among the factors that affect the glass surface chemical durability, pH and complexing agents present in aqueous solution have the main role. Glass surface attack can be also related to the delamination issue causing glass particles' appearance in the pharmaceutical preparation. A few methods to check for glass containers delamination propensity and some control guidelines have been proposed. The present study emphasizes the possible synergy between a few complexing agents with pH on borosilicate glass chemical durability.Hydrolytic attack was performed in small-volume 23 mL type I glass containers autoclaved according to the European Pharmacopoeia or United States Pharmacopeia for 1 h at 121 °C, in order to enhance the chemical attack due to time, temperature, and the unfavorable surface/volume ratio. Solutions of 0.048 M or 0.024 M (M/L) of the acids citric, glutaric, acetic, EDTA (ethylenediaminetetraacetic acid), together with sodium phosphate with water for comparison, were used for the trials. The pH was adjusted ±0.05 units at fixed values 5.5, 6.6, 7, 7.4, 8, and 9 by LiOH diluted solution.Because silicon is the main glass network former, silicon release into the attack solutions was chosen as the main index of the glass surface attack and analysed by inductively coupled plasma atomic emission spectrophotometry. The work was completed by the analysis of the silicon release in the worst attack conditions of molded glass, soda lime type II glass, and tubing borosilicate glass vials to compare different glass compositions and forming technologies. Surface analysis by scanning electron microscopy was finally performed to check for the surface status after the worst chemical attack condition by citric acid. LAY ABSTRACT: Glass, like every packaging material, can have some usage limits, mainly in basic pH solutions. The issue of glass surface degradation particles that appear in vials (delamination) has forced a number of drug product recalls in recent years

  9. DWPF Glass Melter Technology Manual: Volume 1

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics include: melter overview, design basis, materials, vessel configuration, insulation, refractory configuration, electrical isolation, electrodes, riser and pour spout heater design, dome heaters, feed tubes, drain valves, differential pressure pouring, and melter test results. Information is conveyed using many diagrams and photographs

  10. Improvement in the heat transfer of a gas filled thermal switch

    International Nuclear Information System (INIS)

    Yamamoto, J.

    1984-01-01

    This chapter attempts to clarify the heat transfer mechanism of a gas filled stainless steel tube, and shows how the maximum heat transfer rate is determined under various filling pressures. The thermal switch is a convenient device for a thermal link between the cold heat of a cryocooler and a magnet dewar, because the switch acts as an active thermal conductor at the precooling stage and as an insulator after collecting liquid helium in the dewar. Topics considered include the switch structure, the heat transfer process, the delay of condensation, and the precooling stage and switching. It is determined that the heat transfer mechanism of the gas filled switch is due to normal nucleate boiling at the bottom and condensation on the upper cone. The higher the initial pressure, the larger the maximum heat flow obtained. Evaporation and condensation surfaces play an important role in the heat transfer rate

  11. Low-Loss Hollow-Core Anti-Resonant Fibers With Semi-Circular Nested Tubes

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    Hollow-core fibers with a single ring of circular antiresonant tubes as the cladding provide a simple way of getting a negative-curvature hollow core, resulting in broadband low-loss transmission with little power overlap in the glass. These fibers show a significant improvement in loss performan...

  12. Ho3+-doped AlF3-TeO2-based glass fibers for 2.1 µm laser applications

    Science.gov (United States)

    Wang, S. B.; Jia, Z. X.; Yao, C. F.; Ohishi, Y.; Qin, G. S.; Qin, W. P.

    2017-05-01

    Ho3+-doped AlF3-TeO2-based glass fibers based on AlF3-BaF2-CaF2-YF3-SrF2-MgF2-TeO2 glasses are fabricated by using a rod-in-tube method. The glass rod including a core and a thick cladding layer is prepared by using a suction method, where the thick cladding layer is used to protect the core from the effect of surface crystallization during the fiber drawing. By inserting the glass rod into a glass tube, the glass fibers with relatively low loss (~2.3 dB m-1 @ 1560 nm) are prepared. By using a 38 cm long Ho3+-doped AlF3-TeO2-based glass fiber as the gain medium and a 1965 nm fiber laser as the pump source, 2065 nm lasing is obtained for a threshold pump power of ~220 mW. With further increasing the pump power to ~325 mW, the unsaturated output power of the 2065 nm laser is about 82 mW and the corresponding slope efficiency is up to 68.8%. The effects of the gain fiber length on the lasing threshold, the slope efficiency, and the operating wavelength are also investigated. Our experimental results show that Ho3+-doped AlF3-TeO2-based glass fibers are promising gain media for 2.1 µm laser applications.

  13. Dynamics of nonlinear waves in the tubes filled with aerosol

    Directory of Open Access Journals (Sweden)

    Gubaidullin Damir

    2018-01-01

    Full Text Available The results of experimental investigations of nonlinear oscillations of finely dispersed aerosol in the tube with various geometry on the end in the shock-wave, the shock-free wave modes and in the mode of transition to shock waves near the resonance frequency are presented. The time dependences of the numerical concentration of the oscillating aerosol droplets are presented. The effect of the frequency and amplitude of the piston displacement and the influence of the diaphragm internal diameter on the time coagulation and sedimentation of aerosol were studied. An increase in the amplitude of the piston displacement in all modes results in acceleration of the process of coagulation and sedimentation of aerosol. The dependence of time of coagulation and sedimentation of aerosol on the excitation frequency was found to be of a nonmonotonic character with the minimum value upon the resonance frequency.

  14. First experimental tests of a lead glass drift calorimeter

    International Nuclear Information System (INIS)

    Guerra, A.D.; Bellazzini, R.; Conti, M.; Massai, M.M.; Schwartz, G.; Habel, R.; Mulera, T.; Perez-Mendez, V.

    1985-10-01

    We are building a drift collection calorimeter, which has a combined radiator and electric field shaping structure made of fused lead glass tubing, treated in a H 2 reducing atmosphere. We describe the construction detail of the calorimeter and the experimental measurements on several prototypes with radioative sources and minimum ionizing particles. 9 refs., 11 figs

  15. Study of the performances of acoustic emission testing for glass fibre reinforced plastic pipes containing defects

    International Nuclear Information System (INIS)

    Villard, D.; Vidal, M.C.

    1995-08-01

    Glass fibre reinforced plastic pipes are more and more often used, in nuclear power plants, for building or replacement of water pipings classified 'nuclear safety'. Tests have been performed to evaluate the performances of acoustic emission testing for in service inspection of these components. The tests were focused on glass fibre reinforced polyester and vinyl-ester pipes, in as received conditions or containing impacts, and intentionally introduced defects. They have been carried out by CETIM, following the ASTM Standard E 1118 (code CARP), to a maximum pressure lever of 25 Bar The results show that the CARP procedure can be used for detection of defects and evaluation of their noxiousness towards internal pressure: most of the tubes containing low energy impacts could not be distinguished from tubes without defect; on the other hand the important noxiousness of lacks of impregnation of roving layer appeared clearly. Complementary tests have been performed on some tubes at a more important pressure lever, for which the damage of the tubes in enough to deteriorate there elastic properties. The results showed that CARP procedure give valuable informations on damage level. It would be interesting to evaluate acoustic emission on tubes containing realistic in-service degradations. (author). 11 refs., 15 figs., 6 tabs., 2 appends

  16. The YouTube Makeup Class

    Science.gov (United States)

    Haase, David G.

    2009-05-01

    When a college instructor goes out of town and must miss a lecture, the standard options are to cancel the class meeting or to enlist a colleague to fill in. In the former case a teaching opportunity is lost; in the latter the substitute may not lead the class in the same way as the instructor. Some students routinely skip lectures by a guest instructor, in the belief that the material in the substitute lecture will not be covered on the exam. There are other makeup options such as a directed study assignment. For instance, a missed class is sometimes a good opportunity to require students to investigate web-based simulations such as Physlets® that illustrate the class topics. These are most effective if the students are given a clear structure and if there are questions that the students must answer from their investigations with the Physlets. But many students are more comfortable with the audio and visual communication that occurs in the classroom. Web 2.0 technology, e.g., YouTube (http://www.youtube.com), makes it convenient for faculty to upload videos of lectures and demonstrations that can be used for makeup classes. College students already use YouTube for entertainment, and the YouTube format is simple to view on any web-connected computer. Although some universities have highly developed media delivery systems, YouTube is extremely convenient and accessible by anyone. This paper discusses how a YouTube makeup class can be efficiently produced and structured to be an effective learning experience.

  17. Three-Dimensional Numerical Modeling of Acoustic Trapping in Glass Capillaries

    DEFF Research Database (Denmark)

    Ley, Mikkel Wennemoes Hvitfeld; Bruus, Henrik

    2017-01-01

    Acoustic traps are used to capture and handle suspended microparticles and cells in microfluidic applications. A particular simple and much-used acoustic trap consists of a commercially available, millimeter-sized, liquid-filled straight glass capillary actuated by a piezoelectric transducer. Here......, we present a three-dimensional numerical model of the acoustic pressure field in the liquid coupled to the displacement field of the glass wall, taking into account mixed standing and traveling waves as well as absorption. The model explains the dynamical mechanism that leads to the formation...

  18. Direction of CRT waste glass processing: Electronics recycling industry communication

    International Nuclear Information System (INIS)

    Mueller, Julia R.; Boehm, Michael W.; Drummond, Charles

    2012-01-01

    Highlights: ► Given a large flow rate of CRT glass ∼10% of the panel glass stream will be leaded. ► The supply of CRT waste glass exceeded demand in 2009. ► Recyclers should use UV-light to detect lead oxide during the separation process. ► Recycling market analysis techniques and results are given for CRT glass. ► Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  19. Direct media exposure of MEMS multi-sensor systems using a potted-tube packaging concept

    DEFF Research Database (Denmark)

    Hyldgård, Anders; Birkelund, Karen; Janting, Jakob

    2008-01-01

    in the filling material is measured. The packaging concept is used to encapsulate a microfabricated multi-sensor (measuring temperature, water conductivity, pressure and light intensity). The direct exposure of the sensors results in high sensitivity and fast response time. The design of an elongated multi-sensor......A packaging concept for Data Storage Tags is presented. A potted-tube packaging concept, using a polystyrene tube and different epoxies as filling material that allows for direct sensor exposure is investigated. The curing temperature, water uptake and the diffusion coefficient for water...... is described and effectiveness of the packaging is demonstrated with the precise measurement of water conductivity using the packaged multi-sensor. The packaging concept is very promising for high accuracy measurements in harsh environments....

  20. Electroactive thermoset shape memory polymer nanocomposite filled with nanocarbon powders

    International Nuclear Information System (INIS)

    Leng, Jinsong; Lan, Xin; Liu, Yanju; Du, Shanyi

    2009-01-01

    This paper concerns an electroactive thermoset styrene-based shape memory polymer (SMP) nanocomposite filled with nanosized (30 nm) carbon powders. With an increase of the incorporated nanocarbon powders of the SMP composite, its glass transition temperature (T g ) decreases and storage modulus increases. Due to the high micro-porosity and homogeneous distributions of nanocarbon powders in the SMP matrix, the SMP composite shows good electrical conductivity with a percolation of about 3.8%. This percolation threshold is slightly lower than that of many other carbon-based conductive polymer composites. Consequently, due to the relatively high electrical conductivity, a sample filled with 10 vol% nanocarbon powders shows a good electroactive shape recovery performance heating by a voltage of 30 V above a transition temperature of 56–69 °C

  1. The Bowed Tube : a Virtual Violin

    OpenAIRE

    Carrillo, Alfonso P.; Bonada, Jordi

    2010-01-01

    This paper presents a virtual violin for real-time performances consisting of two modules: a violin spectral modeland a control interface. The interface is composed by asensing bow and a tube with drawn strings in substitutionof a real violin. The spectral model is driven by the bowingcontrols captured with the control interface and it is ableto predict spectral envelopes of the sound corresponding tothose controls. The envelopes are filled with harmonic andnoisy content and given to an addit...

  2. Means and method for controlling the neutron output of a neutron generator tube

    International Nuclear Information System (INIS)

    1980-01-01

    A specification is given for an energizing and regulating circuit for a gas filled neutron generator tube consisting of a target, an ion source and a replenisher, the circuit consisting of a power supply to provide a negative high voltage to the target and a target current corresponding to the neutron output of the tube, a constant current source, and control means connected to the power supply and to the constant current source, the control means being responsive to the target current to provide a portion of the constant current to the replenisher substantially to regulate the neutron output of the tube. (author)

  3. Lead isotope ratios of ancient Chinese and Japanese glasses

    International Nuclear Information System (INIS)

    Yamasaki, Kazuo; Murozumi, Masayo; Nakamura, Seiji; Yuasa, Mitsuaki; Watarai, Motohiko.

    1980-01-01

    Lead isotope ratios of 29 archaeological glass samples (5 samples excavated in China, 10 samples excavated in Japan, and 14 samples made in Japan) were determined by surface ionization mass spectrometry with a HITACHI RMU-6 spectrometer. Of these glass samples, 28 were made of high lead glass, and one, of alkali-lime glass. Glass samples were decomposed in a mixture of hydrofluoric and nitric acids, and lead was separated from other elements by extraction with dithizone-chloroform. The lead nitrate solution thus prepared (corresponding to 0.5 μg Pb) was loaded on the rhenium single filament. The coefficients of variation of the determined ratios, 207 Pb/ 206 Pb and 208 Pb/ 206 Pb, were 0.1 -- 0.3%. Among the glasses excavated in Japan, some samples of the Yayoi period (ca. 3 rd C. B.C. -- ca. 3 rd C. A.D.) contained a large amount of barium in addition to lead, and resembled closely Chinese pre-Han glasses not only in chemical compositions, but also in lead isotope ratios. This means that pre-Han glasses were brought to Japan and then re-cast into glass beads characteristic of Japan. The lead isotope ratios of the glasses were compared with those of Chinese (2 samples), Korean (2) and Japanese (17) galena orea, and it was found that 12 glass beads made in the 8th century at Nara and 2 fine glass tubes made at Saga in the 18 th -- 19 th centuries showed similar lead isotope ratios with those of the Japanese galena ores. Consequently it is considered that the Japanese galena ores were already used as one of raw materials at manufacturing of these glass beads in ancient centuries. (author)

  4. Thin-walled composite tubes using fillers subjected to quasistatic axial compression

    International Nuclear Information System (INIS)

    AL-Qrimli, Haidar F; Mahdi, Fadhil A; Ismail, Firas B; Alzorqi, Ibrahim S

    2015-01-01

    It has been demonstrated that composites are lightweight, fatigue resistant and easily melded, a seemingly attractive alternative to metals. However, there has been no widespread switch from metals to composites in the automotive sector. This is because there are a number of technical issues relating to the use of composite materials that still need to be resolved including accurate material characterization, manufacturing and joining process. The total of 36 specimens have been fabricated using the fibre-glass and resin (epoxy) with a two different geometries (circular and corrugated) each one will be filled with five types of filler (Rice Husk, Wood Chips, Aluminium Chips, Coconut Fibre, Palm Oil Fibre) all these type will be compared with empty Tubes for circular and corrugated in order to comprehend the crashworthiness parameters (initial failure load, average load, maximum crushing load, load ratio, energy absorption, specific energy absorption, volumetric energy absorption, crushing force efficiency and crush strain relation) which are considered very sufficient parameters in the design of automotive industry parts. All the tests have been done using the “INSTRON Universal machine” which is computerized in order to simply give a high precision to the collection of the results, along with the use of quasi-static load to test and observe the behaviour of the fabricated specimens. (paper)

  5. Thin-walled composite tubes using fillers subjected to quasistatic axial compression

    Science.gov (United States)

    AL-Qrimli, Haidar F.; Mahdi, Fadhil A.; Ismail, Firas B.; Alzorqi, Ibrahim S.

    2015-04-01

    It has been demonstrated that composites are lightweight, fatigue resistant and easily melded, a seemingly attractive alternative to metals. However, there has been no widespread switch from metals to composites in the automotive sector. This is because there are a number of technical issues relating to the use of composite materials that still need to be resolved including accurate material characterization, manufacturing and joining process. The total of 36 specimens have been fabricated using the fibre-glass and resin (epoxy) with a two different geometries (circular and corrugated) each one will be filled with five types of filler (Rice Husk, Wood Chips, Aluminium Chips, Coconut Fibre, Palm Oil Fibre) all these type will be compared with empty Tubes for circular and corrugated in order to comprehend the crashworthiness parameters (initial failure load, average load, maximum crushing load, load ratio, energy absorption, specific energy absorption, volumetric energy absorption, crushing force efficiency and crush strain relation) which are considered very sufficient parameters in the design of automotive industry parts. All the tests have been done using the “INSTRON Universal machine” which is computerized in order to simply give a high precision to the collection of the results, along with the use of quasi-static load to test and observe the behaviour of the fabricated specimens.

  6. Performance comparison of solar parabolic trough system with glass and film reflector

    International Nuclear Information System (INIS)

    Xu, Qian; Li, Longlong; Li, Huairui; Huang, Weidong; Li, Yongping

    2014-01-01

    Highlights: • Solar trough model should consider refractive surface error with glass reflector. • Solar trough system with glass mirror has less efficiency than that with film mirror. • Solar trough system has very low efficiency in a winter day at high latitude. - Abstract: This paper considers the refractive surface error transfer process to present an optical performance model of solar trough system as well as the reflective surface error. We validate the optical model through comparing the calculation results with the experimental data. The optimized design parameters are presented based on the maximization of the annual average net heat efficiency. The results show that maximum relative error of 20% for the optical efficiency may produce if the refractive surface error transfer process is ignored. It indicates that the refractive surface error should be considered in predicting the performance of the solar trough system especially for the glass reflector as well as the reflective surface error. We apply the model to compare the performance of solar parabolic trough system with vacuum tube receiver under two kinds of reflectors, which are glass mirror and film mirror. The results indicate that both parabolic trough systems with a vacuum tube receiver and a north–south axis tracking system are relatively inefficient in winter days, and the net energy output in the winter solstice is less than one sixth of the summer. The net heat efficiency of solar trough system with film mirror is 50% less than that of the system with the glass mirror at noon of the winter solstice and latitude 40 if the design and parameter of the two systems are the same. The results indicate that film reflector is more preferable than glass reflector especially in high latitude if they have the same optical property

  7. Glass transition of poly (methyl methacrylate) filled with nanosilica and core-shell structured silica

    DEFF Research Database (Denmark)

    Song, Yihu; Bu, Jing; Zuo, Min

    2017-01-01

    transition and segmental dynamics of PMMA in the nanocomposites prepared via solution casting was compared. The remarkable depression (≥10 °C) of glass transition temperature (Tg) induced by the incorporation of SiO2 and CS was both observed at low loadings. Here, different mechanisms were responsible...... for the effect of SiO2 and CS on the segmental acceleration of PMMA matrix. The formation of rigid amorphous fraction (RAF) layer around SiO2 with the thickness of 16.4 nm led to the adjacent molecular packing frustration, while the “lubrication” effect of nonwetting interface between the grafted crosslinked......Core-shell (CS) nanocomposite particles with 53.4 wt% cross-linked poly (methyl methacrylate) (PMMA) shell of 11.6 nm in thickness were fabricated via miniemulsion polymerization of methyl methacrylate in the presence of modified nanosilica. The influence of nanosilica and CS nanoparticles on glass...

  8. Bond strength tests between silicon wafers and duran tubes (fusion bonded fluidic interconnects)

    NARCIS (Netherlands)

    Fazal, I.; Berenschot, Johan W.; de Boer, J.H.; Jansen, Henricus V.; Elwenspoek, Michael Curt

    2005-01-01

    The fusion bond strength of glass tubes with standard silicon wafers is presented. Experiments with plain silicon wafers and those coated with silicon oxide and silicon nitride are presented. Results obtained are discussed in terms of homogeneity and strength of fusion bond. High pressure testing

  9. Experimental study of single taylor bubbles rising in stagnant liquid mixtures inside of vertical tubes

    International Nuclear Information System (INIS)

    Azevedo, Marcos B. de; Faccini, Jose L.H.; Su, Jian

    2015-01-01

    The present work reports an experimental study of single Taylor bubbles rising in vertical tubes filled with water-glycerin mixtures by using the pulse-echo ultrasonic technique. A 2m long acrylic tube with inner diameter of 24 mm was used in the experiments. Initially, the tube was sealed at the ends and filled partially with the liquid mixtures to leave an air pocket of length L 0 at the top end. A Taylor bubble was formed by the inversion of the tube. The rising bubbles were detected by ultrasonic transducers located at the upper part of the tube. The velocity, the length and the pro le of the bubbles and the thickness of the liquid lm around them were obtained from the ultrasonic signals processing. The liquid lm thickness in the vertical tube was also determined by a graphic method that relates the bubble length L b with the initial length of the air pocket L 0 . It was observed that the bubble velocity decreased with increasing viscosity, while the lm thickness increased. It was shown that the liquid lm thickness determined by the graphic method fitted well the higher viscosities data, but overestimated the lower viscosities data. Additionally, the results indicated that some correlations developed to estimate the thickness of liquid films falling down inside/outside of tubes and down a plane surface could be applied to estimate the thickness of liquid films falling around Taylor bubbles in an Inverse Viscosity Number (N f ) range different to those considered in the literature. (author)

  10. Evaluation of bioactive glass and demineralized freeze dried bone allograft in the treatment of periodontal intraosseous defects: A comparative clinico-radiographic study

    Directory of Open Access Journals (Sweden)

    Kishore Kumar Katuri

    2013-01-01

    Full Text Available Aim: The purpose of this study was to evaluate the efficacy of demineralized freeze dried bone allograft (DFDBA and bioactive glass by clinically and radiographically in periodontal intrabony defects for a period of 12 months. Materials and Methods: Ten systemically healthy patients diagnosed with chronic periodontitis, with radiographic evidence of at least a pair of contralateral vertical osseous defects were included in this study. Defect on one-side is treated with DFDBA and the other side with bioactive glass. Clinical and radiographic measurements were made at baseline 6 month and 12 month after the surgery. Results: Compared to baseline, the 12 month results indicated that both treatment modalities resulted in significant changes in all clinical parameters (gingival index, probing depth, clinical attachment level (CAL and radiographic parameters (bone fill; P < 0.001FNx01. However, sites treated with DFDBA exhibited statistically significantly more changes compared to the bioactive glass in probing depth reduction (2.5 ± 0.1 mm vs. 1.8 ± 0.1 mm CAL gain 2.4 ± 0.1 mm versus 1.7 ± 0.2 mm; ( P < 0.001FNx01. At 12 months, sites treated with bioactive glass exhibited 56.99% bone fill and 64.76% bone fill for DFDBA sites, which is statistically significant ( P < 0.05FNx01. Conclusion: After 12 months, there was a significant difference between the two materials with sites grafted with DFDBA showing better reduction in probing pocket depth, gain in CAL and a greater percentage of bone fill when compared to that of bioactive glass.

  11. Safety Distances for hydrogen filling stations

    Energy Technology Data Exchange (ETDEWEB)

    Matthijsen, A. J. C. M.; Kooi, E. S.

    2005-07-01

    literature and had discussions with experts from the Energy Research Centre of the Netherlands (ECN), for example. This study will also include a short technical description of hydrogen storage and car fill-up, including details about safety valves, gas tubes and diameters of pipes. The risk analysis software, Safeti 6.42, will be used for the Quantitative Risk Analysis (QRA). A description will be given of the parameters used in the study. These parameters are based on the so-called purple, yellow and red books (Dutch books on QRA employed in other countries of the world too). Safety distances in the Netherlands will be compared to one another for petrol, diesel, natural gas and LPG filling stations. (Author)

  12. THE TOPOLOGY OF CANONICAL FLUX TUBES IN FLARED JET GEOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Lavine, Eric Sander; You, Setthivoine, E-mail: Slavine2@uw.edu, E-mail: syou@aa.washington.edu [University of Washington, 4000 15th Street, NE Aeronautics and Astronautics 211 Guggenheim Hall, Box 352400, Seattle, WA 98195 (United States)

    2017-01-20

    Magnetized plasma jets are generally modeled as magnetic flux tubes filled with flowing plasma governed by magnetohydrodynamics (MHD). We outline here a more fundamental approach based on flux tubes of canonical vorticity, where canonical vorticity is defined as the circulation of the species’ canonical momentum. This approach extends the concept of magnetic flux tube evolution to include the effects of finite particle momentum and enables visualization of the topology of plasma jets in regimes beyond MHD. A flared, current-carrying magnetic flux tube in an ion-electron plasma with finite ion momentum is thus equivalent to either a pair of electron and ion flow flux tubes, a pair of electron and ion canonical momentum flux tubes, or a pair of electron and ion canonical vorticity flux tubes. We examine the morphology of all these flux tubes for increasing electrical currents, different radial current profiles, different electron Mach numbers, and a fixed, flared, axisymmetric magnetic geometry. Calculations of gauge-invariant relative canonical helicities track the evolution of magnetic, cross, and kinetic helicities in the system, and show that ion flow fields can unwind to compensate for an increasing magnetic twist. The results demonstrate that including a species’ finite momentum can result in a very long collimated canonical vorticity flux tube even if the magnetic flux tube is flared. With finite momentum, particle density gradients must be normal to canonical vorticities, not to magnetic fields, so observations of collimated astrophysical jets could be images of canonical vorticity flux tubes instead of magnetic flux tubes.

  13. Study of Wettability of Clayey Ceramic and Fluorescent Lamp Glass Waste Powders

    Science.gov (United States)

    Morais, Alline Sardinha Cordeiro; Monteiro, Sergio Neves; Ribeiro, Sebastião; Sardinha, Leonardo Carneiro; Vieira, Carlos Maurício Fontes

    The glass tube of spent fluorescent lamps is contaminated with mercury, which might be a serious hazard in the case of conventional recycling by melting with other glasses. A possible solution could be its incorporation into a clay body to fabricate common fired ceramics such as bricks and tiles. The objective of this work is to characterize a type of fluorescent lamp glass waste to be incorporated into a clayey ceramic. The characterization was performed in terms of wettability tests to evaluate the interaction between the surface of the clayey ceramic and glass waste as a function of the firing temperature. The results showed that the contact angle decreased with increasing temperature, reaching a value of 79°, at a temperature of 1100°C, but not sufficient to completely wet the ceramic. However, compatible chemical composition and reduction of porosity by the flow of soft glass waste between the clay particles favor the consolidation of the ceramics structure above 900°C.

  14. Panel type X-ray image intensifier tube

    International Nuclear Information System (INIS)

    Wang, S.P.

    1977-01-01

    A panel shaped, proximity type, X-ray image intensifier tube for medical X-ray diagnostic is disclosed. It has all linear components and yet a high brightness gain, in the range of 500 to 20,000 cd-sec/m 2 -R, the tube being comprised of a rugged metallic tube envelope, an inwardly concave metallic input window of full size output display screen, an alkaline-halide scintillator photocathode screen suspended on insulators within the envelope and in between the input window and the output screen, and a high Z glass output window to reduce X-ray backscatter inside and outside of the tube. An X-ray sensitive photographic camera for medical diagnostic use is also disclosed which includes an X-ray sensitive image intensifier means of the proximity type and a reduction type optical system having an effective foral length in excess of 100mm for focusing the emage generated on the output display screen of the image intensifier tube onto a small size but directly viewable photographic film. The parameters of the image intensifier, the optics and the film are specified and linked to each other in a manner which maximizes the image quality for a camera system of this type and at the same time restricts the system speed of the camera to a range of 500 to 5,000 R -1 for the film to achieve a net density of 1.0. (Auth.)

  15. Particle shedding from peristaltic pump tubing in biopharmaceutical drug product manufacturing.

    Science.gov (United States)

    Saller, Verena; Matilainen, Julia; Grauschopf, Ulla; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2015-04-01

    In a typical manufacturing setup for biopharmaceutical drug products, the fill and dosing pump is placed after the final sterile filtration unit in order to ensure adequate dispensing accuracy and avoid backpressure peaks. Given the sensitivity of protein molecules, peristaltic pumps are often preferred over piston pumps. However, particles may be shed from the silicone tubing employed. In this study, particle shedding and a potential turbidity increase during peristaltic pumping of water and buffer were investigated using three types of commercially available silicone tubing. In the recirculates, mainly particles of around 200 nm next to a very small fraction of particles in the lower micrometer range were found. Using 3D laser scanning microscopy, surface roughness of the inner tubing surface was found to be a determining factor for particle shedding from silicone tubing. As the propensity toward particle shedding varied between tubing types and also cannot be concluded from manufacturer's specifications, individual testing with the presented methods is recommended during tubing qualification. Choosing low abrasive tubing can help to further minimize the very low particle counts to be expected in pharmaceutical drug products. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Qualitative and quantitative analysis of different fluid phase in samples of glass beads by X-ray microtomography

    International Nuclear Information System (INIS)

    Marques, Leonardo C.; Nagata, Rodrigo; Appoloni, Carlos R.; Moreira, Anderson C.; Fernanades, Celso P.

    2011-01-01

    The X-ray microtomography has showed to be a useful tool for studies of inner structure of reservoir rocks. Moreover recent works have used this methodology to visualize different fluid phases present in these microstructures. In this paper X-ray microtomography has been applied to visualize three fluid phases, separately or simultaneously, in addition to a solid phase (glass beads). Two glass beads samples were manufactured and scanned, one with 0.8 mm (GB1) and other with 0.6 mm (GB2) diameter, respectively. The three fluid phases used were air, oil and a water-salt-potassium iodine solution. Two Skyscan scanners were used, both a 1172 model, which employs X-ray tube with W anode and cone beam. This laboratory based equipment is able to provide images of until 1 μm spatial resolution. One microtomograph is located at CENPES/PETROBRAS and has a CCD camera of 10 mega pixels resolution. It was used to measure the GB1 sample at 4.84 μm spatial resolution. The other one is located at LAMIR/UFPR and has a CCD camera of 11 mega pixels resolution. It was used to measure the GB2 sample at 4.99 μm spatial resolution. GB1 sample was set up with three fluid phases and presented 38.0 (2.7) % of total porosity before fluid presence and 3.5 % and 19.8 %, as lower and higher average porosity values, respectively, after to be filled with them. GB2 sample was set up with oil and water-salt-potassium iodine solution separated. It presented 36.7 (1.9) % of total porosity when dried, 18.7 (2.0) % when filled with oil and 0 % when filled with the solution. The 2D images clearly show the presence of the solution in addition to the air and solid phases. They also show that the presence of oil phase is less clear than the solution. When all the phases are present together in the sample it is possible to differentiate all of them. Individual 3D images are shown for each phase present in the sample. The 3D image containing all the phases is also shown. (author)

  17. Acoustic imaging in a water filled metallic pipe

    International Nuclear Information System (INIS)

    Kolbe, W.F.; Turko, B.T.; Leskovar, B.

    1984-04-01

    A method is described for the imaging of the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe

  18. Acoustic imaging in a water filled metallic pipe

    International Nuclear Information System (INIS)

    Kolbe, W.F.; Leskovar, B.; Turko, B.T.

    1985-01-01

    A method is described for the imaging of the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe

  19. Filled skutterudite antimonides: Validation of the electron-crystal phonon-glass approach to new thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Mandrus, D; Sales, B C; Keppens, V [and others

    1997-07-01

    After a brief review of the transport and thermoelectric properties of filled skutterudite antimonides, the authors present resonant ultrasound, specific heat, and inelastic neutron scattering results that establish the existence of two low-energy vibrational modes in the filled skutterudite LaFe{sub 3}CoSb{sub 12}. It is likely that at least one of these modes represents the localized, incoherent vibrations of the La ion in an oversized atomic cage. These results support the usefulness of weakly bound, rattling ions for the improvement of thermoelectric performance.

  20. Means and method for controlling the neutron output of a neutron generator tube

    International Nuclear Information System (INIS)

    Langford, O.M.; Peelman, H.E.

    1980-01-01

    A gas filled neutron tube in a nuclear well logging tool has a target an ion source voltage and a replenisher connected to ground. A negative high voltage is applied to the target by a power supply also providing a target current corresponding to the neutron output of the neutron generator tube. A constant current source provides a constant current. A network receiving the target current and the constant current provides a portion of the constant current as a replenisher current which is applied to the replenisher in a neutron generating tube. The network controls the magnitude of the replenisher current in accordance with the target current so as to control the neutron output of the neutron generating tube. (auth)

  1. [Effect of nano-hydroxyapatite to glass ionomer cement].

    Science.gov (United States)

    Mu, Ya-Bing; Zang, Guang-Xiang; Sun, Hong-Chen; Wang, Cheng-Kun

    2007-12-01

    To investigate the mechanical character, microleakage and mineralizing potential of nano-hydroxyapatite (nano-HAP)-added glass ionomer cement(GIC). 8% nano-HAP were incorporated into GIC as composite, and pure GIC as control. Both types of material were used to make 20 cylinders respectively in order to detect three-point flexural strength and compressive strength. Class V cavities were prepared in 120 molars extracted for orthodontic treatment, then were filled by two kinds of material. The microleakage at the composite-dentine interface was observed with confocal laser scanning microscope (CLSM) after stained with 1% rhodamin-B-isothiocyanate for 24 hours. Class V cavities were prepared in the molars of 4 healthy dogs, filled with composite, and the same molars in the other side were filled with GIC as control. The teeth were extracted to observe the mineralizing property with polarimetric microscope in 8 weeks after filling. Three-point flexural strength and compressive of nano-HAP-added GIC were increased compared with pure GIC (P nano-HAP-added GIC, while there was no hydroxyapatite crystals formed at the interface of tooth and pure GIC. 8% nano-HAP-added GIC can tightly fill tooth and have mineralizing potential, and can be used as liner or filling material for prevention.

  2. Thermal analysis on x-ray tube for exhaust process

    Science.gov (United States)

    Kumar, Rakesh; Rao Ratnala, Srinivas; Veeresh Kumar, G. B.; Shivakumar Gouda, P. S.

    2018-02-01

    It is great importance in the use of X-rays for medical purposes that the dose given to both the patient and the operator is carefully controlled. There are many types of the X- ray tubes used for different applications based on their capacity and power supplied. In present thesis maxi ray 165 tube is analysed for thermal exhaust processes with ±5% accuracy. Exhaust process is usually done to remove all the air particles and to degasify the insert under high vacuum at 2e-05Torr. The tube glass is made up of Pyrex material, 95%Tungsten and 5%rhenium is used as target material for which the melting point temperature is 3350°C. Various materials are used for various parts; during the operation of X- ray tube these waste gases are released due to high temperature which in turn disturbs the flow of electrons. Thus, before using the X-ray tube for practical applications it has to undergo exhaust processes. Initially we build MX 165 model to carry out thermal analysis, and then we simulate the bearing temperature profiles with FE model to match with test results with ±5%accuracy. At last implement the critical protocols required for manufacturing processes like MF Heating, E-beam, Seasoning and FT.

  3. Ultrasonic imaging of tube/support structure of power plant steam generators

    International Nuclear Information System (INIS)

    Saniie, J.; Nagle, D.T.

    1987-01-01

    The corrosion and erosion of steam generator tubing in nuclear power plants can present problems of both safety and economics. In steam generators, the inconel tubes are fit loosely through holes drilled in carbon steel support plates. Corrosion is of particular concern with such tube/support plate structures. Non-protective magnetite can build up on the inner surface of the support plate holes, and allowed to continue unchecked, will fill the gap, eventually denting and fracturing the tube walls. Therefore, periodic nondestructive inspection can be valuable in characterizing corrosion and can be used in evaluating the effectiveness of chemical treatments used to control or reduce corrosion. Presently, they are investigating the feasibility and practicality of using ultrasound in routing testing for gap measurement, for evaluating the corrosion and assessing the degree of denting. The tube/support structure can be modeled as a multilayer, reverberant target, which when tested with ultrasound results in two sets of reverberating echoes [1]. One set corresponds to the tube wall and the other to the support plate. These echoes must be decomposed and identified in order to evaluate the tube/support structure. This report presents experimental results along with a discussion of various measurements and processing techniques for decomposing and interpreting tube/support echoes at different stages of corrosion

  4. Fluoride release and surface roughness of a new glass ionomer cement: glass carbomer

    Directory of Open Access Journals (Sweden)

    Célia Maria Condeixa de França LOPES

    2018-02-01

    Full Text Available Abstract Objective This study analyzed the fluoride release/recharge and surface roughness of glass carbomer compared to other encapsulated glass ionomer cements (GICs. Material and method The GICs tested were Glass Fill® (GC-GCP Dental, Riva Self Cure® (RS-SDI, Riva Light Cure® (RL-SDI, Equia Fil® (EF-GC Europe. The composite resin Luna® (LU-SDI was used as control. Five samples of each material were prepared and kept in a humidifier for 24 hours (37 °C, 100% relative humidity. Fluoride release was measured in two times: before (T1: days 1, 2, 7, 14 and after topical application of fluoride (T2: days 15, 16, 21 and 28. The surface roughness was also measured in both times (T1: days 1 and 14; T2: days 15 and 28. All samples were submitted to a single topical application of acidulated fluoride phosphate (Fluor Care - FGM. Two-way ANOVA with repeated measures and Tukey's post-test (p <0.05 were used in the statistical analysis. Result Equia Fil presented the highest fluoride release in both evaluation periods, with a higher release in T1 (p <0.05. The other materials tested, including glass carbomer presented similar release in both periods (T1 and T2. Regarding surface roughness, no significant differences were observed in the interaction between the material × time factors (T1 and T2 (p=0.966. Conclusion The GICs tested presented fluoride release and recharge ability and showed no surface roughness increase by topical application of fluoride.

  5. Molecular dynamics investigations on the interfacial energy and adhesive strength between C{sub 60}-filled carbon nanotubes and metallic surface

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Jenn-Kun [Department of Greenergy, National University of Tainan, Tainan 70005, Taiwan (China); Huang, Pei-Hsing, E-mail: phh@mail.npust.edu.tw [Department of Mechanical Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan (China); Wu, Wei-Te; Hsu, Yi-Cheng [Department of Biomechatronics Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan (China)

    2014-01-15

    The mechanical and adhesive properties of C{sub 60}@(10,10) carbon nanopeapods (CNPs) adhering to gold surfaces are investigated by atomistic simulations. The effects of C{sub 60} fill density, tube length, surrounding temperature, and peeling velocity on the adhesion behavior are studied. Results show that the interfacial binding energy of CNPs (which depends on the C{sub 60} fill density and temperature) is 2.0∼4.4% higher than that of (10,10) single-walled CNTs and 3.4∼4.7% lower than that of (5,5)@(10,10) double-walled CNTs (DWCNTs). Despite their lower interfacial binding energy, CNPs have a higher adhesive strength than that of DWCNTs (1.53 nN vs. 1.4 nN). Distinct from the inner tubes of DWCNTs, which have continuum mechanical properties, the discrete C{sub 60} molecules that fill CNPs exhibit unique composite mechanical properties, with high flexibility and bend-buckling resistance. The bend-buckling forces for CNPs filled with a low/medium fill density of C{sub 60} are approximately constant. When the fill density is 1 C{sub 60} molecule per nanometer length, the bend-buckling force dramatically increases. - Highlights: • Adhesion and peeling behaviors of CNPs on metallic substrates are investigated. • Effects of C60 density, CNP length, temperature, and peeling velocity are studied. • CNPs have a higher adhesive strength than that of DWCNTs (1.53 nN vs. 1.4 nN). • Discrete C{sub 60} molecules that fill CNPs exhibit unique composite mechanical properties.

  6. Stable sonoluminescence within a water hammer tube.

    Science.gov (United States)

    Chakravarty, Avik; Georghiou, Theo; Phillipson, Tacye E; Walton, Alan J

    2004-06-01

    The sonoluminescence (SL) from the collapse of a single gas bubble within a liquid can be produced repetitively using an acoustic resonator. An alternative technique using a water hammer tube, producing SL from bubbles of greater size, is described here. A sealed vertical tube partly filled with a liquid and a gas at low pressure is subjected to vertical vibrations. The oscillation of the pressure within the liquid column, due to inertial forces, excites cavitation bubbles to grow and collapse. Rotation is used to confine the bubbles to the axis of the tube. Bright SL emissions were observed in a number of liquids. Repetitive emission was produced from bubbles in condensed phosphoric acid. Bubbles of 0.4 mm ambient radius (containing 2x 10(14) xenon atoms) were excited by vibration at 35 Hz. Approximately 10(12) photons were emitted per collapse in the range 400-700 nm (over four orders of magnitude greater than the brightest SL reported previously), corresponding to a 1% efficiency of the conversion of mechanical energy into light.

  7. Characterization of projected DWPF glasses heat treated to simulate canister centerline cooling

    International Nuclear Information System (INIS)

    Marra, S.L.; Jantzen, C.M.

    1992-05-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Eventually these canistered waste forms will be sent to a geologic repository for final disposal. In order to assure acceptability by the repository, the Department of Energy has defined requirements which DWPF canistered waste forms must meet. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to identify the crystalline phases expected to be present in the final glass product. Knowledge of the thermal history of the borosilicate glass during filling and cooldown of the canister is necessary to determine the amount and type of crystalline phases present in the final glass product. Glass samples of seven projected DWPF compositions were cooled following the same temperature profile as that of glass at the centerline of the full-scale DWPF canister. The glasses were characterized by x-ray diffraction and scanning electron microscopy to identify the crystalline phases present The volume percents of each crystalline phase present were determined by quantitative x-ray diffraction. The Product Consistency Test (PCI) was used to determine the durability of the heat-treated glasses

  8. Improved hopcalite procedure for the determination of mercury vapor in air by flameless atomic absorption.

    Science.gov (United States)

    Rathje, A O; Marcero, D H

    1976-05-01

    Mercury vapor is efficiently trapped from air by passage through a small glass tube filled with hopcalite. The hopcalite and adsorbed mercury are dissolved in a mixture of nitric and hydrochloric acids. Solution is rapid and complete, with no loss of mercury. Analysis is completed by flameless atomic absorption.

  9. Endotracheal tube cuff pressures during general anaesthesia while using air versus a 50% mixture of nitrous oxide and oxygen as inflating agents

    Directory of Open Access Journals (Sweden)

    Jesni Joseph Manissery

    2007-01-01

    Full Text Available The present study was aimed at assessing the efficacy of filling a 50% mixture of nitrous oxide : oxygen (50%N 2 O:O 2 in the endotracheal tube cuff to provide stable cuff pressures during general anaesthesia with 67%N 2 O. The endotracheal tube cuff pressures with air (control as the inflating agent in the tubes were found to have a total mean pressure of 62.60±12.33 at the end of one hour of general anaesthesia. When comparing the endotracheal tube cuff pressures in the Mallinckrodt tubes with that of the Portex tubes, with air as the inflating agent, the Portex tubes showed a significantly lower cuff pressures at the end of one hour. The endotracheal tube cuff pressures with 50%N 2 O:O 2 as the inflating agent showed a total mean pressure of 27.63 ± 3.221 at the end of one hour of general anaesthesia. This indicates that inflation of the cuff of the endotracheal tubes with a 50%N 2 O:O 2 rather than air maintains a stable intra cuff pressure. Therefore, the method of using a 50%N 2 O:O 2 for filling endotracheal tube cuff can be adopted for endotracheal tubes with high-volume, low-pressure cuffs to prevent both excessive cuff pressure and disruption of cuff seal, during general anaesthesia lasting up to one hour.

  10. Gastrostomy Tube (G-Tube)

    Science.gov (United States)

    ... any of these problems: a dislodged tube a blocked or clogged tube any signs of infection (including redness, swelling, or warmth at the tube site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site severe abdominal pain lasting ...

  11. Geo synthetics in hydraulic and coastal engineering: Filters, revetments and sand filled structures

    International Nuclear Information System (INIS)

    Bezuijen, A.; Pilarczyk, K. W.

    2014-01-01

    The paper deals with 2 applications of geo textiles in coastal and hydraulic engineering: Geo textiles in filters and revetments; and geo textiles in sand filled structure. Geo textiles are often replacing granular filters. However, they have different properties than a granular filter. For the application of geo textiles in revetments, the consequences of the different properties will be shown: how permeability is influenced by a geo textile and what can be the consequences of the weight differences between granular and geo textile filters. In the other application, the filter properties of geo textiles are only secondary. In geo textile tubes and containers the geo textile is used as wrapping material to create large unties that will not erode during wave attach. the structures with geo textile tubes and containers serve as an alternative for rock based structures. The first of these structures were more or less constructed by trial and error, but research on the shape of the structures, the stability under wave attach and the durability of the used of the used material has given the possibility to use design tools for these structures. Recently also the morphological aspects of these structures have been investigated. This is of importance because regularly structures with geo textile tubes fail due to insufficient toe protection against the scour hole that that develops in front of the structure, leading to undermining of the structure. Recent research in the Dealt Flume of Deltares and the Large Wave Flume in Hannover has led to better understanding what mechanisms determine the stability under wave attach. It is shown that also the degree of filling is of importance and the position of the water level with respect to the tube has a large influence. (Author)

  12. New Approach in Filling of Fixed-Point Cells: Case Study of the Melting Point of Gallium

    Science.gov (United States)

    Bojkovski, J.; Hiti, M.; Batagelj, V.; Drnovšek, J.

    2008-02-01

    The typical way of constructing fixed-point cells is very well described in the literature. The crucible is loaded with shot, or any other shape of pure metal, inside an argon-filled glove box. Then, the crucible is carefully slid into a fused-silica tube that is closed at the top with an appropriate cap. After that, the cell is removed from the argon glove box and melted inside a furnace while under vacuum or filled with an inert gas like argon. Since the metal comes as shot, or in some other shape such as rods of various sizes, and takes more volume than the melted material, it is necessary to repeat the procedure until a sufficient amount of material is introduced into the crucible. With such a procedure, there is the possibility of introducing additional impurities into the pure metal with each cycle of melting the material and putting it back into the glove box to fill the cell. Our new approach includes the use of a special, so-called dry-box system, which is well known in chemistry. The atmosphere inside the dry box contains less than 20 ppm of water and less than 3 ppm of oxygen. Also, the size of the dry box allows it to contain a furnace for melting materials, not only for gallium but for higher-temperature materials as well. With such an approach, the cell and all its parts (pure metal, graphite, fused-silica tube, and cap) are constantly inside the controlled atmosphere, even while melting the material and filling the crucible. With such a method, the possibility of contaminating the cell during the filling process is minimized.

  13. Optical Basicity and Nepheline Crystallization in High Alumina Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carmen P.; McCloy, John S.; Schweiger, M. J.; Crum, Jarrod V.; Winschell, Abigail E.

    2011-02-25

    The purpose of this study was to find compositions that increase waste loading of high-alumina wastes beyond what is currently acceptable while avoiding crystallization of nepheline (NaAlSiO4) on slow cooling. Nepheline crystallization has been shown to have a large impact on the chemical durability of high-level waste glasses. It was hypothesized that there would be some composition regions where high-alumina would not result in nepheline crystal production, compositions not currently allowed by the nepheline discriminator. Optical basicity (OB) and the nepheline discriminator (ND) are two ways of describing a given complex glass composition. This report presents the theoretical and experimental basis for these models. They are being studied together in a quadrant system as metrics to explore nepheline crystallization and chemical durability as a function of waste glass composition. These metrics were calculated for glasses with existing data and also for theoretical glasses to explore nepheline formation in Quadrant IV (passes OB metric but fails ND metric), where glasses are presumed to have good chemical durability. Several of these compositions were chosen, and glasses were made to fill poorly represented regions in Quadrant IV. To evaluate nepheline formation and chemical durability of these glasses, quantitative X-ray diffraction (XRD) analysis and the Product Consistency Test were conducted. A large amount of quantitative XRD data is collected here, both from new glasses and from glasses of previous studies that had not previously performed quantitative XRD on the phase assemblage. Appendix A critically discusses a large dataset to be considered for future quantitative studies on nepheline formation in glass. Appendix B provides a theoretical justification for choice of the oxide coefficients used to compute the OB criterion for nepheline formation.

  14. Lead extraction from Cathode Ray Tube (CRT) funnel glass: Reaction mechanisms in thermal reduction with addition of carbon (C).

    Science.gov (United States)

    Lu, Xingwen; Ning, Xun-An; Chen, Da; Chuang, Kui-Hao; Shih, Kaimin; Wang, Fei

    2018-06-01

    This study quantitatively determined the extraction of lead from CRT funnel glass and examined the mechanisms of thermally reducing lead in the products of sintering Pb-glass with carbon in the pre-heated furnace. The experimentally derived results indicate that a 90.3 wt% lead extraction efficiency can be achieved with 20 wt% of C addition at 950 °C for 3 min under air. The formation of viscous semi-liquid glass blocked the oxygen supply between the interaction of C and Pb-glass, and was highly effective for the extraction of metallic Pb. A maximum of 87.3% lead recover was obtained with a C to Na 2 CO 3 ratio of 1/3 at 1200 °C. The decrease of C/Na 2 CO 3 ratio enhanced the metallic lead recovery by increasing the glass viscosity for effective sedimentation of metallic lead in the bottom. However, with the further increase of temperature and treatment time, re-vitrification of lead back to silicate-glass matrix was detected in both Pb-glass/C and Pb-glass/C/Na 2 CO 3 systems. The findings indicated that with proper controls, using C as an inexpensive reagent can effectively reduce treatment time and energy, which is crucial to a waste-to-resource technology for economically recovering lead from the waste CRT glass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. [The effects of Ketac Molar Aplicap glass-ionomer material on growth of cariogenic bacteria contained in the dental plaque].

    Science.gov (United States)

    Płuciennik-Stronias, Małgorzata; Sakowska, Danuta; Paul-Stalmaszczyk, Małgorzata; Bołtacz-Rzepkowska, Elzbieta

    2012-01-01

    In the aging population, the prevalence of root caries has been observed, which is a characteristic feature of the elderly people. The most important element used in caries prevention is fluoride, which is derived from the air, diet or fluoride-containing preparations and materials, e.g. glass-ionomer restorations. The aim of the study was to evaluate the effect of Ketac Molar Aplicap glass-ionomer on the growth of Lactobacillus sp. bacteria, one of the species most frequently found in the carietic focus of the tooth root. The study was carried out in 15 patients with good oral hygiene, in whom 35 fillings from Ketac Molar Aplicap conventional glass-ionomer material were performed. After 6 months, three-day dental plaque from these fillings and from the tooth enamel of the control group was examined. No statistically significant differences (p = 0.554) in the amounts of Lactobacillus sp. between the study and control group were revealed. Lack of inhibiting effect of glass-ionomer material on the growth of the dental plaque with Lactobacillus sp. after the time of observation is implied.

  16. Computer program TMOC for calculating of pressure transients in fluid filled piping networks

    International Nuclear Information System (INIS)

    Siikonen, T.

    1978-01-01

    The propagation of a pressure wave in fluid filles tubes is significantly affected by the pipe wall motion and vice versa. A computer code TMOC (Transients by the Method of Characteristics) is being developed for the analysis of the coupled fluid and pipe wall transients. Because of the structural feedback, the pressure can be calculated more accurately than in the programs commonly used. (author)

  17. Stability of levothyroxine injection in glass, polyvinyl chloride, and polyolefin containers.

    Science.gov (United States)

    Frenette, Anne Julie; MacLean, Robert D; Williamson, David; Marsolais, Pierre; Donnelly, Ronald F

    2011-09-15

    The 24-hour stability of a levothyroxine solution admixed and stored in three common infusion containers and infused through polyvinyl chloride (PVC) tubing was evaluated. Levothyroxine sodium 1-μg/mL injection prepared in glass bottles and PVC and polyolefin bags were assayed using high-performance liquid chromatography at 0, 1, 3, 6, 12, and 24 hours; samples drawn directly from the containers, as well as from the distal end of attached PVC tubing, were assayed. The area under the time-versus-concentration curve (AUC) for predicted and delivered doses was calculated; analysis of variance was used for comparison of the percentages of predicted and actual AUC values. The levothyroxine concentration was stable in glass bottles and polyolefin bags through 24 hours (mean ± S.D. percentage of initial concentration remaining, 103.5% ± 2.5% and 100.0% ± 2.9%, respectively). In the PVC infusion bags, the amount of drug decreased to 90% of the initial concentration within 1 hour and then rose and remained within acceptability limits. The levothyroxine concentration of the samples infused through PVC line from glass and polyolefin containers decreased after 1 hour by about 13%; the loss of the drug from the samples infused from PVC bags was higher (18%), presumably due to additive adsorptive effects. In all samples tested, the drug concentration rebounded and remained above 90% to the end of the study. Levothyroxine sodium 1-μg/mL solution was stable for 24 hours in glass bottles and polyolefin bags but when stored in PVC bags, the concentration decreased by 10% after 1 hour.

  18. Research of decreasing of the cesium radionuclides discharge in the course pouring of the liquid glass from furnace EhP-500/1

    International Nuclear Information System (INIS)

    Sadovskij, B.F.; Borisov, N.B.; Dzekun, E.G.; Skobtsov, A.S.

    1996-01-01

    Cesium radionuclides discharge from the furnace liquid-glass discharge unit are studied and estimates of cesium emission from the glass melt by the stream flow-out and filling the waste storage capacity are performed. The ways for decreasing cesium discharges are indicated and new additional aerosol protection system for high-active glass discharge, providing for high protection efficiency is proposed. 10 refs., 1 fig., 1 tab

  19. Experimental Investigation of Thermal Properties in Glass Fiber Reinforced with Aluminium

    Science.gov (United States)

    Irudaya raja, S. Joseph; Vinod Kumar, T.; Sridhar, R.; Vivek, P.

    2017-03-01

    A test method of a Guarded heat flow meter are used to measure the thermal conductivity of glass fiber and filled with a aluminum powder epoxy composites using an instrument in accordance with ASTM. This experimental study reveals that the incorporation of aluminum and glass fiber reinforced results in enhancement of thermal conductivity of epoxy resin and thereby improves its heat transfer capability. Fiber metal laminates are good candidates for advanced automobile structural applications due to their high categorical mechanical and thermal properties. The most consequential factor in manufacturing of these laminates is the adhesive bonding between aluminum and FRP layers. Here several glass-fiber reinforced aluminum were laminates with different proportion of bonding adhesion were been manufactured. It was observed that the damage size is more preponderant in laminates with poor interfacial adhesion compared to that of laminates with vigorous adhesion between aluminum and glass layers numerically calculated ones and it is found that the values obtained for various composite models using experimental testing method.

  20. Tube Inner Coating of Non-Conductive Films by Pulsed Reactive Coaxial Magnetron Plasma with Outer Anode

    Directory of Open Access Journals (Sweden)

    Musab Timan Idriss Gasab

    2018-03-01

    Full Text Available The double-ended coaxial magnetron pulsed plasma (DCMPP method with auxiliary outer anode was introduced in order to achieve the uniform coating of non-conductive thin films on the inner walls of insulator tubes. In this study, titanium (Ti was employed as a cathode (sputtering target, and a glass tube was used as a substrate. In an argon (Ar and oxygen (O2 gas mixture, magnetron plasma was generated. Oxygen gas was introduced to deposit a titanium oxide (TiO2 film. A comparison between films coated with and without an auxiliary outer anode was made. As a result, it was clearly shown that the DCMPP method using an auxiliary outer anode enhanced the uniformity of the deposited non-conductive film compared to the conventional DCMPP method. Moreover, the optimum conditions under which the thin TiO2 film was deposited on the inner wall of the glass tube were revealed. From the results, it was supposed that the auxiliary outer anode contributed to the uniformity of the distributions of deposited negative charge on the non-conductive film and consequently the electric field and the plasma density uniform.

  1. Process and device for change of catalyst in tube reactors

    International Nuclear Information System (INIS)

    Fedders, H.; Cremer, P.; Erben, R.

    1985-01-01

    The change of catalyst in narrow reactor tubes with a height: diameter ratio of at least 30:1 is done by the catalyst filling being driven out against the force of gravity using a pulsating liquid flow. Pauses in the flow of between 0.1 to 1 sec between flow periods of 2 to 20 secs are useful. (orig./PW) [de

  2. Tuning gain and bandwidth of traveling wave tubes using metamaterial beam-wave interaction structures

    International Nuclear Information System (INIS)

    Lipton, Robert; Polizzi, Anthony

    2014-01-01

    We employ metamaterial beam-wave interaction structures for tuning the gain and bandwidth of short traveling wave tubes. The interaction structures are made from metal rings of uniform cross section, which are periodically deployed along the length of the traveling wave tube. The aspect ratio of the ring cross sections is adjusted to control both gain and bandwidth. The frequency of operation is controlled by the filling fraction of the ring cross section with respect to the size of the period cell.

  3. YouTube, dentistry, and dental education.

    Science.gov (United States)

    Knösel, Michael; Jung, Klaus; Bleckmann, Annalen

    2011-12-01

    The objective of this study was to systematically assess the informational value, intention, source, and bias of videos related to dentistry available on the video-sharing Internet platform YouTube. YouTube (www.youtube.com) was searched for videos related to dentistry, using the system-generated sorts "by relevance" and "most viewed" and two categories (All and Education). Each of the first thirty results was rated by two assessors filling out a questionnaire for each (total: 120). The data were subjected to statistical analysis using Cohen's kappa, Pearson's correlation coefficient tau, Mann-Whitney U-tests, and a nonparametric three-way ANOVA, including an analysis of the interaction between the sorting and category effect, with an α-level of 5 percent. The scan produced 279,000 results in the category All and 5,050 in the category Education. The analysis revealed a wide variety of information about dentistry available on YouTube. The purpose of these videos includes entertainment, advertising, and education. The videos classified under Education have a higher degree of usefulness and informational value for laypersons, dental students, and dental professionals than those found in a broader search category. YouTube and similar social media websites offer new educational possibilities that are currently both underdeveloped and underestimated in terms of their potential value. Dentists and dental educators should also recognize the importance of these websites in shaping public opinion about their profession.

  4. Laboratory culture for 14C-labeling of Chlorella and Oedogonium

    International Nuclear Information System (INIS)

    Krzywicka, A.M.; Wagner, G.H.

    1975-01-01

    Algae were cultured in experiments that attained efficient CO 2 utilization permitting 14 C=labeling of cells and that compared growth characteristics of unicellular Chlorella sp. and filamentous Oedogonium sp. Culture vessels were 500ml glass tubes through which air enriched to 5% CO 2 was slowly metered. The tubes, used in a vertical position for growing Chlorella, were filled with culture medium and the cells kept in suspension using a mganetic stirrer. Tubes placed horizontally and half filled with medium were used for Oedogonium permitting the 3g/l. in 5 days for Chlorella and 1 g/0.5 1. in 10 days for 3g/l. in 2 days for Chlorella and 1 g/0.5 l. in 10 days for Oedogonium. Efficiency and rate of CO 2 fixation, cell size and cell weight for the two algae are evaluated. (author)

  5. X3 expansion tube driver gas spectroscopy and temperature measurements

    Science.gov (United States)

    Parekh, V.; Gildfind, D.; Lewis, S.; James, C.

    2018-07-01

    The University of Queensland's X3 facility is a large, free-piston driven expansion tube used for super-orbital and high Mach number scramjet aerothermodynamic studies. During recent development of new scramjet test flow conditions, experimentally measured shock speeds were found to be significantly lower than that predicted by initial driver performance calculations. These calculations were based on ideal, isentropic compression of the driver gas and indicated that loss mechanisms, not accounted for in the preliminary analysis, were significant. The critical determinant of shock speed is peak driver gas sound speed, which for a given gas composition depends on the peak driver gas temperature. This temperature may be inaccurately estimated if an incorrect fill temperature is assumed, or if heat losses during driver gas compression are significant but not accounted for. For this study, the ideal predicted peak temperature was 3750 K, without accounting for losses. However, a much lower driver temperature of 2400 K is suggested based on measured experimental shock speeds. This study aimed to measure initial and peak driver gas temperatures for a representative X3 operating condition. Examination of the transient temperatures of the driver gas and compression tube steel wall during the initial fill process showed that once the filling process was complete, the steady-state driver gas temperature closely matched the tube wall temperature. Therefore, while assuming the gas is initially at the ambient laboratory temperature is not a significant source of error, it can be entirely mitigated by simply monitoring tube wall temperature. Optical emission spectroscopy was used to determine the driver gas spectra after diaphragm rupture; the driver gas emission spectrum exhibited a significant continuum radiation component, with prominent spectral lines attributed to contamination of the gas. A graybody approximation of the continuum suggested a peak driver gas temperature of

  6. X3 expansion tube driver gas spectroscopy and temperature measurements

    Science.gov (United States)

    Parekh, V.; Gildfind, D.; Lewis, S.; James, C.

    2017-11-01

    The University of Queensland's X3 facility is a large, free-piston driven expansion tube used for super-orbital and high Mach number scramjet aerothermodynamic studies. During recent development of new scramjet test flow conditions, experimentally measured shock speeds were found to be significantly lower than that predicted by initial driver performance calculations. These calculations were based on ideal, isentropic compression of the driver gas and indicated that loss mechanisms, not accounted for in the preliminary analysis, were significant. The critical determinant of shock speed is peak driver gas sound speed, which for a given gas composition depends on the peak driver gas temperature. This temperature may be inaccurately estimated if an incorrect fill temperature is assumed, or if heat losses during driver gas compression are significant but not accounted for. For this study, the ideal predicted peak temperature was 3750 K, without accounting for losses. However, a much lower driver temperature of 2400 K is suggested based on measured experimental shock speeds. This study aimed to measure initial and peak driver gas temperatures for a representative X3 operating condition. Examination of the transient temperatures of the driver gas and compression tube steel wall during the initial fill process showed that once the filling process was complete, the steady-state driver gas temperature closely matched the tube wall temperature. Therefore, while assuming the gas is initially at the ambient laboratory temperature is not a significant source of error, it can be entirely mitigated by simply monitoring tube wall temperature. Optical emission spectroscopy was used to determine the driver gas spectra after diaphragm rupture; the driver gas emission spectrum exhibited a significant continuum radiation component, with prominent spectral lines attributed to contamination of the gas. A graybody approximation of the continuum suggested a peak driver gas temperature of

  7. Flow visualization and simulation of the filling process during injection molding

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Tosello, Guido; Hattel, Jesper Henri

    2017-01-01

    To directly compare experimental moldings from an injection molding machine with simulations, a special mold has been produced with a glass window. The injection plane is perpendicular to the opening and closing planes, in order for the 55. mm thick glass window to be easily visible from the side....... These two had significant effects on the filling times and injection pressure calculated by the simulations. Other effects investigated included transient thermal management of the mold, pressure dependent viscosity and wall slip, but their effect were not remarkably large in this work. The obtained....... A high speed camera recording 500 frames per second was employed, and the mold had three thermocouples and two pressure sensors installed. The molded part is a 2. mm thick plate with a 0.5. mm thin section, which creates a characteristic V-shaped flow pattern. Two different materials were employed...

  8. Quantitative evaluation of compactness of concrete-filled fiber-reinforced polymer tubes using piezoceramic transducers and time difference of arrival

    Science.gov (United States)

    Xu, Yang; Luo, Mingzhang; Hei, Chuang; Song, Gangbing

    2018-03-01

    Owing to its light weight and corrosion resistance, the concrete-filled fiber-reinforced polymer tube (CFFT) structure has a broad application prospect; the concrete compactness is key to the strength of CFFTs. To meet the urgent requirement of compactness monitoring of CFFTs, a quantitative method, which uses an array of four equally spaced piezoceramic patches and an ultrasonic time difference of arrival (TDOA) algorithm, is developed. Since the velocity of the ultrasonic wave propagation in fiber-reinforced polymer (FRP) material is about half of that in concrete material, the compactness condition of CFFT impacts the piezoceramic-induced wave propagation in the CFFT, and differentiates the TDOA for different receivers. An important condition is the half compactness, which can be judged by the Half Compactness Indicator (HCI) based on the TDOAs. To characterize the difference of stress wave propagation durations from the emitter to different receivers, which can be utilized to calculate the concrete infill compactness, the TDOA ratio (TDOAR) is introduced. An innovative algorithm is developed in this paper to estimate the compactness of the CFFT using HCI and TDOAR values. Analytical, numerical, and experimental studies based on a CFFT with seven different states of compactness (empty, 1/10, 1/3, 1/2, 2/3, 9/10, and full) are carried out in this research. Analyses demonstrate that there is a good agreement among the analytical, numerical, and experimental results of the proposed method, which employs a piezoceramic transducer array and the TDOAR for quantitative estimating the compactness of concrete infill in a CFFT.

  9. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  10. Transition to chaos of a vertical collapsible tube conveying air flow

    International Nuclear Information System (INIS)

    Flores, F Castillo; Cros, A

    2009-01-01

    'Sky dancers', the large collapsible tubes used as advertising, are studied in this work through a simple experimental device. Our study is devoted to the nonlinear dynamics of this system and to its transition to chaos. Firstly, we have shown that after a collapse occurs, the air fills the tube at a different speed rate from the flow velocity. Secondly, the temporal intermittency is studied as the flow rate is increased. A statistical analysis shows that the chaotic times maintain roughly the same value by increasing air speed. On the other hand, laminar times become shorter, until the system reaches a completely chaotic state.

  11. Transition to chaos of a vertical collapsible tube conveying air flow

    Energy Technology Data Exchange (ETDEWEB)

    Flores, F Castillo; Cros, A, E-mail: anne_cros@yahoo.co [Departamento de Fisica, Universidad de Guadalajara, 44430 Jalisco (Mexico)

    2009-05-01

    'Sky dancers', the large collapsible tubes used as advertising, are studied in this work through a simple experimental device. Our study is devoted to the nonlinear dynamics of this system and to its transition to chaos. Firstly, we have shown that after a collapse occurs, the air fills the tube at a different speed rate from the flow velocity. Secondly, the temporal intermittency is studied as the flow rate is increased. A statistical analysis shows that the chaotic times maintain roughly the same value by increasing air speed. On the other hand, laminar times become shorter, until the system reaches a completely chaotic state.

  12. Vibration Considerations for Cryogenic Tanks Using Glass Bubbles Insulation

    Science.gov (United States)

    Werlink, Rudolph J.; Fesmire, James E.; Sass, Jared P.

    2011-01-01

    The use of glass bubbles as an efficient and practical thermal insulation system has been previously demonstrated in cryogenic storage tanks. One such example is a spherical, vacuum-jacketed liquid hydrogen vessel of 218,000 liter capacity where the boiloff rate has been reduced by approximately 50 percent. Further applications may include non-stationary tanks such as mobile tankers and tanks with extreme duty cycles or exposed to significant vibration environments. Space rocket launch events and mobile tanker life cycles represent two harsh cases of mechanical vibration exposure. A number of bulk fill insulation materials including glass bubbles, perlite powders, and aerogel granules were tested for vibration effects and mechanical behavior using a custom design holding fixture subjected to random vibration on an Electrodynamic Shaker. The settling effects for mixtures of insulation materials were also investigated. The vibration test results and granular particle analysis are presented with considerations and implications for future cryogenic tank applications. A thermal performance update on field demonstration testing of a 218,000 L liquid hydrogen storage tank, retrofitted with glass bubbles, is presented. KEYWORDS: Glass bubble, perlite, aerogel, insulation, liquid hydrogen, storage tank, mobile tanker, vibration.

  13. THE LAWS OF MOLECULAR AND VISCOUS FLOW OF GASES THROUGH TUBES. Die Gesetze der Molekularstroemung und der inneran Reibungsstroemung der Gase durch Roehren

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, M

    1909-07-01

    Experimental data from studies of the flow of H/sub 2/, O/sub 2/, and CO/ sub 2/ through glass capillary tubes were collected and treated to determine the effect of tube dimensions and physical properties of the gases on molecular flow. Laws governing the transition from viscous to molecular flow were also sought. (T.R.H.)

  14. Angiogenesis stimulated by novel nanoscale bioactive glasses

    International Nuclear Information System (INIS)

    Mao, Cong; Chen, Xiaofeng; Miao, Guohou; Lin, Cai

    2015-01-01

    The ability of biomaterials to induce rapid vascular formation is critical in tissue regeneration. Combining recombinant angiogenic growth factors with bioengineered constructs have proven to be difficult due to several issues, including the instability of recombinant proteins, the need for sustained delivery and the dosage of factors. New formulations of bioactive glass, 58S nanosized bioactive glass (58S-NBG), have been reported to enhance wound healing in animal models better than the first generation of 45S5 Bioglass. Therefore, we investigated the effects of extracts of 58S-NBG and 80S-NBG on cultures of human umbilical vein endothelial cells (HUVECs). Cell viability was assessed by MTS assay. In vitro angiogenesis was measured using an ECM gel tube formation assay, and levels of mRNAs for five angiogenic related genes were measured by qRT-PCR. Extracts of 58S-NBG and 80S-NBG stimulated the proliferation of HUVECs, accelerated cell migration, up-regulated expression of the vascular endothelial growth factor, basic fibroblast growth factor, their receptors, and endothelial nitric oxide synthase, resulting in enhanced tube formation in vitro. The enhanced angiogenic response correlated with increased levels of Ca and Si in the extracts of 58S-NBG and 80S-NBG. The ability of 58S-NBG and 80S-NBG to stimulate angiogenesis in vitro provides alternative approaches for stimulating neovascularization of tissue-engineered constructs. (paper)

  15. Development of NDT techniques for the inspection of WSGHWR pressure tubes

    International Nuclear Information System (INIS)

    Gray, B.S.; Highmore, P.J.; Rudlin, J.R.; Cooper, A.G.

    1979-01-01

    The fuel for the Steam Generating Heavy Water Reactor at Winfrith Heath is contained in vertical Zircaloy pressure tubes and is cooled by boiling light water. This paper describes the development of NDT techniques for the inservice examination of the pressure tubes to provide continuing assurance of the absence of axial crack-like defects. The resultant equipment has to operate in water-filled tubes in the presence of the radiation field due to the irradiated fuel elements in adjacent tubes. Also, a layer of surface oxide on the inside of the tubes has been found to significantly affect the behaviour of a prototype inspection device. To provide adequate sensitivity in these conditions, without the occurrence of unnecessary spurious indications, a combination of techniques has been developed. This involves the use of ultrasonics in both pulse-echo and 'pitch and catch' mode together with a single frequency eddy current technique. Laboratory work using artificial defects is described and also how the development programme was modified to accommodate the results of in-reactor tests using a prototype device. Reference is also made to the development of CCTV equipment to provide a supplementary visual examination. (author)

  16. Capillary Tube and Thermostatic Expansion Valve Comparative Analysis in Water Chiller Air Conditioning

    Science.gov (United States)

    Wijaya Sunu, Putu; Made Rasta, I.; Anakottapary, Daud Simon; Made Suarta, I.; Cipta Santosa, I. D. M.

    2018-01-01

    The aims of this study to compares the performance characteristics of a water chiller air conditioning simulation equipped with thermostatic expansion valve (TEV) with those of a capillary tube. Water chiller system filled with the same charge of refrigerant. Comparative analyses were performed based on coefficient of performance (COP) and performance parameter of the refrigeration system, carried out at medium cooling load level with the ambient temperature of 29-31°C, constant compressor speed and fixed chilled water volume flowrate at 15 lpm. It was shown that the TEV system showed better energy consumption compared to that of capillary tube. From the coefficient of performance perspective, the thermostatic expansion valve system showed higher COP (± 21.4%) compared to that of capillary tube system.

  17. Glass capillary optics for making x-ray beams of 0.1 to 50 microns diameter

    International Nuclear Information System (INIS)

    Bilderback, Donald H.; Fontes, Ernest

    1997-01-01

    We have fabricated a unique computerized glass puller that can make parabolic or elliptically tapered glass capillaries for microbeam x-ray experiments from hollow glass tubing. We have produced optics that work in a single-bounce imaging mode or in a multi-bounce condensing mode. The imaging-mode capillaries have been used to create 20 to 50 micron diameter x-ray beams at 12 keV that are quite useful for imaging diffraction patterns from tiny bundles of carbon and Kevlar fibers. The condensing-mode capillaries are useful for creating submicron diameter beams and show great promise in x-ray fluorescence applications with femtogram sensitivity for patterned Er and Ti dopants diffused into an optically-active lithium niobate wafer

  18. Insertion of marble waste in the production chain of glass wool

    International Nuclear Information System (INIS)

    Rodrigues, G.F.; Alves, J.O.; Espinosa, D.C.R.; Tenorio, J.A.S.

    2010-01-01

    The work aimed the study of the recycle of the waste from marble cutting, aiming the reuse as partial raw material in the production of glass wool. Glass wool are materials with chemical and mechanical resistance, durability and lightness, and also important thermo-acoustic properties. A mixture of the waste with chemical additives was melted in a laboratory electric furnace using temperature of 1450 deg C. The melted material was directly poured in a water-filled recipient aiming the rapidly cooling. Samples of the produced material were characterized by XRD, SEM and DTA. The results showed that the residue from marble cutting can be inserted into the productive chain of glass wool, providing a decrease in the extraction of mineral resources, a profitable destination for this waste, and a economy for the companies producer of thermo-acoustic insulators. (author)

  19. Fluorescent Lamp Glass Waste Incorporation into Clay Ceramic: A Perfect Solution

    Science.gov (United States)

    Morais, Alline Sardinha Cordeiro; Vieira, Carlos Maurício Fontes; Rodriguez, Rubén Jesus Sanchez; Monteiro, Sergio Neves; Candido, Veronica Scarpini; Ferreira, Carlos Luiz

    2016-09-01

    The mandatory use of fluorescent lamps as part of a Brazilian energy-saving program generates a huge number of spent fluorescent lamps (SFLs). After operational life, SFLs cannot be disposed as common garbage owing to mercury and lead contamination. Recycling methods separate contaminated glass tubes and promote cleaning for reuse. In this work, glass from decontaminated SFLs was incorporated into clay ceramics, not only as an environmental solution for such glass wastes and clay mining reduction but also due to technical and economical advantages. Up to 30 wt.% of incorporation, a significant improvement in fired ceramic flexural strength and a decrease in water absorption was observed. A prospective analysis showed clay ceramic incorporation as an environmentally correct and technical alternative for recycling the enormous amount of SFLs disposed of in Brazil. This could also be a solution for other world clay ceramic producers, such as US, China and some European countries.

  20. MEMS-based Porous Silicon Preconcentrators Filled with Carbopack-B for Explosives Detection

    OpenAIRE

    Camara , El Hadji Malik; James , Franck; Breuil , Philippe; Pijolat , Christophe; Briand , Danick; De Rooij , Nicolaas F

    2014-01-01

    International audience; In this paper we report the detection of explosive compounds using a miniaturized gas preconcentrator (μGP) made of porous silicon (PS) filled in with Carbopack B as an adsorbent material. The μGP includes also a platinum heater patterned at the backside and fluidic connectors sealed on the glass cover. Our μGP is designed and optimized through fluidic and thermal simulations for meeting the requirements of trace explosives detection. The thermal mass of the device was...

  1. Mesomorphic glass nanocomposites made of metal alkanoates and nanoparticles as emerging nonlinear-optical materials

    Science.gov (United States)

    Garbovskiy, Y.; Klimusheva, G.; Mirnaya, T.

    2016-09-01

    Mesomorphic metal alkanoates is very promising yet overlooked class of nonlinear-optical materials. Metal alkanoates can exhibit a broad variety of condensed states of matter including solid crystals, plastic crystals, lyotropic and thermotropic ionic liquid crystals, liquids, mesomorphic glasses, and Langmuir-Blodgett films. Glass-forming properties of metal alkanoates combined with their use as nano-reactors and anisotropic host open up simple and efficient way to design various photonic nanomaterials. Despite very interesting physics, the experimental data on optical and nonlinearoptical properties of such materials are scarce. The goal of the present paper is to fill the gap by discussing recent advances in the field of photonic materials made of metal alkanoates, organic dyes, and nanoparticles. Optical and nonlinear-optical properties of the following materials are reviewed: (i) mesomorphic glass doped with organic dyes; (ii) smectic glass composed of cobalt alkanoates; (iii) semiconductor nanoparticles embedded in a glassy host; (iv) metal nanoparticles - glass (the cobalt octanoate) nanocomposites.

  2. Ground-glass opacity in lung metastasis from adenocarcinoma of the stomach: a case report

    International Nuclear Information System (INIS)

    Jung, Mi Ran; Kim, Jeong Kon; Lee, Jin Seong; Song, Koun Sik; Lim, Tae Hwan

    2000-01-01

    Ground-glass opacity is a frequent but nonspecific finding seen on high-resolution CT scans of lung parenchyma. Histologically, this appearance is observed when thickening of the alveolar wall and septal interstitium is minimal or the alveolar lumen is partially filled with fluid, macrophage, neutrophils, or amorphous material. It has been shown that ground-glass opacity may be caused not only by an active inflammatory process but also by fibrotic processes. When a focal area of ground-glass opacity persists or increases in size, the possibility of neoplasm-bronchioloalveolar carcinoma or adenoma, or lymphoma, for example, should be considered. Diffuse nonsegmental ground-glass opacity in both lung fields was incidentally found on follow up abdominal CT in a stomach cancer patient and signet-ring cell-type metastatic lung cancer was confirmed by transbronchial lung biopsy. We report a case of diffuse ground-glass opacity seen in metastatic lung cancer from adenocarcinoma of the stomach. (author)

  3. Optimization and evaluation of multi-bed adsorbent tube method in collection of volatile organic compounds

    Science.gov (United States)

    Ho, Steven Sai Hang; Wang, Liqin; Chow, Judith C.; Watson, John G.; Xue, Yonggang; Huang, Yu; Qu, Linli; Li, Bowei; Dai, Wenting; Li, Lijuan; Cao, Junji

    2018-04-01

    The feasibility of using adsorbent tubes to collect volatile organic compounds (VOCs) has been demonstrated since the 1990's and standardized as Compendium Method TO-17 by the U.S. Environmental Protection Agency (U.S EPA). This paper investigates sampling and analytical variables on concentrations of 57 ozone (O3) precursors (C2-C12 aliphatic and aromatic VOCs) specified for the Photochemical Assessment Monitoring Station (PAMS). Laboratory and field tests examined multi-bed adsorbent tubes containing a sorbate combination of Tenax TA, Carbograph 1 TD, and Carboxen 1003. Analyte stabilities were influenced by both collection tube temperature and ambient O3 concentrations. Analytes degraded during storage, while blank levels were elevated by passive adsorption. Adsorbent tube storage under cold temperatures (- 10 °C) in a preservation container filled with solid silica gel and anhydrous calcium sulfate (CaSO4) ensured sample integrity. A high efficiency (> 99%) O3 scrubber (i.e., copper coil tube filled with saturated potassium iodide [KI]) removed O3 (i.e., air stream with a sampling capacity of 30 h. Water vapor scrubbers interfered with VOC measurements. The optimal thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) desorption time of 8 min was found at 330 °C. Good linearity (R2 > 0.995) was achieved for individual analyte calibrations (with the exception of acetylene) for mixing ratios of 0.08-1.96 ppbv. The method detection limits (MDLs) were below 0.055 ppbv for a 3 L sample volume. Replicate analyses showed relative standard deviations (RSDs) of < 10%, with the majority of the analytes within < 5%.

  4. Effects of Fibers on Color and Translucency Changes of Bulk-Fill and Anterior Composites after Accelerated Aging

    Directory of Open Access Journals (Sweden)

    Ali Riza Tuncdemir

    2018-01-01

    Full Text Available The aim of this study was to determine the effects of glass and polyethylene fibers on the color and translucency change of bulk-fill and anterior composites before and after artificial accelerated aging (AAA. Two types of teflon molds were used to fabricate samples which were 13 mm in diameter and, respectively, 2 mm and 4 mm in height. Polyethylene fiber (PF and glass fiber (GF were incorporated in the middle of the composite samples. Color and translucency changes of each composite were evaluated before and after AAA with spectrophotometer. ANOVA and Tukey’s HSD post hoc statistical analysis were used at a significance level of 0.05. Before AAA (for anterior composites, there were no significant differences in L* and b* parameters among the three groups (p>0.05; there were no significant differences in L* parameter between PF and GF groups or in TP between GF and control groups (p>0.05 (for bulk-fill composites. After AAA, there were no significant differences in L* parameter between GF and control groups, in a* parameter between PF and control groups, in b* parameter among all groups, or in TP parameter between GF and control groups (p>0.05. Fiber reinforcement led to color and TP change in both anterior and bulk-fill resin composites.

  5. Gradient Index Optics at DARPA

    Science.gov (United States)

    2013-11-01

    for correcting vision. René Descartes proposed another idea to cor- rect vision in 1636: use a glass tube filled with liquid and place it in direct... Descartes published the present form of this law, a basis of modern geometric optics known as Snell’s Law (Fishman 2000, 405, 408) (see Figure 1-6). At

  6. Propagation of fast ionization waves in long discharge tubes filled with a preionized gas

    International Nuclear Information System (INIS)

    Boutine, O.V.; Vasilyak, L.M.

    1999-01-01

    The propagation of fast ionization waves in discharge tubes is modeled with allowance for radial variations in the electric potential, nonlocal dependence of the plasma parameters on the electric field, and nonsteady nature of the electron energy distribution. The wave propagation dynamics and the wave attenuation in helium are described. The plasma parameters at the wave front and behind the front and the energy deposition in the discharge are found. The results obtained are compared with experimental data

  7. Development and modification of glass membranes for aggressive gas separations

    Energy Technology Data Exchange (ETDEWEB)

    Lindbraaten, Arne

    2004-07-01

    important s factor as the perm-selectivities. To evaluate this, both short- and long-term aggressive gas exposures are performed using a special designed durability chamber. From the combination of the perm-selectivities and the durability tests, the following conclusions may be drawn (evaluated at 30 Deg C and 1 bar): Firstly, the pure glasses have a relatively poor stability (for chlorine gas) and the perm-selectivity is too low (for both separations in question). Secondly, the C8 and C12 modified glass membranes have a relatively satisfactory perm-selectivity for chlorine separation, but the durability in chlorine is poor. Thirdly, the long-chained C 18 modified glass membrane has a relatively satisfactory perm-selectivity but a fair to low chlorine stability. If the C 18 membrane is applied in the hydrogen chlorine separation the perm-selectivity is a bit low, but the stability is sufficient. However, this membrane is the best choice for a low temperature HC1 selective membrane. Finally, to improve the chlorine stability, a perfluorinated version of a C 10 modification is tried out. This membrane has excellent chlorine stability, and the perm-selectivity is fair. This membrane is the best choice for a chlorine selective membrane. The stability of the fibres is comparable to that found for the pure glass tubes. However, the permeabilities in the glass fibres are several orders of magnitude lower than for the glass tubes. The pore size in the fibre is so narrow that separation occurs according to a molecular sieving mechanism. The mounting of the fibres into a lab-sized module is tricky and the permeabilities are at the border of detection, so the results obtained here should only serve as trends. (Author)

  8. Astrobiology Training in Lava Tubes (ATiLT): Characterizing coralloid speleothems in basaltic lava tubes as a Mars analogue

    Science.gov (United States)

    Ni, J.; Leveille, R. J.; Douglas, P.

    2017-12-01

    Coralloid speleothems or cave corals are small mineralised nodes that can take a variety of forms, and which develop through groundwater seepage and water-rock interaction in caves. They are found commonly on Earth in a plethora of caves, including lava tubes. Since lava tubes have been identified on the surface of Mars from remotely sensed images, there has been interest in studying Earth's lava tube systems as an analogue for understanding Martian lava environments. If cave minerals were found on Mars, they could indicate past or present water-rock interaction in the Martian subsurface. Martian lava tubes could also provide insights into habitable subsurface environments as well as conditions favourable for the synthesis and preservation of biosignatures. One of the aims of the Astrobiology Training in Lava Tubes (ATiLT) project is to analyze biosignatures and paleoenvironmental indicators in secondary cave minerals, which will be looked at in-situ and compared to collected field samples. In this study, secondary mineralization in lava cave systems from Lava Beds National Monument, CA is examined. In the field, coralloid speleothems have been observed growing on all surfaces of the caves, including cave ceilings, floors, walls and overhangs. They are also observed growing adjacent to biofilms, which sometimes fill in the cracks of the coralloid nodes. Preliminary results show the presence of opal, calcite, quartz and other minor minerals in the speleothems. This study seeks to understand the formation mechanism and source of these secondary minerals, as well as determine their possible relation to the biofilms. This will be done through the analysis of the water chemistry, isotope geochemistry and microscale mineralogy.

  9. Freezing controlled penetration of molten metals flowing through stainless steel tubes

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Spencer, B.W.; Vetter, D.L.; Wesel, R.H.

    1985-01-01

    The freezing controlled penetration potential of molten metals flowing within stainless steel structure is important to the safety assessment of hypothetical severe accidents in liquid metal reactors. A series of scoping experiments has been performed in which molten stainless steel and nickel at various initial temperatures and driving pressures were injected downward and upward into 6.4 and 3.3 mm ID stainless steel tubes filled with argon gas and initially at room temperature. In all tests, there was no evidence that the solid tube wall was wetted by the molten metals. The penetration phenomena are markedly different for downward versus upward injections. The dependency upon tube orientation is explained in terms of the absence of wetting. Complete plugs were formed in all experiments halting the continued injection of melt. Calculations with a fluid dynamics/heat transfer computer code show that the injected masses limited by plugging are consistent with freezing through the growth of a stable solidified layer (crust) of metal upon the solid tube wall. 23 refs., 5 figs., 2 tabs

  10. First-Principles Molecular Dynamics Study on Helium- filled Carbon Nanotube

    International Nuclear Information System (INIS)

    Agusta, M K; Prasetiyo, I; Saputro, A G; Dipojono, H K; Maezono, R

    2016-01-01

    Investigation on carbon nanotube (CNT) filled by Helium (He) atoms is conducted using Density Functional Theory and Molecular Dynamics Simulation. It reveals that He atom is repelled by CNT's wall and find its stable position at the tube center. Vibrational analysis on modes corespond to radial inward and outward breathing movement of CNT shows that He filling tends to pull the CNT wall in inward direction. Furthermore, examination on C-C stretch mode reveals that the existence of He improve the stiffness of CNT's wall. Molecular dynamics calculations which are done on (3,3) and (5,5) nanotube with 0.25 gr/cm 3 and 0.5 gr/cm 3 He density at 300 K and 1500 K confirms the increase of stiffness of CNT wall by interaction with He atoms. Effects of variation of chirality, temperature and He density on CNT wall stiffness is also reported. (paper)

  11. Selection and specification criteria for fills for cut-and-fill mining

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, E. G.

    1980-05-15

    Because of significant differences in placement and loading conditions, the ideal fill material for a cut-and-fill operation has different characteristics to those for a fill for a filled open stoping operation. The differing requirements of the two mining operations must be understood and accounted for in establishing fill selection and specification criteria. Within the paper, aspects of the particular requirements of cut-and-fill mining are analyzed and related to the specific fill tests and properties required. Emphasis is placed upon the role of fill in ground support, though this cannot be isolated from overall fill performance. Where appropriate, test data are introduced and areas requiring continuing research highlighted.

  12. Preparation and Characterization of Carbon Nano tube-based Electrochromic Material

    International Nuclear Information System (INIS)

    Muhammad Shahazmi Mohd Zambri; Norani Muti Mohamed; Kait, C.F.

    2011-01-01

    Electrochromic materials that can change their optical properties reversibly for an applied potential due to electrochemical oxidation and reduction have been used in various applications of electrochromic windows or smart glass. Conducting polymer like poly aniline (PANI) is one of the most promising electrochromic materials because of its ease of synthesis and environmental stability. However, the electrochemically deposited poly aniline exhibit substantial resistivity which is attributed to the lack of conducting pathways at the nano scale associated with random deposition morphology. This paper describes the study in developing electrochromic material that will exhibit higher conductivity by using carbon nano tubes (CNTs) as the filler. Preparation of electrochromic material on ITO and FTO glass substrate was done by electrochemical process using mixture of CNTs and PANI in H 2 SO 4 at several loading of CNTs, voltage applied and duration of the process. PANI and PANI/ CNTs films produced were then characterized using SEM and Hall Effect measurement. From the study, highly conductive PANI/ CNTs film can be obtained by using optimum condition of the process parameters. PANI film deposited on FTO glass substrate was also found to be of good quality with conductivity two orders of magnitude higher than the film deposited on ITO glass substrate. (author)

  13. Mechanical Behavior of Recycled Aggregate Concrete-Filled Steel Tubular Columns before and after Fire

    Directory of Open Access Journals (Sweden)

    Wenchao Liu

    2017-03-01

    Full Text Available Recycled aggregate concrete (RAC is an environmentally friendly building material. This paper investigates the mechanical behavior of recycled aggregate concrete filled steel tube (RACFST columns exposed to fire. Two groups of 12 columns were designed and tested, under axial compression, before and after fire, to evaluate the degradation of bearing capacity due to fire exposure. Six specimens were subjected to axial compression tests at room temperature and the other six specimens were subjected to axial compression tests after a fire exposure. The main parameters of the specimens include the wall thickness of the steel tube (steel content and the type of concrete materials. Several parameters as obtained from the experimental results were compared and analyzed, including the load-bearing capacity, deformation capacity, and failure characteristics of the specimens. Meanwhile, rate of loss of bearing capacity of specimens exposed to fire were calculated based on the standards EC4 and CECS28:90. The results show that concrete material has a large influence on the rate of loss of bearing capacity in the case of a relatively lower steel ratio. While steel content has little effect on the rate of loss of bearing capacity of concrete-filled steel tube (CFST columns after fire, it has a relatively large influence on the loss rate of bearing capacity of the RACFST columns. The loss of bearing capacity of the specimens from the experiment is more serious than that from the calculation. As the calculated values are less conservative, particular attention should be given to the application of recycled aggregate concrete in actual structures.

  14. Mechanical Behavior of Recycled Aggregate Concrete-Filled Steel Tubular Columns before and after Fire.

    Science.gov (United States)

    Liu, Wenchao; Cao, Wanlin; Zhang, Jianwei; Wang, Ruwei; Ren, Lele

    2017-03-09

    Recycled aggregate concrete (RAC) is an environmentally friendly building material. This paper investigates the mechanical behavior of recycled aggregate concrete filled steel tube (RACFST) columns exposed to fire. Two groups of 12 columns were designed and tested, under axial compression, before and after fire, to evaluate the degradation of bearing capacity due to fire exposure. Six specimens were subjected to axial compression tests at room temperature and the other six specimens were subjected to axial compression tests after a fire exposure. The main parameters of the specimens include the wall thickness of the steel tube (steel content) and the type of concrete materials. Several parameters as obtained from the experimental results were compared and analyzed, including the load-bearing capacity, deformation capacity, and failure characteristics of the specimens. Meanwhile, rate of loss of bearing capacity of specimens exposed to fire were calculated based on the standards EC4 and CECS28:90. The results show that concrete material has a large influence on the rate of loss of bearing capacity in the case of a relatively lower steel ratio. While steel content has little effect on the rate of loss of bearing capacity of concrete-filled steel tube (CFST) columns after fire, it has a relatively large influence on the loss rate of bearing capacity of the RACFST columns. The loss of bearing capacity of the specimens from the experiment is more serious than that from the calculation. As the calculated values are less conservative, particular attention should be given to the application of recycled aggregate concrete in actual structures.

  15. [The effects of topical fluoridation of Ketac Molar Aplicap glass-ionomer material on the growth of cariogenic bacteria contained in the dental plaque].

    Science.gov (United States)

    Płuciennik-Stronias, Małgorzata; Zarzycka, Beata; Bołtacz-Rzepkowska, Elzbieta

    2013-01-01

    Dental caries is a bacterial disease. The most important element used in caries prevention is fluoride, which is derived from the air, diet or fluoride-containing preparations and materials, e.g. glass-ionomer restorations. Modern fluoride-containing restorative materials are capable of releasing fluoride to the environment. Fluoride can be also accumulated in glass-ionomer cements, thus an attempt was made to saturate these materials with fluoride. The aim of the study was to evaluate the effect of topical fluoridation of Ketac Molar Aplicap glass-ionomer cement on the growth of Lactobacillus spp. in the dental plaque. The study was carried out in 15 patients with good oral hygiene, in whom 35 fillings with conventional glass-ionomer material, Ketac Molar Aplicap, were performed. After 6 months, three-day dental plaque from these fillings was examined. Next, fluoride was rubbed on the glass-ionomer surface and the examination of three-day dental plaque was repeated. No statistically significant differences (p = 0.143) in the amounts of Lactobacillus spp. in the plaque collected prior to and after topical fluoridation were revealed. Fluoride rubbed in the conventional glass-ionomer cement, Ketac Molar Aplicap, did not affect the amount of Lactobacillus spp. in the dental plaque growing on this material.

  16. CFD analysis of multiphase coolant flow through fuel rod bundles in advanced pressure tube nuclear reactors

    International Nuclear Information System (INIS)

    Catana, A.; Turcu, I.; Prisecaru, I.; Dupleac, D.; Danila, N.

    2010-01-01

    The key component of a pressure tube nuclear reactor core is pressure tube filled with a stream of fuel bundles. This feature makes them suitable for CFD thermal-hydraulic analysis. A methodology for CFD analysis applied to pressure tube nuclear reactors is presented in this paper, which is focused on advanced pressure tube nuclear reactors. The complex flow conditions inside pressure tube are analysed by using the Eulerian multiphase model implemented in FLUENT CFD computer code. Fuel rods in these channels are superheated but the liquid is under high pressure, so it is sub-cooled in normal operating conditions on most of pressure tube length. In the second half of pressure tube length, the onset of boiling occurs, so the flow consists of a gas liquid mixture, with the volume of gas increasing along the length of the channel in the direction of the flow. Limited computer resources enforced us to use CFD analysis for segments of pressure tube. Significant local geometries (junctions, spacers) were simulated. Main results of this work are: prediction of main thermal-hydraulic parameters along pressure tube including CHF evaluation through fuel assemblies. (authors)

  17. Influence of various irradiation processes on the mechanical properties and polymerisation kinetics of bulk-fill resin based composites.

    Science.gov (United States)

    Ilie, Nicoleta; Keßler, Andreas; Durner, Jürgen

    2013-08-01

    To assess the effect of irradiation time and distance of the light tip on the micro-mechanical properties and polymerisation kinetics of two bulk-fill resin-based composites at simulated clinically relevant filling depth. Micro-mechanical properties (Vickers hardness (HV), depth of cure (DOC) and indentation modulus (E)) and polymerisation kinetics (real-time increase of degree of cure (DC)) of two bulk-fill resin-based composites (Tetric EvoCeram(®) Bulk Fill, Ivoclar Vivadent and x-tra base, Voco) were assessed at varying depth (0.1-6mm in 100μm steps for E and HV and 0.1, 2, 4 and 6mm for DC), irradiation time (10, 20 or 40s, Elipar Freelight2) and distances from the light tip (0 and 7mm). Curing unit's irradiance was monitored in 1mm steps at distances up to 10mm away from the light tip on a laboratory-grade spectrometer. Multivariate analysis (α=0.05), Student's t-test and Pearson correlation analysis were considered. The influence of material on the measured mechanical properties was significant (η(2)=0.080 for E and 0.256 for HV), while the parameters irradiation time, distance from the light tip and depth emphasise a stronger influence on Tetric EvoCeram(®) Bulk Fill. The polymerisation kinetics could be described by an exponential sum function, distinguishing between the gel and the glass phase. The above mentioned parameters strongly influenced the start of polymerisation (gel phase), and were of less importance for the glass phase. Both materials enable at least 4mm thick increments to be cured in one step under clinically relevant curing conditions. The susceptibility to variation in irradiance was material dependent, thus properties measured under clinically simulated curing conditions might vary to a different extent from those measured under ideal curing conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Transparent Metal-Salt-Filled Polymeric Radiation Shields

    Science.gov (United States)

    Edwards, David; Lennhoff, John; Harris, George

    2003-01-01

    "COR-RA" (colorless atomic oxygen resistant -- radiation shield) is the name of a transparent polymeric material filled with x-ray-absorbing salts of lead, bismuth, cesium, and thorium. COR-RA is suitable for use in shielding personnel against bremsstrahlung radiation from electron-beam welding and industrial and medical x-ray equipment. In comparison with lead-foil and leaded-glass shields that give equivalent protection against x-rays (see table), COR-RA shields are mechanically more durable. COR-RA absorbs not only x-rays but also neutrons and rays without adverse effects on optical or mechanical performance. The formulation of COR-RA with the most favorable mechanical-durability and optical properties contains 22 weight percent of bismuth to absorb x-rays, plus 45 atomic percent hydrogen for shielding against neutrons.

  19. 77 FR 15336 - Revision to the Export Provisions of the Cathode Ray Tube (CRT) Rule

    Science.gov (United States)

    2012-03-15

    ... exporters of CRTs for recycling must submit an annual report to EPA. The purpose of these proposed revisions... reuse and recycling. Additionally, EPA would gather more information on shipments of CRTs that are sent... who export used cathode ray tubes (CRTs) and CRT glass for reuse or recycling. This action does not...

  20. Fracturing of simulated high-level waste glass in canisters

    International Nuclear Information System (INIS)

    Peters, R.D.; Slate, S.C.

    1981-09-01

    Waste-glass castings generated from engineering-scale developmental processes at the Pacific Northwest Laboratory are generally found to have significant levels of cracks. The causes and extent of fracturing in full-scale canisters of waste glass as a result of cooling and accidental impact are discussed. Although the effects of cracking on waste-form performance in a repository are not well understood, cracks in waste forms can potentially increase leaching surface area. If cracks are minimized or absent in the waste-glass canisters, the potential for radionuclide release from the canister package can be reduced. Additional work on the effects of cracks on leaching of glass is needed. In addition to investigating the extent of fracturing of glass in waste-glass canisters, methods to reduce cracking by controlling cooling conditions were explored. Overall, the study shows that the extent of glass cracking in full-scale, passively-cooled, continuous melting-produced canisters is strongly dependent on the cooling rate. This observation agrees with results of previously reported Pacific Northwest Laboratory experiments on bench-scale annealed canisters. Thus, the cause of cracking is principally bulk thermal stresses. Fracture damage resulting from shearing at the glass/metal interface also contributes to cracking, more so in stainless steel canisters than in carbon steel canisters. This effect can be reduced or eliminated with a graphite coating applied to the inside of the canister. Thermal fracturing can be controlled by using a fixed amount of insulation for filling and cooling of canisters. In order to maintain production rates, a small amount of additional facility space is needed to accomodate slow-cooling canisters. Alternatively, faster cooling can be achieved using the multi-staged approach. Additional development is needed before this approach can be used on full-scale (60-cm) canisters

  1. Theroretical modelling of the plate-tubes coupling in the hydroelasticity of the perforated plates

    International Nuclear Information System (INIS)

    Dzhupanov, V.A.; Manoach, E.S.

    1983-01-01

    In the previous investigations on the perforated plate hydroelasticity the problem of the plates-tubes-liquid interaction in the process of the general structural vibration is stated. But the interaction of the vibrating plates with the tubes, passing through them, is taken into account considering the tubes only as absolutely rigid supports. This is one of the possible technical realizations. In the present article the case when the tubes are taking part in the plate motion (vibration) is studied. Two circular perforated plates are supported by the absolutely rigid wall of the modelled roundcircular reactor barrel. The distance between the plates is given. They are connected by tubes, passing through, and clamped into the perforation holes. The plates and the tubes are made by any elastic HOOKIAN material. The volume between the two plates and outwardly to the tubes, but intrinsically of the barrel is filled by ideal, compressible and heavy liquid. Evidently the liquid volume is multiconnected one. The free vibration of the whole system is considered with the purposes: i) to give a theoretical model of the plates-tubes-liquid interaction including governing equations and boundary conditions; ii) to trace the solution of the eigen-value problem for the modelled structure; iii) to underline the engineering sides of the modelling process. (orig./GL)

  2. Digital imaging with a pressurized xenon filled MWPC working at a high data rate

    Energy Technology Data Exchange (ETDEWEB)

    Bellazzini, R; Brez, A; Del Guerra, A; Massai, M M; Torquati, M R; Franchi, M; Perri, G

    1985-12-15

    A MWPC based detection system for medical imaging is presented. The system consists of a pressurized Xenon filled MWPC and of a monochromatic, fluorescent, X-ray source using a conventional diagnostic tube with various target/filter combinations. The main performance of the system are: 10% efficiency, 30% energy resolution, 500 m spatial resolution, +-5 uniformity. The preliminary results of the application of this system to bone densitometry are presented. (orig.).

  3. Digital imaging with a pressurized xenon filled MWPC working at a high data rate

    Energy Technology Data Exchange (ETDEWEB)

    Bellazzini, R; Brez, A; Del Guerra, A; Massai, M M; Torquati, M R [Pisa Univ. (Italy). Ist. di Fisica; Istituto Nazionale di Fisica Nucleare, Pisa (Italy)); Franchi, M; Perri, G [Pisa Univ. (Italy). Ist. di Radiologia

    1984-12-15

    A MWPC based detection system for medical imaging is presented. The system consists of a pressurized Xenon filled MWPC and of a monochromatic, fluorescent, X-ray source using a conventional diagnostic tube with various target/filter combinations. The main performance of the system are: 10% efficiency, 30% energy resolution, 500 ..mu..m spatial resolution, +-5 uniformity. The preliminary results of the application of this system to bone densitometry are presented.

  4. Glass consistency and glass performance

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Ramsey, W.G.

    1994-01-01

    Glass produced by the Defense Waste Processing Facility (DWPF) will have to consistently be more durable than a benchmark glass (evaluated using a short-term leach test), with high confidence. The DWPF has developed a Glass Product Control Program to comply with this specification. However, it is not clear what relevance product consistency has on long-term glass performance. In this report, the authors show that DWPF glass, produced in compliance with this specification, can be expected to effectively limit the release of soluble radionuclides to natural environments. However, the release of insoluble radionuclides to the environment will be limited by their solubility, and not glass durability

  5. Effect of Na2CO3 as Foaming Agent on Dynamics and Structure of Foam Glass Melts

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Smedskjær, Morten Mattrup

    2014-01-01

    We investigate the kinetics and dynamics of the reaction between Na2CO3 and the cathode ray tube panel glass powder at 923-1173 K. The reaction causes foaming of the glass melt. After the reaction, the Tg decreases with increasing Na2CO3 content and reaches a minimum value of Tg. However, this Tg...... value is even lower than that of the homogeneous bulk glass with the same chemical composition. The lower Tg of the foam glass could be attributed to inhomogeneous incorporation of Na in the glass, leading to Na-rich domains that cause an overall decrease of Tg. Remarkably, after 5 min treatment at 1073...... K, the Tg drops by 120 K, indicating that the reaction between Na2CO3 and glass is very fast. Increasing treatment duration causes a slight increase of Tg likely due to both a more homogeneous Na distribution and the compositional change of the glass as a result of Na2SrSi2O6 crystal formation....

  6. A fluid density sensor based on a resonant tube

    International Nuclear Information System (INIS)

    Zhu, Yong; Dao, Dzung Viet; Woodfield, Peter

    2014-01-01

    A fluid density sensor based on resonance frequency change of a metallic tube is presented. The sensor has been developed without using a complex micro-fabrication process. The sensor is able to identify fluid types/contaminations and improve the performance by reducing testing time, decreasing complexity of testing equipment and reducing sample sizes. The sensor can measure the resonance frequency of its own structure and determine the change in resonance frequency due to the subsequent sample inside the tube. Numerical modelling, analytical modelling and physical testing of a prototype sensor showed comparable results for both the magnitude and resonance frequency shift. The modelling results yielded a resonance frequency shift of 200 Hz from 9.87 kHz to 9.67 kHz after the water was filled into the tube. The actual testing illustrated a resonance frequency change of 280 Hz from 9.11 kHz to 8.83 kHz. The ultimate aim of the work is to determine resonance frequencies of desired samples at a level that could detect genetic disease on a cellular level. (paper)

  7. Direct solar steam generation inside evacuated tube absorber

    Directory of Open Access Journals (Sweden)

    Khaled M. Bataineh

    2016-12-01

    Full Text Available Direct steam generation by solar radiation falling on absorber tube is studied in this paper. A system of single pipe covered by glass material in which the subcooled undergoes heating and evaporation process is analyzed. Mathematical equations are derived based on energy, momentum and mass balances for system components. A Matlab code is built to simulate the flow of water inside the absorber tube and determine properties of water along the pipe. Widely accepted empirical correlations and mathematical models of turbulent flow, pressure drop for single and multiphase flow, and heat transfer are used in the simulation. The influences of major parameters on the system performance are investigated. The pressure profiles obtained by present numerical solution for each operation condition (3 and 10 MPa matches very well experimental data from the DISS system of Plataforma Solar de Almería. Furthermore, results obtained by simulation model for pressure profiles are closer to the experimental data than those predicted by already existed other numerical model.

  8. Congenital or torsion-induced absence of Fallopian tubes. Two case reports.

    Science.gov (United States)

    Paternoster, D M; Costantini, W; Uglietti, A; Vasile, C; Bocconi, L

    1998-05-01

    Unilateral absence of a uterine tube is an extremely rare finding, for which there are two possible etiopathogenic causes: in some cases it is due to haemorrhage filling of the cavity and its reabsorption as a result of asymptomatic torsion of the uterine tube during adult life, in pediatric age or even during intrauterine life; alternatively, the absence may be congenital, associated with developmental alterations of the mesonephric and paramesonephric ducts. The article presents two cases of fallopian tube absence: a congenital monolateral absence and a tubal torsion during pregnancy. The symptomatology of the torsion of the fallopian tube in pregnancy can be milder than in the classic description with peritoneal reaction and severe clinical alteration. The main risk factors for tubal torsion are: adhesions and inflammatory processes, ovarian cysts, usually of dermoid type, menstrual period, pregnancy, abnormal long mesosalpinx and/or mesovarium, pelvic congestion induced by constipation and disturbed venous blood flow from the adnexa. A congenital defect of the mesonephric duct is followed by a homolateral defect of the paramesonephric duct. The resulting anomaly is characterized by the absence of the uterine tube, uterus-tube angle, kidney and ureter. Partial or total unilateral defects of a paramesonephric duct are more common than aplasia of both ducts. Some authors have suggested that an inadequate blood supply during the descent into the pelvis of the caudal part of the paramesonephric duct might feasibly lead to incomplete tube development.

  9. Investigation of the formation of Fe-filled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Reuther, H [Forschungszentrum Dresden-Rossendorf, PO Box 510119, D-01314 Dresden (Germany); Mueller, C; Leonhardt, A; Kutz, M C, E-mail: reuther@fzd.d [Leibniz-Institute of Solid State and Materials Research Dresden, PO Box 270116, D-01171 Dresden (Germany)

    2010-03-01

    The formation of Fe-filled carbon nanotubes by thermal decomposition of ferrocene combined with a Fe-catalyst-nanostructuring on an oxidized Si substrate is investigated in the temperature range of 1015 - 1200 K. The optimal growth conditions for aligned and homogeneous carbon nanotubes are found at 1103 K. Moessbauer spectroscopy (both in transmission geometry and CEMS) was used to analyze and quantify the different formed Fe-phases. In general, {alpha}-Fe, {gamma}-Fe and Fe{sub 3}C are found to form within the carbon nanotubes. Depending on the growth conditions their fractions vary strongly. Moreover, an alignment of the {alpha}-Fe in the tubes could be detected.

  10. Thermal characterization of rods, tubes and spheres using pulsed infrared thermography

    International Nuclear Information System (INIS)

    Apinaniz, E; Mendioroz, A; Madariaga, N; Oleaga, A; Celorrio, R; Salazar, A

    2008-01-01

    In this work we analyse the accuracy of an extension of the flash method to measure the thermal diffusivity of rods, tubes and spheres, which was recently proposed by the authors. We have performed measurements in a wide set of calibrated samples of different sizes and we have found that a lower limiting size of the radius can be established for the validity of the method. On the other hand, a procedure to retrieve the thermal conductivity of tubes, based on filling them with a contrast liquid (water), is proposed. Moreover, the thermal contact resistance between the two layers of coated cylinders is also obtained. Measurements on calibrated samples confirm the validity of the two latest methods

  11. Effects of an elastic membrane on tube waves in permeable formations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H; Johnson, D

    1996-10-01

    In this paper, the modified properties were calculated for tube wave propagation in a fluid-filled borehole penetrating a permeable rock due to the presence of a mudcake which forms on the borehole wall. The mudcake was characterized by an impermeable elastic layer. The mudcake partial sealing mechanism was simulated using a finite membrane stiffness. Consequently, it was shown that the mudcake can reduce, but not eliminate, the permeability effects on the tube wave slowness and attenuation. Moreover, this paper discusses a variety of values for the relevant parameters especially the mudcake thickness and membrane stiffness. The important combinations of mudcake parameters were clarified by using an analytic expression for the low-frequency limit.

  12. Experimental study of air-cooled water condensation in slightly inclined circular tube using infrared temperature measurement technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungdae [Nuclear Engineering Department, Kyung Hee University, Yongin (Korea, Republic of); Kwon, Tae-Soon [Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Dong Eok, E-mail: dekim@knu.ac.kr [Department of Precision Mechanical Engineering, Kyungpook National University, Sangju (Korea, Republic of)

    2016-11-15

    Highlights: • Air-cooled condensation experiments in an inclined Pyrex glass tube were performed. • High-resolution wall temperature data and flow regime formations could be obtained. • The local heat flux was strongly dependent on the air-side heat transfer. • A CFD analysis was conducted for calculating the local heat flux distribution. - Abstract: This study presents the results of an investigation of the air-cooled water condensation heat transfer characteristics inside a slightly inclined circular tube made of transparent Pyrex glass. The high-resolution wall temperature data and stratified film formations could be obtained with the assistance of an infrared (IR) thermometry technique and side-view visualization using a CCD camera. In all experimental cases, the condensation flow patterns were in the fully-stratified flow region. In addition, the experimentally measured void fraction corresponded well with the logarithmic mean void fraction model. The local temperature differences in the cooling air flow across the condenser tube and high-resolution temperature profiles on the tube’s outer wall were obtained in the experimental measurements. Under the experimental conditions of this study, the local heat flux distributions in the longitudinal direction of the test tube were strongly dependent on the cooling air velocity. And, with the help of IR thermometry, the tube outer wall temperature data at 45 local points could be measured. From the data, the asymmetry distribution of the local wall temperatures and the accurate location of the transition from two-phase mixture to single phase liquid inside the tube could be obtained. Also, the analysis of the thermal resistances by condensation, wall conduction and air convection showed that the air convective heat transfer behavior can play a dominant role to the local heat transfer characteristics. Finally, in order to obtain the local heat flux distribution along the tube’s outer wall, a two

  13. Design of an accelerator tube for 500 keV/10 mA electron beam machine

    International Nuclear Information System (INIS)

    Maksum, W.; Sudjatmoko; Suprapto

    1999-01-01

    A design of an accelerator tube for 500 keV/10 mA electron beam machine was carried out. This tube was used for focussing and accelerating of electron beams. The tube was designed to consist of some electrodes insulator tubes and a voltage divider. The electrodes was made of stainless steel due to its low outgassing constant and stainless, the insulator was made of pyrex glass due to its low outgassing constant and high temperature proof and the voltage divider was made of high-ohmic resistors used for accelerating potential distribution at the electrodes. The stainless steel electrodes were comic shaped 3 mm thick with 134 mm inlet diameter and 60 mm outlet diameter. The number for this electrodes was 34 so that the potential gap between adjacent electrodes not exceed 15 kV. The insulators were 5 mm thick, 150 mm outer diameter, 140 mm inner diameter and 32 mm long. The insulators were joined to the electrodes by using an epoxy form an accelerator tube. The designed accelerator tube could be constructed and operated at a vacuum of 10 -6 torr and accelerated electron beam at an energy of 500 keV. (author)

  14. Development of antimicrobial optimum glass ionomer; Desenvolvimento de ionomero de vidro antimicrobiano otimo

    Energy Technology Data Exchange (ETDEWEB)

    Angioletto, E.; Tezza, V.B.; Santos, M.J.; Montedo, O.R.K.; Pich, C.T.; Fiori, M.A. [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil); Angioletto, Ev. [Biorosam Biotecnologia Ltda., SC (Brazil)

    2010-07-01

    The use of glass ionomer for restorations in dentistry for lower income population is a well established practice in public clinics of Brazil. However the average price of this kind of material and its low durability still have a negative impact on public health for being imported and frequently replaced it becomes expensive for the manufacturers and for public agencies. In glass ionomer the main antimicrobial agent is fluoride, which is released gradually. The material used for filling provides an average life of five years and its durability can be increased if the ionomer contains other oligodynamic elements. It was formulated, merged a new optimized glass ionomer which was characterized by X-ray diffraction, ion measurement and antimicrobial activity. This new product showed promising results, that pointed structural stability an increase of antimicrobial efficiency. (author)

  15. Evaluation of reliability of EC inspection of VVER SG tubes

    International Nuclear Information System (INIS)

    Stanic, D.

    2001-01-01

    Evaluation of eddy current data collected during inspection of VVER steam generators is very complex task because of numerous parameters which have affect on eddy current signals. That was the reason that recently ago INETEC has started related scientific project in order to evaluate the reliability of eddy current (EC) inspection of VVER steam generator (SG) tubing. In the scope of project the following objectives will be investigated: 1. Determination of POD (Probability of detection) of various types degradation cracks, where their basic parameters are variables (basic parameters are depth, length, width, orientation, number) on three different sets of tubes (clean ideal tubes, tubes with pilgering, tubes electroplated with copper) 2. Sizing quality (accuracy, repeatability) (same data sets as defined in 1.) 3. Effect of fill factor on POD and sizing quality. 4. Effect of tube bends on POD and sizing quality. 5. Effect of other tube geometry variations on POD and sizing quality (tube ovality, transition zone region, expanded (rolled) part of tube, dents, dings). Investigation will start with bobbin probe technique which is the most used technique for general purpose VVER tube examination. Since INETEC is the only world company which successfully developed and applied rotating probe technique for VVER SG tubes, scope of the project will be extended on rotating probe technique utilizing 'pancake' and 'point' coil. Method reliability will be investigated first on the huge set of EDM notches representing various defect morphologies and simulating different factors, and the second part will be investigated on sets of degradation defects obtained by artificial corrosion. In the scope of the project the measures for enhancing the method reliability have to be determined. This considers the proper definition of parameters of examination system, as well as establishment of the suitable analysis procedures. This article presents the temporary results of the first part of

  16. Heat transfer from a tube immersed in a fluidized bed with frosting

    International Nuclear Information System (INIS)

    Torikoshi, K.; Kawabata, K.; Yamashita, H.

    1990-01-01

    Heat-transfer and flow-visualization experiments were performed for a single cooled tube immersed horizontally in a fluidized bed under frosting conditions. Measurements were made from local and average heat-transfer coefficients around the cooled tube surface. Glass beads having nominal diameters of 0.43 mm, 0.89 mm, and 1.6 mm were employed as the bed material. The 30 mm diameter tube was located 100 mm above the distributor. All the results obtained under frosting conditions were for an air temperature of about 5 degrees C and an air relative humidity of about 80 percent. The heat-transfer coefficient with frosting evaluated in this investigation includes the heat-transfer coefficient from the frost surface to the bed and the thermal resistance of the frost layer. Comparisons are made to heat-transfer data without frosting. The heat transfer is found to be larger with frosting than without frosting under the fluidization state

  17. Research of glass fibre used in the electromagnetic wave shielding and absorption composite material

    Science.gov (United States)

    Xu, M.; Jia, F.; Bao, H. Q.; Cui, K.; Zhang, F.

    2016-07-01

    Electromagnetic shielding and absorption composite material plays an important role in the defence and economic field. Comparing with other filler, Glass fibre and its processed product—metal-coated glass fibre can greatly reduce the material's weight and costs, while it still remains the high strength and the electromagnetic shielding effectiveness. In this paper, the electromagnetic absorption mechanism and the reflection mechanism have been investigated as a whole, and the shielding effectiveness of the double-layer glass fibre composite material is mainly focused. The relationship between the shielding effectiveness and the filled glass fibre as well as its metal-coated product's parameters has also been studied. From the subsequent coaxial flange and anechoic chamber analysis, it can be confirmed that the peak electromagnetic shielding effectiveness of this double-layer material can reach -78dB while the bandwidth is from 2GHz to 18GHz.

  18. Effect of SiO2 addition and gamma irradiation on the lithium borate glasses

    Science.gov (United States)

    Raut, A. P.; Deshpande, V. K.

    2018-01-01

    The physical properties like density, glass transition temperature (Tg), and ionic conductivity of lithium borate (LB) glasses with SiO2 addition were measured before and after gamma irradiation. Remarkable changes in properties have been obtained in the physical properties of LB glasses with SiO2 addition and after gamma irradiation. The increase in density and glass transition temperature of LB glasses with SiO2 addition has been explained with the help of increase in density of cross linking due to SiO4 tetrahedra formation. The increase in ionic conductivity with SiO2 addition was explained with the help of ‘mixed glass former effect’. The increase in density and Tg of LB glasses with SiO2 addition after gamma irradiation has been attributed to fragmentation of bigger ring structure into smaller rings, which increases the density of cross linking and hence compaction. The exposure of gamma irradiation has lead to decrease in ionic conductivity of LB glasses with SiO2 addition. The atomic displacement caused by gamma irradiation resulted in filling of interstices and decrease in trapping sites. This explains the obtained decrease in ionic conductivity after gamma irradiation of glasses. The obtained results of effect of SiO2 addition and gamma irradiation on the density, Tg and ionic conductivity has been supported by FTIR results.

  19. Precision charge amplification and digitization system for a scintillating and lead glass array

    Energy Technology Data Exchange (ETDEWEB)

    Delchamps, S.W.; Rameika, R.; Arenton, M.; Chen, T.Y.; Conetti, S.; Cox, B.; Etemadi, B.; Fortney, L.; Guffey, K.; Haire, M.

    1989-01-01

    A 544-channel low-noise, high-rate, precision charge amplification and ADC system was constructed for the Fermilab Experiment 705 electromagnetic calorimeter, which employs SCG1-C scintillating glass and SF5 lead glass instrumented with photo-multiplier tubes. A general discussion of the system is given, and the charge amplification, fast trigger pulse generation, and analog to digital conversion aspects of the system are presented in more detail. Performance is evaluated using data from Experiment 705 and from off-line tests. Short and long term pedestal stability, baseline recovery and rate capability, linearity of response, and crosstalk between channels are discussed. 8 refs., 2 tabs.

  20. Precision charge amplification and digitization system for a scintillating and lead glass array

    International Nuclear Information System (INIS)

    Delchamps, S.W.; Rameika, R.; Arenton, M.

    1989-01-01

    A 544-channel low-noise, high-rate, precision charge amplification and ADC system was constructed for the Fermilab Experiment 705 electromagnetic calorimeter, which employs SCG1-C scintillating glass and SF5 lead glass instrumented with photo-multiplier tubes. A general discussion of the system is given, and the charge amplification, fast trigger pulse generation, and analog to digital conversion aspects of the system are presented in more detail. Performance is evaluated using data from Experiment 705 and from off-line tests. Short and long term pedestal stability, baseline recovery and rate capability, linearity of response, and crosstalk between channels are discussed. 8 refs., 2 tabs

  1. An experimental study of heat transfer characteristics of single and two-phase flows in an annular tube with external vibrations

    International Nuclear Information System (INIS)

    Zaki, Adel M.; Abou El-Kassem, S.K.; Abdalla Hanafi

    2003-01-01

    An experimental study of the external vibration effect on the heat transfer characteristics of single and two-phase flows in an annular tube is carried out. An experimental set-up was constructed to study the heat transfer in a stationary, as well as, in oscillating annular tube. The annular tube was heated electrically through the inner surface, which is a stainless steel tube (St 304) 13 mm outer diameter, while the outer tube, of 3.7 cm inner diameter, made from a glass. The experimental set-up was equipped with a vibrating system to excite the annular tube in the frequency range of 0 up to 134 Hz. Several sensors for measuring wall and fluid temperatures, heat fluxes and volume flow rates of both phases were used. The obtained results show that the heat transfer coefficient can be significantly increased by vibration of the test section. (author)

  2. "Effect of nano-filled surface coating agent on fluoride release from conventional glass ionomer cement: An in vitro trial"

    OpenAIRE

    S Tiwari; B Nandlal

    2013-01-01

    Context: To overcome the drawbacks of glass ionomer cement of sensitivity to initial desiccation and moisture contamination the use of surface coating agent is recommended. The search in this area led to invent of use of nanofillers in surface coating agent, but its effect on fluoride release is not clear. Aim: The aim of this study is to evaluate and compare the fluoride release from conventional glass ionomer cement with and without surface coating agent. Settings and Design: This in vitro ...

  3. Antireflectance coating on shielding window glasses using glacial acetic acid at ambient temperature

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.

    2006-01-01

    High density lead glasses having thickness of several centimeters and large dimensions are used as shielding windows in hot cells. To improve visibility, the reflection of light from its optically polished surfaces needs to be minimized to improve transmission as absorption of light in the thick glasses can not be avoided. Antireflectance coating of a material having low refractive index is required for this purpose. Selective leaching of lead at ambient temperature in glacial acetic acid develops a silica rich leached layer on glass surface. Since silica has low refractive index, the leached layer serves as antireflectance coating. Two optically polished discs of shielding window glasses were leached in glacial acetic acid at ambient temperature for 2, 5 and 10 days and their reflectance and transmittance spectra were taken to find effect of leaching. For transparent glass transmittance could be improved from 78.76% to 85.31% after 10 days leaching. Reflectance from the glass could be decreased from 12.48 to 11.67%. For coloured glass transmittance improved from 87.77% to 88.24% after 5 days leaching while reflectance decreased from 12.28% to 5.6% during same period. Based on data generated, 10 days leaching time is recommended for developing anti reflectance coating on transparent shielding window glass and 5 days for coloured shielding window glass. The procedure can be used for shielding windows of any dimensions by fabrication a PVC tank of slightly high dimensions and filling with acetic acid (author)

  4. Hydrogen tube vehicle for supersonic transport: 2. Speed and energy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Arnold R. [Vehicle Projects Inc and Supersonic Tubevehicle LLC, 200 Violet St, Suite 100, Golden, CO 80401 (United States)

    2010-06-15

    The central concept of a new idea in high-speed transport is that operation of a vehicle in a hydrogen atmosphere, because of the low density of hydrogen, would increase sonic speed by a factor of 3.8 and decrease drag by 15 relative to air. A hydrogen atmosphere requires that the vehicle operate within a hydrogen-filled tube or pipeline, which serves as a phase separator. The supersonic tube vehicle (STV) can be supersonic with respect to air outside the tube while remaining subsonic inside. It breathes hydrogen fuel for its propulsion fuel cells from the tube itself. This paper, second in a series on the scientific foundations of the supersonic tube vehicle, tests the hypothesis that the STV will be simultaneously fast and energy efficient by comparing its predicted speed and energy consumption with that of four long-haul passenger transport modes: road, rail, maglev, and air. The study establishes the speed ranking STV >> airplane > maglev > train > coach (intercity bus) and the normalized energy consumption ranking Airplane >> coach > maglev > train > STV. Consistent with the hypothesis, the concept vehicle is both the fastest and lowest energy consuming mode. In theory, the vehicle can cruise at Mach 2.8 while consuming less than half the energy per passenger of a Boeing 747 at a cruise speed of Mach 0.81. (author)

  5. Glass fibre sensors for medical applications - fibre-optical dosimeter system. Cooperation project 1991-1994. Final report

    International Nuclear Information System (INIS)

    1996-01-01

    The final report summarizes the results of a cooperation project on the applications of fibre-optical sensors in medical technology. The FADOS dosimeter system is presented which comprises an implantable glass fibre dosimeter. It can be applied in radiotherapy for online dose metering directly at the tumour or in the surrounding healthy tissue. The dosimeter is placed in a tissue-compatible flexible catheter tube and remains inside the body during the radiotherapy treatiment. The measuring principle is based on the effect of radiation-induced damping inside a glass fibre. (DG) [de

  6. Performance Study of Solar Heat Pipe with Different Working Fluids and Fill Ratios

    Science.gov (United States)

    Harikrishnan, S. S.; Kotebavi, Vinod

    2016-09-01

    This paper elaborates on the testing of solar heat pipes using different working fluids, fill ratios and tilt angles. Methanol, Acetone and water are used as working fluids, with fill ratios 25%, 50%, 75% and 100%. Experiments were carried out at 600 and 350 inclinations. Heat pipe condenser section is placed inside a water basin containing 200ml of water. The evaporator section is exposed to sunlight where the working fluid gets heated and it becomes vapour and moves towards the condenser section. In the condenser section the heat is given to the water in the basin and the vapour becomes liquid and comes back to the evaporator section due to gravitational force. Two modes of experiments are carried out: 1) using a parabolic collector and 2) using heat pipe with evacuated tubes. On comparative study, optimum fill ratio is been found to be 25% in every case and acetone exhibited slightly more efficiency than methanol and water. As far as the heat pipe orientation is concerned, 600 inclination of the heat pipe showed better performance than 350

  7. UV resistibility of a nano-ZnO/glass fibre reinforced epoxy composite

    International Nuclear Information System (INIS)

    Wong, Tsz-ting; Lau, Kin-tak; Tam, Wai-yin; Leng, Jinsong; Etches, Julie A.

    2014-01-01

    Highlights: • A GFRE composite with UV resistibility is introduced. • The bonding behaviour and UV resistibility of the composite were studied upon the addition of nano-ZnO particles. • The solvent effect in the dispersion of nano-ZnO particles was also studied. • The nano-ZnO/GFRE composite shows effective UV absorption with enhanced bonding behaviour. - Abstract: The harmfulness of ultraviolet (UV) radiation (UVR) to human health and polymer degradation has been the focus recently in all engineering industries. A polymer-based composite filled with nano-ZnO particles can enhance its UV resistibility. It has been found that the use of appropriate amount of nano-ZnO/Isopropyl alcohol solvent to prepare a UV resistant nano-ZnO/glass fibre reinforced epoxy (ZGFRE) composite can effectively block the UV transmission with negligible influence on the crystal structure of its resin system. This paper aims at investigating the interfacial bonding behaviour and UV resistibility of a ZGFRE composite. The solvent effect in relation to the dispersion properties of ZnO in the composite is also discussed. XRD results indicated that 20 wt% Isopropyl alcohol was an effective solvent for filling nano-ZnO particles into an epoxy. SEM examination also showed that the bonding behaviour between glass fibre and matrix was enhanced after filling 20 wt% nano-ZnO particles with 20 wt% Isopropyl alcohol into the composite. Samples filled with 20 wt% nano-ZnO/Isopropyl alcohol and 40 wt% nano-ZnO/Isopropyl alcohol has full absorption of UVA (315–400 nm), UVB (280–315 nm) and a part of UVC (190–280 nm)

  8. Effect of the application of an electric field on the performance of a two-phase loop device: preliminary results

    International Nuclear Information System (INIS)

    Creatini, F; Di Marco, P; Filippeschi, S; Fioriti, D; Mameli, M

    2015-01-01

    In the last decade, the continuous development of electronics has pointed out the need for a change in mind with regard to thermal management. In the present scenario, Pulsating Heat Pipes (PHPs) are novel promising two-phase passive heat transport devices that seem to meet all present and future thermal requirements. Nevertheless, PHPs governing phenomena are quite unique and not completely understood. In particular, single closed loop PHPs manifest several drawbacks, mostly related to the reduction of device thermal performance and reliability, i.e. the occurrence of multiple operational quasi-steady states. The present research work proposes the application of an electric field as a technique to promote the circulation of the working fluid in a preferential direction and stabilize the device operation. The tested single closed loop PHP is made of a copper tube with an inner tube diameter equal to 2.00 mm and filled with pure ethanol (60% filling ratio). The electric field is generated by a couple of wire-shaped electrodes powered with DC voltage up to 20 kV and laid parallel to the longitudinal axis of the glass tube constituting the adiabatic section. Although the electric field intensity in the working fluid region is weakened both by the polarization phenomenon of the working fluid and by the interposition of the glass tube, the experimental results highlight the influence of the electric field on the device thermal performance and encourage the continuation of the research in this direction. (paper)

  9. Multistage open-tube trap for enrichment of part-per-trillion trace components of low-pressure (below 27-kPa) air samples

    Science.gov (United States)

    Ohara, D.; Vo, T.; Vedder, J. F.

    1985-01-01

    A multistage open-tube trap for cryogenic collection of trace components in low-pressure air samples is described. The open-tube design allows higher volumetric flow rates than densely packed glass-bead traps commonly reported and is suitable for air samples at pressures below 27 kPa with liquid nitrogen as the cryogen. Gas blends containing 200 to 2500 parts per trillion by volume each of ethane and ethene were sampled and hydrocarbons were enriched with 100 + or - 4 percent trap efficiency. The multistage design is more efficient than equal-length open-tube traps under the conditions of the measurements.

  10. In Vitro Evaluation of Evacuated Blood Collection Tubes as a Closed-Suction Surgical Drain Reservoir.

    Science.gov (United States)

    Heiser, Brian; Okrasinski, E B; Murray, Rebecca; McCord, Kelly

    The initial negative pressures of evacuated blood collection tubes (EBCT) and their in vitro performance as a rigid closed-suction surgical drain (CSSD) reservoir has not been evaluated in the scientific literature despite being described in both human and veterinary texts and journals. The initial negative pressures of EBCT sized 3, 6, 10, and 15 mL were measured and the stability of the system monitored. The pressure-to-volume curve as either air or water was added and maximal filling volumes were measured. Evacuated blood collection tubes beyond the manufacture's expiration date were evaluated for initial negative pressures and maximal filling volumes. Initial negative pressure ranged from -214 mm Hg to -528 mm Hg for EBCT within the manufacturer's expiration date. Different pressure-to-volume curves were found for air versus water. Optimal negative pressures of CSSD are debated in the literature. Drain purpose and type of exudates are factors that should be considered when deciding which EBCT size to implement. Evacuated blood collection tubes have a range of negative pressures and pressure-to-volume curves similar to previously evaluated CSSD rigid reservoirs. Proper drain management and using EBCT within labeled expiration date are important to ensure that expected negative pressures are generated.

  11. Digital imaging with a pressurized Xenon filled MWPC working at a high data rate

    International Nuclear Information System (INIS)

    Bellazzini, R.; Brez, A.; Del Guerra, A.; Massai, M.M.; Torquati, M.R.; Franchi, M.; Perri, G.

    1984-01-01

    A multiwire proportional chamber based detection system for medical imaging is presented. The system consists of a pressurized xenon filled MWPC and of a monochromatic fluorescent, X-ray source using a conventional diagnostic tube with various target filter combinations. The main performance of the system are: 10% efficiency, 30% energy resolution 500 micro m spatial resolution, +-5 uniformity. The preliminary results of the application of this system to bone densitometry are presented

  12. Experimental Research on Seismic Performance of Four-Element Variable Cross-Sectional Concrete Filled Steel Tubular Laced Columns

    Science.gov (United States)

    Ou, Zhijing; Lin, Jianmao; Chen, Shengfu; Lin, Wen

    2017-10-01

    A total of 7 experimental tests were conducted to investigate seismic performance of four element variable cross-sectional Concrete Filled Steel Tubular (CFST) laced columns. The experimental parameters are longitudinal slope and arrangement type of lacing tubes. The rules on hysteresis loop, ductility, energy expenditure, and stiffness degradation of specimens are researched. Test results indicate that all specimens have good seismic performance; their hysteresis loops are full without obvious shrinkage. With the increase of longitudinal slope, the horizontal carrying capacity increases, energy dissipation capacity improve, and there is slightly increase in stiffness degradation. The influence of arrangement type of lacing tubes on displacement ductility of specimens is big.

  13. Methods of Investigation of Equations that Describe Waves in Tubes with Elastic Walls and Application of the Theory of Reversible and Weak Dissipative Shocks

    Science.gov (United States)

    Bakholdin, Igor

    2018-02-01

    Various models of a tube with elastic walls are investigated: with controlled pressure, filled with incompressible fluid, filled with compressible gas. The non-linear theory of hyperelasticity is applied. The walls of a tube are described with complete membrane model. It is proposed to use linear model of plate in order to take the bending resistance of walls into account. The walls of the tube were treated previously as inviscid and incompressible. Compressibility of material of walls and viscosity of material, either gas or liquid are considered. Equations are solved numerically. Three-layer time and space centered reversible numerical scheme and similar two-layer space reversible numerical scheme with approximation of time derivatives by Runge-Kutta method are used. A method of correction of numerical schemes by inclusion of terms with highorder derivatives is developed. Simplified hyperbolic equations are derived.

  14. Thermoluminescence Response of Copper-Doped Potassium Borate Glass Subjected to 6 Megavolt X-Ray Irradiation

    Science.gov (United States)

    Hossain, I.; Shekaili, N. K.; Wagiran, H.

    2015-03-01

    This study addresses the characteristics of Cu-doped and undoped potassium borate glass for use as ionizing radiation dosimeters by investigating and comparing the thermoluminescence responses, linearity, sensitivity and dose response s of the two types of glasses. A number of samples based on xK 2 CO 3 + (100 - x)H 3 BO 3 , where 10 ≤ x ≤ 30 mol.%, have been prepared using a melt quenching technique. The amorphous phases were identified using X-ray diffraction (XRD). The undoped potassium borate samples 20K 2 CO 3 + 80H 3 BO 3 (mol.%) and Cu-doped (0.5 mol.%) samples were placed in a solid phantom apparatus and irradiated with in X-ray tube under 6 MV accelerating voltage with doses ranging from 0.5 to 4.0 Gy. This beam was produced by the Primus MLC 3339 linear accelerator (LINAC) available at Hospital Sultan Ismail, Johor Bahru, Malaysia. The results clearly show the superiority of Cu-doped glass in terms of response and sensitivity to producing luminescence over undoped potassium borate glass. The sensitivity of Cu-doped glass is 6.75 times greater than that of undoped glass.

  15. A clinical study of fallopian tube recanalization by comptesswely injecting contrast medunm into the uterus

    International Nuclear Information System (INIS)

    Xi Jiayuan; Jiang Yong; Zhu Ying; Gong Hiafeng; Lv Liang; Zhao Xinxiang; Fang Min; Wei Dingying; Hua Jian

    2006-01-01

    Objective: To search for a new, simple, rapid, safe and effective method with combination of hystero. Salingography and fallopian tube recanalization. Methods: After the double-lumen balloon catheter was inserted into the uterine cavity and then followed by saline or air injection into to the saccule. The internal os of cervix was thus blocked by the filled saccule. Iohexol was injected into uterine cavity and fallopian tubes to undertake hystero-salingography and selective radiography under the television observation. In case of obstruction the fallopian tube recanalization could be obtained by manual increasing the contrast injection pressure into the uterine cavity. Results: 2698 cases including 811 primary infertile women and 1887 cases of secondary infertilities were examed by this method. The number of obstructed fallopian tube was 3082 including 1561 right fallopian tubes and 1521 left ones. The rate of tube obstruction was 77.77% and that of tube recanalization was 88.96% including 2397 branches recanalized completely and 322 partially recanalizd. The venous reflux was found in 27 cases and light complications included slight vagina bleeding, mild transient spastic pain without mortality. Conclusion: This method of combining hystero-salinography and fallopian tube recanalization, is safe, effective, economic and practical for infertile women with quick procedure process; and worthy to be recommended. (authors)

  16. Monte Carlo simulations and radiation dosimetry measurements of 142Pr capillary tube-based radioactive implant (CTRI). A new structure for brachytherapy sources

    International Nuclear Information System (INIS)

    Bakht, M.K.; Haddadi, A.; Sadeghi, M.; Ahmadi, S.J.; Sadjadi, S.S.; Tenreiro, C.

    2013-01-01

    Previously, a promising β - -emitting praseodymium-142 glass seed was proposed for brachytherapy of prostate cancer. In accordance with the previous study, a 142 Pr capillary tube-based radioactive implant (CTRI) was suggested as a source with a new structure to enhance application of β - -emitting radioisotopes such as 142 Pr in brachytherapy. Praseodymium oxide powder was encapsulated in a glass capillary tube. Then, a thin and flexible fluorinated ethylene propylene Teflon layer sealed the capillary tube. The source was activated in the Tehran Research Reactor by the 141 Pr(n, γ) 142 Pr reaction. Measurements of the dosimetric parameters were performed using GafChromic radiochromic film. In addition, the dose rate distribution of 142 Pr CTRI was calculated by modeling 142 Pr source in a water phantom using Monte Carlo N-Particle Transport (MCNP5) Code. The active source was unreactive and did not leak in water. In comparison with the earlier proposed 142 Pr seed, the suggested source showed similar desirable dosimetric characteristics. Moreover, the 142 Pr CTRI production procedure may be technically and economically more feasible. The mass of praseodymium in CTRI structure could be greater than that of the 142 Pr glass seed; therefore, the required irradiation time and the neutron flux could be reduced. A 142 Pr CTRI was proposed for brachytherapy of prostate cancer. The dosimetric calculations by the experimental measurements and Monte Carlo simulation were performed to fulfill the requirements according to the American Association of Physicists in Medicine recommendations before the clinical use of new brachytherapy sources. The characteristics of the suggested source were compared with those of the previously proposed 142 Pr glass seed. (author)

  17. EFFECT OF INTERFACIAL ADHESION ON CRYSTALLIZATION AND MECHANICAL PROPERTIES OF POLY (ETHYLENE TEREPHTHALATE)/GLASS BEAD COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    OU Yuchun; YU Zhongzhen; ZHU Jin; LI Ge; ZHU Shanguang

    1996-01-01

    The interfacial adhesion between poly (ethylene terephthalate) (PET) and glass bead was investigated by scanning electron microscope and parallel-plate rheometer. Effect of interfacial adhesion on the crystallization and mechanical properties of PET/glass bead composites was also studied by differential scanning calorimeter and mechanical testers.The results obtained indicate that the glass bead has a heterogeneous nucleation effect on the PET crystallization. Although better interfacial adhesion is advantageous to the increase of the tensile strength of the composite, yet it is unfavorable to the crystallization of PET. It should be pointed out that the crystallization rate of filled PET is always higher than that of pure PET, regardless of the state of interfacial adhesion.

  18. Decontamination of Steam Generator tube using Abrasive Blasting Technology

    International Nuclear Information System (INIS)

    Min, B. Y.; Kim, G. N.; Choi, W. K.; Lee, K. W.; Kim, D. H.; Kim, K. H.; Kim, B. T.

    2010-01-01

    As a part of a technology development of volume reduction and self disposal for large metal waste project, We at KAERI and our Sunkwang Atomic Energy Safety (KAES) subcontractor colleagues are demonstrating radioactively contaminated steam generator tube by abrasive blasting technology at Kori-1 NPP. A steam generator is a crucial component in a PWR (pressurized Water Reactor). It is the crossing between the primary, contaminated, circuit and the secondary waste-steam circuit. The heat from the primary reactor coolant loop is transferred to the secondary side in thousands of small tubes. Due to several problems in the material of those tube, like SCC (Stress Corrosion Cracking), insufficient control in water chemistry, which can be cause of tube leakage, more and more steam generators are replaced today. Only in Korea, already 2 of them are replaced and will be replaced in the near future. The retired 300 ton heavy Steam generator was stored at the storage waste building of Kori NPP site. The steam generator waste has a large volume, so that it is necessary to reduce its volume by decontamination. A waste reduction effect can be obtained through decontamination of the inner surface of a steam generator. Therefore, it is necessary to develop an optimum method for decontamination of the inner surface of bundle tubes. The dry abrasive blasting is a very interesting technology for the realization of three-dimensional microstructures in brittle materials like glass or silicon. Dry abrasive blasting is applicable to most surface materials except those that might be shattered by the abrasive. It is most effective on flat surface and because the abrasive is sprayed and can also applicable on 'hard to reach' areas such as inner tube ceilings or behind equipment. Abrasive decontamination techniques have been applied in several countries, including Belgium, the CIS, France, Germany, Japan, the UK and the USA

  19. Efficient compression of the femtosecond pulses of an ytterbium laser in a gas-filled capillary

    International Nuclear Information System (INIS)

    Konyashchenko, Aleksandr V; Losev, Leonid L; Tenyakov, S Yu

    2011-01-01

    A 290-fs radiation pulse of an ytterbium laser system with a central wavelength of 1028 nm and an energy of 145 μJ was compressed to a 27-fs pulse with an energy of 75 μJ. The compression was realised on the basis of the effect of pulse spectrum broadening in a xenon-filled glass capillary for a pulse repetition rate of 3kHz. (control of laser radiation parameters)

  20. Effect of different glasses in glass bonded zeolite

    International Nuclear Information System (INIS)

    Lewis, M.A.; Ackerman, J.P.; Verma, S.

    1995-01-01

    A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing

  1. [Long-term follow-up after tympanostomy tube insertion in children with serous otitis media].

    Science.gov (United States)

    Fekete-Szabó, Gabriella; Kiss, Fekete; Rovó, László

    2015-11-15

    The authors report about the efficacy of inserted tympanostomy tube in children with serous otitis media. The aim of the authors was to assess the status of eardrum, the function of Eustachian tube and hearing level 10 years after the use of tympanostomy tube. Patients filled out a questionnaire and microscopic examination of tympanic membrane, tympanometry, Eustachian tube function examination, and audiometry tests were performed. In the period of 2003-2004, ventilation tube insertion was performed in 711 patients in the ENT Department of Pediatric Health Center of University of Szeged. In 349 patients adenotomy and tympanostomy tube insertion, in 18 cases tonsillectomy and grommet insertion and in 344 patients only typmanostomy tube insertion were performed. Due to objective difficulties (address change, no phone number) 453 patients were asked for control test and 312 persons accepted the invitation. Normal hearing level was found in 84.6% of patients and normal tympanometry result occurred in 82%. Tympanic ventilation disorder, perforation of tympanic membrane, sensorineural hearing loss and sensorineural hearing loss due to noise exposure were diagnosed. Application of tympanostomy tube is effective in the treatment of serous otitis media resulting from ventilation disorder. The authors draw attention to the importance of tympanometry examination to prevent the adhesive processes and cholesteatoma in chronic ventilation disorder of the middle ear.

  2. Analysis of the partially filled viscous ring damper. [application as nutation damper for spinning satellite

    Science.gov (United States)

    Alfriend, K. T.

    1973-01-01

    A ring partially filled with a viscous fluid has been analyzed as a nutation damper for a spinning satellite. The fluid has been modelled as a rigid slug of finite length moving in a tube and resisted by a linear viscous force. It is shown that there are two distinct modes of motion, called the spin synchronous mode and the nutation synchronous mode. Time constants for each mode are obtained for both the symmetric and asymmetric satellite. The effects of a stop in the tube and an offset of the ring from the spin axis are also investigated. An analysis of test results is also given including a determination of the effect of gravity on the time constants in the two modes.

  3. A miniature pulse tube cryocooler used in a superspectral imager

    Science.gov (United States)

    Jiang, Zhenhua; Wu, Yinong

    2017-05-01

    In this paper, we describe a hihg0 frequency pulse tube cryocooler used in a superspectral imager to be launched in 2020. The superspectral imager is a field-dividing optical imaging system and uses 14 sets of integrated IR detector cryocooler dewar assembly. For the requirements of less heat loss an smaller size, each set is highly integrated by directly mounting the IR dectector's sapphire substrate on the pulse tube's cold tip, and welding the dewar's housing to the flange of the cold finger. Driven by a pair of moving magnet linear motors, the dual-opposed piston compressor of the croycooler is running at 120Hz. Filled with customized stainless screens in the regenerator, the cryolooler reaches 8.1% carnot efficiency at the cooling power of 1W@80K with 34Wac input power.

  4. The effect of external visible light on the breakdown voltage of a long discharge tube

    Science.gov (United States)

    Shishpanov, A. I.; Ionikh, Yu. Z.; Meshchanov, A. V.

    2016-06-01

    The breakdown characteristics of a discharge tube with a configuration typical of gas-discharge light sources and electric-discharge lasers (a so-called "long discharge tube") filled with argon or helium at a pressure of 1 Torr have been investigated. A breakdown has been implemented using positive and negative voltage pulses with a linear leading edge having a slope dU/ dt ~ 10-107 V/s. Visible light from an external source (halogen incandescent lamp) is found to affect the breakdown characteristics. The dependences of the dynamic breakdown voltage of the tube on dU/ dt and on the incident light intensity are measured. The breakdown voltage is found to decrease under irradiation of the high-voltage anode of the tube in a wide range of dU/ dt. A dependence of the effect magnitude on the light intensity and spectrum is obtained. Possible physical mechanisms of this phenomenon are discussed.

  5. GTSP, automatic ultrasonic inspection of Guide Tube Support Pin in nuclear power plants

    International Nuclear Information System (INIS)

    2008-01-01

    1 - Description of program or function: GTSP Visitor is a program for automatic detection of known object's position in video frames. It is especially designed for automatic ultrasonic inspection of guide tube support pin (GTSP) in nuclear power plant. 2 - Methods: A GTSP and its position are detected by two-step matched filter algorithm. In first step, a video frame including GTSPs are transformed by DFT. DFTed image is multiplied by matched filter, made from a guide tube image, in frequency domain for estimate Guide Tube center position. Guide Tube areas around estimated center position are erased (pixel values of image are filled with zeros). In next step, image whose guide tube areas were erased is processed as described above but using a different matched filter made from a support pin?s image. Then the positions of two GTSPs are estimated and their orientation is estimated too. Finally its position and orientations are used for control the robot toward the desired position. 3 - Restrictions on the complexity of the problem: Robot control is out of the scope of this program. OpenCV and compatible camera are necessary

  6. Maximum credibly yield for deuteriuim-filled double shell imaging targets meeting requirements for yield bin Category A

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Douglas Carl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Loomis, Eric Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-17

    We are anticipating our first NIF double shell shot using an aluminum ablator and a glass inner shell filled with deuterium shown in figure 1. The expected yield is between a few 1010 to a few 1011 dd neutrons. The maximum credible yield is 5e+13. This memo describes why, and what would be expected with variations on the target. This memo evaluates the maximum credible yield for deuterium filled double shell capsule targets with an aluminum ablator shell and a glass inner shell in yield Category A (< 1014 neutrons). It also pertains to fills of gas diluted with hydrogen, helium (3He or 4He), or any other fuel except tritium. This memo does not apply to lower z ablator dopants, such as beryllium, as this would increase the ablation efficiency. This evaluation is for 5.75 scale hohlraum targets of either gold or uranium with helium gas fills with density between 0 and 1.6 mg/cc. It could be extended to other hohlraum sizes and shapes with slight modifications. At present only laser pulse energies up to 1.5 MJ were considered with a single step laser pulse of arbitrary shape. Since yield decreases with laser energy for this target, the memo could be extended to higher laser energies if desired. These maximum laser parameters of pulses addressed here are near the edge of NIF’s capability, and constitute the operating envelope for experiments covered by this memo. We have not considered multiple step pulses, would probably create no advantages in performance, and are not planned for double shell capsules. The main target variables are summarized in Table 1 and explained in detail in the memo. Predicted neutron yields are based on 1D and 2D clean simulations.

  7. On the performance of circular concrete-filled high strength steel columns under axial loading

    Directory of Open Access Journals (Sweden)

    Mohamed Mahmoud El-Heweity

    2012-06-01

    Full Text Available This work presents a numerical study to investigate the performance of circular high-strength steel tubes filled with concrete (CFT under monotonic axial loading. A model is developed to implement the material constitutive relationships and non-linearity. Calibration against previous experimental data shows good agreement. A parametric study is then conducted using the model and compared with codes provisions. Strength and ductility of confined concrete are of primary concern. Variables considered are yield stress of steel tube and column diameter. The assessment of column performance is based on axial load carrying capacities and enhancements of both strength and ductility due to confinement. Two parameters namely strength enhancement factor (Kf and ductility index (μ are clearly defined and introduced for assessment. Results indicate that both concrete strength and ductility of CFT columns are enhanced but to different extents. The ductile behaviors are significantly evident. The increase in yield stress of steel tube has a minimal effect on concrete strength but pronounced effect on concrete ductility. However, reduction in ductility is associated with using high-tensile steel of Grade 70. The overall findings indicate that the use of high-strength tube in CFT columns is not promising. This finding may seriously be considered in seismic design.

  8. Lead extraction from waste funnel cathode-ray tubes glasses by reaction with silicon carbide and titanium nitride

    International Nuclear Information System (INIS)

    Yot, Pascal G.; Mear, Francois O.

    2009-01-01

    As a possibility to clean waste CRT glass, treatment of lead-containing glass with a reducing agent, SiC or TiN, leads to a porous material containing metallic lead, Pb(0), located on the surface of the pore, and unreduced lead, Pb(II). The influences of reducing agent content, of the time, and at last of the temperature on lead reduction were analysed. Our investigations have pointed out significant differences as a function of the used reducing agent. CRT glass heat treated with SiC lead to less Pb(0), compared to TiN as shown by X-ray diffraction, and differential scanning calorimetry (DSC). It has been also evidenced that lead reduction occurs on randomized zones inside the sample leading to macroscopic lead beads inside glassy samples. XPS and XAS measurements were also carried out to investigate the local structure of lead and have evidenced a change of role of lead inside the glassy framework in function of the used conditions.

  9. Interphases, gelation, vitrification, porous glasses and the generalized Cauchy relation: epoxy/silica nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, M; Mueller, U; Jimenez Rioboo, R J; Baller, J; Sanctuary, R; Krueger, J K [Laboratoire de Physique des Materiaux, University of Luxembourg, 162A avenue de la Faiencerie, L-1511 Luxembourg (Luxembourg); Possart, W [Fachbereich Werkstoffwissenschaften, Universitaet des Saarlandes, D-66123 Saarbruecken (Germany)], E-mail: martine.philipp@uni.lu

    2009-02-15

    The generalized Cauchy relation (gCR) of epoxy/silica nano-composites does not show either the chemically induced sol-gel transition or the chemically induced glass transition in the course of polymerization. Astonishingly, by varying the silica nanoparticles' concentration between 0 and 25 vol% in the composites, the Cauchy parameter A of the gCR remains universal and can be determined from the pure epoxy's elastic moduli. Air-filled porous silica glasses are considered as models for percolated silica particles. A longitudinal modulus versus density representation evidences the aforementioned transition phenomena during polymerization of the epoxy/silica nanocomposites. The existence of optically and mechanically relevant interphases is discussed.

  10. Interphases, gelation, vitrification, porous glasses and the generalized Cauchy relation: epoxy/silica nanocomposites

    International Nuclear Information System (INIS)

    Philipp, M; Mueller, U; Jimenez Rioboo, R J; Baller, J; Sanctuary, R; Krueger, J K; Possart, W

    2009-01-01

    The generalized Cauchy relation (gCR) of epoxy/silica nano-composites does not show either the chemically induced sol-gel transition or the chemically induced glass transition in the course of polymerization. Astonishingly, by varying the silica nanoparticles' concentration between 0 and 25 vol% in the composites, the Cauchy parameter A of the gCR remains universal and can be determined from the pure epoxy's elastic moduli. Air-filled porous silica glasses are considered as models for percolated silica particles. A longitudinal modulus versus density representation evidences the aforementioned transition phenomena during polymerization of the epoxy/silica nanocomposites. The existence of optically and mechanically relevant interphases is discussed.

  11. Forming of complex-shaped composite tubes using optimized bladder-assisted resin transfer molding

    Science.gov (United States)

    Schillfahrt, Christian; Fauster, Ewald; Schledjewski, Ralf

    2018-05-01

    This work addresses the manufacturing of tubular composite structures by means of bladder-assisted resin transfer molding using elastomeric bladders. In order to achieve successful processing of such parts, knowledge of the compaction and impregnation behavior of the textile preform is vital. Hence, efficient analytical models that describe the influencing parameters of the preform compaction and filling stage were developed and verified through practical experiments. A process window describing optimal and critical operating conditions during the injection stage was created by evaluating the impact of the relevant process pressures on filling time. Finally, a cascaded injection procedure was investigated that particularly facilitates the manufacturing of long composite tubes.

  12. A simple trapping method of exhaled water using an ice-cooled tube to monitor the tritium level in human body

    International Nuclear Information System (INIS)

    Nogawa, Norio; Makide, Yoshihiro

    1994-01-01

    A convenient and efficient method is developed for the trapping of water in exhaled air. A bent-V-shaped glass sampling tube was immersed in iced water and exhaled air was introduced into the tube through a plastic straw. The trapping efficiency of exhaled water was equivalent to those with more complex and troublesome methods. Using anywhere available ice, the water in exhaled air can be rapidly collected with this method and the tritium level in the body will be quickly obtained. (author)

  13. The Effects of Glucose Therapy Agents-Apple Juice, Orange Juice, and Cola-on Enteral Tube Flow and Patency.

    Science.gov (United States)

    Steinberg, Daphna J; Montreuil, Jasmine; Santoro, Andrea L; Zettas, Antonia; Lowe, Julia

    2016-06-01

    To develop evidence-based hypoglycemia treatment protocols in patients receiving total enteral nutrition, this study determined the effect on enteral tube flow of glucose therapy agents: apple juice, orange juice, and cola, and it also examined the effects of tube type and feed type with these glucose therapy agents. For this study, 12 gastrostomy tubes (6 polyethylene and 6 silicone) were set at 50 mL/h. Each feeding set was filled with Isosource HN with fibre or Novasource Renal. Each tube was irrigated with 1 glucose therapy agent, providing approximately 20 g of carbohydrate every 4 h. Flow-rate measurements were collected at 2 h intervals. The results showed that the glucose therapy agent choice affected flow rates: apple juice and cola had higher average flow rates than orange juice (P = 0.01). A significant difference was found between tube type and enteral formula: polyethylene tubes had higher average flow rates than silicone tubes (P orange juice, and thus may be considered as primary treatment options for hypoglycemia in enterally fed patients. Polyethylene tubes and Isosource HN with fibre were less likely to clog than silicone tubes and Novasource Renal.

  14. Examination of YouTube videos related to synthetic cannabinoids.

    Science.gov (United States)

    Fullwood, M Dottington; Kecojevic, Aleksandar; Basch, Corey H

    2016-08-17

    The popularity of synthetic cannabinoids (SCBs) is increasing the chance for adverse health issues in the United States. Moreover, social media platforms such as YouTube that provided a platform for user-generated content can convey misinformation or glorify use of SCBs. The aim of this study was to fill this gap by describing the content of the most popular YouTube videos containing content related to the SCBs. Videos with at least 1000 or more views found under the search terms "K2" and "spice" included in the analysis. The collective number of views was over 7.5 million. Nearly half of videos were consumer produced (n=42). The most common content in the videos was description of K2 (n=69), followed by mentioning dangers of using K2 (n=47), mentioning side effects (n=38) and showing a person using K2 (n=37). One-third of videos (n=34) promoted use of K2, while 22 videos mentioned risk of dying as a consequence of using K2. YouTube could be used as a surveillance tool to combat this epidemic, but instead, the most widely videos related to SCBs are uploaded by consumers. The content of these consumer videos on YouTube often provide the viewer with access to view a wide array of uploaders describing, encouraging, participating and promoting use.

  15. Determination of alpha dose rate profile at the HLW nuclear glass/water interface

    Energy Technology Data Exchange (ETDEWEB)

    Mougnaud, S., E-mail: sarah.mougnaud@cea.fr [CEA Marcoule, DEN/DTCD/SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Tribet, M.; Rolland, S. [CEA Marcoule, DEN/DTCD/SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Renault, J.-P. [CEA Saclay, NIMBE UMR 3685 CEA/CNRS, 91191 Gif-sur-Yvette cedex (France); Jégou, C. [CEA Marcoule, DEN/DTCD/SECM, BP 17171, 30207 Bagnols-sur-Cèze cedex (France)

    2015-07-15

    Highlights: • The nuclear glass/water interface is studied. • The way the energy of alpha particles is deposited is modeled using MCNPX code. • A model giving dose rate profiles at the interface using intrinsic data is proposed. • Bulk dose rate is a majoring estimation in alteration layer and in surrounding water. • Dose rate is high in small cracks; in larger ones irradiated volume is negligible. - Abstract: Alpha irradiation and radiolysis can affect the alteration behavior of High Level Waste (HLW) nuclear glasses. In this study, the way the energy of alpha particles, emitted by a typical HLW glass, is deposited in water at the glass/water interface is investigated, with the aim of better characterizing the dose deposition at the glass/water interface during water-induced leaching mechanisms. A simplified chemical composition was considered for the nuclear glass under study, wherein the dose rate is about 140 Gy/h. The MCNPX calculation code was used to calculate alpha dose rate and alpha particle flux profiles at the glass/water interface in different systems: a single glass grain in water, a glass powder in water and a water-filled ideal crack in a glass package. Dose rate decreases within glass and in water as distance to the center of the grain increases. A general model has been proposed to fit a dose rate profile in water and in glass from values for dose rate in glass bulk, alpha range in water and linear energy transfer considerations. The glass powder simulation showed that there was systematic overlapping of radiation fields for neighboring glass grains, but the water dose rate always remained lower than the bulk value. Finally, for typical ideal cracks in a glass matrix, an overlapping of irradiation fields was observed while the crack aperture was lower than twice the alpha range in water. This led to significant values for the alpha dose rate within the crack volume, as long as the aperture remained lower than 60 μm.

  16. Effective thermal conductivity of glass-fiber board and blanket standard reference materials

    International Nuclear Information System (INIS)

    Smith, D.R.; Hust, J.G.

    1983-01-01

    This chapter reports on measurements of effective thermal conductivity performed on a series of specimens of glass-fiber board and glass-fiber blanket. Explains that measurements of thermal conductivity were conducted as a function of temperature from 85 to 360 K, of temperature difference with T=10 to 100 K, of bulk density from 11 to 148 kg/m 3 and for nitrogen, argon, and helium inter-fiber fill gases at pressures from atmospheric to high vacuum. Analyzes and compares results with values from the published literature and National Bureau of Standards (NBS) certification data for similar material. Gives polynomial expressions for the functional relation between conductivity, temperature, and density for board and for blanket

  17. A holistic approach to recycling of CRT glass and PCBs in Vietnam

    OpenAIRE

    Wiesmeth, Hans; Häckl , Dennis; Do, Quang Trung; Bui, Duy Cam

    2012-01-01

    Rapidly growing quantities of e-waste (WEEE) demand the increasing attention of environmental policy all over the world. Developing countries are particularly affected by recycling and disposal activities, which are deemed harmful to health and environment. Holistic or integrated approaches to WEEE policy are required. The paper discusses first recycling technologies for glass from cathode ray tubes (CRT) and printed circuit boards (PCBs) in Vietnam. Thereafter the German approach to WEEE ...

  18. Adhesives for bonded molar tubes during fixed brace treatment.

    Science.gov (United States)

    Millett, Declan T; Mandall, Nicky A; Mattick, Rye Cr; Hickman, Joy; Glenny, Anne-Marie

    2017-02-23

    date of publication when searching the electronic databases. Randomised controlled trials of participants with full arch fixed orthodontic appliance(s) with molar tubes, bonded to first or second permanent molars. Trials which compared any type of adhesive used to bond molar tubes (stainless steel or titanium) with any other adhesive, were included.Trials were also included where:(1) a tube was bonded to a molar tooth on one side of an arch and a band cemented to the same tooth type on the opposite side of the same arch;(2) molar tubes had been allocated to one tooth type in one patient group and molar bands to the same tooth type in another patient group. The selection of papers, decision about eligibility and data extraction were carried out independently and in duplicate without blinding to the authors, adhesives used or results obtained. All disagreements were resolved by discussion. Two trials (n = 190), at low risk of bias, were included in the review and both presented data on first time failure at the tooth level. Pooling of the data showed a statistically significant difference in favour of molar bands, with a hazard ratio of 2.92 (95% confidence intervals (CI) 1.80 to 4.72). No statistically significant heterogeneity was shown between the two studies. Data on first time failure at the patient level were also available and showed statistically different difference in favour of molar bands (risk ratio 2.30; 95% CI 1.56 to 3.41) (risk of event for molar tubes = 57%; risk of event for molar bands 25%).One trial presented data on decalcification again showing a statistically significant difference in favour of molar bands. No other adverse events identified. From the two well-designed and low risk of bias trials included in this review it was shown that the failure of molar tubes bonded with either a chemically-cured or light-cured adhesive was considerably higher than that of molar bands cemented with glass ionomer cement. One trial indicated that there was less

  19. Simulation study of time-walk issues for drift tubes

    International Nuclear Information System (INIS)

    Asano, Yuzo; Itoh, Setsuo; Mori, Shigeki; Ikeda, Hirokazu; Tanaka, Manobu.

    1991-01-01

    Time walk is evaluated for a drift tube of 2.9 cm in diameter filled with P10 gas, with an anode wire of 70 μm in diameter. Its magnitude, if the shaping is of Poisson type and a leading-edge discriminator is used, is found to be 2-10 ns when 50 % gain variation is allowed in the gas multiplication. On the other hand, the use of a constant fraction timing discriminator is expected to reduce this to the order of 0.1 ns. (author)

  20. Current Understanding and Remaining Challenges in Modeling Long-Term Degradation of Borosilicate Nuclear Waste Glasses

    International Nuclear Information System (INIS)

    Vienna, John D.; Ryan, Joseph V.; Gin, Stephane; Inagaki, Yaohiro

    2013-01-01

    Chemical durability is not a single material property that can be uniquely measured. Instead it is the response to a host of coupled material and environmental processes whose rates are estimated by a combination of theory, experiment, and modeling. High-level nuclear waste (HLW) glass is perhaps the most studied of any material yet there remain significant technical gaps regarding their chemical durability. The phenomena affecting the long-term performance of HLW glasses in their disposal environment include surface reactions, transport properties to and from the reacting glass surface, and ion exchange between the solid glass and the surrounding solution and alteration products. The rates of these processes are strongly influenced and are coupled through the solution chemistry, which is in turn influenced by the reacting glass and also by reaction with the near-field materials and precipitation of alteration products. Therefore, those processes must be understood sufficiently well to estimate or bound the performance of HLW glass in its disposal environment over geologic time-scales. This article summarizes the current state of understanding of surface reactions, transport properties, and ion exchange along with the near-field materials and alteration products influences on solution chemistry and glass reaction rates. Also summarized are the remaining technical gaps along with recommended approaches to fill those technical gaps

  1. Compact water depth sensor with LPFG using the photoelastic effect and heat-shrinkable tube

    Science.gov (United States)

    Takama, Shinya; Kudomi, Takamasa; Ohashi, Masaharu; Miyoshi, Yuji

    2011-12-01

    We propose a compact water depth sensor with a long period fiber grating (LPFG) using a heat-shrinkable tube. The pressure property of the LPFG is investigated experimentally to confirm the feasibility of the water depth sensor. Moreover, the water depth in the 2m long water-filled pipe is successfully estimated by the proposed water sensors.

  2. Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Jefferson Ricardo PEREIRA

    2014-10-01

    Full Text Available OBJECTIVE: The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs and resinmodified glass ionomer cements (RMGICs. MATERIAL AND METHODS: Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to the cement used for post cementation: Luting & Lining Cement; Fuji II LC Improved; RelyX Luting; Ketac Cem; and Ionoseal. After cementation of the glass fiber posts, all roots were stored at 100% humidity until testing. For push-out test, 1-mm thick slices were produced. The push-out test was performed in a universal testing machine at a crosshead speed of 0.5 mm/minute and the values (MPa were analyzed by Kolmogorov-Smirnov and Levene's tests and by two-way ANOVA and Tukey's post hoc test at a significance level of 5%. RESULTS: Fiber posts cemented using Luting & Lining Cement, Fuji II LC Improved, and Ketac Cem presented the highest bond strength to root dentin, followed by RelyX Luting. Ionoseal presented the lowest bond strength values (P>0.05. The post level did not influence the bond strength of fiber posts to root dentin (P=0.148. The major cause of failure was cohesive at the cement for all GICs and RMGICs. CONCLUSIONS: Except for Ionoseal, all cements provided satisfactory bond strength values.

  3. Measurement of Passive Uptake Rates for Volatile Organic Compounds on Commercial Thermal Desorption Tubes and the Effect of Ozone on Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Randy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Parra, Amanda [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Russell, Marion [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lee, Wen-Yee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-05-01

    Diffusive or passive sampling methods using commercially filled axial-sampling thermal desorption tubes are widely used for measuring volatile organic compounds (VOCs) in air. The passive sampling method provides a robust, cost effective way to measure air quality with time-averaged concentrations spanning up to a week or more. Sampling rates for VOCs can be calculated using tube geometry and Fick’s Law for ideal diffusion behavior or measured experimentally. There is evidence that uptake rates deviate from ideal and may not be constant over time. Therefore, experimentally measured sampling rates are preferred. In this project, a calibration chamber with a continuous stirred tank reactor design and constant VOC source was combined with active sampling to generate a controlled dynamic calibration environment for passive samplers. The chamber air was augmented with a continuous source of 45 VOCs ranging from pentane to diethyl phthalate representing a variety of chemical classes and physiochemical properties. Both passive and active samples were collected on commercially filled Tenax TA thermal desorption tubes over an 11-day period and used to calculate passive sampling rates. A second experiment was designed to determine the impact of ozone on passive sampling by using the calibration chamber to passively load five terpenes on a set of Tenax tubes and then exposing the tubes to different ozone environments with and without ozone scrubbers attached to the tube inlet. During the sampling rate experiment, the measured diffusive uptake was constant for up to seven days for most of the VOCs tested but deviated from linearity for some of the more volatile compounds between seven and eleven days. In the ozone experiment, both exposed and unexposed tubes showed a similar decline in terpene mass over time indicating back diffusion when uncapped tubes were transferred to a clean environment but there was no indication of significant loss by ozone reaction.

  4. Effects of filling ratio and condenser temperature on the thermal performance of a neon cryogenic oscillating heat pipe

    Science.gov (United States)

    Liang, Qing; Li, Yi; Wang, Qiuliang

    2018-01-01

    A cryogenic oscillating heat pipe (OHP) made of a bended copper capillary tube is manufactured. The lengths of the condenser section, adiabatic section and evaporator section are 100, 280 and 100 mm, respectively. Neon is used as the working fluid. Effects of liquid filling ratio and condenser temperature on the thermal performance of the OHP are studied. A correlation based on the available experimental data sets is proposed to predict the thermal performance of the neon cryogenic OHP with different filling ratios and condenser temperature. Compared with the experimental data, the average standard deviation of the correlation is about 15.0%, and approximately 92.4% of deviations are within ±30%.

  5. Contrasted glass-whole rock compositions and phenocryst re-distribution, IPOD Sites 417 and 418

    Science.gov (United States)

    Staudigel, H.; Bryan, W. B.

    1982-01-01

    Major element composition ranges of closely associated basalt glass-whole rock pairs from individual small cooling units approach the total known range of basalt glass and whole rock compositions at IPOD sites 417 and 418. The whole rock samples fall into two groups: one is depleted in MgO and distinctly enriched in plagioclase but has lost some olivine and/or pyroxene relative to its corresponding glass; and the other is enriched in MgO and in phenocrysts of olivine and pyroxene as well as plagioclase compared to its corresponding glass. By analogy with observed phenocryst distributions in lava pillows, tubes, and dikes, and with some theoretical studies, we infer that bulk rock compositions are strongly affected by phenocryst redistribution due to gravity settling, flotation, and dynamic sorting after eruption, although specific models are not well constrained by the one-dimensional geometry of drill core. Compositional trends or groupings in whole rock data resulting from such late-stage processes should not be confused with more fundamental compositional effects produced in deep chambers or during partial melting.

  6. Morphological Changes Of The Root Surface And Fracture Resistance After Treatment Of Root Fracture By CO2 Laser And Glass Ionomer Or Mineral Trioxide Aggregates

    Science.gov (United States)

    Badr, Y. A.; Abd El-Gawad, L. M.; Ghaith, M. E.

    2009-09-01

    This in vitro study evaluates the morphological changes of the root surface and fracture resistance after treatment of root cracks by CO2 laser and glass Ionomer or mineral trioxide aggregates (MTA). Fifty freshly extracted human maxillary central incisor teeth with similar dimension were selected. Crowns were sectioned at the cemento-enamel junction, and the lengths of the roots were adjusted to 13 mm. A longitudinal groove with a dimension of 1×5 mm2 and a depth of 1.5 mm was prepared by a high speed fissure bur on the labial surface of the root. The roots were divided into 5 groups: the 10 root grooves in group 1 were remained unfilled and were used as a control group. The 10 root grooves in group 2 were filled with glass Ionomer, 10 root grooves in group 3 were filled with MTA, the 10 root grooves in group 4 were filled with glass Ionomer and irradiated by CO2 laser and the 10 root grooves in group 5 were filled with MTA and irradiated with CO2 laser. Scanning electron microscopy was performed for two samples in each group. Tests for fracture strength were performed using a universal testing machine and a round tip of a diameter of 4 mm. The force was applied vertically with a constant speed of 1 mm min 1. For each root, the force at the time of fracture was recorded in Newtons. Results were evaluated statistically with ANOVA and Turkey's Honestly Significant Difference (HSD) tests. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight Chemical bond between the cementum and glass Ionomer and melted masses and globular like structure between cementum and MTA. The mean fracture resistance was the maximum fracture resistance in group 5 (810.8 N). Glass Ionomer and MTA with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture. CO2 laser increase the resistance of the teeth to fracture.

  7. Short and medium range order in two-component silica glasses by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Inoue, K.; Kataoka, H.; Nagai, Y.; Hasegawa, M.; Kobayashi, Y.

    2014-01-01

    The dependence of chemical composition on the average sizes of subnanometer-scale intrinsic structural open spaces surrounded by glass random networks in two-component silica-based glasses was investigated systematically using positronium (Ps) confined in the open spaces. The average sizes of the open spaces for SiO 2 -B 2 O 3 and SiO 2 -GeO 2 glasses are only slightly dependent on the chemical compositions because the B 2 O 3 and GeO 2 are glass network formers that are incorporated into the glass network of the base SiO 2 . However, the open space sizes for all SiO 2 -R 2 O (R = Li, Na, K) glasses, where R 2 O is a glass network modifier that occupies the open spaces, decrease rapidly with an increase in the R 2 O concentration. Despite the large difference in the ionic radii of the alkali metal (R) atoms, the open space sizes decrease similarly for all the alkali metal atoms studied. This dependence of the chemical composition on the open space sizes in SiO 2 -R 2 O observed by Ps shows that the alkali metal atoms do not randomly occupy the structural open spaces, but filling of the open spaces by R 2 O proceeds selectively from the larger to the smaller open spaces as the R 2 O concentrations are increased.

  8. Effect of surface roughness on heat transfer from horizontal immersed tubes in a fluidized bed

    International Nuclear Information System (INIS)

    Grewal, N.S.; Saxena, S.C.

    1979-01-01

    Experimental results of the total heat transfer coefficient between 12.7 mm dia copper tubes with four different rough surfaces and glass beads of three different sizes as taken in a 0.305 m x 0.305 m square fluidized bed as a function of fluidizing velocity are reported. The comparison of results for the rough and technically smooth tubes suggests that the heat transfer coefficient strongly depends on the ratio of pitch (P/sub f/) to the average particle diameter (d/sub p/), where P/sub f/ is the distance between the two corresponding points on consecutive threads or knurls. By the proper choice of (P/sub f//d/sub p/) ratio, the maximum total heat transfer coefficient for V-thread tubes (h/sub w/fb) can be increased by as much as 40 percent over the value for a smooth tube with the same outside diameter. However, for values of (P/sub f//d/sub p/) less than 0.95, the maximum heat transfer coefficient for the V-thread rough tubes is smaller than the smooth tube having the same outside diameter. The qualitative variation of the heat transfer coefficient for rough tubes with (P/sub f//d) is explained on the basis of the combined effect of contact geometry between the solid particles and the heat transfer surface, and the solids renewal rate at the surface. The present findings are critically compared with somewhat similar investigations from the literature on the heat transfer from horizontal or vertical rough tubes and tubes with small fins

  9. Delamination propensity of pharmaceutical glass containers by accelerated testing with different extraction media.

    Science.gov (United States)

    Guadagnino, Emanuel; Zuccato, Daniele

    2012-01-01

    can cause glass particles to appear in vials, a problem that has forced a number of drug product recalls in recent years. To combat this, pharmaceutical and biopharmaceutical manufacturers need to understand the reasons for glass delamination. The most recent cases of product recall due to the presence of particles in the filling liquid have involved borosilicate glass containers carrying drugs made of active components with known ability to corrode glass and to dissolve the silica matrix. Sometimes these ingredients are dissolved in an alkaline medium that dramatically increases the glass corrosion and potentially causes the issue. As this action is strongly affected by time and temperature, flaking may become visible only after a long incubation during storage and requires systematic monitoring to be detected at its early stage. If the nature of the filling liquid is the driving force of the phenomenon, other factors are of primary importance. The surface morphology created during vial forming is a key issue, being a function of the forming temperature that is higher in the cutting step and the forming of the bottom. Delamination occurs generally on the vial's bottom and shoulder, where extensive flaming can favor a strong evaporation of alkali and borate species and the formation of heavily enriched silica layers. When these layers are in contact with a solution, they are subject to a differential re-hydration that may result in cracking and detachment of scales. The purpose of this investigation is to identify testing conditions and parameters that can be used as indicators of an incipient delamination process. Extractions with 0.9% KCl solution for 1 h at 121 °C can be used to simulate a long-term contact with aggressive pharmaceutical preparations, while SiO(2) concentration in the extract solution can be taken as an index of glass dissolution. The conclusions developed by this study can provide pharmaceutical manufacturers with information needed to help

  10. Evaluation of debris extruded apically during the removal of root canal filling material using ProTaper, D-RaCe, and R-Endo rotary nickel-titanium retreatment instruments and hand files.

    Science.gov (United States)

    Topçuoğlu, Hüseyin Sinan; Aktı, Ahmet; Tuncay, Öznur; Dinçer, Asiye Nur; Düzgün, Salih; Topçuoğlu, Gamze

    2014-12-01

    The aim of this study was to evaluate the amount of debris extruded apically during the removal of root canal filling material using ProTaper (Dentsply Maillefer, Ballaigues, Switzerland), D-RaCe (FKG Dentaire, La Chaux-de-Fonds, Switzerland), and R-Endo (Micro-Mega, Besançon, France) nickel-titanium (NiTi) rotary retreatment instruments and hand files. Sixty extracted single-rooted mandibular premolar teeth were prepared with K-files and filled with gutta-percha and AH Plus sealer (Dentsply DeTrey, Konstanz, Germany). The teeth were then randomly assigned to 4 groups (n = 15 for each group) for retreatment. The removal of canal filling material was performed as follows: hand files, ProTaper, D-RaCe, and R-Endo retreatment instruments. Debris extruded apically during the removal of canal filling material was collected into preweighed Eppendorf tubes. The tubes were then stored in an incubator at 70°C for 5 days. The weight of the dry extruded debris was established by subtracting the preretreatment and postretreatment weight of the Eppendorf tubes for each group. The data obtained were analyzed using 1-way analysis of variance and Tukey post hoc tests. All retreatment techniques caused the apical extrusion of debris. Hand files produced significantly more debris when compared with ProTaper, D-RaCe, and R-Endo rotary systems (P ProTaper, D-RaCe, and R-Endo retreatment systems (P > .05). The findings showed that during the removal of root canal filling material, rotary NiTi retreatment instruments used in this study caused less apical extrusion of debris compared with hand files. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into a...

  12. Air bubbles and hemolysis of blood samples during transport by pneumatic tube systems.

    Science.gov (United States)

    Mullins, Garrett R; Bruns, David E

    2017-10-01

    Transport of blood samples through pneumatic tube systems (PTSs) generates air bubbles in transported blood samples and, with increasing duration of transport, the appearance of hemolysis. We investigated the role of air-bubble formation in PTS-induced hemolysis. Air was introduced into blood samples for 0, 1, 3 or 5min to form air bubbles. Hemolysis in the blood was assessed by (H)-index, lactate dehydrogenase (LD) and potassium in plasma. In an effort to prevent PTS-induced hemolysis, blood sample tubes were completely filled, to prevent air bubble formation, and compared with partially filled samples after PTS transport. We also compared hemolysis in anticoagulated vs clotted blood subjected to PTS transport. As with transport through PTSs, the duration of air bubble formation in blood by a gentle stream of air predicted the extent of hemolysis as measured by H-index (pair space in a blood sample prevented bubble formation and fully protected the blood from PTS-induced hemolysis (ptransport and was partially protected from hemolysis vs anticoagulated blood as indicated by lower LD (ptransport. Prevention of air bubble formation in blood samples during PTS transport protects samples from hemolysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Development and evaluation of aerogel-filled BMI sandwich panels for thermal barrier applications

    Directory of Open Access Journals (Sweden)

    A. Dineshkumar

    2016-07-01

    Full Text Available This study details a fabrication methodology envisaged to manufacture Glass/BMI honeycomb core aerogel-filled sandwich panels. Silica aerogel granules are used as core fillers to provide thermal insulation properties with little weight increase. Experimental heat transfer studies are conducted on these panels to study the temperature distribution between their two surfaces. Numerical studies are also carried out to validate the results. Despite exhibiting good thermal shielding capabilities, the Glass/BMI sandwich panels are found to oxidise at 180 ºC if exposed directly to heat. In order to increase the temperature bearing capacity and the operating temperature range for these panels, a way of coating them from outside with high temperature spray paint was tried. With a silicone-based coating, the temperature sustainability of these sandwich panels is found to increase to 350 ºC. This proved the effectiveness of the formed manufacturing process, selected high temperature coating, the coating method as well as the envisaged sandwich panel concept.

  14. Characterization of glass and glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lutze, W.; Borchardt, J.; De, A.K.

    1979-01-01

    Characteristics of solidified nuclear waste forms, glass and glass ceramic compositions and the properties (composition, thermal stability, crystallization, phase behavior, chemical stability, mechanical stability, and radiation effects) of glasses and glass ceramics are discussed. The preparation of glass ceramics may be an optional step for proposed vitrification plants if tailored glasses are used. Glass ceramics exhibit some improved properties with respect to glasses. The overall leach resistance is similar to that of glasses. An increased leach resistance may become effective for single radionuclides being hosted in highly insoluble crystal phases mainly when higher melting temperatures are applicable in order to get more leach resistant residual glass phases. The development of glass ceramic is going on. The technological feasibility is still to be demonstrated. The potential gain of stability when using glass ceramics qualifies the material as an alternative nuclear waste form

  15. Paramecium swimming in capillary tube

    Science.gov (United States)

    Jana, Saikat; Um, Soong Ho; Jung, Sunghwan

    2012-04-01

    Swimming organisms in their natural habitat need to navigate through a wide range of geometries and chemical environments. Interaction with boundaries in such situations is ubiquitous and can significantly modify the swimming characteristics of the organism when compared to ideal laboratory conditions. We study the different patterns of ciliary locomotion in glass capillaries of varying diameter and characterize the effect of the solid boundaries on the velocities of the organism. Experimental observations show that Paramecium executes helical trajectories that slowly transition to straight lines as the diameter of the capillary tubes decreases. We predict the swimming velocity in capillaries by modeling the system as a confined cylinder propagating longitudinal metachronal waves that create a finite pressure gradient. Comparing with experiments, we find that such pressure gradient considerations are necessary for modeling finite sized ciliary organisms in restrictive geometries.

  16. Detection tube with composite carrier for detection of phosgene and diphosgene in air

    Directory of Open Access Journals (Sweden)

    Pitschmann Vladimír

    2012-01-01

    Full Text Available A new highly sensitive detection tube for measurement of concentration of phosgene and diphosgene in air has been developed. The detection is based on chemical reaction of 4-(p-nitrobenzylpyridine and N-phenylbenzylamine which with phosgene (diphosgene give characteristic red methine dye. As a carrier serves spherical granules (pellets of composite material prepared by granulation of microcrystalline cellulose with MgO. This new indication filling is stable, resistant to interferences and climatic influences. The detection limit (0.05 mg.m-3 meets the requirements for conducting hygienic checks of air quality in the workplace environment. In addition, the tube allows a prolonged and continuous monitoring of phosgene and diphosgene in air for at least 240 minutes.

  17. Complexing agents and pH influence on chemical durability of type I moulded glass containers.

    Science.gov (United States)

    Biavati, Alberto; Poncini, Michele; Ferrarini, Arianna; Favaro, Nicola; Scarpa, Martina; Vallotto, Marta

    2017-06-16

    Among the factors that affect the glass surface chemical durability, pH and complexing agents presence in aqueous solution have the main role (1). Glass surface attack can be also related to the delamination issue with glass particles appearance in the pharmaceutical preparation. A few methods to check for glass containers delamination propensity and some control guidelines have been proposed (2,3). The present study emphasizes the possible synergy between a few complexing agents with pH on the borosilicate glass chemical durability. Hydrolytic attack was performed in small volume 23 ml type I glass containers autoclaved according to EP or USP for 1 hour at 121°C, in order to enhance the chemical attack due to time, temperature and the unfavourable surface/volume ratio. 0,048 M or 0.024 M (moles/liter) solutions of the acids citric, glutaric, acetic, EDTA (ethylenediaminetetraacetic acid) and sodium phosphate with water for comparison, were used for the trials. The pH was adjusted ± 0,05 units at fixed values 5,5-6,6-7-7,4-8-9 by LiOH diluted solution. Since silicon is the main glass network former, silicon release into the attack solutions was chosen as the main index of the glass surface attack and analysed by ICPAES. The work was completed by the analysis of the silicon release in the worst attack conditions, of moulded glass, soda lime type II and tubing borosilicate glass vials to compare different glass compositions and forming technologies. Surface analysis by SEM was finally performed to check for the surface status after the worst chemical attack condition by citric acid. Copyright © 2017, Parenteral Drug Association.

  18. Tube plug

    International Nuclear Information System (INIS)

    Zafred, P. R.

    1985-01-01

    The tube plug comprises a one piece mechanical plug having one open end and one closed end which is capable of being inserted in a heat exchange tube and internally expanded into contact with the inside surface of the heat exchange tube for preventing flow of a coolant through the heat exchange tube. The tube plug also comprises a groove extending around the outside circumference thereof which has an elastomeric material disposed in the groove for enhancing the seal between the tube plug and the tube

  19. Ultrasonic inspection of tube to tube plate welds

    International Nuclear Information System (INIS)

    Telford, D.W.; Peat, T.S.

    1985-01-01

    To monitor the deterioration of a weld between a tube and tube plate which has been repaired by a repair sleeve inside the tube and brazed at one end to the tube, ultrasound from a crystal at the end of a rod is launched, in the form of Lamb-type waves, into the tube through the braze and allowed to travel along the tube to the weld and be reflected back along the tube. The technique may also be used for the type of heat exchanger in which, during construction, the tubes are welded to the tube plate via external sleeves in which case the ultrasound is used in a similar manner to inspect the sleeve/tube plate weld. an electromagnetic transducer may be used to generate the ultrasound. The ultrasonic head comprising the crystal and an acoustic baffle is mounted on a Perspex (RTM) rod which may be rotated by a stepping motor. Echo signals from the region of deterioration may be isolated by use of a time gate in the receiver. The device primarily detects circumferentially orientated cracks, and may be used in heat exchangers in nuclear power plants. (author)

  20. Core design of super LWR with double tube water rods

    International Nuclear Information System (INIS)

    Wu, Jianhui; Oka, Yoshiaki

    2014-01-01

    Highlights: • Supercritical light water cooled and moderated reactor with double tube water rods is developed. • Double-row fuel rod assembly and out-in fuel loading pattern are applied. • Separation plates in peripheral assemblies increase average outlet temperature. • Neutronic and thermal design criteria are satisfied during the cycle. - Abstract: Double tube water rods are employed in core design of super LWR to simplify the upper core structure and refueling procedure. The light water moderator flows up in the inner tube from the bottom of the core, then, changes the flow direction at the top of the core into the outer tube and flows out at the bottom of the core. It eliminates the moderator guide/distribution tubes into the single tube water rods from the top dome of the reactor pressure vessel of the previous super LWR design. Two rows of fuel rods are filled between the water rods in the fuel assembly. Out-in refueling pattern is adopted to flatten radial power distribution. The peripheral fuel assemblies of the core are divided into four flow zones by separation plates for increasing the average core outlet temperature. Three enrichment zones are used for axial power flattening. The equilibrium core is analyzed based on neutronic/thermal-hydraulic coupled model. The results show that, by applying the separation plates in peripheral fuel assemblies and low gadolinia enrichment, the maximum cladding surface temperature (MCST) is limited to 653 °C with the average outlet temperature of 500 °C. The inherent safety is satisfied by the negative void reactivity effects and sufficient shutdown margin